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DISCREPANCY-TOLERANT HIERARCHICAL
POISSON EVENT-RATE ANALYSES

Donald P. Gaver

1. Introduction
Consider a collection of J entities called "units" that inde-

pendently generate events in accordance with Poisson processes,

each with rate parameter A.. We are in possession of observations

on each of these processes, and have seen s. events for a time
-' J

exposure of tj for the jth, = ,...,J. Possibly also available

are concommitant observations on other variables x that may in

part influence (explain) the values of the rates X. The problem
J

is to use these observations to describe the nature and extent of

the variation between individual unit rates, and on this basis to

predict (a) the future event generation behavior of individual units

under observation, as well as (b) the overall rate variability of

existing units, and hence the likely rate behavior of other, similar,

units not yet under observation. The object of this paper is to

propose and examine statistical methods for approaching the above

problems. The approach emphasized is to treat the unknown rates

as being describable in part as coming from a fixed population of

possible rates, and then to describe or assess that population and

its implications for estimating the individualized unit rates. The

approach is called hierarchical because each rate may be viewed

as a realization of some random variable associated with a higher-

level superpopulation of rates; such models are also called random

parameter or parametric empirical Bayes models; see Morris (1983)

1
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for a review. There have been a variety of applications of similar

models in many fields. However, particular emphasis is given in

this paper to analyses that invoke discrepancy tolerant superpopu-

lation parametric representations: ones yielding estimating pro-

cedures that may assist in identification of distinct rate groupings,

existence of apparently discrepant or outlying rates, etc., a

better understanding of which could suggest desirable improvements

for systems so identified. Of course this latter step may well

lead in practice to a change in the superpopulation, and to need

for an updated new analysis. The steps suggested resemble the cycle

of data analysis and modelling, model diagnosis by residual and

sensitivity analysis, and repeat, often adopted in enlightened

regression analyses; cf. Mosteller and Tukey (1977), Belsley, Kuh,

and Welsch (1980), and elsewhere. Some ideas of discrepancy-tolerant

or robust Bayesian analyses have been described by Berger (1980), (1984),

who references Albert (1979) for as-yet unpublished studies. Ideas

expressed in the paper of Box (1980), with discussion, are quite

relevant, as well.

This paper proceeds by first introducing hierarchical Poisson

models. Specification of useful parametric forms for the superpopu-

lation that describes between-unit variability is the next topic;

this is followed by a discussion of explicit adjusted estimates for

individual event rates in terms of superpopulation parameters.

Finally, some procedures are described for obtaining estimates of

the superpopulation parameters. The estimation procedure effec-

tiveness is assessed by simulation, and the technology is applied

. to certain sets of real data.

2
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2. The Hierarchical Poisson Model

Introduce as a starting point the Poisson process of events

. for item j with (conditional) event rate A ,(x.,j) where

x" = (xljX 2 j , ...,x p ) is a vector of explanatory (regression)

variables, and Ej is (the realization of) a random variable with

fixed density f (x;e); the latter describes an infinite super-
J .th

population with the parameters vector e. The value of the j-

(1 < j < J) latent variable e. is here taken to be fixed for all

time, once drawn from the superpopulation. It is thus a random

-*.- individualization of the failure rate of item j; while x. values

account for differences in environmental factors. Generally, the

superpopulation distribution accounts for the rate variations be-

tween items or individuals after adjustment for environmental effects

explained by xj. Of course the manner in which the explanatory

variables are used can influence the form of the apparent super-

population distribution, and the selection of items for study, if

influenced by the rate values, can bias the estimation of super-

population parameters; see Lehoczky (1984).

Contrast the above model types to those in which X. is a random

function of time: e.g. in discrete time, monthly or weekly perhaps,

the rate changes in accordance with A (x , and
jt 1-3 i

{Ejt' t = 1,2,... is a collection of possibly iid random variables,

or perhaps a more general stochastic process changing in discrete

or continuous time; these last are called "random environment"

models, or more specifically doubly stochastic Poisson models, see

Cox and Lewis (1966), Cox and Isham (1980), Gaver (1963), Reynolds

and Savage (1971), and Burridge (1981). For instance, if the

3



integrated hazard 0 A'tdt' = (t) is the realization of a

gamma stochastic process, then the original Poisson process becomes

a negative binomial process. Other interesting models would allow

for changes in the superpopulation as a result of event observation

and remedial action. Consideration of all of these latter is

beyond the scope of this study; this paper confines its attention

to the simplest random individualization hierarchical structures.

I
j i.t Spcialc i bution

A\vuji-jbIity Codes

Ava a, d Ior
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3. Two Classical Hierarchical Models: The Log-Normal and Gamma
Super-populations

In order to parameterize a superpopulation of even rates in a

simple fashion, both the log-normal and the gamma distribution

*. have been utilized historically. Here is a brief discussion, with

modifications reserved for the following section.

3.1 Log-Normal Superpopulation: The L/N/P (Log-Normal Poisson) Model

Suppose that the Poisson rate of item j is of the form

A. = exp(c.) j = 1,2,...,J (3.1)

where E N(j, 2 . Let pj = U + x.6, x. being a vector of covari-

ates and a a vector of regression coefficients, whenever the regression

term is present; otherwise pj = p. This paper does not consider the

fitting of regression coefficients. Each of the J items is exposed

for known time tj, with s. (= 0,1,2,...) observed events recorded therein.

This (log-normal) model is expecially popular in the Proba-

bilistic Risk Assessment (PRA) of nuclear reactor safety and

operating systems, see the Reactor Safety Study (WASH 1400) (1975),

and subsequent numerous reports on this topic; in particular

note Kaplan (1983). Items may be in-plant equipments such as

continuously acting pumps, valves, and control devices that are

subject to failure events; other events of concern are so-called

initiating events such as loss of feedwater, pipe breaks, loss of

offsite power and other challenges to the integrity of a nuclear--

or other--plant's safe and productive operation. The failure or

initiating event occurrences may initially be taken to be time-

homogeneous Poisson stochastic processes, with rates that vary

between design copies in accordance with environmental influences

5- 5
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(manufacturer, geographical location, plant type, (sub)system type,

etc.). A full analysis endeavors to estimate the influence of

the explanatory environmental variables as represented by a re-

gression function, and the properties of the random individualiza-

tions, ej, so as to provide (i) good estimates of the superpopulation

center (mean) and variability (variance) and (ii) good estimates

of the individual item failure rates. An individual rate estimate

constructed from its own experience alone may be subject to con-

siderable random error; pooling its data with that of other similar

items can reduce that random error at the possible expense of

adding bias. Our methods suggest pooling that is reasonably based

on superpopulation characteristics as estimated under (i), assuming

that the superpopulation is (log)normal; in a later section esti-

* mates are developed that depend less on such a special form, i.e.

* that pool more selectively.

Given the model (3.1) a revised, pooled or shrunken, estimate

of the rate associated with item j can be obtained by Bayes' formula,

perhaps in the form

020 -(y)t. S.
* A =E[Ajls.,xj] = K. f A(y)e e 3(A(y)) 3dy,
J _j j -j J

(3.2)

where A(y) =exp(y), pj = w + xj , and K.3 is a normalizing con-

stant. The integral sometimes may be well approximated by use of

Laplace's method, see Tierney and Kadane (1984). However, a

likelihood approach provides quick and interpretable results:

choose c. £n A. to maximize

6



p.

p_,

J J 2 S

2 e 2 T -A (C.) t. (X c.t)

L.(: .;Ppsi ,s.t) = e s (3.3)

2the likelihood of c. given p~,a and the observations. Differen-

tiate the log of (3.3) and equate to zero to obtain the non-linear

estimating equation

e,= (s (3.4)2 t.
J

The nature of the estimate is appreciated if we let E.(l) ln(s/t

be an initial solution (putting si/t. =l/(3t.i)if s. 0), and pass

through one Newton-Raphson iteration to obtain

A s. ln(s./t + I./a 2

e (3  0 2 (35)

+^

Since a delta-method approximation to Var[ln(s.i/t.i)JA. X .

is just l/A ot 1/s, the estimate (3.5) is the linearly weighted

shrinkage of the log-rate estimate towards the assumed super-

population mean, p, with weights the reciprocals of the within

and between (superpopulation) variances, familiar in the normal/

Gaussian distribution Bayesian-conjugate prior framework.

The above estimates require values for superpopulation param-
ete Wbv estim nats renuie teeaea ad values ca uepouai n beam

2eters j = ii + x. - and a Once these are at hand, values can be

^ 2

computed for c. Desirably, pj and a can be estimated from data

on all J items' histories. Various options exist for this; some

are proposed and explored in a later section.

7



3.2 Gam uepplto

Consider the convenient (conjugate) alternative model

A. -U. exp (ax.

where now all is as before except that U. Gamma(6,ca), meaning

that the density is, for u > 0,

f(u;6,ca) e -6u (6u) (1 1 6 (3.6)

This model has a long history, for it leads to the negative

binomial marginal distribution of event counts:

k
P~s~kx} = -X(U)t [A(U)t]

00 k

f e-~~ ~ut f(u;cS,ct)du (3.7)

F kf( ) 6+ e p x C4 t exp (0 x) k

AF ksTe(xp t xx.( +--texp( U

Snceoasml lna oml for the gammaimteofth

X. E[= Is r 3 8

2 Ot



then

2m mU  m2U

Var[U] - Var[U]

the above expression can be expressed as

exp( x. )t. s. 1
J + r(m exp( x.

m t. VarU] U
. t (3.10)
3 exp(_x.)t + 1

Mu  Var [U ]
tU

which is again a linear shrinking of the raw point estimate (s./t.)

towards the appropriate superpopulation mean, here expressed as

mu exp (Nxj) ; the weights are again recognizable as within

(mu/exp(B x. )t.) and between (Var[UI) variance components.

Note that the random log-linear model (3.1) is only one

suggestive model form. Conceivably random individualization should

be of multiplicative form: ln X. = £. B3xj, rather than additive,

so that covariate influence varies from item to item. Other possi-

bilities also exist, but regression effects are not considered

further in this paper.

9



Option (A) (pseudo-t).

For this representation,

2
Q'(z) a cz( 1 +p/a) (5.28)

where a n-2, a = (n-3/2)/(n-1) from Gaver and Kafadar (1984)

requires solving the following equation for 4:

(n-1) 2 /a1e= (s. - 2 2_ . (5.29).il3 (n-2) (n-3/2) 2 2/(n-2) t.

this has arisen earlier as (4.3) in the context of finding an
Ii

individualized estimate of X..

To simplify calculations, one may initially take as an

approximate solution

ln(s./t.) -

j o J(5.30)

Reference to (4.3) then shows that

j = (-ln(l +-)) sign(^ (5.31)

Furthermore, for this determination of 6

1 2

QWe .) =(5. 32)
J2

Q'(e.) =e (5. 33)

23
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evaluated by Gauss-Hermite integration. Finally, then, the log-

likelihood is of the form

[Q ^(O 2
2{-Q()

t(-) + j 2 jlnQ"(8j) +ln lj} , (5.26)
j-l 2Q"O(e.

2which can be examined for maxima over j and o2 > 0. NOte that

if the equation Qi(z) is in fact solved precisely, then Q(Oj) = 0,
)

A 2A
and the correction term [Q'(;j) /2Q"(;.) may be omitted.

An important part of the computation involves finding Oj, an

approximate solution to the equation

Q'(z) = 0 z + X'(z)t. - s (z)
j X(z)

Parametrization by the sculptured form ln N,(z) = I + oa(z) leads

to the equation

0 z + o(t.(z) - S.)W'(z) (5.27,a)
J

or

0 z + o(t.e - s)'(z) (5.27,b)

At this point it becomes desirable to introduce a specific,

tractable, parametric form for (z). Consult (4.3): option (A),

- a pseudo-t, is handy, and will be adopted. Here are some details.

22
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regard q.(z) as the error in the quadratic approximation. Next

complete the square in the quadratic terms of (5.19) and put

X -i e)/Qff(G. + Q I(e./V (97T (5.21)

and hence

Z(x) = / 02+ (5.22)

It thus follows that

2

Q(z (x)) q.(z(x)) -- --- + x ,(5.23)

2QI" (e.

and that the likelihood assumes the form

2
L2 K______(01 _L.(j~a = Kexp-Q.(.)+---J-------.-) 1 2(5.24)

where

I.(j~j~a2) 2 [e -q.(z(x))dx,(.52 -x

2and K. is a constant independent of parameters pi and a .The

idea is that subtraction of the quadratic approximation from

Q.(z) should leave a relatively minor correction, I., to be

21



2 2

-" 2p (ej =/n2 s2

2 2 (n-2) (n-3/2) 1 +42(6.)/(n-2) 2
- j 0. ( ) (5.12)

(n-1)2

each of which is evaluated from (5.8,b). Note that if n then

the normal superpopulation case is obtained, and the present

approximation treats loq(s /t.) as approximately N(pa +l/sj).

Method 3: Quadratic Approximation to the Log-Likelihood,
Augmented by Gauss-Hermite Integration

The previous method blithely apjroxiirates the Poisson log-

likelihood by a quadratic in order to achieve convenient and

interpretable results. Consider next a more careful approach that

combines Methods 1 and 2. To do so, express the entire exponent

in the integrand of (5.4)--essentially the negative log-likelihood--

as

Q.(z 12 1 2Qj (Z) 2 + Q p(Z) z + t .A(z) - s. inA(z) (5.18)

Let e. be a solution of Q"(z) = 0. NOte that this solutionJ )

will not be as explicit as before, and so an approximate value

may sometimes be most conveniently used; call it e.. Now expand
J

up to quadratic terms and let

, 1 A- j 2Q *

Qj(z) = qj(z) + Q(0.) + (z-0j)Q!(08 + !( Q'()5

where

A (A ) 1 * 2 Aqj(z) Q (z) -Qj(j) - (z-0j)Q!(0 - ,(e (5.20)

20



or

ln(s./t.) -

= J ,(5.8,b)J '

namely

in (sj/tj-

ej = -i ( " ) (5.8,c)

Clearly Qpj(Oj) is independent of p and a2 and can be ignored,

while

Qpj(j) = 2[ (j)] 2 (5.9)

and so the approximate likelihood is of the form

1 2 1- 11 (0 .) (z-6 l2
2 1 2Z e Pj I ___L,(( ,0 2 ) = f _ e dz VQ' (0j)

J0 /7 Pj j

-expl-162 /(l + (Qpj (f))-I (5.10)1I + (pj (ej))
jj Pi

Specific adoption of sculpturing option (A), the pseudo-t, pro-

vides that

03=V 32) lo i+(O) 2 1]

e nl ( - sign (6 j) (5.11)

and

19
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solutions from (5.1). It has been discovered that care is required
%* 2

in the choice of the p, o start when analyzing a few short data

histories. Also, the straightforward integration is numerically

ill-conditioned.

Method 2: Quadratic Approximation (Laplace's Method Approach).

An appealing approximation to the integral (5.l,b) is obtained
.th

by expressing of the j- likelihood component as

1 2
2 0- -Qp (z)

L. (p,o ;s_,t.) = e e dz (5.4)-. :J J J -

where, except for irrelevant parameter-free constants,

-Q (z) = X(z)tj - s. n (z) , (5.5)
p)

which has a qualitatively bowl-shaped appearance. Hence

quadratically approximate Qp(z) as follows:

QPonz) QP (e) + 2Q;j(ej) (z -el) (5.6)

ebeing the solution of

'i-?k" X1'(z)
Q'(z) = X'(z)tj - s. ( 0 (5.7)

Ao..

so

X(e = s./tj , (5.8,a)

18
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where

1 2 s.
o2 =-(z) t (X(z) )

L.(P,a ;sit.) e dz (5.l,b)

and

log X(z) + a(z) = j + az,(z) (5.1,c)

% Throughout what follows the sculpturing function, p or equiva-

lently 4, is assumed given.

The integrals (5.1,b) cannot be carried out analytically._iz2

Owing to the appearance of e , the use of Gauss-Hermite

numerical integration is suggested. In the notation of Abramowitz

and Stegun (1968),

2 2
/Trr L.(Ija ;sj,tj) = f e - x f(x)dx _ [ wifj(x i )

JJ

where z = /x and

-X (x) t s

f1i  = ((X(/2xi)tj) 1
f(x.) e 1 J s. (5.2)

J

the xi w. values are taken from tables. A grid search among
12

, 2 values then reveals the approximate maximum likelihood

17
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5. Superpopulation Parameter Estimation

In order to provide suitable pooled, shrunken, estimates of an

individual item rate it is necessary to invoke estimates of super-

population parameters. Unfortunately, the superpopulation variate

values are not observed directly, but are contaminated by "Poisson

noise;" this complicates the task of parameter estimation.

Natural approaches to the estimation problem are through

moment matching, maximum likelihood or Bayesian approaches. We

suggest variations on these themes that require different degrees

of computer-intensive effort, and are of differing effectiveness.

The methods advanced for consideration have been compared by simula-

tions. The limited histories typical in various fields, e.g.

in reliability and survival studies, and in nuclear plant risk,

do not encourage faith in the validity of asymptotic error analyses

without such corroboration.

5.1 Likelihood Estimation for the Log Sculptured-Normal Poisson
(L/S-N/P) Model

Suppose that a time history of length tj results in s. events

for item j (j = 1,2,...,J). The data is to be analyzed with

reference to the general L/S-N/P model of (4.1), but for the

present = p, a constant; regression will be discussed later.

Method 1: Likelihood By Gauss-Hermite Integration.

2The likelihood of the parameter p and a given the data and

the L/S-N/P model can be expressed as

2 2L(Po ;s,t) = r L.(p,o ,sj,tj) (5.l,a)
j=l 3

16
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at this point, but treated as a tuning parameter: the smaller n

(n > 2), or larger h (h < 0.25) the greater the effect of the

weights upon discrepant observations. In practice, n = 4 has

given satisfactory performance, as will be suggested by simulations

and trial data analyses. For a similar analysis procedure in the

more classical robustness context see the biweights for estimation

of a distributional center, Mosteller and Tukey (1977), p. 353

ff.; our weight w.(n) is essentially an influence function, with

degree of observational influence adjusted by choice of n or h,

corresponding to the parameter c in biweight technology.

15



parameter far from the appropriate superpopulation mean Vj exerts

a small influence on the shrinkage term, so the quoted estimate

Aj tends to be nearly the raw rate sj/tj. Interestingly, all of

these extended tail models induce weights in excess of unity on

observations with log-raw-rates close enough to p this might be

called over-shrinkage, and is noticeable in Table 1, p. 79 of Berger

(1984), wherein a normal likelihood is combined with a Cauchy (one

d.f. t) prior. This very same effect has been pointed out by Tukey

in (1974), p. 132.

An interpretable approximation to these log rate estimates is

* obtained by the following linearization: in (4.3) or (4.6) start

with c.(1) = ln(si/t.) and turnthe Newton-Raphson crank once, but
)

evaluate w.(n) at c.(1), i.e. utilize (4.9). ThenJ J

(sj)ln(s /t.)+(1./G )w. (n)
ln X.(i) E c.(i) - 2 . (4.10)

(sj) + (1/o )w.(n)

-I

The term (sj) is the delta-method estimate of (Var[ln(sj/tj)]) ,

so the estimate quoted is seen to be nearly a linear combination

of the raw rate estimate and the individualized mean, with the

shrinkage towards the latter influenced by the discrepancy

(ln(sj/tj)- j)/a as reflected in the weights wj(n); small dis-

crepancies tend to shrink the estimate towards the mean, while

large discrepancies are tolerated, i.e. left largely without

shrinkage so that the quoted estimate is nearly ln X. log(s./tj).

The parameter n or h in the superpopulation models is not estimated

14



V+O0zj) 1
e. - e s - iw (h) (4.7)

and

w (h) (1 -4h)-3/ 4  (4.8)
32 hz.

(1 +2hz
2)e 3

. J

It can be seen that (4.3), (4.5), and (4.7) all can on occasion

have two real solutions, corresponding to the possibility of two

modes in the likelihood, or Bayesian posterior, for 0j. Strict

adherence to likelihood doctrine would force computation of each

solution and a check to see which globally maximizes likelihood--

a possible but tedious task. The same is true of a Laplace method

approach, which requires modification to account for the bimodality.

Consequently it is proposed to simply modify the estimate-dependent

weights (4.4) and (4.6) to estimated weights that utilize

the raw-data estimate ln(sj/tj) in place of 0j, so in each case

.(C(n)
w.(n) ln(s./t)-Ij 2

i+( J J ) (n-

which can be computed once; this modification leads to a unique,

approximately Bayes, solution with reasonable properties. Of

course both likelihood (or posterior) bimodality or the occurrence

of a small weight value may suggest the need for model changes or

other action.

Notice that in each case the weight w. (n) modifies the resulting)

estimate towards discrepancy tolerance: a value of the individualization

13
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1 .79 IN

2
2 ( n -l ) 2 _-

-(4;p j'o (sn-t1) = (n-i)t
) 2(n-3/2) I n2 ) - A( .)t.

+ s ilnA(j) , (4.2)

and is expressed in terms of the pseudo t individualization

*- . j - (zj). Differentiation then yields the estimating

equation for Xj, or 0j: if Ej = pj + G~j, then

A. E e C = (s. - ( - )w (n)) (4.3)

where

w.(n) (n-i)2  1 (4.4)j (n-3/2) (n-2) ^1 + (-J)2 1
+ a J)n-2

(B): The log-likelihood is very similar to (4.2); one obtains

only a slightly different weight:

,. .eJ.-
- e 3 = (s. - ,- j)wj (n)) .,(4.5), j j2 t.

G 2

with

w. (n) = nl ^ (4.6)
E .- 1 -P 3 2 1

1+ ( ) 2

(c) : In this case the convenient individualization parameter is

2a normal deviate, zj, where 4(zj) = z. exp (hz):

12
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(B) *(z,n) = (v(n- 2)/n)tn, a true Student t with n deg. fr.,

again with unit variance if n > 2. Parenthetically, use of

a finite varianc- t is in no way essential.

(C) O(z;h) = (1-4h)3/4ze h z 2 0 < h < 1 a member of Tukey's h-family;

see Hoaglin (1983), and Tukey (1974).

There are other interesting and convenient such forms that give

promise of providing multi-modal parametric representations; see

Cobb (1983). All of our above forms yield distributions of
2

c = ln A that are unimodal and symmetric, have variance a , and

are more stretch-tailed than the basic unit normal, z. As will

be seen, this latter qualitative modification has a beneficial

effect upon the rate estimator, reducing the tendency for indis-

criminate shrinkage of apparently very discrepant observations.

4.1 Nearly Explicit Discrepancy-Tolerant (Controlled Shrinkage)

Estimators of Rates.

The several sculptured normal representations just presented

yield directly interpretable rate estimates by way of approximate

likelihood maximization, as in (3.3). Results for options (A),

(B) , and (C) are sketched.

(A): Invert the pseudo-t to find

2 2
exp(-z 2 /2) = (1 +n - nl) 2/2 (n-3/2)

Now the log-likelihood associated with observation j is

proportional to

11
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4. Discrepancy-Tolerant Versions of the Log-Normal (L/N/P) Model:

The Log Sculptured-Normal Poisson (L/S-N/P).

It is natural to generalize the L/N/P model as follows. Again

put

= exp(E.) , (4.l,a)

but now

E." = ln x. = ij +o(zj) H j +ozj (zj) , (4.1,b)

where pj = p +xj , zj N/(0,1), and t(zj) = 0(zj)/z. is a

sculpturing function. See Gaver (1983), and also Hoaglin (1983)

for an account of certain such functions in the normal (Gaussian)

context, attributable to Tukey, see (1974). Call O(zj) a

sculptured normal. The purpose of (4.1,b) is to describe stretch-

tailed distributions of log-rates, i.e. those that exhibit quite

widely straggling exotic or extreme values, or outliers, both above

and below the normal-like central part. Illustrations of well-

behaved distributions of rates, as contrasted to straggling tailed

distributions, and even multi-modal distributions, appear in Figs.

1, 2, and 3. Our methods are aimed at dealing with the effects

of Fig. 2, and,to an extent, Fig. 3.

Here are some convenient sculpturings of the normal.

" (A) O(z;n) = Z 2n 2texp(z2 ((n -3/2)) 1/2 a pseudo-t;

(ni)

an explicitly-invertible approximation to a true Student t

with unit variance if n > 2. See Gaver and Kafadar (1984).

This representation is used extensively later in the paper.
N

10
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Q"(11 ) = 1 + sj(c@jV j^ ]) ,(5.34)

2
and now (5.26) can be evaluated for any p, a . The resulting

2
approximate log likelihood, log Lj (PO ), with L. as in (5.24)

j=l J
and above can be explored for maxima by numerical search. Alterna-

- c2
- tively, numerical integration of exp(-k(p,a )), see (5.26), with suitable

' 2
- (non-informative) priors for p and a results in Bayes estimates;

- this ambitious numerical step has not yet been carried out.

A more detailed investigation may begin by precise determination

of solutions to (5.29). Graphical analysis quickly reveals the

possibility of three real solutions, two of which identify local

maxima. It can be seen that, given p and a , the solution in

terms of E = (O-p)/a of the equation (4.5) modified with the

weight (4.9) is a reasonable choice for 0j, which is then converted

to 6. by (4.3). Now

=I~ 0 + (e( )t -s ) WO j) ,(5.35)

and

QQ( + a t t(0(e + o((t )tj s ".(; (5.36)

where

^2

^ J. J ^

€'( j) = 8 -t-- (I + 0 (0j)Ua) (5.37)

and

24
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111 2A ^2 ' 2

= {cO (1 +~ (O./6 (1 +e. -0 e ~ (e) 6 (5.38)

The 0.-derivatives are introduced into (5.24), and the resulting
J

expression is searched for maximizing values of p anda

25



6. Simulation Testing

The procedures described for carrhing out the estimation of
~2)

superpopulation center (p) and variance (a ), and the individualized,

or selectively shrunken, estimates of rates, e.g. (4.3), have

been appraised by simulations. In summary, the procedures

described deliver satisfactory results; empirical distributions of

estimates of p and a2 appear to center close to the values input,

and the average distance of selectively shrunken individualized

rate estimates from the true (distance being mean squared error,

median absolute deviation) often improve upon obvious competitors.

Of course these statements apply only to the range of parameter

values studied, which illustrate those encountered in certain

nuclear power system probabilistic risk assessments. A brief

selection of many simulations appears in the following tables and

- figures.

* 6.1 Simulation Design.

A simulation requires specification of the superpopulation form

and parameters, the sample size, the exposure times t. (j = 1,2,...,J)
j

and the sculpturing function 0(-) used in rate production. Note

that the latter function need not--and here will not--be the same

as that used to construct individualized rate estimates.

Specification of the present simulation follows.

(a) Superpopulation form is a sculptured normal form (C), the

Tukey h family, from which actual or "true" rates are easily con-

thstructed: X(j) = exp[ + a (z(j))H, where z(j) being the j ordered of J,

increasing magnitude) unit normal, where (z = exp(hz 2

26



Simulation of a sample of J begins by obtaining J unit normal

deviates, orderingthem, and computing X(.), j = l,2,...,J.

(b) Having X(j), and having specified t., J realizations of

independent Poisson random variabaes, or counts, are generated;

s. corresponds to mean X t..) (J) 3*

(c) The simulated observations (sj,t.; j = 1,2,...,J) are analyzed

according to the L/S-N/P model by Method 3 to obtain point esti-

mates of superpopulation parameters w and a 2. The pseudo-t

option (A) is used in the likelihood; parameter n has been treated

as a tuner, either specified as low, e.g. n = 4, yielding highly

restricted or selective shrinkage, or as high, e.g. n = 50, corres-

ponding nearly to the more conventional log normal model. A

numerical search procedure has been utilized to locate p and 
a 2

values.

(d) Individualized estimates A(j) are computed by these options,
2

using estimated i and a from (c):

MLE: A(j) =sj/t (6.1)

SSP: A(j) = solution of (4.3) using w.(n) - 1 (6.2)

RSP: ( ) = solution of (4.3) using the w.(n) of (4.9);

(6.3)

The abbreviations are, respectively, for maximum likelihood,

simple shrinkage Poisson, and restricted shrinkage Poisson.

2
(e) Each case (J,p,o , h,(tj),W combination is independently

simulated 200 times.

27
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2
(e) Each case, i.e. (J,ra ,h,t.,n) combination, is independently simu-

lated 200 times for Table 6.1, and 100 times for Table 6.2. The

mean-squared errors of estimators (6.1), (6.2), (6.3) are sum-

marized--summary figures (sample mean, median, standard deviation,

median absolute deviation, and mean squared error) for errors of

estimate of the smallest true rate X(1 )' the median true rate

X( J+l and the largest, X (j): A (j) -A(j). Choice of these three
(--)-

values for true A is enough to reveal the different behaviors of

the candidate estimators: in general SSP and RSP both greatly

improve upon simple MLE for centrist (median) A values by borrowing

strength, while RSP improves upon SSP at true X extremes by refusing

to overshrink.

Tables 6.1 and 6.2 summarize illustrative sets of simulation re-

sults. Note that the estimates of the superpopulation mean, P, appear

close to being unbiased, while those of the variance 2 appear to be

consistently biased downwards in Table 6.1 (J = 15 ), and about

right in Table 6.2 (J = 45). Standard error of estimate (square-

roots of the variances of the empirical distributions of the correspond-

ing parameters) are, not surprisingly, substantial; as is sensible,

they decrease as J increases. Nevertheless, comparison of the simu-

lated MSE figures for the various estimators suggest that RSP,

especially for n = 4, has advantages: for the smallest rates,

*.t and the largest, X RSP's mse more nearly resembles the MLE~( 15) '

mse performance than does the more heavily shrunken SSP, particularly

for n = 50 and 75 which imitate the action of a log-normal analysis;

for middle values, A and X(23), both RSP and SSP estimates

shrink moderately, all improving substantially upon the MLE.

28" ,. . .. . . .. . .
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Table 6.1

Selected Mean Squared Error Comparisons
and Estimated Superpopulation Parameters

J = 15, h = 0.15, 200 Simulations

Man Squared Error

True Estimator 11) (small) (8)(median) X 1 (larg(Values Estimated ()8)(15)

(n = 4): = -0.97(0.41) RSP 0.016 0.019 0.33

"2O = 0.17(0.15) SSP 0.020 0.020 0.34

ji=-1.0

2a = 0.25 0.007 0.030 0.32

(n 50): = -0.98(0.45) RSP 0.019 0.020 0.35

"~2
= 0.18(0.15) SSP 0.019 0.020 0.35

(n 4): = -1.93(0.50) tISP 0.0050 0.0060 0.28

= 0.18(0.17) SSP 0.0060 0.0058 0.30

= -2.0

2a = 0.25 MLE 0.0026 0.014 0.27

(n = 50): j = -1.93(0.52) FISP 0.0053 0.0057 0.30

?m " 2

a = 0.20(0.18) SSP 0.0054 0.0057 0.30
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Table 6. 2

Selected Mean Squared Error Comparisons

and Estimated Superpopulation Parameters

J =45, h =0.10, t. 5; 100 Simulations

True Estimator X A (Small) A (2 3 , (mediani) X(4 5) (large)
Values Estimated 1

(n 4):i =0.50(0.25) RSP 0.030 0.067 2.65

o=0.41(0.29) ssp 0.050 0.067 2.75

i= 0.50
2MLE 0.011 0.13 2.61

a 2=0.35

(n=-75) ~i-0. 56 (0. 30) FSP 0.042 0.069 2.68

a=0.44(0.28) ssp 0.044 0.069 2.71
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7. Analysis of Data

Our methodology will now be applied to several sets of observa-

tional failure or event rate data. In each case estimated super-

population parameters P and a2 are quoted, as are the unpooled

maximum likelihood individual rate estimates (MLE), the simple

linearized shrunken (Bayes) estimates (SSP), and the discrepancy-

tolerant restricted shrinkage estimates (RSP), along with the

weights associated with each of the latter. It appears that the

results so obtained contrast interestingly, with the RSP behaving

in the discrepancy-tolerant manner anticipated, and with small weights

influencing this behavior, especially in data sets for which J is

substantial.

7.1 Ship System Failure Rates

The numbers of failures during one year experienced by each of

J = 254 individual systems aboard a Navy ship have been furnished

by Dr. R. Coile. It is provisionally assumed that all systems are

exposed to failure throughout time, and that the failure process is

nearly Poisson; neither assumption can be checked, but the analysis

is of interest. The analytical results are in Table 7.1.

The heavy preponderance of zero and one-failure systems is

recognized by both SSP and RSP, which nearly agree: both shrink

in the same direction at this level. However, SSP continues to

shrink towards low rate values even for the two units with relatively

high observed rates, while RSP is far more discrepancy-tolerant, as

dictated by the corresponding low weights. It is interesting that

our procedures estimate, on the basis of a log-normal superpopulation,

I-2
an expected failure rate of exp(i +i ) = 0.54, close to the pooled

31
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TABLE 7.1

SHIP SYSTEM FAILURE RATES

^ ^2

-1.34, 2 1.46, J = 254

Number of SSP RSP
Units Failures MLE (n =75) (n =4) WT.

178 0 0.00 0.20 0.22 1.8

48 1 1.00 0.52 0.50 1.1

16 2 2.00 1.0 1.2 0.75

3 3 3.00 1.7 2.2 0.59

6 4 4.00 2.5 3.1 0.51

1 5 5.00 3.3 4.2 0.45

1 9 9.00 6.8 8.2 0.34

1 11 11.00 8.6 10.2 0.31
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observed rate of 0.50. The median failure rate is exp(p) = 0.26,

and since over one-half of the observations are zeros, it is also

encouraging that the estimated median rate is near the estimated

rate for systems with zero failures. Finally, a calculation of

the probability of zero events for a gamma superpopulation moment-

matched to the log-normal with the observed parameters yields

0.75, which may be compared to the observed fraction 178/254 = 0.70.

Although the simple calculation is perhaps crude, the agreement

is gratifying.

7.2 Loss of Feedwater Flow

Table 7.2 presents a set of data referring to the rates of

loss of feedwater flow for a collection of nuclear power genera-

tion systems; see Kaplan (1983). The corresponding SSP, RSP

derived rates are included. Once again, the units with very small

(< 0.5) weights, namely Systems 1, 3, 7, 18, and 19, all display marked

differences betweenRSP and SSP, with the resulting SSP estimates exhibit-

ing shrinkage upwards farmore extensive thanthose of the corresponding RSP

Systems 11 and 23 have the highest observed rates, both have about

" the same times of exposures and nearly the same computed weights,

and both RSP estimates are slightly less shrunken, thus closer to

the MLE, than are those from SSP. The estimated median rate,

calculated on the basis of a log-normal superpopulation, is
S

exp(P) = 2.56; the fraction of MLE rates equal to or exceeding

2.6 is 16/30 = 0.53; the corresponding fractions of SSP and RSP

rates is 15/30 = 0.5, in good agreement.

33
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Table 7.2

Loss of Feedwater Flow Rates-2 o2 ^

0.94 a 0.31; A= exp(p +a /2) = 2.99

System s(j) t(j) fILE SSP (n =75) RSP (n =4) WT.

1 4 15 0.27 0.59 0.35 0.19

2 40 12 3.3 3.3 3.2 1.6

3 0 8 0.041 0.59 0.087 0.063
4 10 8 1.3 1.5 1.5 0.98

9 5 14 6 2.3 2.4 2.4 1.8

6 31 5 6.2 5.7 5.8 0.80

7 2 5 0.4 1.0 0.64 0.27
8 4 4 1.0 1.5 1.4 0.74

9 13 4 3.3 3.1 3.0 1.7
10 4 3 1.3 1.7 1.8 1.1

11 27 4 6.8 6.1 6.2 0.71
12 14 4 3.5 3.3 3.2 1.6

13 10 4 2.5 2.5 2.5 1.8
14 7 2 3.5 3.2 3.1 1.6

15 4 3 1.3 1.7 1.8 1.1

16 3 3 1.0 1.5 1.5 0.74

17 11 2 5.5 4.6 4.6 0.92

18 1 2 0.5 1.4 1.0 0.34

19 0 2 0.17 1.2 0.41 0.14

20 3 1 3.0 2.8 2.7 1.7

21 5 1 5.0 3.8 3.7 1.0

22 6 1 6.0 4.3 4.5 0.83

23 35 5 7.0 6.4 6.6 0.68
24 12 3 4.0 3.6 3.5 1.4

25 1 1 1.0 1.9 1.8 0.74

26 10 3 3.3 3.1 3.0 1.6

27 5 2 2.5 2.5 2.5 1.8

28 16 4 4.0 3.7 3.6 1.4

29 14 3 4.7 4.1 4.1 1.1

30 58 11 5.3 5.1 5.1 0.98
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7.3 Globe Valve Leak Failures.

These data pertain to nuclear power plant globe valve leak-

mode failures, categorized according to operator type, the source

beina NPRDS data; see Hill, et al (1984), p. 9, where the results

of a gamma superpopulation analysis are presented and discussed.

The data are categorized by operator type, and the between-category

variability is described by a superpopulation. A more appropriate

analysis would presumably be (known) category by category, with

between-system variability within each known category described

by a superpopulation. Table 7.3 describes the data and estimates,

but also includes the gamma estimates of Hill et al.

Table 7.3

Globe V&"e Leak Failure Rates

4 ^2 -2

w(4) 0 040, a (4) 1= . , p(7 5 ) = 0.18, o (75) = 1.08

Gamma SSP RSP
Category s(j) t(j) MLE PEB (n = 75) (n = 4) WI.

1 31 236.9 0.131 0.134 0.138 0.136 0.60

2 157 115.9 1.35 1.35 1.35 1.35 1.7

3 30 36.8 0.815 0.823 0.816 0.825 1.3

4 13 7.60 1.71 1.67 1.63 1.62 1.6

5 7 5.47 1.28 1.27 1.22 1.23 1.8

6 7 1.69 4.14 3.35 3.38 3.51 0.96

7 0 1.12 0.00 0.411 0.47 0.55 1.0
(0.50) (0.83)

8 0 0.55 0.00 0.559 0.59 0.78 1.6
(0.6%) (U.b3)
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The gamma-PEB and the present SSP-RSP methodologies give

rather comparable results for the first six categories. The

last two categories differ more strikingly, with the SSP-RSP

procedure shrinking somewhat more extensively than the gamma,

the RSP weights, especially that for category 8, are surprisingly

high; this is believed to be the result of the necessity of

approximating the assessment of discrepancy on the log-scale for

s7 = s8 = 0. If the experiences for categories 7 and 8 are pooled

in order to compute weights, then the perhaps more acceptable

numbers in parentheses result. Although the weights placed on

the apparently discrepant rates for categories 1, 7, and 8 are

not as striking as might be wished, they are of interest. It

must be recognized that J = 8 is a very small group or "sample."
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