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1. INTRODUCTION

The initial, or firsit-phase treatment of satellite altimeter data has been

carried out at AFGL in a global short-arc adjustment of spherical-harmonic (S.H.)

potential coefficients, state vector parameters and, optionally, certain tidal

parameters. This least-squares adjustment is aimed at a long-wavelength resolu-

*5 tion of the earth's gravity field and its fundamental surface, the geoid. It

*has been the subject of various AFGL reports and papers, e.g., [Blaha, 1981, 1982),

and has been applied especially to SEASAT altimetry.

For the reasons recapitulated in [Blaha, 1981), the orbital arcs entering

the adjustment have been limited to 7 minutes in duration, i.e., to 25.00 in

angular length. Most of the satellite passes have been subdivided at the pre-

processing level to satisfy this requirement, except for natural disruptions in

the flow of data (gaps due to land masses, malfunction or the altimeter, etc.).

' Arcs shorter than 30 have been eliminated altogether. Because of the (14,14)

" degree and order truncation adopted in the S.H. adjustment model, the shortest

half-wavelength of the geoidal resolution amounts to approximately 12.90 (this

is 180"/n, with n=14, as given by the familiar rule of thumb). Accordingly, the

arc length of 250 corresponds to the full wavelength of the smallest geoidal

features to be represented by the adjustment.

In order to allow the fine structure of the earth's gravity field to be added

to its long-wavelength features representing a new "reference field", second-phase

techniques have been conceived based on the results from the first phase. One

such technique has been designed in terms of the point-mass (P.M.) parameters,

as described in several AFGL reports, e.g., [Blaha, 1983, 1984). Due to the

banded structure of the matrix of normal equations, the P.M. parameters can be

resolved in overlapping strips, which can be combined together so as to cover the

.. -. .. .. .. .. ....
...



whole oceanic geoid. Optionally, certain tidal parameters can also be included

in such a least-squares adjustment; in this case the matrix of normal equations

becomes banded-bordered, having the tidal parameters in the border.

The P.M. approach has recently been complemented by a specific modification

of the least-squares collocation with noise, which provides another means for a

second-phase gravity field resolution on a local, regional, or global scale. The

modification resides in pushing a part of the signal, corresponding to the gravity

field variations beyond the desired smoothing level, into the realm of "noise".

A detailed description of this technique is offered in EBlaha, 1984].

Both second-phase approaches above are built on the altimeter residuals

(taken as minus the geoidal residuals) from the first phase, utilized in the role

of new observations. Thus, the high-resolution altimeter information enters the

second phase, while the state vector parameters, the adjustment of which is the

most time-consuming element in the treatment of altimeter data, are no longer

considered at this stage.

The above two approaches are the topic of Chapter 2, which recapitulates their

basic features and describes their ability to address particular tasks. One such

task is concerned with designing a third-phase approach in view of a detailed

.* gravity field representation in areas of special interest. Chapter 3 deals with

"* the P.M. approach alone, in considering a double-layer version with its advantages

and disadvantages.

In addition to describing the earth's gravity field, the outcome of the col-

location approach can also serve in generating a set of S.H. potential coefficients

'. which, under certain conditions, will accomplish the same task equally well. The

*" process of representing coilocation results by a S.H. expansion is outlined in

Chapter 4, while the conditions under which such a representation is consistent

-2-

............' "' ' ' '- " "' 'I ' ' ' ' • f ' ' 'I-' " . . . . .i. . . .I -



with the collocation outcome are analyzed in Chapter 5. This analysis is

carried out primarily through computer simulations, in which extensive use is

made of Legendre polynomials and associated Legendre functions. An accurate

* and efficient evaluation of the latter is the subject of Appendix 1.

The outcome of Chapter 5 is subsequently exploited ir Chapter 6. Section

°. 6.1 completes the development of Chapter 4, and thus rounds off the algorithm

leading from the collocation results to a detailed S.H. representation of the

earth's gravity field. And Section 6.2 uses some of the principles set forth in

Chapter 5 in developing an algorithm for a global representation of tidal effects

with the aid of S.H. tidal coefficients. Chapters 4-6 together with Appendix 1

could be combined in one larger unit representing the main thrust of the present

study.

Subjects having a weaker link to the principal topics contained in the body

of this report are relegated to Appendices 2 and 3. They deal, respectively,

with the possibility of introducing tidal point masses into the P.M. adjustment,

. and with the utilization of altimeter residuals fcr a detectin of bathymetric,

geomagnetic, and other anomalies in open oceans. All three appendices, as well

*. as most of the chapters, are presented essentially in a self-contained manner,

w. and can thus be read independently without impairment to a good understandin.,

of the presented material.

In addition to .is Final Report, the reports dealing with satellite

*" altimetry during the period of the present research contract have been [Blaha,

1983, 1984].

-3-
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2, EVALUATION OF A LARGE-SCALE SECOND-PHASE GRAVITY
FIELD REPRESENTATION AND A DETAILED RESOLUTION
IN AREAS OF SPECIAL INTEREST

2.1 Point-Mass Approach

The point-mass (P.M.) adjustment is built on the adjusted geoid from

the first phase which can represent a "normal field". The parameters in this

method are the P.M. magnitudes associated with point masses distributed in an

equilateral grid. The point masses can form a single layer, in which case

they are all at the same depth below the surface of the reference ellipsoid,

or a double layer, in which case there are twin point masses at each location

*i of the grid, separated by a predetermined vertical distance. The number of

-* parameters is the same in both these modes since a twin point mass represents

-. only one parameter; the magnitudes of the shallower and deeper point masses are

equal, only their signs differ. The resolution power depends primarily on the

grid interval, and to a much lesser degree on their depth and/or vertical

separation of the twin point masses. This is illustrated in Table 1 of the next

"* chapter. Thus, for example, if the point masses (single or twin) are distributed

in a 20x20 equilateral grid, the resolution corresponds approximately to a

(90,90) spherical-harmonic expansion.

The second-phase P.M. adjustment treats the new observations (minus the

geoidal residuals from the first phase), the P.M. parameters and, optionally,

*certain tidal parameters in a simultaneous least-squares process leading to a

more detailed resolution of the earth's gravity field on the global oceanic

*scale. In view of the banded or the banded-bordered structure of normal equations,

an approximation is introduced through a cut-off distance beyond which the con-

tribution of observations to a given P.M. parameter is ignored. Although only

information representing the geoid undulations enters the adjustment in the

-4-
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form of observed quantities, the solved for P.M. magnitudes allow the evaluation

of other functions of the disturbing potential (with respect to the adopted

"normal field") as well, given the geodetic coordinates on the earth's surface.

It should be noted that due to the relatively high degree and order of the

adopted reference field, such as the (14,14) spherical-harmonic (S.H.) field

resolved during the first phase as compared to the ellipsoidal field, the

spherical approximation introduced in the P.M. model is inconsequential.

The final outcome of the two adjustment phases with respect to the geoid

and the earth's gravity field consists of a set of S.H. potential coefficients

and the magnitudes of the point masses introduced at the predetermined locations,

which enable one to determine geoid undulations, gravity anomalies, etc., at any

points of interest (the latter usually form a geographic grid to be used for the

*. construction of contour maps). Each such quantity is an algebraic sum of two

parts, the first due to the S.H. coefficients and the second due to the P.M.

parameters. The numerical values of such quantities, for example the values of

*i geoid undulations covering the globe in a sufficiently dense grid, are considered

to describe the earth's gravity field to within the desired resolution

characterized by an equivalent S.H. expansion (n',n').

If the desired resolution should be very detailed, practical difficulties

will manifest themselves when the second-phase adjustment encompasses the whole

globe or a large ocean basin. Since the P.M. grid is increasingly dense in

such cases, the resolution of a great many P.M. parameters becomes impossible

from the standpoints of computer storage and run-time. The key consideration

is that all the P.M. parameters are to be resolved simultaneously in a least-

squares adjustment, not one P.M. magnitude at a time. Although the banded (or

banded-bordered) structure of normal equations has made a ten-fold increase in

*" the number of parameters possible with regard to a general least-squares

'" -5-
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algorithm, even this method will fail for a much finer than 20-resolution.

- Considering the current computer capabilities, a lo- or finer resolution can

be achieved, on a routine basis, only in limited areas of special interest.

A P.M. adjustment can thus be conceived in two steps. One step constitutes

what has been called a second-phase adjustment built on the global first-phase

adjustment. And the other step can be called a third-phase adjustment, which

" amounts to an additional P.M. densification in areas of special interest. In

n analogy to the former case, this adjustment is built on the minus geoidal residuals

• from the previous step, that is, from the second-phase solution. The set of point

masses forms now a denser grid compared to the second phase, and the depth is

commensurably smaller. The final quantities of interest are obtained through

the sum of three parts, each corresponding to the appropriate phase. In this

* o'way, the transition of contour lines between the lower and the higher resolution

* areas is gradual. As an example of SEASAT altimetry, the second phase could be

designed to model a 20-geoid over the global oceans, and the third phase could

be designed to model a 1°-geoid in the western part of the North Atlantic. Due

*.. to SEASAT tracks intersecting in an approximate 1°xi ° equileteral grid, a resolu-

tion superior to a l°-geoid would fail in principle due to insufficient data.

-6-
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2.2 Collocation Approach

The basic difference distinguishing the collocation approach from the P.M.

.- adjustment, from the computational point of view, is that a simultaneous least-

squares adjustment of several variables does not take place. In principle, only

one prediction point is solved for at a time. Accordingly, instead of an inver-

sion of a large, albeit strongly patterned system of normal equations, inversions

-" of small matrices take place, one inversion per prediction point. The prediction

points themselves can be distributed in an equilateral grid similar (or identical)

to the P.M. grid considered previously. In this case the resolution power, cor-

responding to an(n',n') S.H. expansion, is similar in both approaches. Consistent

with this concept, the realization of the (n',n') geoid in the adapted collocation

approach entails pushing the higher-resolution features (with respect to the

n',n' S.H. expansion) into the realm of "noise".

The (new) observations are again minus the geoidal residuals from the first

. phase, and they can again be limited to those located within a given spherical

cap from the desired prediction point. The predictions of greatest interest are

. those of geoid undulations, obtained through the use of the geoidal covariance

". function; predictions of other quantities such as gravity anomalies can be ob-

tained for the same location upon using the appropriate cross-covariance function.

All the predicted quantities refer to the "normal field" represented by an (n,n)

S.H. expansion, where n=14 has usually been chosen.

Since the number of observations involved with one prediction point can be

made reasonably small (see, e.g., weighted averaging of observations located

close together, as explained in Section 6.4 of [Blaha, 19843), one is faced with

inverting N small matrices as opposed to inverting an NxN system of normal

equations, where N is the number of prediction points. This allows for modest

-7-
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computer storage requirements which are set to accommodate, in one "loop", a

chosen number of prediction points together with the corresponding vectors and

matrices of small dimensions. Since the prediction procedure applies to one

point at a time, predictions in subsequent "loops" can be made (and stored on a

magnetic tape) for the whole oceanic geoid essentially in an arbitrarily dense

grid.

The predictions of the (n',n') geoid based on the (n,n) "normal field" can

be made with advantage in the original equilateral grid of prediction points,

rather than in a finer grid. The original grid can later be densified at will

upon using the economical "errorless collocation". Such a procedure utilizes

the original predictions in the role of observations and computes the pertinent

matrices (MT and H in EBlaha, 1984)) with the value n', rather than infinity,

" implying that the expansion of the covariance function ends with n' and that the
• !'I

geoid beyond (n',n') is considered to be "zero".

The densified grid corresponding to the (n',n') S.H. expansion can be used

for a variety of purposes. For example, it can serve during the construction of

a geoidal contour map (in this case it may be useful to make it a fairly dense

geographical grid). In a very similar procedure, the original as well as the

densified grid can be made to represent other geophysical quantities besides

geoid undulations, such as gravity anomalies. As another example, an equilateral

densified grid can serve in the computation of S.H. potential coefficients, via

* integral formulas, through the degree and order (n',n'). A lower degree and

order expansion, if desired, can be obtained simply by a truncation of the

expansion just formulated, due to the familiar orthogonality properties of spheri-

cal harmonics. As will transpire in later chapters, the original equilateral

grid of prediction points may in itself be sufficient for such a determination

of S.H. potential coefficients.

- 8-



In analogy to the P.M. approach, a third-phase collocation solution can be

*built on the results (minus the geoidal residuals) of a second-phase solution;

* in this case, n of the "reference field" should be replaced by n'. The final

quantities of interest are again obtained as the sum of three parts, etc. How-

ever, due to the practical feature of solving for one prediction point at a time,

* such a detailed gravity field representation could be obtained on a global scale

- already in the second phase if desired. By comparison, in the P.M. approach the

* necessity to produce a medium-detail resolution in the second-phase adjustment

* was dictated by the fact that the most detailed solution would be impossible to

obtain on a global scale, and that some global solution is always desired.

However, the option of readjusting certain tidal effects (tidal amplitudes

*and phase angles for selected tidal constituents) is not available in the collo-

cation approach. Such a readjustment can be made in individual ocean basins in

- the second-phase P.M. adjustment. If this readjustment is desired in conjunc-

* tion with a detailed description of the earth's gravity field, it could be

* achieved through a combination of the P.M. and the collocation approaches. In

particular, one could perform a relatively coarse second-phase P.M. adjustment,

followed by a collocation solution based on minus the geoidal residuals from

the former. As an example, a global P.M. solution could be carried out for a

4"4) equilateral grid of point masses (distributed over the world's oceans),

which would also include a readjustment of the tidal amplitudes and phases for

the constituents M , N and 0 ;in the case of SEASAT, the constituents
2 2

S,,, K, K and P~ could not be properly resolved, see e.g. Chapter 5 in EBlaha,

1982]. The collocation approach could then follow with the prediction points

forming a 1('40 equilateral grid, and result in a 10-global resolution.

-9-



3. ROLE OF THE POINT-MASS CONFIGURATION

IN DESCRIBING THE GRAVITY FIELD DETAIL

In EBlaha, 19833, the concept of a point-mass (P.M.) adjustment built on

minus the geoidal residuals from the global spherical-harmonic (S.H.) adjust-

ment was extended from a single- to a double-layer P.M. configuration. The

latter involves twin point masses located along the same vertical, i.e.,

*alo-g the same radius in spherical approximation, separated by a pre-determined

distance v. These twin point masses are identical in magnitude, but differ in

sign. The double-layer algorithm has been tested through a comparison with the

* same adjustment problem solved by means of a single P.M. layer. The locations

of point masses in the shallower layer have been made to coincide with the

locations in the single-layer approach. As the separation v was being increased,

9 all the results were approaching their counterparts from the single-layer adjust-

ment. Finally, when this separation reached several earth's radii, the two sets

*of results became identical. Such a "depth" of the second layer has no physical

meaning, but represents a mathematical tool in verifying the two approaches.

Another test has been performed in the double-layer P.M. mode alone upon

the assumption of linearity in the model. This assumption implies that v must

be sufficiently small with respect to the horizontal separation (s) of the

point masses and the depth (d) of the shallower layer. In this context, the

adjustment model for one observation and one twin point mass as described on

page 68 of EBlaha, 19833 reads:

0 = (9cij/3R 1) v (kM)j (3.1)

where 0. is the observed quantity (considered here as geoid undulation), C..
1 z

is the coefficient of the P.M. magnitude in the single-layer mode, R is the

.-.-
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radius from the earth's center associated with this layer, v is the separation

already defined, and (kM) is the (scaled) magnitude of the point mass "j".

One can now consider n twin point masses grouped in the vector X, in which case

(3.1) becomes

0. = aX , (3.2a)
1

a = v a' , (3.2b)

where the row-vector a' is associated with the separation v = unity.

In the presence of a redundant number of observations one forms the familiar

* observation equations as

V = AX + L , (3.3a)

where V is the vector of residuals, A is the "design" matrix composed of the rows

"a" above, X is the vector already defined (containing P.M. magnitudes as param-

* eters to be determined from the adjustment), and L is the vector of constant

terms (here consisting directly of minus the observed values, due to the zero

initial values of parameters). Similar to (3.2b), one can write

A = v A' , (3.3b)

*where A' consists of rows a' described following (3.2b). The least-squares

*solution for the parameters reads

X = -(ATPA)-lATPL (3.4)

*In the case v = unity , one would similarly have

X'= -(A TPA')-A'TPL (3.5)

With F symbolizing variance-covariance matrices, due to (3.3b) it follows that

• -11-



X = (llv)X' (3.6a)

= (1/v2 )xx (3.6b)x

Equation (3.6b) implies that

a )X = (1/v)Gxo " (3.7)

These results have been verified upon comparing the outcome of a given adjustment

o* °'where s = 222 km, d = 175 km, and where v has varied as v = 500 m, v = 100 m,

and v = 1 im.

The adjusted values of observed quantities are confirmed to be

La = AX = v A' (1/v) X' = A'X' = L'a (3.8)

This implies, under the assumption of small v, that the adjusted observations are

invariable of v. Similar outcome is reached for adjusted linear functions of

parameters:

a AX = v A' (I/v) X = A'X' L,a (3.9)

Equations (3.8) and (3.9) have also been confirmed through the adjustment mentioned

at the end of the last paragraph. The quantities in (3.8) were geoid undulations

while the quantities in (3.9) were gravity anomalies and deflections of the

vertical. In fact, selected variance-covariances of all these quantities have

,-. been verified as well. In summary, the final results (geoid undulations, gravity

anomalies, etc.) as well as their variance-covariances are invariant of the

(small) numerical value of v, unlike in the case of the P.M. parameters them-

selves, which vary in proportion to 1/v and whose variance-covariances vary in

2
proportion to 1/v
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After being verified in the manner described above, the double-layer P.M.

algorithm has been utilized to conduct a series of tests. The purpose of these

tests has been to determine what kind of influence can be exercised by the value

of v (no longer small) on the fit of the adjusted P.M. geoid to the altimeter

residuals from the S.H. adjustment. The measure of the fit is provided by the

root mean square (r.m.s.) of the resulting, or second-phase, residuals. The

* 'oceanic area selected for these tests is near Antarctica, delimited by the

parallels -680 and -440, and by the meridians 1500 and 2800. This area produced

22,819 residuals. The point masses were distributed in a 2°x2 equilateral grid

(approximately 222 km x 222 km), extending beyond the residual area, so that

-s = 222 km. The number of (twin) point masses was 677. The radius of the

spherical cap beyond which the observations are ignored in conjunction with a

given point mass was stipulated in accordance with previous conventions as 1.5 s.

*The depth of the shallower layer was chosen according to the d/s ratios:

* 0.1/1, 0.2/1, 0.4/1, 0.6/1, 0.8/1, 1.2/1, and 1.6/1. The vertical separation

-. between the two layers was chosen as v - 0 (in practice 100 m), 0.4 d, 0.6 d,

0.9 d, 1.5 d, and v - . The last case amounts to performing a single-layer

P.M. adjustment.

The above test cases are grouped in Table 1 featuring their r.m.s. residual.

* Underneath each r.m.s. value is listed in parentheses the average magnitude of

the residuals (i.e., the average absolute value). The average residual in each

* category approaches zero and, therefore, is not listed. The largest values

would be +0.04 m in the first row with the exception of 0.00 m for v . In

all the other cases the size of the average residual is 2 cm or less. One

notices that with the exception of most cases in the categories d/s = 0.1/1

and d/s = 0.2/1 the r.m.s. residual ranges within narrow limits, from 0.91 m

*." to 1.00 m. This accords very well with the theoretical sigma of approximately

-13-
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d/s v-O v=O. 4d v=O. 6d v=O. 9d v=1.5d

0.1/1 1.22 1.20 1.20 1.20 1.14 0.95
(0.89) (0.87) (0.87) (0.87) (0.82) (0.67)

0.2/1 1.10 1.05 1.03 1.01 0.98 0.95
(0.78) (0.74) (0.75) (0.75) (0.69) (0.67)

0.4/1 0.94 0.93 0.92 0.92 0.92 0.97
(0.66) (0.65) (0.65) (0.64) (0.64) (0.69)

0.6/1 0.91 0.91 0.92 0.92 0.93 0.98
(0.64) (0.64) (0.64) (0.65) (0.66) (0.70)

0.8/1 0.92 0.93 0.94 0.95 0.96 0.99
(0.64) (0.66) (0.67) (0.67) (0.68) (0.70)

1.2/1 0.96 0.97 0.98 0.98 0.98 0.99
(0.68) (0.69) (0.70) (0.70) (0.70) (0.71)

1.6/1 0.98 0.99 0.99 0.99 0.99 1.00
(0.70) (0.70) (0.70) (0.70) (0.71) (0.71)

Table 1

Results of the test cases with varying d, v; listed are r.m.s. of the
residuals and, in parentheses, their average magnitude (both in meters)
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*" one meter, obtained from the covariance function for the corresponding (90,90)

S.H. expansion. Likewise, the average magnitude ranges within narrow limits

from 0.64 m to 0.71 m.

A global P.M. adjustment has recently been performed at AFGL in the single

P.M. mode (v - -), with d/s = 0.8/1. It follows from the above experience that

if the same adjustment were performed in the configuration d/s = 0.6/1 in con-

junction with a small or moderate value of v (between zero and 50 km or even

100 km), the r.m.s. residual would likely improve by some 7%. This improvement

is by no means substantial and might not even justify a global adjustment in the

- double-layer P.M. mode which is computationally more demanding than the single-

layer mode. Indeed, the main outcome of the above tests points to rather

insignificant variations in the geoidal fit as a function of the depth of the

shallower P.M. layer (provided it is within reasonable limits) and as a function

of the separation between the two layers. This indicates that the power of the

* resolution is linked almost entirely to the horizontal distribution of the point

- masses.

-.

).
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4 REPRESENTATION OF COLLOCATION RESULTS
BY A SPHERICAL-HARMONIC EXPANSION

This chapter is concerned with designing a strategy which will lead to

"- compatible gravity field representations using two methods. The first method

is the modified collocation with noise as developed in [Blaha, 1984], and the

second method comprises a spherical-harmonic (S.H.) expansion. The above term

"modified" does not mean that the general concept of the least-squares collo-

*cation with noise is violated in any sense. Rather, this concept is applied in

a modified situation, where the earth's gravity field is considered to be

idealized (smoothed out) in that it is exactly expressible by a S.H. expansion

complete through a desired degree and order (n',n').

The important characteristic of the second method is that the S.H. potential

*" coefficients are to be computed fromthe results of the first method, which they

should ideally reproduce. Here these coefficients will be derived from the

collocation predictions of geoid undulations. A similar procedure could, of

* course, be undertaken with respect to gravity anomalies. But since the present

treatment is based on altimetric observations, the collocation predictions of

* geoid undulations are more directly derived quantities than gravity anomalies

or other functions of the geopotential, and as such will be used in the analysis.

The general formulas for the least-squares collocation with noise read

. p=MT(H + Z)-i F (4.1a)

C^ H - M(H + Z)-M (4.1b)
P P
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where

P = the vector of predicted quantities, here geoid undulations at

the chosen prediction points,

C = the error measure of these quantities, similar in character to

a variance-covariance matrix,

F = the vector of actual observations, here geoid undulations at the

given observation points; it is composed of the vector F (errorless

geoid undulations) and the vector e (observational noise), namely

F = F + e , (4.1c)

E = the variance-covariance matrix of the observational noise, and

TH, M , Hp = matrices formed in a standard way, here using the covariance
function for geoid undulations, where H pertains to observation

points, MT to both prediction and observation points, and Hp to

prediction points.

The general covariance function for geoid undulations is given by

D(f) = E dk P k(costp) , (4.2)
k=n+l

where n is the degree and order of the reference field, here a (14,14) field,

* hence n=14; it is thus apparent that the term "geoid undulations" as used above

should be understood with respect to such a reference field. Further, dk is

the k-th degree variance and P (cosf) is the Legendre polynomial in the argument

cos ,, where tp is the spherical distance between the points concerned. Equation

(4.2) corresponds to the actual gravity field, which could be thought of as

"' described by an (-,-) S.H. expansion.

Suppose now that an idealized gravity field is exactly expressible through

an (n',n') S.H. expansion; i.e., the geoid undulations corresponding to the S.H.

-17-



coefficients beyond the degree and order n' are identically zero. In such a

case, the geoidal covariance function would become

nl

D'(f) E d P (cos ) (4.3)
k=n+l

The formulas (4.1a,b) would remain unchanged in this situation, except that the

matrices H, MT and H would be formed with the aid of the covariance functionP

given by (4.3) instead of (4.2). Furthermore, the vector F (measured via F)

would become F', composed of errorless geoid undulations associated with the

S.H. expansion (n',n'), currently under consideration, instead of the expansion

Next, make several temporary assumptions based on the notion just introduced:

1) the measured surface is the idealized geoid corresponding to the

above gravity field (n',n');

2) the observations have an ideal global configuration, i.e., they are

sufficiently dense and uniform;

3) the observations have an ideal quality, i.e., e=O, E=O;

4) the predictions are made using all of the observations in conjunction

with any one prediction point;

5) the predictions have an ideal global configuration, i.e., are made

in an arbitrarily dense equilateral grid.

Clearly, such assumptions are unrealistic both with regard to the observations

(items 2 and 3) and to the computation of the predictions (items 4 and 5).

Although the basic assumption (item 1) is unrealistic as well, it expresses an

approximation of the actual gravity field by the (n',n') field, which is an

important goal common to both methods. The other assumptions (items 2- 5)
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reflect an initial stage, where the two methods lead to identical results.

These assumptions will eventually be relaxed, but one should keep in mind that

*the gravity field representation should be consistent in the two methods.

The first method presents the idealized geoid already as the result of item

5 above, in that a geoidal contour map can be constructed from the (dense)

global predictions. On the other hand, due to the same item the S.H. potential

coefficients in the second method can be computed by the integral formula

I AC 
Cos mX

_E1/(4fR)]S N P nm(sin) do (4.4)
,.ASn a sin mX

where, on the right-hand side,

R = the earth's mean radius,

N = the geoid undulation (referring to the 14,14 reference field),

P (sin) = the normalized Legendre functions in the argument sinp

,X = the geocentric latitude and longitude, respectively, of the

point associated with N , and

do = the (spherical) surface element associated with N.

Due to the relatively high-degree and order reference field, the spherical

approximation is inconsequential. For the same reason, one has AC = Crn nm

while AS S n , the normalized S.H. coefficients.

Upon using the S.H. potential coefficients as computed above, the second

"' method yields the geoid undulations according to the formula which, in the

.. present case, reads

n' k
N R Z (AC,., cos ZX + tS sin X) P (sin ) (4.5)

k=n+l Z=0

b " -19-
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where $,X refer to the point associated with N. If such a point coincides

- with a collocation prediction point, the predicted value should be exactly

reproduced by (4.5). Thus, under the above assumptions the two methods are

equivalent.

Computer simulations in the next chapter will resolve the practical question

*regarding the density of prediction points needed for a satisfactory S.H.

*, representation of the collocation results. In this task, the assumptions (1)-

(4) are left intact, but the predictions are generated in a finite equilateral

grid. For example, if n'=90, such a grid could have no more than 2.230 on the

side, due to a relationship between the number of measurements and the number

of unknowns. But from the standpoint of a good S.H. representation, this value

should be smaller. However, an answer to the question whether a 20x20 or, per-

haps, a 1 x1 equilateral grid is necessary in this task will be obtained from

computer simulations which will generate the required observations (items 2 and

3) describing the idealized geoid (item 1). In particilar, one will be able to

find the threshhold size beyond which the familiar orthogonality relations for

spherical harmonics are disturbed in a way significantly affecting the results.

Such a threshhold can then serve in computing the S.H. potential coef-

. ficients using the actual altimetric observations. The remaining assumptions

(items 1-4) are dealt with at the level of the collocation approach alone. By

virtue of the relatively high-degree and order reference surface, the covariance

" function decreases rapidly with increasing distance, which allows the use of

"* only those observations which are located in a relatively small spherical cap

centered at a given prediction point -- not all the available observations.

This consideration removes the need for the assumption of item 4 in practical

terms.
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The most important assumption is that of item 1. It is treated in the

modified collocation approach by splitting F into F', corresponding to the

(n',n') field, and F", representing the effects beyond this field. Since the

*, actual observations sense the effects of the entire field -- not only those of

the hypothetical (n',n') field -- the part F" acts as if it were augmenting

the level of the noise, in the sense of adding a part of the signal to the noise.

In considering (4.1c), this concept is represented by the new formula

F = F' + (F" + e)

where F' corresponds to the idealized geoid as just stated, and (F" + e) is the

modified noise. The resulting modified collocation formulation is similar to

(4.1a,b), except that the covariance function involved in the formation of the

matrices MT and HP, but not H, is utilized in conjunction with n' (equation 4.3)

instead of - (equation 4.2). Of the remaining assumptions, item (2) is fulfilled

reasonably well over the oceanic areas, and item (3) is inconsequential, con-

- sidering the precision of satellite altimetry.
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5, EVALUATION OF SPHERICAL-HARMONIC POTENTIAL COEFFICIENTS

VIA INTEGRAL FORMULAS

5.1 Design of the Basic Procedure

The main topic to be addressed concerns the evaluation of spherical-

- harmonic potential coefficients via integral formulas, with geoid undulations

as the known quantities. The emphasis on geoid undulations stems from their

availability over most of the earth's surface, directly attributable to an

increased exploitation of satellite altimetry. The integral formulas will be

applied to discrete data sets and their acceptability will be assessed through

computer simulations.

The quantities of key importance in this task consist of "errorless" geoid

undulations (N) generated through the degree and order n'; the reference ellipsoid

is assumed to have the sime potential as the geoid and the same mass as the earth,

and is centered at the earth's center of mass. In the spherical approximation,

the formula used in generating geoid undulations reads

n'
N R E 2  (AC cos mX + AS sin mX)P n(sin,) (5.1)

n=2 m=O

where R is the earth's mean radius (6371 km), € and X are the geocentric latitude

and longitude, respectively, AC and AS= AS are the normalized spherical-

harmonic (S.H.) potential coefficients referring to the normal (ellipsoidal)

field, and P (sinp) are the normalized associated Legendre functions in the
run

argument sine. Due to the potential and mass assumptions, the mean value of

geoid undulations is zero.
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The integral formula giving the S.H. coefficients based on the knowledge

of N is written as

- ACn Cos mX

rPin ) do , (5.2)

run l(TR)f

"' " Sn a sin mX1

where a denotes the surface of the unit sphere and do is the surface element.

- This formula follows from (5.1), where the geoid undulations are regarded as

functions on a sphere and are expressed in terms of surface spherical harmonics

(see Sections 1-13 and 1-14 in [Heiskanen and Moritz, 19673).

Suppose now that the elements do are replaced by finite surface areas doi,

each associated with a centrally located geoid undulation N.. If these areas

are sufficiently small, the integration operator in (5.2) can be replaced by the

summation operator. If, moreover, all of do. have an equal area, the formula is
1

further simplified to read

'-i I p cos mx,.

- = (Z/R)(I/P) i N.P (sini) cs mX. (5.3)

AS1 1~ sin mX i

where P is the total number of geoid undulations N., whose locations (points "i")1

are described by the coordinates (i,xi). In fact, the equal area criterion

leads to all of the N. in (5.3) having an equal weight. Thus, in this "finite"

Scase, the integral formula (5.2) becomes the numerical integration formula (5.3).

For the sake of simplification in practical computations, the points "i",

i 1, 2, ..., P, are usually desired in a regular grid. Due to the difficulty

in computing the associated Legendre functions, it is expedient to design the

grid in c- and X- coordinates to that these functions are computed only once

-23-

• . - • . . .. ,' . °" .- .- ° .° - .. ., .- oo o ... • . .. * - . .. .* . . * -.. . . . . ... .



for a number of grid points (along the same parallel). The grid intervals in

€ and A are taken as

6,/cos i , (5.4)

respectively. The surface areas do. are then considered to form geographic com-1

partments, called blocks, whose dimensions AO and AX are again given by (5.4),

and which contain the points "i" in their geographic centers. By virtue of (5.4),

the equal area requirement for the blocks is satisfied and the grid formed by

the points "i" is called equilateral. Equation (5.3) can now be presented in a

computationally advantageous form:

= E K P j, o N (5.5a)

1AS nI (1R(/ k=1 Z=lJSf~k k sin mX

P= E Pk' (5.5b)
K-: k=1

where K is the number of parallels containing grid points and pk is the number

of grid points on the parallel "k".

With the S.H. coefficients computed from (5.5a,b), one should ideally

recover the errorless values of N by a new application of (5.1), whether at

the grid points where N. (N in the notations of 5.5a) were originally
SkQ.

generated, or at other points. If the recovery is judged acceptable, so is

the density of the grid. Otherwise, the grid is too coarse with respect to

the degree and order of the desired S.H. coefficients, in the sense that the

familiar orthogonal relations are no longer fulfilled in the finite case. These

relations, demonstrated in Section 1-14 of [Heiskanen and Moritz, 1967), read

w " -24-
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*(5.6a)
* f-R "R dao0, ffIS dcO 0, .fg S" dO 0,

" nm sr d nm cr 0 nm sr
, -a

if sfn or r~m or both in any case

ffS 2 do 41T , V do=4 ; (5.6b)nm ra

"-RI I cos mX
ri ru (s i n ) C s m(5 .6 c )"! 'm n sin mX

-m

Possible difficulties arising from the subdivision of a sphere into P

compartments of finite dimensions can be assessed by exposing the connection

*2 between the equivalent formulas (5.1) and (5.2). First, (5.1) is rewritten

with the notations from (5.6c) as

no n
N = R E E ( P, + )nm . (5.7)

n=2 m=O nm nm n f

From here it follows that (5.8)

ff N do R E z ( C ffSri do+ CInf do

n2 m=O nm n
"sr sr sr

Upon considering (5.6a,b), one readily obtains

a" N S r = 4TTR I (5.9)

Issr sr
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"" Thus, equation (5.2) has been rederived, contingent precisely on the validity

of all the orthogonal relations in (5.6a,b). If these relations are no longer

valid due to the finite dimensions of the blocks implicated in (5.3) or (5.5a,b),

the S.H. coefficients computed by the latter become distorted and, consequently,

the errorless values as obtained in (5.1) with the original coefficients cannot

be restored by applying this formula in conjunction with the new coefficients.

The larger the blocks, the greater the distortions in the coefficients and the

greater the distortions in geoid undulations (differences between the errorless

and the recomputed values of N).
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5.2 Initial Test Relations

The main thrust of the final analysis will be directed toward the

numerical assessment of the distortions in geoid undulations. In particular,

the root mean square (r.m.s.) value of these distortions will be evaluated

against the background of a pre-determined standard of comparison in order to

judge the grid's acceptability. However, one may wish to perform preliminary

tests involving solely the errorless values N.. The reasons may vary, such1

as obtaining an early indication of an improper grid design (including its

density) or verifying the data-generating program and its focal point, the

evaluation of the associated Legendre functions. Two kinds of tests are

designed at this stage. The first, very simple test concerns the average value

of N. in conjunction with any degree of truncation (n'). And the second test
1

concerns the r.m.s. values of N. in two different truncations, together with1

the r.m.s. difference between these two sets. The results of the second test

hinge again on the fulfillment of the orthogonal relations (5.6a,b) in the

finite case.

The first test mentioned above is based on the familiar relations

ff d=ffSnm do = 0 (5.10)
0 a

Accordingly, (5.7) readily yields

N H (1/4TT)ff Ndo = 0 (5.11)0

a

confirming the earlier statement about the mean value of geoid undulations. In

the present finite context, (5.11) corresponds to

p

Pd
Ave(N) 0 (1/P) Z Ni = 0 ,(5.12)

which has been confirmed with all the simulations performed in this study.

-27-

-~~~~~....-....... .,.......... •.......-....-..................... ........ .- -..-..-... . .- -.....-.- . -. .- .-.- .. .i



In view of the second test, we express the mean value of EN(n')] 2 and the

2
mean value of EN(n")- N(n')3 , where the symbols (n') and (n") indicate the

degrees of truncation. Thus, N(n') is given by (5.7) as it stands, while

- N(n")-N(n') can be written as

n" n
N(n")-N(n') = R E E C r + Z S run (5.13)

n=n'+i m=O

Since the form (5.13) differs from that of (5.7) merely by the degrees implied

by the first summation, derivations involving any such expressions follow the

same pattern. We now form the mean of (5.13) over the unit sphere, namely

2 n" n-2 -

(1/47) ff EN(n")-N(n')] do = (1/41T)R E (AC2 ffR2 do+AS2  2 do)
0 n=n'+I m=O 0 r

+ .. ff (other products)do]

The application of (5.6a,b) yields

nit n"

(1/41T) if [N(n")-N(n')] 2do R 2  Z E (AC2 +As 2 (5.14)
n=n'-+i m=O rnm ru

Since it can be shown (see page 91 of [Blaha, 1984)) that

2 -2 -S2R _r(C +AS = d (5.15)
rn: nm n '

---

where d is the n-th degree variance for geoid undulations, one can finally write

2 21 n"
11 (/47r)ffEN(n")-N(n')]2do -MIEN(n")-N(n')]2 T d n(5.16)

,o n=n'+
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. -, ..I *I.. ,, U ,5 *1

where M designates the mean value operator. In analogy to (5.16), we also have

MI[N(n')3 21= E d , MI[N(n")]LI = E d n etc.
n=2 n=2

"; In assuming that n' < n" < i , a further application of (5.16) yields

MIEN(n")-N(n')]21+MIEN(n)-N(n")3 2 = MICN(n)-N(n')]21 , (5.17a)

n"s n n
r d + E d = E d ; (5.17b)

n=n'+ n=n" n=n'+l

the three terms in (5.17b) are the equivalent expressions of the terms directly

above them.

In the finite context, the usual replacement of operators means that (5.17a)

* is replaced by the mean square (m.s.) relationship

m.s.[N(n")-N(n')] + m.s.[N(n)-N(n")] = m.s.[N(n)-N(n')] . (5.18a)

In the sequel, the r.m.s. values are symbolized by a , so that the m.s. values

can be written as u2. Furthermore, the identification of various degrees and

*their relationships is made via lower indices as is illustrated in the following

*- transcription of (5.18a):

--2 -2 -2o+ = ( 5.18b)
n'+,n" n" +1,'ff n'+l,W "

The usefulness of the indices transpires especially upon comparing (5.18b) with

(5.17b). As has been the case several times before, the validity of the expres-

sions such as (5.18b) hinges on the fulfillment of (5.6a,b) in the finite

context.
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00 The above discussion can be illustrated by the following example, wherein

two sets of geoid undulations are generated in a 2°x2G equilateral grid contain-

ing 10,328 points. These sets are identified by the truncation degrees 25 and

70, implying that n'=2, n" =25, and n =M. The r.m.s. values of Ni are computed

as

=2,25 30.2528m a2, = 30.3000m2,25 2,70"

The differences in geoid undulations are evaluated at all the grid points,

resulting in the r.m.s. value

026,70 =1.6898m

- According to (5.18b), we should have

( -2 (5.19a)
"" 2 5 +26,7 02,70

This relation is fulfilled exactly, since

E(30.2528m) 2 + (1.6898ai) 2] = 30.3000m . (5.19b)

In returning to the theoretical formulas (5.17a,b), except for we

express them through the symbolism similar to that introduced in (5.18b):

02 +02 ao2 (5.20a)
n'+1,n" n"+1,-n n'+l,n.u

If - -6 , the second and third symbols in (5.20a) become what is called the

truncation variance, due to the truncation of an infinite series at the degrees

n" and n', respectively. One then has

0Y 2 + 2 =2 (5.2b)
""n'+l,n" n"-'---"~o
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5.3 Assessment of the Numerical Integration Algorithm

For the purpose of the present study, two equilateral grids are generated,

a 20 x2o grid and a 4 0%4  grid. In referring to (5.4), we have Ar = 20 for the

* first grid and AO 40 for the second grid; the intervals AX follow from the

second relation in (5.4). Theoretically, the number of square blocks (
2* having e on the side is 4n./O ; upon expressing the block side in degrees, this

results in

P t= (203. 11/01)2 .(5.21)

Accordingly, the theoretical number of points in the above two grids is 2,578 and

10,313, respectively. Due to the rounding of the number of grid points along

* each parallel to the nearest integer (for safety reasons more often up than down),

the actual total number (P) of the grid points used in this analysis is very

slightly higher. The complete situation is summarized by

00 = 20 .......P =10,313 , P z10,328 ;(5.22a)
t

0= 40 ....... Pt = 2,578 , P =2,586 .(5.22b)

It is to be noted that at both poles the blocks are replaced by spherical caps

*whose size is about 25% greater here.

Next, we turn our attention to the number of coefficients that can be resolved

from a .) xo0 equilateral grid of geoid undulations. In considering that eo

represents the shortest half-wavelength of the geoidal resolution expressible by

* an (N,N) set of S.H. coefficients, the familiar rule of thumb suggests that

N =1800/90 (5.23)
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Since the total number of coefficients in this set is (N+1) 2, in conjunction

with the above two grids we have

e 0 = 20 ..... (N,N) = (90,90) (N+1) 2 = 8,281 ; (5.24a)

0=40 )2
4-- (N,N) (45,45) (N+1 2,116 . (5.24b)

- Upon comparing the number of data points in (5.22a,b) with the number of unknown

coefficients in (5.24a,b), the former is seen to exceed the latter by 22-25%.

Suppose now that we do not wish to accept a priori the limitations (5.24a,b),

and attempt to establish whether a larger set of S.H. coefficients could be

. resolved. In addressing this problem, we return to (5.7) and seek to solve for

the S.H. coefficients as unknown parameters in a least-squares problem. Since

. (5.7) is linear in these coefficients, an observation equation can be formed

* with zero starting values for AC and S
nm nm

v. = [ .. RR (i) ... ... RS (i) -N.

1 n1M rn

run

CS
run

where v, is the residual, N is the (errorless) geoid undulation, and RM(i)

-l 1 i n

and T (i) are the functions from (5.6c), all considered at the point i with

* coordinates (4.,X.). The points i, i =1, 2, ... , P, are again assumed to be

distributed in an equilateral grid. In matrix notations, the totality of these
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equations is represented by

V = A X - IN.]
1

Due to N. having all equal weights, the regular least-squares solution is1

X = (ATA)- ATEN.]

In the least-squares (finite) context, the consideration of crucial

*importance is again whether or not the orthogonal relations (5.6a,b) are

reasonably well satisfied. In the affirmative, one readily confirms that the

"; matrix of normal equations (ATA) is in theory diagonal with all the diagonal

elements equal to R2 P, and A TN.] is a vector composed of two distinct groups
1

of elements, the first group having the form RZN.R (i) and the second group
1 rn

having the form RZNS M(i), where the summation Z applies to i between 1 and

*P. The least-squares solution then yields

nm P Rm(i)
" = (1/R)(I/P) N

which is precisely (5.3). And in the negative, ATA can no longer be considered

a diagonal matrix and the least-squares solution no longer coincides with (5.3).

It would now involve the inversion of a full matrix of normal equations, and

for this reason alone it is undesirable. A much more satisfactory procedure is

to simply resort to a finer grid.

As we have seen earlier, a coarse grid causes the coefficients computed ,y

C.' (5.3) or (5.5a,b) to be distorted. The remedy is, of course, the same as above--

a finer grid. We can conclude this discussion by stating that a satisfactory

solution for the S.H. coefficients is obtained Yhen the equilateral grid used
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in their evaluation is sufficiently dense, in which case the least-squares

solution coincides in practice with the integrated solution (5.3) or (5.5a,b).

A denser grid leads to a more perfect coincidence. We will henceforth consider

only the integrated solution and judge its quality by the size of the r.m.s.

"- distortion in geoid undulations as mentioned earlier. The least-squares analogy

serves merely in searching for the largest number of S.H. coefficients one would

ever consider resolving.

Clearly, if the number of observation equations were smaller than the number

i of parameters, a unique least-squares solution would not exist. The diagonal

* structure of the matrix of normal equations would be destroyed (the latter would

-' be singular) and, accordingly, this case would be discarded. This means that

-* the largest number of parameters we shall consider is equal to the number of

* grid points. If the latter is Pt' and the largest admissible set of S.H. coef-

* ficients is denoted by (N im,N li), then the limiting case we shall still examine

is characterized by

2
(Nlim+ +1) t

In conjunction with (5.21), this implies that

N = [203.10/6 - 13i  (5.25)

*In analogy to (5.24a,b) one can now write
0  (Ni 2

( 1 ..... i 00) (N +1) = 10,201 ; (5.26a)
li° 40 +i )) = (100100 ,5.26b)

e. = 40..... (NlimNlim) = ( 49, 49) , (Nlim +1) = 2,500 . (5.26b)

*Upon considering P from (5.22a,b), it is apparent that the "redundancy" has

been essentially eliminated (here it amounts to merely 1-3% of the number of
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coefficients). Ultimately, computer simulations will determine whether the

number of coefficients in (5.26a,b), or at least that in (5.24a,b) can be

satisfactorily resolved via the numerical integration (5.3) or (5.5a,b).

The computer simulations first proceed to generate errorless N. according

to (5.1) with a given set of S.H. coefficients and a chosen n', then to compute

new S.H. coefficients within (n',n') via (5.5a,b), and finally to recompute N.

with the latter set of coefficients. If the r.m.s. of the distortions in N.

is smaller than the test value below, the algorithm is judged satisfactory with

regard to the (n',n') set of coefficients and one can proceed to test a larger

set. The same procedure applies, of course, for either grid. The test value

(t) is determined under the stipulation that the r.m.s. of the distortions in

SN. should increase the original truncation sigma (an+l,) by less than 5%.

This occurs for

r.m.s. (distortion) < t - 0.30 On,+l, ' (5.27a)

in particular,

[a 2 + (0.30) ) 2 = 1.044 (5.27b)

so that the increase in the truncation sigma is actually no more than 4.4%.

In order to find t needed in (5.27a), the truncation sigma is computed for

various n'. A practical formula giving the latter can be transcribed from pages

62 and 63 of [Blaha, 1984) as follows:

n" 02 , D(O)= E d , (5.28a)
, n=n '+i

d n 0.999617n+2 17,981 m2 /[(n-)(n-2)(n+24). (5.28b)
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As is pointed out in the above reference, these formulas can be traced to

ETscherning and Rapp, 19743. The symbol - is replaced in practice by a suitable

large number, such as 1,000. Equation (5.28b) presents a close form expression

for the n-th degree variance as obtained from the covariance function. A

theoretical formula for the n-th degree variance based on the S.H. potential

coefficients appeared as equation (5.15). The values of t computed with the aid

of (5.28a,b) are listed as follows (in meters):

(5.29)

n' 14 25 40 45 49 50 70 80 90 100 110 120

+i n,+ m) 4.89 3.03 2.00 1.80 1.66 1.63 1.20 1.06 0.94 0.85 0.77 0.71

t (m) 1.47 0.91 0.60 0.54 0.50 0.49 0.36 0.32 0.28 0.25 0.23 0.21

The actual S.H. potential coefficients used in the simulations of geoid

- undulations are taken from a (180,180) set computed by Rapp at The Ohio State

University (private communication) in 1980. In conjunction with the 20ox20

*l- equilateral grid, the r.m.s. of the distortions in N. vary according to selected

degrees n' as follows:

n' 14 25 45 50 70 90 100 120
(5.30)

r.m.s. (m) 0.055 0.067 0.081 0.084 0.105 0.127 0.355 0.855

f*i With regard to the 40x4° equilateral grid, the simulations yield

no 14 22 25 36 45 49 70
(5.31)

r.m.s. (m) 0.113 0.126 0.129 0.180 0.247 0.555 2.389
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Distortions very similar to those shown in (5.30) and (5.31) have been

obtained in all cases where the testing included other than grid points. In

one example of this kind, geoid undulations were tested in a 4.5°4.50 geo-

graphical grid, where the integrated solution of a (49,49) set of S.H. coef-

ficients was based on the 40x40 equilateral grid. Such a confirmation of the

r.m.s. of the distortions is reassuring, especially when considering that the

grid-point distortions in (5.31) are already deteriorating for this truncation.

Thus, if non-grid points should exhibit larger distortions than the grid points,

this deterioration would have certainly manifested itself in the present

example chosen for its increased sensitivity.

The fact that the distortions beyond n' =100 in (5.30) and beyond n' =49

in (5.31) are large has been expected. These cases entail a number of S.H.

* coefficients larger than the number of data points, i.e., exceed the limits

imposed by (5.26a,b). We also remark that when one attempts to resolve a larger

set of coefficients than that utilized in generating the errorless data, the

r.m.s. of the distortions starts a slight increasing trend. As one example, an

errorless set (50,50) served in generating N. in the 20x20 equilateral grid.1

The r.m.s. of the distortions obtained with the integrated (50,50) set is listed

in (5.30) as 0.084 m. But when the numerical integration proceeded through a

* (60,60) set, this r.m.s. increased to 0.094 m. Although the integrated values

* of the additional coefficients were very small (ideally they should be zero),

"" they gave rise to a detectable deterioration in the results nonetheless. Such

a deterioration appears to be less pronounced with the 2x20 than with the 40-40

grid. Far from being worrisome, it is consistent with the trends in (5.30,31).

In both the 20x2° and 40x4° equilateral grids, the r.m.s. of the distortions

is somewhat smaller when computed between the latitudes +720 than when computed

for the whole globe. In particular, in the 20x2° grid it is reduced to
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. approximately two-thirds of the global value for the truncations through (90,90),

*,. and in the 40x40 grid it varies approximately from one-half to two-thirds of the

global value as the truncations progress from (14,14) to (45,45). This improve-

ment is attributed to a more regular, nearly square shape of the blocks do.
1

closer to the equator, as opposed to the blocks near the poles and the two

spherical caps at the poles themselves. However, this approximately one-third

reduction in the pertinent r.m.s. values is not taken into account in the analysis,

* which thus might be slightly conservative.

Although the present study is concerned mainly with geoid undulations,

several r.m.s. values of the distortions in gravity anomalies have also been

computed. In analogy to (5.1) and (5.7), including the same assumptions, error-

less values of Agi are first generated in an equilateral grid according to the

formula

n'n

A g 1 (n- E (ACnMRnm + Astnf S )
n=2 m=O

where y is the average value of gravity (980 gal). We note that integral formulas

giving the S.H. coefficients based on gravity anomalies could be written in

analogy to (5.2) and (5.9), except that y and Ag would replace R and N, respective-

ly, and 1/(n-1) would be factored before the integral sign. The same changes

would take place also with regard to the finite case (see the numerical integra-

tion 5.3 and 5.5a,b). However, this modification has not affected the present

procedure where the integrated S.H. coefficients are based consistently on geoid

undulations, even when used in recomputing Agi. This portion of the simulations

has been performed only in the 20x2° equilateral grid. The r.m.s. distortions

* in Agi have been computed in conjunction with four truncated models (n',n') as

• .follows:

..



n 50 90 100 120
". : -- (5.32)

r.m.s. (mgal) 0.3 1.1 4.8 13.6

The results (5.29) - (5.32) are the key to the main and final step in the

analysis -- the determination of the applicability of the numerical integration

formulas (5.3) and (5.5a,b). This determination is centered on geoid undulations

in the 20x20 and 4ox4 ° equilateral grids, and thus on equations (5.29)- (5.31).

Equation (5.32) serves only as a peripheral confirmation of the outcome achieved

with the 20x2O grid. A graphic representation of the results (5.29)- (5.31) is

offered in Fig. 1, where the abscissa displays the truncation degrees n', and

the ordinate depicts either the values of t from (5.29) or the r.m.s. of the

distortions in geoid undulations from (5.30) and (5.31). The former case

(equation 5.29) is identified by the curve bearing the description "standard",

and the latter two cases (equations 5.30 and 5.31) are identified by the curves

bearing the descriptions "20x20 ' and "4Ox 4OII , respectively.

If we were to proceed strictly according to the philosophy outlined in the

paragraph containing (5.27a,b), we would accept the truncation (96,96) for the

* 2ox2) grid and the truncation (48,48) for the 40x4O grid as the borderline cases

* for the application of (5.3) and (5.5a,b). These truncations would also approach

the limits in (5.26a,b), respectively. However, Fig. 1 reveals an unusual aspect

conveying an important message in this respect. Both curves "20x2°" and "14Ox4O°

indicate in a clearcut fashion that in this analysis, the rule embodied by

(5.24a,b) is much more significant than might be expected from an approximate

rule of thumb.

Indeed, in the important case "20x20 " the r.m.s. of the distortions in geoid

undulations through the truncation (90,90) remains comfortably low, well below

the standard t i., Fig. 1. Within this range, the r.m.s. increases essentially
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* in a linear fashion and at a very low rate. However, beyond the truncation

(90,90) the r.m.s. deteriorates rapidly, as the figure displays in a self-evident

manner. The limited analysis of the distortions in Ag summarized in (5.32)

corroborates this finding. In particular, if the r.m.s. values from (5.32) were

included in the figure, they would produce a pattern almost identical to that of

the curve "20x2°" (except, perhaps, that the slope of the deterioration beyond

n'=90 would be slightly lower). The curve depicted as "40x4°" in Fig. 1 also

has clearcut characteristics, very similar, in fact, to those of the "20x2° "

curve. The truncation beyond which a sharp deterioration occurs is now (45,45),

again demonstratively in line with the rule of thumb.

In adopting n'=90 in the 20x2o case and n'=45 in the 40 x40 case, the r.m.s.

"" of the distortions become 0.127 m and 0.247 m, respectively (see equations 5.30

and 5.31). These values amount to merely 0.14o n,+l, in both cases (see

equation 5.29). Accordingly, the increase in the original truncation sigma is

-not 4.4% as in (5.27b), but only 1%, since

[ 2, + (0.14 1 = 1.01 n (5.33)

"" We may thus conclude that only negligibly small worsening (1%) in the original

truncation sigma occurs due to the numerical integration (5.3) and (5.5a,b),

" provided the truncated model is (90,90) for the 20x20 equilateral grid, and

(45,45) for the 40x4 ° equilateral grid.

This conclusion embodies two encouraging signs. The first points to the

truncation degrees as being comfortably high, and the second, already mentioned,

" points to these degrees as corresponding exactly to what has been termed the rule

of thumb in relating the gravity field resolution to the size of a set of S.H.

potential coefficients used in the field's representation. Although this out-

come has been produced with computer simulations performed in the spherical
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* approximation, detailed determinations of the actual gravity field can follow

the same principles and take advantage of the same computational algorithms.

Since, at AFGL, the geoid determination from satellite altimetry is based on a

(14,14) reference surface rather than an ellipsoid, the spherical approximation

'" entails errors on the order of a few centimeters (instead of decimeters), and is

thus deemed inconsequential.
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5.4 Smoothing Effect

We have seen that the numerical integration (5.5a,b) leads to a successful

modeling of geoid undulations, and thus of the disturbing potential, provided

it is used up to the degree and order (N,N), where N =18O ' according to the

familiar rule of thumb presented as (5.23), in which 6° represents the side of

equilateral blocks containing data points. Except for regions near the poles,

the blocks are essentially square and the data points are located at their

centers. The latter are conceived as forming an equilateral grid according to

(5.4), where A0 corresponds to e above.

The distortions in geoid undulations (differences between the errorless and

the modeled values) have been judged in the context of one and the same truncat-

ed model, i.e., in the situation where both the errorless and the modeled values

are computed within the same degree and order truncation (n',n'). However, if

the errorless values are generated with an "original" set (N,N) of spherical-

harmonic (S.H.) coefficients, and the modeled values are computed with an inte-

grated set (n',n'), where n'<N, the distortions owe their existence primarily

to a smoothing effect. One can then judge the quality of the modeled, smoothed

geoid (n',n') by comparing it with an errorless geoid (n',n') generated with the

(n',n') subset of the original set of S.H. coefficients.

Ideally, the above two surfaces should coincide, i.e., the geoidal detail

"" due to the degrees n'+1 through N should be suppressed. This desirable

characteristic hinges on the fulfillment of the orthogonal reations, as can be

* shown in theory with the aid of (5.13). If we subject this equation to the

• .procedure which led from (5.7) to (5.8), its right-hand side becomes zero for

any s<n' due to (5.6a). But this implies that
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ffN(n") srdo ffN(n') d , r < s < n' < n" (5.34)
_[I sr ! sr i

Therefore, when the S.H. coefficients are evaluated through the degree and order

(n',n') as in (5.9), N under the integral sign can be expressible within any

model (n",n") as long as n">n'. In other words, the geoidal detail described
by N(n")-N(n') has no bearing on the theoretical values of the S.H. coefficients

within the truncation (n',n').

Computer simulations have confirmed the above outcome in the finite case.

The results presented below are sufficient to illustrate this fact. They have

been obtained with the aid of a 2x20 equilateral grid of geoid undulations

generated via S.H. coefficients complete through the degree and order

(N,N)=(90,90), where N satisfies the rule (5.23). Of the models (n',n'), where

the smoothing effect takes place for any n'<N, three are selected for a limited

analysis, namely (25,25), (45,45), and (70,70).

In each of the three cases (n',n'), three values r.m.s.., i=1,2,3, are listed:

n j 25 45 70
S( 0(5.35)
r.m.s.1 (m) 0.067 0.081 0.105

r.m.s.2 (i) 0.068 0.082 0.105

r.m.s. 3 (m) 0.002 0.002 0.003

The first row of results, i=1, contains the entries from the corresponding places

in (5.30) and is listed merely for the sake of comparison. The entries depict

, the r.m.s. of the discrepancies in geoid undulations between the (n',n') integrat-

ed values (i.e., geoid undulations computed with the n',n' set of S.H. coefficients

evaluated via the numerical integration 5.5a,b) based on the (n',n') errorless

values (i.e., geoid undulations Nk£ in 5.5a) on one hand, and the (n',n') errorless

values themselves on the other hand.
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The second row of results, i=2, contains the r.m.s. of the discrepancies

between the (n',n') integrated values based on the (90,90) errorless values,

and the (nt ,n') errorless values. The (n',n') integrated values in this case

encompass the smoothing effect. As is apparent from this row, the smoothed

(n',n') values approximate the errorless values as closely as the integrated

values based directly on the smooth geoid (see the case i=1). This is strongly

evidenced by the last row, i=3, depicting the r.m.s. of the differences between

two kinds of (n',n') integrated values, the first based on the (n',n') errorless

geoid and the second based on the (90,90) errorless geoid.

In complete analogy to (5.35), the following results are obtained with the

aid of a 4",40 equilateral grid of geoid undulations generated via an

(N,N)=(45,45) set of S.H. coefficients where the models (n',n') are selected as

" (14,14), (25,25), and (36,36):

no 14 25 36
(5.36)

r.m.s.1 (m) 0.113 0.129 0.180

r.m.s. 2 (M) 0.113 0.130 0.181

r.m.s. 3 (m) 0.004 0.005 0.010

The row i=1 contains the corresponding entries from (5.31), pertaining to the

differences between the (n',n') integrated values based on the (n',n') errorless

values, and the (n',n') errorless values themselves. The row i=2 pertains to the

differences between the (n',n') integrated values based on the (45,45) errorless

;* values, and the (n',n') errorless values. And the row i=3 pertains to the dif-

* ferences between the above two kinds of (n',n') integrated values.
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The results in (5.36) follow a very similar pattern to those in (5.35).

* In comparing the corresponding cases (25,25), one notices that all three

entries in (5.36) are approximately the double of their counterparts in (5.35).

This tendency can be observed already in (5.31) versus (5.30) for relatively

low truncation degrees n', including the truncation (30,30) for which the

respective r.m.s. values would be approximately 0.071 m and 0.152 m. Clearly,

this one-half reduction in the discrepancy values is imputable to the two-fold

increase in density of the equilateral grid along each dimension.

One important conclusion of this analysis consists in the finding that the

portion (5.6a) of the orthogonal relations is satisfied particularly well with

* the selected truncation degrees n'<N, quite representative of realistic levels

of smoothing. Indeed, the small magnitude of the values in the last rows of

(5.35) and (5.36) indicates that the effect of geoid undulations due to the

degrees n'+1 through N is almost perfectly suppressed in the application of the

numerical integration algorithm.

'-6
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6. APPLICATIONS OF THE NUMERICAL INTEGRATION ALGORITHM

6.1 Global Representation of the Gravity Field

A high degree and order S.H. expansion of the disturbing potential provides

for a detailed representation of the earth's gravity field and its fundamental

surface, the geoid. If the reference field is defined through a S.H. expansion

of degree and order substantially higher than two (which corresponds essentially

to an ellipsoidal field), the spherical approximation is acceptable. Thus, when

* referring to this field, geoid undulations and other functions of the geopoten-

" tial (gravity anomalies, deflections of the vertical, etc.) can be regarded as

functions on a sphere and expressed in terms of surface spherical harmonics.

This has been the case at AFGL, where the global first-phase altimeter adjustment

has determined a (14,14) reference field as a basis for subsequent representa-

tions of the gravity field detail, especially the oceanic geoid.

As we have seen in Chapter 5, if geoid undulations are supplied in a suf-

," ficiently dense equilateral grid all over the globe, the numerical integration

algorithm permits a direct evaluation of the desired S.H. potential coefficients

in the context of the above spherical approximation. This set can serve in

predicting the desired geophysical quantities (especially the geoid undulations

themselves) at any location. The prediction grid needed for the construction

of contour maps can then be made geographic and can be densified at will.

One major source of geoid undulations distributed in an equilateral grid

over the world's oceans is the modified collocation with noise, whose main

features were recapitulated in Chapter 4. The grid density determines the

largest size (N,N) of the set of S.H. coefficients which can be satisfactorily

resolved via numerical integration (5.5a,b). This relationship was demonstrated
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in Section 5.3, resulting in the confirmation of the familiar rule of thumb

(5.23). Thus, a 20x20 equilateral grid of geoid undulations allows for a

reliable evaluation of a (90,90) set of S.H. coefficients. The same grid can

be used in expressing a smoother version of the gravity field simply by trunca-

ting the (90,90) set at a lower degree and order.

In applying the numerical integration algorithm, geoidal values over the

continents must also be given. The most expedient procedure is to simulate them

using some a priori set of S.H. potential coefficients complete through the

required degree and order (e.g., a 90,90 set as above). This set need not be

* of high accuracy, since the most important product of satellite altimetry is the

determination of the oceanic geoid; the contours over the land masses can ulti-

mately be disregarded. On the other hand, the simulated values must be realistic

(including the appropriate geoidal roughness) because otherwise the oceanic con-

tours within some distance from the coasts would be deformed. We can conclude

by stating that the oceanic geoid expressed by the new, integrated set of S.H.

coefficients represents an improvement over that expressed by the a priori set

not benefiting from the contribution of altimeter data.
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6.2 Global Representation of Tidal Effects

A global tidal adjustment within the first-phase adjustment of satellite

*' altimetry (including S.H. potential coefficients as parameters) was described

in [Blaha, 19821 and Chapter 3 of [Blaha, 1984). Subsequently, an optional

tidal (re)adjustment within the second-phase, large-area adjustment of satellite

altimetry (including point-mass magnitudes as parameters) was described in

Chapter 5 of [Blaha, 1984]. Since, in the second phase, the coefficients of

tidal parameters in the observation equations are adopted from the first phase,

*. the second-phase adjustment will no longer be mentioned in this analysis.

The a priori tidal information in the first-phase adjustment at AFGL has

been supplied via S.H. tidal coefficients. Since the Legendre polynomials and

the associated Legendre functions as well as the multiple-angle trigonometric

functions in this adjustment are computed within an (n',n') S.H. model even

- without tidal considerations, little additional effort is needed when the a priori

- tidal effects are expressed by a S.H. expansion within the same, or lower, degree

and order truncation. In recent adjustments of satellite altimetry, the S.H.

expansion in the first phase has been performed in a (14,14) truncated model.

On the other hand, the information pertaining to seven diurnal and semidiurnal

tidal constituents has been included via S.H. tidal coefficients in two (12,12)

sets per constituent, as is described in EBlaha, 1982] in conjunction with

. [Estes, 1980).

However, much more complete (in terms of a dense global coverage) and more

accurate tidal information has become recently available in various NSWC Techni-

- cal Reports by E. W. Schwiderski. The relative accuracy for each ocean-tide

constituent treated is stated to be 5 cm in the open oceans. The tidal amplitudes

*~i and Greenwich phase angles of these constituents are tabulated in a 104
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geographical grid for all the oceanic areas in the world, and this information

is also available in the form of global corange and cotidal maps. Such know-

ledge allows one to compute the ocean tide as a function of time and location,

constituting a stepping stone in the computation of the surface tide directly

vi related to altimeter measurements (see, e.g., Chapter 3 of EBlaha, 1984)).

The ocean-tide information for each tidal constituent can be obtained from

the NSWC reports as just mentioned, or, less directly, from the S.H. tidal coef-

ficients generated in turn from the information contained in these reports.

Since the present procedure at AFGL allows for an actual adjustment of tidal

amplitudes and Greenwich phase angles as parameters, provided the tidal informa-

tion is supplied via S.H. tidal coefficients, the latter approach offers certain

advantages. In particular, it permits an analysis of how well the tidal informa-

- tion is consistent with satellite altimeter observations (one could judge by the

corrections attributed to the tidal parameters by the adjustment versus the

a priori sigmas, etc.). Such an analysis can indicate possible weaknesses in

the tidal information, the presence of systematic orbital errors of tidal

frequencies, etc.

The algorithm for computing the ocean tide based on the information contained

in the NSWC reports is presented as follows. First, we recapitulate the basic

formulas pertaining to a constituent "j" from pages 48 and 49 in [Blaha, 1982),

omitting the subscript j:

"" = i +  2'(6.1a)

1. 2

= cosa A cosp , = sin A sin, , (6.1b)

42
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where

S(@,x,t) = ocean tide,

a a(t) = Greenwich argument,

A A(4,X) = tidal amplitude,

E t (¢,X) = Greenwich phase angle,

and where

S,X = geocentric latitude and longitude,

t = time.

Next, we form F and G, regarded as functions on a sphere, such that

F _ F(O,A) = A(O,X) cosp(O,X)

G H G(O,X) = A(O,X) sino(0,A) .

In expressing these functions in terms of surface spherical harmonics, we have

n
F A cos = E (an cos mX + brn sin mX)P nm(sino) , (6.2a)

n=O m=O

0 n
G A sinp= E E (c cos mX + d sin mx)P (sino) . (6.2b)

n=O m=O

The tidal amplitudes A (in cm) and Greenwich phase angles p (in deg.) are

* available from the NSWC reports. For example, ESchwiderski, 1979) presents

these values for the semidiurnal principal lunar tide M . One can thus form F

*? and G on the left-hand sides of (6.2a,b) for any oceanic point by finding its

A on the corange map (or in the appropriate table of ocean tide amplitudes)

*and its q on the cotidal map (or in the corresponding table of ocean tide

Greenwich phases).
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In order to obtain the S.H. tidal coefficients i, Erm , ? and ifd

via integral formulas presented below, the values of F and G must be known

(in an equilateral grid) over the whole globe, not just over the oceanic areas.

* Similar to the previous section, values associated with the land masses must be

supplied in some manner. Stipulating unrealistic values, such as zeros, would

be harmful to the tidal representation in the coastal regions.

This problem can be solved as follows. First, similar to the approach of

* Chapter 5 (treating N as point values) we compute the point values of the

functions F and G over the oceanic areas in a suitable equilateral grid consistent

with the desired degree and order truncation (n' ,n'). As an example, a 40x40

equilateral grid might be sufficiently dense because these coefficients would

seldom be needed beyond the (45,45) truncation. Lowering the degree and order

of the truncation from this level would amount to further smoothing of the infor-

* mation contained in the NSWC reports.

Next, we draw contours depicting the functions F and G, completing them

visually over the land masses in a manner compatible with the oceanic contours.

* The land values of F and G have no physical meaning, and no use of their own,

other than to make possible an evaluation of S.H. tidal coefficients. The latter

* will serve to reproduce the oceanic values and will never be used in conjunction

with any point over land.

Finally, having the functions F and G in (6.2a,b) available in an equilateral

grid, we proceed to the evaluation of the desired S.H. tidal coefficients in

analogy to (5.5a,b):
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a ( / K _) kco J C S M X MI
E (PP ru[n (sin k F F b , (6. 3a)

C K k COS m Xk Z 3
E EP nm (sin ) . G k9, I (6.3b)

k= 1 = 1 sin m k ki

K

P E Pk (6.3c)
k=1

where K is again the number of parallels containing grid points and Pk is the

number of grid points on the parallel "k". Since (6.3b) differs from (6.3a)

. merely in the value G replacing F for each point of the (common) grid, these two

relations are evaluated simultaneously.

The resulting set (n',n') of S.H. tidal coefficients can now be used in

(6.2a,b), where the symbol - is replaced by n', in order to recompute the

functions F and G at the grid points (for verification purposes), as well as to

evaluate them at any other locations. Most important in this respect are points

in the oceanic regions containing altimeter data. In utilizing (6.2a,b) in

(6.1a,b), the ocean tide for the pertinent constituent can be expressed as

n r
I  

nl

= cosu 1 E (i cos mX + b sin mx) r(sin )
n=O m=O nmn

D'- no n

+ sina E E (c cos mX + d sin mx) nm(sinf) . (6.4)
n=O m=O

Such values of the ocean tide for the constituent "j", improved by comparison to

the previous procedure, can serve in the tidal adjustment exactly as . did in
I]

. [Blaha, 19821 in conjunction with Chapter 3 of [Blaha, 19841.
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U
•. 7 ,CONCLUSIONS

Two second-phase techniques have been developed in recent years at AFGL

"' based on the results of the global spherical-harmonic (S.H.) treatment of alti-

"- metric data. One of these techniques has been documented as the point-mass

(P.M.) adjustment, and the other has been described under the name of modified

collocation with noise. The former is characterized by a simultaneous adjustment

• -of all the P.M. parameters; however, the matrix of normal equations to be in-

verted can be made banded or, in the presence of (optional) tidal parameters,

* banded-bordered. And the latter is noted for its economical property of avoiding

- an inversion of a large matrix (such as is performed in the P.M. adjustment),

proceeding instead to the inversion of a number of relatively small matrices, one

per observation point; there is no limit to the number of these points. The term

" "modified" attributed to the collocation technique does not concern the philos-

ophy of the least-squares collocation with noise per se, but, rather, its specific

. application aimed at describing a smoothed-out gravity field, in which the part of

the signal beyond the desired smoothing level is pushed into the realm of "noise".

The P.M. adjustment has been designed in two versions, the single-layer mode,

. where all the point masses are situated at one depth below the surface of the

*- reference ellipsoid, and the double-layer mode, where to each such point mass is

attributed another one below it, separated from it by the same vertical distance

v. The number of parameters in the latter adjustment setup is unchanged from the

- former, due to the stipulation that the twin point masses differ only in sign,

not in magnitude. Even so, the double-layer mode is more time-consuming because

of an increased number of computer operations needed in the formation of observa-

tion equations.
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From the tests conducted in Chapter 3 it transpires that in some cases

* the double-layer adjustment may accommodate the observations (taken as minus

the geoidal residuals from the global S.H. adjustment) slightly better than its

single-layer counterpart. However, the differences are small and the improve-

* ments (in terms of the r.m.s. values) do not exceed 7% for any choice of v.

* Since variations in the depth of the shallower layer itself are also shown to

- have only a small effect on the resulting r.m.s. of the residuals, it follows

that the power of the resolution is linked almost entirely to the horizontal dis-

tribution of the point masses. It can be concluded that due to its economic

superiority, the single-layer mode is preferable to its double-layer counterpart,

especially if the P.M. adjustment should be performed on the global oceanic scale.

If a very detailed gravity field resolution is needed in areas of special

interest, one is compelled to consider an additional treatment of altimeter data,

such as a third-phase P.M. adjustment. An adjustment of this type is the topic

* of Chapter 2. It is based on the second-phase results in much the same way as the

* second-phase P.M. approach is based on the outcome of the first-phase (S.H.)

* adjustment. In the third phase, the point masses in an individual area of interest

* form a substantially denser, and commensurably shallower grid than that character-

* izing the underlying second-phase P.M. adjustment. The final quantities are ob-

- tained as the sum of three parts, each corresponding to the appropriate adjustment

* phase. These quantities can subsequently be used in the construction of contour

maps representing the geoid and other functions of the geopotential (such as

- gravity anomalies or deflections of the vertical). In basing one adjustment

phase on the residuals from the previous phase, the concept of point masses

ensures a gradual transition of contour lines between the lower and the higher

resolution areas.
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The same chapter also addresses a third-phase solution based on the

second-phase results in terms of the modified collocation with noise. Except

for changes at the algorithmic level, such a procedure is governed by the same

* principles as the third-phase versus the second-phase P.M. approach. As an

e-ample of the algorithmic changes, the (n,n) S.H. model used in the second

phase as "reference field" is replaced by an (n',n') model in the third phase,

* which is precisely the model obtained as a solution of the second phase.

* Accordingly, the covariance and cross-covariance functions in the third phase

exhibit sharper, more localized characteristics compared to their counterparts

in the second phase.

Since the collocation approach does not provide for adjustment of tidal

parameters, the third-phase collocation solution could be combined with the

* second-phase P.M. adjustment including tidal effects. In this way, advantages

* of both methods would be allowed to manifest themselves. The second phase,

carried out with a relatively sparse grid of point masses, would offer the benefit

of tidal adjustment at the level of individual ocean basins, while the third

phase, performed in the collocation mode, would produce a detailed resolution of

the gravity field on a desired scale, an ocean-basin or even a global scale.

Due to a similarity between the surface spherical-harmonic expansion of the

* ocean tide for a constituent "j" and the expansion of the geoid undulation, one

could express the former in terms of "tidal" point masses, just as the latter

has been expressed in terms of "regular" point masses. This possibility is ex-

* plored in Appendix 2. A practical procedure which would treat the new P.M.

parameters together with the existing ones faces one substantial difficulty -

the computer core limitations. In particular, if the present P.M. adjustment

should include tidal point masses, their number would have to be small and,

therefore, their distribution sparse, to the point of being equivalent to a
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* (22,22) S.H. expansion. Such a resolution power is only slightly better than

that provided by the existing capability of the first-phase adjustment alone,

although the latter affects only two parameters per tidal constituent (the tidal

amplitude and the Greenwich phase angle). However, these parameters have a

clearcut physical meaning and a number of advantages, as is discussed in Section

2.1 of [Blaha, 1983]. Be that as it may, the resolution power per se is not

*- affected by a particular mode of tidal adjustment.

The present second-phase P.M. adjustment allows for a supplementary tidal

adjustment of the same two parameters per constituent as discussed above. The

" adjustment corrections apply to the tidal effects in predetermined regions,

typically in individual ocean basins, and, similar to the first phase, lend

themselves readily to a physical interpretation. It is especially noteworthy

that the three tidal constituents M2, N2 , and 0, considered in view of SEASAT

*altimetry add only a negligible computational burden to the adjustment process

. by bringing six parameters into the border of normal equations; their solution

'- is carried out efficiently by the algorithm presented in Chapter 5 of [Blaha

- 1984]. This property is important when the computer core is already utilized

to its capacity, and leads to the conclusion that the computer limitations make

it impractical, at the present, to replace the supplementary tidal adjustment

within the second-phase P.M. approach by a new procedure introducing a number

of tidal P.M. parameters into the adjustment. However, an algorithm to this

effect is developed in Appendix 2, which can be put to use when permitted by

computational and economic factors.

In the past treatment of satellite altimetry, the first- and even the second-

phase adjustment exhibited.large negative altimeter residuals in areas where

*satellite arcs cross an important trench, such as the Puerto Rico trench. Thus,

altimeter residuals may have a significant role to play in the detection of
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bathymetric and other oceanic anomalies (e.g., geomagnetic anomalies). This

topic is discussed at length in Appendix 3. Since it appears that a second-

phase approach would be insufficient for a reliable detection of even some im-

portant trenches, and a third-phase approach would represent a lengthy and

uneconomical undertaking for this purpose, one is well advised to turn to the

first-phase residuals as a basic tool of such an endeavor. However, instead

of considering only the actual residuals at observation points selected at -

or -itrvl in the first-phase adjustment of SEASAT altimetry (in which

they allow for ample redundancy with respect to the ground-track configuration),

it is now necessary to examine all the altimeter measurements in the original

observational intervals of approximately 2'.

The most important part of the design, then, resides in filling in the

residuals at every data location. This task can be accomplished efficiently upon

undertaking a new iteration in the S.H. adjustment process, but this time

utilizing all the altimeter observations and limiting the iteration merely to the

computation of constant terms in the observation equations. These terms are the

* desired high-density and high-resolution residuals along satellite profiles.

They are subsequently judged against the yardstick provided by the "truncation

sigma" of the underlying S.H. model, i.e., the square root of the variance owing

* its existence to the truncation of theoretically infinite series. As an example,

a sea surface dip larger than two or three truncation sigmas is unlikely to re-

flect the usual geoidal roughness, and may instead indicate the proximity of an

important trench. Tests in areas of known bathymetric features, especially deep

trenches, constitute a useful tool in a "fine-tuning" of such a detection pro-

cedure.

An extensive portion of the present research has been devoted to attaining

a detailed S.H. representation of the earth's gravity field from a discrete set
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of data. The quantities analyzed most thoroughly in this context are the geoid

undulations, directly related to the disturbing potential through the familiar

* Bruns formula. The points of known geoid undulations (and, in several instances,

gravity anomalies) are considered here to form an equilateral grid. The main

task consists in finding the highest degree and order S.H. model, (N,N), which

can still accurately represent the gravity field as described by the discrete

data.

This task is addressed through computer simulations taking advantage of the

* spherical approximation. As a first step, "errorless" geoid undulations are

. generated with given S.H. coefficients in two equilateral grids, referred to as

the 2o2 ° and the 4°x4 grid. The notation 0 x0 implies that most of the grid
0

lines (except near, and at, the poles) give rise to squares with 0 on the side.

The data generating process hinges on an algorithm able to produce accurate values

*of Legendre polynomials and associated Legendre function to a sufficiently high

". degree and order. One such algorithm, extensively tested through a (160,160)

truncated model, is described in Appendix 1. It is based on recurrent relation-

*ships, and its fundamental feature resides in utilizing two starting values for

'" each order of the associated Legendre functions, similar to the strategy

customarily used for Legendre polynomials. A great increase in accuracy compared

to an approach where two starting values are used to generate the entire set of

these functions is well worth the additional effort.

Under certain conditions, numerical integration involving errorless data

leads to the S.H. coefficients which can satisfactorily reproduce these data

. at the grid locations as well as at other points, whether in their original form

*, (here geoid undulations) or in a parent form (here gravity anomalies). The

theoretical development of such a procedure, together with all the pertinent

computer results and tests, are presented in Chapter 5. The key element in this
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analysis is the numerical integration algorithm formulated in equations (5.5a,b).

There is no need to recapitulate much of the material of Chapter 5 which is

straightforward and self-contained. Its most important outcome is represented

by Fig. 1, depicting the errors associated with the numerical integration of

geoid undulations in the above 2o×2° and 4 x4° equilateral grids. An error measure

is provided by the r.m.s. of the differences between the errorless values generated

* with a given (n',n') set of S.H. coefficients and the values obtained via the

integrated coefficients complete to within the same set. The results are so re-

vealing and clearcut that the curve marked "standard" in the figure becomes

* unnecessary. This curve symbolizes the values "t" against which the quality of

the S.H. representation was to be tested.

Due to the sharp upturns in both of the "20x20 ' and "4° x4° " curves, occurring

before the latter intersect the "standard" curve, the final truncations are es-

tablished to the left of the corresponding intersections. Thus, the final outcome

-I points to the (90,90) truncation in the case of the 20 x2° equilateral grid, and to

the (45,45) truncation in the case of the 49x49 grid, exactly as stipulated by the

*familiar rule of thumb,

N = 1800 / 0

* Clearly, the importance of this rule is heightened in this concrete, tangible

context.

The various truncations (n',n') examined in Chapter 5 in conjunction with

the two equilateral grids reveal special properties worth further elaboration.

° As Fig. 1 indicates, the "fxt" curve is effectively a straight line up to the

truncation (n',n')=(90,90), at which point it abruptly changes direction and

continues again as a straight line, but at a much greater slope. For the sake
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*" of interest, it can be mentioned that a curve pertaining to gravity anomalies,

if plotted, would exhibit almost identical features. The "4 4 x4" ,irve, whose

turning point is (n',n')=(45,45), behaves in a similar fashion, although its

lower portion departs somewhat from a straight line for n' between 30 and 45.

One can also observe from the figure that the r.m.s. of the discrepancies in the

2" x2'2 case is approximately one-half of that in the 4ox49 case, at least up to

n'=30. This improvement is imputable to the two-fold increase in density, along

either dimension, of the former grid with respect to the latter.

As is apparent already from Fig. 1, the final truncation values (N,N)=(90,90)

and (N,N)=(45,45) presented above, and any truncations below such levels, lead to

a very satisfactory reproduction of the errorless geoid undulations. This con-

clusion can be illustrated quantitatively upon combining (in the quadratic sense)

*the original truncation sigma with the r.m.s. of the discrepancies due to the

numerical integration algorithm, and obtaining a "new" truncation sigma for geoid

undulations. In either of the two cases under consideration, the truncation

sigma is seen to increase by a mere 1% -- an encouraging sign indeed.

The outcome of Chapter 5 can be effectively exploited in representing colloca-

tion results in terms of the S.H. expansion of the geopotential. This topic is

treated in Chapter 4 and the first section of Chapter 6. For example, a 20 20

equilateral grid of geoid undulations predicted through the modified collocation

with noise at the smoothing level (n',n')=(90,90) can be utilized to produce an

. integrated (90,90) set of S.H. coefficients consistent with the collocation

results. Since the emphasis in the final representation is on the oceanic geoid,

the (missing) prediction values over land can be filled in with a lesser accuracy,

upon using an a priori set of S.H. potential coefficients truncated at the same

level.
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Finally, the second section of Chapter 6 addresses the problem of using

S,.a S.H. expansion in representing the desired tidal effects. These effects are

described in detail, and to a high level of accuracy, by E. W. Schwiderski in

'* his NSWC Technical Reports. Each tidal constituent considered involves two

sets of S.H. tidal coefficients. Some of the principles presented in Chapter

5 are utilized here as well, especially the numerical integration algorithm

recapitulated as (6.3a-c). This algorithm is used in conjunction with an

-. equilateral grid of functions called F and G, evaluated over water with the aid

of the above NSWC reports and over land via visual interpolation.

If this grid is chosen as 4 x4 , the earlier rule of thumb allows for a

. reliable reproduction of the functions F and G through a (45,45) set of integrated

* S.H. tidal coefficients. A lower degree and order set can also be used in

practice, implying further smoothing of the NSWC information (in the above reports,

*'i the tidal information is available in a lx1° geographical grid). Finally, the

ocean tide for a desired constituent "j" can be expressed as in (6.4), and can

serve in the tidal adjustment in exactly the same manner as its former counterpart

" .did in [Blaha, 1982] and Chapter 3 of EBlaha, 19843.

'o-2
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APPENDIX I

DEVELOPMENT OF A RECURRENT ALGORITHM
FOR LEGENDRE POLYNOMIALS AND ASSOCIATED LEGENDRE FUNCTIONS

This Appendix describes in detail the algorithm developed and tested during

the period July 1 - September 30, 1982, and presented in Status Report No. 3 for

the same period. A similar algorithm was summarized in September, 1982 by Rapp

[1982], pages 9 and 10. There are a few minor differences between the two

approaches, however. For example, here the recurrent relationships are derived

in terms of the quantities iWm3 rather than P . The derivations in this Appendix
n nm

are presented against the AFGL background including earlier versions, and have

thus a somewhat tutorial character.

In the past, geoid undulations and other geophysical quantities were computed

at AFGL on a global scale using the conventional spherical-harmonic (S.H.) coef-

ficients, as well as the conventional Legendre polynomials P (sino) and the con-
n

* ventional associated Legendre functions Pn (Sin¢), where € denotes the geocentric

latitude. With regard to the Legendre functions, the following transformations

apply:

n (sinf) = (2n+1) Pn(sinf) , (A1.la)

P nm(sinf) = [2(2n+1)(n-m)!/(n+m)!] Pnm (sino) , m > 1 (A1.lb)

The products between the S.H. coefficients and the corresponding Legendre functions

are the same whether the conventional (unbarred) or the normalized (barred)

quantities are utilized.

In using the formula

Pn(sin) = cosmp P[m3(sin ) (A1.2)
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where, for m < n

PEm3((sino) = dmf (sino)/d(sin¢)m  (A1.3)
n n

(for m>n this expression is zero), the following recurrent relationships have been

utilized at AFGL, in which P (sine), PEm](sin) are written simply as P Em :
n n n9 n

P = (1/n)Esino(2n- 1)Pn -1 (n- 1)Pn-23  (A1.4)

[~m3 - (2n]lCmi]3
p pm + (2n- i)P , 2 < m < n- 2 ; (A1.5)

for the special cases m=1, m=n-1, m=n the formula (A1.5) becomes

p~l) [ p 1 + (2n-1)P , (m=) (A1.6a)
n n-2 n-i

"" pin-l] [ n-23
P..-'n = (2nI.P1 )n_ , (m=n- 1) (A1.6b)

n n-i

P[n3 = (2n- )p En . (m=n) (A1.6c)n n-i

The case m=O is treated in (A1.4) since P0 E P[O P (see equations A1.2,3).
". n n

The two values needed to start the process (A1.4) are

Po= 1 P, = sine . (A1.7)

* With regard to the subsequent computation of P , the case m = 1 is treated first

*. according to (Al.6a). The starting values are

(pE ) 1 (A1.8)

The first of these values is trivial (see equation A1.3) and is not stored; it is

only used once in (A1.6a) for n=2. Next, (AI.5) is utilized for each n (starting

with n =2) and for each m (starting with m = 2) except for the last two values of
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m, in which case (A1.6b,c) are used instead. Thus for n = 2, only (AI.6c) is used

in computing P2 ; for n=3, (A1.6b) gives P[23 and (A1.6c) gives P[3); but for2 3 3

any further functions, all of (A1.5) (A1.6b,c) are needed.

For large n and m, the values of P and, especially, P [M] computed as above
rn n

become exceedingly large. Already for n = 38 values emerge whose order of magnitude

is 1070 and higher, leading to numerical difficulties because of the computer

exponent limitations. The above formulas could safely be used to within a (36,36)

expansion. Beyond that, the normalized functions should be used instead. New

recurrent relations can be obtained from the previous formulas through a simple

substitution for P , p[m] based on (A1.la,b), namely

1-P : -/(2n + 1) ' (A1.9a)

P = {(n+m)!/[2(2n+l)(n-m)!]} 2 P , m > 1 . (A1.9b)

Since, in analogy to (A1.2), it also holds true that

= Cos m¢ -[m] (Al.10)

the formulas (A1.lb) and (A1.9b) relate pnm] and -mJn as well. This will be

understood throughout without any further statements to that effect.

Equation (A1.4) can now be rewritten with (Al.9a) taken into account, giving

P : (2n+l) (1/n){sin¢(2n-1)P-n  - (n-1)/(2n- 3) 2 (A1.11)
-in n-2

If (A1.5)- (A1.6c) are similarly rewritten with (A1.9a,b) taken into account, it

follows that

Pm = {(2n+l)/(n+m-1)(n+m)]} {(n-m- 1)(n-m)/(2n- 3)]P42
m

' ,n n-2

+ (2n- 2 < m < n-2 ; (AI.12)
n-i _
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p-n1 {(2n +l)/En(n +1)3) {E(n -2) (n -1)/(2n - 3) 3 2-

(m=1) (Al.13a)

Crn-.iJ = [(2n+ 1)/(2n - 2)3 JIn2 , (m=n- 1) (Al. 13b)

"- p-in3 = (2n + 1)/2n3 lrp n- 13 (m n) (Al. 13c)
n n- n

Due to the presence of 2 in the factor of P in (Al.13a), this formula is not an-i

special case of (A1.12), in the sense that it cannot be obtained upon replacing

m in (A1.12) by 1 (this could have been done when passing from A1.5 to Al.6a).

In agreement with (Al.7) and (Al.la), the starting values for (Al.ll) are

P0 = 1 P 1:4"3 sine (Al. 14)

Subsequently, in using (Al.lb) the values of Rem) are computed in analogy to
n

(Al.8) and the text that followed; the starting values are

(PEo13  0 ), 3pi Ell (AI.15)

Large numerical values are no longer a hindrance in proceeding in this fashion.

However, for large n and m -- around 70 or 80 and higher -- the computational

* accuracy in jFPm quickly deteriorates. This is due to the propagation of round-i':" n

*. off errors since a great many values (on the order of 3,000 and higher) are

generated from merely two starting values in (Al.15). Therefore, the present

set of formulas could safely be used only to about a (70,70) expansion. Although

"- this is a significant improvement compared to the previous situation, it does not

* fulfill the anticipated needs. Consequently, a new set of recurrent relations

will be derived which can be used for any expansion in practice, certainly thr)ugh

the degree and order (180,180) and possibly much higher.
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The basic idea behind the new approach is to use two starting values for

each order (m) of the associated Legendre functions, similar to the recurrent

strategy for Legendre polynomials. Thus in the case of the truncation N = 180,

at most 178 values will be generated from two starting values. In particular,

since one will proceed in the sequence P3, - *] P-n'm , the number of"m 'n~ '" '

generated values varies from 178 for m = 1 (P13- and P are the starting values

while P 3 4 P 180 are generated) to 1 for m =178 (p178] and P178]
' 4 3178 179

are the starting values while only- 178 is generated); no values are generated
9 - t1793 -- 179)

for P(bot 179) and 180 are "starting" values) and for m = 180179-[180
(P180 is a "starting" value). Although there are essentially N-times as many
180

starting values in this approach compared to that of the previous paragraphs,

the great increase in accuracy is well worth the effort.

This development starts with the conventional Legendre functions. First,

the relation (A.14) for Legendre polynomials is recapitulated as

nP = sing (2n- 1)P - (n- 1)P , n > 2 . (A1.16)

n n-1 n-2

This formula can be found in standard textbooks such as [Spiegel, 1968) where it

, is essentially equation (25.20). The starting values are P0 and P1 as they

appeared in (A1.7). Next, the basic relation for P is presented as
n

(n-m)PEM] = sing (2n-1)P m3 - (n+m-1)PEm] n > m+2 ,(A1.17)

( )n n-1 n-2 '

which is readily obtained from equation (26.12) in the same textbook. This formula

is structured in complete analogy to (A1.16), which can be obtained from it merely

by setting m=0. The starting values, Plm3 and pEm3 , can be evaluated with the
m m+1

aid of the standard formula appearing, e.g., as (1-62) in [Heiskanen and Moritz,

9673, which leads to
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PM = (l/2m)(2m)!/m! 1x3 ... x (2m-l1), (Al. 18a)

REm3 = 1x3 ... x (2m+l1)sin (Al.18b)
m+1

Here again, upon setting m 0 one recovers the starting values (A1.7).

In utilizing (A1.9a) in (A1.16) it follows that

P n= (2n +l10(1/n) fsin, (2n -l) Pn- - C (n -1) /(2n -3) 'I n- I , (A1.19)

which is (A1.11) recapitulated here to show the parallel between the new recurrent

relations for T and for Tm3 below. In considering (Al.la), the overbarred
n n

starting values are

P - P

with P 0 and P1I from (AIM7 this yields

PO= 1 (Al.20a)

P= C3 sino (Al.20b)

*which were already seen in (A1.14). Equation (A1.19) with the starting values

* (Al.20a,b) is the final recurrent relation for the normalized Legendre poly-

* nornials.

In analogy to the above, upon utilizing (A1.9b) in (A1.17), after a few

* arithmetic operations one obtains

f (2n+l)/[(n+m)(n-m)) sinq (2n- [)~J (n+m- l)n-m- 1)
n n-i

n- 2
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It is again noticed that upon setting m=0 equation (A1.19) is recovered. In

considering (A1.lb), the overbarred starting values are

FmJ = C2(2m +1)/(2m)] Prm m > 1

p-mm = E2(2m+3)/(2m+ 1)!] P m] m > 1
M+1 M+1

with p m and pEmJ from (A1.18a,b) this yieldsm m+1

p-mJ = E2(2m+ 1)3%{(1/2)(3/4)... E(2m- 1)/2m3}' m > 1 (A1.22a)
m

fim] = [2(2m+3)3]{(3/2)(5/4) ...E(2m+ 1)/2m} sino m > I (A1.22b)
m+ 1

It is now apparent that (A1.20a,b) do not follow from (Al.22a,b) upon setting

m = 0 , due to the factor 2 within the first brackets of the latter. This is

imputable to the factor 2 appearing in equations (Al.lb) and (A1.9b) which thus

would not yield (Al.la) and (Al.9a) if m were set to zero; this fact is then

* reflected in the equations that followed (A1.21) as compared to the equations that

* followed (A1.19). On the other hand, (A1.19) followed from (A1.21) for m=O,

just as (A1.16) followed from (A1.17) for such m, because when the transformation

(A1.9b) was applied to (A1.17) in order to obtain (A1.21), the above factor 2

cancelled out.

Equation (A1.21) with the starting values (A1.22a,b) is the final recurrent

* relation for PEm]. The final recurrent relation for the normalized associated
n

'" Legendre functions then follows immediately upon considering (A1.10). In parti-

*cular, since no order other than m appears in (A1.21) this equation holds true

equally well with Prn, Pn-l,m and Pn-2,m replacing Pm ' n-m] and nmn2

, respectively. Since the starting values are given by the relatively very simple

* formulas (AI.22a,b), where the number of factors within {0 is m, their computa-

tion does not represent a heavy burden by any standards. In fact, without the
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strategy of computing the starting values separately for each order, the

numerical evaluation of the normalized associated Legendre functions through

the degree and order considered in this analysis would have been impossible.
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APPENDIX 2

CONSIDERATION OF SPECIAL "TIDAL POINT MASSES"
FOR MODELING OF TIDAL CONSTITUENTS

In [Blaha, 1984), Chapter 3, the tidal model used in the adjustment of

satellite altimetry is given as

h. = 0.9333, + 0.612x(equilibrium tide). , (A2.1)

where

h. = surface tide for the constituent "j"

Jci ocean tide for the constituent "j"

The formula (A2.1), appearing in the above reference as (3.7a,b), can be used in

conjunction with all the tidal constituents, .;-,g-period as well as diurnal and

semidiurnal.

Since the computation of the equilibrium tide is simple and straightforward,

one's attention is directed to the evaluation of the ocean tide in equation (A2.1).

According to pages 48 and 49 in EBlaha, 1982], it follows that

ci = Aj(0,x)cosict. - 0j(,x)]

where

L. = Greenwich argument,J

A.(Ox) = amplitude,

i (Ox) = Greenwich phase angle,

all pertaining to toe constituent "j".
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The above equation can be written as

5 1. + 2, (A2.2a)

*" with

, = cosA. (O)COSj (4.A) , (A2.2b)

E2 = sin.A. J(OX)sinpJ( 0,A) (A2.2c)
2

°- The functions F and G below can be expressed in terms of a spherical-harmonic

series as was done in the above reference, namely
(A2.3a)

F(O,x) E Aj(OA)Cos j(€,x) = z (a.Cos mx + b. sin mx)P (sinp)
n=0M=O rimO rnr

(A2.3b)
00 n

G(¢,X) - Aj(,x)sin j( ,x) = (c. Cos mx+d. sin mX)P (Sin )
n=O m=O Inm 3nm

where Pr(sino) are the associated Legendre functions in the argument sin,

Sand X being the geocentric latitude and longitude, respectively.

If the functions F and G were given all over the globe, one could compute

- the spherical-harmonic (S.H.) tidal coefficients a, b, c, d (with appropriate

* indices) as follows:

a. cos mr• ]Inm

I = (2n+l)/2]E(n-m)!/(n+m)!IfftAj(4,x)cosin m(4)]P dob- Gb 1sin m

d.. = [(2n+l)12n][(n-m)!l(n+m',)I f[Aj( )sin ( ')]P M-(sin72) sin m do

,-72

; ... : .'- ,? .-.-'-:€ / -.-- .--.- -' .-;" -' -) - '- '- ' .' . ..'' .-i.. .i.'.i- : . .- -..-.. -: -.'- :.'-.'-- --".1--"



where the symbol 2r .mplies 2Tr for m>O and 4-a for m=O; this double role would

have been avoided by adopting the normalized S.H. coefficients and Legendre

functions instead of the conventional ones as used above. The symbol

indicates a point within da, a representing the surface of the earth.

With the expansions (A2.3a,b), equations (A2.2a-c) yield

CO n

cosa. E E (a.Cos mx + b. sin mx)Pn(sinf)
n=O rn=O rn runri

(A2.4)
co 

n

+ sin. E E (c. cos mX + d. sin mX)Pn(sinf)
I n=O m=O 3nm run

The parts following cosa . and sine. in (A2.4) can be compared to the S.H.J J

expansion of geoid undulations (N). However, it is assumed that a first-phase

adjustment has been carried out so that the second-phase adjustment has as a

"normal field" the gravity field given by the (nn) S.H. expansion. With respect

to such a field, the second-phase geoid undulations resolved through the degree

n' are represented by

n' k
N' = R E z (C Cos mX + Sksin mx)P (sin) , (A2.5)

k=n+l m=O

where R is the earth's mean radius and ,X are the geocentric coordinates of the

point of evaluation. The value of N' in (A2.5) thus corresponds to the bandwidth

n+1 through n'. Since n is usually 14 or higher, the spherical approximation

implied by (A2.5) is inconsequential.

The similarity between (A2.4) and (A2.5) is actually closer than what appears

from the equations in their current form, especially from the form of (A2.4). The

first-phase adjustment provides not only for the solution of the gravity field

within the (n,n) S.H. expansion, but also for the solution of selected tidal
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parameters to within some expansion of the S.H. tidal coefficients. The tidal
parameters consist of the change in the relative amplitude and the change in

the phase angle per tidal constituent; the degree and order of the underlying

S.H. expansion of the tidal effects in the first phase is considered to be also

(n,n), although this is not a requirement (the advantage of this choice stems

from the Legendre functions having been already computed to within n,n degree

and order due to the geoidal evaluations, and the same is true with respect to

-* the multiple angle trigonometric functions). Accordingly, if one wished for

the solution of the ocean tide within the bandwidth n+1 through n' as a follow-

up to the first phase, the formula (A2.4) for a given tidal constituent (the

explicit subscript j is dropped) would become:

n' k
' = cosa E z (a Cos mx + b sin mx)P (sin)

k=n+l m=O

(A2.6)
n' k

+ sin E E (c Cos mX + d sin mX)P (sin )
k=n+l m=O

The complete analogy between the formula (A2.5) and either part of the formula

- (A2.6) is apparent.

The above analogy suggests that the second-phase treatment of tidal param-

eters could follow the lines similar to the second-phase treatment of gravity

* . field parameters. The latter have been represented by point-mass (P.M.) magni-

-• tudes allowing the local effects to manifest themselves quite independently

of other such effects some distance apart, due in part to the cut-off distance

(spherical cap) beyond which the contribution of observations to a given P.M.

parameter has been ignored by the algorithm. Accordingly, the tidal effects

could also have a greater freedom to manifest themselves locally if parallel
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formulas could be developed in terms of some "tidal point masses". The second-

phase adjustment model in terms of the "regular" point masses reads

N' = (1/G) E (1/Zkj)(kM)j  (A2.7)
k

where G is the average value of gravity on the earth's surface, "k" is the

(observation) point where the geoid undulation is available, "j" is the location

of the point mass whose magnitude is (kM)., and zkj is the (chord) distance

between the points k and j. Since (A2.7) is used to approximate the model (A2.5),

the analogy between (A2.5) and (A2.6) allows the latter to be similarly

approximated by

cosU E (1/Zki)t I + sint E (i/z k)t 2  (A2.8)

Here remains the Greenwich argument and t., t2 represent the "tidal P.M.
3 J

parameters", all pertaining to a given tidal constituent.

Since the geoid undulations and the effects of tidal constituents are

mutually independent, so are the P.M. parameters and the tidal P.M. parameters

for different constituents. The latter can thus be added into the system of

normal equations following the former without affecting the bandwidth associated

with a "regular" P.M. adjustment. However, the length of the band is greatly

increased. If the tidal point masses should have the same locations as the

6"regular" point masses, the number of parameters would increase by 200% per

constituent as is clear upon comparing the model equations (A2.7) and (A2.8).

Where only the constituents M2, N2 and 01 are considered, the increase would

be 600%, so that the total number of parameters would be 7x("regular" number of

P.M. parameters). Such an increase would be clearly prohibitive.
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However, the tidal constituents have a much smaller effect on altimeter

residuals than the geoid undulations (one to two orders of magnitude).

Accordingly, a low density grid of tidal point masses would be sufficient for a

simultaneous adjustment of geoidal and tidal effects. For example, one can con-

sider a 20-geoidal resolution corresponding approximately to a (90,90) S.H.

expansion of the earth's gravity field contrasted to a 60-tidal resolution cor-

responding approximately to a (30,30) S.H. expansion; the number of S.H. coef-

ficients in the latter case is about nine-fold smaller than in the former case.

The tidal resolution could have been lowered even further with respect to the

geoidal resolution. Be that as it may, the number of tidal point masses is about

* 1/9 of the "regular" point masses; when multiplying this number by 6 (two param-

eters per constituent, three constituents), the increase in the number of param-

eters is about 67%, for a total of 1.67x("regular" number of parameters).

The dimensions in the P.M. algorithm have been recently increased to a maximum

of 2000 P.M. parameters by virtue of the banded structure of normal equations.

However, almost that many are needed for the P.M. adjustment in the Indian Ocean

alone, i.e., about 1700 P.M. parameters including those that have to be used twice

due to overlapping adjustment strips. Multiplying this number by 1.67 would

result in a total number of parameters reaching about 2800. This number of

parameters is still too great of a burden regarding the computer capacity.

Next consider a 80-tidal resolution corresponding approximately to a (22,22)

S.H. expansion. The tidal point masses would now be distributed in an 8'"x8'

equilateral grid and their number would be 1/16 of the "regular" P.M. parameters.

The multiplication by 6 results in an increase of 37.5% in the number of param-

eters for a total of 1.375x("regular" number of parameters); in the above case

of the Indian Ocean this implies some 2300 parameters. From the computer core

standpoint an adjustment could become feasible. The algorithm would be similar
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to the "regular" P.M. algorithm except for some self-evident modifications (see

cosa and sinj in equation A2.8, the introduction of two parameters per location

when treating a given constituent, etc.). The depth of the tidal point masses

could again correspond to 0.8 of their horizontal separation (s); this would

lead, similar to previous studies, to considering a spherical cap of the radius

1.5s when determining which observations should be ignored in conjunction with

- a given parameter, and would preserve the original bandwidth essentially unchanged.

However, from the practical point of view the above case would not have the

desirable effect. The first-phase adjustment at AFGL is usually made in terms

* of a (14,14) S.H. expansion of the earth's potential, and a higher degree and

order expansion, within perhaps a (20,20) model, is easily feasible. Due to the

* advantages already mentioned, the S.H. tidal expansion should be made to about

the same degree and order. Thus, in view of a (20,20) S.H. expansion of tidal

* effects being essentially a part of the first-phase algorithm already, the above

* (22,22) expansion is of marginal usefulness. In other words, the computer core

* capacity would have to nearly double before tidal P.M. parameters in the second

adjustment offered a tangible advantage.
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APPENDIX 3
UTILIZATION OF SEASAT ALTIMETER RESIDUALS

IN DETECTING BATHYMETRIC ANOMALIES

As has been reported on numerous occasions, pronounced sea-bottom features

are accompanied, at the sea-level surface, by localized roughness in the oceanic

geoid. This fact is best illustrated by the presence of large negative alti-

meter residuals in the area where a satellite arc crosses an important trench,

such as the Puerto Rico trench, the New Hebrides trench, the Aleutian trench

and others. Such residuals were presented, for example, in the paper "SEASAT

Altimeter Reductions for Detailed Determinations of the Oceanic Geoid" by

G. Hadgigeorge, G. Blaha and T. P. Rooney at the 1980 AGU Fall Meeting.

A situation of this kind is schematically depicted in Fig. A, where the

(14,14) geoid corresponds to a global spherical-harmonic (S.H.) adjustment of

satellite altimetry. The (90,90) geoid, based on the residuals from the global

% adjustment, represents relatively small features, down to those whose half-

wavelength is approximately 20. This fairly detailed resolution can be achieved

i through the use of point masses (distributed in a 20x20 equilateral grid),

collocation predictions (in a 20x20 equilateral grid) and other means. The two

,- methods just mentioned are described in the AFGL report EBlaha, 1984); the

first method alone has also been the subject of several earlier AFGL reports

and papers. Clearly, the above (14,14) and (90,90) S.H. expansions could be

replaced by other suitable degree and order expansions describing the earth's

gravity field to within the desired resolution.

The index "o" in Fig. A indicates "observed" quantities, which are the

originally measured values improved through the orbital and tidal adjustment

(but not the geoidal adjustment). The orbital adjustment is implied in the
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Fig. A

Schematic representation of satellite altimetry over a trench area
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figure by the altimeter measurement associated with the adjusted -- as

opposed to the initially given -- satellite arc. And the tidal adjustment is

implied by considering the sea surface as free from tidal variations which are

expressed by separate parameters. The superscript "a" indicates adjusted

quantities, in particular, quantities linked to the (14,14) geoid as obtained

in the global S.H. adjustment. Figure 2 of the AFGL report [Blaha, 1983)

- illustrates the "observed" and adjusted quantities in more detail. In the present

context one need not be preoccupied with the improvement due to the tidal adjust-

ment since it would amount, in open ocean, to merely a few decimeters. By

.. comparison, the altimeter residuals over important trench areas are expected to

be greater by one or two orders of magnitude.

Altimeter residuals will be denoted here by the symbol vH. These quantities

are treated as measurements in the subsequent determinations of the gravity field

detail to be superimposed on the (14,14) S.H. representation, upon using the

point-mass or collocation techniques as mentioned earlier. Denoting the geoidal

- residuals by the symbol vN, one has

vH = Ha - H 1,, , (A3.1a)

vN = Na - N,,01,1, (A3.1b)'0

v H v N (A3. ic)

As depicted in Fig. A, a trench area induces large negative altimeter residuals,

vN << 0 . (A3.2)

These values are to be compared with the "one sigma" such as

3.2 m , (A3.3)
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which characterizes the geoidal detail neglected due to the (14,14) truncation

of an infinite S.H. series. The description and estimation of this quantity can

be found in Section 4.3 of [Blaha, 1984).

The three trench areas mentioned at the outset are 100-200 km wide and are

associated with large negative altimeter residuals reaching typically between

-10 m and -15 m in the vicinity of the trench axes. One could detect sea surface

- dips on this scale from a detailed geoidal map representing a 1°-resolution or

better (10 corresponds to 111 km on the earth's surface). In order to detect

dip areas 100 km wide, a -resolution would be desirable. But such a procedure

*, has a significant drawback imputable to the spatial distribution of SEASAT

altimeter data. The ascending and descending passes form approximately a f xf

*i equilateral grid near the equator, providing for a strong 2 -resolution and a

. marginal 10-resolution, but making any finer resolution impossible to achieve.

In addition to its marginal geoidal representation, the 10-resolution would still

,. be too coarse for detecting relatively small but important ocean trench areas.

The notion of coarseness in this context is best illustrated by considering

a 20-resolution as obtained through a point-mass (P.M.) adjustment of the oceanic

' geoid. The observational density on SEASAT arcs is just under 2' in angular

measure. Clearly, utilizing all of the altimeter data in the S.H. adjustment

- ,and, subsequently, in the P.M. adjustment would be computationally prohibitive.

Furthermore, little would be gained from a configuration where the observational

density along one dimension is over 30 times higher than the density along the

other dimension. A practical conclusion has been reached to adopt every 16th

* ,point on each arc as selected input data in both adjustments. In this way, the

separation between measurements along tracks becomes 0, while the separation

across tracks is fixed at I . This allows for a sufficient amount of spatial

redundancy in the P.M. adjustment, especially in view of a 20 -resolution
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(a 1f -resolution with the same data distribution would imply 50% redundancy

* along tracks and no redundancy across tracks).

The smoothing effect of a 20-resolution could totally or partially

obliterate the representation of a sea surface dip in the proximity of a trench.

This has been noticed, for example, in the paper mentioned at the outset. The

adjusted geoid in an extended Puerto Rico trench area covered with a 20X2"~

* equilateral grid of point masses did not exhibit any marked dip until it was

saturated with additional point masses forming a localized 10410 equilateral

grid. It is noteworthy that the geoidal dip associated with the Puerto Rico

* trench is pronounced (on the order of 15 in), that the trench area is relatively

wide (approximately 200 kin) and, especially, that the trench location is known

beforehand. A less important trench might have gone unnoticed altogether.

The example of the Puerto Rico trench is overly optimistic, in that not

*only is the trench area wide and the location known, but also that the observa-

tional interval along tracks is .- This presents little computational burden by

virtue of the regional extent of the adjustment, but the same cannot be said

with regard to an adjustment of an entire ocean basin or the entire global ocean.

One might hesitate to engage in the exercise of a global P.M. adjustment with

* quadruple the number of parameters (in view of the f -resolution) and double the

number of data points (in view of 40 data intervals along tracks) merely for the

purpose of detecting several more, but by no means all, important trench areas.

However, even if one should choose to carry out such an exercise one would

* be well advised to consider the adjusted 10 -geoid together with the resulting

(second-phase) residuals, especially if the detection of sea surface anomalies

should not be limited to features whose width surpasses 100 km. But the adjusted

P.M. geoid plus the corresponding residual equal the original altimeter residual

* from the global S.H. adjustment. This is apparent from Fig. A, where the
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distance between the solid and the dotted curve is obtained by adding algebraical-

ly the two segments created by the dashed curve. Thus, the second-phase

techniques, such as the P.M. adjustment, collocation predictions, etc., can be

completely by-passed in the present task.

The use of the first-phase technique, i.e., the global S.H. altimeter ad-

justment, has a further significant advantage. In particular, a procedure has

been designed that takes into account every observation point (in approximately

2' intervals along tracks), not only points in o or, perhaps, o intervals.

*Although the S.H. adjustment itself may utilize only data in o intervals, the

remaining residuals can subsequently be filled in at every data location. These

*high-density and high-resolution residuals can be examined for geoidal roughness

.* along the profiles, which has a crucial role to play in detecting bathymetric and

possibly other anomalies, such as geomagnetic anomalies.

The most promising in this respect is the detection of ocean trenches whose

presence is signalled by an abrupt dip in the sea surface. The importance of any

such dip is judged upon comparing the (first-phase) altimeter residuals with the

value a linked to the truncation of the S.H. model. To be of any practical

advantage this value should be fairly low and, accordingly, the S.H. model should

be of a reasonably high degree and order. Equation (A3.3) indicates that the

(14,14) model is indeed satisfactory, considering that altimeter residuals at the

dip's location reach three to five times the magnitude of a.

The satellite arcs entering the S.H. adjustment are limited in length to

about 250 in angular measure or 7 minutes in duration as explained in Chapter 2

. of [Blaha, 1981). With the selected data points, a 250-arc contains 54 obser-

vations in 0-intervals, as opposed to over 850 original data points in 2'-inter-

vals. Since the (14,14) S.H. model corresponds approximately to a 130-resolution,

the o data interval could be replaced by a much larger interval without affecting

-83-

Lo.~k2.:



the S.H. adjustment itself. For example, one could use a 1-interval and fill

in the residuals at o- or shorter intervals as needed for subsequent detennina-

tions of a detailed gravity field. This would be done in the manner explained

" below in conjunction with the residuals filled in at all the original data points.

A good resolution of the state vector parameters (six per arc) within this S.H.

adjustment would then require a minimum arc length of 60 allowing for 7 or more

altimeter observations.

On the other hand, the 0-interval admits arcs as short as 30, which is also

the criterion of the minimum arc length from the standpoint of sufficient number

of intersections with other arcs (see the above reference). This criterion

*" allows for the utilization of 80-90% of all SEASAT arcs. During the actual S.H.

adjustment of SEASAT altimetry at AFGL the observational interval has been chosen

at o and the minimum length criterion has been adopted as 30. Accordingly, no

filling in of residuals has been necessary for a subsequent P.M. adjustment or

collocation predictions resulting in a 20-geoid. The S.H. adjustment has en-

' compassed some 6,700 arcs, of which about one-half have been 250 in length.

Since the S.H. adjustment can optionally solve for chosen tidal parameters

as well, repeating tracks covering different phase angles of tidal constituents

are particularly beneficial. However, in the detection of abrupt sea surface

dips via the filled-in residuals the tidal effects are negligible and the

.- repeating tracks lose much of their usefulness. Accordingly, a good percentage

,* of arcs could be left out of consideration when examining these residuals. It

' is then quite natural to eliminate the shortest arcs whose state vectors are

the most susceptible to contamination by the sea surface dip itself. By con-

trast, relatively long arcs crossing a trench area, such as 150 - 250 arcs, have

only a small portion of their length exposed to the sea surface dip; this does

not allow for any significant transfer of the negative anomaly from the residuals

into the state vector parameters.
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One can thus accomplish the double task -- eliminating both a number of

* unnecessary arcs and most of the arcs affected by sea surface dips themselves -

by adopting a minimum arc length of 150 (corresponding to about 500 original

* data points) for the purpose of this analysis. Even so, over two-thirds of all

the SEASAT arcs will still be retained including those along repeating tracks.

* This criterion could, of course, be increased to 200 or another suitable length.

Exceptionally, residuals on even a relatively long arc can be contaminated in

- the above sense if its ground track happens to coincide with the axis of an

extended trench. But this is not cause for concern by virtue of the criss-

* crossing pattern of SEASAT tracks. If, for example, an ascending pass follows

the direction of a trench, a descending pass will cross it, and will be able

to detect the sea surface dip with maximum efficiency.

The simplest approach to filling in the residuals at data points not used

* in the global S.H. adjustment will now be described in detail. The crucial role

* in this task is played by the magnetic tape containing the original altimeter

observations and the initial state vector (s.v.) parameters on each arc.

* According to previous statements, during the S.H. adjustment only one out of 16

observations on this tape constitutes the input quantity leading to the formula-

tion of the pertinent observation equation and, eventually, to the final solution.

* In addition to the S.H. potential coefficients and selected tidal parameters, the

7- solution also includes corrections to the s.v. parameters on each arc. The

* corrected s.v. parameters can then replace their initial values on this tape, or

* else should be recorded on a separate tape. The key role in the subsequent com-

* putation of the high-density residuals is played by the original observations

coupled with the new s.v. parameters. These two kinds of quantities, optionally

supplemented by the effect of tidal adjustment (deemed negligible in this

context), lead directly to the values H1,, and N. oil depicted in Fig. A. The
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adjusted S.H. coefficients (stored on another magnetic tape) give rise to the

values Ha and Na. Thus the values vH =-VN from (A3.la-c) can be computed at

every original data point.

In practice this task can be accomplished with ease and efficiency upon

undertaking what is essentially a new iteration in the S.H. adjustment process

in which, however, only a few initial steps are carried out. The highlights of

this process are:

a) all the altimeter observations are read and utilized;

b) the initial s.v. parameters are replaced by their adjusted values;

c) the initial S.H. coefficients are replaced by their adjusted values

(a similar step could optionally take place with regard to the tidal

parameters as well);

d) the adjustment routine proceeds to the formation of the constant

terms of observation equations, stores them on a magnetic tape and

stops;

e) these terms are the desired high-density altimeter residuals.

The last statement stems from the fact that the quantities called 'constant terms"

in conjunction with the initial values of parameters become residuals in conjunc-

tion with the final values of these parameters. As has transpired, the final

values of the parameters have been obtained very economically by utilizing only

* one-sixteenth of the available data, but serve subsequently in the evaluation of

the residuals corresponding to the entire data set. In spite of a great number

of residuals to be evaluated, this step is exceedingly efficient when compared

to the complete adjustment process.

Having now high-density and high-resolution altimeter residuals available,

one is in a position to detect abrupt sea surface dips and evaluate their

significance. This can lead to the detection of ocean trenches and other
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- anomalies. The altimeter residuals should be considered against the yardstick

of one siqma characterizing the geoidal resolution, such as o presented in (A3.3).

. Clearly, if the magnitude of the (negative) altimeter residuals is much larger

than over an extended area, e.g. over 100 km of a satellite profile, a presence

of a significant ocean trench is suspected.

In practical terms, the residuals can be scanned for large negative values

. such as

vH < -2;

If several consecutive residuals along a given arc fit this characteristic, the

pertinent portion of the arc can be plotted with the rms residual also indicated.

The threshhold number of such consecutive residuals can be stipulated as 16,

* corresponding to a 0-segment of the profile. The above two scrutiny-type param-

* eters, -20 and o, are subject to change depending on the size of trenches one

wishes to detect. For the detection of deep ard wide features of the sea surface

the magnitude of the two parameters can be increased. Conversely, for the detec-

* tion of smaller features the magnitude would be lowered. However, since the

. actual geoidal variations themselves (without the contribution of trenches) are

.. on the order of with respect to the adjusted (14,14) geoid, there is a limit

" to the size of trenches and other anomalies one can detect with this method.

"Calibration" tests using known bathymetry, for example, could furnish quantita-

* tive information with regard to this limitation.
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