
D-i6@ 349 Rl SINGLE SERVER QUEUE IN A HARD-REAL-TIE ENVIRONMENT 
i/i

(U) DUKE UNIV DURHAMI NC DEPT OF COMPUTER SC IENCE

r K STRIVEDI ET AL. MAY 8,5 CS-1985-i2 AFOSR-TR-85-0747,7 UCASIFIED AFOSR-84-8i32 F/G 9/2 N

EEEEonshi

I KE.



* V.

Ki

l'"o ...

I'll'-
1111125 1111114 1111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREW-W STANDAR-1963-A

pL.



AFOSR-TR ....

0

CS-1985-12

OA Single Server Queue in a Hard-Real-Time
CEnvironment
TFrancois Baccelli

INRIA
IFrance

Kishcr S. Trivedi
Duke University

9-4

" DTI C

OT13'9851
This documE'nt has bor.n o-,Pvovord
for public release and zak..; Ic 7
distribution is unlimited. If

Approved fer pubili releaseo;

distributin 
un 

-imlted



REPORT DOCUMENTATION PAGE
Iii REPORT SECURITY CSSIp:CAION 1b RESTRICTIVE MARKINGS

,a SEC.R:Ty CLASSIFICAT ON Au7HOR,'Y :i. 0,STRIBIT ION. AVAiLABIL Ty OF REPO~RT

2b -EC-ASS.FICAfl0N DOWNGRADING SCt-EZULE -, .

4 PERCCAMING ORGANIZATION REPORT NUMBIERtS) 5 MONITORING ORGANIZATION REPORT NUMBER S,

AFOSR -TR. ~ 74 7
ma NA~ME Cr- PERFORMING ORGANIZATION 5.OFICE SYMBOL 7s. NAME OF MON~lORING ORGANIZATION

Duke Universityr I ------- = --

6c. ACORESS 'Cjt*. State and 71I, Code, 7b. ADDRESS eCit). Sta ann ZIP Code,

21Q: 1North Building Scirencesa _%7B~- DC
Durham, NC 27706 c ceBingA C

go. N4AME OP FUNOING,'SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENJ.'4t! RUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applcbble)

AFOSR NM AFOS-84-03
1k. ADDRESS ICity. State and ZIP Code) 10. SOURCE Of FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

Boiling AFB DC 20332 ELEMENT NO. No. NO. NO.

11. TITLE (incuLde Securty Clisesficsigion) A Sing le server
Queue i~n a Hard-Real-Time Environment 61102F 2304 K3

12. PERSONAL AUTHiOR(S) .

Kishor S. Trivedi
13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Vr. Mo.. Day,i 15. PAGE COUNT

F PROM _ To_

16 SUPPLEMENTARY NOTATION

17 COSA T I CODES 18. SUBJECT TERIMS tCon tinue on reverse it niecesnrv and tdentmf5 by block naumber,

9 ifL0 GROUP S UB. PR.- single server queue, mission time

ig ASST PA CT -Con t,nue _,, r~esje dnecessarv11 an oen tit, nn, biacm nu~mber,

We consider a single server first in first out queue in which each arriving task has to be completed within

a certain period of time (it's deadline). More precisely, each arriving task has its own deadline - a non-

negative real number - and as soon as the response time of one task exceeds its deadline. the whole system

is considered to have failed. (in that sense the deadline is hard). The main practical motivation for

an~lyzing such queues comes from the need to evaluate mathematically the realiability of computer Sys-

tems working with real time constraints (space or aircraft systems for instance). We shall therefore be

mainly concerned with the analytical characterization of the transient behavior of such a queue in order

20 DISTRIBUTION A w..L.ASILITY OF ABSTRACT 21. ABSTRACT SEC PlTY C...ASSiFICATION

UNC..ASSIF-EDUN.. LD SAME AS RPT OTiC .,SERS Z "IC

22L. NAME OF RESPONSIBLE INDI1VIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
tahcluit Area Codd,

Brian W. Woodruff, Maj, USAF ( 02: C- 5027



,jNITY CLASS'IPICAT$ON OP THIS PAGE

to determine the probability of meeting all hard deadlines during a finite period of time (the "mission

time"). The probabilistic methods for analysing such systems are suggested by earlier work on impatience

in telecommunication systems [I, 12).

f

"1.'"

-. op

A cvail -or

"I S CRA&l

;i k: [l i: ix.. i .

By....................3,

"'"Dis ib tio i_ Availability Codes

Dist Special

UNCLASSIFIED

SICURITY CLASSIPICATION Of THIS PAGE



A Single Server Queue in a Hard-Real-Time Environment*

Francois Baccelli**
INRIA

Rocquencourt
France

and

Kishor S. Trivedi
Department of Computer Science

Duke University
Durham, NC 27706 USA

ABSTRACT

considea single server first in first out queue in which each arriving task has to be completed within

a certain period of time (iWe deadline). More precisely, each arriving task has its own deadline - a non-

negative real number - and as soon as the response time of one task exceeds its deadline, the whole system

is considered to have failed. (In that sense the deadline is hard). The main practical motivation for

analyzing such queues comes from the need to evaluate mathematically the realiability of computer sys-

tems working with real time constraints (space or aircraft systems for instance). We-hal therefore 4e{t e

mainly concerned with the analytical characterization of the transient behavior of such a queue in order

to determine the probability of meeting all hard deadlines during a finite period of time (the -mision

time ). The probabilistic methods for analyzing such systems are suggested by earlier work on impatience

% in telecommunication systems 1],[2]

. -' n..... '-At'R

This work was supported in prt b he National Science Foundation under grant number USNSF MCS 83-0200, by the
Army Research Office under grant DAA'O* 46, and by the Air Force Office of Scientific Research under grant number
AFOSR-84-0132.

•This work was begun when Dr. Baccelli was a visiting scientist in the Department of Computer Science at Duke University.

1;% 
-



2

1. Introduction

In this paper, we are concerned with the analysis of a system operating in a hard-real-time environ-

ment. In such a system, each job (or task) must be completed within a specified period of time after a

request for its execution arrives. If any job fails to complete within its deadline, the entire system is con-

sidered to have failed. For a description of such systems and their analysis in a deterministic environment

see [9].

We consider here a single server queueing system in which job arrival stream is Poisson and the job

service requirement is generally distributed. Each job has a deadline associated with it so that if the

response time of a job exceeds its deadline, we will assume that the system has failed. The system can

also fail due to a breakdown experienced by the server. The completion time (or the actual service time)

of a job once scheduled will be allowed to depend, in general, on the job sequence number. In this way,

graceful degradation of the server can also be taken into account. The aim of this paper is to derive an

expression for the average number of jobs completed before system failure.

M/G/1 queueing system with server breakdown and repair has been analyzed by Gaver [4] while

and M/M/n queueing system with server breakdown and repair was analyzed by Mitrany and Avi-ltzhak

[11]. Baccelli and Trivedi [31 analyzed and M/G/2 standby redundant system with breakdown and repair.

These studies carried out steady state analysis. Approximate transient analysis of such a queueing system

has been carried out by Meyer [10] assuming no repair while Kulkarni, Nicola, Trivedi and Smith [8] have

extended this analysis to allow for (possibly imperfect) repairs. The latter effort (7,8], also allows for

deadline constraints to be imposed but only in the case that no resource contention is permitted. Analysis

in the present paper is exact and allows for deadline constraints, queueing and server breakdown.

After defining the basic model in the next section, we then derive the functional equations for the

queueing system in section 3. These equations are specialized to the case of an M/G/1 queue with

exponentially distributed deadlines and independent geometric server failure process in section 4.
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2. The Basic Model

Although various computational assumptions will be introduced later on, we first state the queueing

problem in its generality.

Let (a ,n > 1} and {6 ,n > 1} represent the respective completion time and deadline length of

the n -th job. or. represents the actual time job n spends in the server once scheduled. This may take

into account a possible degradation of the server's capacity. Therefore the statistics of a. will not be sta-

tionary in general (for instance the time to serve a unit-customer may increase with the age of the system)

and or. is allowed to be infinite (for instance when the server has failed before the completion of the job).

Let r., n > 1 represent the time between the arrivals of customers n -1 and n. r. will be assumed a.s.

finite.

We shall represent the successive response times by a sequence of defective random variables R.,

n > 0:

- R0 is a given a.s. finite random initial condition,

- R.+1 represents the response time of the n +1-st customer provided its completion time is finite

and provided the n -th customer experienced a finite response time and met its deadline. Otherwise,

R, +I is infinite.

Mathematically, the evolution of R. is described by equations (1) and (2):

(R. <oofla'+,<ooiflR. <6, )

-R.+1<oo} = <oo) (Rh <6k>),.,+i<oo) n >

(f{Rk <6k 1)fn.(+1< 0}
k-i

{R, < o} = (o, < oo}.

and in the event {R.+ 1 <oo):

R.+, - [R.-r.+,]+ + a.+,, n > 0 (2)

where [a]+ denotes max(a,0). Hence, on {R,+1<oo), R,+ 1 is fully determined from (2) and the

* knowledge of an initial value of R 0. In the complementary event, {R,+, = oo}, R,+ is determined by
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, (1).

We introduce now computational assumptions to be used in the sequel of the paper:

- The sequences (r. ,n ? 1}, {o" ,n > 1} and (6, ,n > 1} will be assumed independent.

- The arrival stream will be assumed Poisson of intensity X.

- The hard deadlines will be assumed to be i.i.d. exponentially distributed random variables with

parameter 6.

- The a., a will be assumed to be independent but not necessarily identically distributed random

variables. We shall denote as -y (a) the quantity Eec * 1(,. <o)], Re (8) > 0.

5. The Functional Equation

Let a CC, Re (8) >_ 0. From equations (1) and (2) we obtain:

e-8R%+1l(RO+1<oo) = e-8 [R.-r.+11+ C-80 1 {+ (R. < o) 1 (R. < 6.}l(o.+ < c) • (3)

Let

(s)=E [e-R.I a (R. < c)], n > 0. (4)

Taking the expectation on both sides of (3) and using independence and distributional assumptions, we

get

0.. A -In+ (S )E [e-IRsrm+]+l{R < 6.)'{R. < co)]

= As1 +(a )E [e JR. --t+ 4+ e -6 R, I{R. < 00)]

R.

-- -9+i(8 ){E [e(+ )1{R. < 00)] + E[e - " f Xe - (R' - t) e-dt l{R. < oo)]}.
0

So that 0, (8) satisfies the recurrence equation

(;6 .1%( ) [.('+6)-' 0. (\+6)], n > 0. (5)
X-a

For z G C, z I < 1, let G(a ,z) and F(e ,z) be defined by the power series

Jj .w - .*.,,.*,",
]~, ** . *
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F(,z)= -- .(a)z*
2 i

Using the recurrence equation (5), we get

5 0

Then using Hadamard's theorem [5] we conclude that F(a ,z) satisfies the functional integral equation

(see the Appendix):

fF(8 z) 04) + f F(a +.,v)G(a+f. )du (7)
d X-a 2i r r

--- f F(.\+6,u )G (+,Ai)dvJ
ri M

where the contour integral is taken on any circle with center at 0 and of radius R where I z I < R < 1.

Before considering special cases, let us note how to get features of practical interest from the

knowledge of the solution of (7). Let N* be the stopping time defined by:

N* =i;if{n > 1 R. > 6.. (8)

The very definition of .. (a) and (1) entail:

.0) = P[R. < oo = P[I(Rk <6k)fl(. < oo)1 (9)
k-i

=as.P[N* >n], n >1I

where a. z=P(a. < o).

So that the mathematical expectation of N*, the number of customers served before (and including) the

first hard failure is given by (in case a. - a for all n > 1):

a p



E [N* x lim(F(O,z)-o(0)). (10)

More generally, denoting by r a circle of center 0 and radius R < 1, one gets from (8) and (9)

P [N* > a] = f Fr-''z) dz
- 2iwr r*"

4. A Special Case: Systems with geometrically distributed catastrophic failures.

Consider a system in which the server is subject to catastrophic non-repairable failures (i.e., when

the failure occurs, the server stops functioning forever). Assuming that the number N of customers that

this system can process before the first failure (and disregarding hard deadline constraints) is geometri-

cally distributed with parameter a so that

P [N = n (12)

Such a situation will occur in case the server can experience a catastrophic failure with rate X1 so that

the probability of a successful job completion a -f a dFs(t )=G( G ),
0

where we assumed that the service requirements of customers are i.i.d. with common distribution func-

tions Fs and Laplace Stieltjes transform G (8 ). In this case, we get the following representation for,0.(8):

i .:'0(8 ) ff a'  G( (13)

-and from (7) we get:

F(8,)= o(s) + az-G (8) [X F(8 + 6,z)- sF(X + 6,z)]. (4)

Let

a(s~) XazG(a)I .8 za) "( (15)b (,,Z) "- 0(,s - - F(X+b,z)

Equation (14) can be rewritten as

! w"W " .-. .,, . ., % ,, ., . -.w ' . .. - : ,;, ,
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F (a z)= a (a z)F(s+6,z) + b(.,z) , (16)

so that for any finite integer n and for Re (8) > X

F (a z)=b(s z )+ F,( fe(8 + i ,z)b (a +k,z) (17)
h-i i-0

+ ( i 0a (8e+i6))F(e +(n +),z)

Let us show that R. (a ,z) the last term in the right hand side of (17), converges to zero as n goes to

infinity. For large n ,

a ( +n6,Z " a IG (s+n6)I

< K(z) -

so that the convergence of this remainder is faster the" 1/a!:

IR.(eP,z)I f(~) 5K 1 (8

Hence in the limit, (17) yields the expansion:

F(s z) E 2(rl a (a +i,z))b (s+k,z) ,
40i-0

where

-1

j 7 a (8+i 6,Z) =1I.

Using our definitions (equations (15)) we get:

fla,z) E(\z)h( 6- G(. +s6 i ~6) (19)
h O ,-O )t-8-ib )0811

~F(.\+6,Z)OZ{ (azr k G(8+ib)
, 0\a )k o X--n )(8 +k 6)1}

We remain with the problem of determining the unknown function F ()+6,z). For this, let us multiply

both sides of (15) by (X-8e) and take the limit as a approaches X. Since F (8 z) has to be analytic in x at

X, the L.H.S. has to vanish implying then the relation:



(zz r kk UG(X+i6) • 0(X+(k+1)6)

FC(X+b,z) X k - (20)
E(-r G(X+ib)(X+kb) (0

h>O k!

where

XaT

One should notice first that in each term in the R.H.S. of (19), there are possibly singularities other than

a - X situated inside the right half plane: a X - i 6 for those i > 1 such that X-i 6 > 0 - if any - is

such a singularity. Actually, we can check directly that removing any of these possible singularities (as

we did for e X) provides the same expression for the unknown F(X+6,z) so that the function

F__ _ _ 8 ) XcfG(s) (X (8) ( 0o(a+(k+I)6) (21)F(8,) 8) q(-8) "{>O v
- -S k> k!

k~~o k! v() 6

(xz k ( ) (a8 +,6)-k>

ib

where +i +-

is an analytic function of (a ,z ) for Re(8) _0 and z z i < 1.

Accordingly, equation (11) provides the following expression for the expected number of customers

1* served before the first failure:

E [N* ](22)

[~ ~ih 0)4(k6+)] ~ X)X~k6)-[~2 ~-v~(0)k 6][ X TT-~-v (X) o(X+6+k 6)]

_ k k>O ! k 0 k!

-L-L (X)(>.+k 6)
k>0Ok



5. Numerical Results

Next we give some numerical results based on equation (2). In figure 1, we have plotted E [N*] as

a function of 1/6 with >! = 0.0001 for the case of an exponential service time distribution with mean 0.5

and the arrival rate X - 1. We also compare the numbers obtained by equation (22) with those obtained

by simulation. In figure 2, we keep X! = 0.0001 and vary the service time distribution, which is assumed

to be gamma distributed with mean 0.5. We vary the shape parameter ,a0 , of the gamma distribution

over the values 0.5, 1 and 5.0. We have assumed in the numerical example that 0(s) 1.

6. Conclusion

We have studied an M./G/1 queueing system with server breakdown and hard deadlines on job

response time. Thus, a transient analysis of the system is performed in order to determine the average

number of jobs completed before system failure. Extensions of the model in the direction of a more gen-

eral "server" with multiple processors, subject to failure/repair type of degradation in the sense of [7,8] is

needed.
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Appendix

Let G(z) and F(z) be two analytic functions in the domain I z j < I with expansions

n>o

FC(z)- E . z.",
n3 >0

Let r be a circular contour of center 0 and radius R where I z j < R < 1 for a given z so that

! IzI <1.

For u in the ring shaped domain I z I < v I < R, F(u) G(.- is analytical in u and has the

Laurent expansion

F (U). G (-L = F, r 0. -Y,,Z k U -k
S>0 k >0

Hence, the coefficient of a- ,j G N in this expansion is given by the contour integral

S1 F (,)G( z)
+i z am+i f du

5>0 2if r

b4

.

'a

-a! - .
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