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§1. INTRODUCTION

Let U be a positive regular Borel measure defined on [0,®), we call
the following equation

£(x) 'I f(x+y)du(y), a.e. x>0 (1.1
0

an integrated Cauchy functional equation (ICFE(u)). Lau and Rao (1982),

Ramachandran (1982), gave two elementary methods to characterize all non-

negative locally integrable solutions f of the ICFE(u) . as
ax
f(x) = p(x) e a.e. (1.2)

where p 1is a periodic function of periods T € supp U and

reax du(x) = 1,
0

The theorem was used to characterize probability distributions arising from
the strong lack of memory property, conditional expectation, record value
problem, order statistics, Pareto Law (Lau and Rao (1982)). Generalizations
of (1.1) were also investigated and used to study a damage model of Rao
(Alzaid, Rao, Shanbhag (1983), Lau and Rao (1984)).

In characterizing the characteristic function ¢ of a random variable
which satisfies the following generalized semistable law:

Y24-1

) Y ]
oe) = T ¢ 24 (B.. ), tER

1=1 1=1 21-1

0 < B1 <1, A > 0, one is confronted with solving the following equation
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£(t) = I: f(xty)d(u-v)(y), x>0 (1.3) -

where y and V are positive regular Borel measures on [0,°) (Kagan,
Linnik and Rao (1973), Shimizu (1978), Shimizu and Davies (1981)). Shimizu
(1978) classified the solutions f of (1.2) under certain growth conditions
on Y, Vv and on £, In this note, ve apply the result of the ICFE(n) (1.1)
and obtained a much simple proof of Shimizu's theorem. The hypotheses on

p and VvV turn out to be redundant.

The authors wish to thank Professor C. R. Rao for bringing their

attention to this problem.




§2. THE THEOREM

We assume that H# and Vv are positive regular Borel measures on

[0,), wu,v # 0.

PROPOSITION 2.1: Let £, g be nonnegative locally integrable solutions on

[(0,#) satisfy the following equations

f(x) = [” f(xty)du(y) + j g(xty)dv(y)
0 0

a.e. x>0, (2.1)

g(x) = Jw g(x+y)du(y) + [” f(x+y5dv(y)
0 0

Then f£(x) = p(x) eax’ g(x) = q(x) e™ a.e. where P, 9 are periodic functions
a
with periods T for T € supp(u + ): un*vz) W=, *,) and «

n=0
satisfies

r e a(v) (x) = 1.
0

PROOF: By adding the two equations in (2.1), we have

(f+g) (x) = r (£48) (x+y)d (1) (y), a.e. x}_a._
0 )

(1.2) implies that

(£4g) (x) = £(x) e** a.e.
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where r 1s a periodic function with periods T € supp(y+v) and

r eaxdu(x) =1,
0

We will assume, without loss of generality, that My + Uy is a probability

measure so that u = 0, Consider the following identities:

f(x) = r f(x+y)du(y) + r g(x+y) dv(y)
0 0

- r f(x+y)du(y) + r f(x*-y)dvz(y) + r g(x+y)d(u *v) (y)
0 0 0

k-1
- r f(xcty)du(y) + ) r £(x+y) A 2D (y) + r g(xty) (% v) (y) .
0 0 ' 0

n=0

Since p + Vv 1is a probability measure, the total variation Hull of u is

strictly less than 1. Also since
0 < g(x) < r(x) a.e.
and r 1s bounded, we can conclude that

lim r g(x-i-y)duk*v = 0, a.e. x20
k* ‘0

and

f(x) = r f(x+y)du(y), a.e. x>0 (2.2)
0




where w=p+ ) W *v2. Note that
n=0

[ ]
2
Hull+ T 1Tl ™« Jivl]

n=0

1l

1 2
Hall + 7=y | VI

Hull + 11vil

= 1’
the solution f of (1.2) hence equals p a.e. where p 1is a periodic
function with periods T € supp(M). - Similarly, we can show that g(x) = q(x) a.e.

where q has the same property as p.

COROLLARY 2.2: Llet u, v, f£f(x) = p(x) ™™ and g(x) = q(x) e™* be as in

Theorem 2.1. Then either

(1) 1If there exists a p > 0 such that
supp 1 c {2p,4p,6p,...} and supp v c {p,3p,50,...1},

then

p(xtp) = q(x), q(x+p) = p(x) a.e., x>0, or

(11) p = q for the other cases.
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PROOF: Without loss of generality, we assume that pu+v is a probability measure.

Let
Al) = {0,20,30,5...}, B() = {p,30,50,...1}.

(1) By assumption, suppu ¢ A(2p) implies that

L -]
supp (u + f un*vz) c A(2p).
n=0

It follows that p,q have periods in A(2p). By substituting p,q into (2.2),

we have

p(x) =p(x) ul[0,») + rq(x*-y)dv(y)
0 a.e. x2>0. (2.3)

q(x) =q(x) u[0,=) + rp(xi-y)d\)(y)-
0

From the first equation, and make use of (u+v)[0,») = 1, we have for x>0

o
[

r (p(x) = q(xty))dv(y)
0

] (p(x) -q(x+(2n+1)p)v((2n+1)p) (since supp v< B(p))
n=0

Z (p(x) =q(x+p))v((2m+l)p) (since q has periods in A(2p)
n=0

(p(x) ~q(x+p)) § v((2n+1)p). (2.4)

n=)

This implies that

q(x+p) = p(x) a.e. x>0.
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By applying the same argument to the second equation of (2.3), we have
p(xtp) = q(x) a.e.

(11) We divide it into two cases: (a) suppu U suppv generates a lattice
but does not satisfy (i), (b) suppu U suppv does not generate a lattice.

In case (a) let p >0 be the largest real number so that
suppu usuppv ¢ A(p).

Since (i) cannot be satisfied, then either (a) suppu ¢ A(2p) or (B) suppu c A(2p),
suppv ¢ B(p). In (a), the greatest common divisor of members in supp(u + ; u® *vz)
‘ n=0

is p. Hence p,q are periodic functicns with period p. By substituting into

(2.1), we have

p(x) =p(x)n[0,») +q(x)v[0,~). a.e.

This implies that p(x) =q(x) a.e. In (B), by using the same argument as in (i),

we obtain
p(x) = q(x)a+q(x+p)b a.e.
where a = Z v((2n)p), b = Z v((2n+1)p) (instead of (2.4)). Similarly,
n=0 n=0 .

q(x) = p(x)a+p(xtp)b a.e.
By a simple calculation, the two equations imply
p(x) = q(x) = 0 a.e.

For case (b), since suppu u suppv does not generate a lattice, it is easy to show

that p,q are constants, and (2.1) implies that p=q a.e.
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THEOREM 2.3: Let u,v # O be positive measures on [0,») such that u+v is a pro-

bability measure, and H is a bounded measurable function on [0,») satisfies
Hx) = rﬂ(xfy?d@(y) - v (¥l) 2.5)
‘Q ’
Then either one of the following hold:

(1) 1if there exists a p >Q such that

suppuc {20,40,...}, suppvec {0,30,50,...}

then H(xtp) = -H(p) a.e.
(11) H(x) = 0 a.e. otherwise.

PROOF: Let G1 be a nonnegative locally integrable solution of the ICFE (u+v).

Let K be the bound of H, and let
G(x) = Gl(x) +K, x>0.

Then G also satisfies the ICFE (u+v), i.e.

G(x) = r G(xty)d(u+v) (y) a.e. x>0. (2.6)
0

By adding and subtracting (2.5) and (2.6), we hawve

(G+H) (x) = I (G+H) (xety)du (y) + r'(G-H) (xt+y)dv (y)
0 0

(G-H) (x+y)du(y) + f (G+H) (x+y)dv (y)
0

r@
(G+H) (x) = J
o

and G+tH, G-H > 0. Theorem 2.1 implies that

(GHH) (x) = p(x), (G-H)(x) = q(x) a.e.

............
............................
. . .
....
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vhere p,q are periodic functions with periods in supp(n + Z unﬂ* v
n=0

n). There-

fore
: 1
H(x) = E-(p(x)-q(x)) a.e,
The conclusion about H follows from Corellary 2.2,

COROLLARY 2.4: The conclusions of Theorem 2.3 also hold if we replace "H is

bounded" by "for each y >0, B(xty)-H(x) is a bounded function on x".

PROOF: For each fixed y, apply Theorem 2.3 to H(xty)-H(x). In case (i), we

have

HOcty+p) ~HOxetp) = -(H(x+y)-H(x)) a.e.

This implies that

H(xty+p) + H(xty) = -(H(xtp) + H(x)) a.e.

As y is arbitrary, we can conclude that

H(xtp) + H(x) = 0, a.e.

For case (if), we have for each y,

H(x+y) - H(x) = 0, a.e.
This implies that H is a constant, and (2.5) shows that it must be zero.

REMARK: It is clear that if o satisfies

re°“d @-v)(x) = 1
0
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then H(x) = * 1s a positive unbounded solution of (2.5), however we are still un-

able to characterize all those solutions.
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