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1.0 INTRODUCTION

The absorption of infrared radiation by water vapor in the atmospnere is

of great interest since it plays a prominent role in determining atmospneriz
transmission to solar or laser radiation, and the heat balance of the lower
atmosphere.1 Of particular concern for long path transmission of laser signals
is the so-called continuum absorption in the window spectral regions. This
structureless absorotion has been studied experimentally by BignelTZ and by

Burch3_5 and collaborators; it has been treated phenomenologically by Clough,

et a76. For self-broadening of HZO in the 1000 cm-l window region, the ap-

sorption is characterized by a strong negative temperature dependence.

Theoretical models advanced to explain tnhe absorption include far-wing
absorption from distant strong lines, dimer (or cluster) absorption, colli-

sion-induced absorption, or some combination of the above.

The far-wing theory and calculations presented in this Report contain the

following features:

e The primary approximation is the single-perturber aporoximation. This
assumes that the far-wing absorption can be obtained by calculating the
absorption due to a single radiator-perturber pair, and then multipliying
by the total number of pairs. This is consistent with the observed den-
sity dependence of the absorption coefficient. The single-perturber ap-
proximation for absorption in window regions seems to have first been
discussed by Baranger.7 The approximation can also be obtained as a lim-

8

iting case from the dipole autocorrelation function in the time domain.

One of the present Authors has also discussed this approach using a T-ma-

trix formah‘sm9 directly in the frequency domain.




e The present treatment considers absorption arising only from unbounc

states of the two-body system.

T JEEEm. s " e
«

e Line coupling contributions, althougn formally contained in the theory,

e

- have not been included in the present calculations.

« It §s assumed that the anisotropic interaction can be treated using a
multipole expansion. For strong, close collisions this assumption may

- break down.

e Perturbation theory in the anisotropic potential is also assumed. Ar

isotropic, Lennard-Jones, potential is included and is treated exactly.

e A unitarity cutoff (analogous to Anderson's well=known S2 cutoff) is em-
ployed in the strong coliision limit. A rigorous justification of this
cutoff procedure is lacking and remains a problem in terms of interpreta-

tion of results.

e The theory rigorously satisfies the fluctuation-dissipation theorem

8-10

(FDT) if the unitarity cutoff is ignored. If such a cutoff is ap-

plied, the validity of the FDT depends on the manner in which the cutoff
procedure is employed. In the past, failure to satisfy the FDT has leaa

to ambigious interpretations of far-wing absorption.

In Sections 2, 3, and 4 we present the general theoretical approach used
in the calculations of far-wing absorption. In Section 5 we present results

from these calculations.
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2.0 GENERAL THEORY - THE SINGLE-PERTURBER APPROXIMATION

. . . 7 )
In the problem of line broadening in nlasmas, Baranger has discussed ap-
. plication of the “one-electron" approximation to the far-wing and window spec-
tral regions. For the case of molecular collisional broadening we shall em-

ploy the term "single-perturber" approximation.

The justification given by Baranger for the single-perturber approxima-
tion is essentially that the far-wing absorption will be governed by the be-
havior of the dipole autocorrelation function at very short times. This
statement must be regarded with some caution because the approximation is as

much ar expansion in density as in small times.

The general statement of the approximation is as follows:

"At sufficiently low densities cne may calculate the far-wing spectrum by
computing the absorption due to a single pair consisting of one radiator and

perturber, and tnen multiplying by the total number of pairs."

It should be noted that this is distinct from the binary collision ap-
proximation which assumes the absorption can be computed by calculating the
absorption arising from a single radiator and Nper perturbers which it may ir-

teract, and then multiplying by the number of radiating molecules, N The

rad’
binary collision approximation envisions that the radiator interacts with one

perturber at a time, however, over the time scale of interest for the radia-
tive process, the radiator interacts with many perturbers. At low densities,
the binary-collision approximation leads to the well-known Lorentzian (impact)
Tineshape for isolated iines near the linecenter. As pointed out by Baran-

ger.7 the rounding of the Lorentzian at the line center is always a many-body
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effect. The single-perturber approximation is actually a special case of the
binary collision approximation in which multiple scattering can be ignorec

over the time scale of interest.

Baranger has also noted that, although the single-perturber approximation
is not valid at the line center (it contains singularities), there is gener-
ally a range of frequencies for which the impact and single-perturber approxi-
mations overtap. Schematically, for an isolated line, the single perturber
lineshape function assumes the form

1 Nw - O-’ﬁ)

where w.. is the line center frequency. Equation (1) is also the approximate
form of a Lorentzian several halfwidths away from resonance, i.e. for
(u-ufi)>>r. except, in the case of a simplie Lorentzian, the halfwidth func-
tion, F(w‘wfi). is usually repiaced by its value at line center, T(0). To the
extent that the halfwidth function varies slowly over a frequency range of

several halfwidths, there will clearly be some overlap of the two approxima-

tions.

OQur mathematical discussion of the single-perturber approximation will
proceed via the frequency domain analysis of Ref. 9. In Appendix A we indi-

cate how these same results can be obtained from a small-time, low-density

1imit of the dipole autocorrelation function in the time-domain.




At

..............
.............

-~

From Section 2 of Ref. 9 <the abscrption coefficient (cm 1) car be com-

putec as

47w
(01 - — xn
(w) ac (w)

' (2)
wnere x"(w) ca~ 2e wr-tien (consistent witn the FOT)
h
X"(w) = tanh 62w [d(w) + d(-w)] (3a)
=(1- e"3hw)¢(w). (3b)
= [H(w) - d(-w)] , (3c)

with 8=1/kg7. anc where ¢(w) s the Fourier transform of the dipole autocorre-~
[

8.1

tation function ¢(%). 0 (The definitions of x" in Refs. 8 ani 3 ditfer by 2

factor of n_ the radiator density.)

ac¢’

An exact many-body formuia for ¢(w) is

$w) = = L Q)] <VuIF> 12 &Ep - £ - h) ()
LTS

Here Q2 denotes the system volume, I, F refer to exact eigenstates of the

many-body system, and
~-B&
o) = e ' i TreBH) (5)
is the equiiibrium canonical density matrix.

Now in the single-perturber approximation, we replace Eq. (4) by

N ..

dw) = —"S'i E e(E)| <!'p|F > |20(E—E -hw) (6)
IF
5
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where 1>, iF> denote exact eigenstates of a two-bocy Hamiltonian consisting

of a single radiator and perturber. Also in Eq. (6). N is the numper o~¥

pairs
pairs given for foreign broadening by
Npairs = Nrag Nper * (7)
and for self-broadening by
N
rad
Npa"’s = 2 (Nrad =1) ' (8)
N2
rad (9)
2

The eigenstates  I>, F> are not simply product states consisting oT a
radiator state, a perturber state, and 3 state describing the relative trans-
lationai motion. That is, in general the internal states of the two molecules
are coupied, true bound states of the pair are admissible, and § is the dipole

moment for the composite two-Dody system.

In the analysis which follows, we carry out a perturbative treatment in
the anisotropic interaction, considering absorptive contributions associated
only with unbound states of the system. In this case, the basis states, can
be taken as product states (including an isotropic interaction which is

treated exactly), and for 4, we can write, for foreign broadening,

7= Fraa (10)

and for self-broadening

K= ag + Fogr (11)
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The difference between Eq. (10) and Eq. (11) essentially makes up for the fac-
tor of 2 difference between Eg. (7) and Eqg. (9) and has the consequence that

self-proadening can be treatec in pasically tne same fashion as foreign broa-

agening.

In carrying out the analysis, we write the two-body Hamiltonian as

H=Hy+v, (12)

where any purely isotropic interaction is contained in HO‘ and where V denotes

tne anisotropic interaction between the two molecules. Here, anisotropic

. aEn SEN
AR

TheCas et I e o
L A )

means that V is angle-dependent ana couples the internal states of the two

molecules with the relative translational vector connecting the molecuies.

Trne eigenstates of HC are product states of the form

Holi> = ¢li>,

(13)
ii where ji denotes a radiator state, J, qenotes a perturber state, and k, de-
-
- notes a state of relative translational motion; the m's and M's are magnetic
p. cuantum numbers for the internal states. The state k1> is an eigenstate of
the Hamiltoriar

2

hev-
- °om + Vo(r) Iki> = Ekilki> (15)

where r is the relative coordinate, r= r , Vg(r) is the isotropic potential,
and sk=ﬁ2k2/2m, with m the reduced two-body mass. For the basis states above,
the energy g, can be written as the sum Eizsj *eg e and the unperturbed

i i i
density matrix factors according to
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(e) = ele;) aley) eley) (16)
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The T-matrix formulation in Ref. 9 rigorously includes line coupiing con-

.t
e,

tributions. However, our initial calculations nave ignorec this compiication

8

In this regard, we also remark that some of the equations presented in Section .
2.4 of Ref. 9 are actually a slight oversimplification of the uncoupled line
approximation. The essence of the uncoupled line approximation is that when

one encounters a matrix element product of the form
<jlm||[ﬂ]fmf> <]f:mfa|m]|,m|,> (17)

one sets j'=ji and j'=jf. however one does not set m. =M, or Mg, =mg for tne
-— )
magnetic guantum numbers.

For ¢(w). we obtain

P(w) = 7 E ol

v N2y, + DI <jillpiljg>i2 ¥idw - wg) - (18)
vt

In the above equation:

1. The prefactor r is the same renormalization factor discussed in Egq.

(2.13) of Ref. 8, and in Ref. G, i.e.

-PH
r = Trie d O Tr(e=BHy . (19)

In all of our calculations, we have approximated this factor by unity.
2. The reduced matrix element is defined by the Wigner-Eckhart11 theorem
in the form
<iimilﬁ.|jfmf> = <j|Inllig>
: m'%:'ﬂ emtiymgmigtiym;) (20)

The reduced matrix element satisfies the symmetry relation




@ + NI<jllpllig>12 = @jg + V)] <ijgl lul ;> 2. (21)

The radiator's density matrix is given Dy

_6eh
e

oley) = ' (22)

' -th .

e @ + 1)
i
so that

~ C(€f) (2 + 1) = 1. (23)

Ji
[ <he various ji states carry different nuclear statistical weights,

factors of (2j.+1) are to pbe replaced everywhere, e.g. Egs. (21)
1

tnrough (23), by (23,+1)g(J,).

While discussing statistics, the perturber density matrix, p(cJ ),
i
in €q. (16) is given by an expression identical in form to Eq. (22);

the density matrix for the relative translation motion is simply given

by B
-P€
etey) = *
k E _Bek
e
K (24)
so that
E olg) = 1.
K (25)
The function ¥ in Eg. (18) satisfies the symmetry re]ationg
¥i(-2) = e P2 y ), (26)
for arbitrary freaquency z. In particular,
-Bh(w-wg)
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From Eq. (22) we can note that

ro
(SN
~—

W ) ,
Q«k)eﬁh b . ele) ‘

where ﬁu;;=(s:-si). By letting w==w in £5. (18), intercnanging names c¢T cummy
1 .

summations j.:zj.. anc py making use of symmetry aroperties (21). (27). and

VY A S S
0

(28), one may readily show

d-w) = e~ Phw g, (29)

5 Equations (27) and (29) are the funaamental relations whicn guarantee that tne
éa FDT is satisfied and tnat £g9s. (3a) tnrough (3c) are eguivaient. We caution,
nowever. that the proof of £q. (27) in Ref. 9 aic not include a unitarity cu-
toff faor strong collisions. One must be careful in the appiication of a cu-

toff if the FDT is still to be satisfied (see Section 5).

By using symmetry relations (21). (28). anc tq. (26) in the form

ﬂh(w + wﬂ)

‘l'ﬁ(w + wﬁ) = @ *|K—w - wﬂ) (30)

one may rewrite Eg. (18) as a restricted sum over pairs of states with

:fi=sf-:1>0, i.e. with wfi>0; the result is

B = v 2 e + Nl <ii b lig> 1 ¥io@) (31)
Jike
€'>Ei
with
¥iot(@ = ¥idw - wp) + °Bhw“'if(‘“’ - wy;) (32)

The above result has the nice advantage that we can consider a total contribu-

tfon to absorption for the pair of state €0 Eg- We shall refer to the first

10

------------




term in Eq. (32) as the positive oscillator term, and the second term will be
referred to as the negative oscillator term, i.e. it is resorant for w=°uf;<0.
Note that computation of the negative osciilatcr term only involves the simple
~eplacement of arguments (w'wfi)*('w-ufi). Therefore, for the most part, our

discussion wiil concentrate on the positive oscillator term.

The positive oscillator term can be put into the form of an off-resonance

Lorentzian with a frequency dependent halfwidth,

1 F(w - wp)

A - W (33
‘Plf(w W) = MNad thw - € 2 )
where "rad=Nrad/Q is the radiator density, and where the perturber dgensity
- 1 ; . . o . —y : G
"per Nper’ is contained in the halfwidth function T(w wf1). which has urits
ergs.

We now write down the equations which determine the halfwidth function T.
First, we do this in a simplified, schematic fashion which suppresses magnetic
guantum numbers, Clebsch-Gordan coefficients, and m-summations. At the con-
clusion of this section, we shall present the general formulas for T which re-

cuire Clebsch-Gordan reduction (see Appendix C).

The simplified equation for r(w-ufi) is

Nw - wg) = Nper % Q(GJ)Q(GK') E l<aiV|B>|2. w&(eaﬁ + ha - hwy)

gk’
Bh(w-wy) »
+e " Nor L ole,aley
Jk
: ) VIBS (34)
ik’ <V (2 Meqgr - hw + hay)

where for simplicity,

BORCATS)
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la> = [jpdk> , (35a)

v
.

ad
.
»

P

18> = |jdk'>, (330)

&
slay

-
.

B

-,
<,
L4
o,

la'> = {jidk>, (35¢)

B> = |idk'> | (35d)

and ¢ .=t =g,, £ =g "€
af a B a'

a'B! 8"

With regard to Ec. (34) we note tnat the contributions from tne initial
and fina! states (i.f) of the radiative transition Qo not enter in a symmetric
fashion. It is precisely this asymmetry which causes tre FOT to be satistiec.
At line center, (u‘wfi)=0. this asymmetry disappears. ne naifwiatnh function
satisfies the same symmetry relation as ¥ in Eq. (26). nameiy (at the risk of

introducing more indices), if we define rif(z)=r(z). then
I'i-2) = oPNZ, I (36)
for general frequency 2z (which is to be substituted for (w‘ufi) in Eq. (34)).

The first (final state) contribution to the halfwidth function has a sim-

ple interpretation, namely it is essentially Fermi's golden ruie averaged over

initial states and summed over finai states. The interpretation of the second

term in Eq. (34) is complicated by the FDT asymmetry. Note that the asymmetry
involves two things:

1. the temperature dependenct factor exp[Bﬁ(w-ufi)j in the secong term of
Eq. (34); and

2. the off-resonance energy ﬁ(u'ufi) enters the delta functions with a

different sign in the two terms of Eq. (34).
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General Results: We close this section by writing down the genera’

evpression for the halfwidth function, inciuding Clebsch-Gordan coefficierts
and magnetic auantum numpers. As a preliminary to iisting the relevart equa-

tion, we note from Eq. (34) that we will eventually have to consider a summa-

tion over trariational states of the form

sum = Nper El e(e) <kiVik'> <k''V'k> (37)

where k- gerotes any complete set of relative translational states.

In Appendix 3 we snow that this sum car be rewritten as (the sum is stil!

an operator in the space of the internal mo'ecu'ar coordinates)

wm- (2f T T

x {mp ¢'my,
o Qo .
_Bek
- ) dke dk'<R 0 |
05 05 <Pibmg!VIRice'mp, > <Rigrmg, VIRepm,,> (35

In tne above eguation:

L Rkt’me(') - <?3Rkt’me>

= Yeme(O. ¢) + Pyl 1), (39)

where the radial wavefunction (r is the magnitude of the relative coor-

dinate) has the asymptotic norma'ization

bplk: ) > sin[kr - v2 {7 + Sp(k)]

r— oo (40)

2. The meaning of the matrix eiement is
<kamfiV',Rk.[,mg'>
Qo 1 (o<}

= s de S d(cos) S r’drﬂkeme(?’) V(PR e'(?‘) (41)
0 -1 0

13
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2,
.'l > Iy . . . »
2 3. Tne quantity z is a translational partition sum given by
; 1 -Be
i Z = -?f— 2: e k
N K
2 1 5d3k Peg
~ (2x)3 .
( m ) 32
2x3h2 (22)
' For tne nalfwidth function we obtain

Qo
Fw-wp) = (";;er) (%) 2 ‘? eley 05 awa ™

:::: oo
::fj S dk’ E 2 {sum () + sum ()} (43)
= Jooe
~
Here, inciuding all m-summations which must De reauced using Clebscn-Gordan
-
- algebra,
sum (Jf) = E W&(fﬁn + hw 'hwﬂ)

)f:r

L _ Y Y Y X

(2Jl + 1) m'mlrm mfmflmfu MM' mefT\(,

om,.m;, g tmem jg 1j;m)Gs Ymem |jg 1j;m;)

<jfmf.; JM. ngmelV]jfumfn. J'M'; Rk:e:me'>

<jfumfu; J'M’; Rk’f’mg,{v“fmf' JM; Rkeme>
(44)




h(w-w;:
sum (j;) = eB (-cop) 2 T O(€;;r - hw + hwy)

T eSS W L o5

]i:r

L _ X X L X

(2]' + 1) mfmf,m mimi;min MM’ mgmg,

-y 3 T» B _® »
.
. .

<]'m';, JM. Rkemelv:]lumlu. J'M'. Rkaeym£'>

Ir tne celta function expressions above, we have defined
€ggrr = (ej' - el-'”) + (€ - eJ,) + (ek - €
f“n = (€]| - eji") + (CJ - GJ') + (fk - ekl) .

The three terms on the right hand side of Egs. (46) and (47)

\'4‘5“

oy

Zas. (44) and (45) becomes (for dipoie-dipole case)
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(45)

(46)

(47)

are, respec-

.« v e
'''''''
.......

tively, change in energy of the radiator (internal energy), the perturber (in-

terna’ energy), and relative translational motion in a collision where f=+f" or

Some details of the Clebsch-Gorgan reduction of Egs. (44) and (45) are
oresented in Appendix C for an anisotropic potential corresponding to a di-

pole~-dipole or dipole-quadrupole interaction. From Appendix C, the result for
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sum (j) = E ey + hw - hwg)

'Y
. —§— (20 + 1) (2 + 1) (£2 00| 02€°0)

. ‘ L , -
.- i <Ryl - Ryrp>12

o | <jglipqgliip>i2 i <d]ipgld'>2, (48)

. Bh(w-wg)
sum (j.) = @0 fi E T 6(6"" - hw + hwﬂ)
Jir

2

e 0 + 1)) + 1) (f2 00| 0200)2
R 1

" 1 <Pyel =5 iRp> 2

<l iy N> 12 1 <d] gl 197> 12 (49)

In the above equations

1
Ryeln) = - Golk; 1), (50)
and the meaning of the radial matrix eiement in the above equations is

1

: 1
m I

1
= S radr ng(r) — Hk'f'(')
0

®
- § 00 - s




At a converient point, in geing between Eaqs. (44) and (43) and Eqs. (48) arc

A

(29). we have changed names of dummy variables j..*Ji.,. ji"‘ji"

Finally, we remark that the two terms in Eq. (43) correspond to Ander-
son's SZ(oute") terms. In certain problems, one has to also worry about An-

derson's Sz(inner) ) 12.13

This term obtains from an uncoupled line approxima-
tion to Ea. (51) in Ref. 9. This term has peen ignored for the problem of
primary interest here (HZO se'f-broadening) because it involves diagonal ma-

trix elements of the dipole moment operator, for the case of dipole-dipole in-

teractions.

In tne next section we discuss the above equations further in terms of
quantities manipulated by our computer codes. In doing this, we also identify
the ana'log cf Araerson's 52 functions. This is important for considerations

o€ ar Anderson cutoff scheme in the strong collision timit.

3.0 REDUCTION TO COMPUTATIONAL FORM

The Schroedinger Eq. (15) which determines the eigenstates o1(k;r) in
Eas. (39), (40), (50), and (51) has been solved numericalily for the case of a
Lennard-Jones potential with well minimum energy ES. occuring at radius T
Some detaiis of ¢he matrix element calculations will be presented in <he next
section. The parameter " is used as the length scale unit in these calcula-

tions. In particular, for the dipole-dipole case, matrix elements of r-3 are

computed as

(e -]
i(fx; £'k") = S dZog(k; 2) —21-,— oAk’ 2) (52)
)

17
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where the reduced iength is z=r/rs. We may also aenote the adove matrix eie-
ment by I(le;1'e'), wnere s=ﬁ2k2/2m is tne energy asscciatec witn

wavevector k. We agefine dinole line strengths by

[<jlipl'|'>[2 = p2 Sij- - (33

Here u is the scalar cdipoie moment (u=..85x.0 18 esu~-Cm 1S tne permanent mo-

ment for HZO), and the line strengths satisfy the sum roie
., o= 1. 54
? S”, (54)

For programming convenience we will eventually (but not immeciateiy) co~-

-
vert ali energies from ergs to cm * using

€(ergs) = hce(cm) . . (55)

For the case of seif-proadening through dipole~dipole interactions, we compute

and store the following dimensionless (squared) matrix eiement

2 2
Mgle; €) = (—r%g—) e(e)a€)

¢ [E (£200{0200)2|i(le; £'€")|2 (56)

In this expression, with ¢ in cm 1

8mcr§ Va
) , (57)

9= (———
e(e) e

is a density of states factor with units=cm. That the M-matrix element above
is gimensionless follows from the fact that

u2 2 2
3 has units em °,
hcrs

wnile p(e)p(e') nas units cmz. and everything else is dimensioniess.

18

- PO . .. PR «" e
AT S PR P N )

ST LAt . UL . .
T e e Tt e, LT e e

. - AP Y
et A At at st alAtatala

. L T ST
EACTIEAN WV PR T W WY L ¥ S




v ¥ L v -
B0y AALARRAN - N

''''''''''''

we next intrcduce a function which plays a role ani'ogous tc Angerscn's
12,13

s, function. We write tne functior n the €orm

Bh(w-wy) :
+e Wshte, v, £; @ - wp) (52)
“or the dipoie-zipcie case the (dimensiorless) functions s: and S; are given
Oy
shie. o &; w - wg)
472 ..,
= TE Z S’f‘f'SJJ' M[[E;f + f:ot + h(w"wﬁ)]- (59)
g J
s) (€, J, £ w - wg)
LG " . i (60
'I
with el = (€ig - €ig) + (€5 - €5 (61)
Eror ™ (€l = €5;) + (€~ €3) . (62)

That the apove 52 plays the role of Anderson's sz-function (at ieast in
«ne line center limit w'ufi*O) will presently be demonstrated. The FDOT asym-

metry between the final and inftial state contributions is again evident in

It

as. (58) through (60).

For the halfwidth function of Eq. (45), we may now write

(o <}
-+ <2 (55) § o 20 )5

. JZ ole) (2 + 1) a(e J). (63)
19
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2
in tne apove expression, o(e.J) is a cross section (cm~) Ggiven Dy

- 7h? tot P - YA
P ale, J) = (————Zme )ZI: 0 + 1) s2(€, 3, s @ - wg) (64)

(7}

Before going on. we note, if Eqs. (63) and (64) are compined. tnat the factcr

(nﬂZ/ZmE) cancel. This is useful in terms of writing the resuits in aiterna-

YT TS
1)

tive forms.

Next, in the limit of large 1, ana using '=kp, wnere b is the Ctassica.

i impact parameter, with e=K°k ®/2m, one can see that o in Eq. (70) takes tne ap-
:: proximate form

- hy

h a(e, J) = g 27 bdb si%e, J, b; w - wy) (63)

This is the usual form which relates the 52 function to the cross section 1in

Ancerson's formalism,

To complete the analogy with Anderson's theory we rewrite the average

over energy in Eq. (63) in terms of a Maxweii-Boltzmann velocity average. Wwe

use |

1
€= —— mv2 , (c6)

and for the partition function (Eq. (42)) we can write

1 (h)\3 1
2722 (m) o0 (67)
_6_1_ sz
5v2dve 2
0

Using the above results, and defining

20
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Iw-wp = % M - wp) .

wnere T {5 the halfwidth furciicon in vrad/sec., we adta‘r
)
[Mw - wp) = Noer S vdvi(v)
0
. JE e(e)2d + 1) a(v, J)

with (69)
1
-6 E';nvz
vie
fv) = (70)
*® 1
‘B E mv2
5 vie dv
0
tne Maxwe'1-B¢itzmann distrisution functicn. We can rewrite this
INw - wg) = Nper JE Q(EJ)(ZJ + 1) <va(v,J)> . (71)

1 -~
or the line-czenter 'imit this has the form of an Anderson‘z‘l" type <hecry,

‘nciuaing veiccity averaging. With an aporopriate definition of the average
cross secticn, Ea. (71) can be expressed as
I' = npg V(D O(M . (72)

where v is tne mean thermal velocity.

This essentially completes the analogy of the present theory with Ander-
son's formal’ism. Certain questions remair as to wrether Andersor's cutoff

srocecures for s, can be taken directly over for the €ar-wing problem.
2 y g

Finally, we wish to write down the previous eguations in the form in

which they were actually programmed for calculation. This basically involves

2

comdining Eqs. (63) and (64), cance'ling the factors of (wh"/2me), and con-

verting all energies to cm 1, including the partition sum denominator inte-
1

gra', which can be written

21




2T ) -

z =
S de’ fET' g~Phee’
0 €

rere ', ¢ are in cm ' anc we have definec some average tnermal quantities as

(73)

follows: the Dasic definition is the mean therma] velocity -

v 8 kBT 1/2
g m ' (72)
In terms of v we also gefine
— 1 - — -
é(ergs) = —2-—- mv2 = hce(cm-l) , (/5)
kBT

: _ 4
i.e., e(cm) = = he ) (76)

we caution tnat Eq. (75) is simply a definition of €, and € is not the average
energy in a thermoaynamic sense. Finally, we define an average DeBroglie

wavelength by

e . ( h va
mv 2mc€(cm) ) ) (77)
Equations (33), (63), and (64) can now be re-expressed as
f(w - Wg)
Viw-w)an,, — ! fi (78)
| ifl W rad nhe g (@ - wg)? '
with
oo
) iry s de o~Bhce
n
= per 0
P(w - O)ﬂ) = P, pos
§ ae[-£ g-tnee
0 €
. tot iy o
? Q(eJ)(ZJ + 1) ;(28 + 1)s7(e, J, 0 w wg) - (79)
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In the above equations, all e's, w's, and T are now incm ~. The units of T

M ‘- .- .-

are manifest, namely everything is dimensioniess, except

4
[
b

(Nper N) €~ €=cmt .

- To conclude this section, since it would be totally prohibitive to actu-
ally calculate the absorption coefficient (by summing the contribution from
all 'ines), we have to proceed in a different fashion. For certain experimen-
tal cases it is known what the simple impact approximation predicts for ab-
sorpticrn. This s subject to the difficulty that the impact approximation
does not satisfy the FDT, so that the impact results depend on which formula

(Eqs. (3a) through (3c)) one starts from.

We shall make comparison with the so-called "hyperbolic tangent" impact

formula. This formula has some advantages, and certain predictions from the

formula are available.

Before writing out the impact formula, we combine Egs. (3b), (31), (32),
and (78) to deduce that the contribution to x" associated with the pair of en-
ergy levels PSP is proportional to

X Mw - wy)

+ ehcw Flw - wy)

=(1- e-ﬁhcw) -
(@ - wg) (~w - wp

(@epr

. (80)

wnere the two terms in the bracket are the positive and negative oscillator

terms, respectively.

The corresponding "hyperbolic tangent" impact formula is

23
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X'"(w) = tanh (

Bhcw -Bhewy;
impact ) (1 +e )

2

ro¢ ., _ro
(W - wg? (~w-wpr] (81)
In writing down the above results we have dropped some constant factcrs wnich

will cancel in the ratio

Rw) = x"("’)FDT’x”(“")impact' (82)

One of tne constant factors which has been dropped is the ragiator cen-

sity, n As a matter of fact, the perturber density, n also cancels ir

per’
the ratic pecause ali of the halfwidth functions in Eqs. (80) and (81) are

rad’

iinear in npe,. Thus R(w) is independent of both radiator ana perturper cen=

sity.

The only remaining density dependence of interest is in the halfwidth
function itself. We have done all calculations at a fixed density correspond-
ing to the density at one atmospnere pressure and room temperature, i.e. we

take for the perturber density the fixed value

Nper = No(273/296) , (83)

with nO=LOSChmidtS number. R.H. Tipping nas referred to the quartity above as

a "hot Loschmigt".

To concluge this section, we rote as ww.. . where the negative oscillator

terms in Eqgs. (83) anc (81) pecome negligibie, that the two formulas approach

each other. Similarly, the formuias coalesce at the negative osciliator reso-

)

nance w*-wc.. Of course, both formulas are divergent at the line center.

e "L..I. 3!

« 8 B3
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4.0 CALCULATION OF MATRIX ELEMENTS

I~ terms of comoutation time, calculiation of the M-matrix elemerts ir Eg.
(3€) is Dasica’'ly governed by the speed with which the simple I-matrix ele-
merts in Egq. (S2) can be generated. We nave attempted to make this orocess as

2fficient as possible.

7o discuss simpiifications, we begir by rewriting Eq. (52) as

oo
I(Ce; O'€) = S dZ dyle: 2) % bpde’ D), (84)
0

where £, ¢ are the energies. In considering the above integral we remark,

for most cases of interest, that 1,1' and e,e' are "not all that different".

To be more precise: for the dipole-dipole case._the Clebsch-Gordan coef~-
ficient (1200 121'0) in Eq. (56) leads to the selection rules (1'-1)=0, +2.
The statement in regard to e£.e' is simply that if e-¢' is large, the matrix
eiements tend to be small. The point of the above comment is simply that, for
most cases of interest, the wavefunctions in the integrand are such that they

car generally be calculated using the same approximations.

With the apove remark in mind, there are essentially three situations of
interest which depend on 1, &, and the total isotropic potential

(¢ + 1h2

v () = =\ T (85)
offi O = V0 + — o

In the above expression the first term is the Lennard-Jones potential anc the
second term is the repulsive centripetal potential, which is clearly ‘-depen=-

dent.

In Fig. 1 we show a schematic Vo(r,1) potential, along with three energy

Tevels €1+ E9, and £q. We will provide a few details at the end of this sec-
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tion., but briefly the wavefunctions associated with tne above energies ave

calculated as follows:

Case (1). Energy ievel £ (sufficiently iow e. sufficientiy nig~ 1, we
call this the certripeta! regime. Ciassically, tne turning pcint is sucn tnat .
the wavefunction never gets in to "see" the Lennard-jones pctertial. Tre wa-
vefunctions are then approximately eigenstates of a Hamiltcnian witn ;L;=O.

The approximate eigenstates are Bessel functions anc the integra. in £g. (84)

can be expressec in terms of the hypergeometric function.

Case (2). Energy level £, We call this the intermeagiate region. In

this case the wavefunctions ¢ are obtainea numerically., as is tne iniegra:

(84).

Case (3). Energy level €3 (sufficiently high &, low 1). We call this
the hard core regime. Here the wavefunctions relatively quickly assume their
asymptotic form (Eq. (40)) close to the turning point. The procedure in this
case is to use numerical solutions out to a radius Zmax=Rmax/rs where it nas
been determined that both ¢'s have assumed (to a good approximation) their as-
ymptotic forms. Beyond this radius, the asymptotic form (40) is employed. ana

the resulting integral can be integrated in terms of sine and cosine inte-

grals.
We close this section with a few details of the calculations.

Case (1). Centripetal Regime. The approximate wavefunctions are

dple: 2) = (K2) jg (KD) , (86)

- (3) " 0@t s 2.

(87)
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(87)

where K=krs, anrd where j, J are spherical and ordinary Besse! functions, re-

spectively. The integral (52) becomes

le; ') = —— (KK)”

oo
1 ¥
* S dZ Jp , 1,(K2) 72 ' + 15 (K2) (88)
0
This is a Weber-Schafneitiin type integral (see Abramowitz and Stegunla.

page 497, Eq. 11.4.34). The result can be written

al
Kf+‘/z F(e + _2-_ )

- s nV2
| = —— (KK T A

-2
K’ =
(K" I'( > * 3

)T + 3)

( al 1 al g, 3 _51)
«F 2 2 2 2 'Kz )

(89)
where 81=(1'-1)=0, 22, T is the Gamma function, and where F is the Gauss hy-
pergeometric functior. The above formula is valid only for K/K' <1; however,
Eq. (88) is seen to be invariant under KXK' and 121', so matrix elements
with K/K'>1 can easily be obtained from symmetry. We note that the function
in Eg. (89) has the form F(a,b;c;z) with c=a+b+m, and with m=2. For this ar-
rangement of arguments the F-function is most conveniently calculated from Eq.

15.3.11, page 559 of Abramowitz and Stegun.14

Case (2). Intermediate Region. The ¢'s are solved for numerically via

Numerov's method using a computer code developed by R.J. LeRoy.15 The integral

(84) is evaluated numerically.
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Case (3). Hard Core Regime. We use tne same procedure as in Case (2)

above out to a radius Z . then
max

r
"
3
"
¢
N

The second integral above, for the dipole-dipole case, is of tne form

Qo

dz
I = _“ = sin(KZ + A) sin(K'Z + B)
zrnax

' (91)

wnere the pnases A.B nave been determined from the Z<Zmax region. By repeatea
integration by parts, Eq. (91) can be expressed in terms of sine-cosine ‘nte-

grals. We define K+=K+K' and C:=AxB. Then

=] - ) (92
= 0_-1_ )
with
1
I_ = Ti—";; COS(K_Zmax +C)
K_ )
- = Sin(K_Z . +
; 4Z ax
X K2 ‘
” + — fcos(C)) Ci (IK_iZmgy)
& ~ sign (K sin (C_) si ({K_\ 24,0} (393)
here sign (K_)=t1 depending on whether K_ is positive or negative. I[n Eq.

(93), si and Ci are the sine, cosine integrals given by (see Ref. 14, pages

231-232)




......

The integral I in Eg. (92) is obtained by replacing C_~»C_ and K_*K_.

The I and M-matrix elements were computed using the above methods. and

SRR A WSS

the M-matrix eiements were storec in a look-up table. When M-matrix eiements

Tt
A
‘- * .

are required (£ags. (59) and (60)) at nonstored e,¢' values (as is virtually

I
.
v e %o

‘ - always the case), interpolation from the look-up table is employed.

5.0 RESULTS AND DISCUSSION

In the previous sections we have presented a far-wing lineshape theory.
assuming dipole-dipole collisions to be the dominant broadening mechanism.

For close collisions one might expect the higher-order multipole interactions

to become important. The selection rules, AJ=0,xl1,+2, for the dipole-quadru-
QI pole interaction allow for larger changes in rotational energy in Eqs. (46)
ﬁi and (47) than obtained from the dipoie-dipole selection rules, aJ=0,:l. This,
- ir turn, makes it easier to satisfy the delta functions for conservation of

_;Z energy in Egs. (34), (44), and (45) when (w-w..) pDecomes large.

We have., in our calculations, explicitly included the dipole-quadrupole

and quadrupoie~-dipole interactions. (The distinction being radiator-perturber

and perturber-radiator, respectively.) In the case of the quadrupolie-dipoie

interaction there is also a contribution associated with Anderson's

59(in~er).12‘13 This contribution has been ignored in the present calcula-

tions.

The essential modifications necessary to treat the dipole-quadrupole and
quadrupole-dipole interactions are given in Appendix C. Somewhat more explic-

it'y, tne modifications can be simply exoressed as presented below.

29
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:ﬁ For the dipole~-quadrupocle case, for the S2 functions in Zzs. (3%) anc

‘ (60). the foiiowing substitution is to be made:

v 2

v 4m 15,2 - -

& I8, Sy G iaenhs, o6, (5c)

Z CRERS TS PR A LR Jedgr 33"

\:,' )

In this supstitution, tne difference in numerica® factors arses crelise’

.
A

from Eq. (C30a). Also in tne above equation, G.,, is a guacrupcle strengetr,

A
e

gefined in terms of the readuced matrix elemert (wnich appears in t£cs. (lI7)

and (C29)) by

Zj<J}jQ{;J'>52.qZZGJJ, - ¢2. (57)
J' J!

That is, q2 is tne square of the scalar quadrupole moment (it is incepencent

of J). ana the guadrupole strengths satisfy the sum role

98
EGJJ.-1 (98)

Fcr the quadrupoie-dipole case, the substitution anaiogous to Ea. (96)

4w2

15.2,, 2
S S + (— 2 (99)
3 Pipdg,cart T @ Csgpigiaur.
The dipole strengths SJJ. were computed using the asymmetric rotor codes de-

veloped at AFGL. The quadrupole strengths GJ,. were computed using a program

developed by one of the present Authors,16 which can be attached as an upcate

tc the AFGL package.

The remaining modifications are to the translational matrix eiements and

these are identical for the dipole-quadrupole and quadrupcie-dipoie cases:

first, the factor 2-3 in the I-matrix element (Egs. (52) and (84)) gets re-

placed by 2-4; then in Eq. (56) for the M-matrix eiement, the following sub-

stitution is necessary:
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, D2 2 ' 5 2 2 2

" —— | (:200122:'0)% (L 1 _)(2300'23270)%. (190)
. 3 3 5

: hcrs her her

. s s

i “ira'ly, for the nypevrgeometricz (Egs. (8€) tnrougn (29)) ara sine-zosine ‘nte-

2ra’ (Eas. (8C) trroug~ (33)) ca'culations discussed ir Seciror & tnere s an

. covicus mecificatior cue to :'3*:-¢ in <re I-matrix eiement.

' ’ We now cucte tne specific parameters upon which our presert zaicuiations
; are zaseCc. For tne _emrmard-jones soter<ia’ we nave cneser the parameter val-
; ,es,‘7 £ =283 cm “=potentia’ minimum, anc *S=3.C59 cm=ragius at well min'mum,
i or the <.0 permanert cicoie moment we rave used the weil-known value
E~ ;:-.SleC-:a esu-cm=1.85 Debye. For tre «“,C permanent cuadruboie momert we
,

. . . - 18
~ave empioyed the review a~ticle of Strogryn anc Strogryn Lo

, . s e s L A28 2
age measured va ue c¢f a=1.158xIC"7 esu=cm”.

infer an aver-

The only remaining adjustab’e '"parameter" in the tneory is the manner in
wrich a unftarity cutoff ‘s empioyed in tne strong collision (small impact pa-
rameters, classically) limit. For sufficiently smal) (“_“fi)' there s no
ccubt that such a cutcff is necessary. because, ¢ the cutoff is eiiminated,
the resuiting halfwidtns at the line center are large by a factor of order 40
compared to experiment. Sufficiently far in the wings the cutoff can be drop-
tsecd. MHowever, exactly how one should interpoiate betweer these two ~‘mits re-

~ains somewnat of an open question.

; Angersor's simplest cutoff procecure as applied to SEOt is to reset
-. (%0t_, .. <tot - . ; i
L S37=1, 4 S2 (as calculated by Eg. (58)) is such that it exceeds urity.
L . «
ﬁ. An alternative (and somewhat smoother) exponential form of the cuto®f is to
~" L e d
z raclace S:O” by
. _gtot
2 tot 2 .

"B\ A4
A Y
B

)
PO T
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Theoretical justification for this type of cutoff may be found in tne

l‘ l._ l’_

19- tot
‘niterature‘9 2z From Eq. (101), if S;°t<<l. we obtain (SEOt)e;f=5;
1. on the other hand, SEO‘ 1. Eq. (101) reauces to (StO“)efczl-

LA IR L R I
o e, 0 000,

The above cutoff schemes, based on S;ot‘ suffer from a major problem ir

the far-wing case. DOue to the exponential factor in tne second term of Eg.
(58), the FDT cannot be satisfied uriess the cutcff is applied separately tc

o

s and s} in Eq. (58).

-

in the absence of a rigorous prescription for cutoff, we have employec

tne following methods which satisfy FTD ang yield an 52 which is bounced by
. . , . . f

unity as in Anderson's theory. The first metnod is simply to reset S2 (c»

S;) equal to 1/2 if S; (or S;) exceeds 1/2. An exponential form of this

cutoff scheme is

: -2s]
Splege = H1 - %), (102)
Again for S >>1 this yields (S ) f while for Sf<<1 we obtain Sf=
2 27eff” 2‘ 2 ' 2

1/2.

Ir Tabies 1 tnrough 4 we present the results of our calculations of HZC

far-wing absorption. The calculations have been carried out using the expo-

nential form (Eq. (102)) for the separate cutoffs on S; and S;.

ﬁf Tne caiculations have been carried out for the strong pure rotationa’

;- transition 4,1,4+5,0,5 with line center frequency at we;=100.51 et in Te-

F% bles 1 and 2 we present results for a photon energy w=500 cm '. This means

&i that the positive and negative osciilators are "off resonance" by approxi-
' -1

mately 400 cm * and 600 cm-l. respectively. The columns in the tables are as

follows:

e e T e
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Column = temperature °K.

no
|

~ -
Column 2 = T(0), the line center halfwidth in cm * as giver by Eq. (79) witn

(w-wg,) set to zero.

Column 3 = ?(w-u‘i)=the positive oscillator halfwidth as computed from Eg.

(79).
Columm & = T(=w=w,,)=neqative oscillator halfwidth computed from Eg. (79).
Cotumn 5 = x"(w)-n- as comouted from Ea. (80).

Coiumn 6 = x"(w)-

“mpact as computed from Eg. (81).

Coiumn 7 = X”(“)FD’/X”(W)Impact as computed from Eq. (82).

Taole ! presents resuits for «w=500 em™t in which only dipoie-dipole con-
tributions are included. Table 2 is for w=500 cm-l‘ but including dipoie-di-
pole, dipoie-auadrupole. and quadrupole-dipole interactions. From the line
center halfwidths in Tables I and 2 we note that the addition of the dipole-
guacdrupole interaction represents about a 2% effect, so that the dipole-cipole
interaction is strongly dominant. For fixed density, the increase in the
halfwidth with temperature is mainly associated with the increase in v which
appears in Ea. (72). (See Fig. 2 for a olot of the temperature dependence.)
The vaiues for the halfwidths are approximately what one would expect from Ar-

derson's theory for self broadening of low-J HZO transitions.

The positive and negative oscillater halfwidths are seen to be reduced
relative to the line center halfwidth (the impact halfwidth) due to the diffi-

culty of conserving energy far off resonance. This also accounts for the fact
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that the negative oscillator halfwidtn is small compared to the positive os-

cillator halfwidth.

It 1s very interesting to note that the addition of tne dipole-guadrupc:e
and quadrupole-dipole interactions in Table 2 increases the positive osciila-
tor haifwidths by a factor of order 2 and increases the negative oscillator
ralfwidths by an orcer of magnitude! This emphasizes the importance of tre
nigher-order multipoie interactions for the far-wing croblem. The origin ¢f
this can be ratner simply stated: the translational matrix elements (Zz.
(56)) tend to te small unless tne dgifference in translational energies,

e-¢' ., is small, typically less than 20 cm-l. This being the case, wner
ﬂ(w'ufi) is large, tne oniy thing left to conserve energy is the change in ro-
tationai energy. Because the selection rules on AJ for the dipole-quadruple
and higner-order multipole interactions aiiow for pr&gressively larger changes

in rctational energy, tnese collisions are more effective in broadening tne

wings.

For some fixed vaiue of ﬂ(w‘ufi). there may pe some particular order of
multipole interaction wnich dominates; however, the convergence of the multi-
pole series cannot be assured. Since the higher-order multipole interactions
are progressively more effective at close separations, this also emphasizes

the point that the far wings are dominated by strong, short-ranged collisions.

The results for the ratio R(w) (Eq. (82)) in Column 7 indicate too low a

level of absorption. At 1000 c:m-1

it is known that the impact formula, Eq.
(81), yields an absorption which is high compared to experiment by a factor of
approximately two. Thus at w=1000 cm “, one wouid like to find the ratio R(w)

= 1/Z. However, at w=500 cm-l, R(w) is already smali of oraer, R(w)=.20.
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Ef The results for w=1000 em”t are presented in Tables 3 and 4. These

ja tables show the same general trends as discussed for Tabies 1 and 2. The e®-

. fect of adding the dipoie-guadrupole interactions is even more pronouncec, the

ii ratio R(w) is raised by two orders of magnitude upon inclusion of the dipoie-

3

(e

guadrupole interactions. In Tables 1 and 4, Column 7 shows 1ittle indication

v
-
[
F
.
|
!.

0¢ the negative temperature dependence observed experimentally.

Future Work.

Althougn our presert ca:cuiations indicate a ievel of far-wing absorption
whizh is too small to accourt for experimental observations, these calcula-
tions have shed light on a numper of important issues which remain to be ad-
dressed.

1. A more rigorous approach to the far-wing unitarity cutoff procedure
should be sought. A more relaxed cutoff procedure would certainly er-
hance the far-wing absorption,

2. The sensitivity of tne far-wing absorption to the Lennard-Jones parame-

ters should be investigated. In particular., a deeper LJ potential

should enhance the translational matrix elements.

E; 3. It would be desirable to extend the present calculation to include
?g quadrupole-quadrupole collisions. This should give some indication of
iA the convergence of the multipole expansion. If divergence is indi-
3

- cated, some more realistic formulation of the short-ranged anisotropic
il interaction will be required.

4. It would be extremely interesting to apply the present formalism to the
problem of N2 broadening of HZO in the far wings. It is known, experi-

mentally, that N2 broadening leads to a greatly reduced continuum ab-
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sorption. From our present point of view it is tempting to speculate
that this reduction is related to the small rotational constant
(2 cm-l) for NZ‘ which in turn implies much smalier changes 1in rota-
tional energy in the collision processes.

Deep resonant and true bound states may be important, including tran-
sitions from bound to continuum states. The present formulation is not
applicable to the bound state problem; however, the singie-perturber
approximation whicn concentrates on the interaction Detween a singie

radiator ana perturper should remain valid.
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LIST OF TABLES AND FIGURES

1

I TABLE 1: Summary of absorptior for w=500 cm * for various temperatures.

v Only dipole-dipoie collisions are included.

TABLE 2: Summary of absorption for w=500 cm.l for various temperatures. Al
three interactions (dipole-dipole, dipole-quadrupole, quadrupole-

dipole) are included.

TABLE 3: Summary of absorption for w=1000 c:m-1 for various temperatures.

Only dipoie-dipole collisions are included.

TABLE 4: Summary of absorption for w=1000 cm.1

for various temperatures.
A1l three interactions (dipole-dipole, dipole-quadrupole, quadru-

pole-dipole) are included.

FIGURE I: A schematic of the total isotropic potential, Vo(r,1), for 1>0.

Three values of the translational energy & are indicated.

18]
—4
(D]
C
X
m
ro

Temperature dependence of the linecenter (impact) halfwidths. It

is assumed that a power low of the form
I(T)/T(296) = (T/296)"
is approximately valid so that the quantities plotted are

In [r(T)/r(296)] vs n [T/296] .

.365.

The slope, m, from the figure is found to be m
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APPENDIX A
Derivation of The Single-Perturber Approximation from the
Autocorrelation Function in the Time Domatn
In th's Appendix we cerive tne singie-perturper approx-mation ‘rom the
Lime-doma'r treatment o0f the dipoie autocorreiation functic~. as presentec in
Ref. 5. From Ref. 3 we make use of Eqs. (3.20b). (3.25). (4.i3) t-rougr
(4.15), anc (4.27). (4.28). These egquations ignore M-sums and Clebscn-Gorcan

coefficients, and, for simplicity. we continue this omission.

in seconc orcer perturbation theory in the anisotropic interaction. the

dipoie autocorrelation function can be written

Bift) = exp (Npg IKdD) + K() + Kqu]} . (AD)

The terms K. (%), K.(t) correspond to Anderson's sz(outer) terms, while Kif(t)
corresponds o sz(inner). We shall ignore Kif(t) for the reasons given at the

end of Section 2.

The expressions for K_, K, are
f i

1
KO = - fir & eepel) L I<aviBitny, )
Jk gk’
1 -
0= - g Do) L i<avigsri.

wnere,  for simplicity,

a> = Jka>
B> = jf,J'k'>
ul> = j.;\_]k>

B'> = ‘jf'J.k'>
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We also cefine ﬁuGB:EG-EB and ﬁua.5.=sa.-es..

The time agependence is contained in tne functions

1
f(t) = z;a; [1 - cos(wqghl

- waﬁ"' [wat - sin(waBt)] ' (A%)
- 1 hw .4
f@t) = -Q)—BT - 96 a B COS(O)GIBJ)]
a' ’
i ) Bhw_ .a.
+ Do ["’a'B'(t -iBhy-¢ @B sin(we gl - (AS)

Tne FDT asymmetry between tne final Eg. (A4) and initial €q. (AS) is contairec

in the temperature dependent Bﬁwa factors in £gq. (AD).

IBI

The single perturpber approximation assumes thiat the far-wings wiii De
governed by times sufficiently small, and censities sufficiently iow tnat Ea.

(Al) may be approximated by

i) = 1 + NpKet) + NoKi(t) (A6)

That this is as much an expansion in density as in small time can be appreci=-
ated by noting that one obtains nonsense if Kf(t),Ki(t) are expanded in power
series = tnat is one obtains nonsense if one attempts to Fourier transform the

aower series expansions.

Wwhen we take the Fourier transform of Eg. (A6), the first term leads to a
delta function singuiarity at the line center, WIwe This nas been roted in
Baranger's discussion of the singie-perturber approximation. Moreover,

Kf(t),Ki(t) also contain additional singular contributions at the line center.
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The singuiar contributions are connected with the nonoscillatory terms in Egs.
(A8) ana (AS5), “.e. the terms which deo not contain a sine o~ cosine variaticr

Trese singquiar terms contribute only at the “<‘ne center anc are <o Ne Cos-
ccrdec fnotre wirgs.  A: cSiscussec by Baranger, the singie-perturber apprex -

maticn is ngt va ic at the 'ire center.

- .

I we now discard the nonoscillatory terms in Eqs. (A4) and (A5). we ob-

. (A7)

(A8)

wnere we note the difference in sign in the arguments of the time-aependent

exponentia’l factors.

With the above simpl:ificaticns, the Fourier transform

oo .
1 —i{w-wyit
diw) = b _L dte : d)"(t) (A9)
can pe performed trivially using
©
—5;?;___§; dte
= 6[501[3 + h(w - wg)l (A10)

o
1 -iOJ-O-%—O),'t
S ) e )
-

= 6[60’6’ - h(w - w)l (A11)
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For o‘.f(w). weé obtain

|<a|viB> 2
d.dw) = N Eg(e)g(e) 2 « 0eq + hw - hwg)
if€ p G STk ' €3 of fi

& } ’ ! h
+Np L ele) eley) Y _i<wivi>iz 96 W
Jk

@B e - hw + hwp) . (A12)
ii'\,'k’ GalBl aﬁ fi

By maxing use of the deita functions in this expression. we 5dtain

T (& - hw)? ’

Pi(w) (Al3)

where the naifwidth function is given oy

P(w-wﬁ) = Np % oley) eley) jﬁ' i<a!ViB> 2.1 5(ea6 + hw-hwﬁ)
f

Bhio-o, T >
+ e N ole ) ol€e) i<a’' V3> 27 §enq - hw + hwg) (A14)
P VK ik af f

This is identical to Egq. (34) of tne text which was obtained from the T-

matrix theory of Ref. 9. Equation (Al3) differs from Eq. (33) of the text Dy

a factor of nraC’ the radiator density.
b
b
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APPENDIX B

Miller and Poll Normalization of Translational States
We corsiger tre guantity ir Eaq. (37)

sum = N Z g(ek)<k;V;k'> <k'|\V'k>, (
kk'

(&9)
b
~—

_55
Y e Pkekiviks <kVik>

_ Nper kk’
) ' 22
_1_ "Bfk ( 4)
gLe
or K
n
er -Be
sum = —per E e k<k;V]k’><k’iV§k> (23)
Z kkl
witn n =N /7 the perturber number density, and

2= T1T L oP% (84)

k

. _ . 2,2 . .
the translational partition sum. Witn sk=ﬁ k“/2m, this evaluates to give

372
P4 =(—é?r2§-——> ' (B5)

A particulariy convenient set of basis states k> for the present prob-

‘I’k(lT; = <rlk> = ng?(o. @) Rp(k: 1), (26)

where Y is a spherical harmonic, and R.'(k:r) is a radial wavefunction with the
Miller ard ®o7° normalization. This is a normalization to unity within a

‘arge but finite racdius RO‘ according to

RO
(B7)
radr Re(k; R =1.
0
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Tre asymptotic form of tne radial wavefunction is

2 sinfkr - 201 + §p(K)]

q
Rp(k; r) k .
¢ r - oo Ro kr (2:)

Lo

wrere §,(k) s a phase snift.

Next, 1t 1s converient to define new waverunctions accorcing o

Ty |21 .
Rytki 1) = Ry Tr ulkin (

n
Ne)
~

rom £c. (B8) the ¢'s wiil nave tne asymptotic form of pure Sine waves, - .e.
@ylk: 1) = sinfkr - val7 + 6p(k)] (227
r — oo
Thus
W N — 1 -2_. Y 0 k- ~a .
K = —— R, gm0 @) dp(k; 1) (811

_EL_ R N
Ry | kfmglf) . (812)

wnere we have defined
= 1
Riem,(") = Yem0: @) —— oyik; 0 (813)

:n Dirac notation we write this

2
k> = R ;kam> . (B14)
(o]

Now Miller and Poli's prescription for computing a "short-ranged" guan-
tity, e.g. a matrix eiement of a multipole interacticn whicn vanisnes as re*=

.

is that sums over k can pe replaced by

E—.E=Z§dkfi. (£15)
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Aner Z3.5 (E14) anc (2I5) are inserted into £q. (B3), we octain

sum = —Pe" <_2_> DD

z L {my €'my,

o
s _Bek S , Ny, VIR B16
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APPENDIX C

Clebsch-Gordan Albegra

we sna’. Iorsiger tre sum (J.) term as given by Za. (44). Evaiuation of

sum (J.) orcceec: ir a similar fashion.

we begin tne cafculation by noting that the three magnetic quantum num-

«Q
1]
3
w
3
3
3
a
O
3
O
r
O
o)
[
o
b

in the V~matrix eiements. Tnese three sums can

Ze performed immediately, and simoly give
E Z 6m', mi;
mm;, m
. (jf1mfmljf1jimi)(jf1m',m‘;jﬂjimi,)

)&
2 + 1 Mg, Mg - (C1)

we use the aquove Kronecher delta to perform the Mg, sum, and then we change

scme names 0F qummy summation variabies to provide a simpler notation. Spe-

y., we iet

3 - 3
Jfll vFI

mfu - m."
m1 > m
my, > m'

Tmis yields

sum (jg) = E Oey + hw - €0, (C2)
Iy

where Q is the "auantity"

1 E E E (viz, i

@t ) e Mt o (c3)
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V = <jgmg IM; Rypm i Viipmys: J'M Ryoprm > (C¢)
] Here the states invoived are actually gprocucts. -.e SemeMn =
= M= R '
. a6l DT B
e
~ . .
. Cioole-Cipcie Case
(S .
L For the dipoie-gipole case
e
- 1 - - - = . -
. V= W pa-3prpaer) (C3)
L wnere U,.L, are tne raciator ard perturper dipoie moments and ris tne reia-
. . <
A tive coordinate.
The vector r can be written
- 4T E -
f= 5 Yim @ ©) €m_ - (<6)
mr=0,¢1
Here the Y's are spherical narmonics (Condon anc Shortley phases), and the ¢'s
are given py
- s - X + iy - - X + iy
€g=2,€44= —F—— € e — '
0 1 NEY ' +1 V3 (C7)
The ¢'s satisfy an orthogonality rule which can be written as
€ - m.,
m e« ¢€ - T
r _mr’ = ( 1) 6mr" ' (C8)
r
or as
é . é = 6m w M ~
m, "m, (C3)
"he dipole-dipole interaction can then be written .
1 — —
V= = e .
3 4w E
- __r3 -——3 2 Y1m ()] Ylm '(0. o)
m mr' 11 r
“ht€m M2t € (C10)
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“he Dasic strategy for reducing all tne multipole interactiors tz a cor-

~
9

verient form is tc use the addition theorem for spherica: “armCﬁ*:;Z

Yo,m, @ @) Yo,m. 6. @)

(2?1 + 1)(2[2 + 1) 2
4T (2?3 + 1)

. E Yejm:’(e’ w)
. (e|[2m1m2]f,[2fam3) - (&(2 0050‘72[30) - cil)

in the dipoie-cipole case, the oroduct Y,eY,, via the adcition tneorem, oro-
- Py

“ guces a YC (which cancelc the first term in Eq. (Cl0)) and a YZ‘ The resu’% *s
r

.. —

- 3 Var (1100 1120)

2 v = -

k T s

b-.

3

- . L X (1imme i 112me) Yo (0, @) (11 » € ) (2 = €y ) - (C12)
L:', mrmr, M, r r

New tne Wigner-tckhart theorem (Eq. (20)) can convenientiy be put in an

=perator form

;= E u(m])é ’
my 300 + 1 m

where, from Eq. (20). the matrix eiement of the operator u(ml) are given by
<|'mf|u(m1)!]f,mf,>
= <igl g > Gt memedp gy (C14)

From £g. (C13) we then note

E. émr = E u(m,) Em’ R ém
m; =ov 11 r

m
= E [L(m1) ("1) f amh -mr !

- m
B = T pemy) (C19)




L r.Y.w “wxr"j.“f‘w_‘_‘r‘-—_ Y, W, W L

T Y .

The dipoie~aipole interaction then assumes its final form

3 Var (110011120)
r3 N

E E (11mrmr,:112m3)Y2m3(0, o)
mrmr, mj

mr + mr,
* (-1) “‘(-mr) “x-mr')

operates De-
3

states. u,(-m ) operates petween jem.> raciator states. anc
1 '

in this form tne matrix eiement is easily evaiuated, qu
[

tween R .
kim

uq(-mr.) operates between JM- perturber states. The compiete matrix e ement
&

V in Eq. (C4) can then be written

_ 4_ (1100} 1120) o
V = 3 \/_4]' \/g <Rkel —r3 y ‘er?r>
E E mr+mr,
(-1) (11 mrmr,|112 ms)
mrmr, m;

* <YpmiYom, @ @) Ypm:>

o <jgmglpi(-mp)ljgmg > <IM Hpa-mp) M7 > (c17)

Matrix elements of the u operator are obtained, in terms of reduced matrix el-

ements, using Eq. (Cl4). Matrix elements of the Y operator are optainec from

the formula16

< Y[m l Y[ij(ov ¢) l Ye'm' >

s

(205 + 1420 + 1)
3 * N2+ D) g gimame 038:8m) + (€000 £,600) (2:8)

a2l + 1)




T

he adove formula obzains by combining the addition theorem, Eg. (Cii). witn

tne crihegenality relation for spherical harmorics

<Y Y > = g
. e‘m“ ez.mz 5?,,(’2 6m,,m2 . (C158)
Loon sauaring wne matrix element ir Ea. (C17) and inserting <nts Zg.

(33), tne sums over the m-indices can be carried out using one 0¥ tne “urca-

menta' corthogona'ity relations for Ciebsch-Goraan coefficients, namely

E (1j2mimz {jej2 ' M) ajamima i jejaim) = 6i'i om,m’
m;m, ' (22C)

and m'=m

far t'=
or Tor

v

E (ri2mima|jijzjm)2 = 1

.
m,m, (c2l)

[
3

carrying out this exercise, ane has to make use *of symmetry properties of

DR
coefriciarig, tor i3

o)
[ep)

The *inal results for the dipole-dipole case is
2 .
Q = 3 (20 + 1)2J + 1)€2001 £2¢°0)2
. H 1 ‘2
| <Pyel =5 1Repr>.

| | (c22)
cI<igtmllip> 12 | <dlipg| 107> 12

Upon inserting Eq. (C22) into Eq. (C2), we arrive at the result for

sum (J¢) aquoted in Eq. (44) of the text.

Cipoie-Quadrupole Case

The basic strategy of using the addition theorem is the same as before
but a good deal more complicated to carry out. We present only a few of the

details here.
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The dipcie-quadrupole interaction can be written

"l‘.
LA

3 1 . — —_—
V= — — e Qe -Sreidi«Qor e
2 T Rre Qe w-5r«pr-Q-.n) (223

IS
P

n thnis expressior we snail take § to be tre dipcie moment 07 tne ~actatcr anc

T
g
L 4

G w0 be tne quadrugoie moment tenscr of the perturber. The reverse

criocess

50 2CCurs ang nas been inciudec in our calcuiations.

LR
a

Tne traceiess guacrudoie moment tensor s given by

b Q= E e(r,r; - -;— r. 2'_—) (C24)
: i

¢
x'l ’

-—

where | is the unit tensor.

in reaucing Eg. (C23). we use Eg. (C6) for r, the operator form cf the
wigner-Zcknart theorem empodied in Eas. (Ti13) througn (CiS) for u, anc fi-

-

nally, a particularly useful tensor Wigner-Eckhart theorem for (. nameiy

Q= > Q. (-my) T, .
M3=0,41,42 op -my (C25)
rere
T = [ (11mymzj112m;) €., €
-m my °m (C26
: 3 m=0.£1 m=0,z11 v )
where the matrix eiements of the operator OOD(-M3) are given Dy
<J1M1;’Qop(—m3)[JzMz> = <J1HQHJ2> (V22 -Mz-myJ;2J, "Mi) (€C27) .

i

and where <J, Q J2» is a reduced matrix elemen<.

JE o G T T M e JPR L TR S SOy
e - * . .. - v -t - . . . - - 3 K . . .

P TR T P P PP e R U S _‘._.‘.._‘.-_‘.-."- _"-(, PR ..:-... -t . -t SO - . " Sy,
EE R ,{‘Q_'.-. -_':-_' e Ol N ] -."\1.0‘ RS d.x‘:n IR S, - -, P




By repeated use of the addition theorem to Eq. (C23)., the cipoie-quadru-
25

Tl LTS,

coie interaction can pe reduced tc the form

4 1
V= - T 5 1
7 r4

VT
CL A

) Y 0 uemy

3
m.=0,+1 mM3=0.£1,42 m’'=0,+1

* (= )™ Qqp(ma) (12 mp mai12 3m”) « Y540, ) (c22)

“ne matrix eiements of V above can now be obtained using Eas.  (T14)
(2:8), and (C27). Upon squaring the matrix eiement, inserting intc Eg. (Z3),
and carrying out the m-summations using E£as. (C20) and (C21), we find as thre
€ing’ resy’': for the gipole-quadrusc’e case

Q= (—'})2 20 + 120 + 1)

- (£300:¢3(°0)2

2
. I<Rkt7" - (Rki?;>12

ré

< I<igiipllip>12 | <dilQ]1d'>]2 (229)

This can be readily be compared to Eq. (C22) for the dipoie-dipoie case. The

diffarences are

2 ()2 |
L (C305)
r’ ré
(£200:€20'0)2 —» (£300'£3£'0)2 (C30c)
| <Jlinl[d'>(2 — [ <d]]Q[[J'>]2 (C30d)
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From the CG coefficient in (C30c) above, the selection rules for the di-

pole-dipole case are (1'-1)=0,22; for tne dipole-quadrupoie case (*'-1)=+. =3.
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It should be noted for both the dipole-dipole and dipoie-quadrupole
cases that the final result invoives oniy the highest 1 value generated
by the addition theorem. This has peen demonstrated to be true for aitl

the multipole interactions (C. Gray, unpubiished notes).







