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SUMMARY

43

3 We study optimally bounded score. functions for estimating regression

parameters in a generalized linear wmodel. Qur work extends results

obtained by Krasker & Welach (1982} for the linear model and provides a

simple proaf af Kresker and Welach'a first order candition for strong

3 optimality. The application of these results to logistic regression is

studied in some detail with an example given comparing the bounded in-

fluence estimator with maximm likelihood.

4
]
j Some key words: Baunded influence; Generalized linear madels; Influential
€ points; Logistic regression; Qutliers; Robustness.
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1. INTRODDCTION

In & generalized linear madel (McCullagh & Nelder, 1983, Ch. 2} a
response variable Y and covariate vector X are related via & conditional
density of the form

E(ylx) = exp{(y-h(x'8))q(x ®)a(x) /0 + C(y,0)} .
The functions h(-) and q(-) are -ubjecé to certain restrictions, ¢ is a
vector of regression parameters, d is & scale parameter and w(x) is a known
veight function. In this paper we study the problem of robustly estimating
8 vhen w(+) 2 1 and ¢ ia knawn. Models of this type include logistic and
probit regression, Paoilsson regression, and certain models used in modeling
lifetime data. In the case where w(-) 3 1 but @ is unknawn the methads
presented in Section 2 are still applicable with some modification to allow
for joint eatimation of a, c.f. Krasker & Welach (1982).

OQur motivation for seeking robust estimators is the same as that
encauntered in the context of linear model -- maximum likelihaad eatimation
is very sensitive ta outlying data. For the case of logistic regression,
Pregiﬁgn (1981, 1982) has documented the nanrobustness of the maximum
likelihood estimator and expounded the benefits of diagnostics as well as
robust or resistant fitting procedures.

Much of the work on robust estimation concerns finding estimators
vhich sacrifice little efficiency at the assumed madel while providing
protection against cutliers and model violations. We follow this course
finding baunded influence estimators minimizing certain functiaonals aof the
asymptatic covariance matrix. Related wark includes that of Hampel (1978),
Krasker (1980), and Krasker & Welsch (1982).

Twa important 1ssues when fitting models to data are (1) identi-

fication of autliers and influential cases and (ii) sccommadation of these
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observations. Fregquently vhen influential cases are present, the ficted
model ie not representative of the bulk of the data. To rectify this, one
can simply delete influential cssea and refit via standard methods, but
this approach lacks a theory for inference and testing; the effects of case
deletion upon the diatributions of estimatars 1is not well understoad, even
asymptotically.

The robust techaniques studied here provide a wmethod of accommodating
anomalous data. They allow continuous dovnweighting of influential cases
and are amenable to asymptotic inference. Also, together with more direct
diagnostics, residuals and weights from a baunded influence fit can be used
to detect exceptional observations.

In Sectian 2 we present aome general theory; this is specialized to

the case of logistic regression in Section 3; proafs of theorems are given

in an appendix.

2. THE GENFRAL THEOXY
} 2.1 The regressian model
We study regression models in which the dependent variable Y and
explanatory p-vector X have a density af the form
gly,x;0 ) = f(y;xreals(x). (2.1)
The conditionagl density of Y given X=x is f(y;xreq) and depends on the
unknown parameter 00 only through xreo; s(x) is the marginal density of X.
Expectation with respect to g(y,x;8) is denated by Ee while EQ.x indicates
canditional expectation carresponding ta f(y;xre). Model (2.1) includes
many generalized linear wmadels (McCullagh & Nelder, 1983, Ch. 2).

Suppose (Yi,xi), (i=1,...,n) are independent copies of (Y,X). Under

regularity conditions the maximum likelihood estimator of 00 satisfies

n PS
1:\:1 “Yi’xi"’m,) = Q,




Lo I e R L SLE Wl L%y
E Bl ani DR iR s 53 DAsi Caha o o vy
‘ ) ) -3-

vhere L(y,x,8) » 3!30(log(f(y;110))!. and né(QHL - ao) converges in dietri-
bution to a p-dimensional normal random variate with mean zero end co-

variance matrix V(Oo) - E;i{l(Y.X.Oo)Lr(Y,X.GO)} .

2.2 N-estimatars and thelr Iofluence curves

We will consider estimators QV a;tiafying

n -~
¥ #(y,,x,,0,) =0,
=R S Sl

for suitably chasen functians ¢ from R x RP x RP to RP. We require that ¥

be unbiased, 1i.e.,
ze(v(Y,x.e)} =0 . (2.2)

Under regularity conditiona (Huber, 1967), 8, is conaiatent and esymp~

¥
totically normal with influence curve

Ic,(y,x,0) = u;1<a)v(y.x.e> (2.3)

where D (8) = -3/AB[E{¥(Y,X,B)}], . - (2.4)
Write }(9) and 2(€) for ¥(Y,X,8) and A(Y,X,8) reapectively. Assuming
that integration and differentation can be interchanged in (2.2) and (2.4)
it is easy to show that

D(8) = Eg{y()L (8} (2.5)
Naw let

R, (8) = E a9 ()} . (2.6)

It then follovs (Huber, 1967) that the asymptotic variance of n*(ew - Go)

".'.‘."'4'.4",'._

1s
-1 -1 T
T V,(8.) = D (8 )N (8 )(D, (8 ).
o
ﬁ For robustness we want IC@ to be baunded; for efficiency we want Yv to
N
? be small. In the next section we define a norm far IC’ and outline a
~
N
.
“
]
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theory vhich suggesta efficient bounded score functions.

2.3 A scalar measure aof Influence and an optimal score functiloa

As a scalar measure of maximum influence we employ & definition of
sensitivity introduced by Stahel in his Swies Federal Institute of Tech-
nalogy Ph.D. thesis, and by Krasker & Welach (1982). The self standardized

zensitivity of the estimator Bt 1s defined as

T
e, | ;
s($) = sup sup —_—t . sup (Ic:v

S &
1C.)
(y,x) An0 (RTV"X)% (y,x) voe

« aup (vrw;lv)* . €2.7)
(y,x)

For a generalized linear wodel s8(¢) has a natural interpretation in terms
af the link functian, e.g., in laogistic regreasion &(y) measures the

maximum normalized influence of (y,x) on an estimated logit in that RTIC

ia the influence curve for xTav and xtvvx is the asymptotic variance
of KTG . Although this paper studies only the self standardized
I

sensitivity we believe that useful eatimatare can also he obtained by

v

boaunding other measures of influence, such as fitted values.
For maximum likelihood % = L and, in general, s(L) = + ® . To ohtain

~

rabustness we limit attention ta only thoge estimators 00 for which
e{y) S h (o>, (2.8)
Such an estimator 1s said to have baunded influence with baund b.
Caneider the score function
by (v,1,0) = A-Omint (1, b2 /(1-0TB -1}, (2.

vhere f=%(y,x,8) and Cpx = C(8) and Bpxp = B(8) are functione of & defined

1
implicitly by the equatians

Ty




T
E vy (y.x,0)} =0,  B(8) = E {4y vy ). (2.10)

Wich C(8) and B(@) sa defined, 031 is unbiesed and ¥, (8) = B(9), so

¥p1
that by (2.7), Yp1 has bounded sensitivity.

The vector C(8) and matrix B(®) sre analogous to robust multivariate
location and scatter fuanctianals for %(X,X,8), (Maronna, 1976). Far
sufficiently large b solutions C(€) and B(8) satisfying (2.10) exist, and
as b tends to infinity these tend to rero and E(LLT} respectively. Equation
(2.9) showsa that *nx ia similar to a weighted maximum likelihood scare with
wveights depending on the distance (L~C)rB-l(&~C); as b tends to {:finity

the veighting factor tends to one and ‘B to A.

1

For the normal theory linear model ’BI is the score function found by
Krasker & Welsch (1982), who shaw that {f there exists a score ’opt

satisfylng (2.2) eand (2.8) which minfwmizes \!‘b in the strang sense of

poaitive definiteness, i.e., VW - Vv 2 0 for all ¢, then it must be of
opt

the form (2.9). That *nx possesses similar optimality properties 1s seen
in Corollary 1.1 below.
j

THEORPM ). [If for a given chofce of b » Q egquations (2.10) posseas the

solution (C(8), B(8)), then wBI minimirzes tr(vwvgi) among all ¢
satisfying (2.2) and
sup (ICT V_1 IC.) ¢ Bb* (2.11)
(y,x) v BI "¢ -
¥ith the exception of multiplication by & constant matrix, *ar Is unigue
almost surely.
Any score function oopt for which Vt-Vvopt 2 0 for all ¢ will be

called strongly efficient; we now state the follawing corollary.

A& et o]




COROLLIARY 1.1. 72f there exists an unblased, strongly efficleat score ‘oP ¢
satisfring (2.8), then *opt 1s equivalent to Yar vhenever the latter 1»s

defined.

Remarks 1. In Theorem 1 the conditions for optimality of vBI depend on *31
itself thraugh V;}. This is somewhat discancerting. Nevertheleas *BI

does satisfy an optimality property and this result allows us to prave
Corollary 1l.l.

2. 4Working within the class of score functions of the form &(y,x,8)u(y,x,0)
where @ is a scalar weight function, Krasker & Welsch (1982) find the
optimal farm of w. Thearem 1 and ita corallary show that ’az is optimal
over a much larger class of functions and hence yield a technically
stronger result than Krasker and Welsch's. Also our proof is somewhat
simpler than Krasker and Welsch's.

3. Ruppert (1985) has shown that a strongly efficient score need not
exist, in which case Corollary 1.1 is vacuous. In fact, we know of no case
with é 2 2 vhere a strongly efficlent score has been shown to exist.
However, the reeult given in Corollary l.1 1s still of interest; Ruppert
(1985) umes it in his counter example.

4. The proofs of Theorem 1 and its corollary are presented in the appendix.

2.4 A one-step estimator

Write *BI - wnI(y.x,e,n,c) ta indicate dependence an B and C. Thearen

1 suggests the estimator @ 1 obtained by ealving

B

N . A
¥ 9,(6,.) = 0O
4=y 1BI

wvhere 01(9) - WBI(Yi.Xi,Q.B(O),C(G))

and C(€) and B(0) are defined implicitly by the equations
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n -

I £ {v(@)=0 (2.12)
(o X1 B

B(8) = n 1§lza.xi"1‘°)*1(°” . (2.13)

In the linear model (Krasker & Welsch, 1982) symmetry implies C(8) a 0

so that finding © is greatly simplified. For nan-lipear models salving

BI

for QBI is much wore difficult, so we suggest the following one~step

procedure. Let @ be an initial root-n consistent estimator of Oo.

Compute B(8) and C(8§) iteratively from (2.12) and (2.13). Define

(1) = . =13 o1t
€y = 8+ 1§1D (0)*1(0)

vhere D(e) =n JE e} .

{;1<e);T<y
i=]

Dx 1 4
1 R

6,X

This construction is asimilar to Bickel's (1975) Type II aone-step

(1)

procedure. Under regularity conditions QBI is consisternt and asymp-

-1 -1, \,T
tatically normal with covariance matrix VBI(eo) = DBI(QQ)B(QQ)(DBI“QO‘) ,

vhich is consistently estimated by V = D.I(E)B(E)(D-l(s))r. To pre’erve

»’ ~
finite sample robustness we suggest that @ also be resistant to outliers.

3. APPLICATION TO LOGISTIC REGRESSION
3.1 The logistic model
Logistic regression is a special case of model (2.1} in which Y 18 an
indicator variable such that
P(Ysl)Xex) = F(x'8), F(t) = 1/(l+exp(~t)).
The general applicability of this form of binary regression is discussed by

Berksan (1951), Cax (1970), and Efron (1975). The likelihcad acare is

Ay,x,8) = (y—F(xTG))x and the maximum likelihood estimator is consistent
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and an aaymptotically norsal with covariance matrix V(Oo) -

(1)
E, F

(xreo)xxrl where (t) = (d/dt)P(t).

a

3.2 Constructing the ane-step estimator for the loglstic model.
The first step in computing ;;i) entalls finding an eazily computed,
robust, raot-n consistent estimator 3. ¥e find an aoptimal score function
from among the class,

Ko {9:8(y,x,8) = (y=F(x18))u(x,8)}

where w(+,*) 18 a p~vector valued function of x and 8 but not y. The
advantage, in terms of computational simplicity, of reatricting sttention
to score functions in A is that condition (2.2) 1s automatically satisfied
and it 1s not necessary to estimate a robust location functional.

The estimatar we propose, and call a bounded leverage estimatror,
corresponds ta the score

by = (v = FGxTo)x min? (1,072 (xT)xTo (o)),

where Qpo = Q(@) is an implicitly defined function of 8 aatisfying

e
D (T etntr, bt 1t Forxla 011, (2.14)

i Q(8) = E{F
and m(+) is the function m(t) = max(F(t), 1~-F(t)). In L. A. Stefanski's
University of North Carolina Ph.D. thesis it is shown that in order for

(2.14) to passess a solution Q > @, it 18 necessary that
bt > p / E 4P X ) /m (xTe)) (2.15)

Conditian (2.15) is generally not sufficient however. Nate that with Q

=Q and by (2.7), &, has hounded influence.

¢HL BL
We are able to restrict attention to only those ¥ in X and still

satisfying (2.14), W

obtain bounded influence zimply because the absolute residual |y -P(xre))

i8 baunded. However, V¥ takes a pessimistic view in downweighting

BL
- obaservations in accordance with their maximum potential influence deter-
‘.-
;: mined by their position in the design space and by €. The term leverage
Fj ia often ugsed ta denote potential influence (Caok & Weisburg, 1983) and
D

L A

. [
ERPNL S




hence the name bounded leverage. Potential influence is often far greater
than the actual influence vhen the observation is well fit by the model.
Although downweighting such points results in a loss of efficiency for eBL

this will not affect the efficiency of our one-~atep estimator. Alsa, as

the following results show, vBL is the moat efficient acore in X.

THFEOREM 2. JIf for a given cholce of b > 0 equation (2.14) possesses the

solution Q > Q then wBL minimizes cz(v'v;i } among all ¢ in N satisfying

sup (IC

T vgllcv) < b
(y,x2

v BL

&ith the exception of multiplicatlon by a canstant matrix, ¥ Is unifque

BL

almast surely.

COROLLARY 2.1. Jf there exists a strongly efficient scare wop In X, then

t
¥ Is egufivalent to wBL whenever the latter Is deffmed.

apt

Remark 1. Proofs are similar ta those of Theorem 1 and its corollary and
will not he given.
2. The extent to which Theorem 2 generalizes to other regression models

is limited, since it requires that A(y¥,x,0) be a hounded function of y.

Qur initial estimator & is obtained by salving

n
_ T~ + Ty, JTw=1,~ -
1§1(Yi F(xie))x1 min (1.b=/(m2(xia)xiq (e)xi)} 0

wvhere 5(6) satisfiesg

n
3(8) =~ n 11)_:1 r“’(xie)xixf min{l, b /(n? (X 0)X;Q l(e)xi)}.
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For the one~step construction in Section 2.4 to work it is neceasary that
@ be root-n consistent. In Stefanski's Ph.D. thesis it 1s shown that
n‘(3~0°) is asymptotically normal with covariance matrix VBL(OO) -
-1 ~1 T .
DnL(Oo)Q(eo)(DBL(Go)) pravided:
(1) b is sufficiently large,

(11) E{}IX}1?} ¢ =,

F(1)

(111) E{ (xre)xxtlixti'l; is positive definite,

(iv) (3/2Q)B{J(X,0,Q)} is nansingular where

F(l)

J(X,8,Q) = Q - (xT8)xx min{1,b? /(= (XT0)XTQ 1X)} .

The key assumptions are (11i) and (iv) which are similar ta Assumption 7 of

Krasker & Welsch (1982}.

1 1

As an estimate aof VBL we use V= D0 (3)6(3)(5- (3))T vhere

~ e r -~
Ee.xi"BL(Yi'xi""Q(e))" (Yi,xi,e)} .

~ -1
D(8) = n ¥
im]

An algarithm far computing 8 and egi)

for logiatic regressian madela
appears in Stefanski's Ph.D. thesis. To fully specify the algorithm ane
must determine the bound b. Far @ this was chesen as a conatant multiple

of b(8) where

n
1 5 (r"’(x}e)l.rtxfe))l,

i=1

b2(Q) = p/ln"

see (2.15). For the examples in the next section we taak the bound to he
(1.5)b(@); this same bound was then used for the ane-step estimatar 0;;) .
The chaice (1.5)h(@) was auggested hy experience; it is aufficiently small

to provide protection from extreme obaservations yet large enaugh to avoid

computatianal probleams.

‘o

.".
PRI




J.3 Example.

We apply our results ta data relating participation in the U.S. Foad
Stamp Progrem to various sociceconomic indicataors. The data, which are
available from the first authar, were selected at random from a cahart of
aver 2000 elderly citizens. The covariates are, (1) tenmancy, indicating
home ownership; (1i) supplemental income, indicating wvhether some form of
supplemental security income is received; and (1ii) wonthly income. Im our
sample af 150 there were 24 cases of participatian.

The researcher who supplied these data had been using probit regres-
sion with monthly income entering linearly in the madel. A fit of the
logistic model with cavariates tenancy, supplemental income, and (monthly
income) /10 produced Table 1{(a).

-

Apart from the conatant C, @ is a weighted maximum likelihaad esti-

BI

mator with weights “, = nin}(l.h’I((&i-C)TB-l(&i-C))}. vhere Li = 2(Y Q),

i’xi'
see equation (2.9). Estimated weights, &i, less than one indicate in-
fluential or ill-fitting observations. For the analysis in Table 1(a) &40 =
a.69, QEG = Q.40, 395 = 0.98 and 6109 = (.62 vere the only weighta leaa
than one. Since these obaervations correspond to the four largest incomen
among thoae receiving food stamps a tranaformation of income f& indicated.

In Tahle,%ib) ve present the analysis with log(manthly income + 1)
replacing (monthly income)/10. This transformation substantially reduces
the leverage of large income values but incresses the leverage of small
income values. For this model the bhounded influence estimatar downweighted
5" 0.21 and ﬁce = 0.76. Case 66 haz the

largeat incomse smong those participating while case 5 has the smallest

only two observations with &

income among those not participating. Apparently cases #5 and #66 are

influencing the maximum likelihocod fit; this ie indicated to a great extent

by the bounded influence analysis and even more so hy the maximum likeli-




hood fit with the two outlying cases removed.

3 An advantage of robust methods over maximum likelihood is that

residual plots are more reliable for uncovering outliers. This {s {llus-

- trated in Figure 1. Residuals (Cox (197Q0), p. 96; Pregiban (1981)) are
o

Q . plotted for hoth the maxiwmus likelihood and baunded influence fits.

.,

o,

3.4 Conclusions.
Qur hounded influence procedure provides a method of fitting meaning-
ful maodels in the presence of anomalous data. Since similar models can be

ohtained by diagnosing and deleting outliers it is worth ewphasizing that,

8
E; unlike the method of case deleticn, robust methods are amenable to

:} asymptotic inference; this feature is important whenever hypathesis testing
% or confidence regions are obhjectives.

Ej Robust procedures also supply useful diagnoatic tools for model

:j building. Varisble selection, as well as estimation, can be influenced by
ﬁ. anomaloua data; Pregibon (1982) cites such an example. Qften robust methods
E auggeat}variahlen appropriate for modeling the bulk of the data which would
ﬁ; atherwvise go undetected in a standard maximum likelihood analysis. Can-

& versely, with non~resistant fitting, a variable might be used in the model
i; simply to ncconﬁodate a single outlier. In addition to variable selection,
;: the weighta and residuals from a robust fit provide useful supplements to
‘ii more direct diagnostics. For example, with the food stamp data, an

~t§ ’ analyst, seeing the fmpact of case five, might question the validity of

; that ohservation or the sppropriateness af the model over the full range of
2: incomes.
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APPRIDIX
Proafs of Theorem 1 and Corollary I
Thearem 1 is & generaliration of Appendix A in Hampel (1978) and the

proof given here usea techniques found in Krasker (198Q).

Proof of Yhearem 1. Let ¢ be any competitar ta *BI' Withaut lces of

generality assume that ¢ = IC, , i.e. that ¢ ia in cananical form in the

*'
sense of Hampel (1974). This is equivalent to aasuming
T
E {%(Y,X,0)2 (Y,X,0)} = Ipxp. (A1)
and implies v*(e) - Ea{w(Y,X.O)tr(Y,X,Q)}.
Now write & for A(Y,X,8) and ¢ far ¥(Y,X,8). If ¢ satisfies (A.l) and
(2.2) then

E, {(D] (L -C) - t)(n;i(x-c) -9} -

Dp Bl (4-00(a-0THEZHT - b} - (g1 + v (o).
Therefore tr(vthI) is, neglecting an additive constant independent of
v, praportional ta
-1 T,~1, «1

EG((DBI(L-C) ~ ¢ VBI(OBI(L-C) -$1}. (A.2)
Define ¢ = v;*¢; in terms of ¢, (A.2) hecomes

E {l¢ Vnrnnr 2~C)i%}. (A2}
Note that I¢f? = an* and thus susbhject to (2.11), equation (A.3) ia
ninimized, as a function af ¢, by

} =1y, 3 “1.~1, =1.T,,_

¢ = Vp Do, (2-Clmin{1,b?/((4=C) Du"nx(nnl) (2-C))}.(A.4)

Condition (A.1) insures that ¢ is unique almost surely. Equatiane (2.3),

(2.5), (2.6), and (2.10) tmply Dy V710217 = B! thus in terms of 4,
2 (A.4) becomes ¢ = nBI‘hI praving the theorem. !
A
:
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Proof eof Corallary 1l.1. Again assume that all scores are in canonical form

and satisfy (2.2). Define
T,~1

S = {$: sup orv;lo s b?), SM-{O: sup ¢ Vut € w?} .
(y,x) (y.x)

We muat show that if there exists ‘opt in & such that V' S V‘ for all ¢
opt

~1 -1
in S, then vopt is equivalent to BI‘BI' Clearly DBI*BI is in S,

thus by assumption V’ s VBI‘ From tid.a it fallaws that
apt

T -1 T ,~1 2
"opcvnltapt s 0apzt‘r\bm“:'capt b,

and hence ’opt is in sn. Let I'» £ SBI' The set I is nonempty; it
S V, and hence

-1
cantains DBI*BI and onpt' For any ¢ in 7 we know V "gp: v
=1

-1
tr(Vw Vpp) S tt(V*Vn)

opt -
for all % in JZ. But Thearem 1 praves that DB;’BI’ vhen defined, ia the

almost everyvhere unique minimizer af t:(v‘v;}) avang all ¢ in J. The
i

equivalence of *opt and ‘BI follawa.

-----
-----
-----
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Table 1 (a). Estimates for the lagistic regression madel with covariates
tenancy, supplemental income, and (wonthly income}/10; p-values in

parentheses.
supplemental
intercept tenancy incame (monthly i{ncome)/10

R |
QHL -0.34 -1.16 Q.78 -0.01

(0.5287) (0.0009) (0.1259) (0.1122)
[] -0.16 ~1.15 0.77 -0.02

(Q.7872) (0.0014) (0.1360) (0.0826)
e;}) -0.20 ~1.76 Q.78 -0.02

(0.6006) (0.0012) (Q.1300) (0.0922)

Table 1 (b). Estimates for the logistic regression madel with cavariates
tenancy, supplemental income, and log(monthly income + 1); p~values in

parentheses.
| supplemental log(manthly
7 intercept tenancy incame income + 1)
R }
OHL 0.93 -1.85 Q.90 -0.33
(0.5681) (Q.0005) (0.0737) (Q.2228)
] &4.14 -1.81 0.15 -0.86
(0.1030) (Q.0007) (0.1444) (0.0430)
Ogi) 4.02 -1.81 Q.76 -0.84
(0.1100) (0.0006) (Q.1416) (0.0465)
~ %
QHL 6.88 ~2.02 Q.76 -1.33
(0.0160) (0.0004) (Q.1586) (0.0062)

* With cases #5 and #66 excluded.
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0 20 40 60 8 100 120 1w 160

observation number

Figure 1. Residual Plots for FS Data. Maximum likelihoad residualsa are
indicated by circles 'o'; residuals from the bounded influence fit by
asterisks '*', Pur both estimation procedures residuala are defined as in
Cax (1970), p. 96. Negligible residusls have been omitted for clarity.
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