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1.0 INTRODUCTION

The absorption of infrared radiation by water vapor in the atmospnere is

of great interest since it plays a prominent role in determining atmospneri:

transmission to solar or laser radiation, and the heat balance of the lower

atmosphere.1 Of particular concern for long path transmission of laser signals

is the so-called continuum absorption in the window spectral regions. This

structureless absorotion has been studied experimentally by Bignell 2 and by

Burch and collaborators; it has been treated phenomenologically by Clough,
6 1

et a, For self-broadening of H20 in the 1000 cmi window region, the ao-

sorption is characterized by a strong negative temperature dependence.

Theoretical models advanced to explain tne absorption include far-wing

absorotion from distant strong lines, dimer (or cluster) absorption, colli-

sion-induced absorption, or some combination of the above.

The far-wing theory and calculations presented in this Report contain the

following features:

The primary approximation is the single-perturber approximation. This

assumes that the far-wing absorption can be obtained by calculating the

absorption due to a single radiator-perturber pair, and then multiplying

by the total number of pairs. This is consistent with the observed den-

sity dependence of the absorption coefficient. The single-perturber ap-

proximation for absorption in window regions seems to have first been
7

discussed by Baranger. The approximation can also be obtained as a lim-
8

iting case from the dipole autocorrelation function in the time domain.

One of the present Authors has also discussed this approach using a T-ma-

trix formalism9 directly in the freauency domain.
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, The present treatment considers absorption arising only from unbounc

states of the two-body system.

* Line coupling contributions, although formally contained in the theory,

have not been included in the present calculations.

* It is assumed that the anisotropic interaction can be treated using a

multipole expansion. For strong, close collisions this assumption may

break down.

* Perturbation theory in the anisotropic potential is also assumed. Ar

isotropic, Lennard-Jones, potential is included and is treated exactly.

* A unitarity cutoff (analogous to Anderson's well-known S2 cutoff) is em-

ployed in the strong collision limit. A rigorous justification of this

cutoff procedure is lacking and remains a problem in terms of interpreta-

tion of results.

* The theory rigorously satisfies the fluctuation-dissipation theorem

(FDT) 8-1 0 if the unitarity cutoff is ignored. If such a cutoff is ap-

plied, the validity of the FDT depends on the manner in which the cutoff

procedure is employed. In the past, failure to satisfy the FDT has leac

to ambigious interpretations of far-wing absorption.

In Sections 2, 3, and 4 we present the general theoretical approach used

in the calculations of far-wing absorption. In Section 5 we present results

from these calculations.

2
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2.0 GENERAL THEORY - THE SINGLE-PERTURBER APPROXIMATION

7
In the problem of line broadening in olasmas, Baranger has discussed ao-

plication of the "one-electron" approximation to the far-wing ana window spec-

tral regions. For the case of molecular collisional broadening we shall em-

ploy the term "single-perturber" approximation.

The justification given by Baranger for the single-perturber approxima-

tion is essentially that the far-wing absorption will be governed by the be-

havior o the dipole autocorrelation function at very short times. This

statement must be regarded with some caution because the approximation is as

much an expansion in density as in small times.

The general statement of the approximation is as follows:

"At sufficiently low densities one may calculate the far-wing spectrum by

computing the absorption due to a single pair consisting of one radiator and

perturber, and then multiplying by the total number of pairs."

It should be noted that this is distinct from the binary collision ap-

proximation which assumes the absorption can be computed by calculating the

absorption arising from a single radiator and N perturbers which it may in-per

teract, and then multiplying by the number of radiating molecules, N rad  The

* inary collision approximation envisions that the radiator interacts with one

perturber at a time, however, over the time scale of interest for the radia-

tive process, the radiator interacts with many perturbers. At low densities,

the binary-collision approximation leads to the well-known Lorentzian (impact)

l.!neshape for isolated lines near the linecenter. As pointed out by Baran-

7
ger. the rounding of the Lorentzian at the line center is always a many-body

3
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effect. The single-perturber approximation is actually a special case of the

binary collision approximation in which multiple scattering can be ignorec

over the time scale of interest.

Baranger has also noted that, although the single-perturber approximation

is not valid at the line center (it contains singularities), there is gener-

ally a range of frequencies for which the impact and single-perturber approxi-

mations overlap. Schematically, for an isolated line, the single perturbe-

lineshape function assumes the form

1 r(P - f)
.i ( (1)

where wfi is the line center frequency. Equation (1) is also the approximate

form of a Lorentzian several halfwidths away from resonance, i.e. for

(W-Wfi)>>r, except, in the case of a simple Lorentzian, the halfwidth func-

tion, r(-wfi), is usually replaced by its value at line center, r(O). To the

extent that the halfwidth function varies slowly over a frequency range of

several halfwidths, there will clearly be some overlap of the two approxima-

tions.

Our mathematical discussion of the single-perturber approximation will

proceed via the frequency domain analysis of Ref. 9. In Appendix A we indi-

cate how these same results can be obtained from a small-time, low-density

limit of the dipole autocorrelation function in the time-domain.

4
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tePr-om Section 2 of ;ef. 9 the aoscrotion coelficient (cm" ) can be com-

I
," utec as

i ot ) =4-x=w X"(W) ,

3C ()

wnere x"(w) oa e wv-tten (cons'stent witn the PDT)

X"(W) tanh (O) -1(w) + C-4)2W) (3a)

=1 - e-A )OM , (3b)

"-: = [ ((o - (- 1( 3c )

w4tr =/k T, anc wiere 7(w) 's the Fourier transform of the dipole autocorre-

""ation function €(t). 8,0 (The cefinit'ons of x" in Refs. 9 ani 9 ditfer by a

factor of nrad, the radiator density.)

An exact many-body formula for O(w) is

O(W) (4)
IF

Here 2 denotes the system volume, I, F refer to exact eigenstates of the

many-body system, and

e Tr(e(H)5)

is tne equilibrium canonical density matrix.

Now in the single-perturber approximation, we replace Eq. (4) by

N.O pairs I Q(EI)I<I.! F>j26(EF-EI-hW) (6)

IF

5
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where I', F> denote exact eigenstates of a two-body Hamiltonian consisting

of a single radiator and perturber. Also in Eq. (6), Npair s is the numoer o;

pairs given for foreign broadening by

N Nra N
pairs rad  per, (7)

and for self-broadening by

Nrad
Npairs 2 (Nra d - (8)

N2a= ad (9)
2

The eigenstates i>, F> are not simply proauct states consisting or a

radiator state, a perturber state, and A state aescribing the relative trans-

lational motion. That is, in general the internal states of the two molecules

are coupled, true bound states of the pair are admissible, and 1' is the dipole

moment for the composite two-oody system.

In tne analysis which follows, we carry out a perturbative treatment in

the anisotropic interaction, considering absorptive contributions associated

only with unoound states of the system. In this case, the Oasis states, can

be taken as product states (including an isotropic interaction which is

treated exactly), and for U, we can write, for foreign broadening,

Arad , (10)

and for self-broadening

rad +  per11)

6
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The difference between Eq. (10) and Eq. (11) essentially makes up for the fac-

%" tor of 2 difference between Eq. (7) and Eq. (9) and has the consequence that

self-oroadening can be treated in oasically tne same fashion as foreign broa-

dening.

In carrying out the analysis, we write the two-body Hamiltonian as

H = Ho +V, (12)

where any ourely isotrooic interaction is contained in HO , and where V denotes

tne anisotrooic interaction between the two molecules. Here, anisotropic

means that V is ang"e-depenaent and couples the internal states of the two

molecules with the relative translational vector connecting the molecules.

Tme eigenstates of Hc are product states of the form

Hoji> = Eiji>, (13)

Ii> = IJimi>JiMi>Iki> (14)

wnev-e Ji denotes a radiator state, J.i enotes a perturber state, and K. de-

notes a state of relative translational motion; the m's and M's are magnetic

cuantum numbers fo- the internal states. The state k is an eigenstate of

the Hamiltonian

.- m + Vo(r)j ki > Eklki> (15)

where r is the relative coordinate, r= r , V0 (r) is the isotropic potential,

and --r k /2m, with -n the reduced two-body mass. For the basis states above,

the energy i can be written as the sum i i* and the unperturbed
~i

density matrix factors according to

7
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I- .

e(ej) - e(eii) Q(eA ) Q(eki)  (16)

The T-matrix formulation in Ref. 9 rigorously incluces line coupiing con-

tributions. However, our initial calculations nave ignorec this complication

In this regard, we also remark that some of the equations presented in Section

2.4 of Ref. 9 are actually a slight oversimplification of the uncoupled line

approximation. The essence of the uncoupled line approximation is that when

one encounters a matrix element product of the form

< jmji->jfmf> <Jff Jm (17)

one sets j'=J and j'=jf. however one does not set m,=Mi or m,=mf for tne

magnetic quantum numbers.

For o(w). we obtain

r Q(eji)(2ji + 1)I<jiI/ Ij Jf>2 dif - (18)

In the above equation:

. The prefactor r is the same renormalization factor discussed in Eq.

(2.13) of Ref. 8, and in Ref. 9, i.e.

r = Tr(e 0 Tr(e-/H) . (19)

In all of our calculations, we have approximated this factor by unity.

112. The reduced matrix element is defined by the Wigner-Eckhart theorem

in the form

<Jimi--lfmf > = <JiIfIljf>

fmUimt mljflJimi) (20)
.- m-O,±1

The reduced matrix element satisfies the symmetry relation

8
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(2j i + 1)1 <ji I s I Jf> 12  = (2 f + 1)1 <jf JI IA i> 12 . (21)

3. The radiator's density matrix is given oy

" , e
Q( ji) = (22)

so that (22)
-- e (2ji + 1)
i

so that

Fa Q(eji) (2ji + 1) 1(23)

ji

If the various i states carry different nuclear statistical weights,

factors o' (2ji+!) are to be replaced everywhere, e.g. Eas. (21)

through (23), by (2j4+1)g(j4 ).

While discussing statistics, the perturber density matrix, p(Cji),

in Eq. (16) is given by an expression identical in form to Eq. (22);

the density matrix for the relative translation motion is simply given

by

e
Q(Ek) - -e

k (24)

so that
Q (Ek) = I

k (25)

9
4. The function T in Ea. (18) satisfies the symmetry relation

-fi(-Z) = e-  if(Z) (26)

for arbitrary freouency z. In particular,

+ ) -if-Offi) (27)

9
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From Eq. (22) we can note that

Q(EJf) •~w~ " p~~i

where f By letting w--w in Eq. (18), intercnanginc names of cummy

summations iz, and oy making use of symmetry oroperties (21), (27). and

(28). one may readily show

0 - (29)

Equations (27) ano (29) are the funaamental relations whicn guarantee that tne

FDT is satisfied and tnat Eqs. (3a) tnrough (3c) are equivalent. We caution,

nowever. that the proof of Eq. (27) in Ref, 9 did not include a unitarity cu-

toff for strong collisions. One must be careful in the application of a cu-

toff if the FDT is still to be satisfied (see Section 5).

By using symmetry relations (21), (28). anc Eq. (26) in the form

Sfi(w + wfi) + Ofi) *if- - (f) (30)

one may rewrite Eq. (18) as a restricted sum over pairs of states with

ef=fr i >0, i.e. with wfi>O; the result is

(ow) - V Q(Ej 1 1  I I& i1  >'i f> 2 *tot(W )  (31)

jof

Ef >ei

with

t tot(o ) ( O - Wfi) + e- (32)

The above result has the nice advantage that we can consider a total contribu-

tion to absorption for the pair of state ci' Ef. We shall refer to the first

10



term in Eq. (32) as the positive oscillator term, and the second term will be

*'. referred to as the negative oscillator term, i.e. it is reso-ant for i=-wf,-O.

Note tnat computation of the negative oscillator term only involves the simple

-eolacement of arguments (w-wfi)-(-w-wfi). Therefore, for the most Dart, our

discussion will concentrate on the positive oscillator term.

The positive oscillator term can be put into the form of an off-resonance

Lorentzian with a frequency dependent halfwidth,

1 -(w - Afi)  (33)

f - rad T (t1W - E fi) 2

where n rad=Nrad/ is the radiator density, and where the perturber density

nr =Nper2 is contained in the halfwidth function r(w-wfi), which has units
per per'

ergs.

We now write down the equations which determine the halfwidth function r.

'P-st, we do this in a simplified, schematic fashion which suppresses magnetic

quantum numbers, Clebsch-Gordan coefficients, and m-summations. At the con-

c~usion of this section, we shall present the general formulas for r which re-

cuire Clebsch-Gordan reduction (see Appendix C).

The simplified equation for r(w-wfi) is

rw wi N dQ(fj)Q(f I <a1IV113> 12.+h-r(oofi pe r  ( )(k )  C ~ l~ lo to(Q/ + h -~i

Jk jfJ 'k'

"" e~O(w-wJfi) " -
+ Nper Q(EJ) Q(ek)

SI,(34)
: -i jf J 'k '

where for simplicity,

"qU

- • - - . . . .. -- . . ,* *- .-.



I > "JfJk> , (35a)

1i#> - ijfJ'k'> (50)

ja'> a IjiJk> , (35c)

- jiJ'k'>, (35d)

and Ez ,=E(E 5 ,  E'tB,=Eaj-E B , .

With regard to Ec. (34) we note tnat the contributions from the initial

and final states (i,f) of the radiative transition co not enter in a symmetric

fashion. It is precisely this asymmetry which causes the FDT to De sat.sfiec.

At line center, (w-wfi)=O, this asymmetry disappears. Tne naifwictn finction

satisfies the same symmetry relation as ,' in Eq. (26), namely (at the risk of

introducing more indices), if we define rf(z)=r(z) , then

rfi(Z)- r-z (36)

for general freauency z (which is to be substituted for (w-wfi) in Eq. (34)).

The first (final state) contribution to the nalfwidth function has a sim-

ple interpretation, namely it is essentially Fermi's golden rule averaged over

initial states and summed over final states. The interpretation of the second

term in Eq. (34) is complicated by the FOT asymmetry. Note that the asymmetry

involves two things:

1. the temperature dependenct factor exp[B1(w-wfi)] in the second term of

Eq. (34); and

2. the off-resonance energy 11(w-wfi) enters the delta functions with a

different sign in the two terms of Eq. (34).

12
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K.

General Results: We close this section by writing down the genera,

expression for the halfwidth function, includinc Cleosch-Gordan coef'icie-ts

and macnetic cuartum numoers. As a preliminary to lsting the relevart e'ja-

tion, we note Fcrm E0. (34) that we will eventually have to consider a summa-

*ton over trar~atonal states o' the form

su - < k'V'k'> <k',Vk> (37)

SUM - Nper rd, Q(ek) < k ' > -
kk'

wnere k-' aerotes any complete set of relative translational states.

> Apoenix 2 we snow that tis sum car be rewritten as (the sum is sti' l

an operator in the space of the internal molecu.a- coordinates)

n per

ime  'mt ,
00 00

" dke- k I dk'<RkfmIVIRkI2Imn,><Rk,?,m 2 V Rktfm 2,> (38)
0 0

, . n tne above eauation:

1I. Rk2m(r) <r Rkm 2 >ktme Y tme

" = P) I - e(k;r), (39)

where the radial wavefunction (r is the magnitude of the relative coor-

dinate) has the asymptotic norma7ization

Of (k; r) sin [kr - '/2 fir + (k)) (40)

r - oo

2. The meaning of the matrix element is

<RkfmeiV;Rk' 'm,>

OD 1 00

= 5 dip d(cosO) 5 r2drRk ( ) V(T)R () (41)

0 -1 me Rktgp

13
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4 3. The quantity z is a translational partition sum given Dy

Cd3k e kc
(27)3

M 312

;or tne nalfwidtn function we obtain

00

___ -Z)

00

dk' d F (sum Up~ + Sum Of1)) (43)
of J, It,

Here, including all r-summations which must De reauced using Clebscn-Gordan

algebra.

sum (j= 7r6(Eff"' + - hW

(2ji 4, 1) MimiPM MfMff~ff MM' memet

<jfm~JMRkmiifmf; J'M'; Rk~~ >

< jfm" J'M'; R k~(~meJIfmf; JM; Skemf>

(44)

14



LA

sum I s er I (ei,, - + hwf)
Ji"'

(2j +1) mfmfm mm,m,, MM' meme,

-
6mf,mf,(of lnfmjf lmi)(jf lmf,m jf 1Jimi,)

.<

* <jimi,; JM; Rkfme1Vlji,,mi,,; J'M'; Rkelmf,>

<j,,m,,; J'M'; Rk (#m Vjim j; JM; Rkfm(>k'f'f kie >(45)

1- tne celta function expressions above, we have defined

Ef = (ef- ejf,) + (Ej -j + (Ek- Ck') (46)

= ( i- Ei) + (EJ - Ej') + (Ek - E k') (47)

*Te three terms on the right hand side of Eqs. (46) and (47) are, respec-

tively, change in energy of the radiator (internal energy), the perturber (in-

ternal energy), and relative translational motion in a collision where f-F" or

-; ,.. It

Some details of the Clebsch-Gordan reduction of Eqs. (44) and (45) are

. v:resented in Appendix C 'or an anisotropic potential corresponding to a di-

-ole-dipole or dipole-ouadrupole interaction. From Appendix C, the result "or

EcS. (44) and (45) becomes (for dipole-dipole case)

15
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I • ~ ~ " - - . c ; - -" o. . p , 
'  x - ; i .- . . - - ,7 : .

r  
- ---
¢ - - '

-- . . .-

sum Of) E ef' + hw - hwfi)

-- (2! + 1) (2J + 1) (t2 oo12'o)2

1
j<Rkt - R Rk > 2

I <jf11 1 f>i 2 <JH 1121 j,> ,=, (48)

sum (ji) e +

Ji,

2
3 -- (21 + 1) (2J + 1) (12 001 f2e'0)2

*<Rkf We Rk'g'>j2

'A I<jiI/ 1 LIi,> 2 I <JI /1211J'> 12 (49)

In the above equations

1
Rt(r) - e(k; r), (50)

and the meaning of the radial matrix element in the aoove equations is

<Rkll IRk't'>
%. I1

•, jr 2dr Rkg(r) -j- Rk~f,(r)

"" I 1• 0

of OklQ') O,- k114r) dr

- < I ,t>, (51)

16
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At a convenient point, in going between Eqs. (44) and (45) and Eqs. (48) arc
(49), we have changed names of dummy variables , Ji i "j

Finally, we remark that the two terms in Eq. (43) correspond to Ander-

son's S2(outer) terms. In certain problems, one has to also worry about An-12,13

derson's S2(inner). This term obtains from an uncoupled line aporoxima-

tion to Ea. (51) in Ref. 9. This term has been ignored for the problem of

I primary interest here (H 2 0 self-broadening) because it involves diagonal ma-

trix elements of the dipole moment operator, for the case of dipole-dipole in-

teractions.

In the next section we discuss the above equations further in terms of

quantities manipulated by our computer codes. In doing this, we also identify

* the analog of Anaerson's S2 functions. This is important for considerations

o ar Anderson cutoff scheme in the strong collision limit.

3.0 REDUCTION TO COMPUTATIONAL FORM

The Schroedinger Eq. (15) which determines the eigenstates ol(k;r) in

Ecs. (39), (40), (50), and (51) has been solved numerically for the case of a

Lennard-Jones potential with well minimum energy Es, occuring at radius r s

Some details of the matrix element calculations will be presented in the next

section. The parameter -s is used as the length scale unit in'these calcula-

tions. In particular, for the dipole-dipole case, matrix elements of r3 are

computed as
00

I(1k; e'k1 , dZ )(k; Z) -!- Oe4k'; Z) (52)

17
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where the reduced length is z=r,/r . We may also Cenote tne aoove matrix ele-

ment by T(ic;l'E'), wnere - 2 k2/2m is tne energy associatec witn

wavevector k. We aefine diaole line strengths by

Here u is the scalar dipole moment (u=:.s5x' "  esu-cm is tne oermane.t mo-

ment for H20), and the line strengths satisfy the sum -ole

S., =-1. (54)

., i

For programming :onvenience we will eventually (but not immeciately) co--

vert all energies from ergs to cm using

c(ergs) = hcf(cm-,) . (55)

For the case of seif-oroadening through dipole-dipole interactions, we compute

and store the following dimensionless (squared) matrix element

a(E; E') = \ hcr3  ) (2
S

0 (2001e2e'0)211(f e; el£e12 (56)

-1
In this expression, with z in cm

Q( 8mcr )t/(57)

is a density of states factor with units=cm. That the M-matrix element anove

is dimensionless follows from the fact that
(-2 has units cm-2

while p(e)p(E') has units cm, and everything else is dimensionless.

18
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We next itrcduce a function which plays a role analogous to Anderson' s
.2,13

S, function. We write tMe function 4n the form

stt(E, J, f; w - Wfi) = s2 (E, J, 1; W - Wfi)

+ e (5)

:o, the d!Do'e-oicle case te (d~mens~orless) functions s. ana s, are gven4- 4I
oy

_ 4x Sjfj', Sjj Mge; E + 4fot + hl((,i- o&Yfi)I , (59)
iff

s2 (, J, f; W. - Wfi )_4-2 f ~ -ui] (59)
3 -Fd Sifi, Six, Mflf; e + frot +-( )

VJi'

41r2~ Si~h. Six~ MIRe; e+ -i~ - Wj1)J , (60)
3. ii, J,ro

with -rOt a (ejf- Of') + (j- j,(61)

ro M (Ji- eji,) + (Ej - Ej,). (62)

That the aoove s2 plays the role of Anderson's s2-function (at least in

tie line center limit w-wriO) will presently be demonstrated. The FCT asym-

. etry between the final and initial state contributions is again evident 4n

:" Eos. (58) through (60).

or the halfwdth -unction of Eq. (45), we may now write

* 00

nper 2i m O
-(00) - i - I d, e

4T2  z 0Th2

*" Q(j) (2J 4+1) a (e, J) (63)

19
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"" tne aoove exoression. a(c.J) is a cross section (cn<) g-ven Oy

( E"J) =)2me (2f + 1)st2t(,J, ,; W -Jfi). (64)

Before going on. we note, if Eqs. (63) and (64) are comDinea. that the :a:crs

2,(ri /2m) cancel. This is useful in terms of writing the results in aiterna-

tive forms.

Next, in the limit of large I, ana using ":kD, where b is the :'.as; ca.

7, impact parameter, with k /2m, one can see that o 4n Eq. (70) takes tne ap-IL

proximate form

a(e, J) _ 2r bdb stOt(e J, b; w; - (65)

This is the usual form which relates the s2 function to the cross section in

Ancerson's formalism.

To complete the analogy with Anderson's theory we rewrite the average

over energy in Eq. (63) in terms of a Maxweii-Boltzmann velocity average. We

use

• 1
E -- - mv2  (66)2

and for the partition function (Eq. (42)) we can write

P1 = (h\3 1

2r 2z " 2r )mJ o (67)
~My2

-vdv e

Using the above results, and aefining

20



"(-1i(68 )

is the halfwidth urct4cn in tad/sec. we nta'r

pe-i ~o - Cofi) = per vdvf(v)

0

°d Q(cj)( 2J + 1) o(v, J) (69)

1

rnMv2

f(v) ( (70)

V2 e dv
0

te Maxwe'l-Ec~tz~ann cist i- ut'on function. We car rewrite this

F(o - ofj) = nper d Q(Ej)(2 J + 1) <v aOv. J)> . (71)

.h 1ecntr~i hi rea 213

Sthe 1 ne.zente- " m4t. this has tne form of an Anderson2 type tecry,

'c ucainc vecc'ty averaging. With an aporopriate definition of the average

- c-oos section, Eo. (71) can be exoressed as

r = nper V(T) F(T) (72)

where V is :rhe meat thermal velocity.

-h's essentially completes the analogy of the oresent theory with Ander-

son's ormal'sm. Certain questions remain as to wret er Anderson's cuto"f

c'ocecures for s2 can be taken directly over for the lar-wing problem.

7inally, we wish to write down the previous equations in the form in

wnich tney were actually programmed for calculation. This basically involves

-.o ining Eqs. (63) and (64), cancelling the factors of (wi2/2me), and con-

verting all energies to cm -, including the Dartition sum denominator inte

-ral , which can be written

21
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': - -_ __ -. -- ._ -_ - -"_-- - * . a,7 T I

3-21r X Eo=-(73)

0S d' j- -e -/Ohc '

d e "I

m ere E' E are in cm anc we nave aefinec some average tnermal ouanitie3 as

fo'lows: the oasic definition is the mean thermal velocity

8 kBT )1/2V 8 m '(:

in terms of v we also define

e(ergs) m "2  hcT(cm-) (75)

i.e., "(cm-,) = ( k ) (76)

We caution tnat Eq. (75) is simply a definition of Z, and i is not the average

energy in a thermocynamic sense. Finally, we aefine an average DeBroglie

wavelength by

h ( h )1/2
m I, 2mc-e-cm-,) - (77)

Equations (33), (63), and (64) can now be re-expressed as

* 1 1 r(w -Ofi) (78)EW- fi) = nrad W ( - (fi)'
* with

XET  I de e - /hcE
00

nper 
E

ot - (fi) 79)

o

,'. •~~F Q(ej) (23 + 1) Fd(2e + 1) s2 W( J, e; oJ-of ) .(79)

22
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r~-1 ,I -. "W. . . .

In the above equations, all E's, u's, and r are now in cm The units of r

are manifest, namely everything is dimensionless, except

(nper T3) T = cm-1

To conclude this section, since it would be totally prohibitive to actu-

ally calculate the absorption coefficient (by summing the contribution from

a2' 'ines), we have to proceed in a different fashion. For certain experimen-

tal cases it is known what the simple impact approximation predicts for ab-

sorptior. This 4s subject to the difficulty that the impact approximation

does not satisfy the FDT, so that the impact results depend on which formula

(Eqs. (3a) through (3c)) one starts from.

We shall make comparison with the so-called "hyperbolic tangent" impact

formula. This formula has some advantages, and certain predictions from the

formula are available.

Before writing out the impact formula, we combine Eqs. (3b), (31), (32),

and (78) to deduce that the contribution to x" associated with the pair of en-

. ergy levels f>E i is proportional to

X"(w)FDT = (1 - e_ 3 hcw) I( - WOf) +elhcw r(- - wofi) (80)
(W - Wfj)2  (-Cj - afi)2 J

• wnere the two terms in the bracket are the positive and negative oscillator

". terms, respectively.

The corresponding "hyperbolic tangent" impact formula is

23



X" anh Ohw (I + e_0cf
X"'impact 2

r(0) r__(o_
- 1 (82)l

.* L o - t II)= *....

in writing down the above results we have dropped some constant factcrs wnich

will cancel in the ratio

R(cj) - X"(wJ)FDT I X"(*)oimpact •  (82)

One of tne constant factors which has been dropped is the radiator cen-

sity, n rad . As a matter of fact, the perturber density, n per' also cancels '

the ratio oecause all of the halfwidtn functions in Eqs. (80) and (32) are

linear in n . Thus R(w) is independent of both radiator and perturoer den-
per

si ty.

The only remaining density dependence of interest is in the halfwidth

function itself. We have done all calculations at a fixed density correspond-

ing to tne density at one atmospnere pressure and room temperature, i.e. we

take for the perturber density the fixed value

" per a no(273/296) , (83)

with n =Loschmidts number. R.H. 7ipp'rg nas referred to the quartity above as

a "hot Loschmidt'.

To conclude this section, we note as wuwfi, where the negative oscillator

terms in Eqs. (80) and (81) become negligible, that the two formulas approach

each other. Similarly, the formu;as coalesce at the negative oscillator reso-

nance u'uwfi" Of course, both formulas are divergent at the line center.

24
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4.0 CALCULATION OF MATRIX ELEMENTS

ir terms of comoutation time, calculation of the M-matrix elements in Eq.

(56) is Dasica'iy governed by the speed with which the simple I-matrix ele-

ernts 4n E;. (52) can be generated. We nave attempteo to maKe this orocess as

efficient as possible.

To discuss simpli4 cat4 ons. we begir by rewriting Eq. (52) as

00

I(S; dZ O(;Z) of.... Z) (84)

* where , E' are the energies. in considering the above integral we remark,

fo- most cases of interest, that 1,1' and E,E' are "not all that different".

To be more precise: for the dipole-dipole case. the Clebsch-Gordan coef-

:icient (200 121'0) in Eq. (56) leads to the selection rules (l'-i)=.±2.

the statement in regard to E,E' is simply that if E-E' is large, the matrix

elements tend to be small. The point of the above comment is simply that, for

- most cases of interest, the wavefunctions in the integrand are such that they

can generally be calculated using the same approximations.

With the above remark in mind, there are essentially three situations of

interest which depend on 1, c, and the total isotropic potential

') + t(f + 1)t12 (85)
Z-:i Vo(r; e)=VU(r) + 2r

Vu~t)2mnr2

- i.n the above expression the first term is the Lennard-Jones potential and the

.. second term is the repulsive centripetal potential, which is clearly 1-depen-

*. dent.

In Fig. I we show a schematic V0 (r,l) potential, along with three energy

levels E t£2' and t3" We will provide a few details at the end of this sec-

25
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tion. but briefly the wavefunctions associated with the above enercies a-e

calculated as follows:

Case(1). Energy level r (sufficiently low E. sufficiently n:g. We

call this tne certripetal regime. Classically, the turning pcin: is scn tnat

the wavefunction never gets in to "see" the Lennard-jones Lctertia . Tne wa-

vefunctions are then approximately eigenstates of a Hami tonan wit ', ..

The approximate eigenstates are Bessei functions anc the integra in Eq. (84)

can be expressed in terms of the hypergeometric function.

Case (2). Energy level £2" We call this the intermeCiate region ir

this case the wavefunctions o are obtainea numerically, as is the in-ega

(84).

Case (3). Energy level E3 (sufficiently high t, low 1). We call this

the hard core regime. Here the wavefunctions relatively quicKly assume their

asymptotic form (Eq. (40)) close to the turning point. The procedure in this

case is to use numerical solutions out to a radius Z R /r where it nasj max max s

been determined that both O's have assumed (to a good approximation) their as-

ymptotic forms. Beyond this radius, the asymptotic form (40) is employed, ana

tne resulting integral can be integrated in terms of sine and cosine inte-

grals.

We close this section with a few details of the calculations.

Case (1). Centripetal Regime. The approximate wavefunctions are

%°1": 0(c; Z) - (KZ) je (KZ),()

.= (21)1/(KZ)J + , (KZ),

2 26



(87)

where K=kr s, and where j, J are spherical and ordinary Bessel functions. re-

spectively. The integral (52) becomes

1(rfr (KKP)l/2
I(CE ; C"E') - 21 KK)/

2

001' 1
• dZ Jf + 112 (Kz )  J+V K z)  (88 )

This is a Weber-Schafheitlin type integral (see Abramowitz and Stegun 14

page 497, Eq. 11.4.34). The result can be written

• K++1/2 rve + )
W 1/2 KC+/ ' 2

I 8 (KK,) 3 r 3

'2 + 2 )r2 C 2

AF( +--. 1- - "C - , (89)
2 2 2F e+ -L-

where Al=( -l)=O, ±2, "I is the Gamma function, and where F is the Gauss hy-

pergeometric functior. The above formula is valid only for K/K' <1; however,

: Eq. (88) is seen to be invariant under KZK' and 1_', so matrix elements

- wth K/K'>l can easily be obtained from symmetry. We note that the function

" in Eq. (89) has the form F(a,b;c;z) with c=a+b~m, and with m=2. For this ar-

.* rangement of arguments the F-function is most conveniently calculated from Eq.

2" 15.3.11, page 559 of Abramowitz and Stegun.14

Case (2). Intermediate Region. The O's are solved for numerically via

; Numerov's method using a computer code developed by R.J. LeRoy. 15 The integral

(84) is evaluated numerically.
.2

..i 27

. . . . . . .% ** •-*. . . . . . . . . . . . . . . . . . ..• " - - . . . ... - - •.. . . . . -



.... . - - -..._-.- '; •

Case (3). Hard Core Regime. We use tne same procedure as in Case (2)

aoove out to a radius Z thenmax '

Zmax 0o
I= I + ( 90)

0 Zmax

The second Integral above, for the dipole-dipole case, is of the form

|.0

12 = d sin(KZ + A)sin(K'Z + B) , (91)
z, Z3(Z

Zmax
wnere the phases AB nave been determined from the Z<Z region. By repeatea

max

integration by parts. Eq. (91) can be expressed in terms of sine-cosine nte-

grals. We define K±=K±K' and C±=A±B. Then

12 - I--1+ (92)

Witf
:- with

I Cos(KZmax + C_.: - 4Zmax2CO-

K_
sin(K_ Zmax + CJ

4 Zmax

K3
+ (cOs(Cj Ci (iK_lZmax)

- sign (Kj sin (Cj si (I K_ Zmax) (93)

Here sign (K,)=±l depending on whether K_ is positive or negative. in Eq.

(93), si and Ci are the sine, cosine integrals given by (see Ref. 14, pages

231-232)
00

si(X) = - 5 sin(t), (94)"-X t ( 4

00

Ci(X) = - 5 dt cos(t) . (95)
X' f2 t
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The integral i Eq. (92) is obtained by replacing C_-C and K. K.

Th a+

The ! and M-matrix elements were computed using the aoove methods, and

the M-matrix elements were stored in a !ooK-up table. When M-matrix elements

are required (Eqs. (59) and (60)) at nonstored E,C' values (as is virtually

always the case), interpolation from the look-up table is employed.

5.0 RESULTS AND DISCUSSION

ir the previous sections we have oresented a far-wing lineshape theory.

assuming dipole-dipole collisions to be the dominant broadening mechanism.

Por close collisions one might expect the higher-order multipole interactions

- to become important. The selection rules, AJ=O,±1,±2. for the dipole-auadru-

, pole interaction allow for larger changes in rotational energy in Eqs. (46)

and (47) than obtained from the dipole-dioole selection rules, AJ=0,±1. This,

*' turn, makes it easier to satisfy the delta functions for conservation of

energy in Eqs. (34), (44), and (45) when (w-wf,) oecomes large.

We have, in our calculations, explicitly included the dipole-quadruoole

and quadrupole-dipole interactions. (The distinction being radiator-perturber

and oerturbe--radiator, respectively.) In the case of the quadrupole-dipole

interaction there is also a contribution associated with Anderson's

S,(ir-e-). 12'13 This contribution has been ignored ir the present calcula-

tions.

The essential modifications necessary to treat the dipole-quadruDole and

quadruoole-dipole interactions are given in Appendix Z. Somewhat more explic-

it'y, tne modifications can be simply exDressed as presented below.

29
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For the dipole-quadrupole case, for the S functions n azs. (59) an:
2

(60), the following substitution is to be made:

2
472 152(22Sf 5

In this sucstitution, the difference in numeical factors arises :rezise,

from Eq. (C30a). Also in tne above equation, G, is a cacrupc'e s"renqt!,

defined in terms of the reduced matrix element (wnicn apoears in Ecs. (27)

and (C29)) by
,2 2.

jQI'Gjj, q2 • (97)

2.
That is, q is tne square of the scalar quadrupole moment (it is incepencen:

of J), ano the quadrupole strengths satisfy the sum role

E - 1. (98)

For the quadrupole-dipole case, the substitution analogous to Ea. (96) is

2
47r 15 2 (2)GjS~
3 . .:)f 4 s j , (-7 ) (21r) G if f i .(99)

The dipole strengths S d, were computed using the asymmetric rotor codes de-

veloped at AFGL. The quadrupole strengths G3 , were computed using a p'ogram

16developed by one of the present Authors, which can oe attached as an update

to the AFGL package.

The remaining modifications are to the translational matrix elements and

these are identical for the dipole-quadrupole and quadrupole-dipole :ases:

first, the 1-matrix element (Eqs. (52) and (84)) gets re-

-4placed by z ; then in Eq. (56) for the M-matrix element, the following sub-

stitution is necessary:

.r3
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( 2 2(2 j2 2.(Z200:2i'O)2C (--.(z300 3'0) (100)

hc 3hcr 3/~c

-4a'ly, ;or the nyoer-ceometri: (Ecs. (86) t--n~n (29)) arc sine-cosine 'nte-

:-a (Eos. (9C) t o (^J5 ) ca'c Ia:tons Cisc.ssed i- Sect or 4 tne -e s n

-vCI.S mcc'cat'Cr C.e to Z 4 - tnce :-rmat-x element.

We now cucte tne sDec4 ic oarameters ,;on whicn our present :alcuIaticns

are zaseC. ;or tne _ena---:orezs zotsra a we nave :noser the 2aramete- vaa-
-7

e _ -243 c- =potentia r mum, ano 2. 59 cm=racius at we! min'mum.

tc- :,e c ermarert zcpo e moment we rave use, the wel-known value

=.S5x'C es--r=I.S 5 Debye. ;or tre -C perrnanent cuadruDoe moment we

rave eroloved the review a-ticle o" Strocryn anC Strogryn18 to infer an aver-

26 2
age measu~ez va'ue of a=i58xiC2  esu-cm

The only rema'ninq adjustable "parameter" in te theory is the manner in

w"c" a urtarity cutofl is emp'oyec in tne strong collision (small impact Da-

-a-eters, zlassically) iimt. o- suff~c~ertly small (w-wfi), there i s no

-cc:t that such a cutoff is necessary, because, i' the cutoff is eliminated,

the resultinc halfwidtns at the line center are large by a factor of order 40

zornDared to exoer 4ment. Sufficiently far in the wings the cutoff can be drop-

*" oed. However, exactly how one should interpolate between these two 'imits re-

7-ains somewnat of an open Question.

Anderso-'s simplest cutor procedure as applied to S t  is to reset
- tot ,tot

t =Ii (as calculated by EQ. (58)) is such that it exceeds uity.

An alternative (and somewhat smoother) exonentia, form of the cuto'f is to

• "9celace S, by

otot

, tot . -2
(2O)ef - 1 - e ( )

31

. . .. . . . . . . . *. . . . . .....-.-. .- .... .. .- .- 2'. -i '-.. .. ..... -,..--..--.. ....- ,-.-. .. --.-. ..-.- '.. .- ,-.. .- '.-." '



Theoretical justification for this type of cutoff may be found in the

19-22 tot totliterature . From Eq. (101). if S2  «2. we ottain (S2  )eff.2

,'. on the other nand. 2 Eq. (10) reduces to

tot
The above cutoff schemes, based on S2, suffer from a major problem i.

the far-wing case. Due to the exponential factor in the second term of E;.

(58), the FDT cannot be satisfied unless the cutoff is applied separately tc
f I
S, and S, in Eq. (58).

in the absence of a rigorous orescription for cutoff, we have employec

the following methods which satisfy FTD ano yield an S which is bounced Dyit 2
unity as in Anderson's theory. The first method is simply to reset S2 (c0

2
S ) equal to 1/2 -if S (or S;) exceeds 112. An exponential form of this

cutoff scheme is

f -2S f
(S P)ff (I-e 2) (102)

Again for S -I this yields (S2)eff:S2, while for S <<1. we obtain S

m,'<-1/2.

In Tables I tnrough 4 we present the results of our calculations of H2 C

far-wing absorption. The calculations have been carried out using the expo-

nential form (Eq. (102)) for the separate cutoffs on Sf and S

Tne calculations have been carried out for the strong pure rotational
-i

transition 4,1,4-5,0,5 with line center frequency at wf i=100.51 cm-' in Ta-

bles I and 2 we present results for a photon energy w=500 cm-. This means

that the positive and negative oscillators are "off resonance" by approxi-

mately 400 cm and 600 cm , respectively. Tne columns in the tables are as

fol lows:
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Column I : temperature 'K.

Column 2 r r(0), the line cente- halfwidth in cm as giver by Eq. (79) witr

(w-w, ) set to zero.

Column 3 = 7(w-wi)=the Positive oscillator halfwidth as computed from Eq.

(79).

Column . = "(-w-w,)=neaative oscillator halfwidth computed from Eq. (79).

Column 5 = x"(w) as comouted from Eq. (80).

Column 6 = x"(w) a as computed from Eq. (81).
Impact

Coumn x7 ="(w)FD/x"(w)ImPact as computed from Eq. (82).

Table 1 presents results for w=500 cm in which only dipole-dipole con-

tributions are included. Table 2 is for w=500 cm-I but including dipoie-di-

pole, dipoie-ouadrupole. and quadruoole-dioole interactions. From the line

center halfwidths in Tables I and 2 we note that the addition of the dipole-

* uacrupole interaction represents about a 2% effect, so that the dipole-cipole

interaction is strongly dominant. For fixed density, the increase in the

* halfwidth with temperature is mainly associated with the increase in v which

appears in Ea. (72). (See Fig. 2 for a plot of the temperature dependence.)

The values for the halfwidths are approximately what one would expect from Ar-

derson's theory for self broadening of low-J H20 transitions.

The positive and negative oscillator halfwidths are seen to be reduced

-elative to the line center halfwidth (the impact halfwidth) due to the diff4-

culty of conserving energy far off resonance. This also accounts for the fact
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that the negative oscillator halfwidtn is small compared to the positive os-

cillator halfwidth.

it is very interesting to note that the addition of the dipoie- aarupoe

and quadrupole-aizole interactions in Table 2 increases the positive oscilla-

tor halfwidths by a factor of order 2 and increases tne negative oscilator

halfwidths by an order of magnitude! This emphasizes the importance of tre

nigher-order multipoe interactions for the far-wing croblem. The origin of

this can be ratner simply stated: the translational matrix elements (Ez.

(56)) tend to be small unless the difference in translational energies.

C-E' i s small, typically less tnan 20 cm- . This being the case. wrer

1(w-wfi) is large, tne only thing left to conserve energy is the change in ro-

tational energy. Because the selection rules on AJ for the dipole-quadruple

and higher-order muitipole interactions allow for progressively larger cnanges

4n rotational energy, these collisions are more effective in broadening tne

wings.

For some fixed value of (w-w fi), there may De some particular order of

multipole interaction which dominates; however, the convergence of the multi-

pole series cannot be assured. Since the higher-order multipole interactions

are progressively more effective at close separations, this also emphasizes

the point that the far wings are dominated by strong, short-ranged collisions.

The results for the ratio R(w) (Eq. (82)) in Column 7 indicate too low a

level of absorption. At 1000 cm- I it is known that the impact formula, Eq.

(81), yields an absorption which is high compared to experiment by a factor of

approximately two, Thus at w=1000 cm, one would like to find the ratio R(w)

1/2. However, at w=500 cm , R(w) is already small of order, R(w)=.20.
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The results for w=lO00 cm- 1 are presented in Tables 3 and 4. These

tables show the same general trends as discussed for Tabies 1 and 2. The e4-

fect of adding the dipoie-auadrupole interactions is even more pronouncec. the

ratio R(w) is raised by two orders of magnitude upon inclusion of the dioole-

quadrupole interactions. In Tables I and 4, Column 7 shows little indication

of the negative temperature dependence observed experimentally.

Future Work.

Altnougn our presert calculations indicate a level of far-wing absorption

which is too small to account for experimental observations, these calcula-

tions nave shed light on a numDer of important issues which remain to be ad-

dressed.

1. A more rigorous approach to the far-wing unitarity cutoff orocedure

should be sought. A more relaxed cutoff procedure would certainly er-

hance the far-wing absorption.

2. The sensitivity of the far-wing absorption to the Lennard-Jones parame-

ters should be investicated. in particular, a deeper LJ potential

should enhance the translational matrix elements.

3. It would be desirable to extend the present calculation to include

ouadruoole-quadrupole collisions. This should give some indication of

the convergence of the multipole expansion. If divergence is indi-

cated, some more realistic formulation of the short-ranged anisotropic

interaction will be required.

4. it would be extremely interesting to apply the present formalism to the

problem of N2 broadening of H20 in the far wings. it is known, exoeri-

mentally, that N broadening leads to a qreatly reduced continuum ab-
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sorption. From our present point of view it is tempting to speculate

that this reduction is related to the small rotational constant

(2 cm- ) for N2, which in turn implies much smaller changes in rota-

tional energy in the collision processes.

5. Deep resonant and true bound states may be important, including tran-

sitions from bound to continuum states. The present formulation is not

applicable to the bound state problem; however, the singie-perturber

approximation which concentrates on the interaction between a single

radiator ana perturoer should remain valid.
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TABLE 1: Summary of absorptior for w=5 00 cm"! for various temperatures.

Only dipole-dipole collisions are included.

TABLE 2: Summary of absorption for w=500 cm"1 for various temperatures. All

three interactions (dipole-dipole, dipole-quadrupole, quadrupole-

dipole) are included.

TABLE 3: Summary of absorption for w=1000 cm- 1 for various temperatures.

Only dipole-dipole collisions are included.

TABLE 4: Summary of absorption for w=1000 cm 1 for various temperatures.

All three interactions (dipole-dipole, dipole-quadrupole, quadru-

oole-dipole) are included.

FIGURE A schematic of the total isotropic potential, V,(r,l), for 1>0.

Three values of the translational energy c are indicated.

FIGURE 2: Temperature depenaence of the linecenter (impact) halfwidths. It

is assumed that a power low of the form

r(T)/r(296) = (T/296 )m

is approximately valid so that the quantities plotted are

ln [r(T)/r(296)] vs ln [T/296]

The slope, m, from the figure is found to be m = .365.
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APPENDIX A

Derivation of The Single-Perturber Approximation from the
Autocorrelation Function in the Time Domain

:r ths A:oendix we cerive tne singie-perturDer aDooox'mat'or "om the

time-doma,r treatment o the diooe autocorreiation functic-. as oresentec in

Ref. S. -orr Ref. 8 we make use of Eqs. (1.20b), (3.25). (4.13) t-rouc-

(4.15), and (4.27), (4.28). These equations ignore M-sums and Clensc -Go -can

coefficients, and, for simolicity, we continue this omission.

in seconc orcer perturbation theory in the anisotrooic interaction, the

dipole autoco-relation function can be written

OP) = exp (NperKit) + Ki(t) + Ki Ot)I "  (Al)

The terms K,(t), K,(t) correspond to Anderson's s2(outer) terms, while Kif(t)

corresponds to s2(inner). We shall ignore Kif(t) for the reasons given at the

end of Section 2.

The expressions for Kf, Ki are

Sd I <j V: > 2 f(t) (A2)
Jk jfJkp

Kf1(t) = d Q( Q(k) < C V1'2, (A3)
Jk jiiJlk,

wnere, for simolicity,

>= JfJk>

B> = JfJk'>

a,> = jJk>

B' > = Ji,d'k'>
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We also definet'w b=E,- E and' w ,B,=E,,-Ev,

The time dependence is contained in the functions

1",- I
f(t) - - 11 - COs((.cz 3t)I

Wa02 43t - sin(A4.3t) (A)

t(t)- 1 [-e 0 O COS(Oo(X,3,t)]

+ - 'h) - e(A)2 '

+ oA ) ,e "13 sin(wCX/Ot)] A

Tne FDT asymmetry between tne final Eq. (A4) and initial Eq. (A5) is ccrta rec

in the temperature dependent factors in Eq. (A5).

The single perturDer approximation assumes thlt the far-wings wili oe

governed by times sufficiently small, and censities sufficiently low tnat EQ.

(Al) may be approximated by

f(t) 1 + NpKft) + NpKi(t) (A6)

That this is as much an expansion in density as in small time can be appreci-

ated by noting that one obtains nonsense if Kf(t),Ki(t) are expanded in power

series - tnat is one obtains nonsense if one attempts to Fourier transform the

power series expansions.

When we take the Fourier transform of Eq. (A6), tne first term ieads to a

delta function singularity at the line center, w=wfi. Tnis has oeen ,oted in

Baranger's discussion of the singie-perturoer approximation. Moreover,

Kf(t),Ki(t) also contain additional singular contributions at the line center.
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The singular contributions are connected with the nonoscillatory terms in Eos.

(A4) ano (A5). 4.e. the terms whch do not contain a sine or cosine var 4 ator

Trese s4r ua terms contrv'iute only at tne 1ne cen:e, anC are to :e cs-

cc-dec 4n t:e wings. As :iscussed by Baranger, the sinc;e-perturoer aporcx'-

-at'zn is 'z: va ic a: tne 74ne center.

we now discart the nonoscillatory terms in Eqs. (A4) and (Aw), we ob-

ta4n

f(t) e (A7)

f = - (A8)
W 1 ?f

wrere we note the difference in sign in the arguments of the time-aeDencent

exoonentia7 factors.

With the above simolifications, the Forier transform

00
"" I i- i( °- W fit

ojw)- 27rh dt e op) (A9)

*" ca- De oe-formed trivially using

00

-1i - 0 d t e -i(W --' 
fi + W a O( ) t

00 + h(W - UJfi)l (AlO)

00

,j,.. S dt e
00

= ' - h - fi)I ,(All)
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.'

For * if(w) , we obtain

04 = Np d Q(CJ) Q(fk) L :v ' .( + 1- hwfi)
Jk jfJk' Ci

+ N Q(E) e() 6<x'Vi> 2 "eh)aI'3' - hw + hwti). (A12)Jk k i,,J'k' 45(' 'l

Oy ma~ing use ol tne deita functions in tfis exoressicr., we ootain

1 ( - fj) (A3)

IE (EW -

where the haifwidtM function is given oy

.fi ) = Np Q(EJ)Q(k) d j<a V!O> 2 "r '( E a3 + hw - hfi)
Jk jfJ'k'

+eN o(ej) e( N) <a' V '> ,2 " - + hwfi) (A14)
Jk jiJ'k'

This is identical to Eq. (34) of tne text which was obtained from the T-

matrix theory of Ref. 9. Equation (A13) differs from Eq. (33) of the text oy

a factor of n rad the radiator density.

ra.
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APPENDIX B

Miller and Poll Normalization of Translational States

4e corsacer tle auantity ', Eq. (37)

sum = Npe r  Q(Ek)<kVk'><k' V k> , (E')

per-,kk'

r- e <k']V:k'> <k'V!k>
N per kk'

E 
e2

or k

SUM"nper e k<k k'><k'Vk> (3)
Z kk'

wit" =N /2 the pertu-ber number density, andQer De,

Zk (P34)-~ z2
t:e :-anslational oartition sum. Witn E,=4 k/2m, this evaluates to give

K

Z ( 2r1h )3/2 (25)

A particularly convenient set of basis states k> for the present orob-

lern, can be wr'tten

*k() = <rlk> yeme( 0 , ) Re(k; r), (36)

where Y is a soherical harmonic, and R.I(k'r) is a radial wavefunction with the

V~ile+ ad Do23
ile ad Do.'23 normalization. This is a normalization to unity within a

'arge but finite radius R according to

Ro0'0

"° (67)
"r2dr R(k; r)2 = 1.

0
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The asymptotic form of tne radial wavefunction isI9

Rf(k; r) k 2 sin[kr - 1/2f(7r + 6b(k)]

r - oo Ro kr

wrere 6(K) Is a Doase snift.

Next, it is ccrverient to aefine new wavefunctiors accorcing tI

2 1Re(k; r) - Ro  r e(k; r)

-rom Ec. (B8) the ¢'s will nave the asymptotic ;crm of oure sine waves, .e.

Oe(k; r) sinkr - 12eir 6e(k)] (Es)
r o

Trus

2 1 2r Yeme(O, )  ( k ; r) ,( B 11)

= oRem( (B12)

where we have defined

"'Rkfm ( =T ('') 1 (3(3)
=kfmj r) Yf (p) O(k; r) (B:3)r

:r Dirac notation we write this

2
, Rfm> (R 4)

Now Miller and Pol s prescription for computing a "short-ranged" Quan-

tity, e.g. a matrix element of a multipole interaction which vanisnes as -

is that sums over k can De replaced by

I R
dk 0 (E15)

k keme me 0 -

...



oiner :q.s (214) anc (215) are irserted into E.(0,3), we octain

sum=dk fper2 2 ~e

dke.3 dk' < Rkfme V Rk'f'me, < ZRk imViRkf (B16)
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APPENDIX C

Clebsch-Gordan Albegra

we sna'7 :.-rs~ie- -- e s um (J ,) term as qiven by E.(44). Eva- uaticr o

* su (j) :-oce~;ir a Sir4,a_ fashion.

we begi- tne calculation by not'ng that the three magnetic Quantum nrm-

Le- r .S ".I M, T do no: U i~u n the V-mti elmns nese three sums can

* ze o)ero'-med 4rmetiateliy, ana simoly give

msmi, Mm

(jflmfm Ijfljim1)(jfl mf~m jflimj,)(2j + 1
2if + 1 / f(CI)

vve use tr'e aoDove Kronecher delta to pe'-form the mfl sum, and then we C .hange

* some iames o cummy sumnmation variables to provide a simpler notation. Soe-

Z.,;Zoa 'y, we let

ml m

ml

* -iS y'elds

sum (Jf)= 6(f + t1 -f) (C2)

* wiere Qis the "nuantity"

0=(2jt + 1) m fmfi MAIM' C3

pREFVIOUS PAGE
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I1

V = <jfmf; JM; RkfmiV~jf~mf,; J'M'; RkIC~m,> (2:)

Here the states invoivec are actual ;y cro=ucts. .e -

DCoole- iocie Case

;or the dipole-aipole case

wnere , are tne raciator ara perturoer dipole moments and is te rea-

tive coordinate.

Trhe vector r can ne written

F3 m r r. mr =O, :t I

Here the Y's are spherical narmonics (Condon and Shortley phases), and tne 's

are given oy

O = i, i - + y = + iy

vr- ' (C7)

The i's satisfy an orthogonality rule which can be written as

mre mr  (-1) ' 6 mr,,r (C8)

or as

Mr rl rpM r,(9

The dipole-dipole interaction can then be written

V= I -- -

3 4 ,r 1 1 mr(' ) (0, 40)
r3  3 mr in,

EM r Jmr 2 & Emr, (CIO)
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~ t;':st'-ategy for reducing all the multioole interactions to a czn-I ver' ent form is to use the addition theorem for soher~cal narmcni. 2

= (2f ,+ 1)(2+ 1) ]1/2

tle dipolie-d'-oole case, the Droduct Y., , via the addition tneorem, oro-

cIjces a Y~ (which cancel the f'rst tern' 4n Eq. (C!O)) and a Y The reSut s
C,'2'

- 3v41r (110011120)
r3  v5

ra r (liM rm r' 11 2M3) 2 M3(,~ ~ji m) (2 0m C' ,)12)
mrm r' M3 rr

Now '.ne Wigner-Eckhart theorem (Eq. (20)) can conveniently be put in an

* ocoerato form'

d $(m )iml (C13)
M, O'±1

where, from Ea. (20), the matrix element of Vi~e operator l(m) are given by

< jfmf I $(mI) jf~mf, >

= jt i jp rfr1M jjf ljfmf) (C'4)

-on' Eq. (C013) we then note

LEm AM (1) Em,.m

M, =0,± 1 r

-I $( 1) r 6mi, -mr'

* ~~ r (_,)Mr A(_M~) (Cl 5)
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The dipole-dipole interaction then assumes its final form

3 _
14r (11001120)

F a (I 11mrmr, 112m3)Y2m3(, p)
mrmr m3

mr~m r , (016)
r (-1) r '(-mIr) I2(-mr)

in this form tne matrix element is easily evaluated; Y.m operates De-

tween R kim states, wi(-m) oerates Detween jm.> raciator states, anc
kim ~ r J

i,(-m , operates between JM- perturber states. The compiete matrix e ement
r

V in Eq. (24) can then be written

. (11I01112o)1
." ;..V = -3 / x 5< R k 'i  r Rk '>

L. (_1)m r + (r11 tarta r, 11l2 M3)
i mrm r, M3

•-• < m Y2m 3 ', )Ye'm' >

i <jfil(-mr)Ijfmf> <JM I/(-mr) J'M'> (C17)

Matrix elements of the v operator are obtained, in terms of reduced matrix el-

ements, using Eq. (C14). Matrix elements of the Y operator are ootainec from
~16

the formula

; . <Yem Y3m(O, 'P) 1 Yf'm , >

=(2[ 3 + 1X2e' + 1
=L 47r(2e + ) -J (131'm 3m'in f3e'm) ( f'O 3e'(0) (e,:8)
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L
. The a~ove formula obtains by combining the addition theorem, Eq. (C11), witni

" tne crthcccnality reiat-on for spherical harmonics

<~~YeIrnI IgYe2,m2> = belh' 6rnl,m2 :

-on sauarin. tne matrix element in ca. (C:7) and inserting into :q.

... (23). the sums over the m-indices can be carried out using one o, tne u-Ca-

renta, orvhogona'ity relations for C7ebsch-Goraan coefficients, namely

(J12mIm2ij 1 2Ji'm')Oli2 mlm 2 :jijljm) = J, 6mm'
m1m2  (J(C2C)

- Oa- for j'=J and m'=m

d (j1j2mlm 2 1jljjm)2 = 1 (C21)
MIM 2

T- carrying out this exercise, one has to make use of symmetry prooerties of
,z~ ,13

Ocoeff"C;?ts.-

The +inal results for the dipole-dipole case is

" 2
2 - (2e + 1)(2J + 1)(f200jf2e'0)2
3

" !<Rk(! r IRk'('> 2
0"W" 

(022)
I <if! IIII !if,> 12 <J! '12, J> 2

Upon inserting Eq. (C22) into Eq. (C2), we arrive at the result for

sum (jf) auoted in Eq. (44) of the text.

! C , ce-uadrupole Case

The basic strategy of using the addition theorem is the same as before

- but a good deal more complicated to carry out. We present only a few of the

details here.

ao,
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2.2

I

'-'- Tne ci~cie-quaarupole interaction can be written

2 =' (U>2 l. I -. I

-n tris exoresslcr we snai! taKe to be tre dipole moment o- the -ac-atcr arc

' to oe tne quaCru oie moment tensor of the perturber. The reverse :rcces;

also cc:urs and has oeen includec in our calc ,ations.

ne traceiess cuacru.oje moment tensor is given by

e= e ra I) (C24)
3

where I is the unit tensor.

in reducing Ec. (C23), we use Eq. (\6) for r, tne operator fcm of the

.igne - cknart theorem embodied in Eqs. (C13) through (CUS) for . anc fi-

naliy, a particularly useful tensor Wigner-EcKhart theorem forT. nameiy

a OP (-m3) T m3
m3 :0,:t 1,±2 (25)

mere

.d (11mm 2 j112m3) em Cmi (C26)

m=O,±1 m2=O,±1

where the matrix elements of the operator Q 0(-M3) are g'ven oy

<JIMiQop(-rn lJ 2 M2 > = <JI IOHJ2> (J2 2 - M. - m3 .J2 2 J, -M,)

and where J, J is a reduced matrix element.
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By -eoeated use of the addition theorem to Eq. (C23), the c pole-auadru-

coIe 'nteractor can Oe reduced to tne fgrm, 2 5

v 4w 15 1

r F3 7 r_

mr=0,± m3 =0,0!1,2 m"=0,:

(- 1)m3 0Op(m 3) (12 mr m3 12 3m") • Y3m"(#, 0p) (223)

ne matrix e~ements of V above can now oe obtained using a. s. (Z),

(-8). and (C27). Upon saua-ing the matrix e&ement, inserting into Eq. (3),

and carrying out the rn-summations usinr Eas. (C20) and (C21), we find as tne

"ha- -esj'" :or the cioole-auadruzo'e case

a (15)2 (2f + 1)(2J + 1)

* (f300;f3t'O)2

<R 2>

"<if! 111 !Lf,> J <J1 1 Q! J'>12 (229)L'. '(C29)

Ts can be readily be comoared to Eq. (C22) for the dipoie-diooie case. The

,difeences are

2 21
S3 7(C30a)

1(C30b)

r r

(200!2')2 - (13003'0)2 (C30c)

I- I<JAl~s J'>12 1- jIQJ OlJ'>12 (C30d)
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From the CG coefficient in (C3Oc) above, the selection rules for the di-

pole-dipole case are (l'-i)0O.t2; for tne dipoie-ouacrupoie case (').:

P3

S6
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