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1. INTRODUCTION

1.1 BACKGROUND

The detailed structure of the gravity field is infer-
red from data collected by a variety of instruments (sensors).
These sensors measure different quantities and have different
spectral responses and noise characteristics. Gravity esti-
mates are obtained by combining measurements from all sources.
From a practical point of view, it is of fundamental importance:

° To determine the accuracy of gravity
estimates obtained from data already
collected

® To determine what additional data and sur-

vey characteristics would yield a required
accuracy of the estimates of gravity in
a given region.

1.2 STUDY OBJECTIVES

The objectives of this study were to develop a method-
ology and a computer program for quantifying the errors in the
estimates of gravity available from multisensor survey data.
Survey types explicitly considered in this study consist of
any combination of

° Satellite radar altimetry

° Satellite-to-satellite tracking (SST) in
a high~low configuration

1-1
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o Land-based/shipborne gravimetry

° Airborne gradiometry.

Other survey possibilities can be easily incorporated into the
formulation.

A separate phase of this study dealt with the estima-
tion of weapons systems' target miss induced by errors in the
gravity estimates obtained from multisensor survey data. The
results of this second phase of the study are presented in a
separate, expanded version of this report.

1.3 TECHNICAL APPROACH

The approach utilizes a flat-earth approximation that
furnishes algebraic frequency-domain interrelations among geo-
detic quantities. An extension of classical Wiener smoothing
techniques (Ref. 1) permits the computation of the average
power spectral density of the post-survey gravity residuals.

Since the Wiener smoother is optimal in the sense of
minimizing the mean-square residuals, the results can be viewed
as representing the best possible use of the survey data.
Actually, there are some approximations involved in the evalu-
ation of the spectral density of the residuals and, more fun-
damentally, in the use of the flat-earth formulation with its
entailing loss of accuracy for wavelengths comparable to the
radius of the earth. Nonetheless, since most of the energy in
the gravity anomaly, deflections of the vertical, gravity dis-
turbance vector and the gradients of gravity is contained in
the frequency band where the method yields accurate results,
the analysis does provide an accurate measure of the perform-
able accuracy of the estimates of these quantities obtained

from multisensor survey data.




s

-
R
-

.
T
.
'a ®
L

e

R R
Sy
LR

Figure 1.3-1 presents a graphic illustration of the

multisensor survey analysis methodology. The circle repre-
sents the results that are obtained through the application of
the techniques discussed herein. They are the statistics of
the post-survey residual gravity errors. The ovals represent
the quantities that must be specified in the evaluation of the
errors. These are: a statistical model for the unsurveyed
anomalous field, sensor error models, and the characteristics
of the survey. The box represents the operations performed on
the input specifications to obtain the statistics of the resid-
ual gravity field.

R-82394a

ERROR
SENSOR SURVEY SPECTRA RESIDUAL
ERROR ERROR GRAVITY
MODELS ANALYSIS STATISTICS
SURVEY
DESIGN
Figure 1.3-1 Multisensor Survey Analysis Methodology

The field model is the a priori power spectral density
of the anomalous potential at the earth's surface. The statis-
tics of all other field-related quantities are obtained from
this power spectral density through the use of flat-earth re-
lations (Ref. 2). The field model describes the local behavior
of the gravity field in the vicinity of the region of interest
(e.g., a missile launch point). Either analytical or empirical

models can be used in the analysis.
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A computer program was designed on the basis of the
theory discussed in this report. A wide variety of survey
possibilities were simulated. The results of these simula-

tions are included and discussed in this report.

1.4 REPORT ORGANIZATION

The organization of this document is as follows:
Chapter 2 presents an overview of the methodology for the analy-
sis of multisensor gravity survey residual errors including
error models for the various survey possibilities considered.
Chapter 3 presents a collection of results obtained through
the use of the techniques described in the previous chapter.
Chapter 4 presents a summary of the information contained in
this report and discusses several possible extensions of the

analysis,

Various appendices complement this report. Appendix A
presents a succinct compilation of those concepts of Fourier
analysis necessary for the development of the theory of Chap-
ter 2. Appendices B and C discuss additional technical aspects
of the analysis. Appendix B gives the derivations of the flat-
earth frequency-domain relations. Appendix C presents detailed
derivations of the formulas for the spectral density of the

post-survey residuals.

1.5 A NOTE ON TERMINOLOGY

It is customary to refer to functions that assume ran-

dom values as random processes when these functions depend on a

single variable or coordinate and as random fields when they

depend on two or more variables or coordinates (see, for exam-

ple, Ref. 3). To avoid confusion, the noun field is used only

1-4
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in reference to the gravity field. Functions that assume ran-
dom values are referred to as random processes in n-dimensional
space or simply as random processes when the number of inde-

pendent variables is clear from the context.

Random processes can be scalar or vector-valued depend-
ing on whether to every point in space there corresponds one
or more than one real numbers. For the purpose of this report,
a vector denotes any list of numbers associated with every
point of the coordinate system. This list of numbers need not
be a physical vector. For example, a three-dimensional vector
process in two-dimensional space can consist of the undulation
of the geoid, the gravity anomaly and the north component of
the gravity disturbance vector over the earth's surface.

The term geodetic quantities refers to the collection

consisting of the anomalous potential, the undulation of the
geoid, the deflections of the vertical, the gravity anomaly,
the gravity disturbance, the components of the gravity dis-

) turbance vector and the gravity gradients. Linear combina-
133 tions of these quantities are referred to as field-related
b quantities.
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2. ANALYSIS OF MULTISENSOR GRAVIMETRIC SURVEY
RESIDUAL ERRORS

This chapter presents a method for determining the
statistics of the errors in the anomalous field estimates ob-
tained from multisensor survey data. The method, which is
based on an extension of optimal Wiener smoothing theory, per-
mits a characterization of the errors in estimates of point
and spatial averages of the gravity field in wavelengths which
are small compared to the radius of the earth. Survey types
include any combination of satellite altimetry, satellite-to-
satellite tracking (SST), land-based/shipborne gravimetry and
airborne gradiometry.

In the analysis, the round earth is approximated by
an infinite plane (flat-earth) which practically coincides
with the earth in the neighborhood of the region in which esti-
mates are sought. Frequency-domain mappings (transfer func-
tions) are used to related field-related variables in a concise
algebraic manner. The anomalous gravity field is viewed as a
realization of a stationary random process on the earth plane.
Values of the field above the earth are obtained via the flat-
earth upward continuation formula of Heiskanen and Moritz
(Ref. 2).

Frequency-domain techniques are extensively used in
this chapter. Appendix A contains a summary of the relevant
concepts, definitions, and results of Fourier analysis.

! This chapter is organized as follows: Section 2.1
% presents the frequency-domain relations between geodetic quan-
“ tities. The expression for the average PSD of the post-survey
A

N

| 2-1
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residuals is discussed in Section 2.2. Survey geometry and
error models are described in Section 2.3.

Foet 2.1 FREQUENCY-DOMAIN FLAT-EARTH RELATIONS ’ .
i

Exﬁ To determine the residual gravity errors resulting

o from the performance of a multisensor survey, it is necessary

_ to relate in a geophysically consistent manner the different

?%f types of gravity data collected by the survey.

s Geodetic quantities are interrelated by integro-

differential operators. For example, the deflections of the
vertical are given in terms of the gravity anomaly by the for-
mulas of Vening Meinesz, the gravity disturbance vector is the
gradient of the anomalous potential, etc. These relations
imply specific correlation structures when the gravity field
is viewed as a realization of a stationary random field.

A similar observation can be made for the post-survey
residual errors. Since the errors in the estimates obtained
with any geophysically consistent data processing algorithm must
satisfy the same mathematical constraints linking the estimated
variables, the statistics of the errors will display the same
correlation structure present in the original quantities.

With the use of the flat-earth approximation, the
relatively complex integro-differential operators become simple -
algebraic relations between Fourier transforms. Ratios between
Fourier transforms of geodetic quantities turn out to be ra- ;
tional functions of frequency denominated transfer functions*.

In the case in which the field is seen as a realization of a

*The term "transfer function" is borrowed from an analogous
concept in Systems Theory.
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random process, ratios and products of transfer functions re- |
late the power spectral and cross-spectral densities of all |
field-related quantities.

Table 2.1-1 presents in the last column the transfer
functions from anomalous surface potential, To, to the geo-
detic quantities listed in the first column of the table. The
notation used throughout this report for all geodetic quanti-
ties is given in the second column of the table, while the
third column presents the space-domain relations between each
of the variables and the anomalous potential. The constant g,
used in the table represents the mean value of gravity of the
earth (go < 9,798 m/secz). The interpretation of each of the
transfer functions in Table 2.1-1 is discussed next.

Let To(g) be the Fourier transform of the anomalous

surface potential, i.e.,

o0
'}o(g) = [[To(g)e'iznq—(’? dxdx, (2.1-1)
-0

In the above equation, x = (xl,xz)T denotes the position of a
point on the plane with Xy and Xy measured in the east and
north directions, respectively, s = (sl,sz)T is the vector
planar frequency with S1 and 9 representing frequencies meas-
- ured in the east and north directions, i = -1, and <x,s> is
the inner product of the vectors x and s.

The Fourier transform of any of the quantities in the
first column of Table 2.1-1 can be obtained by multiplying
T,(s) by the corresponding transfer function in the last column
of the table. For example, the Fourier transform of the anoma-
lous potential at height z is given by

T. VEERE- F BRSSO TN T
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TABLE 2.1-1
TRANSFER FUNCTIONS FROM ANOMALOUS SURFACE POTENTIAL
TRANSFER FUNCTION
QUANTITY sympoL | RELATION TO ANOMALOUS |  FroM ANoMALOUS
SURFACE POTENTIAL
Anomalous Potential at Height z T, T, e 2nsz
Undulation of the Geoid N To/8q 1/8,
East Deflection of the Vertical n -(a'l‘o/axl)/go -i2nsl/go
North Deflection of the Vertical ¢ - (3T /3x,)/8,, -i2nsy/g
Gravity Anomaly ag -(aTz/az)|z=o - ZTO/R 2ns - 2/R
East Component of the Gravity M aT,/3x, intsle'Z"sz
Disturbance Vector at Height 2z 1 z
North Component of the Gravity My 3T, /3%, iZnsze'Z"sz
Disturbance Vector at Height z 2 z
Vertical Component of the Gravity Fz 3Tz/3z -27:5«3’2"sz
Disturbance Vector at Height z
Gravity Disturbance at Height 2z 6g -aTz/az 21!se'2"sz
East-East Gradient at Height z r aZT /ax2 -&nzsfe'znsz
XXy z 1
North-North Gradient at Height z alr /ax2 -anzsge'znsz
X Xy z 2
Vertical-Vertical Gradient at r alt /az2 4nlsle2nsz
Height z zz z
. , -2
East-North Gradient at Height 2z rxlxz asz/axlax2 -bnzslsze nsz
. . . 2 L2 -2nsz
East-Vertical Gradient at Height z r 3°T_s/3x,3z -i4n“s,se
X2 z 1 1
. . . 2 L2 -2nsz
North-Vertical Gradient at Height 2 r 9°T_/ax,9z ~i4n s,se
X,z z 2
2, 2,172
*g =
s (sl+sz)
T (s) = e 2"S% T (s) (2.1-2)

A complete derivation of the transfer functions presented in

Table 2.1-1

is given in Appendix B.1l.

In particular,

it 1is

shown there that Eq. 2.1-2 is the frequency-domain equivalent
of the flat-earth upward continuation formula of Ref. 2.
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In the case in which the surface anomalous potential
is seen as a realization of a stationary random process, all
field-related quantities turn out to be jointly stationary.
In fact, it is shown in Appendix B.2 that if w and u represent
two vectors of field-related quantities with

W (wl, Wos ens W ) (2.1-3)

P

and

u = (up, uy, e, uq)T (2.1-4)

then the cross-spectral density matrix of w and u, ¢ (s), is
given in terms of the power spectral density (PSD) of the sur-

face anomalous potential, ¢T T (s), byT
o’ o
=G F 2.1-5
¢E’E =GF d’To’To (2.1-5)
where
G(s) = [6)(8), Gy(s), ..., Gy()IT (2.1-6)
and
E(s) = [Fy(8), Fp(8), ..., Fo()1T (2.1-7)

are the vector transfer functions from surface anomalous poten-
tial to w and u, respectively.

As an example, consider the situation where the vector
w consists of three quantities: the east deflection of the
vertical, the north deflection of the vertical and the undula-
tion of the geoid so that

tA superscript asterisk denotes complex conjugate when attached
to a scalar quantity and conjugate transpose when attached to
a matrix or a vector,
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‘_‘7 = (n’ §, N)T (2-1'8)

and suppose the vector u has two components: the undulation
of the geoid and the gravity disturbance at height z; i.e.,

u= (N, 6g)7 (2.1-9)
The vector transfer functions G and F are, from Table 2.1-1,

G(s)

(-i2ns /g, -i2ns,/g,, l/go)T (2.1-10)

and

E(s) = (1/g,, 2nse”2ms%)T

Therefore, from Eq. 2.1-5, the cross-spectral density matrix

2.8 ®n,6g
¢E’E = ¢§,N ¢§,6g (2.1-11)

*NN ON,5g

is given in terms of the PSD of the anomalous surface potential,

[ , by
To’To
-iZnsl/go2 -iémzslse'znsz/go
¢!’E(§) = -iZnsZ/go2 -i&nzszse'znsz/go ¢To’To(§)
l/goz 2nse-2nsz/go
(2.1-12)
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2.2 MULTISENSOR SURVEY ERROR ANALYSIS

The frequency-domain flat-earth relations discussed
in the previous section together with an extension of Wiener
smoothing techniques form the basis for the analysis of the
performable accuracy of the gravity estimates obtained from
multisensor survey data.

The problem of determining the errors in the estima-
tion of the gravity field from multisensor survey data can be
formulated in the following manner: it is desired to charac-
terize the differences (estimation errors)

sw(x) = w(x) - wo(x) (2.2-1)

between the true values of the process w(x), and the best esti-
*

mates g°(§). The components of w are any collection of field-

related quantities.

The estimates w°(x) are optimally obtained from n
classes of measurements

Fg = {QB(§)I§ e Mg}; B = 1,2,...,n (2.2-2)

corresponding to the measurements that constitute the survey.
Each class rB represents a collection of vector measurements,

gB, in which all measurement points form a rectangular grid

= M.

a B

-“__

py The data,.gﬁ, are linear combinations of field-related
i‘ quantities, EB’ corrupted by additive noise, EB; i.e.,

<.

2 *In the mean-square sense.
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P (x) = u (x) +E_(x); X e M (2.2-3)
oy In addition, the measurement errors, B’ g =1,2,...,n, are

. taken to be stationary gaussian processes independent of the
N .
,Ey gravity field.

a0

5

o The grid MB (see Fig. 2.2-1) is completely character-
- ized by three quantities: a rotation matrix, GB’ determined
f; by the orientation of the survey tracks with respect to the
;3 east direction, a translation vector EB which locates the posi-
o tion of the origin of the grid in the east-north frame, and a
‘ ; spacing matrix J,, determined by the separation between survey
;I; tracks and between samples along a track. In terms of the
B .. . . .

5& quantities in Fig. 2.2-1, GB, Eﬂ and Jﬁ are defined by
oS
o cos 6 -sin 6 )
S5 eB = (2.2-4)
\Q sin 0 cos 8

o
‘R
by =0 (r!, r5)7T (2.2-5)
J g = 9 (1, 1) ‘
2

>

$ﬂ' and
.ﬁ__ ti 0

3 JB = (2.2-6)
_1_.' O té
y e

3{ For the survey possibilities considered in this report,
'd:n data can be divided into several classes, FB. These are -
o

o . Two scalar-measurement classes for each X
b satellite radar-altimeter mission. One
[ class for the ascending passes and another
' class for the descending passes
l‘--*
--"g

4% 1

Ca
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Figure 2.2-1 Definition of the Grid MB

) Two scalar-measurement classes for a
high-low satellite-to-satellite tracking
mission. One class for the ascending
and another for the descending passes of
the low satellite

° One scalar-measurement class for a land-
based or ship gravimetric survey. The

A differences between land-based and ship

surveys are reflected in the error models

*

.ll .l. .,

'-"."A.-‘AI

vy e v

L] ‘l .0

S o One vector-measurement class for an air-

Y borne gradiometer survey. Each vector

Tn measurement in this class consists of

e six entries corresponding to the two

“ outputs from each of the instruments in

e a gradiometer triad.

i

Mg Appendix C presents a detailed analysis of the problem
o formulated above. The statistics of the post-survey residual
i errors at any given point are shown to depend upon the relative

2-9
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position of the point with respect to the measurements. The
average spectral density of the residuals is then defined by
averaging over all possible relative locations with respect to
the measurements. For the residual surface anomalous potential,

the average spectral density is given by .
bor o7 = 1 (2.2-7)
o’ "o L

F, ¢ F, + 1/¢

where EB is the vector transfer function from surface anomalous

potential to the quantities measured in class B, ¢§ ¢ is the
B’=p

spectral density matrix of the errors in class B (see below)
and ¢r T is the PSD of the unsurveyed surface anomalous po-
o’’o

tential obtained from a gravity-field model.

The spectral density matrix of the errors in class B }

consists of two terms:

g (s) + o (s) (2.2-8)

® (s) = @
Spole R e

=P

E g is the unnormalized” spectral aensity
BB
of the (discrete) measurement error process gB of Eq. 2.2-3.

The first term, &

Explicit expressions for & are given in Section 2.3 for

Eg Eq
the various survey possibilities considered. The second term,
- ¢ s is the spectral density matrix of the aliasing errors
B 4g+4g

in class B computed from

i 1, o -1 -1
*ag.a5(2) ;‘:‘B Fp(s+glg ) Egls+0glg ) &p g (s%6pdg 1)

(2.2-9)

*See Appendix A.
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where A = (Q,m)T is a vector with integer components and the
set QB is defined as

Qg = (AIAZO, I1s*0 3z Al < 2115113 (2.2-10)

5 = (1/2ty, 2T (2.2-11)

is the vector of Nyquist frequencies associated with the grid
MB and |[|{+|| denotes vector magnitude.

Equation 2.1-5 is used to determine the statistics of
residuals in quantities other than the surface anomalous poten-
tial. If w is a vector whose components are arbitrary field-
related quantities, the spectral density matrix of the post-

survey residuals in w is obtained from

x
®sw.ow T EE Pst_,6T (2.2-12)

where G is the vector transfer function from surface anomalous
potential to w. The inverse Fourier transform of Pow Sw yields
b4

the covariance matrix of the residuals:

[+ -]
- i2n<x,s> - i
Row,suw'X) = _/:/“”5!,6‘_,,(_5)6 ds,ds, (2.2-13)
-00

from which root-mean-square (rms) values of the residuals in
the components of w are easily obtained by taking square roots

of the diagonal entries in Rég,ég(g)'
In many instances it is convenient to express post-
survey residual gravity in terms of spatially-averaged values.

Next, the formulas for the average spectral density of the
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residuals are particularized to the estimation of spatially-
averaged quantities.

Consider a square block with sides of length, a, paral-
lel to the east and north directions. Let x = (X, x2)T be
the center of the block. The a-mean, y2, of a field-related
quantity y at the point x is the average of y on this block,

i.e.,

x2+a/2 x1+a/2
-a -1
y'(x) = = J. y(x') dxidx) (2.2-14)
a x2-a/2 xl-a/2

- 1 1 T
where x' = (xl, X5) .

Now, suppose that the vector of quantities to be esti-
mated from the survey data consists exclusively of a-means.
Let Qa be the field vector to be estimated. It is shown in
Appendix C that the vector transfer function from anomalous
surface potential to the estimated vector is h G where G is
the vector transfer function from anomalous surface potential
to the vector w whose a-means are Qa and

- sinnasl sinna52

h(s) = mas; nas, (2.2-15)

is the transfer function associated with the a-mean averaging
operation. Consequently, from Eq. 2.1-5, the average spectral
density of the residuals in the a-means, ¢,-a .-a, is

6w, 6w

*A
-a=66 |h?e

(2.2-16)

¢,.-a
Sw™,6 GTO,GTO

with ¢6To’6To given by Eq. 2.2-7.
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From Egs. 2.2-12 and 2.2-16, the spectral density
matrix of a-mean residuals can be expressed as
Ih12 e

(2.2-17)

Psw?,6ud ~ 6w, 6w

Thus, to evaluate the statistics of the residuals in the a-means
it suffices to multiply the spectral density of the residuals in
(the point quantities)Ag by the squared magnitude of the averag-
ing transfer function h as in Eq. 2.2-17.

2.3 SURVEY GEOMETRY AND MEASUREMENT ERROR MODELS

This section presents the geometry and the error models
associated with the following types of survey:

° Satellite Radar Altimetry
) High-Low SST
° Land-based/Shipborne Gravimetry

® Airborne Gradiometry

in subsections 2.3.1 through 2.3 4, respectively. Survey geom-
etry refers to the position of the measurements and the orien-
tation of the sensors with respect to the earth. Measurement
error models refer to the enumeration and characterization of
the various error sources which affect the individual
measurements.

The geometry and type of survey determine the rot«tion
: and spacing matrices GB and JB and the transfer functions EB
ﬁ from anomalous surface potential to the quantities being meas-
iy ured. These, in turn, characterize completely the aliasing

; errors once a field model is specified (Eq. 2.2-9).

1 2-13
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The measurement error models determine the spectral
densities $E g of Eq. 2.2-8. Explicit formulas for these
ZR Y2

spectral densities are given in this section.

2.3.1 Satellite Radar-Altimeter Survey

The geometry of a satellite radar-altimeter survey is
illustrated in Fig. 2.3-1. Satellite groundtracks are viewed
as two collections of parallel equally-spaced straight-line
tracks containing data at regular intervals along each track.

Two measurement classes are associated with the survey:
one class, A, corresponds to the ascending tracks; the other, D,
corresponds to the descending tracks. Let the grids associated

R-40095e
DESCENDING ASCENDING
GROUND TRACKS GROUND TRACKS
f N A )

Figure 2.3-1 Satellite Altimeter Survey Geometry

.
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with these two classes be MA and MD. Contiguous parallel
tracks are separated by a distance To in the east direction
and successive measurements along a track are separated by a

distance

1/2

Gm
t. 2 t_R € (2.3-1)
a 2 [<R+h>3]

where t, is the time interval between altimeter samples
(ta < 0.1 sec for GEOS-3 and SEASAT-1), Gme is the product of
the gravitational constant and the mass of the earth

(Gme = 3.986Xé014 m3/sec2), R is the radius of the earth
(R = 6.378x10" m) and h is the height of the satellite over

the earth's surface (h = 8.O><105 m) for GEOS-3 and SEASAT-1.

The angle a is the angle the ascending groundtracks
form with the east direction at the center of the region where
estimates are sought (the origin of the plane of the flat-earth
approximation). This angle can be computed from

) (2.3-2)
2y (KR, 372

R

(c0528 - COoSs
cos y - 0.058834 cos

tan a =

where 8 is the latitude of the origin of the plane of the flat-
earth approximation and y is the inclination of the satellite's
orbit (y = 115° for GEOS-3 and y = 108° for SEASAT-1).

The grids MA and MD have axes parallel to those of
primed reference frames (see Fig. 2.2-1) which correspond to
rotation angles of a and -o with respect to the east direction.
Let OA and GD be the rotation matrices of the grids MA and MD’

respectively. These matrices are given by
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cos « -sin o
eA = (2.3-3)

sin o cos o

and

(]
1]

cos o sin «o
D (2.3-4)

-sin « cos «

The spacing matrices JA and JD of the grids MA and MD
coincide with each other and are given by

Jy = Jp = a (2.3-5)

where L is given by Eq. 2.3-1 and

T, = Tg sin o (2.3-6)
The value of Te (Fig. 2.3-1) can be found from the equatorial

separation of the groundtracks, t by the simple formula

eq’

To = qu cos § (2.3-7)

Satellite radar-altimetry data furnish values of the
undulation of the geoid corrupted by measurement noise. Thus,
the transfer functions from anomalous surface potential to the
quantities being measured in classes A and D, FA and FD’ are
identical to each other and correspond to the transfer function
from anomalous surface potential to undulation of the geoid
given in Table 2.1-1; i.e.,

Fals) = Fp(s) = /g, (2.3-8)
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Measurement error models are discussed next. For sym-
metry reasons, the spectral densities of the errors in classes
A and D agree with each other when they are expressed in terms
V of the primed coordinate systems of their respective classes.
Thus, an expression for the spectral density of the errors,
$é,E(§')’ in terms of frequencies s' = (Sa’sc)T measured in
X the along-track (sa) and cross-track (sc) directions is derived
‘ first. The spectral densities of the errors in classes A and

D are then obtained in terms of east and north frequencies by

X suitable rotations of coordinate systems.

The Nyquist frequencies in the along-track and cross-
track directions are 1/21:a and 1/2tc, respectively. Since the
measurement error spectral density $é,E(§') is periodic in the
along-track and .cross-track directions with a period of twice
: the Nyquist frequency in each direction, it suffices to speci-
fy $é,E(§') on the domain -1/2t_<s_<1/2t_ and -1/21 <s_<1/2t .

The error E(Q) in the measurement at the point
Q = (j,k)T of any one of the grids M, or My is taken to be the

additive combination of three independent error sources:
E(Q) = N(Q) + C(Q) + B(Q) (2.3-9)
The terms N, C and B correspond respectively to

° Instrument noise and sea-state effects
(scattering of the radar pulse by ocean
surface waves)

° Uncorrected ocean-current dynamic height

° Post-adjustment bias-type orbit and tide-
correction errors.

o o
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The spectral density of the measurement errors, $é £ is the
sum of the spectral densities of the terms on the right-hand
side of Eq. 2.3-9; i.e.,

e & ! + & + & .3-

®E,E T ®N,n * ®C,c t %B,B (2.3-10)
First, consider the instrument noise and sea-state er-

rors N. These errors are independent from measurement point to

measurement point and from track to track. Their covariance is
Ry y(2) = 02 6(Q) (2.3-11)
N,N*= N - )

where Oy is the standard deviation of the error N in each meas-
urement (0N = 0.6 m for GEOS-3 and 0.1 m for SEASAT-1) and
where 6(Q) is given by '

sl if@=0

6(Q) = - (2.3-12)
lO otherwise
The spectral density 3& N is the finite Fourier transform of
RN,N:
~| ] - -i27'l<J Q,S'> -
¢N,N(§ ) = A(JA)}§:RN,N(Q) e A== (2.3-13)

where JA = JB is the spacing matrix of the grid and A(JA) =TT,

is the determinant of J,+ Since Ry y(Q) vanishes for all 70,
the spectral density ¢ﬁ Ny can be easily evaluated. The result
is the constant (white) spectrum

Next, consider the uncorrected ocean-current dynamic
height errors C(Q). Reference 4 presents a statistical model
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for the spatial distribution of the ocean-current induced sea-
surface height over the geoid as a continuous scalar process
defined in two-dimensional space, h(x'). The spectral density
of h is that of an isotropic third-order Markov model (Ref. 5)

given by
IOnOﬁﬁg
¢! . (s') = (2.3-15)
hoh (p2+(2ns")?)7/2
where oy (in m) is the standard deviation of the sea-surface

height given as a function of latitude by

o = 0.677 sin 8 (2.3-16)
and where l/Bh = 4.2x104m is the characteristic distance* of
the model. 1In Eq. 2.3-15, s' = ||s'|| = (s§+sz)1/2.

The spectral density ¢ﬂ,h is an instantaneous model
in the sense that it characterizes the spatial variability of
the sea-surface height at a fixed time. Actually (Ref. 6),
ocean-current induced sea-surface height does not vary sub-
stantially for time spans of the order of one day. However,
after a period of one or two weeks, there is no significant
correlation between the sea-surface height at the beginning
and end of the period. Consequently, the sea-surface height
model of Eq. 2.3-15 can be used to infer the behavior of the

errors C(Q) for a single track of data but cannot be used for

relating the errors in different tracks.

*The characteristic distance l/Bh should not be confused with
the correlation distance. For a third-order Markov process
the correlation distance is 2.903/Bh (Ref. 5). The correlation
distance of the sea-surface height model is 122 km.
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In practical situations, most pairs of parallel ground-
tracks chosen arbitrarily over the region where estimates are
sought correspond to satellite passes interspaced by periods
of several weeks. Thus, the ocean-current induced sea-surface
height errors on different tracks are modeled as being inde-
pendent of one another.

The spectral density of the sea-surface height on a
single groundtrack*, Sh,h(sa) is obtained by integrating the
two-dimensional spectral density ¢ﬂ,h(§') in the crosstrack
direction (see Appendix A, Eq. A-106):

> ]
Sh,h(sa) = .)f ¢ﬂ,h(§') ds (2.3-17)

The result of this integration is

2,5
16ohBh/3

(2.3-18)
(B2+(2ns %)

Sh,nisa) =

This spectral density describes the behavior of the groundtrack
sea-surface height as a continuous (one-dimensional) process.
The spectral density of the measurement errors along a track
of data, SC,C(Sa) correspond to the aliased version of this
continuous process. In Appendix C.2, the effects of sampling a
two-dimensional process are analyzed. A similar analysis for
one-dimensional processes yields the following relation between
the spectral density, Sh,h and SC,C of the continuous and sam-
pled versions of the process

*The uppercase letter S is used to denote one-dimensional
spectral densities.
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SC,C(sa) = :E: sh,h (Sa+2/ta) (2.3-19)

==

Since sea-surface height errors in different tracks are inde-

pendent, the (two-dimensional) error spectral density $é C(g‘)
’

is white in the crosstrack direction. Thus,

o
$é,C(§') =1, :z: Sh,h(sa+2/ta) (2.3-20)
fg=-0

A graphical interpretation of Eq. 2.3-19 is presented
in Fig. 2.3-2. The PSD of the errors along a track is obtained
as the infinite superposition of translates of the PSD of the
continuous process representing the sea-surface height. Con-
sider the interval -1/21a<sa<l/2ta. Except for the regions
near the edges of the interval, there is.negligible contribu-
tion to the sum in Eq. 2.3-19 from terms for which 2?0*. In
the regions near the edges of the interval, the PSD of the er-
rors arising from instrument noise and sea-state effects, $N,N’
is much larger (ten orders of magnitude) than $é,C' Thus, for
all practical purposes, the PSD of the ocean-current induced
sea-surface height errors in the interval —1/2ta<sa<1/21a can
be taken as

2,5
_ 16tC0hBh/3
(82 + (2ns 713

(2.3-21)

For values of S, outside this interval, 3& C(§‘) is obtained

by repeating Eq. 2.3-21 periodically as indicated by the solid
line in Fig. 2.3-2.

*This is because the characteristic distance 1/, is two orders
of magnitude larger than the sampling spacing L
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Figure 2.3-2 Graphical Interpretation of Eq. 2.3-19

Next, consider the bias-type orbit and tide correction
errors, B(Q). On any finite-length of single-track data, these
errors manifest themselves as an apparent bias with a standard

deviation of og = 0.5 m. In the cross-track direction, the er-
rors B(Q) are modeled as being independent from track to track
for the same reasons uncorrected ocean-current induced sea-

surface height errors are taken as independent in that direction.

The spectral density of B(Q) is modeled as being
Gaussian in the along-track direction with a correlation dis-
tance equal to the radius of the earth, R, and as being white
in the cross-track direction. Thus, for -1/2ta<sa<1/2ta

2,2 2

¢é,B(§') = Jn T, RUB e _ (2.3-22)

For |sa| > 1/2ta the value of sﬁ,B(Sa) is found by reproducing

periodically the values on the right-hand side of Eq. 2.3-22.

The satellite radar-altimeter survey error spectrum
$é E(§') is given by the sum of the (periodically-continued)
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spectra of Eqs. 2.3-14, 2.3-21 and 2.3-22. 1In terms of fre-
quencies measured in the east (sl) and north (52) directions,
the class A measurement error spectrum can be computed from

~ - %, X _
g g(s) = 8L p(8)s) (2.3-23)

’

and the measurement error spectrum of class D can be obtained
from

bp g(8) = 81 L(ops) (2.3-24)

where eA and eD are given by Eqs. 2.3-3 and 2.3-4 and where
s = (sl,sz)T

2.3.2 High-Low SST Survey

The convention on the position of the measurements of
a survey consisting of high-low SST data is shown in Fig. 2.3-3.
The survey data consist of range-rate measurements from a satel-
lite in synchronous orbit to a satellite in a lower orbit cor-
rected for the nominal motion of the low satellite and the
spurious motion of the high satellite. In other words, the
data consist of noisy measurements of the line-of-sight com-
ponent of the variational velocity induced on the low satel-
lite by the gravity disturbance at height h.

As in the geometry of the satellite radar-altimeter
survey, measurements on the earth plane lie at regular inter-
vals on equally-spaced ascending and descending groundtracks.
The same notation used in Subsection 2.3.1 is adopted here for
convenience. Thus, Eqs. 2.3-1 through 2.3-7 which describe

s o Ry e Al YT A"L.'~.S:& des !f ',.-;. 1‘ ;_'-1: ‘L.'-\:.}.‘:-\EJ\_ L"'n‘ "‘}'-
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Figure 2.3-3 Convention on the Position of
High-Low SST Measurements

the geometry of the grids MA (ascending groundtracks) and MD
(descending groundtracks) hold in this case as well.

The transfer functions from anomalous surface poten-
tial to the measurements in classes A and D are considered
next. The acceleration perturbation, Q, acting on the low
satellite at any point along its trajectory is the gravity .

disturbance vector; i.e.,

v=(_,[_,[) (2.3-25)

*In Eq. 2.3-1, t, becomes the time interval between successive

range-rate samples usually taken as t, = 10 sec.
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Therefore, the velocity perturbation, v, is the time-integral
of the gravity disturbance at height h over the satellite's
groundtrack.

Let V be the speed at which the groundtrack is swept:

1/2

Gm
v = R[(——E?] (2.3-26)
R+

Since integration with respect to time can be replaced by inte-
gration with respect to distance in the along-track direction
normalized by V, the vector transfer function from anomalous
surface potential to velocity perturbation, EV, is the product
of the transfer function from anomalous surface potential to
gravity disturbance at height h and the transfer function asso-
ciated with the operation of spatial integration in the along-
track direction normalized by the constant V. It is shown in
Appendix A (Eq. A-13) that the transfer function corresponding
to integration in the along-track direction is l/(i2nsa) where
s, is frequency measured in the along-track direction. Thus,

a
from Table 2.1-1

»
o

EE e-2nsh T

v E, = —vgg—- (s1:8,5,15) (2.3-27)
i

%; At any point along the satellite's path, the line-of-
- sight component of the velocity v is the scalar product <u,v>
g where u is a unit vector in the direction from the high to the
E' low satellite. Measurement geometry 1is illustrated 1in

E: Fig. 2.3-4. The high satellite lies on the equatorial plane
b at a distance hS = 3.5786XI07 m from the surface of the earth.

il

The low satellite is at latitude 8 and at longitude A measured
with respect to the meridian on which the high satellite remains

stationary. The unit vector in the direction from the high to

b s sl M
e e e
R R A
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Figure 2.3-4 SST Measurement Geometry

the low satellite is given in an east-north-vertical frame at

the position of the low satellite by

ug (R+hs)sinA
u={u,|= % (R+h_) singcosA (2.3-28)
u, (R+h)-(R+hS)cosscosA
where
o = [(R+h)2 + (R+hs)2 - 2(R+h)(R+hs)cosacosA]l/2 (2.3-29)

The unit vector, u = (ul,uz,uz)T, varies as the low
satellite changes its position over the earth. This implies
that the measurement equations are time-varying. However,
gravity estimates are sought on a small region of the earth
over which the unit vector u can be approximated by a constant
vector. This constant vector is chosen as that obtained from
Eq. 2.3-28 when 9 and A are interpreted as the coordinates of
the origin of the plane of the flat-earth approximation.
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The transfer function from anomalous surface potential
to measured quantities is given by the scalar product <E’Ev>'
For the measurements of class A, the along-track frequency S,
appearing in Eq. 2.3-27 can be expressed in terms of east (sl)

and north (52) frequencies as

s, T s, COsa + S sina (2.3-30)

where a is the angle of Eq. 2.3-2. Consequently, the transfer

function of class A is

(uys,+u,s,+iu s)e.znSh
F,(s) L1 22 =z (2.3-31)
A= V(slcosu + szsinu) )
Similarly, the transfer function of class D is
. -2nsh
(u;s,+u,s,+iu_s)e
11 22 = (2.3-32)

FD(E) = V(slcosa + szsina)

A simplified measurement error model has been used to
obtain the results of Chapter 4. The errors in the measure-
ments are modeled as being independent of one another. The
spectral densities of the errors in classes A and D are iden-

tical to each other and are given by
. (s) = 1.t o (2.3-33)
E,E*— ac :
where T, and T, are the measurement spacings in the along-track

and cross-track directions and where o is the standard devia-

tion of the error in each measurement.
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2.3.3 Land-Based/Shipborne Gravimetric Survey

Land-based and shipborne gravimetric surveys are con-
sidered in this subsection. Shipborne gravimetric survey geom-
etry and measurement error models are discussed first. Corre-
sponding models for land-based surveys are then obtained by
removing from the shipborne gravimetric survey models those
effects which are particular to ocean surveys.

Shipborne Gravimetric Survey - The geometry of a ship-

borne gravimetric survey is illustrated in Fig. 2.3-5. Survey
data are collected at regular intervals by a gravimeter on board -
a ship traveling at constant speed along parallel equally-spaced
east-west tracks. Since the measurement grid is oriented with
the east-north reference frame, the rotation matrix, 6, is the
identity, I. The spacing matrix is

R-40096
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Figure 2.3-5 Shipborne Gravimetric Survey
Measurement Geometry
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J = (2.3-34)

where T, is the spacing between tracks and where

= V At (2.3-35)

is the spacing in the east direction given in terms of the
nominal ship's speed V and the time interval between samples
At. Typical values are assumed for Ty V, and At based on
NAVOCEANO's survey patterns.

The transfer function from surface anomalous poten-
tial to the quantity being measured is discussed next. Denote
by { the difference between the gravimeter readings and refer-
ence gravity at the points where measurements are taken. Be-
cause of the motion of the ship over the earth's surface, the
quantity { is not the gravity anomaly. To account for the
ship's motion, several corrections are applied to the acceler-

ation (.

Let v = (vl,vz)T and 3 be thf true velocity of the
survey ship with respect to the earth” and its true latitude.
The gravity field includes the centrifugal acceleration due to
the rotation of the earth. This acceleration is directed away
from the axis of rotation and has a magnitude szcosst at lati-
tude st (w=0.72921151&7X10-4 rad/sec). The component directed
towards the center of the earth is -szcoszst. The motion of

» N
. & 5,

F
o

the ship in the east direction causes the instantaneous angular

* r r v r .
I FYURILIAIRIRPE AL

*E(vl) =V, E(vz) =0
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velocity to differ from the angular velocity of the earth by
an amount Sw given by

Vi
dw = WO_STt‘ (2.3'36)

To first-order, the corresponding contribution to the gravimeter
measurement is

£' = -2Rw coszst Sw (2.3-37)

or, combining Eqs. 2.3-36 and 2.3-37,

£' = -2uvy cosd_ (2.3-38)

In addition to the contribution resulting from the difference
in rotation rates, there is an acceleration of

2

[ - 2 -
¢" = -(v1 + v2)/R (2.3-39)

resulting from the motion of the ship over a curved surface.

If the gravimeter readings were error-free, the gravity
anomaly could be computed from

ag = ¢ - ¢' - ¢ (2.3-40)

However, the velocity and latitude which enter into the compu-
tations in Eqs. 2.3-38 and 2.3-39 are not perfectly known. The
evaluation of Eq. 2.3-40 is performed using the Inertial Navi-
gation System (INS)-indicated velocity go = (v?, vg)T and lati-
tude 8°. Thus, shipborne gravimetric data consist of the

1..
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following combination of gravimeter readings and measurements

from an inertial navigator:

v = ¢ + 2wvcoss® + |1v°11°/R (2.3-41)

By adding and subtracting the true correction {' + {", Eq. 2.3-41

can be written as
g = (L-¢'-C") + 2wcosd® 6v1 + 2wv?sin8° 59
+ 2v§5v1/R + 2vgav2/R (2.3-42)

where second-order terms have been neglected and where

T

- T _ o o
6y = (6vy,6vy)" = (Vi-V, Vvy-V,) (2.3-43)

is the error in the velocity estimate from the INS and

69 = 89 - 8t is the error in latitude.

When typical values of 6v1, 6v2, and 69 are considered,
the combined contribution of the last three terms in the right-
hand side of Eq. 2.3-42 is several orders of magnitude smaller
than that of the term 2wcos&® évl. Therefore, the last three
terms in Eq. 2.3-42 can be neglected. On the other hand, since
the latitude 8° does not vary substantially over the survey
region, the angle 8° can be replaced by 8, the latitude of the
origin of the plane of the flat-earth approximation. Thus,

for all practical purposes, Eq. 2.3-42 can be rewritten as

g = {-'-L" + 2wcosy bv (2.3-44)

1

The term 2wcosd 6v1 is called the Ed6tvos correction

.
'

error. It is caused by the error in the estimate of the east

component of velocity obtained from the INS aboard the survey

TR
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ship. The east-velocity error, in turn, arises from the east

component of the gravity disturbance vector sensed by the iner-

tial navigator and from random accelerometer and gyro errors.
Consequently, if shipborne gravimetric data are viewed as grav-

ity anomaly measurements, the measurement errors are correlated .
with the gravity field. This correlation must be accounted

for in data processing algorithms.

An- equivalent formulation is obtained when the data
are viewed as consisting of noisy measurements of linear combi-
nations of the gravity anomaly and the east component of the
gravity disturbance vector modulated by the INS response.
This convention is adopted here. Let u and y be the INS east-
velocity errors induced by the gravity field and by random
errors in the inertial navigator instruments (accelerometer
and gyro errors), respectively. Equation 2.3-44 becomes

g = (§ - ¢ - ") + (2wcosd)u + (2wcosd)y (2.3-45)

The term (2wcosd)u is considered part of the measured quantities.
Measurement errors include the term (2wcosd)y. In this formu-
lation, measurement errors turn out to be independent of the
gravity field.

In order to determine the transfer function, F, from

Fj the anomalous surface potential to the quantity being meas-
k{ ured, it is necessary to relate the velocity errors u and the
%i east component of the gravity disturbance vector M. The INS
e 1

o transfer function from sensed acceleration to indicated veloc-
0y ity is very well approximated by that of a damped second-order

system. When the input acceleration and the output velocity
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are expressed as functions of time the (steady-state) transfer
* . .
function , G(f), is given by

&(f) = ten, (2.3-46)
2pfof+1(f -fo)
where f is frequency measured in Hertz, p is the INS damping

coefficient and fo = (go/R)l/z/Zn is the Schuler frequency
(£, = 1.9708x10™* Hz).

The INS transfer function from sensed acceleration to
indicated velocity as functions of distance in the east di-
rection, G(sl), can be obtained by making the transformation
f = Vs;. Thus, G(sl) = C(Vsl), and from Eq. 2.3-46,

sl/(ZnV)
20 (£,/V)sq+ils]= (£ /V)°]

G(sl) = (2.3-47)

It then follows from Eqs. 2.3-40 and 2.3-45 that the shipborne
gravimetric survey transfer function, F, is given by

F(s) = [2ns-2/R] + 2wcos&[i2n51]G(sl) (2.3-48)

where the two quantities in brackets are the transfer functions
from anomalous surface potential to gravity anomaly and to the

3
b
Eﬂ. east component of the gravity disturbance vector at the surface,
e
; respectively.

Note that the relation f = Vs1 used in deriving
Eq. 2.3-47 is an approximation because the east velocity is

20

*The integration in the definition of Fourier transform is
carried out over the time domain.
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not truly constant. However, its use in obtaining Eq. 2.3-47
is equivalent to neglecting second-order terms.

The shipborne survey measurement error model is dis- .
cussed next. Consider first the uncorrelated Edtvos correction
error, C, corresponding to the term (2wcos8)y in Eq. 2.3-45.
These errors are modeled as arising from a white noise sensed
acceleration input with a constant spectral density q. There-
fore, the spectral density of the velocity errors, y, on a

single track of data is

3 2 _
Sy,y(sl) = qIG(sl)l (2.3-49)

The value of q was chosen by assuming that the veloc-

ity errors, y, have an rms value oy for a typical INS, i.e.,

2 _ -
o, = f Sy,y (sl) ds1 (2.3-50)

This results in a value of q = 8anop03.

Velocity errors arising from accelerometer and gyro
errors are modeled as independent on different tracks. Fol-
lowing the same reasoning used in obtaining Eq. 2.3-21 from
Eq. 2.3-18, the spectral density of the uncorrelated Eo&tvos

correction errors in the interval -l/2t1<sl<l/211 can be writ-

ten as

-~

Bc () = tw?cos?8t,q1G(s)) 12 (2.3-51)

..'v
.'\‘
n.:..
o
3
o

L

where 13 and T, are defined in Fig. 2.3-5.

0
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; The gravimeter recordings themselves also contain

§ various errors. First, there are quantization, instrument

ﬁ noise and improperly filtered heave motion induced errors.
b These are all combined into a single error term, I, modeled as
YOI being independent from point to point and track to track, and
P having an rms value of o, = 1.0x10°° m/sec2 (0.1 mgal). The
'% PSD of I 1is

¢ (s) = T,1,0° (2.3-52)

2 I,1'= 1271

f: Second, the platform is not directly on the geoid because of

o tidal and ocean current dynamic sea-surface height effects. If
§ the platform is at height h over the geoid, the gravimeter read-
g ing is in error by an amount -ZgOh/R (2go/R = 0.308 mgal/m).

t In the open ocean, the effects on the gravimeter readings caused
» by tidal effects can be predicted to an accuracy of better than
~ 0.03 mgal (Ref. 7). Consequently, these effects are neglected
'E in the error model.

- Consider the errors K induced in the gravimeter read-
- ings by ocean currents. Ocean current induced sea-surface
i; height, h, is modeled as in Eq. 2.3-15. The spectral density
:: of h (seen as a continuous process) is
R

: ¢, . (s) = lomﬁsﬁ (2.3-53)
% h,h"= IB% + (27(5)2]7/2 .
.:1
; As opposed to the altimeter survey case, successive tracks are
’ surveyed within relatively short periods of time. Thus,
£ Eq. 2.3-53 is adopted directly as the model for sea-surface

é height in the survey region. The spectral density of the

i aliased version of h, H, is given by
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where the summation is taken over all integer-valued vectors
A= (j,k)T and where J is as in Eq. 2.3-34.

For frequencies s such that —l/2t1<sl<1/2t1 and
-1/2t2<52<1/2t2 the contribution to the sum in Eq. 2.3-54 from
all terms for which j#0 is negligible because the along-track
Nyquist wavelength, 2tl, is two orders of magnitude smaller
than the correlation distance of the sea-surface height model
(122 km). However, in some instances, the Nyquist wavelength
in the crosstrack direction, 212, is comparable to the cor-
relation distance of the sea-surface height model. For
-1/2I1<Sl<1/211 and -1/212<52<1/212, the aliased spectrum of
the sea-surface height is approximated as

1

y,u(s) = Z *h,h l§+<0,k/t2)Tl (2.3-55)
k=-1

For the same range of frequencies, the corresponding PSD of
the gravimeter measurement errors, K, induced by sea-surface
height is

$K,K(§) = v $H,H(§) (2.3-56)

with $H’H as in Eq. 2.3-55.
In the absence of any other error sources, the spectral
density of the shipborne survey measurement errors, $E E is
given by the sum of the spectral densities of the velocity-
induced errors (Eq. 2.3-51), the quantization errors (Eq. 2.3-52)

and the ocean current-induced errors (Eq. 2.3-56); i.e.,
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bp g(8) = & (s) + & 1(5) + &y ((s) (2.3-57)

for -1/2!1<sl<1/2t1 and -1/2t2<52<1/212. However, actual sur-
veys conducted by NAVOCEANO follow the geometry of Fig. 2.3-5
on nearly rectangular blocks. An example of the characteristic
block layout is presented in Fig. 2.3-6. Often, two contiguous
blocks share a common region but, in some instances, there are
small data gaps (islands, reefs, etc.) in the coverage. Since
track spacing is chosen on the basis of high-frequency energy
content in the gravity field, neighboring blocks tend to have
the same track spacing but the tracks in one block are not, in
general the continuation of tracks in another block.

R462443
E
g
E
E
! Figure 2.3-6 Characteristic Block Layout of
. NAVOCEANO Surveys
E 2-37
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A conservative approach was used to take into account
these irregularities: Only the information contained in ship-
borne survey data in the shorter wavelengths is used to arrive .
at gravity estimates. This was modeled by setting the measure-
ment error spectra $E,E equal to infinity for longer wave-

lengths. Thus, Eq. 2.3-57 was modified as

- —‘ ¢C,C(§) + ¢I,I(§) + ¢K,K(s) if s > s
*g,g(8) " .
© 1fS<So
(2.3-58)
with s=||§||=(s%+s§)1/2 and S, equal to the frequency cutoff

selected. For numerical computations the number 1030 was used
in place of infinity. This number is at least 10 orders of
magnitude larger than any other quantity appearing in the compu-

tations when MKS units are used.

Summarizing, for a shipborne gravimetric survey the
transfer function from anomalous surface potential to the quan-
tities being measured is given by Eq. 2.3-48 and the spectral

density of the measurement errors is given by Eq. 2.3-58.

Land-Based Gravimetric Survey - The model for the

geometry of a land-based gravimetric survey is illustrated in
Fig. 2.3-7. Measurement points are assumed to form a grid

oriented with the east and north axes. The distances between

data points in the east and north dJirections are 3] and Ty

rq respectively. It then follows that, as in the shipborne gravi-
t: metric survey, the rotation matrix, 6, of the measurement grid
.-' - ) I3 . . . .

%C is the identity and the spacing matrix, J, is given by an ex-

pression identical to Eq. 2.3-34. Land-based gravimetric data

are thus assumed to have been gridded prior to processing.

. .
.l

Research is currently in progress to account directly for the

=
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Figure 2.3-7 Land-Based Gravimetric Survey Geometry

irregular geometry associated with the collection of land-based
gravimetric data.

Data consist of measurements of gravity anomaly re-
duced to the geoid. The transfer function from anomalous sur-
face potential to measured quantities 1is

F(s) = 2ns - 2/R (2.3-59)

Measurement errors are modeled as being independent

from point to point with standard deviation o. Their spectral
density is

§ p(s) = 11,02 (2.3-60)

Instrument errors, gridding errors, and errors in the process

of reducing the measurements to the geoid are included in
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Eq. 2.3-60. For the results given in Chapter 3 of this re-
port, 1, = Ty = 1.5><105 m and o = BXIO°5 m/sec2 (3 mgal).

2.3.4 Airborne Gradiometer Survey

Figure 2.3-8 presents the convention on the position
of the measurements of an airborne gradiometer survey. Data
are collected by a triad of gradiometers aboard an aircraft
flying on parallel equally spaced east-west tracks at an alti-
tude h above the surface of the earth. The spacing in the

north direction is 1, and the spacing in the east direction is

Ty = Vtg (2.3-61)

where V is the (nominal) speed of the aircraft and t_ is the
time interval between successive samples. Thus, the rotation
matrix of the measurement grid, ©, is the identity and the

spacing matrix is

J = (2.3-62)

R-—437573
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Figure 2.3-8 Airborne Gradiometer Sur\.y
Measurement Geometry
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Prototype gravity gradiometers developed by the Bell
Aerospace Division of Textron, Inc. (Bell) and the Charles
Stark Draper Laboratory (CSDL) were considered in the analysis.
Measurement equations for airborne surveys using the Bell and

CSDL gradiometers are given below.

Bell Gradiometer Survey Transfer Function - A schematic

diagram of a Bell gradiometer is presented in Fig. 2.3-9. The
instrument uses four matched-accelerometers mounted on a slowly
rotating (0.25 Hz) table. The outputs of the accelerometers are
mixed, preamplified, band-limited and demodulated at twice the
rotation frequency to yield two gradient measurements, one at

0 deg phase and the other at 90 deg. Let the axes x', y' and

z' be defined as in Fig. 2.3-9. One of the measurements (inline-
channel), Vi consists of the difference between the two inline
gradients lying on the plane of rotation divided by two:

- rylyv)/z (23‘63)

i x'x!

R-28144b

SPIN AXIS
(z")

Figure 2.3-9 Bell Gradiometer Idealization
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The other measurement (cross-channel), Vs yields the rotation

plane cross-gradient:
(2.3-64)

The geometry for the configuration of the gradiometer
triad was chosen so that the instruments' spin axes coincided
with the vertical (z), north (x2) and east (xl) directions
(Fig. 2.3-10). These orientations are consistent with test
data provided by Bell for their Baseline gradiometer instru-
ment. Consequently, from Eqs. 2.3-63 and 2.3-64 it follows
that the measurement equations are given by

v, 172 -1/2 0 o 0 0 /rx1X1
v, 0 0 0 1o ol fr .
v, 172 0 12 0 o oflr,

v, 1o 0 0 o 1o flry
v 0 vz sz 0 0o fir,
v 0 0 0 o o a1fir,,

(2.3-65)

where Vis V3 and Vg are the inline-channel outputs and Vo Vg
and Ve the cross-channel outputs from the gradiometers whose
spin axes are oriented in the vertical, north and east direc-
tions, respectively. The vector transfer function, F, from
anomalous surface potential to the measured quantities is easily
obtained from Table 2.1-1. The result is
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R-62395

2
(VERTICAL)

X2
(NORTH)

X1
(EAST)

Figure 2.3-10 Bell Gradiometer Triad

F(s) = B H (s) (2.3-66)

where B is the 6x6 matrix of Eq. 2.3-65 and H is the vector

S

o =

(2.3-67)
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f)* CSDL Gradiometer Survey Transfer Function - The CSDL
ﬁ% gradiometer (Fig. 2.3-11) employs a floated electrostatically
:j suspended sphere with dense material packed symmetrically
e . . . .
about two opposite poles. Gravity gradients induce a torque

LA on the sphere that is sensed through the voltages needed to :
13 hold the sphere in its nominal attitude. Two measurements are
e

A obtained from a single gradiometer instrument. With the co-
: ordinates x', y' and z' defined as in Fig. 2.3-11, the meas-
j; urements are
o Vet T Txrgr

s (2.3-68)
LX Vor =T

7 y y 2z
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DENSE MATERIAL
Figure 2.3-11 CSDL Gradiometer Float Element
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The geometry considered for the CSDL gradiometer triad
is shown in Fig. 2.3-12. The axes of weights of the three |
gradiometers (zl, z, and z3) are all oriented at an angle of
35.2644 deg with respect to the vertical. The projection of
the z, axis on the horizontal plane coincides with the east
direction and forms angles of 120 deg with the projections of
the axes of weights of the other two gradiometers on the same
plane. Let Vi and Vo be the measurements produced by the gra-

diometer whose weight axis is zy, Vg and vy those produced by

R-282638

z
(VERTICAL)

Figure 2.3-12 CSDL Gradiometer Triad (Tetrahedron
Geometry)
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the gradiometer with weight axis Zy, and Vg and Ve those pro-
duced by the gradiometer with weight axis zq- The measurements
can be expressed in terms of the gradients of the disturbance
potential in the east-north-vertical frame (Ref. 8) by

v 0.4714 0 -0.4714 0 0.3333 0 r

1 xlx1
v 0 0 0 0.5771 0 0.8165 I
2 XX
272
v3 0.1178 0.3536 -0.4714 -0.4082 -0.1667 0.2887 Fzz
VA 0.2500 -0.2500 0 -0.2887 =~0.7071 -0.4082 r
¥1%2
v5 0.1178 0.3536 -0.4714 0.4082 -0.1667 -0.2887 Fx 2
' 1
v6 -0.2500 0.2500 0 -0.2887 0.7071 -0.4082 r
xzz
(2.3-69)

It then follows that the vector transfer function from anoma-
lous surface potential to measured quantities has the same
form as that obtained for the Bell triad; i.e.,

F(s) = CH (s) (2.3-70)
where C is the 6x6 matrix appearing in Eq. 2.3-69 and H(s) is
the vector transfer function from anomalous surface potential
to the gradients of the anomalous potential at height h given

by Eq. 2.3-67.

- Gradiometer Survey Measurement Error Models - The

following measurement error sources were considered in the

- simulations performed:
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o Instrument noise (self-noise)

® Errorvs induced by the mechanical vibra-
tions to which the gradiometers are sub-
jected abcard an aircraft.

Spectral densities for the time variation of the self-noise of
the Bell Baseline, Bell Ball-Bearing and CSDL gradiometers
were derived from the manufacturers' test data in Ref. 9. The
same self-noise spectra was obtained for both channels of each
of the instruments considered. 1In addition, no significant
correlation was observed between the two outputs of each

instrument.

As an example of the self-noise spectra derived in
: Ref. 9, Fig. 2.3-13 presents the spectra of the self-noise of
'? the Bell Baseline gradiometer with its spin axis in the verti-
h cal and horizontal positions. The shape of the spectra shown
in Fig: 2.3-13 is typical of that obtained for the Bell Ball-
Bearing and CSDL instruments as well. The spectrum decays at

a rate of 6 db/octave (red noise) and flattens out (white noise)
at high frequencies. The analytic form of such a spectral

density is

Sy n(f) = ;7 + W (2.3-71)

where f is measured in Hz. For the Bell Baseline gradiometer

the values of r and w are

2.0><10-6 EZ - Hz

la}
i

(2.3-72)
81 Ez/Hz

£
n
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" Figure 2.3-13 Self-Noise Spectra of the Bell
- Baseline Gradiometer
x when the spin axis is vertical, and
N r=16x10"% E2 . Hz
N (2.3-73)
83 2
194 w = 86 E /I'IZ
, when the spin axis is horizontal (Ref. 9). For the Bell Ball-
. Bearing gradiometer, data corresponding to an inclination of
N the spin axis with respect to the vertical of 55 deg were
i analyzed. The results are
% r=7.7x10"% E2 . Hz
Z; (2.3-74)
: w = 290 EZ/Hz
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These values were used for both horizontal and vertical spin |
axes of the gradiometers. For the CSDL gradiometers, the values \
of r and w were found to be ‘

0.2x10°% g2 . Kz

la}
n

(2.3-75)

£
7

2.3 E2/Hz

The effects of translational and angular vibrations on
the gradiometer measurements are also analyzed in Ref. 9. The
net result is an increase in the power level of the white noise
floor, w, which depends on the orientation of the instrument.
Vibration data corresponding to the Bell Baseline instrument
were received from the manufacturer. The sensitivities obtained
were used in determining the modified white noise levels for the
Bell instruments. In the absence of vibration data from CSDL,
no vibrationally induced errors were included in the CSDL gra-
diometer error model.

Because of the way the instruments sense and process
the gradients of the field, there is no correlation between
vibrationally induced errors in both channels of a single gradi-
ometer. Vibrationally induced errors at the outputs of differ-
ent instruments were modeled as uncorrelated.

Other sources of error which were not included in the
analysis because their magnitude is very small compared to the
self-noise and vibrationally induced errors are:

o Thermally induced errors. Temperature
sensitivity data for the Bell gradiometers
(Refs. 10, 11 and 12) indicate that, other
than the red noise discussed in the fore-
going, these errors can be neglected.
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® Motion correction errors. Airborne gradi-
ometer measurements must be corrected to
account for the fact that the instruments
are not stationary in inertial space.
The corrections are on the order of
4 Ebdtvos. Errors in the corrections
amount to a few hundredths of an Edtvos.

° Errors due to uncertainty in the air-
craft's altimeter readings. These er-
rors are of the same order of magnitude
as the motion correction errors.

V.Y

2 .‘(',z PRI
[

In addition, the gradiometers are naturally susceptible to
time-varying gravity gradient fields caused by relative motions
of nearby masses such as gimbals in the inertial platform.

Corrections can be applied to the gradiometer output signals
to compensate for the gradient fields caused by disturbing
masses whose positions can be monitored. Errors in these cor-

rections are unaccounted for in the results given in Chapter 3.

The spectral density of the survey measurement errors
was taken to coincide on a single data track with the spectral
density given by Eq. 2.3-71 (with suitable choices for the
parameters r and w) after transforming time frequencies into

spatial frequencies through the mapping

(2.3-76)

where V is the aircraft's speed. On different data tracks,

a " .
';‘.""_‘Hl " .

measurement errors were taken to be independent. The measure-

e
{2

ment error spectral density matrix, $E E(§_), is diagonal with
entries along the diagonal given by ~

TaTa a8 e

L ‘.
LN
leLt,

’ $ (s) v ———r“‘/vz (2.3-77)
PR [} S = 1 + w + I
;! Em’F‘m = 2 s% m

-

o3

*'!

o0
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for -l/2tl<sl<l/2tl and m = 1,2,...,6. The values of r and
Wi for the Bell and CSDL triads are given in Tables 2.3-1 and

2.3-2.

- TABLE 2.3-1
RED NOISE PARAMETERS

BELL BELL
BASELINE | BALL-BEARING CSDL
I
(E2-Hz) | 2.0x107® 7.7x10°° 2.0x10”7
I
(E%°Hz) | 2.0x107® 7.7x10°° 2.0x10°7
I3
(E2°Hz) | 16x10°® 7.7x10~° 2.0x10"7
2.0x10"7
2.0x10~7
2.0x10~7

™ot LW W
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TABLE 2.3-2
WHITE NOISE PARAMETERS

BASELINE | BALL-BEARING | CSDL ]
=
440 650 2.3
440 650 2.3
97 300 2.3
97 300 2.3
97 300 2.3
97 300 2.3
]
2-52
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3. SIMULATION RESULTS

A large variety of simulation results were obtained
with the techniques of Chapter 2. The results consist of grav-

ity residuals in the form of point values and 5 min, 15 min,

1 deg and 5 deg means.
In order to examine the sensitivity of the results to
the local characteristics of the gravity field, three differ-

ent field models were used in the simulations:

° Attentuated White Noise (AWN) gravity

model
® Baseline gravity model
° Active gravity model.

These models are discussed in Section 3.1.

The simulation results are given in Sections 3.2
through 3.5. Section 3.2 presents results for nine different

survey possibilities. Sections 3.3, 3.4 and 3.5 examine the

sensitivity of specific survey alternatives to variations in

survey parameters.

3.1 GRAVITY FIELD MODELS

A stationary gravity field model is completely speci-
fied by the spectral density of the anomalous surface potential,

L LR I B e R B O T B N B I Y FY R T T 1) B I T T AR RE ST O B Y TR
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ot all other geodetic quantities are casily derived from LR
o' o
through the frequency-domain approach given in Section 2.1.

The three models used in the simulations are discussed below.

A single shell of the Attenuated White Noise model
(Ref. 13) contributes a surface potential with a spectral den-
sity of the form

- 2 2 .
= 8nDkok e (3.1-1)
This spectral density can be viewed as arising from a spherical
shell at depth Dk below the surface of the earth on which the
potential is white (hence the name Attenuated White Noise) and
such that the surface potential has variance oi. The complete

AWN model consists of five independent shells; i.e.,

5
_ (k)
op 1 () = D etk (s (3.1-2)

Global data were used to fit the ten parameters of the model

in Ref. 13. The resulting values of the parameters are given
in Table 3.1-1.

TABLE 3.1-1
AWN MODEL PARAMETERS
SHELL Dy K
(k) (km) (m /sec )
1 10 0.721
2 76 23.03
3 376 53.50
4 1055 55.36
5 2189 278.3
3.2
R e e L e e e L T e S T A
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The Baseline and Active field models are members of
the same class of models. They are both sums of two third-
order Markov -models (Ref. 14). A single third-order Markov
model has a surface potential with a spectral density of the
form

where 1/8k is called the characteristic distance and oi is the
variance of the surface potential. For the Baseline and Active

models
2
¢ p (8) = :E: o (K) (s) (3.1-4)
° 0 k=1
with ¢(k) as in Eq. 3.1-3. The four parameters of the Base-

line and Active models were obtained by fitting to data in the
North Atlantic and in the Bonin Trench, respectively. Their
values are given in Tables 3.1-2 and 3.1-3.

‘ TABLE 3.1-2
BASELINE MODEL PARAMETERS

K 1/8y Ok,
(km) (m“/sec®)
Fﬁ —— —
1 27.78 16.00

2 370.4 91.43
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TABLE 3.1-
ACTIVE MODEL PARAMETERS

TN

3

K 1/8y Ok,
(km) (m /sec<)

1 22.22 29.98

2 350.03 103.68

L Oaih A un A S ol nane 48 a2

Since the spectral densities given in Eqs. 3.1-1 and
3.1-3 are functions of the frequency magnitude s, the three
. . * .

models are isotropic . Graphs of the spectral densities of
the anomalous surface potential for the AWN, Baseline and Active

models as functions of s are given in Fig. 3.1-1. The AWN model

R 83103,
18 3

g 10%"" <<
a sl S
w12 BASELINE
02 3 o \\ . MODEL
° — - N “
- % \\ . AWN
$< = s} . MODEL
g&" ACTIVE
Q N
ga-:- °+ \\ MODEL
-8 E . \‘\
o= r NERES
- \\ N
< 21 RN
2 AN
S
< of \\\\\
-2 i [N W we Y N A e | " bl —dd L A:\
10-4 102 10-2 10° 1
FREQUENCY {(cyc/km)
Wi g i | WU U U ), | P S S ) PTG q
10.000 1000 100 10 1

WAVELENGTH (km)

Figure 3.1-1 Spectral Densities of the Anomalous Surface
Potential for the AWN, Baseline, and Active

Models

*The methodology of Chapter 2 is applicable to nun-isotropic
models as well.

.
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has very little energy at high frequencies; it represents a smooth
slowly varying local gravity field. On the other hand, the Active
model contains a substantial amount of high-frequency energy since,
as its name indicates, it represents a very active local gravity

- field. The Baseline model corresponds to an intermediate case.

For reference purposes, Table 3.1-4 presents the rms
values of the gravity anomaly, the deflections of the vertical
and gradients of the anomalous potential at the surface for
the three models. Shown in parentheses are the 1 deg means.

TABLE 3.1-4
*
RMS VALUES OF MODEL QUANTITIES
QUANTITY AWN MODEL | BASELINE MODEL | ACTIVE MODEL
Gravity Anomaly 42.7 51.1 112.5
(mgal) (36.2) (29.8) (48.1)
East Deflection of the Vertical 6.8 7.6 16.8
(sec) (5.4) (4.4) (7.2)
North Deflection of the Vertical 6.8 7.6 16.8
(sec) (5.4) (4.4) (7.2)
East-East Gradient 13.8 20.7 60.6
(E) (3.5) (3.8) (8.1)
X North-North Gradient 13.8 20.7 60.6
“ (E) (3.5) (3.8) (8.1)
, Vertical-Vertical Gradient 22.6 33.8 99.0
- (E) (5.7) (6.2) (13.0)
A East-North Gradient 8.0 12.0 35.0
{(: (E) (2.0) (2.2) (4.4)
I East-Vertical Gradient 16.0 23.9 70.0
v (E) (4.0) (4.4) 9.2)
! North-Vertical Gradient 16.0 23.9 70.0
N (E) (4.0) (4.4) (9.2)
o

AR

*1 deg means shown in parentheses.
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3.2 COMPARISON OF SURVEY ALTERNATIVES

To illustrate the versatility of the methodology de-
scribed in Chapter 2, nine survey possibilities were simulated
using the three field models introduced in the previous section. -
Post-survey rms residuals in the deflections of the vertical and
the gravity anomaly are presented in Tables 3.2-1, 3.2-2, and
3.2-3 for the AWN, Baseline, and Active models, respectively.
All results correspond to a survey in an equatorial region.

Each table contains 10 columns. The first column,
labeled NONE, corresponds to the unsurveyed field. The acro-
nyms ALT, SST, SHIP, GRAV and GRAD, used in the remaining nine
columns, represent satellite radar altimetry, satellite-to-
satellite tracking, ship gravimetry, land-based gravimetry and
airborne gradiometry, respectively. Each column corresponds
to the survey combination indicated by the acronyms in its
header. A description of the survey parameters is given next.

Satellite Radar-Altimeter Survey - The GEOS-3 geometry

and parameters were used. The equatorial separation of GEOS-3
groundtracks was taken as 30 nm.

Satellite-to-Satellite Tracking - The low satellite's

altitude is 150 km. 1Its orbit inclination is 94 deg. Measure-
ments of line-of-sight range-rate are taken every 10 sec and
the noise level has a standard deviation of 1 uym/sec per meas-
urement. The separation of the groundtracks of the low satel-
lite is 30 nm at the equator. The high satellite is directly
above the region where estimates are sought.

Shipborne Gravimetry - Spacings between contiguous

survey tracks were selected following NAVOCEANO's methodology.
The remaining parameters are defined in Subsection 2.3.3.

3-6
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TABLE 3.2-1
AWN MODEL SIMULATION RESULTS

SURVEY TYPE
ow | sst | | ST | oA LS AT G
§?st:2'52,2§§ii§‘f§ﬁz) (222) (32;) (5:2) (;fg) 0.8 0.7 {05 105 104 0.4
§?st5233,3§§i§§i1?2aa) (222) (éig) (312) (3:?) 0.5 0.6 [ 0.4 |04 104 ]0.3
?:2a?;aVity Anomaly* (§§IZ; }32§) (g::) (3:;) 4.6 |43 |30 |30 |28 ]24
*1 deg means shown in parenthesis.
TABLE 3.2-2
BASELINE MODEL SIMULATION RESULTS
SURVEY TYPE
on | sr | wr | g (el el | |0

RMS North Deflection 7.6 4.5 2.2 2.1
of the Vertical* (8ec) (0.68) | (0.5) 1 (0.8) | (0.2)

QAL
gg
w
. =
Ll
~

i

RMS East Deflection 7.6 4.2 2.8 2.8

of the Vertical* (see) | (4.4) | 0.4) | 0.5) | 0.3y | ©-¢ | 06 |04 |04 } 0.4 |03

RMS Gravity Anomaly* 51.1 29.2 16.9 16.7 5.2

(mgal) @ lcoloyl an 4.2 | 3.4 3.2 13.0 |25

*1 deg means shown in parenthesis.
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M TABLE 3.2-3
;55 ACTIVE MODEL SIMULATION RESULTS
1
v SURVEY TYPE
: SST | ALT
1 ssT | GRAV | ALT | ssT | ALT
. NONE SST ALT ALT | GRAD
§§: : ALT | GRAD | SHIP | GRAD | GRAD | .o | oo
o
A -~
RMS North Deflection 16.8 12.5 5.4 5.4
of the Vertical* (sed) | (7.2) | «.&)|0.6) | 0.0 | ¥-7 |7 | 2 |09 |09 |06
o RMS East Deflection 16.8 | 11.4 | 8.0 | 7.9
- of the Vertical* (&ec) (7.2) a.6)[a.0 | 0.8 | ! 0.6 0.8 0.8 0.8 0.4
L RMS Gravity Anomaly* 112.5 80.2 | 46.0 | 45.7
i y Anoma
f (mgal) @ws. ) | aosy| sy | e | 24 |46 |67 |39 |57 |33
:;:‘:: *1 deg means shown in parenthesis.
.r:
Land-Based Gravimetry - All parameters are as described
'? in Subsection 2.3.3.
- Airborne Gradiometry - Data are assumed to be collected
)] with the Bell Baseline gradiometer triad aboard an aircraft fly-
:jﬂf ing at a speed of 300 kt at an altitude of 20,000 ft. Measure-
';H ments are taken every 10 seconds on parallel tracks spaced 10 km
ff; apart.
P Rr]
;2: Three of the five sensors considered provide informa-
?3 tion on the long-wavelength content of the gravity field.
Qﬁ They are SST, ALT, and GRAV. The other two sensors, GRAD and
L SHIP, recover the short wavelengths of the gravity field. In
R the case of the gravimetric surveys (GRAV and SHIP), this dif-
iiT ference is primarily a function of the density of coverage.
. .L'
53 For the other sensors (SST, ALT, and GRAD), the bandwidth of
i recovery is inherent in the physical characteristics of the
o sensor.
o
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In Tables 3.2-1, 3.2-2, and 3.2-3 all columns contain-
ing ALT or SHIP in the header correspond to ocean surveys.
The column headed by GRAV/GRAD represents a land survey. The
two columns SST and SST/GRAD apply to ocean and to overland
surveys.

The three tables present the point value rms residuals
in the north deflection of the vertical, the east deflection
of the vertical, and the gravity anomaly. The numbers in paren-
thesis are the rms values of the residual 1 deg means. These
are given only for those surveys in which long-wavelength sen-
sors are used exclusively.

The results given in Tables 3.2-1, 3.2-2, and 3.2-3
are discussed in detail below. First, consider the order of
the columns in the tables. Note that the various columns in
the three tables are ordered in the same sequence. This order
corresponds to decreasing rms values for the residual point
gravity anomaly in the Baseline and AWN models. In the case
of the Active gravity model, the gravity anomaly residual for
the combination ALT/SHIP appears out of sequence. The reason
is that the rms residuals shown in the tables correspond to
the actual ship survey that NAVOCEANO would conduct. The cri-
terion used by NAVOCEANO to select the spacing between con-
tiguous ship tracks would choose the same spacing for the AWN
and Baseline models, but it would choose a denser collection
of tracks for a region described by the Active gravity model.
1f the same ship track spacing is used for all models, the
results for the Active model appear in the same order as those
of the other two models.

For most surveys, the rms values of the residuals in
the north and in the east deflections of the vertical are not
the same. This illustrates the fact that the post-survey gravi-

ty residuals are not isotropic. Even though the three models
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used in the simulations are isotropic, the gravity residuals
turn out to be anisotropic for all surveys. The primary reason
for the anisotropy is the geometry of the surveys. For example,
for an airborne gradiometer survey the survey tracks are east-
west and samples along a track are spaced approximately 1.5 km .
apart, while in the cross-track direction (north-south) the
distance between samples is 10 km. In the case of the SST
survey, the rms of the residual east deflection of the verti-
cal is smaller than that of the north deflection of the verti-
cal because the 10 sec range-rate sampling implies a larger
spacing between consecutive samples on a groundtrack (roughly
north-south) than the spacing between continuous groundtracks
(east-west).

The advantages of multisensor surveys are clear from
the tables. The smallest residuals are obtained when a combi-
nation of sensors is used to cover the entire range of fre-
quencies. This involves at least one long-wavelength sensor
and one short-wavelength sensor. Little is gained by combin-
ing two long-wavelength sensors, as can be seen by comparing
the columns SST and ALT with the column headed by SST/ALT in
each of the tables. The best two-sensor results are obtained
with the ALT/GRAD sensor combination in the cases of the AWN
and the Baseline gravity models. For the Active model, the
pr— ALT/SHIP sensor combination provides the best recovery using
only two sensors. In each case, the best two-sensor result is
not very much improved when a third sensor is added.

oy 3.3  SATELLITE ALTIMETRY - SENSITIVITY TO TRACK SPACING
o
Lad This section presents a study of the sensitivity of the

A gravity recovery to satellite altimeter track spacing. Both
GEOS-3 and SEASAT-1 aitimeters are considered. Some important
implications of the survey geometry are discerned and discussed.
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Figures 3.3-1, 3.3-2, and 3.3-3, respectively, show
the variation with equatorial track spacing of the residual
rms gravity anomaly, east deflection of the vertical, and north
deflection of the vertical. Results for the AWN and Active
models for recovery at the equator are given in these figures.

The horizontal axes correspond to the equatorial separation
between contiguous tracks.

At first, the results appear surprising. The SEASAT-1
altimeter is of better quality than the GEOS-3 altimeter. In
addition, SEASAT-1 has a larger orbit inclination than GEOS-3.
Consequently, it is expected that the gravity anomaly and the
north deflection of the vertical are better recovered by SEASAT-1
than by GEOS-3 at all track spacings*. However, Figs. 3.3-1

A-4771%8
120

ACTIVE GRAVITY
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80
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3
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SEASAT-1 MODEL
20
GEOS-3
0 —d red o aal 1 [ U W W
10 100 1000

EQUATORIAL TRACK SPACING (nm)
X Figure 3.3-1 Sensitivity of Residual Gravity Anomaly

to Altimeter Survey Track Spacing
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*For the east deflection of the vertical (Fig. 3.3-2) the results
are expected because of the difference in orbit inclination be-
tween the two satellites.
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and 3.3-3 indicate that for a wide range of track spacings the
residuals in the gravity anomaly and the north deflection of
the vertical are larger for SEASAT-1 than for GEOS-3. Only

for very short track spacings do SEASAT-1 results show an im-
provement over GEOS-3.

The origin of this surprising behavior is in the geome-
try of the survey. Figure 3.3-4 illustrates the geometric
differences between SEASAT-1 and GEOS-3 surveys. For the same
equatorial separation, any two parallel SEASAT-1 tracks are
separated by a larger distance in the north direction than two
GEOS-3 tracks. More fundamentally, as Fig. 3.3-5 illustrates,
for the same equatorial separation there are more data per
unit area in a GEO0S-3 survey than in a SEASAT-1 survey. Thus,
the results reflect a trade-off between data quality and data

quantity.
R—47720
EXCESS SEASAT
/ NORTH SPACING
Figure 3.3-4 Geometric Differences Between SEASAT-1
and GEOS-3 Surveys
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Figure 3.3-5 Differences in Density of Coverage

Between SEASAT-1 and GEOS-3 Surveys

When a SEASAT-1 quality altimeter is used in a satel-
lite at the same orbit of GEOS-3, the results of Figs. 3.3-6,
3.3-7 and 3.3-8 are obtained. For ease in referencing, this
case has been labeled SEASAT-1-A. It can be seen from
Figs. 3.3-6, 3.3-7 and 3.3-8 that, as expected, SEASAT-1-A
yields consistently better recovery than GEOS-3 but the im-
provement is evident only for track spacings shorter than
40 nm.

Residual 5 min, 15 min, 1 deg, and 5 deg means of the
gravity anomaly are presented in Figs. 3.3-9 through 3.3-12.
The effects of the geometric differences between the surveys
are clearly seen in these figures. The effects of the differ-
ences between the quality of the altimeters corresponding to
the GEOS-3 and SEASAT surveys are only noticeable in the re-
covery of the 5 and 15 min means. The values of the 5 min,
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v .
o 15 min, 1 deg, and 5 deg means for the unsurveyed AWN and Active
" fields are given as a reference in Table 3.3-1. Note that the

) 5 deg means of the unsurveyed field are larger for the AWN

: model than for the Active model because the AWN model has more
power in the long wavelength portion of the spectrum than the
Active model (see Fig. 3.1-1).
i of Fig. 3.3-12 cross for sparse surveys.

This explains why the graphs

& TABLE 3.3-1

o SPATIALLY AVERAGED UNSURVEYED GRAVITY ANOMALY
L

t: — —

L 5 min 15 min | 1 deg 5 deg

- (mgal) (mgal) (mgal) (mgal)
= AWN 41.6 40.2 36.2 26.1

5 Active | 110.0 97.7 48.1 20.1




.\’W“.’T‘\ RS S SR A e Ml L S vt Wl e 20 et

7

Figures- 3.3-11 and 3.3-12 indicate that there are
fundamental lower bounds on the recovery of the 1 deg and 5 deg
means of the gravity anomaly from satellite altimetry data.
These bounds (approximately 2.6 mgal for the 1 deg means and
1.2 mgal for the 5 deg means) are independent of the gravity
field model used in the analysis and are also independent of
the survey geometry and the quality of the altimeter used.

3.4 SST - SENSITIVITY TO LOW SATELLITE'S ALTITUDE

A study was conducted of the sensitivity of SST sur-
vey residual gravity errors with respect to the height of the
low satellite. Measurements of line-of-sight range-rate were
considered to be taken every 10 sec and to have an uncertainty
with a standard deviation of 1 um/sec. The inclination of the
orbit of the low satellite was taken as 94 deg and the equa-
torial separation between neighboring groundtracks was kept
constant at 30 nm. The altitude of the low satellite over the
earth's surface was allowed to vary between 100 km and 800 kmn.

Results for gravity recovery from an equatorial region
directly under the high satellite were obtained for the AWN
and Active models. The point residuals in the gravity anomaly
are presented in Fig. 3.4-1. Figures 3.4-2 through 3.4-5 show
the 5 min, 15 min, 1 deg, and 5 deg means of the residuals in
the gravity anomaly.

As the height of the low satellite decreases, the
spacing between consecutive samples along a groundtrack in-
*
creases according to Eq. 2.3-1 . On the other hand, the closer

*Along-track sample spacing for altitudes of 100 km and 800 km
are 66.2 km and 77.2 km, respectively.
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the low satellite is to the earth's surface, the stronger the
anomalous gravity field and the better the signal-to-noise
ratio of the measurements. By far, the dominant effect is the
quality of the data. Thus, even though the data become sparser
as the height of the low satellite decreases, residual gravity
errors are reduced.

Table 3.4-1 gives the residual 5 min, 15 min, 1 deg,
and 5 deg means of the gravity anomaly as fractions of the
corresponding unsurveyed field values for low satellite's alti-
tudes of 100 km and 800 km. The fractions have been rounded-
off to the nearest 1/100. The 5 deg means are very well re-
covered from SST data. In general, the fractional recovery of
the gravity anomaly is better for the AWN model than for the
Active model because most of the energy in the field repre-
sented by the AWN model is contained in the long-wavelength
portion of the spectrum while in the case of the Active model

g there is a large amount of energy at high frequencies which is
ﬁg unobservable in the data.
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TABLE 3.4-1

RESIDUAL GRAVITY ANOMALY AS A FRACTION OF
THE UNSURVEYED FIELD VALUES

- HEIGHT OF MODEL Smin | 15 min | 1 deg | 5 deg
LOW SATELLITE MEAN MEAN MEAN MEAN
100 km AWN 0.28 0.22 0.04 0.01
100 km Active | 0.68 0.60 0.17 0.05
800 km AWN 0.85 0.84 0.64 0.09
800 km Active | 0.97 0.96 0.83 0.17

3.5 AIRBORNE GRADIOMETRY - SENSITIVITY TO TRACK SPACING

This section presents results on the sensitivity of
residual gravity errors from a combined SST/Airborne gradio-
metric survey. The gradiometer instruments considered are
the Bell Ball-Bearing and the CSDL triads discussed in
Subsection 2.3.4.

For the SST survey, the low satellite's altitude
above the earth's surface was taken as 120 km. The rest of
the parameters were the same as those used in obtaining the
results of the previous section. The gradiometer survey was
assumed to be conducted at an altitude of 20,000 ft and at a
speed of 300 kt. The iriterval between successive gradiometer

samples was taken as 10 sec. Track spacing was allowed to
vary between 10 km and 100 km.

(3
.
-

-

LA N

T

A5

ii The results for the rms of the residual gravity anom-
N aly are presented in Fig. 3.5-1. Note that the differences in
Sg gravity recovery between the Bell and CSDL instruments are

‘-.‘s » I3 ] .

N exaggerated in Fig. 3.5-1 because, as noted in Subsection 2.3.4,
Ef
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$ 1
- the error model for the CSDL instrument does not include the
3 effects of translational and rotational vibration., while the
ot
:%ﬁ Bell Ball-Bearing instrument error model does include these
e effects.
e
‘tiz There are three possibilities to further decrease the
n:$§ residual gravity anomaly. First, the slope of the residual
e s gravity anomaly curve at the lower end of the track spacing

- scale in Fig. 3.5-1 indicates that the full benefit of an air-
borne gradiometer survey has not been attained at a track spac-
ing of 10 km. Second, residual gravity anomaly can be reduced
by lowering the height of the gradiometer survey (20,000 ft).
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Third, the east-west gradiometer survey could be complemented
with a north-south gradiometer survey to provide short-
wavelength recovery over the frequency-domain region where the
red noise in the east-west gradiometer survey significantly

corrupts the measurements.
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4, CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

A new method and a computer program have been devel-
oped for the analysis of multisensor surveys of the gravity
field. The method is ideally suited for the design of multi-
sensor surveys to achieve a desired level of gravity recovery
accuracy.

The approach, which utilizes a flat-earth approxima-
tion in the survey region, is based on an extension of optimal
Wiener smoothing theory. The Fourier transformation permits
the efficient evaluation of the statistics of the post-survey
residuals in the form of their average spectral density. Root-
mean-square (rms) values, covariances and crosscovariances of
point and spatial averages of the residuals are readily com-
puted from their average spectral density through numerical
integration.

Survey error models and gravity recovery simulation
results were given for a variety of combinations of

° Satellite radar altimeters

° Satellite-to-satellite tracking in a
high-low configuration

) Land-based/shipborne gravimetry

) Airborne gradiometry.

The examples given illustrate the versatility of the methodology.




4.2 RECOMMENDATIONS

There are several important areas of investigation
for future extensions of the methodology:

° Effects of survey irregularities - The
3 effects of gaps in satellite data and
- the seemingly random measurement pattern
Y associated with land-based gravimetric
surveys would be incorporated in the
: analysis.

- ® Additional sensors - Other survey possi-

L bilities such as satellite-to-satellite

7 tracking in a low-low configuration or
inertial gravimetry can be included in
the formulation.
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APPENDIX A
THE FOURIER TRANSFORMATION

This appendix presents a compilation of those defini-
tions and results of Fourier analysis employed in this report.
This appendix is not intended as a treatise on the subject of
Fourier analysis. The material is presented as an aid in under-
standing the application of the concepts rather than as an
investigation of the mathematical properties of the concepts
themselves. The reader interested in a more complete presen-
tation is referred to various excellent books on the subject
such as Refs. 3, 15, 16, and 17.

A.l DEFINITIONS OF FOURIER TRANSFORMS

Let g(x) be a real-valued function defined for all
points x = (xl,xz)T of a cartesian coordinate system. The
Fourier transform of g, g, is a complex-valued function defined

by
Qo
g(s) = //g(,_()e‘ﬂ“‘é’? dx, dx, (A-1)
-0

where i = /-1, s = (sl,sz)T, and where <x,s> is the scalar

S product of the vectors x and s given by

:3: T

< = = + -
i X,8> = X'8 = X8] * X535 (4-2)
[

EE The vector s is referred to as planar frequency. Its com-
iﬁ ponents, s, and s, are real numbers which, as shown below,

N correspond to physical frequencies measured in the directions

AR
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of the axes of the coordinate system. The fact that g is
complex-valued is solely due to the appearance of the factor i
in the exponential of the integrand in Eq. A-1. Note that
since g(x) is real-valued,T

g(s) = [g(-s)]1" (A-3)

The inverse Fourier transformation permits the re-
covery of g(x) from g(s):

g(i) = /[§(§)812n<§’§> dSldSZ (A-4)

The formulas for the Fourier transform and the inverse Fourier

transform are completely symmetric except for a change of sign

in the exponential. The functions g and g are called a Fourier
transform pair. Given any one of them, the other is uniquely

determined within an equivalence class (Ref. 16).

In order to give a physical interpretation of the

Fourier transformation, it is convenient to decompose g(s)
into its real and imaginary parts. Let

g(s) = g.(s) + ig,(s) (A-5)

where gr and gi are real. From Eq. A-3 it follows that

g.(s) = B (-38) (A-6)
52 and
7 8;(s) = -;(-38) . (A-7)
A, , , . ,
S tA superscript asterisk denotes complex conjugation when attached
%ﬁ to a scalar and conjugate transpose when attached to a matrix or

<l a vector.
o




Using the identity
i2n<x,s> o
el2n<x,s> _ cos 2n<x,s> + i sin 2n<x,s> (A-8)

and Eq. A-5, the inverse Fourier transformation can be written

as

o
g(x) = [[[gr(g) cos2n<x,s> - g;(s) sin2n<x,s> ]ds,ds,

-0

*
+ i /j/[gr(;) sin2n<x,s> + gi(g) cosZn<§,§>]dslds2
-0

(A-9)

From Eqs. A-2, A-6 and A-7 it follows that the second integral
in the right-hand side of Eq. A-9 vanishes and that

[+ ] o0 f

g(x) =f/ All(sl,sz) cosZnslxl c052n52x2 dslds2 {
o o }

|

® ® |
, +// Ayo(sy,8,5) sin2ns,x sin2ns,x, ds,ds,
50 o o
'.'. ] > ]
_A +//A12(sl,sz) cosZnslxl sir127t52x2 dslds2
: O o
: [+ ] [ ]
+ff AZI(SI’SZ) sinZnslx1 cos2ns,X, ds,ds,
o o
(A-10) |
A-3
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¥c - where
\ All(sl’SZ) = 2[gr(51,52) + gr(sl,‘sz)]

e Anrn(Sy,5,) = 2[-; (s,8,) + ; (87,-54)]
. 22Y°1°7°2 r°1°'°2 r°1 2 (A-11)

N Ajp(sy.sy) = 2[-g;(sq,8)) + gy(s1,-5,)]

T Ap(s1,8y) = 2[-g;(sy,8,) - g;(s),-5,)]

~;€ Equation A-10 is a representation of g(x) as a sum
over frequency of products of trigonometric functions for the
3 four possible phase combinations. Only positive frequencies
appear in Eq. A-10. The Fourier transform g(s) associates
;Ia with each pair of positive frequencies (51’52) eight real num-
bers corresponding to the real and imaginary parts of g(s) for
the four vector planar frequencies s = (sl,sz)T, s = (sl,-sz)T,
%% s = (-sl,sz) and s = (-sl,-sz)T. Of these eight numbers only
. four are independent (Eq. A~3) and the relation between these
; numbers and the coefficients of the expansion A-10 is given by
~§ A-11. The definition of the Fourier transform (Eq. A-1) as a
. complex-valued function of positive and negative frequencies
: is a compact mathematically convenient way of representing the
four amplitudes of the trigonometric expansion A-10. The in-
version formula (Eq. A-4) is entirely equivaient to the expan-
o sion A-10.

,?: Classically, the most important application of the
- Fourier transformation has been to the solution of differen-
tial equations. This application is a consequence of the fol-
lowing property of Fourier transforms: Consider the n-th
partial derivative of g(x) with respect to Xy (k=1,2). From
the formula for the inverse Fourier transform (Eq. A-4)

a“g(g)/axﬂ can be written as

.......
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o
n n
%—— g(x) = J/. g——-(g(s) e1<§’§>] dsldsz (A-12)
X X
k k

With the help of Eq. A-2, the partial derivative of the inte-

grand can be evaluated to yield

a_ 8(x) ./] [(12nsk) g(s)] el<X,8> ds,ds, (A-13)

from which it follows that the Fourier transform of a“g(§)/axﬁ
is the Fourier transform of g multiplied by (iZnsk)n.

As an example of the application of this property of
the Fourier transformation, consider the solution of Laplace's
equation with a boundary condition on a plane. Let T, (x) be
the potential at height z above the point x = (xl,xz)T. At
z=0, the potential is known and is given by To(g). For z>0,

T, (x) satisfies

(x) =0 (A-14)

In addition, it is required that Tz(g) remain bounded as z » =,

Let T, (s) be the Fourier transform of the potential
on the plane at height z. Applying the Fourier transformation

to Eq. A-14 results in

A PN 2 A
-4n?s3T () - 4ns3T (s) + :—z—z T (s) = 0 (a-15)




L

n“."‘-f‘ f‘:’

-

J@.

KA NSNS

i

'
4..' )

i.
o
N

.

.

bt daiiite A A UER A A Rl A e i A e o Lanh dafs b B A vhe AuOn 0GR Lomn o S A bAe 6 ain d e pien Aeads o aee soe o

from which it follows that

2 - -
9 - -
;;2 TZ(E) = 4n°s Tz(g) (A 16)
where
s = (s2 + s3)1/2 (A-17)

Equation A-16 is an ordinary differential equation for each
value of s. Its solution is of the form

T, (s) = A e 2152 4 g o*2nsZ (A-18)

where A and B are to be determined. From the condition .that
the potential must be bounded as z > » it follows thatAB=0.
The value of A is obtained by setting z=0 to yield A = To(§).
Thus, the solution to Eq. A-16 is

- . _-2nsz . -

Tz(g) = e To(g) (A-19)
This equation states that the Fourier transforms of the poten-
tial at height z and at height 0 are simply related by the
attenuation factor e-2nsz. In the space domain, the solution

is obtained by using the inverse Fourier transform; i.e.,

00
= » -2nsz _i2n<x,s> -
T, (x) = f/To(g) e e =27 dsyds, (A-20)
-00

In the discrete case the Fourier transform is called
the finite Fourier transform and is defined in a manner analo-
gous to Eq. A-1. Let M be an orthogonal grid of points on the
plane as in Fig. A-1. The normalized finite Fourier transform

MR MR AN LA s A A s s na oo |
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" of a function G(Q) with Q@ = (j,k) denoting the position of a
Sj point on the grid is defined as
- ) .
G(p) =E Gla) e 12n<2,p> (A-21)

S Q

5

where p = (pl,pz)T, with Py and Py real numbers, is the vector
of normalized frequencies in the directions of the grid axes
(see below). Since Q is a vector of integers, the normalized
finite Fourier transform is a periodic function of P, and p,

*The symboljz:denotes summation over all possible values of
Q

the integer components of Q.

A-7
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3 with period 1 in each direction; i.e., if A=(£,m)T is a vector
g with arbitrary integer-valued entries then

O .

g(p*A) = Z G(g) e i12m<@,p*L A-22)

X Q '

3 A

: = G(p)

-

- because

:“. e-12n<g,g+ll> - e-12n<(_2_,9> R e-12n<g,ﬁ> (A-23)
; and

: e 12r<Q,A> _ -i2n(jf+km) _ 4 (A-24)
>

- for all possible values of j, £, k and m.

:3 The inverse of the normalized finite Fourier trans-
2 form is given by

K

A i2n<Q,p>

' - i2n<Q,p .

3§ G(Q) Jf Jr G(p) e dp; dp, (A-25)
S

M

o The limits of integration in Eq. A-25 can be modified as long
4 as they span a full period of G(p) in each dimension.

P
o

The vector p = (pl’pZ)T in Eqs. A-21 and A-25 is called
: normalized planar frequency because it does not carry any infor-
& mation as to the physical wavelengths implied by Py and Py-
- The reason is that the function G has been viewed as being
. defined on the integer coordinates of the grid and the spacing
= between consecutive points in each direction is one unit ir-
P respective of the physical distance involved.
iy
4
-
W
N
A-8
o
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The physical position x = (xl,xzfr of the point
Q= (j,k)7 is

(A-26)

1%
]
o
1o

where

(o
"

is called the grid spacing matrix (see Fig. A-1). It then
follows that the normalized frequencies P and P, can be identi-
fied with the physical frequencies Sy = pl/tl and 59 = pz/tz.
Letting s = (sl,sz)T = J'lg, Eqs. A-21 and A-25 become,
respectively,

E;(JE) - E G(Q_)e'i2ﬂ<J‘l,§> (A-27)
Q
and
Sy sy )
G(Q) = 11, f f G(J_s_)e12"<‘19-’—s-> ds,ds, (A-28)
‘52 -Sl

where the factor 1%, in Eq. A-28 arises from the change in
integration variables. The quantities 51 = 1/2t; and 52 = 1/21,
are called the Nyquist frequencies of the grid.

For purposes of compatibility with the definition of
the Fourier transform in the continuous case (Eqs. A-1 and A-4),
it is convenient to define the unnormalized finite Fourier
transform (or, simply, finite Fourier transform) as*

*With this definition the physical units of g and G coincide
when G is a sampled version of g.




-

&(§> = 11, &(Jg) (A-29)

Thus, from Eqs. A-27 and A-28, the finite Fourier transform is
given by

G(s) = a(J) ) G(g) e iZn<iR.®> (A-30)

and the inverse finite Fourier transform is

G(a) = / / G(g) el2<J0.8> g g5, (A-31)
“Sp %

where in Eq. A-30, A(J) = 1T is the determinant of the spac-
ing matrix.

A.2 CONVOLUTION

Let g and f be two functions defined for all §=(x1,x2)T.

The convolution of g and f is a third function, h, given by

h(x) = jC}fg(§') f(x-x') dxjdx} (A-32)

In the discrete case, the convolution of G and F is defined as

H@) = D 6(a') F(a-a') (A-33)

A-10
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By changing integration variables in Eq. A-32 and summation
indices in Eq. A-33 it can be verified that the roles of g and
f and those of G and F are interchangeable in the definitions.

A convolution integral becomes a simple algebraic

product under the Fourier transformation. To see this, con-

sider Eq. A-32. Taking Fourier transforms on both sides of
the equality, Eq. A-32 becomes

[- ] [« J
h(s) = ././ f/g‘E') £(x-x') e 1M E2 gxidxjdx,dx,
(A-34)

Changing the variables of integration X1 and X,y through the
definition x"=x-x', Eq. A-34 transforms into

[ -] o
h(s) = g(x') f(x") e 12MR'*X",8> 4u1gxsdxndx!
= = = 1772741772
=00 -00

(A-35)

which can be written as

3 ®
h(i) - ﬁg(!')e-iz’t(.’f' y8> dxidXé f/f(g")e-izn(!"’§>dx'1'dx£
-0 -0

(A-36)
Thus,
h(s) = g(s) £(s) (A-37)

Similarly, in the discrete case the normalized finite
Fourier transform of H is given by

A-11
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H(p) = G(p) F(p) (A-38)

For the (unnormalized) finite Fourier transform the relation
is

-~
-~

H(s) = 543y G(s) F(s) (A-39)

As an example of a convolution integral, consider the
flat-earth upward continuation formula of Ref. 2. The poten-
tial at height z over the point Xx, Tz(g) is related to the
surface potential T_(x) through the formula

T (x) = 2 / 1 T (x') dxldx! (A-40)
z — ﬁ _J['I§'°§I|2+ZZ]§/2 o - 1 2

where ll§l|2 = <x,X> is the square-magnitude of the vector Xx.
This integral can be recognized as the convolution of To and
the function U(x) defined by

= z/2n _
T N %D e

Therefore, from Eq. A-37
T,(s) = U(s) T (s) (A-42)

It is instructive to evaluate ﬁ(g). More generally,
suppose that it is desired to evaluate the Fourier transform .
of a function r(||x||) which only depends on the magnitude of
the position vector x. Thr Fourier transform t(s) is given by

J
t = [fetixin B axjax, (a-43)
-0

A-12
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or expanding the scalar product in the exponent
y ~i2n(s X, +S,X,)
#(s) =[/r(II§II) e 172727 g dx, (A-44)
- Q0

The dependence of r on the magnitude of x suggests the use of
polar coordinates. Setting

X, = p cos 6

(A-45)
Xy = p sin 6
Eq. A-44 becomes
~ 1 ian(slcose+szsine)
t(s) = f pr(p) e de | dp
(6) “n
(A-46)
but (Ref. 18)
n ian(slcose+szsine)
/ e de = 2n J _(2nsp) (A-47)

-

where Jo is the Bessel function of the first kind of order
zero and

s = |Isl|l (A-48)

-4

r(s) = 2n / pd, (2nsp) r(p) dp (A-49)

o

L™y Chiard ’h"\...JAsﬁ‘h]"'q
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- from which it follows that #¥(s) is enly a function of the fre-
E; quency magnitude s.

_ The integral in Eq. A-48 is known in the mathematical
o literature as the zero-order Hankel transform of the functinn ’
32N

f% r. From a table of Hankel transforms (Ref. 19), it follows
jﬁ that the Fourier transform of U as given by Eq. A-41 is

._;: U(s) = e 2nsz (A-50)
L Therefore, Eq. A-42 becomes
,Q' - - =218z o _
<5 T,(s) = e T,(s) (A-51)
2

s

which is identical to Eq. A-19.

‘l
.l ‘l

x

A.3 SPECTRAL AND CROSS-SPECTRAL DENSITIES - DEFINLTIONS

AR

N Let Yy and ) be two zero-mean stochastic processes

defined for all points in the plane. The process y£(2=1,2) is
said to be stationary if its covariance is only a function of
o the coordinate differences; i.e., .

- Ry oy, XX = Elyg(x") yy(x")] (a-52)

of & u‘.
A4 e

where E denotes the mathematical expectation operator. Since
the roles of x' and X" are interchangeable on the right-hand
side of the above equation,

P A
e T TN

‘ :'_:

jﬁ *The converse can also be shown to be true: If t(s) is only a

A function of ||s|l|, the inverse Fourier transform, r(x) is only

4 a function of Tix|]. |
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-
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‘2£
s R = R - A-5
S y, oy, B = Ry Ly, (%) (A-33)
o The processes Y1 and y, are said to be jointly sta-
ij tionary if each of them is stationary and their crosscovari-
f? ance is only a function of the coordinate differences:
- R -x") = " A-54
5 yl’yz( x") = Elyj(x') yo(x")] ( )
N From Eq. A-54 it follows that
L R x) = R - A-55
Y2’yl(—) yl’y2( E) ( )
if The power spectral density (PSD) of y,, ¢ , is
2 Ty,,Y,
B defined as the Fourier transform of its autocovariance function
- -i2n<x,s>
o e =27 dx,dx (A-56)
; y,z,y12 [[ yg,yg 1772
fﬁz It is shown in Ref. 15 that
o A-57
o yz’yz(S) ( )
- The cross-spectral density of y, and y,, ¢ , is
o 1 2 Y1:¥2
- similarly defined as
9.
RO -i2n<x,s>
e =27 dx,dx (A-58)
..'
}:, From Eq. A-55,
<l
. A-59
1
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Analogous definitions apply to discrete processes.
Let Yl and Yz be two discrete zero-mean processes defined for

the integer coordinates @ = (j,k). The process Y2 is station-
ary if

RYQ’YQ (Q'-qm) = E[YQ(‘—!')YQ(Q")] (A-60)

and Y1 and Y2 are jointly stationary if

RY]_,YZ‘(Q'-Q") = E[Y]_(Q-')YZ(Q")] (A'6l)

Their normalized spectral densities are defined by

-12n<Q,p>
® (p) = R (Q) e 14N (A-62)
Yoo¥p ; Yoo¥p =

for 2=1,2 and m=1,2. The (unnormalized) spectral densities
are

~ W) -12n<JQ, s>
¢ (s) = a(J) R (Q)e tEMR2 (A-63)
YooV %‘ Yoo ¥n

A.3.1 Spectral Densities and Convolution

Suppose that the process y, can be obtained by con-

volving the stationary process Y1 with a known deterministic
function f

yo(x') = '[]. f(w') yi(x'-w') dwjdw) (A-64)

First it will be shown that the covariance of Yoo E[yz(g')yz(ﬁ")l
is only a function of the coordinate shift x'-x".

.............
.........
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354 From Eq. A-64,

o~

3:._' 00 [

N~

I~ E(y,(x')y,(x")] =g/]'f(g')f(9")E[yl(§'-g' )y, (x"-w")] dw)dw,dwidw)
f% (A-65)
N

By But since Y1 is stationary,
b Ely (x'-w')y (x"-w")] = R [(x'-x")-(w'-w")] (A-66)
o 1= =7 vy S S

Y

o Thus

:" ®» @

= sty @) = [ ffewneann | tro-wn) ajao;

-Q0 =00
(A-67)

This equation shows that the covariance of ) is a function of
x'-x". Therefore, y, is also a stationary process and its

covariance is

Ryz’yz(g) =E ﬁf(g')f(g") RYI’YI[E-(Q'-Q")] dwidwédw‘l'dwg

3 (A-68)
5 A formula for the spectral density of ) in terms of
:Q that of y; is derived next. From Eq. A-68,

2 ff/ f fu')fW") Ry o [x-(w'-w")]

i Yz'Yz 191

;

) .

:3 x e 1K gyiduy dwldey dxpdx, (A-69)
15

A-17
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Replacing the integration variables 3 and Xy by §1 and £2
with £ = x - (w'~w") and noting that

s L ' . " s
e~12n<x,s> _  -i2n<w',s> +iZ2n<w",s> -i2n<§,s> (A-70)

é Eq. A-69 becomes

(-]
¢y2.y2(_s_) ‘_[/ f(u') e i2n<w',s> dw{dw}
-0
oo
x[/f(g") etiZ2n<u”, s> duf dus
-00

g ./.fRYle(i) e lon<k, s g d¢,

(A-71)
from which
%y, .y, S = £(s) £ (s) Oy 1y, (O (A-72)
or
Oy y,(8) * 1£(s) 12 TEY (A-73)

which is the desired relation.

Next, it is shown that Y1 and y, are jointly station-
ary. From Eq. A-64, the crosscovariance E[y2(§')yl(§")] can
be written as

]
Ely,(x")y,(x")] =f/f(g) Ely (x'-w)y; (x")]dw,du,
o (A-74)

........




3

‘jﬁ and, because of the stationarity of 2K

L .

“ E[y2(§')y1(’_“")] =/]f(5’_) Ryl’yl(g_'g) dw,dw, (A-75)

. -00

,5; Therefore, the crosscovariance of Yy and Yy only depends on

- the coordinate difference x. Thus, y, and y, are jointly sta-
tionary and the crosscovariance Ry y (x), given by Eq. A-75,

o 271

o is the convolution of f and Ry - It then also follows from

o 171

i: Eqs. A-37 and A-75 that the cross-spectral density °y y is

= given by 2’71

S

¢ = f ¢ A-76

- yz’yl(g) (s) yl’yl(g) . ( )

N3 Similar results apply to discrete processes. If the

ff process Y2 is defined in terms of Yl through a convolution

Yy(2) = D F@") Y (2-2") (A-77)

s Q'

iz then the normalized spectral and cross-spectral densities of

- Y, and Y, are related by

" - 2

¢ (p) = IF(P)IT ¢ (p) (A-78)

3 ¥2:¥2 Y14y

» o, ¢ (p) = F(p) &y  (p) (A-79)

" Y2:¥y S

~

25 and the (unnormalized) densities are related by

" .

: By g (8) = A= IFe12 8, (o) (A-80)

o 2'°2 a%(J) 1°°1

A-19
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m F(§) ¢Y1,Y1

3 (s)
Y2 ;Yl -

(s) (A-81)

A.3.2 Spectral Densities of Isotropic Processes

Consider a stationary process, y, defined for all
points on the plane. It is of interest to investigate the
behavior of the covariance and spectral density of y under

rotations of the reference frame.

Let the primed coordinates be defined as in Fig. A-2

so that
X =6 x' (A-82)
where
cos 6 -sin ©
o = ) (A-83)
sin © cos ©
X R63322
o 1
\
\
\
\
\
\ .
\ -
\ ””
\ L
\ ’Tv‘
’,—!;—"— 8 P X4
””‘— \
\
\
\
Figure A-2 Definition of Primed Reference Frame

A-20
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n Denoting the covariance functions in the primed and unprimed
frames by R§ y and Ry y? respectively, it can be seen that
”, R! ' - ' _84
y',y'(§ ) Ry,y (6x"') (A )
_i The spectral density of y expressed in terms of fre-
- quencies measured in the directions of the primed axes is
[ )
s ' ' - ' [ "]'.27!<§',§'> ' ] -
> -®
ln From Eq. A-84,
- o
- ' - "i2ﬂ<)_(',§'> ] -
¢y,’y.(§') '/:/‘Ry,y(e§') e dxjdx;  (A-86)
-0
' Since 87! = BT, it follows that <x',s'> = <6x',6s'>. Thus,
ff changing variables of integration in Eq. A-86 according to the
o transformation A-82,
o
_ - -i2n<x,0s8'> -
'; o)'".y'(§') _’/:/.Ry,y(i) e (lxldx2 (A-87)
: -0
' or
: ! ') = es' A-88
- ®ry gils) =0 (85") (A-88)
»
b Equations A-84 and A-88 show that, in general, the
Q covariance function and the PSD of y depend upon the specific
- directions in which the coordinate differences are measured.
- A stationary process whose statistical behavior is the same in
’ all directions is said to bc isotropic. If the process y is
; isotropic, the functional form of its covariance and PSD must
be independent of the orientation of the cartesian frame in
) A-21
l
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which they are expressed. From Eqs. A-84 and A-88 it follows
that y is isotropic if for all possible rotation matrices

R, . (X)

Y,y Ry,y(ex) (A-89)

and

¢ (5] A-90
y,y(8) = ¢y yl0s) (A-90)
By changing to polar coordinates, it can be shown that Eqs. A-89

and A-90 are possible only if Ry y and ¢y y are functions of
’ »

*
lI1xI| and s = ||s|]|, respectively .
An example of the covariance of an isotropic process is

R, ,x) = o2 PHE v gyix)y + L 82ixi) cason)

which is called an isotropic third-order Markov model with
variance 02 and characteristic distance 1/B (Ref. 14). Using
Eq. A-49 and a table of Hankel transforms, it is straightforward
to show that

2.5
- 10no“B
¢ (s) = (A-92)
Yoy = (g2 4 (2ns)21772

Another example is furnished by the Attenuated White Noise

model (Ref. 13). The covariance is given by )
3 6
_ 8D g 1
R, ,(x) = (A-93)
i [1x11% + 40?1372

*That these two conditions are compatible (in fact one implies
the other) is shown by the derivation of Eq. A-49 from Eq. A-43.




Y W W T W e Laca AR Raa Mna b e M a e an de Sin . o = T .
; ‘)
A, ¢
"

- where 02 is the variance and D is called the shell depth. The
= PSD corresponding to Eq. A-93 is

o, ,(8) = gnp2g? ¢~4nDs (A-94)
Ei A.3.3 Along-track Spectral Densities

The Fourier transform of a function of a single vari-
= able, g(t), is defined in a manner analogous to Eq. A-1:

@
-0

The inverse one-dimensional Fourier transform is

oo
- g(t) = f g(f) 2ntf 4 (A-96)
o -
s
Pl
)
N In Egqs. A-95 and A-96, f is interpreted as frequency. The
. units of f are the inverse of the units of t.
3
N
-3 Spectral densities of one-dimensional processes are
o denoted by the letter S and covariances by the letter C. 1If
K z(t) is a one-dimensional process, its power spectral density
?} is
o
W
1
T ~
= -i2ntf
] z(f) = /Cz,z(t) e dt (A-97)
% =
o The (one-dimensional) covariance Cz z(t) can be recovered from
P, ’
f‘ the PSD Sz z(t) by the inverse Fourier transform (Eq. A-96).
»
>
0
oy
’ A-23
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Let y(x) be a stationary process on the plane with
covariance Ry (x) and PSD ¢y,y(§)' Suppose an observer is
traveling on the plane at constant velocity V on a straight-
line track parallel to the xi axis of Fig. A-2 and is con-
tinuously recording (without errors) the values of the process
y as a function of time. Denote by z(t) the recorded data.
It is desired to relate the covariance function and the PSD of
z(t) to the covariance and PSD of the two-dimensional process
y(x).

First, consider the covariance Cz z(t). When the
1
observer records an interval of time t, the two points on the
plane corresponding to the times at the beginning and at the

end of the time interval are separated by a vector difference

x1 Vt cos ©
X = = (A-~98)
x2 Vt sin ©

In the primed coordinate system this difference is

X' = = (A-99)

Therefore Cz z(t) can be expressed as

“E': - [] T -

o 2(t) = Ry o [(Ve,0)7] (A-100)
TR

o Next, consider the PSD Sz z(t). Since from Eq. A-85
o -

-

i2n<x',s'> ds.:ds

1985 (A-101)
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Setting x' = (Vt,O)T, it follows from Eq. A-100 that

[ J
_ , . i2nVts! At -
Cz’z(t) -ﬁ¢y’y(§ ) e 1 dslds2 (A-102)
-0

where s]'_ is measured in the direction of the xi axis. Substi-
tuting integration with respect to si by integration with re-
spect to f=Vs]'_, Eq. A-102 becomes

[+ ] - ]

- 1 ' , i2ntef

Cz,z(t) = / 7 /tb)',’y[(f/V,sz)] ds2 e df
-Q0 -0

(A-103)

The right-hand side of Eq. A-103 is readily recognized as the
inverse (one-dimensional) Fourier transform of the quantity in
braces. Therefore,
’ [+ ]
-1 -
Sz’z(t) = f ¢}',’y(f/v,sé) dSI'Z (A-104)

<

which is the desired relation.

If the observer records the data as a function of

distance rather than time, the covariance, (xi), and the

C

Y.y

PSD, Sy y(si), of the resulting record are called along-track
1]

covariance and PSD of the process y. Formulas for these quan-

tities can be obtained by setting V =1, t = xi and f = si in
Eqs. A-100 and A-104:

'y = Rt v oy -
Cy,y(xl) Ry,y[(xl’o) ] (A-105)
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. S si) = %' s') ds) A-106
: g.y(si) f y.y(8') ds ( )
bR -®

e In words, the along-track covariance is the two-dimensional )
P covariance with the shift in the cross-track direction set
v$7 equal to zero, and the along-track PSD is the integral of the
"o two-dimensional PSD over the cross-track frequencies. Note

that the time-covariance and PSD are related to the along-
track covariance and PSD through the simple relations

..
)
T a

» Fut
5 [l
i 50 T beh

1

- - - 0
> Cz,z(t) Cy,y(Vt) (A-107)
S _1 i
- Sz,z(t) =g Sy’y(f/V) (A-108)
In general, Cy y and Sy y depend upon the direction of

- ] ]

;i the track.. However, if the process y is isotropic, Eqs. A-89
j% and A-90 imply that the functional forms of the along-track
fﬁ covariance and PSD are independent of the direction of the
g track.

>
! J‘:

;.-\

s
-

K

L

2

e A-26




YT LA A are Mo oo MENCan st g 2a o ae

APPENDIX B
FLAT-EARTH FREQUENCY-DOMAIN RELATIONS

This appendix presents detailed derivations of the
flat-earth frequency-domain relations introduced in Chapter 2.
Relations between geodetic quantities and between their sta-
tistics are analyzed in Sections B.l and B.2 of this appendix,
respectively.

B.1 GEODETIC RELATIONS

The anomalous potential is a harmonic function at all
points external to the earth's surface. If the earth is taken
to be a sphere of radius R, the anomalous potential, T(P), at
a point P located at a distance r > R from the center of the
earth is given in terms of the potential at the earth's sur-

face, T , by Poisson's integral formula

o’

T(P) = o / CaS I (B-1)
=’ 7 4nR S 23 o 9

where the integration is taken over the surface of the earth
and where ¢ represents the distance from the point P to the
surface element do.

RN N 55

o TR T renpp—

Nt

—
P

The flat-earth upward continuation formula (Ref. 2)
is an approximation to Eq. B-1l which corresponds to the solu-
tion of Laplace's equation with a boundary condition on a plane.
The potential T, at height z = r-R over the point x on the
plane is given by

-
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T (x) = 2 ,/Jf' Tk dx}d (B-2)
x) = x!dx. -
2'= 2n /- [I|§'-§||2 + XZ 3/2 1772
where x = (xl,xz)T, X' = (xi,xé)T and

fIx'-x|| = l(xi-xl)2 + (xé-xz)?']l/2 (B-3)

The approximation is valid for z<<R and ||x]||<<R.
For reasons that will become clear in the sequel, it is con-
venient to identify the directions of the X, and X, axes with
the east and north directions, respectively, at the point cor-
responding to the origin of the plane of the flat-earth
approximation.

The usefulness of the approximation lies in the fact
that the integral in Eq. B-2 is a two-dimensional convolution.
The potential at height z, Tz’ is the convolution of the poten-

tial at the surface, T , and the function Uz defined by

o

- z/2n )
2 g« 52 B

The Fourier transform of a convolution integral is
equal to the product of the Fourier transforms of the func-
tions béing convolved (see Appendix A, Eq. A-36). Denoting
Fourier transforms by a superscript circumflex, the frequency-
domain relation corresponding to Eq. B-2 can be written as

T,(s) = U,(s)T (s) (B-5)

where s = (sl,sz)T and Sy and s, are spatial frequencies meas-

ured in the east and north directions, respectively.




"‘R

g

- The Fourier transform of U, is given by

s ®

" . - i2n<x,s> )

U,(s) -./:/‘Uz(§) e = dx,dx, (B-6)
- -0

ii where

- <X,8> = X185 + X8, (B-7)

fi is the scalar product of the vectors x and s. This integral

:; is evaluated in closed form in Appendix A. The result is

{ U, (s) = e 2MSZ (B-8)

- where s = ||s||. Consequently, from Eq. B-5, the Fourier trans-
form of the potential at height z is related to that at the
surface by the simple formula

" - _ .-2nsz - -

. Tz(g) = e To(§) (B-9)

. -2nsz ' .

: The function e is called the transfer function

E from potential at the surface to potential at height z. Note

N that this transfer function is a simple attenuation factor

whose value decreases exponentially with frequency and height.

It is shown in Appendix A that Fourier transforms of
partial derivatives of a function with respect to the east and
. north coordinates can be obtained by multiplying the Fourier
2 transform of the function by the factors iZns1 and iZnsz, re-
spectively. Thus, for example, the Fourier transform of the
east and north components of the gravity disturbance vector at

height z, T and T , are given by the formulas
X1 X2

EAER = :AY;I.A:A‘,..AI .- ‘|| .'r_

-

i dhns, P T S A L S T T T A A L A /O L S ST SR U Y
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i2ns; T,(s) (B-10)

—~

0

~
"

= i2ns, T,(s) © (B-11) :

~
©)]
~
t

Fourier transforms of partial derivatives of the poten-
tial with respect to height can be related to the Fourier trans-
form of the potential through equally simple formulas. For
example, consider the vertical component of the gravity dis-

turbance vector, rz. Its Fourier transform is defined by
o .
. - -i2n<x,s> )
r,(s) -/frz(:_() e ='=" dx,dx, (B-12)
-0
Thus,
]
- - d -i2n<x,s>
r,(s) = ffsz Tz(§_) e =’=" dx,dx,
-
o
=9 -i2n<x,s>
= 8—2_/_./.1‘7_(5) e =127 dx,dx,
-0
R
= 3z Tz(g) (B-13)

Therefore, from Eq. B-9, it follows that

r,(s) = -2ns T,(s) (B-14)

Using Eq. B-9 it is possible to express M. Ty and
R 1 2
rz in terms of the Fourier transform of the anomalous surface

potential as

B-4
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Z , - _ . -2nsz o
:} rxl(g) = i2ns,e T, (s) (B-15)
o " o s -2nsz -

sz(g) = 12n52e To(g) (B-16)
N
- r(s) = -2nse”2"SZ T _(s) (B-17)

The functions multiplying To in Eqs. B-15, B-16, and B-17 are
called transfer functions from anomalous surface potential to

. ‘.‘
P IR BT

- the east, north, and vertical components of the gravity dis-
. turbance vector at height z, respectively.
&
‘-u
' Table B-1 presents the transfer functions from anoma-
. lous surface potential to all other quantities of interest in
LY

.

this report. This table is identical to Table 2.1-1 and is
repeated here for convenience. To obtain the Fourier trans-
form of any of the quantities in the first column of the table,
- the Fourier transform of the anomalous potential at th- surface
is multiplied by the transfer function given in the last column
of the table. All transfer functions in Table B-1 are obtained

o

~ by replacing the upward continuation operation and partial

b derivatives with respect to the east, north, and vertical co-

' ordinates by products of e-2nsz’ iZnsl, iZns2 and -2ns,

- respectively.

1_-\

?‘ Table B-1 can also be used to relate any pair of quan-

o,

tities listed in the first column. For example, the frequency-

’x: domain relation equivalent to the formula of Vening Meinesz
% ' expressing the north component of the deflection of the verti-
23 cal in terms of the gravity anomaly is obtained by combining
j’ the transfer functions in the third and fourth rows of the
ﬁ table to yield

5
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TABLE B-1

S0y I

TRANSFER FUNCTIONS FROM ANOMALOUS SURFACE POTENTIAL
TRANSFER FUNCTION
QUANTITY sympoL | RELATION TO ANOMALOUS | "FRoM aNoMALOUS
SURFACE POTENTIAL
Anomalous Potential at Height z T, T, e 2nsz
Undulation of the Geoid N To/ 8o /g,
East Deflection of the Vertical n -(aTo/axl)/go -i2nsl/g0
North Deflection of the Vertical ¢ -(aTo/axz)/go -i2nsz/go
Gravity Anomaly aAg -(aTz/az)|z=o - ZTO/R 2rns - 2/R
East Component of the Gravity M aT,/3x, iZnsle'znsz
Disturbance Vector at Height z 1
North Component of the Gravity M aT,/3x, i2n52e'2"sz
Disturbance Vector at Height 2z 2
Vertical Component of the Gravity r, 3T, /32 -2nse”21SZ
Disturbance Vector at Height z -
Gravity Disturbance at Height z 8g -3T, /32 2nse” 2152
East-East Gradient at Height z r alt /ax2 -Quzs%e'znsz
XXy 2 1
North-North Gradient at Height z r 82T /ax2 -ansge'znsz
XXy 2 2
Vertical-Vertical Gradient at r 22T_/322 4nlsle 2ns2
Height z zz z
. . 2 2 -2nsz
East-North Gradient at Height 2z X%, d Tz/axlax2 ~4n s18,¢€
East-Vertical Gradient at Height 2z r alr /3x%.92 -i4nls se"2MS2Z
X2 z 1 1
North-Vertical Gradient at Height z r a1 /9x,92z -i4n2s, e 2"52
Xp2 z 2 2
- 2,.2,1/2
*g = (sl#sz)
- -i2nsz/go
£(s) = “Tns=J/R ag(s) (B-18)

where g, is the mean value of gravity over the earth (go =

9.798 m/sec?).
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B.2 STATISTICAL RELATIONS

A zero-mean vector random process defined on the plane,
w(x) = [wl(g),..., wp(&)]T, is said to be stationary if its
covariance matrix, Rw,w’ does not depend on the specific values
of the coordinates but, instead;'is a function of the differ-

ences between coordinates; i.e.,

t " - ? T "
R,  (X'-x") = Elw(x') w (x")] (B-19)

?

The k-th diagonal element of Rw,w is called the auto-
covariance of the (scalar) random process corresponding to the
k-th component of w. The (k,j) element of Rw,w’ with k#j, is
called the crosscovariance between the k-th and the j-th compo-
nents of w. Autocovariances are real, even and positive semi-
definite functions (Ref. 3). Crosscovariances are real func-
tions but, in general, they are neither even nor positive
semidefinite. The (k,j) and (j,k) crosscovariances are identi-

cal except for a sign difference in their arguments.

Similarly, let u(x) = [u;(x),..., uq(g_)]T be another
stationary vector random process on the plane. The processes
w and u are said to be jointly stationary if their covariance
matrix, R u’ is a function of the coordinate differences;

i.e.,
R, u (X'-x") = Elu(x') u'(x")] (B-20)
The Fourier transform of Rw W is the spectral density
matrix of the process w. It is customary to denote spectral
densities by the Greek letter ¢. Thus, ¢ = R and

WoW W,W

*E stands for the mathematical expectation operator.

B-7
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(:_(_)e'izn<§’§> dx,dx, (B-21)

¢ (s)

w,w w,w

S

The diagonal and off-diagonal elements of ¢w,w are called power
spectral and cross-spectral densities, respectively. A power
spectral density (PSD) is the average density of the random
measure corresponding to the spectral representation of a proc-
ess (Ref. 3). Physically, a PSD can be interpreted as the
average distribution of the energy'density in a process as a
function of frequency. Power spectral densities are real and
non-negative functions. A cross-spectral density is a complex-
valued function that indicates the magnitude and phase of the
correlation between the spectral representations of two proc-
esses. The (k,j) and (j,k) cross-spectral densities are com-

plex conjugates of one another.

The cross-spectral density matrix of two jointly sta-
tionary processes w and u, ¢, ., is defined in a similar
2= .
fashion. It is the Fourier transform of their covariance,

i.e.,
]
- -i2n<x,s> -
W 2(5) = ,[]R!-E (x)e =027 dx,dx, (B-22)

Let y1(§) be a stationary scalar random process. It
is shown in Appendix A that if yz(g) is related to y1(§) by a

o transfer function Q(s) in the form
::;
- ¥,(s) = Q(s) ¥,(s) (B-23)

then the processes ¥1 and y, are joinLly stationary. Moreover,
their power spectral densities are related by

. -~ . u
Te ..'..' 1&‘1".&1')1; 'A._A'.h-)' R e




- 2 -
¢Y2ny?_ 1Ql ¢y1’y1 (B-24)

and the cross-spectral density, ¢

, 1s given in terms of the
y2’y1

PSD of 2 by

- A2

¢y2,y1 =Q ¢y1,y1 (B-25)

These facts entail a result of fundamental importance
when the gravity field on the surface of the earth is seen as
a realization of a stationary random process. Since all quan-
tities in Table B-1 are interrelated by transfer functions,
the specification of the covariance function for any one of
them determines completely the covariance structure for all of
them. '

It is convenient to develop a matrix notation for
expressing the cross-spectral density matrix of the vector
processes w and u in terms of the PSD of the anomalous surface
potential when the components of w and u are any field-related
quantities. To this end, suppose that the k-th component of w
is related to the anomalous surface potential, To’ through a
transfer function, Gk(g); i.e.,

=G To (B-26)

1€

with

(B-27)
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and that the j-th component of u is related to To through the
transfer function Fj(g); i.e.,

‘ @ =FT, (B-28)

fi with

> Fy(s)

:.‘ F2 (_S_)

- F.
q'8)

S Consider the (k,j) entry, o u.e of the cross-spectral
. k*"j

- density matrix ¢ u From Eqs. B-26 and B-28, the transfer

3 function from u.'ld—wk is seen to be the quotient Gk/Fj' Thus,
) from Eq. B-25,
¢"’k’“j = (Gk/Fj) ¢“j s (B-30)

J

-, However, from Eqs. B-24 and B-28,
D> xl

‘- ® IF.12 o (B-31)

.: u I uJ j To y T o

if Therefore, combining the last two equations,

"

: ® =G, F. ¢ (B-32)
'3

ji
,ﬁj It then follows that the cross-spectral density matrix, o u’
;; is given in terms of the PSD of the anomalous surface potential,
‘ ¢ , by

: Ty To
h

-,

T

- B-10
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(B-33)

€
ie

8! with the vector transfer functions G and F as in Eqs. B-27 and
: B-29.

“ﬁﬁ A similar expression can be obtained for the spectral
- density matrix ¢ .. Replacing u by w and F by G in Eq. B-33,

]

the following equation is obtained:

*
¢‘1,‘_‘ =GG ¢ (B-34)
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THE ANALYTIC SCIENCES CORPORATION

APPENDIX C
MULTISENSOR SURVEY ERROR ANALYSIS

This appendix presents a complete derivation of the
expressions for the statistics of the errors in the estimates
of the gravity field obtained from multisensor data. The prob-
lem of determining the errors in the estimation of the gravity
field from multisensor survey data can be formulated in the
following manner: It is desired to characterize the differ-
ences (estimation errors)

sw(x) = w(x) - wo(x) (c-1)

between the true values of the process w(x), and the best esti-

* ,
mates go(g). The components of w are any collection of field-
related quantities.

The estimates, go(g), are obtained from q data sets

Ik < {wk(ﬁ)lgsMk} ; k=1,2,...,q (C-2)

FQ. corresponding to the measurements that constitute the survey.
E&E The set Z, represents a collection of scalar measurements of a
EEj _ single data type in which all measurement points form a rectan-
. gular grid M- Later in this appendix (Section C.3), these q
v data sets will be classified according to the grids on which
&Q " measurements are taken. As a result, n classes will be formed,
-

where each class contains qB sets of measurements on a common
ii grid MB(B=1,2,...,n). Within the flat-earth approximation, the

e *In the mean-square sense.

C-1
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measurement geometry adapts to the description given above in
most practical cases. Examples of data sets, Ek, are

° Gravimeter readings collected at equal
time intervals by a survey ship travel-
ing at constant speed along equally
spaced East-West tracks

) Satellite radar-altimeter data on equally
spaced ground tracks. One set, Ek , for
1

ascending passes; another set, Ek , for
2
descending passes.

The measurements, wk, represent a scalar linear combi-
nation of field-related quantities, ups corrupted by additive
noise, Ek; i.e.,

The measurement errors, Ek’ k=1,2,...,q, are taken to be sta-
tionary gaussian processes independent of the gravity field.

Formulas for the spectral density matrix of the resid-
uals, 6w, are derived in this appendix. The analysis begins in
Section C.1 by considering the idealized case where the survey
data consist of a collection of continuous measurements (i.e.,

Mk = {x|x = (xl,xz)T, -® < X) < ®, -® < Xgy < »}). A general
formula for the spectral density matrix of the errors in the
estimates obtained with the optimal linear processor is derived.
In Section C.2 the effects of sampling the field at regular in-
tervals are examined and a relation between the spectral density

of the field and a sampled version of it is obtained. This rela-

TOVER T
LAY Cotalat sl ol

tion is used in Section C.3 to obtain a practical solution to the
‘ general problem formulated above. The solution is exact when all
;; sets Mk agree with each other and is approximate when this is not
QQ the case. In Section C.4, the results are specialized to the
[
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situation in which estimates are sought of spatially averaged
quantities. Section C.5 discusses the evaluation of the average

errors in a map of gravity estimates obtained from multisensor
data.

c.1 CONTINUOUS MEASUREMENTS CASE

Consider the case in which the data consist of a vector
of measurements § = (wl, ¢2,...,¢p)T at every point X = (xl,xz)T
The values of § are measurements of a vector of field-related
quantities, u, corrupted by stationary additive noise, {; i.e.,

g(x) = u(x) + {(x) (C-4)

The noise process { is taken to be independent of the gravity
field.

It is desired to determine

° The best linear estimator, w®, of another
vector of field-related quantities

w = (wl,wz,...,wq)T jointly stationary
with u(x)

) The spectral density matrix of the esti-
mation errors, 6w = W - !o

These questions are dealt with in Subsections C.1.1 and C.1.2,
respectively.

C.1.1 Derivation of the Optimal Smoother

By a linear estimator it is meant that the estimate of

W at any point X, must be given by a suitable linear combination

c-3
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of the data y(x). The most general linear estimator has the
form

- wo(x,) = []‘K(:_{o.g) y (x) dx;dx, (C-5) ;

where K is a qxp matrix function of X, and X to be determined.

The kernel K(§O,§) indicates how to weight the meas-
urement ¢ at the point x in evaluating the estimate of w at

- the point X, Because all the processes involved are station-
& ary, for any x' the statistical relation between the measure-
' ment ¢ at the point x+x' and the field w at the point X tx' is
identical to the relation between the measurement at x and the
field at X,- Therefore, in evaluating the estimate of w at
X, X' the measurement at the point X+x' must be weighted in
the same manner in which ¢(x) is weighted in the computation
of 30(50). Thus for all x',

o K(x,*x', x+x') = K (x,,X) (C-6)
% This relation implies that K only depends on the difference
} between its arguments. Consequently, Eq. C-5 can be written
“L as a convolution; i.e.,
: .
z o - -
- wi(x,) = _[/'K(:_co-}_c) y(x) dx,dx, (c-7)
" =00
fj The error or residual in the estimate of W (the n-th
3 component of w) at the point x  is

- R o) -
- Swo(x,) = wo(x) = w (x,) (C-8)

C-4
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It is desired to determine K so that the variance of 6w (x.)
is minimized for every n=1,2,...,q.

*
Let H be the Hilbert space generated by the random
variables wj(§ for j=1,2,...,p (Ref. 3). Since wg(go) is a

. ; . o
linear combination of the data, for each X wn(§o)€Hg' The

g’ Y1 and Yoo is de-
fined as the expectation of their product; i.e.,

scalar product between two elements of H

<y1sY2> = E(yl}’z) (C-9)

and the norm of each element is its standard deviation:

1/2 _

Fyll = (<y,y>) = [E(yZ)]l/Z

(C-10)

The Hilbert space H, is a linear subspace of the Hil-
bert space H generated by the components of the processes w and
y. From the Projection Theorem for Hilbert spaces (Ref. 20),
it follows that the element, wg(go), of H, that minimizes the
standard deviation of the difference 6w _(x)) = w (X)) - wg(go)
is the projection of wn(go) on the subspace H, and that the
difference 6wn(§o) must be orthogonal to every element of HQ;

i.e.,

E[Gwn(§o)y] =0 (C-11)

for every yeH . Since HQ is generated by the components of ¢,
Eq. C-11 is equivalent to

*The space H, contains all linear combinations of y(x) and all

limits in the mean-square sense of Cauchy sequences of such
linear combinations.
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E[Gwn(go) ¢j(§)] =0 (C-12)
for all x and all j=1,2,...,p.

From Eq. C-7,

p [+ ]
W) = D0 [ hapen) v axjay e
2=1 -

where kn2 is the component of K in row n and column £. There-
fore, the expectation on the left in Eq. C-12 can be written
as

E[6w (X, ;(x)] = Efu, (x,)4;(x)]

p [+ ]
- f/knJz (Ko-x") Elug(x")u(x)] dxjdx
g2=]1 -®»

(C-14)

Consequently, from Eq. C-12

Setting r = X, "X and changing integration variables through

the transformation r' = x'-x, Eq. C-15 becomes
p 00
R (r) = Z/Yk (r-r') R (r') dridr)
wn.¢j = J; nf ¢2’¢j 1772

(C-16)

_____________
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Since Eq. C-12 is valid for all x, Eq. C-16 is valid
for all choices of r. In matrix form, Eq. C-16 becomes a ma-
trix convolution equation

R!’g’-(g) = [/K(g-g') Rg’_&(g') dridr) (C-17)

Taking Fourier transforms on both sides of Eq. C-17 results in

¢w’&(§) = K(s) ¢i’*(s) (C-18)

Therefore, the Fourier transform of the weighting matrix K in
Eq. C-7 is found to be given in terms of the spectral densities
of the measurement and estimated processes by

K = ¢E&¢\Ll& (C-19)
Condition C-11 is equivalent to the statement that
the estimation errors are uncorrelated with the measurements.
Any two gaussian random variables which are uncorrelated are
also independent (Ref. 21). Thus, if w and ¢ are gaussian,
the errors in the best linear estimates are not only uncorre-

lated with the measurements but independent of them as well.

In the preceding derivation, the attention has been
restricted to the class of linear estimators. Next, it is
shown that no nonlinear estimator can further reduce the vari-
ance of the estimation errors if the process to be estimated
and the measurements are gaussian.

Let w'(x ) be any nonlinear estimator of w(x ) li.e.,
w'(x ) is some nonlinear functional of the data y(x)] and let
6w, be the error associated with the use of w' in the estima-
tion of the n-th component of w:

c-7
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bup(xg) = wylxg) - wp(xg) (c-20)
The variance of 6w$(xo),
o2 = E {[w_(x)-w'(x_)1%} | (C-21)
éwﬁ,éwa n‘"o n‘“o

can be written as

2

- o o , 2
g owr = B () W (x)) + (D xg) v (5001}

n

(C-22)

where wg is the best linear estimator of W - From Eq. C-8,

2 - , 2
Tt s T B{low, (x)) + (W3(x,) - Wi NI (C-23)

The expression on the right-hand side of Eq. C-23 is the vari-
ance of the sum of two random variables. The first random
variable is 6wn(xo), the error in the linear estimates. The
second random variable is the difference between the linear
and nonlinear estimates of wn(§o)‘ Since both estimators are
functions of the data § and since y and 6w are independent
because of the gaussian assumption, it follows that

2

2
. -
éwa,éwa

(o] ' 2
T 6w 6w + E{[Wn(_’so) - wl (x))] } (C-24)

Therefore,

(C-25)

proving the assertion.
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C.1.2 Spectral Density Matrix of the Residuals

The covariance matrix of the residuals is defined as

E[Gv_v(go)ég'r(%-y] = E{[y,(:_co)-f(gt_o)] [3(50-5)-!°(5°-§)]T}

(C-26)
which can be rewritten as
Elﬁg(:_to)équo-&)] = E{[y,(:_go)-v_v°(§o)] y_T(go-:_c)}

- E{lu(x,)-w’(x,)] 1,17}

(C-27)

The second term on the right is E{éw(x ) [y°(§O-§)]T}. Since

!o is a function of the measurements ¢, Eq. C-11 implies that

this expectation is zero. Hence, Eq. C-27 reduces to

El6w(x )6wT (x,-x) ] = Elw(x )’ (x,-x)] = Elw°(x)w’ (x,-%)]

(C-28)
But

Elw(x)w (x,-x)] = R, (x) (C-29)

and, from Eq. C-7

E[y_°(:_to)gT(§o-:_c) ]

'[/K(:_to,:_c') E[d{({')y_t(ﬁo-i)] dxdx,

= j]K(&o-x')RQ w[x-(x -x")] dxidxé




Changing integration variables, Eq. C-30 becomes

E[g°(§o)yT(§o-:_<)] = /fK(:_t") Rw_’!(yi")dxgdq (C-31)

Therefore, from Eqs. C-28, C-29 and C-31,

Elsu(x,)bw (x,-%)] = Ry (%) - ff R(X"IRy, (x-x")dx]dx
(C-32)

which shows that the residuals are stationary and that their

covariance Ry aw(_}5) is given by the expression in the right-
—’ —

hand side of Eq. C-32.

The spectral density matrix of the residuals is the
Fourier transform of their covariance. From Eq. C-32,

Co,ou(8) = 8y 4(8) - K(s) &, (s) (C-33)

Since,

Y ¢;’ (s) (C-34)

it follows from Eq. C-19 that

= ¢ -1 *

Pow,ow T Pw,w T Pw,u Pw,y Pu,p (€-33)

This expression for the spectral density of the resid-
uals is considerably simplified when the independence of the
measurements noise from the gravity field is incorporated into
the formulation, and when the relations among the quantities
being measured and estimated are taken into account. From the
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independence of the field and measurement errors and from
Eq. C-4 it follows that

®u,p T ®w,u (C-36)
and
®pop T Puu g (C-37)
Therefore, Eq. C-35 can be written as
-1 . *
ow,6w = Pw,w T Cw,ul®uu t Ore) T fu (C-38)

Now, the estimated variables, w, and the measured quantities,
u, are related to the anomalous surface potential, T,, through
vector transfer functions G and F as in Eqs. B-26 and B-28.
Consequently, from Eqs. B-33 and B-34,

*

¢ =GG ¢ (C-39)
w,w - To’To

¢ =FF & (C-40)
u,u == "T.,T,

and

¢ =GF o (C-41)

!rH - = TO’TO

Combining Eqs. C-38 through C-41 the following expression for
the spectral density matrix of the residuals is obtained:

- * * * -1
®sw,ow = GG L1 - EL(EE wop p/0p g ) ElO

(C-42)
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There are two important observations with respect to
the above formula. First, for any multisensor survey the vector
transfer functions F and G are readily obtained from the entries
in Table 2.1-1. Thus, to evaluate the spectral density of the
residuals, one need only specify the spectral density matrix
of the measurement errors, ¢£ ¢’ and the (a_priori) PSD of the
surface anomalous potential, $T0’To. Second, the spectral

density of the residuals given by Eq. C-42 has the same form
as the expression for the (a priori) spectral density of the

*
estimated quantities, ¢ as given by Eq. C-39; i.e., GG

w,w’
multiplied by a scalar. Thus, the residuals bear the same
relations among themselves as the original quantities do.
Moreover, if w = To’ then G = 1 and, therefore, the PSD of the

residual anomalous surface potential, ¢ , is given by
6To,6T0

the expression in braces in Eq. C-42; i.e.,

% * -1
¢ = [1 -F(FF +0¢, /¢ ) "Fle }
8T 6T, T2 £.8°T T Tor Ty

(C-43)

and Eq. C-42 can be written as

*

=GG ¢ (C-44)
& 6T ,8T,

¢6g,63

An equivalent expression for the matrix inverse in
Eq. C-43 can be obtained from the Matrix Inversion Lemma
(Ref. 22)

O ‘*rvv“r’
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* -1 -1
¢ =
(_E E + §’£/¢T0’To) <¢§.’§./¢TO’TO)
1. * -1
(¢, /@ ) "E F (¢, /¢ )
3 BT T, 2 LT, T,
3 -1
1 +F (¢, /@ ) ~ F
- g’g To’To -~
(C-45)

Replacing the matrix inverse in Eq. C-43 by the right-hand
side of Eq. C-34 and simplifying the resuiting expression yields
the following formula for the PSD of the residual surface anoma-

lous potential:

¢ = = (C-46)
8T ,6T * -1

c.2 SAMPLING EFFECTS - ALIASING

In order to analyze the general problem formulated
in the introduction to this appendix, it is necessary to account
for the fact that the survey data consist of a discrete collec-
tion of measurements. The purpose of this section is to obtain
expressions for the spectral and cross-spectral density matrices
of sampled (aliased) versions of vector processes in terms of
those corresponding to the underlying continuous processes.
The problem is more precisely formulated below.

Denote by U the discrete vector random process cor-
responding to having sampled the process u on a rectangular
grid Ho. The axes of the grid Mo are parallel to the axes of
a primed reference frame obtained by rotating the original
(East-North) frame by an angle 6 as shown in Fig. C-1. The
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Figure C-1 Relations Among the Grid M, (jo,ko),

o the Primed Coordinates, (xi,xé), and
K the Original Frame (xl,xz)

*Q
-l

. spacings of the grid Mo are ti and té in the xi and xé direc-
\ tions, respectively. The grid points are represented by pairs
:‘_: of integers (jo, ko). The origin of the grid (j°=0, ko=0) is
- located at the point r' = (ri.ré)T of the primed frame.
Similarly, let W represent the process w sampled on a
::j grid MC parallel to and having the same grid spacings as the
;: grid Mo but displaced from it by a vector c' = (ci,cé)T as
X measured in the primed reference frame (see Fig. C-2).

N
_::: Two formulas are sought. First, an expression for
L the cross-spectral density matrix of the processes W and U in
terms of the cross-spectral density matrix of w and u. Second,
:Z: an expression for the spectral density matrix of U in terms of
.:::
=
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Figure C-2 Relations Among the Grid Mc, (jc,kc)
the Grid Ho’ (jo,ko), and the Primed
- Coordinates (xi,xé)

the spectral density of u. The second formula follows from
the first by taking the process w equal to the process u and
by setting the displacement vector between the two grids equal
-~ to zero. Thus, the analysis below is restricted to the first

S formula.

> Some definitions are in order. Let w', u' and R&’u
- denote the values of the processes w and u and their covariance
: as functions of the primed coordinates. Similarly, let ¢&,u
denote the cross-spectral density matrix of w and u as a func-

- tion of frequencies measured in the xi and xi directions.

. In the primed reference frame the physical position,
56, of a point with coordinates Q = (j,k)T in the grid Mo is

/¥~
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56 = r' + JQ (C-47)

where J is the spacing matrix given by
J = (C-48)

while the same integer coordinates in the grid MC represent
the point

X, =¢c'+r' +JQ (C-49)

Defining the rotation matrix

cos 6 -sin 6\
9 = (C-50)

sin © cOSs e)

the corresponding points in the original (east-north) frame
are

= r + 6JQ (C-51)
X = c+r +6J2 (C-52)

with r = €r' and ¢ = 6¢' representing the position of the ori-

gin of the grid Mo and the shift between the two grids as meas-
ured in the original frame. '

The processes U and W are given in terms of u' and w'
by

u@) = u'(r' + Jo) (C-53)

TETYUTwW s |




" | RN

-
Bt}

L S SR G RN

ARG

LPLPOA G

(9

o A A TR YL,

SAOEAL ! PPANAREN -

B N e R o o g T R L R Bl N R St i I IS D I S e S
A e A A USaSOATA A R J‘:_-". ) .’,,' - o .'_ .:,,«. % -y'_-.» ST ~. Ny

W) = w'(e’ + '+ Ja) (C-54)

Their covariance,

R = E[W(Q"+Q) UT(a")) (C-55)

is easily related to the covariance of the continuous processes
w and u through the use of Eqs. C-53 and C-54. The result is

R Q) = R,  (c'+JQ) (C-56)

,ul

1€

Spectral and cross-spectral densities of discrete
processes are denoted by a superimposed tilde. The cross-
spectral density matrix of W and U is defined as the finite
Fourier transform of their covariance (see Appendix A,
Eq. A-62)"

s&,u(ﬁ') =4 :E: Ry,u(@) e-i2n<J2,s'> (C-57)
w,U = ¥, U

where'g' = (si,sé)T with si and sévfrequencies measured in the
xi and xé directions, respectively. The relation inverse to
Eq. C-57 is

sy 5]
- ~ i2n<JQ,s'> VA )
RE’H(Q) = ¢!’g(§') e dsldsz (C-58)
-85 -5
. [ ] [ ]
<
E stands for Z Z and A(J) is the determinant of J.
Q j=-® k=-®
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. where

i ]
ﬁ; si = l/2ti
(C-59)

o §é = 1/2t,
5
iz are the Nyquist frequencies in the xi and xé directions, re-

spectively. The cross-spectral density matrix ¢Q,U is periodic
K8 in s{ and sj with periods 2§i and 2§é, respectively.
i@ The relation b-2tween the cross-spectral density ma-
QP trices of the sampled and continuous processes is derived next.
»33 The basic idea of the derivation given below is to use the
N equality between the crosscovariances of the continuous and
Eﬂ discrete processes given by Eq. C-56 to obtain a relation be-
) tween the spectral densities.
o
o For the discrete processes W and U, the covariance
ié matrix RW,U is given in terms of the spectral density $&,U in
O Eq. C-58. For the continuous processes w and u, the analogous
j: relation is
"EE: ®
” Ry, o(X) = // ol 4(s") eF2X'H8" ygidsy (C-60)
e, -
<
%: It then follows by combining Eqs. C-56 and C-60 that
)Y,
L d i2n<c'+JQ,s'>
- R!’g((_)) = /f ¢é.u(§') e = U='= 7 dsids) (C-61)

- Thus, two different expressions for Ry U(Q) have been
: obtained. In Eq. C-58 the integration is over a finite range,

< while in Eq. C-61 the integration takes place over the whole

P adiae
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plane. To compare integrands it is necessary to reduce both
integrations to the same domain. The integral in Eq. C-61 can
be written as an infinite sum of integrals over equal-size

rectangles as

(2m+1)§é (22+1)§i

Ry,u(®) = 2 f / *w,uls")
A (2m-1)s) (22-1)s]

el2n<c'+JQ,s'> ds{ds} (C-62)

X

where A = (z,m)T. Changing integration variables in such a
way that all integrals are taken over the domain
[-§i,§i] X [-Eé,éé], Eq. C-62 reduces to

55 8§
8 3 A
i2n<c'+JQ s'+J'1A>
X e T2 2 dsidsé (C-63)

The complex exponential can be rewritten as

1 1

el2mee ' +IQ, s I TA> _ i2n<e! s+ A | 120<0Q,8'>

X

(C-64)

because the scalar product <JQ,J'1A> = <Q,A> is an integer.

Thus, Eq. C-63 becomes

Cc-19

------
...............
..............
..............................
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i x 12,8 4gidey (C-65)
S
I From the uniqueness of the Fourier transformation, it
: follows by comparing Eqs. C-58 and C-65 that the desired rela-
;;} tion between the cross-spectral densities of the discrete and
continuous processes is
Baule) = D0 ey (W) i2ncet s I (ogp)
X Wyt s o wou'2 702 €
- A
o where A = (2,m)T as before.
agl The corresponding relations for the spectral density

e matrices of processes W and U are:

" 3 z : -1
A ' - ' 1 -
oy E’E( ") ¢E’E(§ +J TA) (C-67)
g A
- e ' - ' ' = -
~ ¢Q,Q(§ ) E ¢E,E(§ +J TA) (C-68)
A
il; Since the processes w and u are interconnected by
':Ej transfer functions which have simple representations when the
8. frequencies are measured in the east and north directions, it
?ﬁ is convenient to rewrite Eqs. C-66 through C-68 in the original
&ﬂ reference frame. These equations become
W
. . -1
" ~ _ -1 i2n<c,s+0J “A> _
Lk ¢E’g(§) = E ¢Y’E(§+6J A) e (C-69)
A

B
s b

.
o
n

.
o
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(s+0371n) (C-70)

1=
1=

ot
=)
=
1o
"

2

— ¢

Z o (s+0J”1r) (C-71)
u,u‘s 2

A

% where 6 is the rotation matrix of Eq. C-50 and ¢ = 6¢' is the
o displacement from the origin of the grid Mo to the origin of
- the grid MS as measured in the east-north frame.

A graphical interpretation of Eqs. C-70 and C-71 is
given in Fig. C-3. The spectral density matrix of a sampled
version of a process, e.g., $U,U’ is obtained as an infinite
- superposition of matrix functions of frequency, ¢u’u(§+eJ' A,
each of which corresponds to the spectral density matrix of
the underlying continuous process translated to the points
s = -eJ'IA in the frequency domain. These points are marked
with solid dots in Fig. C-3. It is clear from Fig. C-3 that

the spectrum $U U is periodic and that one period is repre-
’

A e 2wt
R s

sented by any of the rectangles in Fig. C-3.

% A similar interpretation applies to the cross-spectral

N density matrix of the processes U and W (Eq. C-66). In this

case the cross-spectral density, ¢w u(_s_), is multiplied by the
14

i2n<c,s>

factor e which accounts for the displacement between

. the grids Mo and Mc. The product function is then translated
- to each of the points s = -OJ'IA. The sum of all these func-

tions yields ¢E’g.

= c.3 AVERAGE SPECTRAL DENSITY OF POST-SURVEY
. GRAVITY RESIDUALS

A general solution to the problem of characterizing
the errors in the estimates of gravity from multisensor survey

C-21




»
ﬁ; R82446

T

\

-

._'1:

Ly

o .

¥

i

3

N

.L“

o

RN

W

X

i

Ce 4

:j: Figure C-3 Graphical Interpretation of the Effects

pa of Sampling on the Spectrum
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3: data is given in this subsection. An exact solution is found

'Q for the case in which data from various sensors are collected

A9

g on a common rectangular grid MO. A modification of the result-
7 ing expression for the average spectral density of the post-
w7 . . . ,

*3 survey gravity residuals yields an approximate formula for the
1 case in which the data lie on different grids.

Consider the situation in which the survey data con-

sist of a measurement vector, y(go), at every point x on a




grid Mo as in Fig. C-1. As before, the measurements correspond
to a vector of field-related quantities, u, corrupted by addi-
tive noise, E; i.e.,

(C-72)

Let the primed coordinate system be defined as in the
last subsection, and let ¢ and U be the measurements and the
measured quantities as functions of the integer coordinates

- /3 T .
Q, = (Jo,ko) of the grid M.

Since the process to be estimated, w, and the measure-
ments, §, are gaussian, the best estimate of w, go; at an ar-
bitrary point X, is given by some (unknown) linear combination
of the data, i.e.,

) = L R0, ¥ @) (C-73)
--O

In contrast with the continuous measurements case analyzed in
Section C.1 of this appendix, the weighting coefficients
R(§a,go) depend on the specific position of the point x_  on
the plane. In fact, the estimation errors

bw(x,) = w(x,) - yo(g_a) (C-74)

are no longer stationary. This is not surprising since, intu-
itively, it is to be expected that the rms value of the esti-
mation error gets smaller as the point X  moves closer to a
point on the measurement grid Mo. However, if another point,
Xy is chosen so that it occupies the same relative position
with respect to the grid points as X, does (see Fig. C-4),
then the weights R(x,,2 ) are identical to the weights R(x_,Q,

except for a shift in the integer coordinates. Thus, if W

)
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) Figure C-4 Points Having the Same Relative Position
Oy : with Respect to the Grid M
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v.-ﬂ'
represents the values of the field w as a function of the inte-
’ ger coordinates of a grid Mc parallel to the grid MO as in
lf Section C.2 (see Fig. C-2), the best estimates of W can be
o written as
W) = %: K(2,-2,) $(2,) (C-75)
-._: -0
h“'
.--
i: where QC = (jc,kc)T is an arbitrary point of the grid MC and
X where K(Q) is to be determined.
-:_‘
i\
;}; A derivation parallel to that of Section C.1 shows
)1‘ that formulas similar to those obtained in the continuous meas-
-i urements case apply to the discrete case as well. 1In particu-
';: lar, the errors in the estimates
..:,:
"y

B
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sw(e,) = W(@,) - w(a,) (C-76)

are stationary and have an unnormalized spectral density matrix
given by

(C-77)

where all the spectral densities in the right-hand side are
functions of s' but, in addition, 3*’U depends on the dis-
placement ¢' between the grids M, 5hJ'MC as indicated by
Eq. C-66.

It is of interest to determine the spectral density
of the errors on a grid M whose absolute position on the plane
is chosen at random. It suffices to consider displacement

T .

' = 1~ < ! 1 < ¢l < 1L,
vectors ¢ (c1,¢5) for which 0 < ¢y <ty and 0 < ¢c) <1,
The spectral density of the errors in a random grid is

1 - _1 Y ' 1 ' -
sw,ow's") T F(3) f / Psw,owlc' 8" )dejdey  (C-78)
0 0

where A(J) = tité is the determinant of the matrix J of
Eq. C-48.

All spectral densities appearing on the right-hand
side of Eq. C-77 are independent of ¢' except for the cross-
spectral density matrix $¢’U. Substituting the right-hand
side of Eq. C-77 for ¢éw:s&19',§') in Eq. C-78 and using
Eq. C-66 results in -7
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W,u =

-1
1 i2n<c' ,J T(A-AT)> L
" A—J)_/ e dejdey}
0

(C-79)
However,

ft2 0 if '
1 iznce', THAND gy 20 T ATE
2(J) e 19¢2 .
0 0

Therefore Eq. C-79 becomes

A
¢! v { N T RS DR
:;: w,uls (s'+J” A)[ (§ )+¢§’§(§ ) [¢w,u(§ +37°N)]

(C-81)

Replacing ¢ (s ) by the series on the right-hand side of
Eq. C-67, Eq C-81 becomes

-9 ' i~ g 1e1°1 *
% & A)(¢ uls’ )+® g, 18 (84 DT
(C-82)
c-26
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8 yls") = ?bé’g(g'ﬂ'lﬁ) (C-83)
55,5¢8) = B pls'+7l) (C-84)

Consequently, the spectral density of the errors in a random
grid can be written as

. N -1 )
Psw,ow(s’) = ; ®du,swle I TA) (C-85)
where
b = P w ®w Bh oyt g g7y O (C-86)
Sw,bw w,w w,u ""U,U" "E,E w,u

Equation C-85 admits an important interpretation.
The errors in a random grid can be viewed as the sampled ver-
sion of a continuous process, 6w, whose spectral density is
given by Eq. C-86. The spectral density ¢éw,6w represents the
errors in a map of gravity estimates when no information is

given concerning the position of the measurements from which

the map was obtained. Even if this information is provided it
is shown in Section C.5 that rms values of the residuals com-

L £ q
i &
.

S

puted on the basis of Eq. C-86 yield the average rms of the

..
)

R
e

map errors.

3; The function ¢éw,6w given by Eq. C-86 is called the
;5 average spectral density of the residuals. The spectral densi-
iﬁ ties in Eq. C-86 are all functions of frequencies, s', measured
o in the directions of the primed axes. However, Eq. C-86 is
;; invariant under rotations. Thus, when all spectral densities
]

! Cc-27
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are expressed as functions of frequencies in the east and north
directions, s, the relation remains unchanged; i.e.,

Psw,ow - Pw,w " ®w,u [°g,g *+ g g

o (C-87)

1]

Using Eq. C-71, the average spectral density of the residuals
can be written as :

} ~ 1k _
*ow,6w - ®w,w " Pw,ul®u,u T PEE Y %a,al Pw,u (C-88)
where
o, A0 = 2o, (sveuln) ' (c-89)
2272 7 7w |

Equation C-88 can be compared with the analogous ex-
pression for the spectral density of the residuals in the con-
tinuous measurements case given by Eq. C-38. The two expres-
sions are identical when the spectral density of the errors in
the continuous measurements case, ¢£’£ is identified with

¢§-,§- = ¢_E_,g + ¢a,é (C'90)

The first term on the right-hand side of Eq. C-90 is
the finite Fourier transform of the covariance of the measure-
ment errors. The second term corresponds to the sampling (or
aliasing) errors. Note that the aliasing errors appear in

Eq. C-88 as if they were independent of the gravity field.

This, of course, is not the case. The aliasing errors at fre-
quency s are correlated with the components of the field at
frequency §+6J'1

A for any integer vector A # 0. However, the

aliasing errors at frequency s are, indeed, independent of the
components of the field at that same frequency. This is because

the spectral representation of a process is an orthogonal de-

composition. Thus, spectral components at different frequencies




“ae are independent (Ref. 3). Since the aliasing errors at fre-
'{: quency s arise from field components at frequencies §+GJ-1Q
T} ' for A # 0, aliasing errors and field components at the same
b - frequency are independent.

I

kﬁ Following the same procedure used in Section C.1, it
tf can be shown that the average spectral density of the residuals
~ is given by

- ® =GG o (C-91)
f? ow,6w = = 6To,6To

?f where G is the vector transfer function from anomalous surface
- potential to the quantities being estimated and where

Ssr 6T = FT (C-92)

o’ 'o F ¢§ ¢ F+ 1/0, T

3 ’ o’’o

{E is the average power spectral density of the residual anoma-
'; lous surface potential. 1In Eq. C-92, F is the vector transfer
25 function from anomalous surface potential to the quantities
N being measured and #; . is the a priori PSD of the anomalous
- o’"o

- surface potential.

&j The error spectral density matrix °§ ¢ in Eq. C-92 is
0 4

Q{ given by Eq. C-90. The aliasing contribution, . a0 is ex-
= pressed in terms of the spectral density of the measured quan-
K tities in Eq. C-89. For computational purposes, it is conven-
'*j ' ient to obtain it directly from the spectral density of the
L unsurveyed anomalous surface potential, °T T ° Using the

. o’''o

o results of Appendix B.2, Eq. C-89 can be rewritten as

- - * - .

A o, J(8) = 2 E(s+eslp) Fr(stes lp) oo o (svea”lp)

2.2 A#O o'To

o (C-93)
. Cc-29
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A discussion on practical approximations to this infinite sum
is given next.

Equation C-93 indicates that the value of the spectral

density matrix of the aliasing errors at frequency s is given *
by the infinite superposition of translates of the function
* -
FFe¢ to the points s = - 6J 1A with A#0. This is illus-
= =" T,,T, 20 2 =

*
trated in Fig. C-5. The function F F ¢, . 1is centered at
o’"o

each of the points denoted by a solid dot in Fig. C-5. The
aliasing spectral density at any point s is obtained by adding
*
up the contribution of all the translates of F F ¢ . .
o’’o

R-82446
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Figure C-5 Graphical Interpretation of Eq. C-93
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. Since gravity spectra exhibit a rapid decay with fre-
i“% quency (Refs. 23 and 24), in all practical situations there is
oY negligible contribution to the sum in Eq. C-93 from terms other
gl %
§p$ than the translates of F F ¢y 1 Which are centered at those
. o’’o

o points So = -GJ-IQ in the neighborhood of s. In general, it
: § is sufficient to take the terms corresponding to the values of
. .
::;‘_' A belonging to the set
1

Q= {AlA # 0, [Is+0d™ 1Al < 2 (1311 (C-94)
&i where s' = (Ei,éé) is the vector of Nyquist frequencies asso-
;: ciated with the survey. Thus, Eq. C-93 is approximated by
i,

vy - ) * - -
o, () = 25 F(s+0a™ln) F¥(svealn) op . (s+ea7ln)

4 == AeQ o’’o

oL

A (C-95)
&; with Q as in Eq. C-94.

b

WL *

) Note that the product F F of the vector transfer
¥, functions from surface anomalous potential to measured quanti-
b ties appearing in Eq. C-95 yields a full matrix. Thus, the

- spectral density matrix of the aliasing errors, ¢a a’ is full.
o ayae

This means that aliasing errors in different measurement types
v are correlated. The reason for this correlation is that these

errors originate from the same spectral components of the field.

-—:. :“

- This point is of importance in the approximation of the expres-
;;, sion for the residual spectral density given below for the

& case in which different data types lie on nonoverlapping grids.
i:ﬁ This case is considered next. An expression similar to Eq. C-92
iy . ; . .

o for the residual anomalous surface potential is given and the
=~ approximations involved in its use are discussed.

R

o

¢
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First, classify the q data sets Ek of Eq. C-2 accord-
ing to the grids on which measurements are taken. In this
fashion, n classes result, each of them containing qB sets of
measurements on a common grid MB with g=1,2,...,n. Thus,
qQ=q) +q* ... *+q, (C-96)

If necessary, relabel the data sets Ek so that all sets within
the same class are consecutively numbered. The class identi-
fied with the index B consists of a vector of measurements,
QB, of dimension qB,

ql+...+qB_l+l

- RA BN c-97
g = X (C-97)
q1+...+qB_l+qB

at every point of the grid MB. Let gB and EB be the measured
quantities and the errors in the measurements of class B, and
let gﬁ be the vector transfer function from anomalous surface
8"

Similarly, let ©, and JB be the rotation and spacing matrices
of the grid MB defined as in Eqs. C-50 and C-48, respectively.

potential to the quantities being measured on the grid M

The approximation to the average spectral density
matrix of the residual anomalous surface potential is given by 1
an expression of the same form as Eq. C-92:

1
$ = ( C-98 )
6T T x -
0T F ¢ 1 F+1/¢7 o
g,; o’o
. c-32
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Z;l L2:82
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e

'f' with ¢£ ¢ the spectral density of the errors of class B
’ g’=2p
w given by
\. ~

o 4’ (s) = @ (s) + ¢ (s) (C-100)
s TR Ep Ep 352
4 J
o5 In Eq. C-100, 3E E is the finite Fourier transform of the

- , =g’

'Z: covariance of the measurement errors Eﬁ and ¢ is the spec-
"".‘ tral density of the aliasing errors of class B obtained from a
formula analogous to Eq. C-95:

R -1, ¥ -1 -1
® (s) = Z Fo(s+6gd,7A) Eg(540,J,7A) ¢ (s+65J57A)
£
7 (C-101)
I‘
7«

~ where QB is defined for each class as in Eq. C-94.
7

"
e
"
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In writing the error spectral density matrix, QQ,Q’
as in Eq. C-99, it has been assumed that the errors in the
measurements of class B, E,, are independent of the errors in
the measurements of all other classes. This assumption is not
necessary to obtain an expression for the average spectral
density matrix of the residuals but it is satisfied by the
error models given in Section 2.3, and it simplifies the re-
sulting expressions.

Equations C-99 and C-100 indicate that aliasing errors
from different classes are uncorrelated. This, indeed, is the

case if any pair of grids, MB and MB , whose axes are paral-
1 2

lel have different spacings along each axis, because in that

case the aliasing errors in classes Bl and Bz arise from dif-

ferent spectral components of the field.

The only approximation involved in the use of Eqs. C-98
through C-101 (aside from the flat-earth approximation) is that
the correlation between aliasing errors of a given class and
field measurements of a different class has been neglected.
The energy at frequency §+OBJ&1Q for A#0 causes aliasing er-
rors of frequency s in class B. However, information about

the spectral component at frequency §+63Jélﬁ can be obtained

from measurements in another class and used to correct for the
aliasing at frequency s in class B. It is this possible use
of the data which is discounted by neglecting the correlation
between aliasing errors and measurements in different classes.
In most practical cases, this approximation has little effect
on the computed residuals because the spectral components af-
fected by (correctable) aliasing in class B are usually much
better recovered from measurements in another class.

Since the vector transfer function F in Eq. C-98 can
be expressed as

C-34
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F=|- (C-102)

where F, is the vector transfer function from anomalous surface
potential to the measured quantities in class B (Bp=1,2,...,n),
Eq. C-98 can be rewritten in a more convenient form as

1 (C-103)

Each of the terms in the summation in the denominator of
Eq. C-103 arises from a single class of measurements.

The various measurement classes considered in this
report are listed in Section 2.2. Note that by taking as many
terms as appropriate in the summation of Eq. C-103, any combi-
nation of survey alternatives can be analyzed. In addition,
for any scalar-measurement classAB, the contribution to the
sum of the denominator in Eq. C-103 is a product of scalar

quantities which can be written as IFB|2/¢c Thus, for

Btp
all scalar-measurement classes, there is no need to carry out

a matrix inversion to evaluate the residuals.

C.4 RESIDUALS OF SPATIALLY AVERAGED QUANTITIES

In this section, the formulas given in Section 2.4
for the average spectral density of the residuals of spatially

averaged quantities are derived.
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Consider a square block whose sides are parallel
to the east and north directions and have length a. Let
X = (xl, x2)T be the center of the block. The a-mean, ;a’
of a field-related quantity y at the point x is the average

of y on this block, i.e.,

x2+a/2 x1+a/2

-3 1
yix) = ] y(x') dx!dx.! (C-104)
a® “x,-a/2 xl—a/2 - 1772

where x' = (xi,xé)T. It is customary to define a-means only
at the grid points of a square grid whose axes are oriented
towards the east and north directions. However, it is con-
venient to see Eq. C-104 as defining y? for all x. The usual
collection of a-means is, simply, a sampled version of §a.

The quantities §a and y are related by a transfer
function. This can be seen by writing Eq. C-104 as a convo-
lution, i.e.,

o
yo(x) = /fh(yi_(') y(x') dx{dx) (C-105)
-
with
17a%  if X1 < a/2 and |xy| < a/2
h(x") = (C-106)
0 otherwise

where x" = (xi,xE)T. Thus, the transfer function from y to §a

@ .
h(s) = /]h(g") el2n<x",s> dx{dx (C-107)
-0
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N The evaluation of this integral is straightforward. The re-
AN sult is
B
A N sinnasl sinpa52

. h(s) = w35 nas (C-108)
o 1 2
o Next, suppose that the vector of quantities to be
b estimated from the data consists exclusively of a-means. Let
e Qa be the vector of a-means to be estimated. The vector trans-
:E fer function from anomalous surface potential to the estimated
f} vector is h G where G is the vector transfer function from
L anomalous surface potential to the vector w whose a-means yield
S wl.
: According to Eq. C-91, the average spectral density
ey of the residuals in the a-means, ¢6Qa,6§a is
-, - - O o]
; where ¢6T 5T is the average spectral density of the residual
» o’ "o
e anomalous surface potential given by Eq. C-103. Since the
'Z; residuals in the estimates of w have an average spectral den-
$ sity given by
;‘_\..
':3" ¢ =gG (C-110)
.':‘ 6w’6w - - 6T ’6T
‘:'u - - O O

the average spectral density in the a-means, Qa, is obtained

e {
v e
»
.
L

PR
o

from that of the residuals in w by

o
o N

.

i

w?,ow?
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C.5 AVERAGE MAP ERRORS

The purpose of this section is to prove that, as
claimed in Section C.3 of this appendix, rms values of the
residuals computed on the basis of Eq. C-86 yield the average v
rms of the errors in a map of gravity, even in the case in
which information concerning the specific location of the
measurement grid is available.

Let the measurement grid Mo be as in Section C.2 and
suppose it is desired to evaluate the rms of the errors in the
estimation of the vector of field-related quantities w at a
point P as shown in Fig. C-6. It is clear that it is always
possible to find a measurement point with respect to which P
is displaced by less than ti units of distance in the positive
direction of the xi axis and less than té in the positive di-
rection of the xé axis. Let the displacements in the xi and
X, directions be c¢; and cj with 0 < ¢] <ty and 0 < ¢c)y < 15
Define another grid, MC, parallel to and having the same spac-
ings as the grid Mo but displaced from it by the amounts ci
and cé as in Fig. C-7. The point P belongs to the grid MC.

As shown in Section C.2, the errors in the estimation
of w at the points belonging to the grid Mc are stationary and
their spectral density matrix $éw’5w(g',§') is given by Eq. C-77.
Their covariance is the inverse finite Fourier transform of

35!,6‘1(5' 8'); i.e.,

sy 51 |
Row,swic' @) = / / By, oulc ") e 128> gorgsy
55 -sj

(C-112)
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where si, 55 and J are defined in Section C.2, Q is the integer
vector coordinate difference in the grid Mc and the argument
¢' of the covariance emphasizes its dependence on the shift
between the estimation and measurement grids.

The variance of the estimation errors at any point on
the grid MC, gz(g'), is given by the diagonal elements of the
covariance matrix evaluated at an integer vector coordinate
difference of zero; i.e.,

o%(c') = diag [R (C-113)

6‘!,6‘_](2' ,Q) ]

Consequently, from Eq. C-112

-

/ / d1ag[¢6w Gw(c ,»$')] ds! 198y (C-114)

Q

The average variance of the errors in the estimates
is defined as

£ k2
2 . 1 02(c') delde! (C-115)
1,1 - ‘= 172
12 )

Replacing gz(g') by the expression in the right-hand side of

1Q
1

Eq. C-114 and interchanging integrations with respect to dis-
placements and frequencies results in

2 2 1 2
= di 1 &' ) ) 'Ade!
diag / / T, f / ¢6!,6‘_J(S 'S )dcldc2 ds,ds,
= ) ()

2

(C-116)
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The quantity in brackets is readily recognized as the spectral
density of the errors in a random grid defined in Eq. C-78.
F Thus,

[t
‘-'

-

Ay Sy ¥y
+ W

g_?- = diag / / $éw,6w(_s_') dsids) (C-117)

It was shown in Section C.3 that “’éw,aw can be writ-

f ten as the aliased version of a continuous process whose spec-
* tral density, ®g. . o, is given by Eq. C-86. From Eqs. C-85
and C-117 it follows that the average variance of the errors
_: in the estimates 'is
y 02 = diag E (s'+J /\) ds!ids)
' - A 6w bw 1772
: g ! ! -

(C-118)
3 T . . .
s where A = (£,m)" is a vector of integers. Interchanging the
. operations of summation and integration, Eq. C-118 becomes
“~
‘ a! a!
3 s 3
2 2 < atag |20 2o . '
- ¢~ = diag = [ / ¢éw,6w(§'+‘] A) dsids,
m J ==
- - 1 - 1
2 52 "°1
i)
N (C-119)
iy Consider the integral I1(2,m) associated with the in-
. dices ¢ and m in Eq. C-119. This integral can be written as
i
<
o
2
b c-61
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s; 2
1(2,m) = /{ ./' ®L bw [(si+22§i,sé+2m§é)T] ds{ds}
(C-120)

where use of Eqs. C-48 and C-59 has been made. Changing inte-
gration variables

(2m+1)§é (22+1)§i

I(2,m) = ¢ (s') dsidsé

'5!’5!
(2m-1)sé (22-1)si
(C-121)

Consequently, combining Eqs. C-119 and C-121,

(2m+1)§é (22+1)§i
22 = diag ; Z [ / ¢éw’6w(§') dsidSé
m — —

(Zm-l)gé (21-1)§i
(C-122)

The integrals in Eq. C-122 are taken over disjoint domains of
the frequency plane whose union equals the whole plane. Thus,

[ J
o? = diag j[ ®3 sw(s') dsjdss (C-123)
-00 - -

This last equation is the result that was sought. It shows that
the average variance of the residuals, defined by Eq. C-115,
can be computed as the total power under the diagonal elements
of the average spectral density matrix of residual gravity.

C-42
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