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1. INTRODUCTION

1.1 BACKGROUND

The detailed structure of the gravity field is infer-

red from data collected by a variety of instruments (sensors).

These sensors measure different quantities and have different

spectral responses and noise characteristics. Gravity esti-

mates are obtained by combining measurements from all sources.

From a practical point of view, it is of fundamental importance:

. To determine the accuracy of gravity
estimates obtained from data already
collected

0 To determine what additional data and sur-
vey characteristics would yield a required
accuracy of the estimates of gravity in
a given region.

1.2 STUDY OBJECTIVES

The objectives of this study were to develop a method-

ology and a computer program for quantifying the errors in the

estimates of gravity available from multisensor survey data.

Survey types explicitly considered in this study consist of

any combination of

* Satellite radar altimetry

0 Satellite-to-satellite tracking (SST) in
a high-low configuration
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* Land-based/shipborne gravimetry

- Airborne gradiometry.

Other survey possibilities can be easily incorporated into the

formulation.

A separate phase of this study dealt with the estima-

tion of weapons systems' target miss induced by errors in the
gravity estimates obtained from multisensor survey data. The

results of this second phase of the study are presented in a

separate, expanded version of this report.

1.3 TECHNICAL APPROACH

The approach utilizes a flat-earth approximation that

furnishes algebraic frequency-domain interrelations among geo-

detic quantities. An extension of classical Wiener 3moothin8

techniques (Ref. 1) permits the computation of the average

power spectral density of the post-survey gravity residuals.

Since the Wiener smoother is optimal in the sense of

minimizing the mean-square residuals, the results can be viewed

as representing the best possible use of the survey data.

Actually, there are some approximations involved in the evalu-
ation of the spectral density of the residuals and, more fun-

damentally, in the use of the flat-earth formulation with its

entailing loss of accuracy for wavelengths comparable to the

radius of the earth. Nonetheless, since most of the energy in

the gravity anomaly, deflections of the vertical, gravity dis-

turbance vector and the gradients of gravity is contained in

the frequency band where the method yields accurate results,

the analysis does provide an accurate measure of the perform-

able accuracy of the estimates of these quantities obtained

from multisensor survey data.

1-2



Figure 1.3-1 presents a graphic illustration of the

multisensor survey analysis methodology. The circle repre-

sents the results that are obtained through the application of

the techniques discussed herein. They are the statistics of

the post-survey residual gravity errors. The ovals represent

the quantities that must be specified in the evaluation of the

errors. These are: a statistical model for the unsurveyed

anomalous field, sensor error models, and the characteristics

of the survey. The box represents the operations performed on

the input specifications to obtain the statistics of the resid-

!-, -ual gravity field.

ERROR
SESRSURVEY SETA RESIDUAL
ERRERROR GRAVITY

MOESANALYSIS STATISTICS

DEIG

Figure 1.3-1 Multisensor Survey Analysis Methodology

The field model is the a priori power spectral density

of the anomalous potential at the earth's surface. The statis-

tics of all other field-related quantities are obtained from

this power spectral density through the use of flat-earth re-

lations (Ref. 2). The field model describes the local behavior

of the gravity field in the vicinity of the region of interest
V (e.g., a missile launch point). Either analytical or empirical

models can be used in the analysis.

1-3
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A computer program was designed on the basis of the
theory discussed in this report. A wide variety of survey

possibilities were simulated. The results of these simula-

tions are included and discussed in this report.

1.4 REPORT ORGANIZATION

The organization of this document is as follows:
Chapter 2 presents an overview of the methodology for the analy-

sis of multisensor gravity survey residual errors including

error models for the various survey possibilities considered.

Chapter 3 presents a collection of results obtained through

* the use of the techniques described in the previous chapter.

Chapter 4 presents a summary of the information contained in
this report and discusses several possible extensions of the

analysis.

Various appendices complement this report. Appendix A

presents a succinct compilation of those concepts of Fourier

analysis necessary for the development of the theory of Chap-

ter 2. Appendices B and C discuss additional technical aspects

of the analysis. Appendix B gives the derivations of the flat-

earth frequency-domain relations. Appendix C presents detailed

derivations of the formulas for the spectral density of the

% post-survey residuals.

1.5 A NOTE ON TERMINOLOGY

It is customary to refer to functions that assume ran-

* dom values as random processes when these functions depend on a

* single variable or coordinate and as random fields when they

depend on two or more variables or coordinates (see, for exam-

ple, Ref. 3). To avoid confusion, the noun field is used only

1-4
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in reference to the gravity field. Functions that assume ran-

dom values are referred to as random processes in n-dimensional

space or simply as random processes when the number of inde-

pendent variables is clear from the context.

Random processes can be scalar or vector-valued depend-

ing on whether to every point in space there corresponds one

or more than one real numbers. For the purpose of this report,

a vector denotes any list of numbers associated with every

point of the coordinate system. This list of numbers need not

be a physical vector. For example, a three-dimensional vector

process in two-dimensional space can consist of the undulation

of the geoid, the gravity anomaly and the north component of

the gravity disturbance vector over the earth's surface.

The term geodetic quantities refers to the collection

consisting of the anomalous potential, the undulation of the

geoid, the deflections of the vertical, the gravity anomaly,

the gravity disturbance, the components of the gravity dis-

turbance vector and the gravity gradients. Linear combina-

tions of these quantities are referred to as field-related

quantities.

.1-5



2. ANALYSIS OF MULTISENSOR GRAVIMETRIC SURVEY
RESIDUAL ERRORS

This chapter presents a method for determining the

statistics of the errors in the anomalous field estimates ob-

tained from multisensor survey data. The method, which is

based on an extension of optimal Wiener smoothing theory, per-

mits a characterization of the errors in estimates of point

and spatial averages of the gravity field in wavelengths which

are small compared to the radius of the earth. Survey types

include any combination of satellite altimetry, satellite-to-

satellite tracking (SST), land-based/shipborne gravimetry and

airborne gradiometry.

In the analysis, the round earth is approximated by

an infinite plane (fldt-earth) which practically coincides

with the earth in the neighborhood of the region in which esti-

mates are sought. Frequency-domain mappings (transfer func-

tions) are used to related field-related variables in a concise

algebraic manner. The anomalous gravity field is viewed as a

realization of a stationary random process on the earth plane.

Values of the field above the earth are obtained via the flat-

earth upward continuation formula of Heiskanen and Moritz

(Ref. 2).

Frequency-domain techniques are extensively used in

this chapter. Appendix A contains a summary of the relevant

concepts, definitions, and results of Fourier analysis.

This chapter is organized as follows: Section 2.1

presents the frequency-domain relations between geodetic quan-

tities. The expression for the average PSD of the post-survey

2-1
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residuals is discussed in Section 2.2. Survey geometry and

4:' error models are described in Section 2.3.

• 2.1 FREQUENCY-DOMAIN FLAT-EARTH RELATIONS

To determine the residual gravity errors resulting

from the performance of a multisensor survey, it is necessary
to relate in a geophysically consistent manner the different
types of gravity data collected by the survey.

Geodetic quantities are interrelated by integro-
differential operators. For example, the deflections of the
vertical are given in terms of the gravity anomaly by the for-

mulas of Vening Meinesz, the gravity disturbance vector is the

gradient of the anomalous potential, etc. These relations
imply specific correlation structures when the gravity field
is viewed as a realization of a stationary random field.

A similar observation can be made for the post-survey
residual errors. Since the errors in the estimates obtained
with any geophysically consistent data processing algorithm must

satisfy the same mathematical constraints linking the estimated
variables, the statistics of the errors will display the same
correlation structure present in the original quantities.

With the use of the flat-earth approximation, the
relatively complex integro-differential operators become simple

algebraic relations between Fourier transforms. Ratios between
Fourier transforms of geodetic quantities turn out to be ra-
tional functions of frequency denominated transfer functions*
In the case in which the field is seen as a realization of a

*The term "transfer function" is borrowed from an analogous
concept in Systems Theory.

2-2
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random process, ratios and products of transfer functions re-

late the power spectral and cross-spectral densities of all

field-related quantities.

Table 2.1-1 presents in the last column the transfer

functions from anomalous surface potential, T Of to the geo-

detic quantities listed in the first column of the table. The

notation used throughout this report for all geodetic quanti-

ties is given in the second column of the table, while the

third column presents the space-domain relations between each

of the variables and the anomalous potential. The constantg

used in the table represents the mean value of gravity of the

earth (g = 9.798 m/sec 2) The interpretation of each of the

transfer functions in Table 2.1-1 is discussed next.

Let T 0(s) be the Fourier transform of the anomalous

surface potential, i.e.,

T (s) fJTxei2n<x~s> d~x 211

In the above equation, x =(xix 2) T denotes the position of a

point on the plane with x 1 and x2 measured in the east and

north directions, respectively, = (s s2 is the vector

planar frequency with sl and s2 representing frequencies meas-

ured in the east and north directions, i = fand <x,s> is

the inner product of the vectors x and s.

The Fourier transform of any of the quantities in the
first column of Table 2.1-1 can be obtained by multiplying

T 0 (s) by the corresponding transfer function in the last column

of the table. For example,, the Fourier transform of the anoma-

lous potential at height z is given by

2-3
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TABLE 2.1-1

TRANSFER FUNCTIONS FROM ANOMALOUS SURFACE POTENTIAL

QUANTIL RELATION TO ANOMALOUS TRANSFER FUNCTION
E TIONT ALO FROM ANOMALOUS
POTENTIAL SURFACE POTENTIAL

Anomalous Potential at Height z Tz  T z  e- 2nsz

Undulation of the Geoid N T0 /g o  1/g0

East Deflection of the Vertical n -(aT 0 /8xl)/g o  -i2nsl/g o

North Deflection of the Vertical t -(8To/8X 2 )/go  -i2ns 2 /go

Gravity Anomaly Ag -(8Tz/8z)I 0 - 2To/R 2ns - 2/R

-2nsz
East Component of the Gravity r 8T z/x i2nse1 e
Disturbance Vector at Height z Z 1

North Component of the Gravity r 8T z/8X 2  i2ns2 e2nsz

7 Disturbance Vector at Height z z 2

Vertical Component of the Gravity r 8T /3z -2nse
2 n s z

Disturbance Vector at Height z

"" ~2n e- 2ns z

Gravity Disturbance at Height z 6g -aTz/8z

East-East Gradient at Height z r a 2 T /ax
2  -4n 2 s 2 e - 2 n s z

H e i g h tI z I I2 / x

North-North Gradient at Height z r2 a2T/aX2 -4n2s2
e 2 n s z

Vertical-Vertical Gradient at r 82 Tz/aZ
2  4n2s2e

2 n s z

Height z

, East-North Gradient at Height z rzXlX2 a2Tz/a142 -412S2e2nsz

East-Vertical Gradient at Height z r 82Tz/aXlaZ -i4n2s1se
2n s z

North-Vrticali 4 2- 2nsz

North-Vertical Gradient at Height z r x2z T/x 2 z 2

*s = (S + 2)1

T (s) = e 2  ZTo(s) (2.1-2)
T z eT0-s

A complete derivation of the transfer functions presented in

Table 2.1-1 is given in Appendix B.1. In particular, it is

shown there that Eq. 2.1-2 is the frequency-domain equivalent

of the flat-earth upward continuation formula of Ref. 2.
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In the case in which the surface anomalous potential

is seen as a realization of a stationary random process, all

field-related quantities turn out to be jointly stationary.

In fact, it is shown in Appendix B.2 that if w and u represent

two vectors of field-related quantities with

w = (ww 2 , ... w)T (2.1-3)

and

u= (u1, u2 , ..., Uq)T  (2.1-4)

then the cross-spectral density matrix of w and u, 4w,u(S), is

given in terms of the power spectral density (PSD) of the sur-

face anomalous potential, *ToTo(s), byt

w,u= G F To,TO  (2.1-5)

where

G(s) = (G1(s), G2 (s), ... , Gp (S)]T (2.1-6)

and

F(s) = [FI(s), F2(s), ..., F q(S)]T (2.1-7)

are the vector transfer functions from surface anomalous poten-

tial to w and u, respectively.

As an example, consider the situation where the vector

w consists of three quantities: the east deflection of the

vertical, the north deflection of the vertical and the undula-

tion of the geoid so that

tA superscript asterisk denotes complex conjugate when attached
to a scalar quantity and conjugate transpose when attached to
a matrix or a vector.

2-5
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W (i , N) T(218

and suppose the vector u has two components: the undulation

of the geoid and the gravity disturbance at height z; i.e.,

u = (N, 6g)T  (2.1-9)

The vector transfer functions G and F are, from Table 2.1-1,

G(s) = (-i2nsl/go, -i2ns 2 /go, '/go)T  (2.1-10)

and

F(s) = (1/g 2nse-2nsz)T

Therefore, from Eq. 2.1-5, the cross-spectral density matrix

rl ,N nq,6g)

iwu (E , *zS) (2.1-11)

*N,N *N,6g

is given in terms of the PSD of the anomalous surface potential,

0 0ToTo by

-i2nsl/go2 -i4n 2slse-2nSZ/g0

* (2 2 -2nsz(0w,u (s ) =  i2ns/o -i4n s se 2S/g o *TT ( S )

w2/go- S/g 0  T 0

g 2 2nse - g o (2.1-12)
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2.2 MULTISENSOR SURVEY ERROR ANALYSIS

'p

The frequency-domain flat-earth relations discussed

in the previous section together with an extension of Wiener

smoothing techniques form the basis for the analysis of the

performable accuracy of the gravity estimates obtained from

multisensor survey data.

The problem of determining the errors in the estima-

tion of the gravity field from multisensor survey data can be

formulated in the following manner: it is desired to charac-

terize the differences (estimation errors)

6w(x) = w(x) - wO(x) (2.2-1)

between the true values of the process w(x), and the best esti-

mates w°(x). The components of w are any collection of field-

related quantities.

The estimates w°(x) are optimally obtained from n

classes of measurements

r= 1 )(WI C Mn}; l 1,2,... ,n (2.2-2)

corresponding to the measurements that constitute the survey.

Each class r represents a collection of vector measurements,

in which all measurement points form a rectangular grid

M

The data, are linear combinations of field-related

quantities, u, corrupted by additive noise, E i.e.,

*In the mean-square sense.

2-7
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u W _- W x E M (2.2-3)

In addition, the measurement errors, EV,~ 1,2,... ,n, are
taken to be stationary gaussian processes independent of the
gravity field.

The grid M A(see Fig. 2.2-1) is completely character-
*ized by three quantities: a rotation matrix, OVdetermined

by the orientation of the survey tracks with respect to the
east direction, a translation vector rwhich locates the posi-

* tion of the origin of the grid in the east-north frame, and a
spacing matrix JV, determined by the separation between survey
tracks and between samples along a track. In terms of the

quantities in Fig. 2.2-1, eo, r, and J, are defined by

Cos 0 sin 6
e~ = u:: osO)(2.2-4)

= ~(rj, rP)T (2.2-5)

and

T'

(1 (2.2-6)

For the survey possibilities considered in this report,
data can be divided into several classes, r These are

Two scalar-measurement classes for each
satellite radar-altimeter mission. One
cls o h sedngpse n nte

class for the aescending passesanaote

2-8
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Figure 2.2-1 Definition of the GridM

-4.'

* Two scalar-measurement classes for a
high-low satellite-to-satellite tracking
mission. One class for the ascending
and another for the descending passes of
the low satellite

0 One scalar-measurement class for a land-
based or ship gravimetric survey. The
differences between land-based and ship
surveys are reflected in the error models

* One vector-measurement class for an air-
* borne gradiometer survey. Each vector

measurement in this class consists of
six entries corresponding to the two
outputs from each of the instruments in
a gradiometer triad.

Appendix C presents a detailed analysis of the problem

formulated above. The statistics of the post-survey residual

errors at any given point are shown to depend upon the relative
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position of the point with respect to the measurements. The

average spectral density of the residuals is then defined by

averaging over all possible relative locations with respect to

the measurements. For the residual surface anomalous potential,

*, the average spectral density is given by

- 1 (2.2-7)
6T, 6T n

F +1 T T
LO P0 0

where F is the vector transfer function from surface anomalous

potential to the quantities measured in class P, is the

spectral density matrix of the errors in class p (see below)

and (TP,To is the PSD of the unsurveyed surface anomalous po-

tential obtained from a gravity-field model.

The spectral density matrix of the errors in class P
consists of two terms:

* , (s) = (s) + _0 (s) (2.2-8)

The first term, 1EE, is the unnormalized" spectral aensity

of the (discrete) measurement error process E of Eq. 2.2-3.

Explicit expressions for Eb are given in Section 2.3 for

the various survey possibilities considered. The second term,

* ~ s, _ ' is the spectral density matrix of the aliasing errors

in class p computed from

a, (s) -s'p A A) i -aa- A&Q~ T~se~~A 0~se~ T, T 0  J 1 )

(2.2-9)

*See Appendix A.
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where A = (k,m)T is a vector with integer components and the

set Q is defined as

Q= AIAXO, Iis+e J iAll < 211'll} (2.2-10)

where

'' (1/2T i , 1/ 2 1 9 T (2.2-11)

is the vector of Nyquist frequencies associated with the grid

M and I1111 denotes vector magnitude.

Equation 2.1-5 is used to determine the statistics of

residuals in quantities other than the surface anomalous poten-

tial. If w is a vector whose components are arbitrary field-

related quantities, the spectral density matrix of the post-

survey residuals in w is obtained from

06w,6w G - 6T0 ,6T0  (2.2-12)

where G is the vector transfer function from surface anomalous

potential to w. The inverse Fourier transform of '6w,6w yields

the covariance matrix of the residuals:

.00

RwSw(x) = //( w,6w(s)e i2 7< 's> dS dS 2 (2.2-13)

from which root-mean-square (rms) values of the residuals in

the components of w are easily obtained by taking square roots

of the diagonal entries in R6w6w(O).

In many instances it is convenient to express post-

survey residual gravity in terms of spatially-averaged values.

Next, the formulas for the average spectral density of the
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residuals are particularized to the estimation of spatially-

averaged quantities.

Consider a square block with sides of length, a, paral-

lel to the east and north directions. Let x = (xI , x2 )T be-a
the center of the block. The a-mean, y , of a field-related

quantity y at the point x is the average of y on this block,

i.e.,

-a 1 x2 +a/2 x+a/2
y (x) a f f y(x') dxjdx (2.2-14)

x2 -a/2 xl-a/2

where x' (xi , x)

Now, suppose that the vector of quantities to be esti-

mated from the survey data consists exclusively of a-means.

. Let wa be the field vector to be estimated. It is shown in

Appendix C that the vector transfer function from anomalous

surface potential to the estimated vector is h G where G is

the vector transfer function from anomalous surface potential

to the vector w whose a-means are w and

^ sinnas sinnas 2
h(s) nas 1 as2 (2.2-15)

is the transfer function associated with the a-mean averaging

operation. Consequently, from Eq. 2.1-5, the average spectral

density of the residuals in the a-means, 06 a a, is

•^2

6!a,6a= a G* *0T ,6T0  (2.2-16)

with %To,6T given by Eq. 2.2-7.
0 0
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From Eqs. 2.2-12 and 2.2-16, the spectral density

matrix of a-mean residuals can be expressed as

S-a -a =hi h 4',6w (2.2-17)

Thus, to evaluate the statistics of the residuals in the a-means

it suffices to multiply the spectral density of the residuals in

(the point quantities) w by the squared magnitude of the averag-

ing transfer function h as in Eq. 2.2-17.

2.3 SURVEY GEOMETRY AND MEASUREMENT ERROR MODELS

This section presents the geometry and the error models

associated with the following types of survey:

* Satellite Radar Altimetry

* High-Low SST

* Land-based/Shipborne Gravimetry

* Airborne Gradiometry

in subsections 2.3.1 through 2.3m.4, respectively. Survey geom-

etry refers to the position of the measurements and the orien-

tation of the sensors with respect to the earth. Measurement

error models refer to the enumeration and characterization of

the various error sources which affect the individual

measurements.

The geometry and type of survey determine the rotation

and spacing matrices e and J and the transfer functions F

from anomalous surface potential to the quantities being meas-

ured. These, in turn, characterize completely the aliasing

errors once a field model is specified (Eq. 2.2-9).
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The measurement error models determine the spectral
densities , of Eq. 2.2-8. Explicit formulas for these

spectral densities are given in this section.

2.3.1 Satellite Radar-Altimeter Survey

The geometry of a satellite radar-altimeter survey is
illustrated in Fig. 2.3-1. Satellite groundtracks are viewed
as two collections of parallel equally-spaced straight-line

tracks containing data at regular intervals along each track.

Two measurement classes are associated with the survey:
one class, A, corresponds to the ascending tracks; the other, D,

corresponds to the descending tracks. Let the grids associated

R-40096a

DESCENDING ASCENDING
GROUND TRACKS GROUND TRACKS

A A -

Figure 2.3-1 Satellite Altimeter Survey Geometry
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with these two classes be MA and MD. Contiguous parallel

tracks are separated by a distance T e in the east direction

and successive measurements along a track are separated by a

distance

Gm R1/2

T ta R (2.3-1)a (R+h)

where ta is the time interval between altimeter samples

(t a  0.1 sec for GEOS-3 and SEASAT-I), Gm e is the product of

the gravitational constant and the mass of the earth

(Gme = 3.986xi014 m3/sec 2), R is the radius of the earth
e6

(R = 6.378xi0 6 m) and h is the height of the satellite over

the earth's surface (h 8.0xl05 m) for GEOS-3 and SEASAT-l.

The angle a is the angle the ascending groundtracks
form with the east direction at the center of the region where

estimates are sought (the origin of the plane of the flat-earth

approximation). This angle can be computed from

2 - 2 1/2cos Co a 0.53 Cos
tan a cos +h 3/2 (2.3-2)csy- 0.584cos 3 (RR-h /

where 3 is the latitude of the origin of the plane of the flat-

earth approximation and y is the inclination of the satellite's

orbit (Y = 1150 for GEOS-3 and y = 1080 for SEASAT-1).

The grids MA and MD have axes parallel to those of

primed reference frames (see Fig. 2.2-1) which correspond to

rotation angles of a and -a with respect to the east direction.

Let 0A and 0D be the rotation matrices of the grids MA and MD,

respectively. These matrices are given by

2-15
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- cos a -sin a):-1 8 A = I(2.3-3)
sin a cos a

and

o sin a
ED= (2.3-4)

\-sin a Cos a

The spacing matrices JA and JD of the grids MA and MD

coincide with each other and are given by

" JA = J D =  a 0(2.3-5)

where Ta is given by Eq. 2.3-1 and

T Te sin a (2.3-6)

The value of Te (Fig. 2.3-1) can be found from the equatorial

separation of the groundtracks, Teq by the simple formula

T T cos 3 (2.3-7)e eq

Satellite radar-altimetry data furnish values of the

undulation of the geoid corrupted by measurement noise. Thus,

the transfer functions from anomalous surface potential to the

quantities being measured in classes A and D, F A and FD, are

identical to each other and correspond to the transfer function

from anomalous surface potential to undulation of the geoid

given in Table 2.1-1; i.e.,

F A(s) FD(s) =/g o  (2.3-8)
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Measurement error models are discussed next. For sym-

metry reasons, the spectral densities of the errors in classes

A and D agree with each other when they are expressed in terms

of the primed coordinate systems of their respective classes.

Thus, an expression for the spectral density of the errors,

(s'), in terms of frequencies s' = (s 'Sc )T measured in

the along-track (sa) and cross-track (sc ) directions is derived

first. The spectral densities of the errors in classes A and

D are then obtained in terms of east and north frequencies by

suitable rotations of coordinate systems.

The Nyquist frequencies in the along-track and cross-
track directions are 1/2T a and 1/2T , respectively. Since the

measurement error spectral density *,E(S') is periodic in the

along-track and .cross-track directions with a period of twice

the Nyquist frequency in each direction, it suffices to speci-

fy '(s') on the domain -1/2r<s <i/2T and -1/2T <S <1/2T
E ,E a a a c c C*

The error E(Q) in the measurement at the point

= (j,k)T of any one of the grids MA or MD is taken to be the

additive combination of three independent error sources:

E(Q) = N(Q) + C(Q) + B(Q) (2.3-9)

The terms N, C and B correspond respectively to

* Instrument noise and sea-state effects
(scattering of the radar pulse by ocean
surface waves)

0 Uncorrected ocean-current dynamic height

0 Post-adjustment bias-type orbit and tide-
correction errors.
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The spectral density of the measurement errors, E' is the

sum of the spectral densities of the terms on the right-hand

side of Eq. 2.3-9; i.e.,

~ -t +' ' (2.3-10)

Ei,E N,N C,C + OB,B

* First, consider the instrument noise and sea-state er-

rors N. These errors are independent from measurement point to

measurement point and from track to track. Their covariance is

RNN(0) a N 6(Q) (2.3-11)

where aN is the standard deviation of the error N in each meas-

urement (YN = 0.6 m for GEOS-3 and 0.1 m for SEASAT-l) and

where 6(Q) is given by

* i1 if Q = 0
6(Q) = (2.3-12)

10 otherwise

The spectral density "N is the finite Fourier transform of
N04,N s

RN,N

$1 , s ) = a(JA) RNN () e -'- (2.3-13)

- where JA = JB is the spacing matrix of the grid and A(JA) = T aTc

is the determinant of J Since RN N(Q) vanishes for all Qj0,

the spectral density (0 can be easily evaluated. The result
N,N

is the constant (white) spectrum

"= N. , T aTcCa  (2.3-14)

Next, consider the uncorrected ocean-current dynamic

height errors C(Q). Reference 4 presents a statistical model

2-18
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for the spatial distribution of the ocean-current induced sea-

surface height over the geoid as a continuous scalar process

defined in two-dimensional space, h(x'). The spectral density

of h is that of an isotropic third-order Markov model (Ref. 5)

given by

* hS h 2 h (2. 3-15)-2[ +(2ns') 21 7/ 2

where ch (in m) is the standard deviation of the sea-surface

height given as a function of latitude by

Gh = 0.677 sin a (2.3-16)

and where '/ph = 4.2x10 4m is the characteristic distance of

the model. In Eq. 2.3-15, s' = I1s'll = (s2 +s2 )/2_ a c

The spectral density 0hh is an instantaneous model

in the sense that it characterizes the spatial variability of

the sea-surface height at a fixed time. Actually (Ref. 6),

ocean-current induced sea-surface height does not vary sub-

stantially for time spans of the order of one day. However,

after a period of one or two weeks, there is no significant

correlation between the sea-surface height at the beginning

and end of the period. Consequently, the sea-surface height

model of Eq. 2.3-15 can be used to infer the behavior of the

errors C(Q) for a single track of data but cannot be used for

relating the errors in different tracks.

*The characteristic distance '/Ph should not be confused with

the correlation distance. For a third-order Markov process

the correlation distance is 2 .9 0 3/Ph (Ref. 5). The correlation

distance of the sea-surface height model is 122 km.
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In practical situations, most pairs of parallel ground-

tracks chosen arbitrarily over the region where estimates are

sought correspond to satellite passes interspaced by periods

of several weeks. Thus, the ocean-current induced sea-surface

height errors on different tracks are modeled as being inde-

pendent of one another.

The spectral density of the sea-surface height on a,

single groundtrack S h,h (sa ) is obtained by integrating the

two-dimensional spectral density h, h(S in the crosstrack

direction (see Appendix A, Eq. A-106):

Shh(Sa) = (s , dsc (2.3-17)

The result of this integration is

162 5
S = hh2 3 (2.3-18)[p [ +(2 s a ) I

This spectral density describes the behavior of the groundtrack

sea-surface height as a continuous (one-dimensional) process.

The spectral density of the measurement errors along a track

of data, SC'c(sa) correspond to the aliased version of this

continuous process. In Appendix C.2, the effects of sampling a

two-dimensional process are analyzed. A similar analysis for

one-dimensional processes yields the following relation between

the spectral density, Shh and S of the continuous and sam-

pled versions of the process

*The uppercase letter S is used to denote one-dimensional
spectral densities.
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C,c (Sa) = Sh,h (Sa+k/ a) (2.3-19)

Since sea-surface height errors in different tracks are inde-

pendent, the (two-dimensional) error spectral density $,c(S ')

is white in the crosstrack direction. Thus,

,c (s ) = Tc E Sh,h(Sa+k/T a )  (2.3-20)

A graphical interpretation of Eq. 2.3-19 is presented

in Fig. 2.3-2. The PSD of the errors along a track is obtained

as the infinite superposition of translates of the PSD of the

continuous process representing the sea-surface height. Con-

sider the interval -1/2T a<Sa<I/ 2T a' Except for the regions

near the edges of the interval, there is.negligible contribu-

tion to the sum in Eq. 2.3-19 from terms for which 2/0". In

the regions near the edges of the interval, the PSD of the er-

rors arising from instrument noise and sea-state effects, N,N'

is much larger (ten orders of magnitude) than 4C,C" Thus, for

all practical purposes, the PSD of the ocean-current induced

sea-surface height errors in the interval -1/2T a<S a<l/2T a can

be taken as

16T cOGP/ 3

,2) hh a)2 (2.3-21)- + (2ns ]2

For values of sa outside this interval, ,c(S') is obtained

by repeating Eq. 2.3-21 periodically as indicated by the solid

line in Fig. 2.3-2.

*This is because the characteristic distance I/Ph is two orders

of magnitude larger than the sampling spacing Ta"
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Figure 2.3-2 Graphical Interpretation of Eq. 2.3-19

Next, consider the bias-type orbit and tide correction
errors, B(Q). On any finite-length of single-track data, these

errors manifest themselves as an apparent bias with a standard

... deviation of a B  0.5 m. In the cross-track direction, the er-

. :rors B(Q) are modeled as being independent from track to track

.0 ',for the same reasons uncorrected ocean-current induced sea-

surface height errors are taken as independent in that direction.

4The spectral density of B(Q) is modeled as being

Gaussian in the along-track direction with a correlation dis-

tance equal to the radius of the earth, R, and as being white

in the cross-track direction. Thus, for -1/2T<S<1/2T a

(b ,'B(s ' )  
n T c R ° 2B e a(2.3-22)

-- 2

S -.

a32T 'Ia 112T a

.o periFiurey 2.3- Graphicalntherprtatdin of Eq. 2.3-9 .
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spectra of Eqs. 2.3-14, 2.3-21 and 2.3-22. In terms of fre-

quencies measured in the east (s1 ) and north (s2 ) directions,

the class A measurement error spectrum can be computed from

(P= E,E(A) (2.3-23)

and the measurement error spectrum of class D can be obtained

from

E,E(s) = $i,E(e*D) (2.3-24)

where eA and eD are given by Eqs. 2.3-3 and 2.3-4 and where

_= (sips2)T

2.3.2 High-Low SST Survey

The convention on the position of the measurements of

a survey consisting of high-low SST data is shown in Fig. 2.3-3.

The survey data consist of range-rate measurements from a satel-

lite in synchronous orbit to a satellite in a lower orbit cor-

rected for the nominal motion of the low satellite and the

spurious motion of the high satellite. In other words, the

data consist of noisy measurements of the line-of-sight com-

ponent of the variational velocity induced on the low satel-

lite by the gravity disturbance at height h.

As in the geometry of the satellite radar-altimeter

survey, measurements on the earth plane lie at regular inter-

vals on equally-spaced ascending and descending groundtracks.

The same notation used in Subsection 2.3.1 is adopted here for

convenience. Thus, Eqs. 2.3-1 through 2.3-7 which describe
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~R-43758a

'.- .- Figure 2.3-3 Convention on the Position of

HihLo STMasrmet

~the geometry of the grids MA (ascending groundtracks) and MD

(descending groundtracks) hold in this case as well.*

The transfer functions from anomalous surface ptn
ii- tial to the measurements in classes A and D are considered
i ' next. The acceleration perturbation, v, acting on the low
r' satellite at any point along its trajectory is the gravity

.disturbance vector; ie.

A'p

SIiv = (F x ,F x ,Fz (2.3-25)

*In Eq. 2.3-1, ta becomes the time interval between successive
2-24
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Therefore, the velocity perturbation, v, is the time-integral

of the gravity disturbance at height h over the satellite's

groundtrack.

Let V be the speed at which the groundtrack is swept:

FGm ,1/2
V = R R)3J (2.3-26)

Since integration with respect to time can be replaced by inte-

gration with respect to distance in the along-track direction

normalized by V, the vector transfer function from anomalous

surface potential to velocity perturbation, F , is the product

of the transfer function from anomalous surface potential to

gravity disturbance at height h and the transfer function asso-

ciated with the operation of spatial integration in the along-

track direction normalized by the constant V. It is shown in

Appendix A (Eq. A-13) that the transfer function corresponding

to integration in the along-track direction is 1/(i2ns where

S is frequency measured in the along-track direction. Thus,

from Table 2.1-1

e - 2n sh )T(2.3-27)-v Vs (SlS 2,is(T

At any point along the satellite's path, the line-of-

sight component of the velocity v is the scalar product <u,v>

where u is a unit vector in the direction from the high to the

low satellite. Measurement geometry is illustrated in

Fig. 2.3-4. The high satellite lies on the equatorial plane

at a distance h = 3.5786xlO m from the surface of the earth.s
The low satellite is at latitude 3 and at longitude A measured

with respect to the meridian on which the high satellite remains

stationary. The unit vector in the direction from the high to
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Figure 2.3-4 SST Measurement Geometry

the low satellite is given in an east-north-vertical frame at

the position of the low satellite by

u (R+hs )sink

U (R+h ) sin~cosA (2.3-28)

where u z  ((R+h)-(R+h )cos3cosA)

l' whe re

P _ I(R+h)2 + (R+h s)2 . 2(R+h)(R+h s)Cos3coskl/ 2 (2.3-29)

The unit vector, u = (ulu 2 u) , varies as the low

satellite changes its position over the earth. This implies

that the measurement equations are time-varying. However,

gravity estimates are sought on a small region of the earth

over which the unit vector u can be approximated by a constant

vector. This constant vector is chosen as that obtained from

Eq. 2.3-28 when 3 and A are interpreted as the coordinates of

the origin of the plane of the flat-earth approximation.
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The transfer function from anomalous surface potential

to measured quantities is given by the scalar product <u,Fv>.

For the measurements of class A, the along-track frequency sa
appearing in Eq. 2.3-27 can be expressed in terms of east (s1 )

and north (s2 ) frequencies as

s = S Cosa + s2 sina (2.3-30)

where a is the angle of Eq. 2.3-2. Consequently, the transfer

function of class A is

(UisI+U2 s2 +iUz s)e
" 2nsh

FA() = 1 Cosa + s2 sin)(2.3-31)

Similarly, the transfer function of class D is

(Us+U2 s2 +iU s)e
- 2 nsh

FD(s) V(s 1 Cosa + s2 sina) (2.3-32)

A simplified measurement error model has been used to

obtain the results of Chapter 4. The errors in the measure-

ments are modeled as being independent of one another. The

spectral densities of the errors in classes A and D are iden-

tical to each other and are given by

0(S) = T T 2  (2.3-33)E" E - a c"

where T a and T c are the measurement spacings in the along-track

and cross-track directions and where a is the standard devia-

tion of the error in each measurement.
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2.3.3 Land-Based/Shipborne Gravimetric Survey

Land-based and shipborne gravimetric surveys are con-

sidered in this subsection. Shipborne gravimetric survey geom-

etry and measurement error models are discussed first. Corre-

sponding models for land-based surveys are then obtained by
-removing from the shipborne gravimetric survey models those

effects which are particular to ocean surveys.

Shipborne Gravimetric Survey - The geometry of a ship-

borne gravimetric survey is illustrated in Fig. 2.3-5. Survey

data are collected at regular intervals by a gravimeter on board,

a ship traveling at constant speed along parallel equally-spaced

,. east-west tracks. Since the measurement grid is oriented with

the east-north reference frame, the rotation matrix, e, is the

identity, I. The spacing matrix is

R.40096

'r2

Figure 2.3-5 Shipborne Gravimetric Survey

Measurement Geometry
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.

j i (2.3-34)
( 0 T2)

" where T2 is the spacing between tracks and where

T1 = V At (2.3-35)

is the spacing in the east direction given in terms of the

nominal ship's speed V and the time interval between samples

at. Typical values are assumed for T2 , V, and At based on

NAVOCEANO's survey patterns.

The transfer function from surface anomalous poten-

tial to the quantity being measured is discussed next. Denote

by C the difference between the gravimeter readings and refer-

ence gravity at the points where measurements are taken. Be-

cause of the motion of the ship over the earth's surface, the

quantity C is not the gravity anomaly. To account for the

ship's motion, several corrections are applied to the acceler-

ation .

Let v = (vl v2 )T and a be the true velocity of the

survey ship with respect to the earth and its true latitude.

The gravity field includes the centrifugal acceleration due to

the rotation of the earth. This acceleration is directed away

from the axis of rotation and has a magnitude Rw 2cosa at lati-
-4

tude 8 (w=0.7292115147x0 rad/sec). The component directed

towards the center of the earth is -Rw2cos 2 . The motion of

the ship in the east direction causes the instantaneous angular

*E(vI) V, E(v2) = 0
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velocity to differ from the angular velocity of the earth by

an amount 6w given by

6W (2.3-36)6w R cos3 t

To first-order, the corresponding contribution to the gravimeter

measurement is

= -2Rw cos 2 a 6w (2.3-37)

or, combining Eqs. 2.3-36 and 2.3-37,

= -2wv 1 coss t  (2.3-38)

In addition to the contribution resulting from the difference

in rotation rates, there is an acceleration of

= (v2 + v2)/R (2.3-39)
- 1  v2)/

resulting from the motion of the ship over a curved surface.

If the gravimeter readings were error-free, the gravity

anomaly could be computed from

Ag = - - (2.3-40)

However, the velocity and latitude which enter into the compu-

tations in Eqs. 2.3-38 and 2.3-39 are not perfectly known. The

evaluation of Eq. 2.3-40 is performed using the Inertial Navi-

gation System (INS)-indicated velocity v (v 2oT and lati-
tude 3

° . Thus, shipborne gravimetric data consist of the
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following combination of gravimeter readings and measurements

from an inertial navigator:

+ 2wv0 Coss + v°112/R (2.3-41)

*11

By adding and subtracting the true correction ' + , Eq. 2.3-41

can be written as

= ( -'-) + 2wcos 0 6v I + 2wv0sin80 68

+ 2v06vl/R + 2vo6vm/R (2.3-42)

where second-order terms have been neglected and where

6v = (6 v1 96v2 T = (v0 -vI , v20-v 2 )T (2.3-43)

is the error in the velocity estimate from the INS and

68 = a0 - a is the error in latitude.

When typical values of 6v I , 6v 2, and 68 are considered,

the combined contribution of the last three terms in the right-

hand side of Eq. 2.3-42 is several orders of magnitude smaller

than that of the term 2wcos80 6v I. Therefore, the last three

terms in Eq. 2.3-42 can be neglected. On the other hand, since

the latitude 8 does not vary substantially over the survey

region, the angle 80 can be replaced by 8, the latitude of the

origin of the plane of the flat-earth approximation. Thus,

for all practical purposes, Eq. 2.3-42 can be rewritten as

= - '- " + 2wcosa 6v I  (2.3-44)

The term 2wcos8 6v I is called the E6tvos correction

error. It is caused by the error in the estimate of the east

component of velocity obtained from the INS aboard the survey
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ship. The east-velocity error, in turn, arises from the east
*' component of the gravity disturbance vector sensed by the iner-

tial navigator and from random accelerometer and gyro errors.

Consequently, if shipborne gravimetric data are viewed as grav-
ity anomaly measurements, the measurement errors are correlated

with the gravity field. This correlation must be accounted

for in data processing algorithms.

An equivalent formulation is obtained when the data

are viewed as consisting of noisy measurements of linear combi-

nations of the gravity anomaly and the east component of the

gravity disturbance vector modulated by the INS response.

This convention is adopted here. Let u and y be the INS east-
velocity errors induced by the gravity field and by random

errors in the inertial navigator instruments (accelerometer

and gyro errors), respectively. Equation 2.3-44 becomes

o= ( - - ") + (2wcosS)u + (2wcosa)y (2.3-45)

The term (2wcosS)u is considered part of the measured quantities.

Measurement errors include the term (2wcos3)y. In this formu-

lation, measurement errors turn out to be independent of the

gravity field.

In order to determine the transfer function, F, from

the anomalous surface potential to the quantity being meas-
ured, it is necessary to relate the velocity errors u and the

east component of the gravity disturbance vector rFl The INS

transfer function from sensed acceleration to indicated veloc-

ity is very well approximated by that of a damped second-order
system. When the input acceleration and the output velocity
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are expressed as functions of time the (steady-state) transfer

function , G(f), is given by

(f) f/2n (2.3-46)

2pf0 f+i(f f2 ()

where f is frequency measured in Hertz, p is the INS damping

coefficient and f0 
= (g0/R)

1/2/27 is the Schuler frequency

(f0 ; 1.9708x10 Hz).

The INS transfer function from sensed acceleration to

indicated velocity as functions of distance in the east di-

rection, G(s1 ), can be obtained by making the transformation

f = Vs I. Thus, G(s I) =(Vsl), and from Eq. 2.3-46,

Sl/(2nV)

G(s I ) = 2 (2.3-47)
2p(fo/V)sl+i[s- (fo/V) 2

It then follows from Eqs. 2.3-40 and 2.3-45 that the shipborne

gravimetric survey transfer function, F, is given by

F(s) = [2ns-2/R] + 2wcosa[i2ns1 ]G(s1 ) (2.3-48)

where the two quantities in brackets are the transfer functions

from anomalous surface potential to gravity anomaly and to the

east component of the gravity disturbance vector at the surface,

respectively.

Note that the relation f = Vs1 used in deriving

Eq. 2.3-47 is an approximation because the east velocity is

*The integration in the definition of Fourier transtorm is
carried out over the time domain.
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not truly constant. However, its use in obtaining Eq. 2.3-47

is equivalent to neglecting second-order terms.

The shipborne survey measurement error model is dis-

cussed next. Consider first the uncorrelated E6tvos correction

error, C, corresponding to the term (2wcos3)y in Eq. 2.3-45.

These errors are modeled as arising from a white noise sensed

acceleration input with a constant spectral density q. There-

fore, the spectral density of the velocity errors, y, on a

single track of data is

Syy(Sl) = qIG(s 1)l
2  (2.3-49)

The value of q was chosen by assuming that the veloc-

ity errors, y, have an rms value a for a typical INS, i.e.,Y

2 = S Syy (S dsI  (2.3-50)

2This results in a value of q = 8 nVfoPay.

Velocity errors arising from accelerometer and gyro

errors are modeled as independent on different tracks. Fol-

lowing the same reasoning used in obtaining Eq. 2.3-21 from

Eq. 2.3-18, the spectral density of the uncorrelated Ebtvos

correction errors in the interval -1/2Ti<si<1/2 1 can be writ-

ten as

PCC(s)= 4w2 cos2 3T 2 qlG(sl)l2 (2.3-51)

where Ti and T2 are defined in Fig. 2.3-5.
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The gravimeter recordings themselves also contain

various errors. First, there are quantization, instrument

noise and improperly filtered heave motion induced errors.

These are all combined into a single error term, I, modeled as

being independent from point to point and track to track, and
, -6 2
having an rms value of a 1.0x10 m /sec (0.1 mgal). The

PSD of I is

2
(S)= Ti2T (2.3-52)

Second, the platform is not directly on the geoid because of

tidal and ocean current dynamic sea-surface height effects. If

the platform is at height h over the geoid, the gravimeter read-

ing is in error by an amount -2g0 h/R (2g0 /R = 0.308 mgal/m).

In the open ocean, the effects on the gravimeter readings caused

by tidal effects can be predicted to an accuracy of better than

0.03 mgal (Ref. 7). Consequently, these effects are neglected

in the error model.

Consider the errors K induced in the gravimeter read-

ings by ocean currents. Ocean current induced sea-surface

height, h, is modeled as in Eq. 2.3-15. The spectral density

of h (seen as a continuous process) is

hh ( )  2 h h27(2.3-53)' [ph + (2ns)2] /

As opposed to the altimeter survey case, successive tracks are

surveyed within relatively short periods of time. Thus,

Eq. 2.3-53 is adopted directly as the model for sea-surface

height in the survey region. The spectral density of the

aliased version of h, H, is given by
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VP.T

_ l't - tA * (s+.J A) (2.3-54)

where the summation is taken over all integer-valued vectors

A = (j,k)T and where J is as in Eq. 2.3-34.

For frequencies s such that -1/2T1<si</2T and

-1/2T2 <s 2<1/2T2 the contribution to the sum in Eq. 2.3-54 from

all terms for which j/O is negligible because the along-track

Nyquist wavelength, 2T1, is two orders of magnitude smaller

than the correlation distance of the sea-surface height model

(122 km). However, in some instances, the Nyquist wavelength

in the crosstrack direction, 2T2' is comparable to the cor-

relation distance of the sea-surface height model. For

-1/2T1<s1<1/2T, and -1/2T21s2</2T2, the aliased spectrum of

the sea-surface height is approximated as

( ) h,h [s+(Ok/1 2 )T] (2.3-55)
k=-i

For the same range of frequencies, the corresponding PSD of

the gravimeter measurement errors, K, induced by sea-surface

height is

4g2
(KK() 2 S) (2.3-56)

with 4H,H as in Eq. 2.3-55.

In the absence of any other error sources, the spectral
density of the shipborne survey measurement errors, 'E,E is

given by the sum of the spectral densities of the velocity-

induced errors (Eq. 2.3-51), the quantization errors (Eq. 2.3-52)

and the ocean current-induced errors (Eq. 2.3-56); i.e.,
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(s)= (s) + + (s) (2.3-57)

for -1/2 1 <sl<l/2T1 and -1/2T 2<s2<1/2T 2. However, actual sur-

veys conducted by NAVOCEANO follow the geometry of Fig. 2.3-5

on nearly rectangular blocks. An example of the characteristic

block layout is presented in Fig. 2.3-6. Often, two contiguous

blocks share a common region but, in some instances, there are

small data gaps (islands, reefs, etc.) in the coverage. Since

track spacing is chosen on the basis of high-frequency energy

content in the gravity field, neighboring blocks tend to have

the same track spacing but the tracks in one block are not, in

general the continuation of tracks in another block.

R-62"43

Figure 2.3-6 Characteristic Block Layout of
NAVOCEANO Surveys
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A c onservative approach was used to take into account

these irregularities: Only the information contained in ship-

borne survey data in the shorter wavelengths is used to arrive

at gravity estimates. This was modeled by setting the measure-

ment error spectra EE equal to infinity for longer wave-

lengths. Thus, Eq. 2.3-57 was modified as

9 4 C C(s ) + 4I I(s ) + K,K (s )  if s > so4)EE (s )  =

' if s < s

(2.3-58)

with s=llsl1=(s2+s2) I/ 2 and so equal to the frequency cutoff
30selected. For numerical computations the number 10 was used

in place of infinity. This number is at least 10 orders of

magnitude larger than any other quantity appearing in the compu-

tations when MKS units are used.

Summarizing, for a shipborne gravimetric survey the

transfer function from anomalous surface potential to the quan-

tities being measured is given by Eq. 2.3-48 and the spectral

density of the measurement errors is given by Eq. 2.3-58.

Land-Based Gravimetric Survey - The model for the

geometry of a land-based gravimetric survey is illustrated in

Fig. 2.3-7. Measurement points are assumed to form a grid

oriented with the east and north axes. The distances between

data points in the east and north directions are T and T2'

respectively. It then follows that, as in the shipborne gravi-

metric survey, the rotation matrix, 0, of the measurement grid

is the identity and the spacing matrix, J, is given by an ex-

pression identical to Eq. 2.3-34. Land-based gravimetric data

are thus assumed to have been gridded prior to processing.

Research is currently in progress to account directly for the
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Data consist of measurements of gravity anomaly re-

duced to the geoid. The transfer function from anomalous sur-

face potential to measured quantities is

F(s) = 2its - 2/R (2.3-59)

' - Measurement errors are modeled as being independent

3from point to point with standard deviation a. Their spectral

density is

(s)= TT 2
2  (2.3-60)

Instrument errors, gridding errors, and errors in the process

of reducing the measurements Lo the geoid are included in
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Eq. 2.3-60. For the results given in Chapter 3 of this re-
ort r l 50 m ada=31 5  2port, 1 = 2 = 1.5x m and a 3x m/sec (3 mgal).

2.3.4 Airborne Gradiometer Survey

Figure 2.3-8 presents the convention on the position

" of the measurements of an airborne gradiometer survey. Data

are collected by a triad of gradiometers aboard an aircraft

flying on parallel equally spaced east-west tracks at an alti-

tude h above the surface of the earth. The spacing in the

north direction is 12 and the spacing in the east direction is

1 Vt (2.3-61)

where V is the (nominal) speed of the aircraft and t is the
g

time interval between successive samples. Thus, the rotation

matrix of the measurement grid, 0, is the identity and the

spacing matrix is

= (2.3-62)

z2

R--43757a

rT2 SURVEY PLANE7

K -t
;:.?",ARTH PLANE

Figure 2.3-8 Airborne Gradiometer Sur,,_y
Measurement Geometry
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Prototype gravity gradiometers developed by the Bell

Aerospace Division of Textron, Inc. (Bell) and the Charles

Stark Draper Laboratory (CSDL) were considered in the analysis.

Measurement equations for airborne surveys using the Bell and

CSDL gradiometers are given below.

Bell Gradiometer Survey Transfer Function - A schematic

diagram of a Bell gradiometer is presented in Fig. 2.3-9. The

instrument uses four matched-accelerometers mounted on a slowly

rotating (0.25 Hz) table. The outputs of the accelerometers are

mixed, preamplified, band-limited and demodulated at twice the

rotation frequency to yield two gradient measurements, one at

0 deg phase and the other at 90 deg. Let the axes x', y' and

z' be defined as in Fig. 2.3-9. One of the measurements (inline-

channel), v i , consists of the difference between the two inline

gradients lying on the plane of rotation divided by two:

v. = (rxx, - y , y,)/2 (2.3-63)

R-28144b

SPIN AXIS
(z')

Y

Figure 2.3-9 Bell Gradiometer Idealization
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The other measurement (cross-channel), v , yields the rotation

plane cross-gradient:

vc ,y (23-64)

The geometry for the configuration of the gradiometer

triad was chosen so that the instruments' spin axes coincided

with the vertical (z), north (x2 ) and east (x1 ) directions

(Fig. 2.3-10). These orientations are consistent with test

data provided by Bell for their Baseline gradiometer instru-
- ment. Consequently, from Eqs. 2.3-63 and 2.3-64 it follows

that the measurement equations are given by

v 1 / 12 0 0 0 0 F

v 1/2 -1/ 11 0 rz

v40 0 0 0 1 0 0- F

-2 1/2 -1/2 0 0 0 Xl z

0 0 0 0 1 1 2z

- , '.(2.3-65)

vwhere vl, v3 and v5 are the inline-channel outputs and v020 v 4

and v6 the cross-channel outputs from the gradiometers whose

spin axes are oriented in the vertical, north and east direc-

tions, respectively. The vector transfer function, F, from

anomalous surface potential to the measured quantities is easily
obtained from Table 2.1-1. The result is
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R-62395

z
(VERTICAL)

(NORTH)

Xl
(EAST)

Figure 2.3-10 Bell Gradiometer Triad

F(s) = B H (s) (2.3-66)

where B is the 6x6 matrix of Eq. 2.3-65 and H is the vector

2

-S2
2

H(s) 4n2 e-2nsh (2.3-67)

-is s

-is2s
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CSDL Gradiometer Survey Transfer Function - The CSDL

gradiometer (Fig. 2.3-11) employs a floated electrostatically

suspended sphere with dense material packed symmetrically

about two opposite poles. Gravity gradients induce a torque

on the sphere that is sensed through the voltages needed to

hold the sphere in its nominal attitude. Two measurements are

obtained from a single gradiometer instrument. With the co-

ordinates x', y' and z' defined as in Fig. 2.3-11, the meas-

urements are

(2.3-68)

. Vy, =Fy

AXIS OF WEIGHTS R-2lU0b

DENSE MATERIAL

DENSE MATERIAL

4* Figure 2.3-11 CSDL Gradiometer Float Element
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The geometry considered for the CSDL gradiometer triad

is shown in Fig. 2.3-12. The axes of weights of the three

gradiometers (z1 , z2 and z3) are all oriented at an angle of

35.2644 deg with respect to the vertical. The projection of

the z axis on the horizontal plane coincides with the east

direction and forms angles of 120 deg with the projections of

the axes of weights of the other two gradiometers on the same

plane. Let v1 and v2 be the measurements produced by the gra-

diometer whose weight axis is zl, v3 and v4 those produced by

Z R-28263a

(VERTICAL)

4.J

Figure 2.3-12 CSDL Gradiometer Triad (Tetrahedron
Geometry)
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the gradiometer with weight axis z2, and v 5 and v 6 those pro-

duced by the gradiometer with weight axis z The measurements

can be expressed in terms of the gradients of the disturbance

potential in the east-north-vertical frame (Ref. 8) by

0.4714 0 -0.4714 0 0.3333 0 F

V0 0 0 0.5771 0 0.8165 F

V 0.1178 0.3536 -0.4714 -0.4082 -0.1667 0.2887 F
3 zz

v 0.2500 -0.2500 0 -0.2887 -0.7071 -0.4082 r

v 0.1178 0.3536 -0.4714 0.4082 -0.1667 -0.2887 r
.5 X z

v6  -0.2500 0.2500 0 -0.2887 0.7071 -0.4082 Fx2z

" (2.3-69)

It then follows that the vector transfer function from anoma-

lous surface potential to measured quantities has the same

form as that obtained for the Bell triad; i.e.,

F(s) = C H (s) (2.3-70)

where C is the 6x6 matrix appearing in Eq. 2.3-69 and H(s) is

the vector transfer function from anomalous surface potential

to the gradients of the anomalous potential at height h given

by Eq. 2.3-67.

Gradiometer Survey Measurement Error Models - The

following measurement error sources were considered in the

simulations performed:
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0 Instrument noise (self-noise)

0 Errors induced by the mechanical vibra-
tions to which the gradiometers are sub-
jected aboard an aircraft.

Spectral densities for the time variation of the self-noise of

the Bell Baseline, Bell Ball-Bearing and CSDL gradiometers

were derived from the manufacturers' test data in Ref. 9. The

same self-noise spectra was obtained for both channels of each

of the instruments considered. In addition, no significant

correlation was observed between the two outputs of each

instrument.

As an example of the self-noise spectra derived in

Ref. 9, Fig. 2.3-13 presents the spectra of the self-noise of

the Bell Baseline gradiometer with its spin axis in the verti-

cal and horizontal positions. The shape of the spectra shown

in Fig; 2.3-13 is typical of that obtained for the Bell Ball-

Bearing and CSDL instruments as well. The spectrum decays at

a rate of 6 db/octave (red noise) and flattens out (white noise)

at high frequencies. The analytic form of such a spectral

density is

N,N + w (2.3-71)
f

where f is measured in Hz. For the Bell Baseline gradiometer

the values of r and w are

r = 2.Oxlo - 6 E2 -Hz

(2.3-72)

w = 81 E2/Hz
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Figure 2.3-13 Self-Noise Spectra of the Bell
Baseline Gradiometer

when the spin axis is vertical, and

r = 1610 . 6 E2  Hz

(2.3-73)

w = 86 E2/Hz

when the spin axis is horizontal (Ref. 9). For the Bell Ball-

Bearing gradiometer, data corresponding to an inclination of

the spin axis with respect to the vertical of 55 deg were

analyzed. The results are

r = 7.7x10-6 E2 • Hz

(2.3-74)

w = 290 E 2/Hz
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These values were used for both horizontal and vertical spin

axes of the gradiometers. For the CSDL gradiometers, the values

of r and w were found to be

r = 0.2x10 6 E2  Hz

(2.3-75)

w = 2.3 E2 /Hz

The effects of translational and angular vibrations on

the gradiometer measurements are also analyzed in Ref. 9. The

net result is an increase in the power level of the white noise

floor, w, which depends on the orientation of the instrument.

Vibration data corresponding to the Bell Baseline instrument

were received from the manufacturer. The sensitivities obtained

were used in determining the modified white noise levels for the

Bell instruments. In the absence of vibration data from CSDL,

no vibrationally induced errors were included in the CSDL gra-

diometer error model.

Because of the way the instruments sense and process
the gradients of the field, there is no correlation between

vibrationally induced errors in both channels of a single gradi-
ometer. Vibrationally induced errors at the outputs of differ-

ent instruments were modeled as uncorrelated.

Other sources of error which were not included in the

analysis because their magnitude is very small compared to the

self-noise and vibrationally induced errors are:

* Thermally induced errors. Temperature
sensitivity data for the Bell gradiometers
(Refs. 10, 11 and 12) indicate that, other
than the red noise discussed in the fore-
going, these errors can be neglected.
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, Motion correction errors. Airborne gradi-
ometer measurements must be corrected to
account for the fact that the instruments
are not stationary in inertial space.
The corrections are on the order of
4 E6tvos. Errors in the corrections
amount to a few hundredths of an E6tvos.

. Errors due to uncertainty in the air-
craft's altimeter readings. These er-
rors are of the same order of magnitude
as the motion correction errors.

In addition, the gradiometers are naturally susceptible to

time-varying gravity gradient fields caused by relative motions

of nearby masses such as gimbals in the inertial platform.

Corrections can be applied to the gradiometer output signals

to compensate for the gradient fields caused by disturbing

masses whose positions can be monitored. Errors in these cor-

rections are unaccounted for in the results given in Chapter 3.

The spectral density of the survey measurement errors

was taken to coincide on a single data track with the spectral

density given by Eq. 2.3-71 (with suitable choices for the

parameters r and w) after transforming time frequencies into

spatial frequencies through the mapping

f = V sI  (2.3-76)

where V is the aircraft's speed. On different data tracks,

measurement errors were taken to be independent. The measure-

ment error spectral density matrix, cEE(S, is diagonal with

entries along the diagonal given by

() T V + -5(2.3-77)
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for -1/2y<s 1 <1/211 and m = 1,2,... ,6. The values of rm and
wm for the Bell and CSDL triads are given in Tables 2.3-1 and

2.3-2.

TABLE 2.3-1

RED NOISE PARAMETERS

BELL BELL CSDL
BASELINE BALL-BEARING

r
I

(*)1 2Ol 6 iio6 7.xO(E2*Hz) 2.0xl0 6 7.7x106 2.0xlO -

r
2

(E2. Hz) 2.0x10 6 7.7x106 2.Ox1O 7

(E2.Hz) 16x10 "6 7.7x106 2.0x10 -

r-6

r 
4

(E 2.Hz) 16x10 6 7.7x 0 6  2.0x10- 7

r 5(E2 Hz) 16x10 "  7.7x10 "  2.0x10 "

r
6

(E 2Hz) 16x10 6 7.7x10-6  2.0x10 7
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TABLE 2.3-2

*BELL BELL CD
BASELINE BALL-BEARING CD

wi

2(E /Hz) 440 650 2.3

w 2
(E /H-z) 440 650 2.3

w 3
(E 2/Hz) 97 300 2.3

w4

(E /Hz) 97 300 2.3

w5
2(E /Hz) 97 300 2.3

w 6

(E 2/Hz) 97 300 2.3
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3. SIMULATION RESULTS

A large variety of simulation results were obtained

with the techniques of Chapter 2. The results consist of gray-

ity residuals in the form of point values and 5 mln, 15 mTh,

1 deg and 5 deg means.

In order to examine the sensitivity of the results to

the local characteristics of the gravity field, three differ-

ent field models were used in the simulations:

0 Attentuated White Noise (AWN) gravity

model

* Baseline gravity model

0 Active gravity model.

These models are discussed in Section 3.1.

The simulation results are given in Sections 3.2

through 3.5. Section 3.2 presents results for nine different

survey possibilities. Sections 3.3, 3.4 and 3.5 examine the

sensitivity of specific survey alternatives to variations in

survey parameters.

3.1 GRAVITY FIELD MODELS

A stationary gravity field model is completely speci-

fied by the spectral density of the anomalois siurface pot.rlt i.a1
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through the frequency-domain approach given in Section 2.1.
The three models used in the simulations are discussed below.

A single shell of the Attenuated White Noise model

(Ref. 13) contributes a surface potential with a spectral den-

sity of the form

(0(k) (s 8n 2 a2 e-4nD (3.1-1)

This spectral density can be viewed as arising from a spherical

shell at depth Dk below the surface of the earth on which the

potential is white (hence the name Attenuated White Noise) and

such that the surface potential has variance 02k The complete

AWN model consists of five independent shells; i.e.,

5I. ~iTT(S ) = ((S) (3.1-2)

-T0  k=l

Global data were used to fit the ten parameters of the model

in Ref. 13. The resulting values of the parameters are given

in Table 3.1-1.

TABLE 3.1-1

AWN MODEL PARAMETERS

SHELL DR 2
A (k) (km) (m /sec 2 )

1 10 0.721

2 76 23.03

3 376 53.50

4 1055 55.36

5 2189 278.3
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The Baseline and Active field models are members of

the same class of models. They are both sums of two third-

order Markov models (Ref. 14). A single third-order Markov

model has a surface potential with a spectral density of the

form

2 5
*(k)(s) - 2 + 2k7k (3.1-3)

K + 2

where is called the characteristic distance and a2 is the

variance of the surface potential. For the Baseline and Active

models

2

T = 2 4 (k) (s) (3.1-4)
0 0k=l

with 0(k) as in Eq. 3.1-3. The four parameters of the Base-

line and Active models were obtained by fitting to data in the

North Atlantic and in the Bonin Trench, respectively. Their

values are given in Tables 3.1-2 and 3.1-3.

TABLE 3.1-2

BASELINE MODEL PARAMETERS

K i/0k Ok

(km) (m 2/sec 2

1 27.78 16.00

2 370.4 91.43

3-3
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TABLE 3.1-3
ACTIVE MODEL PARAMETERS

K ,/Pk 2k 2
(kin) (m /sec )

1 22.22 29.98

2 350.03 103.68

Since the spectral densities given in Eqs. 3.1-1 and
3.1-3 are functions of the frequency magnitude s, the three
models are isotropic Graphs of the spectral densities of
the anomalous surface potential for the AWN, Baseline and Active

models as functions of s are given in Fig. 3.1-1. The AWN model

1 8 ft 3103,

." ,.. 14

• .-. l, BAS.. " L~ ELINE

U.1-1-1:- , MODEL
I IL loAWN

'ME ACTiVEaMODEL

0

2

0
z 0-

-2 W*.*.I
I 4 10-3 10-2 10-1

FREQUENCY (cyc /km)

10,000 1000 100 10
WAVELENGTH km)

Figure 3.1-1 Spectral Densities of the Anomalous Surface
Potential for the AWN, Baseline, and Active
Models

*The methodology of Chapter 2 is applicable to non-isotropic
models as well.
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has very little energy at high frequencies; it represents a smooth

slowly varying local gravity field. On the other hand, the Active

model contains a substantial amiount of high-frequency energy since,

as its name indicates, it represents a very active local gravity

field. The Baseline model corresponds to an intermediate case.

For reference purposes, Table 3.1-4 presents the rms

values of the gravity anomaly, the deflections of the vertical

and gradients of the anomalous potential at the surface for

the three models. Shown in parentheses are the 1 deg means.

TABLE 3.1-4

RMS VALUES OF MODEL QUANTITIES

QUANTITY AWN MODEL BASELINE MODEL ACTIVE MODEL

*Gravity Anomaly 42.7 51.1 112.5
(mgal) (36.2) (29.8) (48.1)

East Deflection of the Vertical 6.8 7.6 16.8
sc(5.4) (4.4) (7.2)

North Deflection of the Vertical 6.8 7.6 16.8
(siec) (5.4) (4.4) (7.2)

East-East Gradient 13.8 20.7 60.6
(E) (3.5) (3.8) (8.1)

North-North Gradient 13.8 20.7 60.6
(E) (3.5) (3.8) (8.1)

Vertical-Vertical Gradient 22.6 33.8 99.0
(E) (5.7) (6.2) (13.0)

AEast-North Gradient 8.0 12.0 35.0
K(E) (2.0) (2.2) (4.4)

East-Vertical Gradient 16.0 23.9 70.0
(E) (4.0) (4.4) (9.2)

North-Vertical Gradient 16.0 23.9 70.0
(E) (4.0) (4.4) (9.2)

*1 deg means shown in parentheses.
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3.2 COMPARISON OF SURVEY ALTERNATIVES

To illustrate the versatility of the methodology de-

scribed in Chapter 2, nine survey possibilities were simulated

using the three field models introduced in the previous section.

Post-survey rms residuals in the deflections of the vertical and

the gravity anomaly are presented in Tables 3.2-1, 3.2-2, and

3.2-3 for the AWN, Baseline, and Active models, respectively.

All results correspond to a survey in an equatorial region.

- Each table contains 10 columns. The first column,

labeled NONE, corresponds to the unsurveyed field. The acro-

nyms ALT, SST, SHIP, GRAV and GRAD, used in the remaining nine

columns, represent satellite radar altimetry, satellite-to-

satellite tracking, ship gravimetry, land-based gravimetry and

airborne gradiometry, respectively. Each column corresponds

to the survey combination indicated by the acronyms in its

header. A description of the survey parameters is given next.

Satellite Radar-Altimeter Survey - The GEOS-3 geometry

and parameters were used. The equatorial separation of GEOS-3

groundtracks was taken as 30 nm.

Satellite-to-Satellite Tracking - The low satellite's

altitude is 150 km. Its orbit inclination is 94 deg. Measure-

ments of line-of-sight range-rate are taken every 10 sec and

the noise level has a standard deviation of 1 pm/sec per meas-

urement. The separation of the groundtracks of the low satel-

lite is 30 nm at the equator. The high satellite is directly

above the region where estimates are sought.

Shipborne Gravimetry - Spacings between contiguous

survey tracks were selected following NAVOCEANO's methodology.

The remaining parameters are defined in Subsection 2.3.3.
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TABLE 3.2-1

AWN MODEL SIMULATION RESULTS

SURVEY TYPE

SST ALT

NONE SST ALT SST GRAV ALT SST ALT ALT GRAD
ALT GRAD SHIP GRAD GRAD GRAD SHiP

RMS North Deflection 6.8 2.1 1.4 1.3 0.8 0.7 0.5 0.5 0.4 0.4
of the Vertical* (i-) (5.4) (0.5) (0.4) (0.1)

RIlS East Deflection 6.8 1.9 1.5 1.4
of the Vertical* (C ) (5.4) (0.5) (0.5) (0.1)

RHS Gravity Anomaly* 42.7 13.2 9.6 9.1 4.6 4.3 3.0 3.0 2.8 2.4
(mgal) (36.2) (3.2) (2.8) (0.7)

* *1 deg means shown in parenthesis.

TABLE 3.2-2

BASELINE MODEL SIMULATION RESULTS

SURVEY TYPE

SST ALT
SST GRAV ALT SST ALT
ALT GRAD SHIP GRAD GRAD ALT GRAD

GRAD SHIP

RMS North Deflection 7.6 4.5 2.2 2.1 1.0 0.6 0.6 0.5 0.5 0.4
of the Vertical* (sie) (4.4) (0.5) (0.4) (0.2)

RiIS East Deflection 7.6 4.2 2.8 2.8 06 0.6 0.4 0.4 0.4 0.3
of the Vertical* (9--) (4.4) (0.4) (0.5) (0.3)

RNS Gravity Anomaly* 51.1 29.2 16.9 16.7 5.2 4.2 3.4 3.2 3.0 2.5
(mgal) (29.8) (3.0) (3.2) (1.7)

*1 deg means shown in parenthesis.
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ATABLE 3.2-3

ACTIVE MODEL SIMULATION RESULTS

SURVEY TYPE

SST GRAV ALT SST ALT SST ALT
NONE SST ALT ALT GRAD SHIP GRAD GRAD ALT GRAD

GRAD SNIP

RIMS North Deflection 16.8 12.5 5.4 5.4
of the Vertical* (si ) (7.2) (1.6) (0.6) (0.4) 1.7 0.7 1.2 0.9 0.9 0.6

RMS East Deflection 16.8 11.4 8.0 7.9
of the Vertical* (s ) (7.2) (1.6) (1.0) (0.8) 1.1 0.6 0.8 0.8 0.8 0.4

RMS Gravity Anomaly* 112.5 80.2 46.0 45.7 94 4.6 6.7 5.9 5.7 3.3I(mgal) (48.1) (10.5) (5.5) (4.4)

*1 deg means shown in parenthesis.

Land-Based Gravimetry - All parameters are as described

in Subsection 2.3.3.

Airborne Gradiometry - Data are assumed to be collected

with the Bell Baseline gradiometer triad aboard an aircraft fly-

ing at a speed of 300 kt at an altitude of 20,000 ft. Measure-

ments are taken every 10 seconds on parallel tracks spaced 10 km

apart.

Three of the five sensors considered provide informa-

tion on the long-wavelength content of the gravity field.

They are SST, ALT, and GRAV. The other two sensors, GRAD and

SHIP, recover the short wavelengths of the gravity field. In

the case of the gravimetric surveys (GRAV and SHIP), this dif-

ference is primarily a function of the density of coverage.

For the other sensors (SST, ALT, and GRAD), the bandwidth of

recovery is inherent in the physical characteristics of the

sensor.
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In Tables 3.2-1, 3.2-2, and 3.2-3 all columns contain-

ing ALT or SHIP in the header correspond to ocean surveys.

The column headed by GRAV/GRAD represents a land survey. The

two columns SST and SST/GRAD apply to ocean and to overland

surveys.

The three tables present the point value rms residuals

in the north deflection of the vertical, the east deflection

of the vertical, and the gravity anomaly. The numbers in paren-

thesis are the rms values of the residual 1 deg means. These

are given only for those surveys in which long-wavelength sen-

sors are used exclusively.

The results given in Tables 3.2-1, 3.2-2, and 3.2-3

are discussed in detail below. First, consider the order of

the columns in the tables. Note that the various columns in

the three tables are ordered in the same sequence. This order

corresponds to decreasing rms values for the residual point

gravity anomaly in the Baseline and AWN models. In the case

of the Active gravity model, the gravity anomaly residual for

the combination ALT/SHIP appears out of sequence. The reason

is that the rms residuals shown in the tables correspond to

the actual ship survey that NAVOCEANO would conduct. The cri-

terion used by NAVOCEANO to select the spacing between con-

tiguous ship tracks would choose the same spacing for the AWN

and Baseline models, but it would choose a denser collection

of tracks for a region described by the Active gravity model.

If the same ship track spacing is used for all models, the

results for the Active model appear in the same order as those

of the other two models.

For most surveys, the rms values of the residuals in

the north and in the east deflections of the vertical are not

the same. This illustrates the fact that the post-survey gravi-

ty residuals are not isotropic. Even though the three models
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used in the simulations are isotropic, the gravity residuals

turn out to be anisotropic for all surveys. The primary reason

for the anisotropy is the geometry of the surveys. For example,

for an airborne gradiometer survey the survey tracks are east-

west and samples along a track are spaced approximately 1.5 km

apart, while in the cross-track direction (north-south) the

distance between samples is 10 km. In the case of the SST

survey, the rms of the residual east deflection of the verti-

cal is smaller than that of the north deflection of the verti-

cal because the 10 sec range-rate sampling implies a larger

spacing between consecutive samples on a groundtrack (roughly

north-south) than the spacing between continuous groundtracks

(east-west).

The advantages of multisensor surveys are clear from

the tables. The smallest residuals are obtained when a combi-

nation of sensors is used to cover the entire range of fre-

quencies. This involves at least one long-wavelength sensor

"-. and one short-wavelength sensor. Little is gained by combin-

ing two long-wavelength sensors, as can be seen by comparing

the columns SST and ALT with the column headed by SST/ALT in
each of the tables. The best two-sensor results are obtained

with the ALT/GRAD sensor combination in the cases of the AWN

and the Baseline gravity models. For the Active model, the

ALT/SHIP sensor combination provides the best recovery using

only two sensors. In each case, the best two-sensor result is

not very much improved when a third sensor is added.

3.3 SATELLITE ALTIMETRY - SENSITIVITY TO TRACK SPACING

This section presents a study of the sensitivity of the

gravity recovery to satellite altimeter track spacing. Both

GEOS-3 and SEASAT-l altimeters are considered. Some important

implications of the survey geometry are discerned and discussed.
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Figures 3.3-1, 3.3-2, and 3.3-3, respectively, show

the variation with equatorial track spacing of the residual

rms gravity anomaly, east deflection of the vertical, and north

deflection of the vertical. Results for the AWN and Active

models for recovery at the equator are given in these figures.

'.4 The horizontal axes correspond to the equatorial separation

4": between contiguous tracks.

At first, the results appear surprising. The SEASAT-I

altimeter is of better quality than the GEOS-3 altimeter. In

addition, SEASAT-l has a larger orbit inclination than GEOS-3.

Consequently, it is expected that the gravity anomaly and the

north deflection of the vertical are better recovered by SEASAT-I

than by GEOS-3 at all track spacings . However, Figs. 3.3-1

120 A-477190

o100 - CTIV GRAVITYES MODEL

- SEASAT-1 GEOS-3

~40
SEAST-1 .-- AWN GRAVITY

MODE

cc . "GEOS-3

0 A A i A l* p p p . p

10 100 1000
EQUATORIAL TRACK SPACING (nm)

Figure 3.3-1 Sensitivity of Residual Gravity Anomaly
to Altimeter Survey Track Spacing

*For the east deflection of the vertical (Fig. 3.3-2) the results
are expected because of the difference in orbit inclination be-
tween the two satellites.
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LU EQUATORIAL TRACK SPACING (nm)
Figure 3.3-2 Sensitivity of Residual East Deflection of the

Vertical to Altimeter Survey Track Spacing

F ACTIVE GRAVITY
w14 MODEL

wj 12
x SEASAT-1

~10-
o 0508-3
Z
0

-J 4-AWN GRAVITY
LL MODEL

z EQUATORIAL TRACK SPACING (nm)

Figure 3.3-3 Sensitivity of Residual North Deflection of the
>1 Vertical to Altimeter Survey Track Spacing
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and 3.3-3 indicate that for a wide range of track spacings the

residuals in the gravity anomaly and the north deflection of

the vertical are larger for SEASAT-I than for GEOS-3. Only

for very short track spacings do SEASAT-I results show an im-

provement over GEOS-3.

The origin of this surprising behavior is in the geome-

try of the survey. Figure 3.3-4 illustrates the geometric

differences between SEASAT-1 and GEOS-3 surveys. For the same

equatorial separation, any two parallel SEASAT-I tracks are

separated by a larger distance in the north direction than two

GEOS-3 tracks. More fundamentally, as Fig. 3.3-5 illustrates,

for the same equatorial separation there are more data per

unit area in a GEOS-3 survey than in a SEASAT-I survey. Thus,

the results reflect a trade-off between data quality and data

quantity.

R--47720

EXCESS SEASAT/ NORTH SPACING

SEASAT

Figure 3.3-4 Geometric Differences Between SEASAT-l
and GEOS-3 Surveys
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R-47720b

GEOS-3 2 SEAST.1 2
AREA - 0J2H AREA' 1.2H

Figure 3.3-5 Differences in Density of Coverage
Between SEASAT-1 and GEOS-3 Surveys

When a SEASAT-1 quality altimeter is used in a satel-

lite at the same orbit of GEOS-3, the results of Figs. 3.3-6,

3.3-7 and 3.3-8 are obtained. For ease in referencing, this

case has been labeled SEASAT-1-A. It can be seen from

Figs. 3.3-6, 3.3-7 and 3.3-8 that, as expected, SEASAT-l-A

yields consistently better recovery than GEOS-3 but the im-

provement is evident only for track spacings shorter than

40 nm.

Residual 5 min, 15 m'in, 1 deg, and 5 deg means of the

gravity anomaly are presented in Figs. 3.3-9 through 3.3-12.

The effects of the geometric differences between the surveys

are clearly seen in these figures. The effects of the differ-

ences between the quality of the altimeters corresponding to

the GEOS-3 and SEASAT surveys are only noticeable in the re-

covery of the 5 and 15 in means. The values of the 5 min,
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Figure 3.3-6 Sensitivity of Residual Gravity Anomaly to
Altimeter Survey Track Spacing

R-63099a4 18

F 16

> 14
LU
X 12

L( 10

SSEASAT-1-A

100 1000 i

EQUATORIAL TRACK SPACING (nm)

Figure 3.3-7 Sensitivity of Residual East Deflection of the
Vertical to Altimeter Survey Track Spacing
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Figure 3.3-8 Sensitivity of Residual North Deflection of the
Vertical to Altimeter Survey Track Spacing
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Figure 3.3-9 Satellite Altimeter Survey Residual
5 min Means
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Figure 3.3-10 Satellite Altimeter Survey Residual
15 iIn Means
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Figure 3.3-11 Satellite Altimeter Survey Residual
1 deg Means
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Figure 3.3-12 Satellite Altimeter Survey Residual

5 deg Means

15 min , 1 deg, and 5 deg means for the unsurveyed AWN and Active

fields are given as a reference in Table 3.3-1. Note that the

5 deg means of the unsurveyed field are larger for the AWN
model than for the Active model because the AWN model has more

power in the long wavelength portion of the spectrum than the

Active model (see Fig. 3.1-1). This explains why the graphs

of Fig. 3.3-12 cross for sparse surveys.

TABLE 3.3-1
SPATIALLY AVERAGED UNSURVEYED GRAVITY ANOMALY

5 min 5 ismin i deg 5 deg
(mgal) (mgal) (mgal) (mgal)

AWN 41.6 40.2 36.2 26.1

Active 110.0 97.7 48.1 20.1
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Figures. 3.3-11 and 3.3-12 indicate that there are

fundamental lower bounds on the recovery of the 1 deg and 5 deg

means of the gravity anomaly from satellite altimetry data.

These bounds (approximately 2.6 mgal for the 1 deg means and

1.2 mgal for the 5 deg means) are independent of the gravity

field model used in the analysis and are also independent of

- the survey geometry and the quality of the altimeter used.

3.4 SST - SENSITIVITY TO LOW SATELLITE'S ALTITUDE

A study was conducted of the sensitivity of SST sur-

vey residual gravity errors with respect to the height of the

low satellite. Measurements of line-of-sight range-rate were

considered to be taken every 10 sec and to have an uncertainty

with a standard deviation of 1 pm/sec. The inclination of the

orbit of the low satellite was taken as 94 deg and the equa-

torial separation between neighboring groundtracks was kept

constant at 30 nm. The altitude of the low satellite over the

earth's surface was allowed to vary between 100 km and 800 km.

• .. Results for gravity recovery from an equatorial region

directly under the high satellite were obtained for the AWN

and Active models. The point residuals in the gravity anomaly

are presented in Fig. 3.4-1. Figures 3.4-2 through 3.4-5 show

the 5 m 15 iii, 1 deg, and 5 deg means of the residuals in
the gravity anomaly.

A
As the height of the low satellite decreases, the

spacing between consecutive samples along a groundtrack in-

creases according to Eq. 2.3-1". On the other hand, the closer

*Along-track sample spacing for altitudes of 100 km and 800 km
are 66.2 km and 77.2 km, respectively.
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Figure 3.4-5 SST Survey Gravity Anomaly Residual

5 deg Means

the low satellite is to the earth's surface, the stronger the

anomalous gravity field and the better the signal-to-noise

ratio of the measurements. By far, the dominant effect is the

quality of the data. Thus, even though the data become sparser

as the height of the low satellite decreases, residual gravity

errors are reduced.

Table 3.4-1 gives the residual 5 min, 15 min, 1 deg,

and 5 deg means of the gravity anomaly as fractions of the

corresponding unsurveyed field values for low satellite's alti-

tudes of 100 km and 800 km. The fractions have been rounded-

off to the nearest 1/100. The 5 deg means are very well re-

covered from SST data. In general, the fractional recovery of

the gravity anomaly is better for the AWN model than for the

Active model because most of the energy in the field repre-

sented by the AWN model is contained in the long-wavelength

portion of the spectrum while in the case of the Active model

there is a large amount of energy at high frequencies which is

unobservable in the data.
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TABLE 3.4-1

RESIDUAL GRAVITY ANOMALY AS A FRACTION OF

THE UNSURVEYED FIELD VALUES

HEIGHT OF MODEL 5 m 15 i deg 5 deg
- LOW SATELLITE MEAN MEAN MEAN MEAN

100 km AWN 0.28 0.22 0.04 0.01

100 km Active 0.68 0.60 0.17 0.05

800 km AWN 0.85 0.84 0.64 0.09

800 km Active 0.97 0.96 0.83 0.17

3.5 AIRBORNE GRADIOMETRY - SENSITIVITY TO TRACK SPACING

This section presents results on the sensitivity of

residual gravity errors from a combined SST/Airborne gradio-

metric survey. The gradiometer instruments considered are

the Bell Ball-Bearing and the CSDL triads discussed in

Subsection 2.3.4.

For the SST survey, the low satellite's altitude

above the earth's surface was taken as 120 km. The rest of

the parameters were the same as those used in obtaining the

results of the previous section. The gradiometer survey was
assumed to be conducted at an altitude of 20,000 ft and at a

speed of 300 kt. The interval between successive gradiometer

samples was taken as 10 sec. Track spacing was allowed to

vary between 10 km and 100 km.

The results for the rms of the residual gravity anom-

aly are presented in Fig. 3.5-1. Note that the differences in

gravity recovery between the Bell and CSDL instruments are

exaggerated in Fig. 3.5-1 because, as noted in Subsection 2.3.4,
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Figure 3.5-1 Sensitivity of SST/Airborne Gradiometer Survey
Residual Gravity Anomaly to Gradiometer Survey

VTrack Spacing

the error model for the CSDL instrument does not include the

effects of translational and rotational vibrationc.., while the

Bell Ball-Bearing instrument error model does include these

*. ~ effects.

There are three possibilities to further decrease the

residual gravity anomaly. First, the slope of the residual

gravity anomaly curve at the lower end of the track spacing
* scale in Fig. 3.5-1 indicates that the full benefit of an air-

borne gradiometer survey has not been attained at a track spac-
ing of 10 km. Second, residual gravity anomaly can be reduced

by lowering the height of the gradiometer survey (20,000 ft).
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Third, the east-west gradiometer survey could be complemented

with a north-south gradiometer survey to provide short-

wavelength recovery over the frequency-domain region where the

red noise in the east-west gradiometer survey significantly

corrupts the measurements.
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4. CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

A new method and a computer program have been devel-

oped for the analysis of multisensor surveys of the gravity

field. The method is ideally suited for the design of multi-

sensor surveys to achieve a desired level of gravity recovery

accuracy.

The approach, which utilizes a flat-earth approxima-

tion in the survey region, is based on an extension of optimal

Wiener smoothing theory. The Fourier transformation permits

the efficient evaluation of the statistics of the post-survey

residuals in the form of their average spectral density. Root-

mean-square (rms) values, covariances and crosscovariances of

point and spatial averages of the residuals are readily com-

puted from their average spectral density through numerical

integration.

Survey error models and gravity recovery simulation

results were given for a variety of combinations of

* Satellite radar altimeters

0 Satellite-to-satellite tracking in a
high-low configuration

0 Land-based/shipborne gravimetry

* Airborne gradiometry.

The examples given illustrate the versatility of the methodology.
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4.2 RECOMMENDATIONS

There are several important areas of investigation
for future extensions of the methodology:

0 Effects of survey irregularities - The
effects of gaps in satellite data and
the seemingly random measurement pattern
associated with land-based gravimetric
surveys would be incorporated in the
analysis.

* Additional sensors - Other survey possi-
bilities such as satellite-to-satellite
tracking in a low-low configuration or
inertial gravimetry can be included in
the formulation.

I
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APPENDIX A

THE FOURIER TRANSFORMATION

This appendix presents a compilation of those defini-

tions and results of Fourier analysis employed in this report.

This appendix is not intended as a treatise on the subject of

Fourier analysis. The material is presented as an aid in under-

"* S standing the application of the concepts rather than as an

investigation of the mathematical properties of the concepts

themselves. The reader interested in a more complete presen-

-: tation is referred to various excellent books on the subject

*such as Refs. 3, 15, 16, and 17.

A.1 DEFINITIONS OF FOURIER TRANSFORMS

Let g(x) be a real-valued function defined for all

points x =(xx 2 )T of a cartesian coordinate system. The

Fourier transform of g, k, is a complex-valued function defined

by

9 (s) =/ g(x)e- i 2 n < x ' s > dxldx: (A-1)

where i = T, = (SlS 2 )T, and where <x,s> is the scalar

product of the vectors x and s given by

<x,s> = xTsxS 1 + x2 s2  (A-2)

The vector s is referred to as planar frequency. Its com-

ponents, sI and s2 , are real numbers which, as shown below,

correspond to physical frequencies measured in the directions

A-I
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of the axes of the coordinate system. The fact that is
complex-valued is solely due to the appearance of the factor i

in the exponential of the integrand in Eq. A-I. Note that

*", since g(x) is real-valued,t

(s) = [(s)]* (A-3)

The inverse Fourier transformation permits the re-

covery of g(x) from k(s):

g(x) =fk(s)ei2n<x 's> dslds2  (A-4)

The formulas for the Fourier transform and the inverse Fourier

transform are completely symmetric except for a change of sign

in the exponential. The functions g and k are called a Fourier

transform pair. Given any one of them, the other is uniquely

determined within an equivalence class (Ref. 16).

In order to give a physical interpretation of the

Fourier transformation, it is convenient to decompose g(s)

into its real and imaginary parts. Let

A (s) r(S) + iki(s) (A-5)

where kr and ki are real. From Eq. A-3 it follows that

,g(s) = S-
)  

(A-6)

and

gi(s) = -9i(-s) (A-7)

tA superscript asterisk denotes complex conjugation when attached
to a scalar and conjugate transpose when attached to a matrix or
a vector.
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Using the identity

e iicx.>=Cos 2n<x,s> + i sin 2n'~x,s> (A-8)

and Eq. A-5, the inverse Fourier transformation can be written
* as

g(x) =f [k(s) cos2n'Zx,s> - i(s) sin2n<x,s>lds 1ds 2

+ i(s) sin2ncx,s> + ~.(s) cos2n~x,s> Jds ds2
-0 r i

(A-9)

From Eqs. A-2, A-6 and A-7 it follows that the second integral
in the right-hand side of Eq. A-9 vanishes and that

g(x) A f J Aps1, 2) cos2nslIx, cos2ns 2x2 ds Id s2
0 0

+Jf f A22 (s1,s2) sin2nslx1 sin2n s2X2  sd2
o o

+ AfJ A1 (Sigs cos2nslxl sin2nsx ds ds2

fJf A12 ( 1 s2) snsx 1  os2 2  1
o 0

(A-10
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where

AI(SS 2 ) = 2 [gr(SlS 2 ) + gr(Sl,-S2)

A22 (slS 2 ) = 2 [-gr(SlS 2 ) + gr(SPS 2)] (A-1

A1 2(sls 2 ) = 2 [-gi(sl,s 2 ) + gi(sl,-S2)]

"A21(Sl'S2 )  2 [-gi(sl's 2) 2

Equation A-10 is a representation of g(x) as a sum

over frequency of products of trigonometric functions for the

four possible phase combinations. Only positive frequencies

appear in Eq. A-10. The Fourier transform g(s) associates

with each pair of positive frequencies (SlS ) eight real num-

bers corresponding to the real and imaginary parts of g(s) for

the four vector planar frequencies I  , s (
=(-Sips 2 ) and s = (-Sl-s2)T Of these eight numbers

a only

four are independent (Eq. A-3) and the relation between these

numbers and the coefficients of the expansion A-10 is given by

A-Il. The definition of the Fourier transform (Eq. A-1) as a

complex-valued function of positive and negative frequencies

is a compact mathematically convenient way of representing the

four amplitudes of the trigonometric expansion A-10. The in-

version formula (Eq. A-4) is entirely equivalent to the expan-

sion A-10.

Classically, the most important application of the

Fourier transformation has been to the solution of differen-

tial equations. This application is a consequence of the fol-

lowing property of Fourier transforms: Consider the n-th

partial derivative of g(x) with respect to xk (k=1,2). From

the formula for the inverse Fourier transform (Eq. A-4)
n g(x)/axn can be written as
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With the help of Eq. A-2, the partial derivative of the inte-

grand can be evaluated to yield

,. g(x) [( i2ns)n ^(s)] ei<x 's> dsldS2  (A-13)

axn - _
k if-

from which it follows that the Fourier transform of a ng(x)/axn

is the Fourier transform of g multiplied by (i2nsk)n.

As an example of the application of this property of

* the Fourier transformation, consider the solution of Laplace's

equation with a boundary condition on a plane. Let Tz(x) be

Tthe potential at height z above the point x = (xlx 2 ) At

z=0, the potential is known and is given by T0 (x). For z>0,

T,(x) satisfies

a 2  a 2  2
T (x) + T (x) + T (x) =0 (A-14)

ax ax2  Oz12

In addition, it is required that Tz(x) remain bounded as z * =.

Let Tz(s) be the Fourier transform of the potential

on the plane at height z. Applying the Fourier transformation

to Eq. A-14 results in

"--s•_-4n SILz (s) - 2s z(s) + Tz(jS) 0 (A-15)
az

A-5
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from which it follows that

a 2  2 ~ (A16
STZ(S) = 4n 2 2Z(S) (A-16)

where

=s +2 / 2  (A-17)

Equation A-16 is an ordinary differential equation for each

value of s. Its solution is of the form

Tz(s) = A e + B e+ 2 n s z  (A-18)

-' where A and B are to be determined. From the condition .that
the potential must be bounded as z * it follows that B=0.

The value of A is obtained by setting z=0 to yield A = T (s.).

* Thus, the solution to Eq. A-16 is
! i ~ ~~T (s) = e 2ns z T()(-9

This equation states that the Fourier transforms of the poten-
tial at height z and at height 0 are simply related by the

attenuation factor e -2nsz. In the space domain, the solution
is obtained by using the inverse Fourier transform; i.e.,

T (X) = To(s) e-2nsz e i2n<x s'> dslds2  (A-20)

In the discrete case the Fourier transform is called
the finite Fourier transform and is defined in a manner analo-

gous to Eq. A-i. Let M be an orthogonal grid of points on the
plane as in Fig. A-I. The normalized finite Fourier transform

A-6
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of a function G(Q) with 0 = (j,k) denoting the position of a

point on the grid is defined as

G(p) = G) e- i 2n <Q p > (A-21)

where = (plP 2) T, with p, and P2 real numbers, is the vector

of normalized frequencies in the directions of the grid axes

(see below). Since 0 is a vector of integers, the normalized

finite Fourier transform is a periodic function of p1 and P2

*The symbol~denotes summation over all possible values of

Q
the integer components of 0.
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with period 1 in each direction; i.e., if A=(I,m) T is a vector

with arbitrary integer-valued entries then

; g(P+A) = GO( ) e~i 2n<o- 'p+A  A-22)

because

e-i2n< -,+A> - e-i 2 n< Ql - > • e-i2n<a,- A> (A-23)
0',

and

e= i 2 n <O- ' A>  e-i2n(ji+km) 1 (A-24)

for all possible values of j, 9, k and m.

The inverse of the normalized finite Fourier trans-
form is given by

/
GO') = f f -() ei2 n<Q'R> dpl dP2  (A-25)

The limits of integration in Eq. A-25 can be modified as long
as they span a full period of G(p) in each dimension.

= )T
The vector p (plp 2  in Eqs. A-21 and A-25 is called

normalized planar frequency because it does not carry any infor-
mation as to the physical wavelengths implied by p1 and P2.
The reason is that the function G has been viewed as being

[ .defined on the integer coordinates of the grid and the spacing
between consecutive points in each direction is one unit ir-
respective of the physical distance involved.

A-8
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The physical position x = (xl,x 2 )T of the point

Q (j ,k) T is

x = J (A-26)

where

is called the grid spacing matrix (see Fig. A-i). It then

follows that the normalized frequencies p1 and P2 can be identi-

fied with the physical frequencies sI = pl/Tl and s2 = P2/2.

Letting (ss2)T = j-, Eqs. A-21 and A-25 become,

respectively,

G(Js) : G(O)e- i2n<J,'> (A-27)

and

;2 s 1

G)= T112 f f G(Js)e i -cfls dsids2  (A-28)

";2 " I

where the factor 112 in Eq. A-28 arises from the change in

integration variables. The quantities i1 = 1/2T1 and s2  1/22
are called the Nyquist frequencies of the grid.

For purposes of compatibility with the definition of

the Fourier transform in the continuous case (Eqs. A-1 and A-4),

it is convenient to define the unnormalized finite Fourier

transform (or, simply, finite Fourier transform) as
"5,-

*With this definition the physical units of and G coincide
when G is a sampled version of g.

A-9
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G(s) = tit2 G(Js) (A-29)

Thus, from Eqs. A-27 and A-28, the finite Fourier transform is

given by

G(s) A(j) G(O) e i2n<jo's> (A-30)

and the inverse finite Fourier transform is

where in Eq. A-30, A(J) C1 2 is the determinant of the spac-

ing matrix.

A.2 CONVOLUTION

Let g and f be two functions defined for all x=(xl,x 2 )T

The convolution of g and f is a third function, h, given by

h(x) = g(x') f(x-x) dx'dx (A-32)

In the discrete case, the convolution of G and F is defined as

H(O) =dG(Q') F(0-O') (A-33)
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By changing integration variables in Eq. A-32 and summation

indices in Eq. A-33 it can be verified that the roles of g and

f and those of G and F are interchangeable in the definitions.

A convolution integral becomes a simple algebraic

product under the Fourier transformation. To see this, con-

sider Eq. A-32. Taking Fourier transforms on both sides of

the equality, Eq. A-32 becomes

h(s) J JJ g(x') f(x-x') e i2n< x s > dxldxidx1 dx 2
%.%,-0 -0

(A-34)

Changing the variables of integration x, and x2 through the

definition x"=x-x', Eq. A-34 transforms into

i: h(s) =g(x') f(x") e- i x + x ' s dXldXldxlldX2

-0 -0D

(A-35)

* which can be written as

h(s) = (dx dx - dx dx

(A-36)

Thus,

h(s) = g(s) f(s) (A-37)

Similarly, in the discrete case the normalized finite

Fourier transform of H is given by

A-Il
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H(p) = G(R) F(p) (A-38)

For the (unnormalized) finite Fourier transform the relation

is

H ~s) G(s) F(s) (A-39)

-i As an example of a convolution integral, consider the

flat-earth upward continuation formula of Ref. 2. The poten-

* tial at height z over the point x, Tz (x) is related to the

surface potential T0 (x) through the formula

T 1 To0(x') d dx (A-40)

where I x 12 = <x,x> is the square -magnitude of the vector x.

This integral can be recognized as the convolution of T0 and

the function U(x) defined by

'z/2n

.4 U(x) = (A-41)
(x 2+z )3/2

Therefore, from Eq. A-37

Tz(s) = U(s) TO(S) (A-42)

It is instructive to evaluate U(s). More generally,

suppose that it is desired to evaluate the Fourier transform

of a function r(IxII) which only depends on the magnitude of

the position vector x. Thr Fourier transform ^(s) is given by

J- -i2n<x,
(s) = J r(I lx- ) e " _ > dxldX2 (A-43)
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or expanding the scalar product in the exponent

ir(s) Jr(jxI) e dx1dx2  (A-44)

The dependence of r on the magnitude of x suggests the use of

polar coordinates. Setting

1 p Cos (A-45)

x 2  p sin 0

Eq. A-44 becomes

i(s) f pr(p) e sin6) dO dp

_ (A-46)

but (Ref. 18)

fn i2np(slcose+s 2sine) dO 2n J0 2nsp (A-47)

-n

where J is the Bessel function of the first kind of order

zero and

S = IIsll (A-48)

Thus, O

T(s) 2n PJo (2nsp) r(p) dp (A-49)

A-13
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from which it follows that ir(s) is only a function of the fre-

quency magnitude s.

The integral in Eq. A-48 is known in the mathematical
literature as the zero-order Hankel transform of the functi'n

r. From a table of Hankel transforms (Ref. 19), it follows

that the Fourier transform of U as given by Eq. A-41 is

" ^ sz
U(s) = e"  (A-50)

Therefore, Eq. A-42 becomes

Tz(s) = e 2 z T_ () (A-51)

which is identical to Eq. A-19.

A.3 SPECTRAL AND CROSS-SPECTRAL DENSITIES - DEFINITIONS

Let yl and Y2 be two zero-mean stochastic processes

defined for all points in the plane. The process y,(9=1,2) is

said to be stationary if its covariance is only a function of

the coordinate differences; i.e.,

R -,ye (x'-x") E[y 2 (x') yj(x")] (A-52)

where E denotes the mathematical expectation operator. Since

the roles of x' and x" are interchangeable on the right-hand

side of the above equation,

*The converse can also be shown to be true: If (s) is only a
* function of tisli, the inverse Fourier transformjr(x) is only

4. a function of Tixi[.
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R Y."e(x) R pyg(-x) (A-53)

The processes y, and y2 are said to be jointly sta-

tionary if each of them is stationary and their crosscovari-

ance is only a function of the coordinate differences:

R (x'-x") = E[yl(x') y("1(A-54)

From Eq. A-54 it follows that

R Wx)R (-x) (A-55)
-2y Y1,Y2  -

*The power spectral density (PSD) of y, *y,y', is

*defined as the Fourier transform of its autocovariance function

0 yy. (S) = R (ex) e-2 lX~ dxl dx2  (A-56)

It is shown in Ref. 15 that

* (S)>0 (A-57)

The cross-spectral density of yland 2' yy'is

similarly defined as

R Jj ey,2Q -ei 2 l<xt> dxldx (A-58)

-From Eq. A-55,

4, (s (S) (A-59)
Y2y y1'Y
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Analogous definitions apply to discrete processes.

- Let Y and Y be two discrete zero-mean processes defined for

the integer coordinates 0 (j,k). The process Y£ is station-

ary if

y ,y ( ,- ,,) = E[Y (f_,)Y ((_")] (A-60)

and YI and Y2 are jointly stationary if

R (1-'Q") E[YI(Q')Y 2 (0")) (A-61)

Their normalized spectral densities are defined by

yly y(P) R RYY (0) e-i2n<Q 'p > (A-62)

for i=1,2 and m=l,2. The (unnormalized) spectral densities

are

"0 y9,Ym(s) Ry, (R_)e i2 <9' s> (A-63)
m m

A.3.1 Spectral Densities and Convolution

Suppose that the process y2 can be obtained by con-
volving the stationary process yl with a known deterministic

function f

Y2(x') f(w') Yi(x'-w') dwldw2 (A-64)

First it will be shown that the covariance of Y2  E[Y 2 (x')y 2 (x")J

is only a function of the coordinate shift x'-x".

A- 16



From Eq. A-64,

NE[y 2(x')y 2(x") =,( f(w)f(w")Ey(x'-W')Y(X"-W")I dwidwdw Idw 2

(A-65)

But since y1 is stationary,

E[yl(x'-w')yl(x"-w")] R ylYlI(x'-X")-(w'-w")] (A-66)

Thus

E[Y2 (x')Y2 (x")] f(w")R [(x'-x")-(w'-w")] dw dw dwdw

(A-67)

This equation shows that the covariance of Y2 is a function of

x' -x". Therefore, y 2 is also a stationary process and its

covariance is

y2Y2() = f 1  f(w')f(w") R 1,f1 [-(w'-w")] dwIdwdwIdm2

(A-68)

A formula for the spectral density of Y2 in terms of

that of y, is derived next. From Eq. A-68,

II // f(w')f(w") R x('w ]
-0JJ2 y1 ,y1 - - -

x e-i2n<x,s> dwidw2 dwldw2 dxldx2  (A-69)

A-17
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Replacing the integration variables x, and x 2 by ti and 2

with = x - (w'-w") and noting that
"4

-e- ei2n<x's> = e' i2n<w''s> ... + i 2 n <w'' ' s > e- i2n<J's>- (A-70).

Eq. A-69 becomes
w0

(S) f(w') e- i2n<w',s> dwldw2

x _'w"/ e+i2n<w I"'' >

x f RyI 'JJ e-in<,a dtidt2

(A-71)

from which

it Y2'Y2(S ) = f(s) f* (s) _YI'YI(S) (A-72)

or
2

0 y2(S) = If(s)I ylYl (S) (A-73)

which is the desired relation.

Next, it is shown that yl and Y2 are jointly station-
ary. From Eq. A-64, the crosscovariance E[y 2 (x')Yl(x")] can

be written as

E [y2(x')Yl(X")_ ]f(w) E[yl(x'-w)yl(x")]dwldw2
-, (A-74)
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and, because of the stationarity of YI'

E[y 2 (x')Y l (x") f f(w) R (x-w) dwldw2  (A-75)

Therefore, the crosscovariance of y2 and yl only depends on

the coordinate difference x. Thus, y, and Y2 are jointly sta-

tionary and the crosscovariance R (x), given by Eq. A-75,

is the convolution of f and R yl* It then also follows from

Eqs. A-37 and A-75 that the cross-spectral density 0 is

given by Y2 'Yl

.. (s) f(s) yb (s) (A-76)

Similar results apply to discrete processes. If the
process Y2 is defined in terms of Y1 through a convolution

Y2()= F(0') YI(-Q') (A-77)

then the normalized spectral and cross-spectral densities of

Y, and Y2 are related by

(Y2 (p ) = IF(p)I20@YI'I (p ) (A-78)

yY(p) F(p)@ Y (p ) (A-79)

and the (unnormalized) densities are related by

,(s) (j) F(s) 0 ,Yl(s) (A-80)

2' 2 A (3) 1

A-19
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Y F(s) (s) (A-81)

2' 1 ' 1I-

A.3.2 Spectral Densities of Isotropic Processes

Consider a stationary process, y, defined for all

points on the plane. It is of interest to investigate the

behavior of the covariance and spectral density of y under

-* rotations of the reference frame.

--, Let the primed coordinates be defined as in Fig. A-2

so that

x = e x' (A-82)

where

"cos e -sin e
cose) =(A-83):::'(sin e Cos 0)

X2 R-63322

II/}-
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Denoting the covariance functions in the primed and unprimed

frames by R',y and ,y, respectively, it can be seen that

R', (x') = R (ex') (A-84)
y ,y y,y -

The spectral density of y expressed in terms of fre-

quencies measured in the directions of the primed axes is

*•fy,(' Rs, P_ e-inxs> dxjdxj (A-85)

From Eq. A-84,

,(S') ffR (ex') ei 2 n<xs> dxjdx (A-86)
-0

-1 YT

Since a-1 = eT , it follows that <x',s'> <ex',es'>. Thus,

changing variables of integration in Eq. A-86 according to the

transformation A-82,

*I,,y,(s') =f'Ry,y(x) e1 i2n<xBS'> dxldx2  (A-87)

or

*' (s') = 0 (es') (A-88)
y,y' y,y -

Equations A-84 and A-88 show that, in general, the

covariance function and the PSD of y depend upon the specific

directions in which the coordinate differences are measured.

A stationary process whose statistical behavior is the same in

all directions is said to bc isotropic. If the process y is

isotropic, the functional form of its covariance and PSD must

be independent of the orientation of the cartesian frame in
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which they are expressed. From Eqs. A-84 and A-88 it follows

that y is isotropic if for all possible rotation matrices

R yy(x) = R yy(Ox) (A-89)

and

o y(S) = yy(es) (A-90)
-y-y -

By changing to polar coordinates, it can be shown that Eqs. A-89

and A-90 are possible only if Ry'y and *yy are functions of

ixll and s = 11isl, respectively

An example of the covariance of an isotropic process is

R y(X) = a2e'PlIIl(l + 101 + 1 l2xl (A-91)

which is called an isotropic third-order Markov model with

variance a and characteristic distance l/P (Ref. 14). Using

Eq. A-49 and a table of Hankel transforms, it is straightforward

to show that

CO (S) = 2 2 (A-92)
Y'Y [ 2 + (2ns) 27/2

Another example is furnished by the Attenuated White Noise

model (Ref. 13). The covariance is given by

i33

W=' 8D3a(A-93)-- ... y 2x 2 ]3/2 ( - 3

R' Yy - [lixll + 4D2 I

*That these two conditions are compatible (in fact one implies
the other) is shown by the derivation of Eq. A-49 from Eq. A-43.

A-22
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where a2 is the variance and D is called the shell depth. The

PSD corresponding to Eq. A-93 is

*y'y (s) = 8nD2 a 2 e 4 nDs (A-94)

A.3.3 Along-track Spectral Densities

The Fourier transform of a function of a single vari-

able, g(t), is defined in a manner analogous to Eq. A-l:

k(f) = f g(t) e- i2ntf dt (A-95)

The inverse one-dimensional Fourier transform is

g(t) = f ^(f) e i 2ntf df (A-96)

In Eqs. A-95 and A-96, f is interpreted as frequency. The

units of f are the inverse of the units of t.

sd

Spectral densities of one-dimensional processes are

denoted by the letter S and covariances by the letter C. If

z(t) is a one-dimensional process, its power spectral density

is

Szz(f) = Cz'z(t) e-i2 ntf dt (A-97)

The (one-dimensional) covariance C (t) can be recovered from

the PSD S (t) by the inverse Fourier transform (Eq. A-96).z ,z

A-23
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Let y(x) be a stationary process on the plane with

covariance R (x) and PSD yy (s). Suppose an observer is
y,y - y,Iy

traveling on the plane at constant velocity V on a straight-

line track parallel to the xj axis of Fig. A-2 and is con-
tinuously recording (without errors) the values of the process

y as a function of time. Denote by z(t) the recorded data.

It is desired to relate the covariance function and the PSD of
z(t) to the covariance and PSD of the two-dimensional process

y(x).

First, consider the covariance C Z (t). When the

observer records an interval of time t, the two points on the

plane corresponding to the times at the beginning and at the

end of the time interval are separated by a vector difference

X = Vt (A98)
X 2) Vt sin e)

In the primed coordinate system this difference is

Therefore C W(t) can be expressed as

C = R (Vt,)T (A-100)z,z y,y

Next, consider the PSD S (t). Since from Eq. A-85
z ,z

R1,y _ = JJ ,y(s') e i  's > dsjdsj (A-101)

A-24
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Setting x' (Vt,O) T , it follows from Eq. A-100 that

00

C zz(t) = iJ ,y(s') ei2nVtSi ds~dsj (A-102)

where s is measured in the direction of the xj axis. Substi-

tuting integration with respect to sj by integration with re-

spect to f=Vsi, Eq. A-102 becomes

C~~t W 'j f' 0,y(f/V~sj)j dsj e7f df

(A-103)

The right-hand side of Eq. A-103 is readily recognized as the

inverse (one-dimensional) Fourier transform of the quantity in

braces. Therefore,

Szzt W 1 / 'yyf/V,sP) dsi (A-104)

which is the desired relation.

If the observer records the data as a function of

distance rather than time, the covariance, Cy,y(X), and the

PSD, Sy (si), of the resulting record are called along-track

covariance and PSD of the process y. Formulas for these quan-

tities can be obtained by setting V = 1, t =x and f = sl in

Eqs. A-100 and A-104:

Cy,y(Xj) R ,y[(Xi,) T I (A-105)
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:.[:S" yy(SP) = ¢y,y(S' ) ds' (A-106)

?-.m

In words, the along-track covariance is the two-dimensional
covariance with the shift in the cross-track direction set
equal to zero, and the along-track PSD is the integral of the
two-dimensional PSD over the cross-track frequencies. Note

that the time-covariance and PSD are related to the along-

track covariance and PSD through the simple relations

C Czz(t) C yy(Vt) (A-107)

Sz  (t) - 1 S (f/V) (A-108)
• .-- v

In general, Cy'y and Sy'y depend upon the direction of
the track.. However, if the process y is isotropic, Eqs. A-89
and A-90 imply that the functional forms of the along-track

covariance and PSD are independent of the direction of the

track.

.A-2
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APPENDIX B
FLAT-EARTH FREQUENCY- DOMAIN RELATIONS

This appendix presents detailed derivations of the

flat-earth frequency-domain relations introduced in Chapter 2.

Relations between geodetic quantities and between their sta-
tistics are analyzed in Sections B-1 and B.2 of this appendix,

respectively.

B.1 GEODETIC RELATIONS

The anomalous potential is a harmonic function at all

points external to the earth's surface. If the earth is taken

to be a sphere of radius R, the anomalous potential, T(P), at

a point P located at a distance r > R from the center of the

earth is given in terms of the potential at the earth's sur-

face, T , by Poisson's integral formula

T(P) (r 2_ R) T0 do (B-1)

where the integration is taken over the surface of the earth

and where I represents the distance from the point P to the

surface element do.

The flat-earth upward continuation formula (Ref. 2)

is an approximation to Eq. B-i which corresponds to the solu-

tion of Laplace's equation with a boundary condition on a plane.

The potential T~ at height z r-R over the point x on the
plane is given by

B-i



T zJW 2-n 2+323/2 dxidx2 (B-2).-:.~ ~ [lxI-xll I ~

where x = (xl,x 2 )T, xI = (xixj)T and

2 2 1/2

The approximation is valid for z<<R and I xI 1<<R.

For reasons that will become clear in the sequel, it is con-

venient to identify the directions of the x1 and x2 axes with

the east and north directions, respectively, at the point cor-

responding to the origin of the plane of the flat-earth

approximation.

The usefulness of the approximation lies in the fact

that the integral in Eq. B-2 is a two-dimensional convolution.

The potential at height z, T , is the convolution of the poten-

tial at the surface, To, and the function U defined by
0z/2

U() z2 3 (B-4)(lixl2 +2

The Fourier transform of a convolution integral is

equal to the product of the Fourier transforms of the func-

tions being convolved (see Appendix A, Eq. A-36). Denoting

Fourier transforms by a superscript circumflex, the frequency-

domain relation corresponding to Eq. B-2 can be written as

where s = S2)T and sI and s2 are spatial frequencies meas-

ured in the east and north directions, respectively.

B-2
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The Fourier transform of U is given by

"' [[z(X) i2n<x's >
U = _ffUz(x) e dxldx 2  (B-6)

where

<xs>= X S1 + x2S 2  (B-7)

is the scalar product of the vectors x and s. This integral

is evaluated in closed form in Appendix A. The result is

Uz(s) =e "2 s  (B-8)

where s= lsl. Consequently, from Eq. B-5, the Fourier trans-
form of the potential at height z is related to that at the

surface by the simple formula

Tz(s) = e - 2 n s z To(S) (B-9)

The function e -2nsz is called the transfer function

from potential at the surface to potential at height z. Note

that this transfer function is a simple attenuation factor

whose value decreases exponentially with frequency and height.

It is shown in Appendix A that Fourier transforms of

partial derivatives of a function with respect to the east and

north coordinates can be obtained by multiplying the Fourier

transform of the function by the factors i2ns I and i2ns 2 , re-

spectively. Thus, for example, the Fourier transform of the

east and north components of the gravity disturbance vector at

height z, rx  and r , are given by the formulasx 2

B-3



rX (s) = i2nS2 Tz(s) (B-li)

Fourier transforms of partial derivatives of the poten-

tial with respect to height can be related to the Fourier trans-
form of the potential through equally simple formulas. For
example, consider the vertical component of the gravity dis-

turbance vector, r Z  Its Fourier transform is defined by

F (s) = jfrz(x) e i2 <  > dxldx2  (B-12)

Thus,

F z (S) :/f _ Tz(X) e-i2n<x,s> dXldx2

I- Z(S f 7T (xe- __ 1 X

7 ff Tz(x) e i2n<xs> dxldx2

a

Y- Tz(s) (B-13)

Therefore, from Eq. B-9, it follows that
A A

F (s) -2ns T (S) (B-14)
^ A

Using Eq. B-9 it is possible to express F, F and
, x 2

F in terms of the Fourier transform of the anomalous surface

potential as

B-4
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rxl(i) = i2ns(eS2 sz T(S) (B-15)

r x2(s) = i2ns 2e'2  z TO(S) (B-16)

rz(s) = -2nse2sz T(S) (B-17)

z 0

The functions multiplying To in Eqs. B-15, B-16, and B-17 are

called transfer functions from anomalous surface potential to

the east, north, and vertical components of the gravity dis-

turbance vector at height z, respectively.

Table B-i presents the transfer functions from anoma-

lous surface potential to all other quantities of interest in

this report. This table is identical to Table 2.1-1 and is

repeated here for convenience. To obtain the Fourier trans-

form of any of the quantities in the first column of the table,

the Fourier transform of the anomalous potential at th,. surface

is multiplied by the transfer function given in the last column

of the table. All transfer functions in Table B-1 are obtained

by replacing the upward continuation operation and partial

derivatives with respect to the east, north, and vertical co-

ordinates by products of e2nsz , i2nsl, i2ns 2 and -2ns,

respectively.

Table B-I can also be used to relate any pair of quan-

tities listed in the first column. For example, the frequency-

domain relation equivalent to the formula of Vening Meinesz

expressing the north component of the deflection of the verti-

cal in terms of the gravity anomaly is obtained by combining

the transfer functions in the third and fourth rows of the

table to yield

B-5



TABLE B-i

TRANSFER FUNCTIONS FROM ANOMALOUS SURFACE POTENTIAL

QUAN IT SYBOL RELATION TO ANOMALOUS TRANSFER FUNCTION
QATTSYBLPOTENTIAL FROM ANOMALOUS*

SURFACE POTENTIAL

Anomalous Potential at Height z TZ TZ e -2nsz

*Undulation of the Geoid NTo/go 1/go

East Deflection of the Vertical -(9T 0 /8 x1)/g0  -12nsl/go

North Deflection of the Vertical -(8T /8X2/o-~ 2g

Gravity Anomaly Ag -(8T /qz)I - 2T /R 2ns -2/R
z z=O 0

East Component of the Gravity rF 8T5 /8x1  i2ns 1 e 2
Disturbance Vector at Height z 1ns

*North Component of the Gravity r 8T5 /8x2  i2ns2e -,s
*Disturbance Vector at Height z X

Vertical Component of the Gravity r T /8z -me2s
Disturbance Vector at Height z - S

Gravity Disturbance at Height z 6g -8T z/az 2rise-21's

*East-East Gradient at Height z r 82T /ax2  -4ni2 s2 e -2nsz
1 1

-2.- 2 2 2 -2nszNorth-North Gradient at Height z r I -4n s
x 2x 2  z/a2 s 2

Vertical-Vertical Gradient at r Fa2 Z/Z 4n'2 s2e-2nsz
Height z

East-North Gradient at Height z r x x 32T5 /ax1 8x2  -4n 2s 1se 2s

23 2 -2nszNot-Vertical Gradient at Height z r F e z-~ e
xT 5 /xz 1 1

II

A ~ i2n s 2 /go
t(s) 2s 2/R "g( s)(-8

where g 0  is the mean value of gravity over the earth (g 0
9.798 rn/sec )

°B-6
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B.2 STATISTICAL RELATIONS

A zero-mean vector random process defined on the plane,

w(x) = [wl(x),. .. , Wp (X)]T , is said to be stationary if its

covariance matrix, Rw,w, does not depend on the specific values

of the coordinates b-ut, instead, is a function of the differ-

ences between coordinates; i.e.,

Rw'w (x'-x") = E[w(x') wT(x")] (B-19)

The k-th diagonal element of Rw,, is called the auto-

covariance of the (scalar) random process corresponding to the

k-th component of w. The (k,j) element of Rw, with kj, is

called the crosscovariance between the k-th and the j-th compo-

nents of w. Autocovariances are real, even and positive semi-

definite functions (Ref. 3). Crosscovariances are real func-

tions but, in general, they are neither even nor positive

semidefinite. The (k,j) and (j,k) crosscovariances are identi-

cal except for a sign difference in their arguments.

Similarly, let u(x)= [u1 (x),..., uq(x)IT be another

stationary vector random process on the plane. The processes

w and u are said to be jointly stationary if their covariance

matrix, Ru, is a function of the coordinate differences;

i.e.,

TR (x'-x") E[w(x') u (x")] (B-20)

The Fourier transform of Rw, is the spectral density

matrix of the process w. It is customary to denote spectral

densities by the Greek letter 0. Thus, it R and

*E stands for the mathematical expectation operator.

B-7
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40w 0w (S) = Rwt, w (x)e- i 2 n<x ' s > dxldx 2  (B-21)

The diagonal and off-diagonal elements of Ow'w are called power

spectral and cross-spectral densities, respectively. A power

spectral density (PSD) is the average density of the random

measure corresponding to the spectral representation of a proc-

ess (Ref. 3). Physically, a PSD can be interpreted as the

average distribution of the energy density in a process as a

function of frequency. Power spectral densities are real and

non-negative functions. A cross-spectral density is a complex-

valued function that indicates the magnitude and phase of the

correlation between the spectral representations of two proc-

esses. The (k,j) and (j,k) cross-spectral densities are com-

plex conjugates of one another.

The cross-spectral density matrix of two jointly sta-

tionary processes w and u, , is defined in a similar

fashion. It is the Fourier transform of their covariance,

i.e.,

*w'u (S) R Rw u (x)e i2n<x s > dxldx2  (B-22)

Let yl(x) be a stationary scalar random process. It

is shown in Appendix A that if Y2 (x) is related to yl(x) by a

transfer function Q(s) in the form

Y2(s) = Q(s) Ys() (-3

then the processes yl and Y2 are joinLly stationary. Moreover,

their power spectral densities are related by

B-8
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V'

Qy2 ,2y 2  (B-24)

and the cross-spectral density, ,Y2'Y' is given in terms of the

PSD of y1 by

-.-. = Q2  CO (B-25)

Y2'yl yl'y.

These facts entail a result of fundamental importance

when the gravity field on the surface of the earth is seen as

a realization of a stationary random process. Since all quan-

tities in Table B-I are interrelated by transfer functions,

the specification of the covariance function for any one of

them determines completely the covariance structure for all of

them.

It is convenient to develop a matrix notation for

expressing the cross-spectral density matrix of the vector

processes w and u in terms of the PSD of the anomalous surface

potential when the components of w and u are any field-related

quantities. To this end, suppose that the k-th component of w

is related to the anomalous surface potential, To , through a

transfer function, Gk(s); i.e.,

= G T (B-26)
- -0

with

G (s)

G2(s)
G(s) 2(s(B-27)

G (s)Gp~

B-9



and that the j-th component of u is related to To through the

transfer function Fj(s); i.e.,J|

= F To  (B-28)

with

F1 (s)

F(s) =F2(s) (B-29)

F (S)

Consider the (k,j) entry, 4 , of the cross-spectral
wks u

density matrix 0 " From Eqs. B-26 and B-28, the transfer
wPu

function from u. to wk is seen to be the quotient Gk/Fj. Thus,

from Eq. B-25,

*WkU (Gk/Fj) 4"u.u (B-30)

However, from Eqs. B-24 and B-28,

= IFj 12 (TT (B-31)

Therefore, combining the last two equations,

~= Gk F 0To,T 0  (B-32)i wk ,u i k Tj

It then follows that the cross-spectral density matrix,

is given in terms of the PSD of the anomalous surface potential,

,by

B-10
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with the vector transfer functions G and F as in Eqs. B-27 and

B-29.

A similar expression can be obtained for the spectral

density matrix O w, w . Replacing u by w and F by G in Eq. B-33,

the following equation is obtained:

f• = G G -34)

w,w T 0 T O  (B-34)

B-il
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THE ANALYTIC SCIENCES CORPORATION

APPENDIX C

MULTISENSOR SURVEY ERROR ANALYSIS

This appendix presents a complete derivation of the

expressions for the statistics of the errors in the estimates

of the gravity field obtained from multisensor data. The prob-

lem of determining the errors in the estimation of the gravity

field from multisensor survey data can be formulated in the

following manner: It is desired to characterize the differ-

ences (estimation errors)

6w(x) w(x) - w°(x) (C-l)

between the true values of the process w(x), and the best esti-

mates w (x). The components of w are any collection of field-

related quantities.

The estimates, w0 (x), are obtained from q data sets

-k = k(X)IxEMk} ; kl 2... q (C-2)

corresponding to the measurements that constitute the survey.

The set -k represents a collection of scalar measurements of a

single data type in which all measurement points form a rectan-

*' gular grid Mk. Later in this appendix (Section C.3), these q

data sets will be classified according to the grids on which

measurements are taken. As a result, n classes will be formed,

where each class contains q, sets of measurements on a common

grid M ( =1,2,...,n). Within the flat-earth approximation, the

*In the mean-square sense.

* C-1
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measurement geometry adapts to the description given above in

most practical cases. Examples of data sets, Ek' are

0 Gravimeter readings collected at equal
time intervals by a survey ship travel-
ing at constant speed along equally
spaced East-West tracks

0 Satellite radar-altimeter data on equally
spaced ground tracks. One set, Ek, for

ascending passes; another set, =k , for
2

descending passes.

The measurements, *k' represent a scalar linear combi-

nation of field-related quantities, uk, corrupted by additive

noise, Ek; i.e.,

uk(x) Uk(x) + Ek(x); xEMk (C-3)

The measurement errors, Ek, k=1,2,...,q, are taken to be sta-

tionary gaussian processes independent of the gravity field.

Formulas for the spectral density matrix of the resid-

uals, 6w, are derived in this appendix. The analysis begins in
Section C.1 by considering the idealized case where the survey

data consist of a collection of continuous measurements (i.e.,

M, , (x1 x )T, -, < x I < < x2 < w}). A general

formula for the spectral density matrix of the errors in the

estimates obtained with the optimal linear processor is derived.

In Section C.2 the effects of sampling the field at regular in-
tervals are examined and a relation between the spectral density

of the field and a sampled version of it is obtained. This rela-

tion is used in Section C.3 to obtain a practical solution to the

general problem formulated above. The solution is exact when all

sets Mk agree with each other and is approximate when this is not

the case. In Section C.4, the results are specialized to the

c-2



situation in which estimates are sought of spatially averaged

quantities. Section C.5 discusses the evaluation of the average

errors in a map of gravity estimates obtained from multisensor

data.

C.1 CONTINUOUS MEASUREMENTS CASE

Consider the case in which the data consist of a vector

of measurements 4 = (Pi " at every point x = (xlx 2 )T.

The values of * are measurements of a vector of field-related

quantities, u, corrupted by stationary additive noise, L; i.e.,

= u() + J(x) (C-4)

The noise process is taken to be independent of the gravity

field.

It is desired to determine

* The best linear estimator, w, of another
vector of field-related quantities

H w_ (w1 ,w2 ,.. Wq)T jointly stationary
with u(x)

. The spectral density matrix of the esti-

mation errors, 6w = w - w° .

These questions are dealt with in Subsections C.1.1 and C.1.2,

respectively.

C.1.1 Derivation of the Optimal Smoother

By a linear estimator it is meant that the estimate of

w at any point Xo must be given by a suitable linear combination

C-3



of the data W(x). The most general linear estimator has the

form

w K(. ,) X (x) dxldx2  (C-5)

where K is a qxp matrix function of xo and x to be determined.

The kernel K(xo x) indicates how to weight the meas-
urement at the point x in evaluating the estimate of w at
the point xo. Because all the processes involved are station-
ary, for any x' the statistical relation between the measure-

ment * at the point x+x' and the field w at the point xo+x' is
identical to the relation between the measurement at x and the

field at xo. Therefore, in evaluating the estimate of w at

xo+Y ' the measurement at the point x+x' must be weighted in
the same manner in which (x) is weighted in the computation

of w°(xo). Thus for all x',

K(2i+x', x+x') = K (x ,x) (C-6)

This relation implies that K only depends on the difference
between its arguments. Consequently, Eq. C-5 can be written

as a convolution; i.e.,

H°(xo ) ff K(x-) I(x) dxdX2  (C-7)

The error or residual in the estimate of w (the n-thn
component of w) at the point ?o is

6w n(o) wn(x-o) " w°(xo) (C-8)

C-4
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It is desired to determine K so that the variance of 6w (xo)

is minimized for every n=1,2,... ,q.

Let H be the Hilbert space generated* by the random

variables j(x for j=1,2,...,p (Ref. 3). Since w°(Xio ) is a

linear combination of the data, for each E0, wn2(o)&H . The

scalar product between two elements of H,, Yl and Y2 9 is de-

fined as the expectation of their product; i.e.,

'(y<yi' = E(yly 2 ) (C-9)

and the norm of each element is its standard deviation:

Hiyll = (<y,y>)I/2 = [E(y 2)]i/ 2  (C-10)

The Hilbert space H is a linear subspace of the Hil-

bert space H generated by the components of the processes w and

+. From the Projection Theorem for Hilbert spaces (Ref. 20),

it follows that the element, w(x o ) , of H that minimizes the
n-0

standard deviation of the difference 6wn(Xo) Wn(Xo) - w(xo)

is the projection of w n(Xo) on the subspace H and that the

difference 6w n(Xo) must be orthogonal to every element of H

i.e.,

E[6w n(?,o)yJ = 0 (C-1l)

for every y&H . Since H is generated by the components of ,

Eq. C-li is equivalent to

*The space H contains all linear combinations of (x) and all

limits in e mean-square sense of Cauchy sequences of such
linear combinations.

C-5
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E[6Wn(?o ) ,j(x)] 0 (C-12)

for all x and all j=1,2 ... ,p.

From Eq. C-7,

p
Wn(o) = kn(x o-X') p (x') dxi dxi (C-13)

where kn£ is the component of K in row n and column 2. There-

fore, the expectation on the left in Eq. C-12 can be written

as

E[6w n(Xo)kP(x)] = E[w n(_x),i(x)J

" 2 ffk n (-x') E[t*e(x')O(x) dxldx2

(C-14)

Consequently, from Eq. C-12

R. R (x -x) k (_ -x') R ,(xI-x) dxdx
n' i =i 1

(C-15)

Setting r = x-x and changing integration variables through

the transformation r' = x'-x, Eq. C-15 becomes

p
Rwn, (t)o ff kn (r-r') R to (r') dridr 2

(C-16)

C-6
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Since Eq. C-12 is valid for all x, Eq. C-16 is valid

for all choices of r. In matrix form, Eq. C-16 becomes a ma-
S., trix convolution equation

; w (r) = K(r-r') R (r') dr dri (C-17)

-.. ,4 - _ _ -

Taking Fourier transforms on both sides of Eq. C-17 results in

(0 (s) = K(s) 0 (s) (C-18)

Therefore, the Fourier transform of the weighting matrix K in

Eq. C-7 is found to be given in terms of the spectral densities

of the measurement and estimated processes by

A -1
K = W 0 (C-19)

Condition C-li is equivalent to the statement that

the estimation errors are uncorrelated with the measurements.

Any two gaussian random variables which are uncorrelated are

also independent (Ref. 21). Thus, if w and + are gaussian,

the errors in the best linear estimates are not only uncorre-

lated with the measurements but independent of them as well.

In the preceding derivation, the attention has been

restricted to the class of linear estimators. Next, it is

shown that no nonlinear estimator can further reduce the vari-

ance of the estimation errors if the process to be estimated

and the measurements are gaussian.

Let w'(xo) be any nonlinear estimator of w(xo) [i.e.,

ow'(o ) is some nonlinear functional of the data q(x)I and let

6w n be the error associated with the use of w' in the estima-

tion of the n-th component of w:

* C-7
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9..

-S

, w,(o = Wn( ,) - w( (c-20)

The variance of 5Wn(Xo),

a2 E {[w (x~w( 2 (C-21)• ". w' n 0 lnX)-Wn(Xo)12

can be written as

,w -WnQ)-w() + (w )-w'(x ) }

c~6W ',n-o n o)+ (n-a fln n

(C-22)

where w° is the best linear estimator of wn. From Eq. C-8n nl

2W= E{!6wn(-o) + (wo(x-o) - wn (:-o )))2 (C-23)

The expression on the Light-hand side of Eq. C-23 is the vari-

ance of the sum of two random variables. The first random

variable is 6wn(x ), the error in the linear estimates. The

.5 second random variable is the difference between the linear

and nonlinear estimates of Wn (Xo). Since both estimators are

functions of the data j and since and 6wn are independent

because of the gaussian assumption, it follows that

a 2 2  + E [wo(x) - w (x 2 (C-24)
6w''6w' 6wn ,6w In-o n -onn n n

Therefore,

2 2a6'6 ,a 6  w (C-25)
wn 6n n n

proving the assertion.
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C.1.2 Spectral Density Matrix of the Residuals

The covariance matrix of the residuals is defined as

E[6w(xo)6w T(xo-x)] = E[(xo)-wO(x o)j [wx o-x)-w0 O(xo-x ) ] T

(C-26)

which can be rewritten as

E[6w(x )6wr(xo
-x ) ]  E{Iw-((xo)-W(xo ) l T(x-o)

- Ehw(xo)-W(x )] [(w°(x -x)]T)

(C-27)

The second term on the right is E{6w(x0 ) [w(xo-x)]T. Since

w 0 is a function of the measurements *, Eq. C-ll implies that

this expectation is zero. Hence, Eq. C-27 reduces to

E[6w(x )6wT(E-) [~ T T,-)

o (x-) ] = E[w(o)wT(xo-)] - Elw(Xo)w (xo-X)I

(C-28)

But

Efw(xo)wT (x -x) = Rw,w(x) (C-29)

and, from Eq. C-7

E[w(x )wT(xo-X)] = /K(ox') E[+(x)w t(-x)J dxidxj

= fK(x-oEX)Rj',w[X( o'')] dxidxj

(C-30)

C-9



Changing integration variables, Eq. C-30 becomes

E(w0 (E )wT(x -x)_ / R R x-X'")dxidx" (C-31)
-o -o 1-

-m

Therefore, from Eqs. C-28, C-29 and C-31,

E[SW(Xo)6wT(x -x)1 R, (x) - (fK(x")R (x-x")dx"dxl
-o - o - ,w - J-f,

(C-32)

which shows that the residuals are stationary and that their

covariance R w,6w(x) is given by the expression in the right-

hand side of Eq. C-32.

The spectral density matrix of the residuals is the

Fourier transform of their covariance. From Eq. C-32,

6w,6w (s) w ,w (s) - K(s) 4 ,(s) (C-33)

Since,
(s) (s) (C-34)

it follows from Eq. C-19 that

6w,6w w~w ,~ ~(C-35)

This expression for the spectral density of the resid-

uals is considerably simplified when the independence of the

measurements noise from the gravity field is incorporated into

the formulation, and when the relations among the quantities

being measured and estimated are taken into account. From the

C-10



independence of the field and measurement errors and from

Eq. C-4 it follows that

cow 0 * (C-36)

and

0 U'u+ (D(C-37)

Therefore, Eq. C-35 can be written as

06W,8w _ o 0 +- (0 (C-38)
_ w'w w'u Uu Wu

Now, the estimated variables, w, and the measured quantities,

uare related to the anomalous surface potential, T 0 % through

vector transfer functions G and F as in Eqs. B-26 and B-28.

Consequently, from Eqs. B-33 and B-34,

(0~ G G 0 T (C-39)

and

w'u G F T IT (C-41)

Combining Eqs. C-38 through C-41 the following expression for

the spectral density matrix of the residuals is obtained:

6w~ -G G* Ul -F* (F F* + *0 1 0 T /4 FIO1T0

(C-42)

C-11
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There are two important observations with respect to

the above formula. First, for any multisensor survey the vector

transfer functions F and G are readily obtained from the entries

in Table 2.1-1. Thus, to evaluate the spectral density of the

residuals, one need only specify the spectral density matrix

of the measurement errors, , and the (a priori) PSD of the

surface anomalous potential, *TTo Second, the spectral

density of the residuals given by Eq. C-42 has the same form

as the expression for the (a priori) spectral density of the

estimated quantities, ( ,w, as given by Eq. C-39; i.e., G G

multiplied by a scalar. Thus, the residuals bear the same

relations among themselves as the original quantities do.

Moreover, if w = To, then G = I and, therefore, the PSD of the

residual anomalous surface potential, T6To is given by

the expression in braces in Eq. C-42; i.e.,

6T0 6T0 = 11 F*(F F* + , / T )TITF]T ,T O0

(C-43)

and Eq. C-42 can be written as

P 6w,6w = G G bo6T,6T o  (C-44)

An equivalent expression for the matrix inverse in

Eq. C-43 can be obtained from the Matrix Inversion Lemma

(Ref. 22)
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F* + Ia-4(FF [ + ,I'To,To )  =( -1O~,T

/0 F*(F 0 / )-1

,1 + F TTo) -F

(C-45)

*: Replacing the matrix inverse in Eq. C-43 by the right-hand

-* side of Eq. C-34 and simplifying the resulting expression yields

the following formula for the PSD of the residual surface anoma-

lous potential:

T T= (C-46)
o o F* F + 1/0T  T

C.2 SAMPLING EFFECTS - ALIASING

In order to analyze the general problem formulated

in the introduction to this appendix, it is necessary to account

for the fact that the survey data consist of a discrete collec-

tion of measurements. The purpose of this section is to obtain

expressions for the spectral and cross-spectral density matrices

of sampled (aliased) versions of vector processes in terms of

those corresponding to the underlying continuous processes.

The problem is more precisely formulated below.

Denote by U the discrete vector random process cor-

responding to having sampled the process u on a rectangular

grid Mo. The axes of the grid M0 are parallel to the axes of

a primed reference frame obtained by rotating the original

(East-North) frame by an angle e as shown in Fig. C-1. The

C-13
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Figure C-I Relations Among the Grid M0 , (0 ,k ),

the Primed Coordinates, (Xjx ), and

the Original Frame (xl ,x2 )

spacings of the grid M° are T and i in the xj and x direc-

tions, respectively. The grid points are represented by pairs

of integers (jo, k). The origin of the grid (jo=0, ko=0) is

located at the point r' = (rj,r )T of the primed frame.

Similarly, let W represent the process w sampled on a

grid Mc parallel to and having the same grid spacings as the

grid M but displaced from it by a vector c' = (c ,c' T as

measured in the primed reference frame (see Fig. C-2).

Two formulas are sought. First, an expression for

the cross-spectral density matrix of the processes W and U in

terms of the cross-spectral density matrix of w and u. Second,

an expression for the spectral density matrix of U in terms of

C-14
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the Grid M0 (J0ok 0 ), and the Primed

Coordinates (xl,x )

the spectral density of u. The second formula follows from

the first by taking the process w equal to the process u and

by setting the displacement vector between the two grids equal

to zero. Thus, the analysis below is restricted to the first

formula.

Some definitions are in order. Let w', u' and R'
w,u

denote the values of the processes w and u and their covariance

as functions of the primed coordinates. Similarly, let 0'w,u
denote the cross-spectral density matrix of w and u as a func-

tion of frequencies measured in the x1 and xi directions.

In the primed reference frame the physical position,

x', of a point with coordinates 0 = (j,k)T in the grid M is

* --0'. -- 0~* *



r' + JQ (C-47)

where J is the spacing matrix given by

(Ti 0) (C-48)

while the same integer coordinates in the grid Mc represent

the point

xc = c' + r' + JQ (C-49)

Defining the rotation matrix

(Co0 6-sin e\
in = Cos (C-50)

the corresponding points in the original (east-north) frame

are

xo = r + eJ_ (C-51)

xc = c + r + eJ_ (C-52)

with r = Or' and c = 8c' representing the position of the ori-

gin of the grid M° and the shift between the two grids as meas-

ured in the original frame.

The processes U and W are given in terms of u' and w'

by

U(n) u'(r' + JO) (C-53)

C- 16



W(f) = w'(c' + r' + JO) (C-54)

Their covariance,

RWU(Q) = EIW(O"+n) UT(o0")] (C-55)

is easily related to the covariance of the continuous processes

w and u through the use of Eqs. C-53 and C-54. The result is

R WU(_) = R 'u(c'+Ja) (C-56)

Spectral and cross-spectral densities of discrete

processes are denoted by a superimposed tilde. The cross-

spectral density matrix of W and U is defined as the finite

Fourier transform of their covariance (see Appendix A,

Eq. A-62)

it (S') = A(J) ,( RI ) e - i2 n <J 's '> (C-57)

where's' = (si,s')T with si and sj frequencies measured in the

xi and xj directions, respectively. The relation inverse to

Eq. C-57 is

"I ,

1

.,

, stands for £ and A(J) is the determinant of J.
%,C-17 sds C-8

- : f
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where
A

= l/(C-59)

= 1/2T~

are the Nyquist frequencies in the xj and xi directions, re-

spectively. The cross-spectral density matrix ,'U is periodic

in s and s with periods 2si and 2s , respectively.

The relation between the cross-spectral density ma-

trices of the sampled and continuous processes is derived next.

The basic idea of the derivation given below is to use the

equality between the crosscovariances of the continuous and

discrete processes given by Eq. C-56 to obtain a relation be-

tween the spectral densities.

For the discrete processes W and U, the covariance

matrix R is given in terms of the spectral density W in

Eq. C-58. For the continuous processes w and u, the analogous

relation is

Rwu ( ') = Ofwu(s') ei2n<x ' > ds ds (C-60)

It then follows by combining Eqs. C-56 and C-60 that

R" R ,(0)- (of ' (s') e i 2 n< ' + J O' s ' >  dsidsi (c-61)

Thus, two different expressions for RWU(0) have been

obtained. In Eq. C-58 the integration is over a finite range,

while in Eq. C-61 the integration takes place over the whole

C-18



plane. To compare integrands it is necessary to reduce both

-. integrations to the same domain. The integral in Eq. C-61 can

be written as an infinite sum of integrals over equal-size

rectangles as

,.I.;,,;. ( m+ i) ,; (21+ i)s f

RWU(-) (s')

A (2m-l)s (2£-i). i

x e i2n<c'+JQs> dsidsk (C-62)

where A (1,m)T. Changing integration variables in such a

way that all integrals are taken over the domain

-9I- ,j [ Eq. C-62 reduces to

2 1-

RW,U(() = f'-_, (s'+J - A)fU- j J ,u

_ ' -si A

1-

i2n<c'+J..'s +J -lA>
e dsids' (C-63)

The complex exponential can be rewritten as

-"i2n<c'+Js'+j'1 A> . ei 2 n<cl,s'+J 1A> xi2n<J,s'>

(C-64)

because the scalar product <JJ' A> = <O,A> is an integer.

Thus, Eq. C-63 becomes

C-19
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R (0)RW,() = [ IC (s,+j- I) e i2n <c',s'+J A>

2-si A

x ei 2 n<JQ ,s '> dsjds (C-65)

From the uniqueness of the Fourier transformation, it

follows by comparing Eqs. C-58 and C-65 that the desired rela-

tion between the cross-spectral densities of the discrete and

continuous processes is

" ,(s')= * u(s+JiA) i 2 < c ' , s ' +  A> (C-66)

A

where A = ( 2 ,m)T as before.

The corresponding relations for the spectral density

matrices of processes W and U are:

*W(S') = P'w(s'+J -IA) (C-67)

A

A

Since the processes w and u are interconnected by
transfer functions which have simple representations when the

A frequencies are measured in the east and north directions, it

is convenient to rewrite Eqs. C-66 through C-68 in the original

reference frame. These equations become

i.. - - sw, J) -A> (C-69)

A
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WwW(S = jj W (S+eJ- l) (C-70)

A

UU = 0 u A(+ ) (C-71)

A

where e is the rotation matrix of Eq. C-50 and c = ec' is the

displacement from the origin of the grid Mo to the origin of

the grid M. as measured in the east-north frame.

A graphical interpretation of Eqs. C-70 and C-71 is

given in Fig. C-3. The spectral density matrix of a sampled

version of a process, e.g., iUU' is obtained as an infinite

superposition of matrix functions of frequency, 0u'u (s+Ej -A),

each of which corresponds to the spectral density matrix of

the underlying continuous process translated to the points

s = -ej 1A in the frequency domain. These points are marked

with solid dots in Fig. C-3. It is clear from Fig. C-3 that

the spectrum U is periodic and that one period is repre-
UU

sented by any if the rectangles in Fig. C-3.

A similar interpretation applies to the cross-spectral

density matrix of the processes U and W (Eq. C-66). In this

case the cross-spectral density, 0 (s), is multiplied by the

factor ei2 <c 's> which accounts for the displacement between

the grids M° and Mc. The product function is then translated

to each of the points s -EJ'IA. The sum of all these func-

tions yields W,
U'

C.3 AVERAGE SPECTRAL DENSITY OF POST-SURVEY
GRAVITY RESIDUALS

A general solution to the problem of characterizing

the errors in the estimates of gravity from multisensor survey

C-21



R42446

, s2 I

I -\- "1"

\ ', -' ~' -'\ , '
- /

--- - I
00. O.-

do--

o/ - '-

9. -.

" o3Smpin ovh petu

_3W2 who Ih data Ow n

Figure C-3 Graphical Interpretation of the Effects

of Sampling on the Spectrum

Vdata is given in this subsection. An exact solution is found

for the case in which data from various sensors are collected

on a common rectangular grid M 0  A modification of the result-

ing expression for the average spectral density of the post-

4.' survey gravity residuals yields an approximate formula for the

case in which the data lie on different grids.

Consider the situation in which the survey data con-

sist of a measurement vector, J(2o ) , at every point xo on a

C-22
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grid M0 as in Fig. C-i. As before, the measurements correspond

to a vector of field-related quantities, u, corrupted by addi-

tive noise, E; i.e.,

J(Lo) = U(o) + E(xo); xocMo  (C-72)

Let the primed coordinate system be defined as in the

last subsection, and let * and U be the measurements and the

measured quantities as functions of the integer coordinates

go = 0 ,k0 )T of the grid Mo .

Since the process to be estimated, w, and the measure-
0*ments, 0, are gaussian, the best estimate of w, w , at an ar-

bitrary point x a is given by some (unknown) linear combination

of the data, i.e.,

0(Ea) R(-a'a o ) k ( 0-0) (C-73)

In contrast with the continuous measurements case analyzed in

Section C.1 of this appendix, the weighting coefficients

K(Xa ,Q ) depend on the specific position of the point x a on

the plane. In fact, the estimation errors

6w(xa) x ) - w(xa) (C-74)--a -a -a

are no longer stationary. This is not surprising since, intu-

itively, it is to be expected that the rms value of the esti-
mation error gets smaller as the point x moves closer to a

-a
point on the measurement grid Mo . However, if another point,

is chosen so that it occupies the same relative position

with respect to the grid points as x does (see Fig. C-4),
-a

then the weights R(xb, _o) are identical to the weights (xa,go
except for a shift in the integer coordinates. Thus, if W
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Figure C-4 Points Having the Same Relative Position
with Respect to the Grid M

represents the values of the field w as a function of the inte-
:ger coordinates of a grid Mc parallel to the grid M0 as in

Section C.2 (see Fig. C-2), the best estimates of W can be
written as

where 0c = (jckC)T is an arbitrary point of the grid Mc and

where K(Q) is to be determined.

A derivation parallel to that of Section C.1 shows
that formulas similar to those obtained in the continuous meas-
urements case apply to the discrete case as well. In particu-
lar, the errors in the estimates
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6, w(Oc  WO w c ) -, w(f)C)  (C-76)

are stationary and have an unnormalized spectral density matrix

given by

"Ww - wu $W ,u + E,E1  < ,

(C-77)

where all the spectral densities in the right-hand side are

functions of s' but, in addition, , depends on the dis-

placement c' between the grids M0 and7 Mc as indicated by

Eq. C-66.

It is of interest to determine the spectral density

of the errors on a grid M whose absolute position on the plane

. is chosen at random. It suffices to consider displacement

vectors c' = (cj,c )T for which 0 < cj < xi and 0 < c < T .'i I i)

The spectral density of the errors in a random grid is

,: :lo W6(S') =-- $Ww(',s''dcjdc (C-78)

where AM ' ' is the determinant of the matrix J of

Eq. C-48.

All spectral densities appearing on the right-hand

side of Eq. C-77 are independent of c' except for the cross-

spectral density matrix OWU. Substituting the right-hand

side of Eq. C-77 for ' - (c s_) in Eq. C-78 and using

Eq. C-66 results in

C-25
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-r : :L
-  

-L , ' .: : , --. . w- ' . ,v r w - r w . . J r . .. . . .. . .

%W,60,! %= (
1,0 , ,S _ A) A')

,"- iES )1O ,ES' - 1 _,u ( s +JI-
A A' _ _

'x e )/ f ',' (A-A')> dcdc}

0 0

(C-79)

However,

T 1 10 if A A'
1 1 / ei2n<c' (A-A')> dcdc1 _

f f0 1 if A A'
0 0

(C-80)

Therefore Eq. C-79 becomes

%W, 6w(s_) : $w(,_ )

- ' ,(s'+J-A)[IU(S )+4,E(S_) -  u , _ +J'A]*
A_

(C-81)

Replacing ,(s') by the series on the right-hand side of

Eq. C-67, Eq. C-81 becomes

(S, lo W '(s,+j'IA)

w,6_w( ) = _ A _,_- u-s'J A)]

(C-82)
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But 6,U and 1, are periodic; i.e., for all A

U t,U ) -83)

$' (s') i' (s,+j-'A) (C-84)E,E - E,E(-

Consequently, the spectral density of the errors in a random

grid can be written as

(Ws6wS' ) : _ w (s'+j-iA) (C-85)

6' A 6w,6w-

where

6w,6w , w,wi uC E,E] -w ) (C-86)

Equation C-85 admits an important interpretation.

The errors in a random grid can be viewed as the sampled ver-

sion of a continuous process, 6w, whose spectral density is

given by Eq. C-86. The spectral density 0'w6w represents the

errors in a map of gravity estimates when no information is

given concerning the position of the measurements from which

the map was obtained. Even if this information is provided it

is shown in Section C.5 that rms values of the residuals com-

puted on the basis of Eq. C-86 yield the average rms of the

map errors.

The function w,6w given by Eq. C-86 is called the

average spectral density of the residuals. The spectral densi-

ties in Eq. C-86 are all functions of frequencies, s', measured

in the directions of the primed axes. However, Eq. C-86 is

invariant under rotations. Thus, when all spectral densities

m C-27
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are expressed as functions of frequencies in the east and north

directions, s, the relation remains unchanged; i.e.,

'6w,6w =w,w -w,u [ KU,U + 0E,E 1  low,u (C-87)

Using Eq. C-71, the average spectral density of the residuals

can be written as

6w,6w w,w w,u u,u +E,E a,a' w,u (C-88)

where

I$ (S) 0 ( +eJ - A) (C-89)a,a yo A/ uu-

Equation C-88 can be compared with the analogous ex-

pression for the spectral density of the residuals in the con-

tinuous measurements case given by Eq. C-38. The two expres-

. sions are identical when the spectral density of the errors in

the continuous measurements case, 4, is identified with

*E,E + 0a,a (C-90)

The first term on the right-hand side of Eq. C-90 is

the finite Fourier transform of the covariance of the measure-

ment errors. The second term corresponds to the sampling (or

aliasing) errors. Note that the aliasing errors appear in

Eq. C-88 as if they were independent of the gravity field.
This, of course, is not the case. The aliasing errors at fre-

quency s are correlated with the components of the field at

frequency s+eJ A for any integer vector A f 0. However, the

aliasing errors at frequency s are, indeed, independent of the

components of the field at that same frequency. This is because

the spectral representation of a process is an orthogonal de-

composition. Thus, spectral components at different frequencies
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are independent (Ref. 3). Since the aliasing errors at fre-

quency s arise from field components at frequencies s+eJ IA

for A * 0, aliasing errors and field components at the same

frequency are independent.

Following the same procedure used in Section C.l, it

can be shown that the average spectral density of the residuals

is given by

*P G G * T,6T (C-91)6w,6w6T0T0

where G is the vector transfer function from anomalous surface

potential to the quantities being estimated and where

0 1

6T ,6T0  40 -1 F+ (C-92)

0 - 0 0

is the average power spectral density of the residual anoma-

lous surface potential. In Eq. C-92, F is the vector transfer

function from anomalous surface potential to the quantities

being measured and 0 ToT is the a priori PSD of the anomalous

surface potential.

The error spectral density matrix 0 in Eq. C-92 is

given by Eq. C-90. The aliasing contribution, 0a a' is ex-

pressed in terms of the spectral density of the measured quan-

tities in Eq. C-89. For computational purposes, it is conven-

ient to obtain it directly from the spectral density of the

unsurveyed anomalous surface potential, *T T Using the

results of Appendix B.2, Eq. C-89 can be rewritten as

*0 (s) = J F(s+Oj'IA) F*- -1aa - AO F0(s+ej'A) 0TTo (s+eJ A)

(C-93)
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A discussion on practical approximations to this infinite sum

is given next.

Equation C-93 indicates that the value of the spectral

density matrix of the aliasing errors at frequency s is given

by the infinite superposition of translates of the function

F F 4To,To to the points -o = - JIA with A/O. This is illus-

trated in Fig. C-5. The function F F 0ToT is centered at

each of the points denoted by a solid dot in Fig. C-5. The
aliasing spectral density at any point s is obtained by adding

up the contribution of all the translates of F F *T,T
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Since gravity spectra exhibit a rapid decay with fre-

quency (Refs. 23 and 24), in all practical situations there is

negligible contribution to the sum in Eq. C-93 from terms other

than the translates of F F *TT which are centered at those

points s = -ej- A in the neighborhood of s. In general, it

is sufficient to take the terms corresponding to the values of

A belonging to the set

Q = {^ 0, s+eJ All < 2 lI1'11) (C-94)

where ' = (sj,s) is the vector of Nyquist frequencies asso-

ciated with the survey. Thus, Eq. C-93 is approximated by

(0a~a(s) F, F(s+OJ 'A) F.. .F*(s+ej-JA) 1TTo(S+ej'1A)

(C-95)

with Q as in Eq. C-94.

Note that the product F F of the vector transfer

functions from surface anomalous potential to measured quanti-
ties appearing in Eq. C-95 yields a full matrix. Thus, the

spectral density matrix of the aliasing errors, a is full.'a,a'
This means that aliasing errors in different measurement types

are correlated. The reason for this correlation is that these

errors originate from the same spectral components of the field.

This point is of importance in the approximation of the expres-

sion for the residual spectral density given below for the

case in which different data types lie on nonoverlapping grids.

This case is considered next. An expression similar to Eq. C-92

for the residual anomalous surface potential is given and the

approximations involved in its use are discussed.
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First, classify the q data sets Z k of Eq. C-2 accord-
ing to the grids on which measurements are taken. In this

:. fashion, n classes result, each of them containing q, sets of

measurements on a common grid M with P=1,2,...,n. Thus,

+ q (C-96)
- ' q =ql +  q 2 +  '' n ( -6

If necessary, relabel the data sets k so that all sets within
the same class are consecutively numbered. The class identi-

fied with the index p consists of a vector of measurements,

of dimension q,,

v'. , ql+ "' +qo "I + I

ioql+• +qO_1+2

(C-97):: .1: *ql + " .+qo.l+qlo

at every point of the grid M Let U and E be the measured

quantities and the errors in the measurements of class P, and
let F be the vector transfer function from anomalous surface
potential to the quantities being measured on the grid M.
Similarly, let e and J be the rotation and spacing matrices

of the grid M defined as in Eqs. C-50 and C-48, respectively.

The approximation to the average spectral density
matrix of the residual anomalous surface potential is given by

an expression of the same form as Eq. C-92:

"T o * - (C-98)""= £,T - ,TF -o F+l/T
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with the spectral density of the errors of class

given by

(S) S) + a ,a (s) (C-100)

In Eq. C-100, EE is the finite Fourier transform of the

covariance of the measurement errors E and -aa is the spec-

tral density of the aliasing errors of class 8 obtained from a

formula analogous to Eq. C-95:

Ca'a(S ) = 1 F(s+e J ) F*(s+esJ A , (+ J )

(C-101)

where Q is defined for each class as in Eq. C-94.
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In writing the error spectral density matrix, €,

as in Eq. C-99, it has been assumed that the errors in the

measurements of class p, E , are independent of the errors in
the measurements of all other classes. This assumption is not

necessary to obtain an expression for the average spectral

density matrix of the residuals but it is satisfied by the

error models given in Section 2.3, and it simplifies the re-

sulting expressions.

Equations C-99 and C-100 indicate that aliasing errors

from different classes are uncorrelated. This, indeed, is the

case if any pair of grids, M and M whose axes are paral-
P1  P2

lel have different spacings along each axis, because in that

case the aliasing errors in classes p, and P2 arise from dif-

ferent spectral components of the field.

The only approximation involved in the use of Eqs. C-98

through C-101 (aside from the flat-earth approximation) is that

the correlation between aliasing errors 'of a given class and

field measurements of a different class has been neglected.
The energy at frequency s+e Jl1_ for AXO causes aliasing er-

*-"-."rors of frequency s in class p. However, information about
S.' the spectral component at frequency s+e iJ can be obtained

from measurements in another class and used to correct for the

aliasing at frequency s in class . It is this possible use

of the data which is discounted by neglecting the correlation

between aliasing errors and measurements in different classes.

In most practical cases, this approximation has little effect

on the computed residuals because the spectral components af-

fected by (correctable) aliasing in class p are usually much

better recovered from measurements in another class.

Since the vector transfer function F in Eq. C-98 can

be expressed as
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F= (C-102)

Fn

where F is the vector transfer function from anomalous surface

potential to the measured quantities in class 13(P=1,2,...,)

Eq. C-98 can be rewritten in a more convenient form as

-06 1 T (C-103)

~0 F + 1/4T)T

Each of the terms in the summation in the denominator of

Eq. C-103 arises from a single class of measurements.

The various measurement classes considered in this

report are listed in Section 2.2. Note that by taking as many

terms as appropriate in the summation of Eq. C-103, any combi-

nation of survey alternatives can be analyzed. In addition,

for any scalar-measurement class 1,the contribution to the

sum of the denominator in Eq. C-103 is a product of scalar

quantities which can be written as IF P 4 otP*Thus, for

all scalar-measurement classes, there is no need to carry out

a matrix inversion to evaluate the residuals.

c.4 RESIDUALS OF SPATIALLY AVERAGED QUANTITIES

In this section, the formulas given in Section 2.4

for the average spectral density of the residuals of spatially

averaged quantities are derived.
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Consider a square block whose sides are parallel

to the east and north directions and have length a. Let

;x (Xl x2)T be the center of the block. The a-mean, -a,

of a field-related quantity y at the point x is the average
of y on this block, i.e.,

-a f 2 y(x') dxidxj (C-104)
a x- a/2

Ya(X) a - -a/2 -a/

where x' = (xl,x It is customary to define a-means only

at the grid points of a square grid whose axes are oriented

towards the east and north directions. However, it is con-

-aa
, venient to see Eq. C-104 as defining ya for all x. The usual

collection of a-means is, simply, a sampled version of ya.

The quantities y a and y are related by a transfer

function. This can be seen by writing Eq. C-104 as a convo-

lution, i.e.,

with

,1/a 2  if Ix"I < a/2 and Ix"I < a/2
h(x") = (C-106)

0 otherwise

where x" (x',x)T Thus, the transfer function from y to -a

is

Jfh( i2ircx",s>
h(s) h(x") ei  - > dx1dx2 (C-107)
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The evaluation of this integral is straightforward. The re-

suit is

-.. sinnasI  sinpas2
h(s) - nas1  nas 2  (C-108)

Next, suppose that the vector of quantities to be

estimated from the data consists exclusively of a-means. Let
-a be the vector of a-means to be estimated. The vector trans-

fer function from anomalous surface potential to the estimated

vector is h G where G is the vector transfer function from

anomalous surface potential to the vector w whose a-means yield
-aw.

According to Eq. C-91, the average spectral density
of the residuals in the a-means, * 6a,6-a is

0 -a a: G* 2 * 6To,6T (C-109)
6w ,6w 0,T

where 6T,6T0 is the average spectral density of the residual

anomalous surface potential given by Eq. C-103. Since the

residuals in the estimates of w have an average spectral den-

sity given by

4, G T0 6 (C-l10)6w,6w G G*

the average spectral density in the a-means, -a, is obtained
from that of the residuals in w by

^2
* -a -a 6Ihl 1W,6w (C-ill)
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C. 5 AVERAGE MAP ERRORS

The purpose of this section is to prove that, as

claimed in Section C.3 of this appendix, rms values of the
residuals computed on the basis of Eq. C-86 yield the average

rms of the errors in a map of gravity, even in the case in

which information concerning the specific location of the

measurement grid is available.

Let the measurement grid M0 be as in Section C0.2 and

suppose it is desired to evaluate the rms of the errors in the

estimation of the vector of field-related quantities w at a

point P as shown in Fig. C-6. It is clear that it is always

possible to find a measurement point with respect to which P

is displaced by less than t units of distance in the positive

direction of the xi axis and less than z in the positive di-

rection of the x1 axis. Let the displacements in the x" and

xi directions be cj and c with 0 < cj < tj and 0 < c < j-

Define another grid, Mc , parallel to and having the same spac-

ings as the grid M0 but displaced from it by the amounts cj

andc asin Fig. C-7. The point P belongs to the grid Mc.

As shown in Section C.2, the errors in the estimation
of w at the points belonging to the grid Mc are stationary and

their spectral density matrix 0W,6w(c',s') is given by Eq. C-77.

Their covariance is the inverse finite Fourier transform of

.- 6W, w(C',s ); i.e.,

R .W, 6W(c',s') e1 i 2 n<JQ' s!> ds ds
-si  -st

(C-112)
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where si, s and J are defined in Section C.2, Q is the integer
vector coordinate difference in the grid Mc and the argument

c' of the covariance emphasizes its dependence on the shift

between the estimation and measurement grids.

The variance of the estimation errors at any point on
the grid M, a 2(c'), is given by the diagonal elements of the

c
covariance matrix evaluated at an integer vector coordinate
difference of zero; i.e.,

a 2(c') = diag [R w6(c',0)] (C-113)

Consequently, from Eq. C-112

2 f1
a 2(c') = diag[W,6 W(cI',s')I dsidsi (C-114)

The average variance of the errors in the estimates

is defined as

1i T2

a 2 = 1 1 2 (c') dcidcj (C-115)- Tl2 f _
0 0

Replacing E2 (c') by the expression in the right-hand side of
Eq. C-114 and interchanging integrations with respect to dis-

* placements and frequencies results in

a 2 = diagI$WwC ,_
a 2/d2 [1 f/2 W, (c',s')dc'dc] dsids_ I l 2  _ W _

-i

(C-116)
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The quantity in brackets is readily recognized as the spectral

density of the errors in a random grid defined in Eq. C-78.

Thus,

a diag W,6w(s) dsds (C-117)

12 1 .
It was shown in Section C.3 that ' can be writ-

ten as the aliased version of a continuous process whose spec-

tral density, Aw 6w' is given by Eq. C-86. From Eqs. C-85

and C-117 it follows that the average variance of the errors

in the estimates'is

02 = diag f A 6w('+J- A) dsids]

1 2 1

(C-118)
!T

where A = (2,m)T is a vector of integers. Interchanging the

operations of summation and integration, Eq. C-118 becomes

2 =diag . 0 ,ww(S,+J-iA) dsjds

-si

(C-119)

Consider the integral I(t,m) associated with the in-

dices £ and m in Eq. C-119. This integral can be written as
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M. I,) f J dT
-- (=w,6w f(si+22sjsj+2ms2 ) T I ds-dsi-S S-s' -s'

(C-120)

where use of Eqs. C-48 and C-59 has been made. Changing inte-

gration variables

",',(2m+l)si (21+1)_,

., l(t,m) = fw () ds ds

.; : (2m -1) ; ' (2 2-1 )s

(C-121)
oU..

Consequently, combining Eqs. C-119 and C-121,

a 2  
si) ' s' dsids]a m 6w,6w 2

L. (2m-1); (2.- 1)S-i

(C-122)

• .The integrals in Eq. C-122 are taken over disjoint domains of

the frequency plane whose union equals the whole plane. Thus,

G-.'- dma f w6w (s ) dsldsj (C-123)

-, This last equation is the result that was sought. It shows that

the average variance of the residuals, defined by Eq. C-I15,

can be computed as the total power under the diagonal elements

of the average spectral density matrix of residual gravity.
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