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ABSTRACT

: "-9
In characterizing the semistable law, Shimizu reduced the problem into

solving 4kv equation H(x) - H(x+y)d(i-v)(y), x > 0 where -w and -w

are given positive measures on [0,#). In this veee-,ie obtainAa simple

proof and showsthat some of his conditions can be weakened. Accession For
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§1. INTRODUCTION

*" Let P be a positive regular Borel measure defined on [0,-), we call

the following equation

f(x) - J f(x+y)dp (y), a.e. x>0 (1.1)
J0

an integrated Cauchy functional equation (ICFE(i)). Lau and Rao (1982),

Ramachandran (1982), gave two elementary methods to characterize all non-

negative locally integrable solutions f of the ICFE(U) as

ctxf(x) = p(x) e a.e. (1.2)

where p is a periodic function of periods T E supp U and

F •x du(x) - 1.

The theorem was used to characterize probability distributions arising from

- .the strong lack of memory property, conditional expectation, record value

problem, order statistics, Pareto Law (Lau and Rao (1982)). Generalizations

of (1.1) were also investigated and used to study a damage model of Rao

(Alzaid, Rao, Shanbhag (1983), Lau and Rao (1984)).

In characterizing the characteristic function 0 of a random variable

which satisfies the following generalized semistable law:

Scc Y2i-l
0(t) - t 2iT _t), t £ R

0 < < 1, Yi > 0, one is confronted with solving the following equation

,~~~~~... . . . . ....'.. "€ ', '-. ..-. -. .. - ...-,,"... .. -.... *-..... -... . . ./ o .. " ,..- . ..-..-. - .. - .,....
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f(t) - f(x+y)d(U-V)(y), x > 0 (1.3)

where U and V are positive regular Borel measures on [0,0) (Kagan,

Linnik and Rao (1973), Shimizu (1978), Shimizu and Davies (1981)). Shimizu

. (1978) classified the solutions f of (1.2) under certain growth conditions

on U, v and on f. In this note, 'de apply the result of the ICFE(U) (1.1)

i and obtained a much simple proof of Shimizu's theorem. The hypotheses on

1i and v turn out to be redundant.

The authors wish to thank Professor C. R. Rao for bringing their

attention to this problem.

a
"
.
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52. THE THEOREM

We assume that V and V are positive regular Borel measures on

PROPOSITION 2.1: Let f, g be nonnegative locally integrable solutions on

[0,a) satisfy the following equations

f(x) " f f(x+y)dp(y) + J g(x+y)dv(y)
a.e. x >0. (2.1)

g(x) = f g(x+y)dp(y) + f f(x+y)dv(y)

ax axN
Then f(x) - p(x) e , g(x) - q(x) e ae. where p, q are periodic functionso

with periods T for T c supp(u + I. *n 2) (1j n = , . and a
n=0

satisfies

feax d(i+V) (x) = 1

PROOF: By adding the two equations in (2.1), we have

(f+g)(x) - f (f+g)(x+y)d(pz+v)(y), a.e.

(1.2) implies that

(f+g)(x) r(x) e X a.e.

'/":"i,'..','-, .... " '. "'. " " " """ " """" """" " " """ "" " "".".""'"".".","... ... ,.....-....-...,...-

.", , -.. .. ....... . .-.-... ',", "- S, ,,5-5*,o p.....' 'r, ,'. . .':..
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where r is a periodic function with periods T c supp(J+v) and

Fo dpi(x) - 1.

We will assume, without loss of generality, that v + i 2 is a probability

measure so that 'x - 0. Consider the following identities:

f(x) - F f(x+y)di.1(y) + F g(x+y)dv(y)

= F f(x+y)dii(y) + F f(x+y)dv2 (y) + F g(x+y)d( * v) (y)

a f(x+y)du(y) + k. f (x+y)d(ln*V2)(y) + g(x+y)d(li k*v)(Y).

Since V + V is a probability measure, the total variation I IlI of V is

strictly less than 1. Also since

0 < g(x) < r(x) a.e.

and r is bounded, we can conclude that

lim f g(x+y)d k * v = 0., a.e. x>0

and

f(x) FO f (x+y)dw(y), a.e. x>O (2.2)
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where w i + I n*V 2 . Note that
n-O

ji _ I l VII+ I I I n " IIV, 2
n=,O

- I IVlIl + I vi 1V1

- 1,
- 11111 + 11IIl

the solution f of (1.2) hence equals p a.e. where p is a periodic

function with periods T C supp(V). Similarly, we can show that g(x) - q(x) a.e.

where q has the same property as p.

COROLLARY 2.2: Let P, V, f(x) - p(x) ea and g(x) - q(x)• a x be as in

Theorem 2.1. Then either

(i) If there exists a p > 0 such that

supp v c {2p,4p,6p,...} and supp v c {p,3p,5p,...,

then

p(x+p) = q(x), q(x+p) = p(x) a.e., x > 0, or

(ii) p - q for the other cases.
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PROOF: Without loss of generality, we assume that v +v is a probability measure.

Let

A(p) - {p,2p,3p,...), B(p) - {p,3P,5p,...}.

(i) By assumption, suppp c A(2p) implies that

supp (v + 7 pn v2 ) S A(2p).
rimO

It follows that p,q have periods in A(2p). By substituting p,q into (2.2),

we have

p(x)inp(x) 110,-) + fq(x+y)dv(y)
0 a.e. x>0. (2.3)

q(x) -q(x) 10,'-) + P(x+y)dv(y).

From the first equation, and make use of (u+v)[O,-) - 1, we have for x>0

0 TO (p(x)-q(x+y))dv(y)

i (p(x) -q(x+(2n+l)p)v((2n+l)p) (since supp vc B(p))
n-O

M I (p(x) -q(x+p))v((2n+l)p) (since q has periods in A(2p)
n-0

- (p(x)-q(x+p)) j v((2n+l)p). (2.4)
n-0

This implies that

q(x+p) - p(x) a.e. x>0.
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By applying the same argument to the second equation of (2.3), we have

p(x+-p) - q(x) a.e.

(ii) We divide it into two cases: (a) supp u u supp v generates a lattice

but does not satisfy (i), (b) suppli u supp v does not generate a lattice.

In case (a) let p > 0 be the largest real number so that

supp u usupp v c A(P).

Since (W) cannot be satisfied, then either (a) suppu v A(2p) or (a) suppp cA(2p),

suppv B(p). In (a), the greatest common divisor of members in supp(fij+ Y n *2 )

n=0
is p. Hence p,q are periodic functiens with period p. By substituting into

(2.1), we have

p(x) -p(x)p[0,) +q(x)v[O,). a.e.

This implies that p(x)-q(x) a.e. In (W), by using the same argument as in (i),

we obtain

p(x) - q(x)a+ q(x+p)b a.e.

where a I v((2n)p), b I v((2n+l)p) (instead of (2.4)). Similarly,
no 0 n-O

q(x) - p(x)a +p(x+p)b a.e.

By a simple calculation, the two equations imply

p(x) - q(x) - 0 a.e.

For case (b), since suppu u suppv does not generate a lattice, it is easy to show

that p,q are constants, and (2.1) implies that p-q a.e.
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THEOREM 2.3: Let ii,v t 0 be positive measures on 10,co) such that jP+V is a pro-

bability measure, and H is a bounded mea.~urable function on [0,00) satisfies

V W~c F" fH ry dJ(P? (Y-V 01). (2.5)

Then either one of the following hold:

(i) if there exists. a p > Q such thAt

supp P C{2p,4P,... }, supp vC [ {P3p 5p,..

then H(.4-p) - -H(P) a.e.

(ii) H(x) - 0 a.e. otherwi~se.

PROOF: Let G 1be a nonnegative locally integrable solution of the ICFE(ilj+v).

Let K be the bound of H, and let

G(x) - G 1(X) + K , x > 0.

Then G also satisfies the ICFE (v+v), i.e.

G(x) - TO G(x+y)d~v+v)(y) a.e. x>O. (2.6)

By adding and subtracting (2.5) and (2.6), we I-?,-

(G+H)(x) - f=(+H)(x+y)dlh(y) + TO(C-H) (x+y) dv (y)

(G+H)(x) -jI(G-H) (xy) d (y) + f=(+H)(x+y)dv(y)

and G+H, C-H > 0. Theorem 2.1 implies that

(G+H)(x) - p(x), (C-H)(x) - q(x) a.e.
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where p,q are periodic functions with periods in supp(P + 7 n , vn). There-
n=O

fore

H(x) - I(p (xl-q Cx)) a.e.

The conclusion about H follows from Corollary 2.2

COROLLARY 2.4: The conclusions of Theorem 2.3 also hold if we replace "H is

bounded" by "for each y >0, H(xmy)-H(xl is a bounded function on x".

PROOF: For each fixed y, apply Theorem 2.3 to H(x+y)-H(x). In case (i), we

have

H(x+y4p) -H(x+p) - -(H(x+y)-H(x)) a.e.

This implies that

R(x"+p) + H(x+y) - -CH(x+p) + H(x)) a.e.

As y is arbitrary, we can conclude that

H(x+p) + H x1 - 0, a.e.

For case (iii, we have for each y,

H(x+y) - H(xj 0, a.e.

This implies that H is a constant, and (2.5 shows that it must be zero.

REMARK: It is clear that if a satisfies

0e ad(-vl(x) 1

_ )..'.,,...'.'.."...............................-... -.......... ... - i .'. . . .
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then H(x) - e is a positive unbounded solution of (2.5), however we are still un-

able to characterize all those solutions.
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