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6;:. A SURVEY OF MULTISOURJE INFORMATION FUSION SYSTEMS
d

1.0 INTRODUCION

The human brain is able to accept information from multiple sources (i.e. five

senses)* fuse the information into a single pool of knowledge# reason across

the knowledge, predict which of the sources will provide the most beneficial

,. amount of new Information# and direct resources to those sources In order to

- . concentrate on processing new information. In this way the human successfully

- interacts with his environment, assessing and understanding ongoing situations.

L Often this information is the result of partial scanning of the domains

resource-limited processing# many-to-less heuristic beliefs# probabilistic

assumptions, and dimensional mapping. Thus, human processing uses information

*- which can be incomplete# uncertain, even incorrect, and even inherently

* " evidential. Each piece of information thus has some amount of belief

associated with it based on its source, condition of collection. metnod of

collection. etc. In other words. the belief is based on evidence. Making an

" inference about the world based on the beliefs of the information (and

associated evidence) requires not only reasoning over the information but

reasoning about the belief of the information and the evidence that that belief

is based on.

Being able to manage multiple sources of information is a skill at which humans

must be proficient in order to interact with their environment. The goal of

intelligent systems is also intelligent environmental interaction. These

- systems will need multiple sources/sensors which can provide a variety of

* environmental information. Like their human counterparts intelligent systems

which are to interact with their environments must be able to fuse.

evidentially reason over, and control the processing of multiple sources of

uncertain, complete and incorrect knowledge. What follows is a survey of the

.. design of such systems. In surveying the state-of-the-art in Multisource

Information Fusion (MSIF) the research breaks down into three subtopics: The

L, design of the entire MSIF System, the work done in Evidential Reasoning* and in

Planning and Control of the multiple sources.

tn



2.0 SYSTEM DESIGN

A Multisource Information Fusion System must perform a multitude of tasks.

The sensors must be controlled; the low level data processed into high level

knowledge; uncertainty factors assigned to data, knowledge and process/system

assumptions; information must be pooled and extrapolated; assumptions about

the data must be made and response to these assumptions must be created,

planned out and executed. These tasks can be shown by Figure 1. In

searching the literature only the work of Garvey and Lowrance [Garvey and

Lowrance, 84; Garvey and Fischler,80; and others in the System Design

references] has addressed the issue of a complete system design. Their work

emphasized a system work listed for battle threat assessment. In their

design they use four basic tasks (see Figure 2):

1) ANTICIPATE: Using current information, this task attempts to

identify prospective significant events. The system is looking for

"What will happen next"? The knowledge used includes known

entities in the environment, their capabilities, entities often

associated with them. etc. This module is attempting to

hypothesize what it is missing or could be about to miss with its

sensors. This information is then passed on to the next task.

2) PLAN/ALLOCATE: Given a list of what coulo be happening in the

environment, this module decides what is important to sense and how -,

it will attempt to sense it. A 'plan' is created and passed on.

3) CONTROL: From the plan, this module guides and manages the

sensors, parameters, and data operators. The data collected are

passed onto the next phase.

4) INTERPRET: The collected data are added to the model of current

situation. The now information is inferenced over and the updated

world model is passed on to the. ANTICIPATE task.

2
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Unfortunately all of Garvey's work past this has been on the INTERPRETATION

task where he uses the Dempster-Schafer rules (covered later) to perform

evidential reasoning over a hierarchical world model of threat behavior.

Garvey assumes that data will be in symbolic form and thus his knowledge

representation and fusion mechanisms do not consider any non-symbolic levels

of sensory data Cie. image operator results). Possibly these non-symbolic

levels of sensory data are unusable until they are transformed into symbol ic
*- data. Since Garvey has concentrated on the INTERPRETATION task of his

design, the details of the PLANNING/ALLOCATE and CONTROL tasks are

-. unspecified. Much more work needs to be done before Garvey's system can

actually be called complete. Though Garvey's work appears to be the only

.- * published research concerning a complete system design, many others have been

researching the evidential reasoning problem. There appears to be a large

void of research in the 'complete' system design and development aspects of

rMultisource Information Fusion, and though the research on evidential
reasoning is necessary, its development must take into consideration the

*. interaction with the remainder of the system. This can only be done after

the design of other components has begun.
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3.0 EVIDENTIAL REASONING

3.1 Introduction to Evidential Reasoning

Evidential reasoning has been the main focus of Multisource Information

Fusion systems research, because It is a defined subproblem of MSIF systems,

and because many feel that it is the heart of the MSIF system. Solving this

problem will allow partial implementations of systems and provide a starting

point for incremental development. An evidential reasoning system first

needs an internal model of the world on which to reason, deduce and

inference. Established world model designs (Rich 83) and their inferencing

mechanisms are too rigid and inflexible to truly reflect the real world, and

though current research efforts are expanding these designs to represent the

real world, much of this research has only been at the symbolic level. The

issue of how the non-symbolic levels of data are affected by uncertainty,

incompleteness, and inconsistency, and whether this effect will affect the

remaining mechanism, has yet to be addressed. (This issue is more accurately

called the Data Fusion problem but we will use the terms interchangeably).

In order to reflect the real world, data fusion systems must be able to

represent the wide range of knowledge found throughout the real world. This

knowledge can be declarative or procedural, and due to the conditions under

which it was created, it will have an uncertainty associated with it.

Uncertainty of the knowledge must be represented, even to the point of being

ignorant of the knowledge. The system can be ignorant of a certain fact, and

must be able to represent and work around this ignorance of information

(however, knowing ignorance of a fact reveals a lack of total ignorance).

Finally, when quantities of information are combined into knowledge bases,

consistency becomes an issue. It is important also that the facts in the

knowledge base do not conflict. Methods such as belief and truth maintenance

systems do this kind of consistency checking.

The most important function of a data fusion system is to derive new

information from known information. There are two ways to derive new

i nf ormati on:

6
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(1) Extrapolation uses procedural rules to derive new information from a

single piece of evidence, and

(2) Pooling combines multiple pieces of evidence.

When pooling evidence to form new evidence there can be a problem with

interdependencies of different pieces of evidence. For example in a medical

diagnosis problem, two symptoms might occur pointing to the same disease.

However, this does not always mean a greater chance of the disease than if

, only one of the symptoms had been observed. It is possible that the two

symptoms are dependent and always occur together. Different data fusion

systems deal with this dependency problem in different ways. Some even

ignore it.

In the following sections three different approaches to data fusion are

analyzed and two new theories, each addressing a slightly different problem

in evidential reasoning are explained.

p

3.2 Bayesian Methods

. Bayesian probabilities as used in Prospector by Duda et al (Duda, Hart and

Nilsson 1976) assigns strict probabilities for each piece of knowledge in the

* system. The probability of an event H is P(H), where P(H) is a real value

between 0 and 1. These probabilities must follow the statistical law that

says the sum of all of the probabilities for all possible outcomes of a given

event must be 1.

The combination of the associated probabilities when facts are combined is

handled by Bayes theorem. Bayes theorem says that the probability of an

V event H based on some observed evidence E is given by:

7
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. PEIH * PPH)(H,PllIE) =

Likewise,

" EP(EIH) * P(H)
= K

.P(EIH) * P(H )

where:

P(EIH1 ) = the probability of the evidence E given Hi.

P(H) = the apriori probability of the event H.

K = the number of different possible outcomes for H.

* There are some problems with using Bayes theorem for real world applications

" however. It requires knowledge of all of the; conditional probabilities, and

this information is often not available. Bayes theorem has limited

application in a world where we do not have access to the probabilities for

all of the events we are concerned with.

The Bayesian method also has problems with dependence of certain facts. By

-2 definition Bayes theorem requires all evidences to be independent. This is

:. often not true in the real world.

Despite their shortfalls, Bayesian methods can be useful In limited problem

domains where much information about the probabilities of events are known.

Mineral explorations which is the domain for.Prospector, is one such area.

Charniac (Charniac, 1983) points out that for many expert systems

applications such as medical diagnosis* Bayesian methods can be used without

* the independence assumption. He shows that the interdependence of symptoms

-" will affect the probabilities for all diseases equally and will therefore not

change the relative rankings of the diseases. He goes on to state that other

dependency problems can be addressed by combining the dependent evidences "-.

• .into single states.

There are many systems that use derivatives of Bayesian for data fusion.

" References to many of these are listed in the bibliography.

a,



3.3 MYCIN

In MYCIN, Shortllffe (Shortliffe, 1975) attempted to overcome the

shortcomings of Bayesian approaches while retaining the advantages, by using

a system that was an approximation to conditional probabilities. Each piece

of infomation in MYCIN has associated with it a value between 0 and 1 which

is its belief value:P(H). The disbelief value Is 1-P(H). Any assertion

about this fact has two measures associated with it. A measure of belief

(MB) is the measure of the decrease in disbelief of H as a result of a piece

- of evidence and a measure of disbelief (MD) is a measure of the decrease in

belief of H as a result of the evidence. MB is defined by:

1I: if P(H) 1

MAXCP(HIE), P(H)] - P(H)
--" P -------- otherwise

and MD is defined by:

: if P(H) 0

MD =

MINEP(HIE), P(H)) ----- : otherwise

In addition, a certainty factor is computed which is the measure of belief

minus the measure of disbelief.

- The above formulas handle extrapolation where a single piece of evidence

leads to a conclusion. To pool multiple pieces of evidence MYCIN uses the

* - following formulas:

0Hif MDHIS+S) 1 1

12EHIS 1+S 2 3
I.EHIS1 3 + tBCHIS 2 ) * (1-MDEHIS 1]) otherwise

and,

0 : if MBEHIS +S2 ) 3 1

MO[HIS1+S23
-. LMDEHIS1 3 + MD[HIS2) 3 (1-MDEHIS1)) : otherwise

9
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The reasoning system used In MYCIN allows uncertainty and allows us to

represent the lack of evidence for a certain conclusion. For example, If the

evidence does nothing to confirm a. hypothesis then MB=O. If a piece of

evidence does nothing to disprove a conclusion then MD-O. This method of

reasoning does. however, still have some shortcomings. We still have

dependency problems Just as we did with the Bayesian methods but now we also

have an added disadvantage in that the measures of belief and disbelief are

not true probabilities and therefore cannot be expected to follow the laws of

*- probabilities. These values are arbitrary, and at some level are assigned by

a human. This poses a problem when information from different humans is

used in the same system. Invariably they will use different scales in

-:. assigning values.

• ,3.4 Dmpster-Schaf".

, The Dempster-Schafer theory (Barnett, 1981) uses the same interval concepts

* as MYCIN but extends them so that the probabilities are represented by mass

-. distribution functions. This theory provides rules for assigning and

manipulating these distributions. The intervals are defined as follows:

CS(A), P(A)J
where: S(A) is the degree of supports

.- m

P(A) is the degree'of plausibility

or the degree of failure to refute,

P(A)-S(A) is the degree of ignorance.

These values are computed using a mass distribution function which

.* distributes a belief value over the entire range of possible hypotheses. The

value for S(H) or the degree of support for a given hypothesis H is equal to

* the mass distribution function summed over all the hypotheses that imply H:
"-

SI SH) - W(EI)

i -E

10
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The value for P(H) or the plausibility of H is the sum of all of the

hypotheses that do not imply not (H):

P(H) - M(Ei) - 1 - S(H)
Et [lH -0 0

'p.

To pool multiple pieces of evidence to support one hypothesis we use

Dempster's rule for combination:

4(H) T= R j. M1(E1 ) * M2 (E1 )

where

K = M (E) * M2 (Ej)

The Dempster-Schafer thecrem, because it follows the law of probability,

gives us many nice properties. The combination rule is commutative and

associative so evidence can be combined in any order or grouping. Also, when

5. the probabilities are known exactly (when S(H) = P(H)) the Dempster-Schafer

law reduces to Bayes theorem.

S..

The Dempster-Schafer theorem fills many of the needs for an information

combination system and is widely used today. References to many systems that
use the Dempster-Schafer theorem are listed in the bibliography.

3.5 Edge Merits

* . Slagle (1984) in his battle system proposes an extension to the Bayesian and

* MYCIN combination systems that takes into consideration the probability

* .. associated with the rule as well as the evidence. These probabilities are

called edge merits, and are used to propagate the values of evidence through

rules as well as heuristic in rule conflict resolution. The edge merit for

°*" an AND combination is defined as:

P(E)

"° 11

.. .... ,. . . *.-..+_,, 4.-._. --._+,' '. .: ,,, *. .. ,... ,, ........ .+. .... . .. :.., .,..... .. . .- .. . . .,.... ..,..; .. . . .. ... . .... . .-..



The eage merit for an OR combination is defined as:

1-P(H)
1-P(E)

Then, when the rule is fired, the. AND function returns the minimum of the

probabilities of its arguments and the OR function returns the maximum of its

arguments.

*' Edge Merits can be incorporated into a data fusion scheme that uses any of

the above methods.

3.6 Endorsmnts and Endorsers

Cohen and Grinberg (Cohen & Grinberg, 1983) developed a theory of heuristic

reasoning about uncertainty which is symbolic (non-numerical) and uses some

of the concepts from Doyle's Truth Maintenance System. They propose a system

' in which evidence for an Inference is associated with that inference and is

"- called an Endorsement for that inference (much like Justifications in a Truth

.- Maintenance System). Thus, endorsements are records of the inferences which

have taken place, and Endorsers are defined as the computations that assert

- these records. (See section on Non-monotonic Reasoning.) Unfortunately, no

- further work on implementing a system based on the theory has been

" published. Nonetheless, the theory Is interesting enough to be briefly

expl ai ned bel ow.

Cohen and Grinberg claim that the numerical approaches to reasoning under

" uncertainty restrict the amount of heuristic knowledge about uncertainty and

evidences, knowledge that humans actually use. In numerical methods, a

number is merely a summary of the evidence which supports an inference, and

. actual evidence Is left unaccessible by the processes reasoning about future

-" inferences. There are two reasons why the evidence for an inference should

be accessible. First, a number cannot relate the type of evidence which

supports the belief. Some types of evidences will have more importances in '.

certain situations or contexts (i.e. corroborative evidence vs. contradictory

evidence), and knowing what kind of evidence is supporting an inference can

only aid the reasoning process. The second reason to make the evidence

12
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accessible is the belief of an inference is based on the context of its

evidence, which includes the current inference being reasoned about.

*1 Therefore, evidence used for one inference is In a different context from

evidence used for another Inference, and thus the belief in the evidence

itself can be different between the two contexts. This becomes most

Important when dealing with evidence which supports an Inference being used

as evidence for a new inference (i.e. propagation; numerical methods can

* often yield meaningless, and irrelevant belief values through propagation).

" The certainty of an inference is represented by the strongest endorsement for

-: the Inference. Therefore, an inference supported by one kind of endorsement

.. (eyewitness evidence) would have a higher certainty than if the inference was

S-. supported by less preferred evidence (circumstantial evidence). This means

that knowledge is needed to define and rank a characteristic (or primitive)

set of domain endorsements. Also, knowledge is needed to heuristically

propage endorsements over inferences (much like degrees of belief are

numerically propagated over inferences (much like degrees of belief are

numerically propagated over inferences by combining functions), but thea Jpropagaton must be sensitive to the context of the inference. Rules are

n needed to propagate endorsements over inferences, thus serving the same

" .- purpose as combining functions, with each domain of expertise having numerous

-* idiosyneratic rules for covering special cases of endorsement propagation.

*- The Endorsement Theory is a fresh look at reasoning with uncertainty, but the

". theory leaves many unanswered questions. The knowledge and structure of the
- ' rules is unclear, as well as the final form of each inference. These holes

will have to be addressed before the theory can be implemented into a working

system. One benefit of the theory is that by retaining the endorsements of

*" an inference, one can discount the uncertainty of the evidence once the use

of the inference is known (i.e. discounting the uncertainty of one value when

it is averaged with other values). In this manner, a better grip on the

*propagation of uncertainty is maintained, thus yielding a more understandable

belief of the inferences.

1
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*3.7 Non-Monotonic Lgic

Traditional reasoning systems based upon predicate logics are considered

*. monotonic in that the number of statements known to be true is strictly

increasing over time. All newly added statements and newly proven theorems

cannot disprove any of the previously known knowledge in the system.

Unfortunately the world is not monotonic; but is incomplete, constantly

changing, and in order to reason efficiently over complex problems,

- assumptions (default reasoning) must be made about the world which can

"T possibly be proven incorrectly later in the reasoning process. From this,

the development of Non-Monotonic Logics has begun [Doyle and McDermott, 1979,

-- McDermott and Doyle# 1980), and though the theory is fairly new, its basic

"" concepts allow default-reasoning assumptions to be made and retracted without

* disrupting the belief integrity of the world model.

Default reasoning allows the inclusion of logical statements on the order of

"" "If X cannot be proven with you have right now, then conclude Y" in the

problem solving process. Thus assumptions can be made and considered true

until proven wrong. When a contradiction is found, backtracking is performed

to the assumption which caused the contradiction and then that statement and

all statements derived from it are withdrawn from the world model. This is

called dependency-directed backtracking [Stallman and Sussman, 1977].

,. Non-monotonic reasoning systems have two added components over common

. inferencing systems. The first is an Assumption mechanism which creates

. assumptions based usually on defaults about partial solutions to aid in

solving the problem. The second component is a truth maintenance mechanism

which upon the discovery of a contradiction finds the faulting statement and

revises the truth of the world model by withdrawing the statement and all of

its dependents from the world. Most of the work in building non-monotonic

reasoning systems has been based on Doylefs Truth Maintenance Systems (TMS)

[Doyle 1979, a&b] which is an implemented system that supports non-monotonic

reasoning by serving as a truth maintenance subsystem available to other

reasoning programs. The system does not generate new inferences but

maintains the integrity and consistency across the statements produced by the

.14
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reasoning program via its own dependency-directed backtracking mechanism.

" Since T4S is the basis of most research in non-monotonic reasonings it is

explained below.

p In TMS, each statement is called a 'node' and is, during the reasoning

process either believed to be true (IN) or not believed to be true (OUT).

OUT statements are not believed because there exists no reason for believing

them, or because none of the possible reasons for believing are currently

true. Associated with each node is a list of justifications which reflects

how the validity of one node can depend on the validity of others, and of

which these are two kinds: Support Lists [SL (in-nodes) (out-nodes)] and

Conditional .Proof [CP (consequent) (in-node) (out-node)]. Supports Lists are

..* the most common and its node is IN if all of the in-nodes are IN and all of

-* the out-nodes are OUT. If there are no in-nodes nor out-nodes then the

statement is considered a 'premise.' Conditional;Proofs are hypothetical

arguments which hold derived contradictions within the world.

' As an examples suppose we are inferencing as to what type of animal IVAN is.

We will start out with:

N1. Animal(IV&) = Shark IN CSL ( ) (N2)]

N2. Animal(IVAN) <> Shark OUT

N3. Animal(IVYN) <> Dog OUT

The system assumes that IVPl is a shark (node 1 is IN) since there is no

reason to believe it isn't. From these the system could infer that since

Ivan is a shark# then he can also swim:

- N4. IVN can swim IN CSL (N1) ( )J

To show the maintenence system in actionp assume that new information is

introduced by statements N25 and N32 (from else where in the system) and

found to contradict:

NS. IVN has fur IN ESL (N2S, N32) (M)

[is
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The inference system realizes a contradiction in that sharks do not have fur

and so the dependency directed backtracking is triggered. In searching back,

the system realizes that N1 is an assumption and could be causing the

contradiction. First, the contradiction is marked:

N6. ODNTRADICTION IN [SL (N1, N5) ( "

N7. NO-GOOD Ni IN [CP N6 (Ni. N5) (

The NO-GOOD node marks the proof that if N1 IVAN is a ihark and NS IVAN has

fur then N6 we have a contradiction. Without NT. we would never know that we

tried N1 if we ever have to backtrack again. Next, we update the rest of the

world model and select a new assumption:

Ni. Animal(IVAN) a Shark OUT, [SL ( ) (N2, N3)]

N2. Animal(IVAN) <> Shark IN [SL (N6) ( ))

N3. Animal(IVAN) a Dog IN [SL (N2) (N8)]

N4. IVAN can swim OUT [SL (Ni) ( )

N5. Animal(IVAN) <> Dog OUT

N6. CONTRADICTION OUT [SL (Ni, NS) ( )]

* Now the inference mechanism can proceed and derive new deductions.

* assumptions and contradictions.

There are a number of variations to the TMS scheme [London 1978; Thompson,

1979; Ginsberg# 19843 but all are based on the same theoretical concepts and

all offer considerable improvements over other classical systems. Since the

inferencing and dependency directed backtracking is non-chronological, the

support relationships rather than the temporal orderings determine the

recovery from an error and thus the appropriate erronlous assumptions are

found quickly. Also the use of Conditional Proof (CP) structures allows the

causes of contradictions to be summarized and recorded, thus mistakes are

made only once. These two improvements provide an increase in efficiency

large enough to offset the overhead of maintaining the Justifications (though

overhead would depend on implementation.) Difficulty in using TMS could

develop when marking an assumption, (i.e. IVAN is a shark) when all other

possibilities must be created and accounted for in the out-list of the

*, assumption:

16
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N1. Animal(IVAN) = Shark IN ESi C ) (N2, N3...n)3

N2. Animal(IVAN) <> Shark OUT

N3. Animal(IVAN) <> dog OUT

N4. Animal(IVAN) <> Platypus OUT

Possibly mechanisms can be created to introduce alternative assumptions# one

by one, as they are needed. This would greatly reduce overhead.

Using the Non-monotonic Logic provides great advantages over classical logics

and is an excellent augmentation to uncertainty inferencing systems. To

* date, no one has yet published an implementation of a truth maintenance

- system complete with uncertainty factors for its assumptions. Possibly, the

establishment of both (non-monotonic and uncertainty) theories will allow

development of an integrated theory. For a brief view of TMS see [Rich#

1983, Doyle, 1979a], and see [Doyle, 1979b] for an extended view. For the

mathematical background on Non-monotonic Logic, see [McDermott and Doyle,

1980; Doyle, and McDermott 1979cJ.

I

S". 3.8 Fuzzy Sets and Logic

Fuzzy set theory is a well-developed mathematical theory which has not yet

been significantly exploited In A.I. systems. It provides an augmentation to
evidential reasoning systems which must reason with fuzzy qualified

statements such as: "most extremely fat women are very sweaty", where "most",

"fat", "sweaty", "extremely"s and. "very" use fuzzy qualities (not exact

- boundry between membership/non-membership of the quality.)

The theory of fuzzy sets is the development of a body of concepts and

techniques for systematically dealing with imprecise boundaries between

classes of objects. A fuzzy set is a class in which there is gradual

*progression from membership to non-membership and each object in the set has

a grade of membership intermediate between I (full membership) and 0
* (non-membership). Thus a conventional set is a degenerate case of a fuzzy

set where only two grades of membership are allowed: 1, 0.

17
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* .The need ot a fuzzy logic is due to the fuzzyness of the world. We often use

qualifiers in describing membership to a set such as: very, quite# almost,

slightly. In order for a system to reason about fuzzyness it must first

represent it. Let U be our universe of discourse (e.g. set of integers) and

A be a fuzzy subset of Up which is characterized by a membership function:

vA = U -> (0. 11

* which associates with each element u of U a number vA(u) in the interval £0,

1), with vA(u) representing the grade of membership of u in A.

im nla: Let the universe of discourse be the set: U = [1, 2, 3, 4, 5...]

* with u interpreted as "small". A fuzzy subset of U labeled "very" may be

defined as:

. very small - (vl:ul)+ (v 2 :u2)+ (v3:u 3 )+ (v 4 :u 4 )+ (v 5 :u 5 )

= 1:1 + 1:2 + 0.5:3 + 0.25:4 + 0.05:5

where : is a separator to avoid confusion and + means union of the elements.

The members: 1, 2 of "small" have a grade of 1, while the member 3 has a

grade of 0.5 (i.e. not as very small as 1 or 2 are, and so on.) From here a

number of theoretical concepts can be defined including classical set

. definitions (i.e. containment) set operations (i.e. complement, union),

"- relationships and other principles. For a more thorough account of fuzzy set

" theory see [Zadeh, 19771.

- Fuzzy logic is an extension of fuzzy set theory which provides a

representation for fuzzy quantifiers and truth-values, as well as provides a

set of translation and inference rules which can reason over the fuzzy

representation. Fuzzyness is represented through possibility distributions

Tx a the possibility distribution of X) which is a heuristically derived

* measure of the semantic fuzzyness of linguistic variables. Let F be a fuzzy

subset of U = (0 1, 2...) and "X is F" represents F = Tx, or:

"X is F -> Tx - F"

! ~18 -.



Let

X Is small -> Tx 1:0 + 1:1 + 0.8:2 + 0.6:3 + 0.4:4 + 0.2:5.

Then

PossiX = 0) = 1

Poss{X 1) 1

Poss{X 5) = 0.2

Where Poss(X = u} vF(u) is the possibility that X may take u as a value.

.. So if I say "there is a small number of people left", the possibility that

there is only 2 left is Poss(X = 2) = vF(2 ) = 0.8. Possibility is different

from probability in that probability is a measure of randomness while

Irl possibility is a measure of semantic fuzzyness or imprecision in value.

A variable in fuzzy logic is considered a linguistic variable whose values

are represented as words or sentences in a natural or synthetic language.

The value of each variable defines a possibility distribution in the domain

of the variable. For example: given the primary variable TRUE, its antonym

FALSE, and a finite set of modifiers and connectives such as and, Qrt Pg;,

Y-iLY, moeQrless, Zrinea3 etc... the linguistic value of TRUE may be

generated and represented as:

*True False
not true not false
very true very false
not very true not very false
more or less true more or less false

not true and not false
not very true and not very false

The linguistic truth-value is a composition of possibility distributions of

* the primary variable and attached modifiers. Translation rules provide a

" - means of deriving the composite truth-values. Translation rules fall into

*: the four categories as explained below.

. 19
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1. Modification rule (not, very, more or less, etc.)

If X isF -> Tx=F

Then X is mF ->Tmx = F

where m is a modifier of F and F+ is a modification on F.

.Exuiojl: Let F = small# Tx =1:0 + 1:1 + 0.8:2 + 0.6:3 + 0.4:4 + 0.2:5.

Let m = very, and F+ = (F2  (F squared)

Then:

X is very small -> Tmx = (F)2

1:0 + 1:1 + 0.64:2 + 0.36:3 + 0.16:4 + 0.04:5

2. Conjunctive, disjunctive and implicational rules: Let F and G be fuzzy

subsets of U and WP

Xis F-> Tx Fanld Y IsG Ty G

a. X is F and Y is G -- > T(x,y) -F x G where: -

v(FxG)(uow) min ( vF(u), vG(w))

b. X is F or Y is G -> T(x,y) =F U G (union)

where:

F =F x W (compliments)

G= G x U

v(F U G)(u,w) =max (vF(u),vG(w))

c. If X is F then Y is G -> T(Xly) @EG

where T(x/y) is the conditional possibility distribution of

Y given X and

v(f@)(u~v) *Min(1, (l-vF(u) + vG(W)))
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E'- alJg: Let

F = SMALL = 1:1 + 0.6:2 + 0.1:3

G = LARGE = 0.1:1 + 0.6:2 + 1:3

Then

X is small and Y is large= T(x,y)

= 0.1:(1,1) + 0.6:(1,2) + 1:(1,3) + 0.1:(2,1)
+ 0.6:(2,2) + 0.6:(2,3) + 0.1:(3,1)

+ 0.1:(3,2) + 0.1:(3,3)

3. Quantification rule (many, few, several, all, some, etc...):

If U = [u, ... Un}, Q is a quantifier and

F = vl:u2 + v2 :u2 + ... + Vn:un

X is F -- > Tx = F

Sthen "QX are F" (eg. "several X's are large") translates to

Tcount(F) (I

where N

Tcount(F) =v

,:. 1=1

Example:

Let

SEVERAL = 0:1 + 0.4:2 + 0.6:3 + 1:4 +

1:5 + 1:6 + 0.6:7 + 0.2:8

Then SEVERAL X's are LARGE =
zV

" 0:1 + 0.4:2 + 0.6:3 + 1:4 + 1:5

+ 1:6 + 0.6:7 + 0.2:8,
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where VL/RGE(Ui) is the grade of membership of the ith value of X in the

fuzzy set LAFGE.

4. Truth qualification rule: Let t be a fuzzy truth-value like "very

true", "quite true"s etc. Then "It is t that X is F" is expressed as:

X is F is t--> Tx =F'

where

vF+(u) = vt(vF(u))

Bob is young is very true

where:

m - very --> F2

*' then

Tage(Bob) ' vtrue2 (vyoung[u))-

where u is an element in the interval [0,1003

assumi ng
Vyounglu 0- -

and

" vtrue(w) W2  w is an element in the interval [0, 1]

then /

Tage(Bob) (I A (jr-)

SI..

The translation rules above can be combined to provide the possibility

distribution of composite propositions. From here, rules for inferencing

over the possibility distributions can be defined. Zadeh (Zadeh 791

• identifies complex rules for projection and conjunction and combines them

into a composite rule of inference which is a generalized version of the

.- classical modus ponens. Thus he claimed to be able to infer the possibility

distribution of Y from the knowledge of X's possibility distributions and

from the conditional possibility distribution of Y given X. It is through

this composite rule of inference that Zadeh claims will expand the

-: S

4%
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applicability of rule-based systems, giving them an interpolative (Fuzzy)

capability. Fuzzy logic is not an alternative to the other work in this

survey# but Is an augnentive representation which can be integrated with

non-monotonic logic and evidential (uncertainty) reasoning. All of these

theories are complex and implementing an integrated system of them may be

close to impossible. Only after they are individually developed will that

question be answered. For the best coverage of fuzzy set and logic theory

see [Zadeho 1977, Zadeh, 1979).

2-
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4.0 PLANNING AND CONTROL

A plan is a partially ordered net of operations, each performable by a host

unit. Planning is the process of ordering the operators such that their

actions and resource needs do not conflict. In a Multisource Information

Fusion System there can be potentially high data rates# and thus sensor

resources and data processing controls needs to be managed effectively, with

the collection of important information being optimized and irrelevant data

filtered out. Decisions must be made as to what sources (of information) on

which to concentrate; what processes to run; when and where to run them; what

parameters to use; and which data to pass along. Memory# bus, processors and

time must all be allocated. The entire information collection process must

be planned out such to optimize the collection of vital information. Though

Garvey and Lowrance [Garvey and Lowrance, 1984] promote the instigation of

planning within a MSIF systems current planning strategies have yet to be

adopted for MSIF designs. Garvey has looked at the use of planning in vision

systems [Garvey, 1976, Ballard and Brown, 1982) but his approach is very high

- level (i.e. searching for a telephone in an office by first planning to find

the table and searching the table top). Very little work has been done in

applying automated planning strategies to plan the control of large MSIF

- systems.

The current state-of-the-art in Automated Planning uses a hierarchy of goals

to create a plan [Sacerdoti, 1977), and meta-level knowledge to control the

plan creation [Hayes-Roth et al, 1979, Steftk, 1981). Given a high level

Sgoal with constraints, the goal is expanded into a partially ordered net of

(children) subgoals and actions which will achieve the (parent) goal. Then

the subgoals are examined and compared to an internal world model to see if

it is already true. If not, the net is examined to see if restructuring the

-- plan will make the subgoal true and if not, the subgoal is made true by

" expanding it into more subgoals. This process continues until all goals are

true. Intermitently the plan-net is examined for conflicts between goals

" (such as attempting to use the same resources at the same time). Often

conflicts are resolved by reordering the plan-net. Goals are kept In

parallel until a necessary ordering can be determined [Sacerdoti, 1977), and

variables are not arbitrarily bound but have constraints (which describe the

*' value) placed on them until a correct value is found [Stefik, 1981 a&bJ.
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The processes involved in planning are quite simple; the difficulty Is in

placing knowledge about the host unit's (in MSIF a source system controller)

. actions into a planning system operator. The effects prerequisites

constraints on variable bindings of when, how# and why (intentions) to use

the action and much more must be acquired from all possible actions of the

host unit. Incomplete or incorrect knowledge can cripple the planning

process.

At the end of the planning process the final plan can progress through a

number of optimization and interpretation processes [Kempfa 19833 which will

transform the plan into a program for the controller to follow. Possibly the

K. controller will have these processes built Into it and will Intelligently use
the plan as a knowledge base which guides the controller's actions [Budenske,

1984).

The duty of the controller is to manage the operation of the sensors. With

the high flux of possible data to be collected, it is desirable to focus the

sensors on portions of the external world where pertinent information is morea likely to be extracted. Not only can the high data rate be cut by selective

sensing but also by selective processing of the raw data. The controller

will receive a plan from the planning module and will follow this plan

allocating system resources managing sensors executing processes and passing

pthe resulting knowledge on to the data fusion module. Possibly# the

controller will also control the data fusion and inferencing processes

through assignment of initial probabilities:uncertainties and other parameter

S:. adjustments. The exact methods of planning and control have yet to be fully

examined and thus provide an excellent area for fruitful extension of the

- state-of-the-art.

.2
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5.0 SUMMARY

The research in Multisource Information Fusion systems is very lacking. The
majority of work has been in the area of evidential reasoning with the tasks

of planning and control being ignored as well as the overall design of an

integrated system. The problems in evidential reasoning have been approached

through different inferencing mechanisms and logical theories, all of which

are still in the early periods of development. The integration of some of

the mechanisms and logical theories could greatly increase the evidential

reasoning capabilities of a MSIF systems but these mechanisms and theories

must be furthered developed before integration can occur.

-
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THE ROLE OF STRUCTURE IN HUMAN AND MACHINE PERCEPTION



I.I

ABSTRACT

For some time, there has been a growing awareness among the Image Understanding

(IU) research community that the traditional approaches were not yielding

satisfactory results in terms of desired performance. This is strongly related

to the emphasis in traditional IU on segmenting and characterizing distinct
q regions or edge segments. Relationships between regions have not received much

attention.

In contrast, researchers in human perceptual processes have long been aware of

the importance of the use of relationships between regions, leading to grouping
* of regions. This capability to form groups of highly related regions is a

fundamental (low-level) form of structuring the information in an image.

Further work has shown that humans make extensive use of the symmetry

properties of image configurations in building up internal symbolic

- representations of the perceived images. It has become apparent that this

. capability is not a trivial one, and that human facility in working with

structural groupings and symmetric relations develops only in the latter stages

S of childhood.

These factors provide strong argument that one of the major needs of image

understanding systems now is a robust* generic method for representing and
p processing both group-oriented and symmetry-oriented structural properties of

images. This paper illustrates a method for representing the low-level

(grouping) structure of segmented images. The structuring process is

thoroughly based on an implementation of the factors which a dominant role in

human perceptual grouping processes: similarity, proximity# containment, and

similar directionality.

The implementation scheme has been applied to both natural (FLIR) and
aw artificial (Bongard) images. The resulting Hierarchal Relational Structures

(HRS) provide an organizing schema for grouping related regions for further

processing. The HRS further enables a potentially simpler form of

representation for higher-order relationships (such as symmetry), and provides

*r a succinct structure to which meaning or object/feature identification

processes can be applied.
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ABSTRACT

For some time, there has been a growing awareness among the Image Understanding

(IU) research community that the traditional approaches were not yielding

satisfactory results in terms of desired performance. This is strongly related

to the emphasis i traditional IU on segmenting and characterizing distinct
6regions or edge segments. Relationships between regions have not received much

attention.
p.

In contrast, researchers in human perceptual processes have long been aware of

the importance of the use of relationships between regions, leading to grouping

of regions. This capability to form groups of highly related regions is a

fundamental (low-level) form of structuring the information in an image.

Further work has shown that humans make extensive use of the symmetry

properties of image configurations in building up internal symbolic

representations of the perceived images. It has become apparent that this

capability is not a trivial one, and that human facility in working with

structural groupings and symmetric relations develops only in the latter stages

* of childhood.

*: These factors provide strong argument that one of the major needs of image

understanding systems now is a robust, generic method for representing and

3processing both group-oriented and symmetry-oriented structural properties of

images. This paper illustrates a method for representing the low-level

(grouping) structure of segmented images. The structuring process is

S. thoroughly based on an implementation of the factors which a dominant role in

human perceptual grouping processes: similarity, proximity$ containment, and

similar directionality.

*: The implementation scheme has been applied to both natural (FLIR) and

artificial (Bongard) images. The resulting Hierarchal Relational Structures

(HRS) provide an organizing schema for grouping related regions for further

Sprocessing. The HRS further enables a potentially simpler form of

representation for higher-order relationships (such as symmetry), and provides

a succinct structure to which meaning or object/feature identification

processes can be applied.
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, 1.0 INIRODUCTION: THE NATURE OF THE PROBLEM

p The ultimate goal of machine visual perception is to create a complete,

multiaspect symbolic representation of the "world" corresponding to the

image. This capability would then lead to further capabilities, e.g., an

ability to "image" the same scenario from other perspectives, or by

manupulating the internal symbolic representation, to "image" potential

changes in the scene, as shown In Figure 1.1. These desired capabilities

for machine perception correspond to known human capabilities in perception

-" and imagery.

This paper presents an approach to improving machine perception

. capabilites, or machine image understanding (IU), by drawing substantially

from known aspects of human perceptual processes. First, though, it is

worthwhile to briefly note tho status of machine IU performance.

Currently, IU systems can produce "segmented images" from raw image data.

[ ESee,e.g., Ballard and Brown, 1982; Marro 1982). These segmented images
are usually one of two sorts: those which show all the lines or edges

which can be found in the original image, and those which show all

U contiguous regions. Methods which combine these approaches are also

available. [E.g., Milgram, 1979) For the purpose of demonstrating the

concept, we will use region-segmented images# but the problems and methods

will be applicable to either type of segmented image.

Once a region-segmented image is obtained, IU systems tend to characterize

each of the segmented regions as much as possible [Panda, 1978; Ballard and

S-Brown, 1982), Typically this involves obtaining values for region area and

extent, describing the shape, color, or texture of the regiono and in other

ways characterizing the attributes or content of the region. Recent work

has emphasized methods which would yield depth or orientation

* characteristics of the region [Ballard and Brown, 1981; Barrow ard

Tenenbaum, 1981).

Each of the three major stages discussed above; the original images, the

segmented image, and the more symbolically represented 2-D or 2-1/2-0
-S surface knowledge (from the characterized regions) [Marr, 1976), comprises

%1
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a major form of knowledge representation about the original scene (from which

the initial image was taken) [Barrow and Tenenbaum, 1981]. Minimally, two more

levels of knowledge representation are desired. The characterized surfaces or

regions described above need to be represented in a different internal form

which clearly makes explicity the 3-0 nature of objects, features, and the

background or terrain. In many cases, this will Involve a form of geometric

3-D object-centered representation, where each object can be uniquely

represented with full symbolic description of its shape. (Excellent work has

been done along these lines by Brooks et al, and by other groups of

investigators). [Brooks, Greiner, and Binford, 1979; Brooks, 1981; Brooks,

1983]. Other representation schemas may be used for background# terrain*

and/or extended terrain features [Sedgwick, 19833.

This does not complete the process of image understanding. While a 3-0

geometric representation of a perceived scene is necessary# It must be

supplemented greatly by knowledge about the identification and meaning of

each object, feature, and aspect of terrain. At this level, objects would

be represented in terms of function rather than form. Functionally-related

object classes would exist, as would (potentially) schemas for events or

object configurations [Tsotos, 1984; Havens and Mackworth, 19833.

Thus, the traditional approach to conceptually designing an image

understanding system uses the idea of multiple knowledge representation

levels, hierarchically arranged (as shown in Fig. 1.2). The major levels

of knowledge representation are (roughly): original image* segmented

image, symbolic representation and characterization of the segmented image,

(including depth and orientaton Information), 3-0 geometric form-based

representation, and a topmost "meaning" or "interpretation" level. Each of

these levels, of course, can obtain several different sub-levels.

There are several major bottlenecks which lie between the current

state-of-the-art in machine IU and the desired capabilities for machine
IU. These bottlenecks appear to be strongly associated with major

transitions in the levels of representation (shown in Fig. 1.2).

2
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Figure 1.2 Traditional machine ZU systems are strongly hierarchical. Each

hierarchical level corresponds to a major representation

formalism for knowledge associated with the image.
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There has been, in recent years# an enormous amount of work aimed at

facilitating the transition between these representation levels.

Interesting and useful approaches have been suggested, each with greater or

lessor degrees of applicability to generic IU systems [Brooks, Greiner, and

Binford, 1979; Brooks, 1981, 1983; Binford, 1982 (and references contained

therein); Oshima, 1983J.

In most recent years, effort has focused on improved characterization of

depth or otientation which can be obtained from many sources (shape from

texture NKander, 1979; Stevens, 1981; Becks Prazalny, and Rosenfeld, 1983],

shape from shading [Barrow and Tenenbaum, 1981; Smith# 1983), and other

approaches [Stevens* 1981; Haber, 1983). However, an awareness is emerging

that these techniques, no matter how refined and sophisticated they become,

will in and of themselves be insufficient to enable inter-level

transitions, particularly the crucial transition from symbolic 2-D to 3-D

representation CWitkin and Tenenbaum, 1983; Lowe and Binford, 1981, Lowe,

1984].

A major theme of this paper (and the theme of some recent efforts by other

investigators) is that the previous approaches place a heavy reliance on

extracting characteristics (content) of regions in an image. This paper

defines an approach to image understanding which incorporate more fully the

relationships between the regions# and defines a higher-level concept:

pthat of structure in the image. The "structure" which will be the subject

of this paper may be preliminarily defined as "the interrelation of parts

as dominated by the general character of the whole" [Webster's Third New

International DictionaryJ.

The goal of this paper is to examine some aspects of the role of structure

in human image understanding, and to extract from our knowledge of human

visual processes certain capabilities which could potentially play a strong

role in machine IU. It also shows how these capabilities could influence

the overall performance of machine IU, and illustrates the proposed use of

structure in machine visual perception for both artificial and real images.

3
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I' 2.0 THE ROLE OF STRUCTURE IN HUMAN VISUAL PERCEPTION.

A premise for this section is that humans perceive and describe objects and

scenes in terms of four major aspects: content, context, structure, and

meaning. This simplified premise is offered primarily as an organizing

schemata so that progress and capabilities of machine image understanding

can be compared with human abilities.

Briefly each of these terms means the following:

o Cantnt - Description of an object (or segmented region in a scene) in

terms of its attributes, e.g.. shape, texture color, and size.

SContx - Description of the relationships between an object or

segmented region) and neighboring objects or regions. Common

relationships to consider are the so called "Gestalt" relationships:

proximity, similarity, containment (or enclosure), and directionality.

o Structur - Description of an object (or configuration of objects or

regions) in terms of the organization which describes how, overall, the

interrelations of the parts contribute to perception of the whole.

o MeanJing - Naming, interpretation, and/or connotation of a perceived

object or region, or "configuration" of objects or regions. Meaning

can be related to the specificity of naming, or to the connotated

properties of the named object.

A substantial body research has shown that humans work towards and create

an internal symbolic representation of objects or scenes. This internal ,

representation contains content, context, structure, and meaning for

perceived and imaged scenes.

Although it is by no means clear that humans operate with the same

hierarchical representation structure as has been proposed for machine IU

systems, it is well known that humans have the capability to symbolically

represent and interpret different levels or forms of visually-related

knowledge: ""

4
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1. Representation of 2-D charactersitics of a perceived object or

scene. This is most obvious in the case of abstract line drawings

or figures where no three-dimensional information is intended.

[Vernon, 1953; Kohler, 1947; Koffka, 1935]

2. Internal representation of the three-dimensional nature of a

perceived object or scene. Our ability to mentally manipulate such

internal three-dimensional models has been amply demonstrated, most

notably by the experiments of Shepard [Shepard, 1971).

3. Representation of classes of objects and schemas of events.

, ,Human facility for organizing objects and events is well known, and

- rhas formed a basis for significant research in artificial

intelligence and cognitive science [See, e.g., Minsky, 1975].

These human capabilities evolve over the course of childhood. Work by

Binet and Simon showed that the evolution of scene understanding abilities

S-" in children developed with age [Binet, 1916). At three years of age,

children could enumerate the objects in a scene. By the age of seven, they

3 ncould describe objects. Between the ages of seven and fifteen, they

developed the ability to describe events and the the relationships between

objects and persons. Generally, by the age of eleven, they were able to

interpret the picture as a whole EBinet, 1916; Vernon, 1953].

There is some similarity between the evolution of abilities in children and

the process by which adults identify a figure. Adults first have a vague

"feeling of something", followed by a vague impression of some indefinite

object. This is followed by the. "generic object stage"a, at which certain

* parts of the object stand out more clearly. The next stage (the "specific

object stage") is one in which the observer perceives an organization of

the parts in the object or figure, while the background fades out. In the

last stage, naming of the object occurs [Vernon, 1953).

7..
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These stages* and the evolution of perceptual abilities described above,

could be approximately described as a procession of capabilities

corresponding to the four aspects of perception given earlier: content,

context, structure, and meaning.

Early work by researchers in perception showed that the tendency to group

objects or regions based on laws of Pragnanz (similarity, proximity,

containment, and directionality) played an extremely important role in

human perception [Koffka, 1935; Kohler# 1947; Beck, 1966, 1972; Olson &

Attreave, 1970; Rock & Brosgole, 1964]. These studies were later advanced

to show that humans organized perception so as to create an object or

configuration based representation that yielded maximal symmetry under

group-theoretic symmetry operators [Garner, 1970; :Palmer, 1983 (and

references contained therein)].

The perception of structure in abstract figure drawings is an ability which

increases with age in children. At the age of three and one half to four

years. children can recognize and reproduce the difference between open and

closed figures, and frcm the age of four they begin to recognize the

difference in rectilinear and curved figures. and to differentiate among

such figure types as squares and triangles. At this age, they also begin

to be able to understand object relations [P1aget and Inhelder, 19483.

• -Young children tend to copy exact details of a complex line drawing,

juxtaposed without any idea of the pattern as a whole. They have no

concept of the relationships among the details or between details and

overall structure. By the age of nine to ten years, children are able to

identify the main outlines of structure in an abstract line drawing. It is

interesting that naming and verbal analysis of structure appear very
involved in the child's ability to extract structural components. By the

age of eleven to twelve years. children are able to perceive main outlines

of structure, supporting or subsidiary Interrelations, and are able to

integrate details in a manner corresponding to the original image [Vernon.

1953).

6



To what extent is structure an important factor in human visual

perception? Many indications imply that structure plays a very important

role. During this discussion, it will be necessary to distinguish between

two levels of structure, will be referred to as "low-level" and

"high-level" structure. Low-level structure is the organization imposed on

a figure or scene by grouping related objects or regions together according

to the Laws of Pragnanz [Kohler, 1947). High-level structure will be a

q reworking of the groupings found by low-level structure as to perceive the

maximal symmetry of a configuration [Palmer, 1983). This symmetry may be

either translational, regarding a repeated pattern or figure, or it may

involve rotation or reflection about a point or axis.

There is some evidence that the role of structure is to aid in the human

capability to form internal symbolic representatons of images. This stored

internal symbolic representation is what would allow us to recreate scenes

once they have been viewed, or to create new or similar scenes [See, e.g.;

Shepard, 1978). An illustration of this is that humans tend to draw a

simplified version of a complex, abstract line drawing which they are asked

to reproduce from memory. The line drawing produced is not only simpler

than the original, it also has a higher degree of symmetry than the

original drawing [Vernon, 1953; Shepard, 1978).

Recent research has shown that the right hemisphere of the human brain is

*m highly specialized (in right-handed persons) to handle a wide variety of

spatial relational processing. Damage to this hemisphere can result in

severely impaired capabilities to Interpret and understand imagery.

Overall, research in localization of brain functioning supports the view

that relationships between regions, and information which can be drawn from

these relationships (structure) is fundamental to human visual perception

[Kimura and Durford, 1974; Levy et al, 1983).

7
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3.0 THE ROLE OF STRUCTURE IN MACiINE VISUAL PERCEPTION

As stated in the Introduction section, the goal of machine visual

perception is to construct a complete, accurate, multi-aspect symbolic

representaton of the "world" perceived through the imaging sensor. This

would enable an intelligent machine to perform further operations (which

might be somewhat akin to imagery). In order to be able to construct a

useful internal symbolic representation, the machine would have to have

image understanding capabilities similar to those described earlier for

humans. In the context of machine image understanding these are:

o Contn - Segmentation of the input image into appropriate regions,

and characterization of these regions in terms of size, shape, color,

texture, and other useful attributes.

o Contex - Internal representation of the simple interrelationships

between regions. Important relations to take into account would include

similarity, proximity, containment (or enclosure), and directionality.

o S - Two levels of structure are appropriate even at the 2-D

representation level. These are:

-. Low-level structure - Grouping "related regions" so that

they may symbolically be considered as forming parts of a
"whole".

High-level structure- Determine the group-theoretic

operators which may describe a configuration or pattern

expressed in single regions or groups of regions. This may

involve identifying points or axes of symmetrY, or

translational invariance for repeated forms. This structure

must be robust enough to account for effects induced by

perspective.

8



r. o mei - Recognize, classify, and identify important objects and

features. Associate contextual information with certain object classes

5(e.g., capabilities of or uses for certain objects). Interpret events, or

"meaningful" configurations of objects or features.

These four desired capabilities of image understanding systems are geared

towards enabling the system to contruct an internal symbolic representation

of the world corresponding to the perceived image. It is still likely that

at least three major levels of representation will be necessary. These

- three levels would be:

o 2 - Symbolic representation of the segmented regions and their

attributes (content), their relationships (context), and both low- and
high-level structures describing the configurations of the regions.

o 3-D Form-Based - Representation of the probable three-dimensional forms

which yield the image obtained by the sensor. This can Include

object-centered representations for segmented objects, and terrain-based

information for representation of the background or terrain.S
o Object/Feature Classes - Representation of all identifying and

connotative information associated with the perceived objects, features,

and terrain.
m

In comparison with the desired capabilities of machine visual perception

systems, existing systems have exceedingly limited capabilities. Current

machine vision systems focus on object identification where the domain of

objects under consideration is relatively small [Binford, 1982; Rosenfeld,

1983). These systems rely to a great extent on object attributes, such as

size, shape, intensity or color, texture, and velocity (for real time

vision systems). Some systems make use of relationships between different

regions or edges of an object. In these cases, the type of relational

information extracted is very limited, and does not inlcude the full range

. of information that comprises the domain of the Laws of;Pragnanz. The

relationships considered also tend to be highly specific to the object

L %9
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domain, and lack the generality of human perceptual groupings [Brooks,

1981, 1983; Oshima, 1983; Shirai, 1978]. No active systems take into

account the full nature of structure in constructing internal symbolic -

representations of the perceived image, although recent work by Lowe

represents a significant step in this direction [Lowe and Binford, 1981;

Lowe, 1984). Earlier work in visual analogic relations is not strong

enough to form a substantial base for image understanding [Evans, 1968).

An alternative organization for a machine image understanding system is

shown in Fig. 3.1. While this proposed system design maintains the

fundamentally hierarchical approach of early designs for IU systems [Barrow

and Tenenbaum, 1981], it departs radically from earlier systems through

inclusion of context (relationships), and structure at the crucial 2-D (or

2-1/20) and 3-D symbolic levels. In this sense, there is somewhat of an

analogy to the lateralization of visual processes in the human brain.

In the 2-1/2-0 level, content information leads to context, from which

low-level structure can be gained. Structure provides groupings of regions

which facilitate object/feature characterization and identification. Using

both 2-1/2-D content and structure information, a fuller interpretation of

the 3-D characteristics of an object or feature is possible. At the 3-D

level also, the contextual knowledge is facilitated by both 2-1/2-0 context

and structure. Finally, the 2-1/2-0 structure leads into 3-D structure, 

which will include full 3-0 symmetry understanding.
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and Identification
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o 3-D Structure
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Figure 3.1 Conceptual design (in terms of representation levels) for a

machine IU system which would incorporate use of relationships

between segmented regions# and image structure based on the

relationships between regions.
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4.0 CAPABILITIES ENABLED THROUGH CONSIDERATION OF STRUCTURE IN IMAGES

The structure of regions in an image plays an important role in enabling

perceptual processes and image understanding. By representing the

* structure of segmented regions, as well as the attributes of and

relationships between these regions, a new form of information is made

available to the knowledge bases and inference engines which would operate

on the image. For the remainder of this paper, the emphasis will be on the

representation of low-level (grouping) structure for images. and on the

knowledge which can be gained fran this structural representation through

inference.

In brief, the mechanism for evolving a representation of low-level (Gestalt

grouping) structure is as follows: Each segmented region in an image is

symbolically represented by a "node"s which will have appended to it

content and context information. A parameterized form of the Gestalt "Laws

of Pragnanz" is used to determine the relationships between nodes

(contextual information). (These relationships are detailed in Table

4.1.) This allows the most "closely-related" nodes to be identified and

grouped together. A. "cluster node" symbolically represents this grouping

of closely-related nodes. Content and context informacion for the new

cluster node is calculated. The process is repeated, creating higher

levels of cluster nodes, until the entire image (or segmented object) is

represented by only a few cluster nodes. Decomposing the hierarchical

cluster-node structure allows access to the components of each group of

nodes. The result of this process is that regions which would be grouped

together by our human perceptual processes are similarly grouped together

by the structural process (referred to as Hierarchical Region Structure

(HRS)).

An example is shown in Fig. 4.1. Fig. 4.1(a) shows a Forward-Looking

InfraRed (FLIR) image of a road. We would naturally group together the two

semi-parallel strips together as a structural unit, or "configuration".

Moreover, we would naturally consider the left and right (bright) sides

bordering the road each to be "units" (in a symbolic sense) despite the

fact that there are three regions

11n
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corresponding to the left-hand road border, and two regions on the right.

Current image processing algorithms can segment out these regions (to

greater or lesser degrees of satisfaction, depending on the methods used),

and characterize each of the segmented regions. However, a mechanism to

relate the segmented road regions together into a single structural whole

is not a part of generic IU technology. In this sense, the grouping

offered by the HRS approach represents a strong development in IU

capabilities.

Fig. 4.1 (b) shows a segmented image based on Fig. 4.1 (a). Fig. 4.1(c)

shows the part of the Hierarchical Region Structure which relates to the

road area. The hatched nodes at the bottom of Fig. 4.1(c) correspond to

specific regions in the segmented image, shown hatched in Fig. 4.1(d). The

three left-side border road regions are grouped together (using high-value

relations of similarity # proximity, and similar direction), as are the two

right-side border regions. These form the two cluster nodes which can be

seen at the second level from the bottom of Fig. 4.1(c). These two nodes

are grouped together on the basis of their similarity and similar

directionality, and form a new cluster node (third level from bottom).

This node joins with a cluster node representing the interior of the region

to form an overall road node (one level down frn the top). Similar

processes would group together the regions on the right and left sides of

the region.

Using this hierarchical structure, to which content and context information

" would be appended, an inference engine could search among the top layers of

the structure for a cluster node which has characteristics and internal

relationships (context) corresponding to the known content and context of a

road. A strong advantage of this approach is that at this point, all of

the road regions would be symbolically linked together and could be treated

as a unit, thus enabling further high level processing.

12
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Figs. 4.2 - 4.4 further illustrate the capabilities offered by a

representation of low-level structure in an image, as well as the

limitations inherent in this approach. These figures are all based on

Figs. 88, 89 and 90 in Bongard's one hundred "Problems for the Recognition

Program" [Bongard, 1970]. Each of the original problems consisted of two

sets of six small figures each. ,The goal in each case was to determine

what unique characteristic described one set of figures which

Fdifferentiated it from the other set of figures in the same problem. For

succinctness, I have used only three of the figures of each of the sets,

instead of the original six. Each of the original figures used for

discussion here is shown in the left-hand column, and a hierarchical

structural representation for it is shown on the right.

In the structural representation, each node which is a termination of the

downward-pointing tree-like structure represents one of the white or black

ellipses in the original figure. (The notations of "V" for white and "B"

for black are added underneath the terminal nodes of the hierarchical

structure in order to facilitate comparison with the original.)

The figures in the first set of Fig. 4.2 each have three ellipses, those In

the second set of the same figure each have five ellipses. In this case,

the addition of an hierarchal structure which describes the structural

groupings of each of the figures does little to help. Differentiation

between the two sets can be based on content alone. Such differentiation

is well within the province of traditional image understanding systems,

which could extract the content of each figure, and infer the nature of the

set definitions: three or five ellipses per set, respectively.

Fig. 4.3 presents a slightly more complex situation. In this case, the

content of each figure is not sufficient to fully differentiate the sets.
Some figures have three ellipses* others five, others as much as fifteen.
The key feature here is the grouping of the ellipses together. This is

shown vividly in the accompanying hierarchical structures. Each of the

structures for the first set has three major

13
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"cluster nodes" (in an expanded use of the term, since sometimes a "cluster

node" will correspond to a single node of the original image). Each of the

structures in the second set has five cluster nodes. In each case, the

structures are built using heuristics and processes based on the Gestalt

Laws of;Pragnanz. For simple figures such as these, the resulting

structures are very strongly determined, with little ambiguity in terms of

the groups which will be formed. The information produced by this

Gestalt-like grouping or structuring process presents a major step beyond

that provided by traditional IU systems.

Despite the clear advantage that such structural groupings offer, it is

important to be clear on the limitations of such information. It is

necessary to understand that the information offered by the low-level

structural process is devoid of both meaning and representation of

symmetry. These limitations are illustrated by Fig. 4.4. Here, although

the hierarchical structure clearly groups together the adjacent white

ellipses before clustering them with the black ellipses, it is by no means

clear that this is sufficient to distinguish between the two sets. The

distinguishing criterion in this case (three groups of white ellipses in

the first set, four in the other), would have to be made at a higher

inferential level than that of the previous figure. Thus, while low-level

structuring offers a substantial body of information In a form which

enables rapid processing, It is only another step in developing mature IU

systems; it is not by itself sufficient to solve all IU problems.
*q.

Nevertheless, the advantages offered by the use of low-level structure in

IU systems is so strong that this area warrants active attention.

14
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5.0 CONCLUSION: ASSESSMENT AND IMPLICATIONS

'* For some time, there has been a growing awareness among the image

understanding resear ,rrunity that the traditional approaches were not

yielding satisfactory rasults in terms of desired performance. These

traditional approaches have been heavily weighted towards obtaining the

characteristics of segmented regions. Even the more recent work, leading

potentially to realization of Marr's 2-1/2-D primal sketch, has simply

focused on obtaining depth or orientation cues about regions, which is an

elaboration of the characterization process.
--.

In contrast to this approach# researchers in human perceptual processes

have long been aware of the importance of the use of relationships between

regions, leading to grouping of regions. This capability to form groups of

highly related regions is a fundamental (low-level) form of structuring the

information in an image. Further work showed that humans make extensive

use of the symmetry properties of image configurations in building up

internal symbolic representations of the perceived images. It has become

apparent that this capability is not a trivial one, and that human ability

in working with structural groupings and symmetric relations develops only

in the latter stages of childhood.

These factors provide strong argument that one of the major needs of image

understanding systems now is a robust, generic method for representing and

processing both group-oriented and symmetry-oriented structural properties

of images. This paper illustrates a method for representing the low-level

(grouping) structure of segmented images. The structuring process is

thoroughly based on an implementation of the factors which a dominant role

in human perceptual grouping processes: similarity, proximity,

containment, and similar directionality.

The implementation scheme has been applied to both natural (FLIR) and

artificial (Bongard) Images. The resulting Hierarchal Relational

Structures provide an organizing schema for grouping related regions for

further processing. %The HRS further enables a potentially simpler form

VT
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of representation for higher-order relationships (such as symmetry), and
provides a succinct structure to which meaning or object/feature

identification processes can be applied.

While this paper has brought up the need for representing higher-order

(symmetry-based) structure, it has not attempted to demonstrate a form or

mechanism for building this representation. The factors which might be

most fruitful yields form this work are the realizations that first, image

structure representations store a valuable form of image-based

information. Second, investigation into human visual processes can

continue to yield valuable insights and ideas for generic,

machine-implemented image understanding systems. Thirdly, while structure

may be rightly regarded as a valuable component In image description, it is

not to be confused with interpretation or understanding of the image. In

this perspective, the use of structure in machine image understanding needs

to be regarded as one among the many possible elements which can ultimately

enable full image understanding.

16
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ABSTRACT

This paper describes a knowledge-based image processing system for the

segmentation of outdoor scenes. The system consists of four main units which

perform the tasks of: goal determination, preprocessing, segmentations and

r... region evaluation. The system uses information on the mission goals, sensor

characteristics, and data measured from the scene, as well as knowledge about

the perfomance of the Individual image processing operators.

The hierarchical image understanding system described here has as its prinary

goal to segment visual and infrared imagery of outdoor scenes. It performs

image or region resegmentati on and/or reprocessing by intelligently deci di ng

what image processing operations to use, "measure" the effects on the current

image and make a decision as to what the next operation should be. The system

has been implemented in a Symbolics 3600 as a collection of production rules

acting on a blackboard-type scene knowledge representation called Archival

Scene Model. Representative results are described in the paper.
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1.0 INTRODUCTION

One of the fundamental challenges In computer vision is obtaining useful

segmentation. In region based segmentation, the goal Is to outline regions

which accurately correspond to actual structures in the scene. The quality of

v" the segmentation is crucial to effective machine image understanding. Without

the capability for good segmentation of physically meaningful regions, even the

most intelligent processing cannot achieve satisfactory scene interpretation.

The partitioning of a scene into regions based on additional knowledge, such as

range or other ancillary knowledge, can yield very meaningful scene

interpretation results Ell. Traditional state-of-the-art image segmentors use

some background adaptive technique and threshold in order to meet their

requirements. However, such techniques are "blind" in their adaptation and

could be severely affected by object size or sensor characteristics

i nstabi lIty.

In the past, the most useful segmentation results have been achieved using

model driven techniques which were tuned to work for specific situations.

p These segmentation methods work well for very focused applications such as

finding bright targets in low clutter scenes. The performance of these

segmentors goes down r&pidly, however, when they have to deal with a wider

L range of imagery. There ,are many applications where computer vision systems

have to function over a wtde range of situations. For example, the computer

vision system for an autc/omous land vehicle must function in a variety of

situations which will be affected by different sensors, terrains, weather

conditions, and even the time of day. There are currently no segmentation

methods that work well over a wide variety of situations.

A way to improve segmentation results over a wide range of scenarios is to use

AI techniques to bring more knowledge to bear on the problem. Using AI

techniques, such as knowledge on the terrain or weather conditons can guide and

control the segmentation process. This knowledge can come from other sensors,

the processing results from previous frames, or even from pre-mission training.

".6
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Various knowledge driven image processing techniques have been studied by

many. Duane et. al. [1985) use knowledge driven production rules to evaluate

the region segmentation of an image [21. This evaluation is used to group

smaller regions into larger ones. This evaluation can also resegment a region

with new parameters. The segmentation is performed by a single routine that is

data driven using no other knowledge. On the other extreme Nazif and Levine

[1984) use production rules to control all aspects of the segmentation process

[3]. Rules control the analysis and groupings of lines, and regions as well as

*-i the scheduling of different segmentation tasks.

" Our knowledge based segmentation approach makes use of an in house existing

library of image segmentors. The knowledge based control chooses segmentors

fran this library of operators. It uses external knowledge, and knowledge

extracted from the image, to choose the best operator and parameter values for

a given situation.
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2.0 APPROACH

To use knowledge effectively, the algorithm segmentation process is divided

into independent knowledge driven algorith modules. Each of ;he algorithm

modules performs a specific step in the processing flow. To make a given unit

knowledge driven, any knowledge that could possibly aid in the task of the

module must be identified and quantified. It is not important where this

knowledge canes from, just that it can be known and can be useful in performing

the module's task. For example, an algorithm module to do noise cleaning could

use knowledge about the overall contrast of the image to determine which noise

,.. cleaning operators to use. This knowledge could come from actual measurements

of the image or it could be derived from other knowledge such as the type of

sensor used, the weather conditions, and the time of day.

* ' All of the information known about a scene Is held in a central data based

called the global knowledge base (GKB). The GKB handles all of the knowledge

transfer between different modules in the system. Each module takes knowledge

it needs from the GKB and returns any new knowledge generated to the GKB.

Once the pertinent knowledge has been identified, the operation of each module

is designed to be controlled in terms of this knowledge. Production rules have

*,. proved to be a good method for knowledge based control within a module. A

typical rule is made up of an anticedent and a consequent. The anticedent

consists of one or more tests of information in the GKB. If all of the tests

-" in the anticedent are true, then the consequent is executed. The consequent

consists of one or more actions that can either change information in the GKB

.- or execute an image processing function. Using production rules makes the

control of the segmentation processing knowledge drivent but also makes it

flexible and modifiable. Production rules can be added or deleted as new types

of knowledge or new image processing routines are added to the system.

3

P ,



3.0 SYSTEM DESCRIPTION

A prototype knowledge driven segmentation system has been developed in the

System and Research Center's Image Research Laboratory. The system has shown

good results on a number of images from a wide range of scenarios. An overview

description of the implemented system is presented in the remainder of this

section. Figure 1 shows a block diagram of the prototype knowledge based

segmentation system. The processing is divided among four modules which do:

goal determination, preprocessing, segmentation, and region evaluation. Each

of these modules has a separate knowledge base that contains the production

rules specific to the module, and has access to the GKB for scene information.

The goal determination module determines the segmentation goals from the system

goals. The system goals are usually based on the specific mission, but they

" could also conceivably change during a mission. An example goal determination

rule from our prototype system is:

RULE #15: IF (GOAL=TARGET_RECOGNITION) THEN (SHAPEGOAL=CONVEX)

This rule suggests that if the system goal is to recognize targets then the "'

shapes sought will be convex.

The preprocessing algorithm shown in Figure 2, takes in the original image and

* preprocesses it to accomplish tasks such as noise cleaning and image

enhancement. This module uses knowledge# such as sensor type, to determine the

preprocessing steps. The preprocessing module can also generate knowledge,

"- such as the overall image contrast, to be used by other modules. A sample

*. preprocessing rule from our prototype system is:

RULE 108: IF (HIGHFRE..NOISE) THEN RUN(WINDOW_AVERAGEROUTINE)

For this rule It is not important how ft was determined that the image has high

frequency noise present. It is just important that the noise is present. The

information could have come from image measurements or from prior reasoning

. based on the sensor type and the time of day. After preprocessing comes the

. actual segmentaton.

4
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The segmentation module, shown In Figure 3, takes in the preprocessed image and

applies segmentation operators frm a library of possible operators. Each

operator in the library has strong points and weak points. Table 1 shows the

suite of segmentation operators which are currently in the system. It is the

job of the segmentation module to choose the best operator based on the

segmentation goals and on the current scene knowledge fran the GKB. Besides

doing the actual segmentation, the segmentation module generates knowledge to

- be put in the GKB for use by other modules. This includes image knowledge,

* such as the total number of regions segmented, as well as knowledge about each

individual region, such as shape and contrast. The segmentation module is

sufficiently general so that it can segment regions or entire scenes. This

makes the same module usable for initial segmentation of full images or

. resegentation of individual regions. An example segmentation rule from a

* prototype system is:

" RULE #47: IF (SHAPEGOAL=CONVEX and CONTRAST<LOW) THEN (RUN 1BL)

This rule recommends the segmentation operator TBL when the contrast of the

image is low and the goal is to find convex objects. After the image is

segmented into regions, the regions are passed one at a time to the region

evaluation module.

SEGMENTOR TECHNIQUE APPLICATION

TEXTURE BOUNDARY TEXTURE BASED Low CONTRAST BOUNDARIES

LOCATOR (TBL)

OTOTYPE SIMILARITY REGION BASED Low TEXTURE REGIONS

RANSFORM (PST)

M70 DIGITAL EDGE BASED HIGH CONTRAST BOUNDARIES

GRADIENT (MDG)

TABLE 1. SEGMENTATION TECHNIQUES USED BY -THE KNOWLEDGE BASED
SEGMENTATION SYSTEM.bq 
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ORIGINAL PREPROCESSED
VAAGE => PREPROCESSING IMAGE

ORIGINAL PREPROCESSED
IMAGE IMG

INFORMATION MEASURES

SENSOR TYPE OVERALL CONTRAST

* Figure 2. Preprocessing module

PREPROCESSED C=> SEGMENTATION IMAGE
*IMAGE REGIONS

IMAGE SEGMENTATION
MEASURES DATA
&GOALS

CONTRAST NUMBER OF REGION FOUND
-LOOKING FOR TARGETS SIZE OF REGIONS

TARGET SIZE, SHAPE CONVEXITY OF REGIONS

I. Figure 3. Segmentation module
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The region evaluation module, shown in Figure 4, determines what processing

shov'ld happen next for each region found by the segmentation module. The

region evaluation module recommends that a region be: accepted, resegmented, ,I

or ignored. This recommendation is based on knowledge about the specific

• .region and on the segmentation goals. The segmentation module, working

, together with the region evaluation module, produces the best possible

* segmentation for the image based on the current segmentation goals. An example

region evaluation rule is:

RULE '75: IF (GOAL.._SIZE=SMALL and GOALSHAPE=CONVEX

and REGION_SIZE=LARGE and REGIONSHAPE=CNCAVE

THEN (RESEGMENTREG ION)

* This knowledge driven architecture makes the best use of all available

knowledge about the scene. It also provides an approach for making use of

Sinformation across multiple sensors. The processing for each of the sensors

* can be designed to be knowledge driven, with all sensor processing paths

sharing the same GKB. This would allow each sensor's processing flow to use

any knowledge possible, even if it canes fran anothir sensor.
9.-

This type of system architecture also can be designed to make use of

information across multiple frames of a scene. Information learned fran the

processing of one frame could be used to help processing of successive frames.

For example, if a convex object is found in one frame at a certain size, this

infanation could be used to look for more convex objects of the same size in

successive frames. This could Improve overall system performance by giving the

" system more information about what it can expect to see in a given frame.

pr •
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4.0 EXPERIMENTS AND RESULTS

In the following we describe the results of the implemented knowledge based

segmentation system for a sample experiment conducted in the Image Research

* Laboratory for ground scenarios imagery.

Figure 5 shows a sample video image of a road with obstacles on it. This image

represents a road following scenario where the goal is to find the road and

then determine if there are any obstacles in the road. Figure 6 shows the

result of a texture based operator on the road image. Figure 7 shows the

results of an edge based segmentor and Figure 8 shows the results of a region

based segmentor. None of these results are sufficient to identify the road and

the obstacles. The knowledge based control breaks the path following scenario

into two goals. The first goal is to find the road by looking for large

regions without looking for details. Using these goals the segmentation module .

recommends running TBL on a lower resolution of the image. Figure 9 shows the -

results of this first pass of segmentation. Each of the larger regions pass

* the segmentation goals at this point and are accepted by the region evaluation

modul e.

The second set of segmentation goals for this path following scenario

recommends to look for small convex obstacle like regions within each of the

larger regions. When the regions are evaluated with respect to these new

goals, the region evaluation module recommends passing the larger regions back

to the segmentation module for resegentatton. Figure 10 shows the

resegentation results for the center road region. Notice the obstacles are

now segmented out. Figure 11 shows the total image segmentation when the

resegmentation results are combined backinto a full image.

,
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* -~ Figure 6. TBL segmentation of full image

Figure 7. MDG segmentation of full image

7a



.1 OR

MA

Figure 8. PST segmentation of full image

Figure 9. Segmentation of low resolution image
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Figure 10. Resegmentation of road region

I Figure 11. Full knowledge based segmentation results
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5.0 SUWIARY
p .

The overall performance, robustness and multi-scenario operaton of a computer

vision system can be improved by making use of all possible knowledge about a

scene. Knowledge can be better used by designing the processing control to

make use of all available information. By using production rules the system

can be knowledge driven and also be flexible and easily expandable when new

image processing routines are added to the system. A prototype experimental

system has been implemented for knowledge based region segmentation and

resegmentation with encouraging results.

.A much more difficult problem, than region segmentation, is the classification

and labeling of the regions in a scene. The approach we have described in this

paper is goal driven segmentation and therefore provides labeling information

about the region if the goal is met satisfactorily. This aspect of the

approach is being explored as a follow-up to the current application.

.4.
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ABSTRACT

This report provides a brief summary of a research project currently under way

s in the Honeywell Systems and Research Center on the use of "depth cues" in

general and on optical flow in particular for dynamic scene analysis. The 2-D

optical flow fields are determined by implementing a gradient technique which

relates the changes of brightness in the image sequence to the spatial

movements in the scene. The results of the use of this technique on a sequence

of visible images are given. Furthermore, a multi-sersor approach (which is

currently being implemented) is presented for the construction of 3-D optical

field frcm 2-D optical field and range information available from a ranging

sensor. This will permit derivation of the complete 3-D motion parameters of

the moving objects arbitrary motions in the scene.
. .
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1.0 INTRODUCTION

This report summarizes the preliminary results of Internal Research and

Development (IR&D) work on the feasibility of the use of 'depth cues' in

dynamic scene analysis.

Humans readily use monocular depth cues, such as occlusion, texture gradient
1- and optical flow. [, 2] Isolated attempts at using some of these depth

cues for computer vision and scene understanding have been made by various

-_ researchers [3-19] in the last decade. However, no systematic effort on

studying the use of these depth cues for computer vision has been reported.

. Some of the depth cues such as occlusion and texture gradient are useful in

static scenes. Others, such as optical flow, are beneficial in dynamic

environments where the position of the viewer with respect to a static scene

changes, or the viewer is stationary and the positions of some of the

objects in the scene vary with respect to the viewer, or there is a

combination of these two cases.

In our study we are considering the use of occlusion cues, texture gradient,

and optical flow for the extraction of three-dimensional (3D) information

from a scene. In this preliminary report we describe our approach for using

optical flow to extract 3D information. This will greatly aid the process

*R of dynamic scene analysis, and will facilitate studies of temporally
changing object features. In later reports, we will present the results of

our studies in using both occlusion and texture gradient cues.

There are several ways in which the Hierarchical Multisensor Image

Understandfg (HMIU) program can benefit from these studies. Depth cues in

.* general and optical flow is particular provides 3D information at the lower

- 'level of the hierarchy which will be crucial in single sensor image

understanding. Moreover, in our approach we plan to initiate a multisensor

* .fusion process at this low level by combining 2D optical flow (obtained from

-" IR or TV) with the range information available from a ranging sensor to

create 3D optical flow of the scene. This 3D optical flow Is then used toI

91
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extract 3D motion parameters of the moving objects. We have to note that by

using single sensors, only the 2D projected motion parameters can be

derived. However, in our multisensor approach, the complete 9 parameters

needed for 3D motion description of moving objects can be extracted.

Figure 1 shows the various steps involved in our approach. From the

infrared or visual images, 2D optical flow will be derived which will then

combine with the range information available from the millimeter wave radar

(or lidar) and will lead to the formation of the three-dimensional (3D)

optical flow. The nine motion parameters are obtained from each velocity

vector. By using the generalized Hough transform method the motion

parameters of the rigid body motions in the scene can be specified. In this

method, each velocity vector 'votes' for a set of motion parameters and the

parameter values receiving the most votes are selected to describe motion of

the moving object.

2.
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2.0 DETERMINING 2-D OPTICAL FLOW
,I,

There are two main approaches in the literature for the determination of

*' optical flow: gradient methods and matching techniques. In matching

techniques, one has to follow the motion of prominent feature points from

frame to frame in an image sequence. These techniques require an initial

segnentation of the imagery and more importantly they rely on the finding of

the best matching points. The gradient methods, however, avoid the

correspondence problem by using the original unsegmented images and making

use of the gradient constraint equation which relates the changes in

brightness to the temporal changes in the scene. For an object of constant

brightness U(x, y, z), the following equation is derived

V. V. + 0J.I

where

.- V= -. I-V' . , ,]Vbb t:- (2)

We used a gradient method [7,13] for the determination of optical flow.

This technique is an iterative and robust method for the determination of 2D

optical flow V. Some of the features of this method are as follows:

0 Samples are taken at discrete points in space and time and

quantized in brightness.

*~-A %MbAL J0 Partial derivativesi-, and- are estimates by averages

using eight measurements in two image frames.

3



L0 The criteria that is minimized Is the square of the magnitude

of the gradient of the optical flow velocity

components V " 
I

ir I
If )2t r ,V 2.

The final iterative relations for estimatingiV and V are as the following:

S: _" -"-" -n d

wheretis a weighting factor.

be.o"

+Ao+

4



3.0 DETERMINING 3D OPTICAL FLOW

Consider a viewing geometry, as depicted in the Figure 2, defining the three

components of 3D optical flo as Wx, Wy and Wz , and, using geometrical

relations, the following equation can be derived:

(f-z)Vx s Wxf + x1Wz (6-a)

(f-z)Vy Wyf + y'Wz (6-b)

By using focal length of the camera f; positional coordinates in the image
xl, yl; 2D optical flow velocity components Vx and Vy; and depth information

Z, Wz; the components Wx and Wy will be computed.

'°..4
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4.0 DETERMINING MOTION PAR METERS

The motion of rigid bodies in the scene are described relative to a frame of

reference. We assume that this frame is fixed to the viewer. The most

general type of motion is described by the following relation:

X = XA + P (7,a)

V VA + XP (7-b)

where P = X-XA

andftis the rotation vector at a point.A on the rigid body. VA is the

velocity component associated with the translation velocity of the point-A.

so the rigid body motion can be described by 9 parameters VAD , X, XA.
Figure 3 shows the relations between the viewer frame of reference and the
rigid body's frame of reference. For determining. we first calculate

- rotational direction W which Is defined as. by using three successive 3D
. optical flow measurements to obtain 2 acceleration vectors al, A2 W is

- found from the following relations

W = A1 XA2/( a1 X a2 )

VT and JilJ will be determined from the following relation:

V= VT + AI W X P

From each velocity vector the motion parameters will be extracted and then

by using a Hough transform [20] like procedure, the motion parameters of the

* solid objects will be extracted by noticing that moving rigid bodies will

Y have the highest number of points having the same motion parameters In the

scene. The Hough transform was originally developed for the detection of

straight line segments in image. In this technique the points in the image

6
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are transformed into lines in a parametric (line-Intercept) space. Lines in
the slope-intercept space corresponding to colinear points will cross each

other In one point. This technique recently has been generalized for

detection of more caplex patterns in multi-dimensional spaces.
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5.0 PRELIMINARY EXPERIMENTAL RESULTS

A sequence of 12 TV images were created from a moving toy jeep at the rate

of 30 frames per second. Figures 4 and 5 show the first two frames of

pictures of the moving jeep. Using the gradient technique described

previouslys the optical flow fields by using different number of frames and

varying the values of*ON and the scale factor were obtained. Figure 6

shows the derived optical flow fields for*(= 2.0, N = 16 and scale

factor 2. As can be seen from Figure S, the outer boundaries of the jeep

can be easily inferred from the optical flow fields. Furthermore, some of

the surface orientation properties of the Jeep have also exhibited

themselves in the optical flow field. This is very useful information that

is currently under investigation.

I.
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Figure 4. Image of the First Frame of a Sequenceof a Moving Jeep 

.

Figure 5. Image of the Second Frame of a Sequence 
_of a Moving Jeep
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6.0 SUIJI4ARY

In this report a brief description of a research project currently under way

at the Honeywell SRC/SIP on the use of "depth cues" in general and optical

flow in particular for dynamic scene analysis was given. Our overall

multi-sensor approach for the construction of 3-D optical flow and the

extraction of 3-0 motion parameters was described and the preliminary

results of the implementation of a 2-0 optical flow technique as part of our

overall approach, on a sequence of visible images were presented.

9-
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BELIEF MAINTENANCE FOR A FUZZY REASONING SYSTEM
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BELIEF MAINTENANCE FOR-A FUZZY REASONING SYSTEM

AB. , -o.

Real world problem solving often involves (1) dealing with uncertain and

imprecise knowledge and (2) making assumptions which are then verified or

denied by the reasoning process. Fuzzy logic is presented as the mechanism for

dealing with measures of belief and a maintenance system is proposed for

handling assumptions and the accrual of evidence.
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BELIEF MAINTENANCE FOR A FUZZY REASONING SYSTEM

I.0 ITRODUCION

Expert systems and the accompanying reasoning systems are at the forefront of

the artificial intelligence research that is being applied to computer vision

and image understanding systems [1,5,7#9,11,16]. The difficulties associated

with acquiring and encoding expertise are a major bottleneck in the practical

application of expert systems. Expert knowledge is often imprecise (vague) or

uncertain and the rules used in inferencing with knowledge in this form must

model and support measures of belief. Several methods based on probability

have been presented and used for dealing with uncertainty 12,6,151, yet none of

these methods deals well with the imprecision or vagueness inherent in expert

knowledge. Fuzzy logic, based on fuzzy set theory [19,21#22], assigns

intervals of possible values to a fact rather than a single probabilistic

value. Research is being pursued in unifying the possibilistic and

probabilistic approaches [8#13,18] and In the application of fuzzy logic to

expert systems E1,8912,17,20] and to image understanding [14]. Section II

explains the basic concepts of inferencing with fuzzy logic.

The knowledge in reasoning systems is also incomplete and assumptions must be

advanced or it is inconsistent and conflicts must be resolved. Human reasoning

makes use of the assumption verification/denial paradigm. In problem solving,

the human will assume certain facts in order to drive the reasoning process.

If an assumption is proven incorrect* the reasoning based on that assumption is

ignored and the problem solving continues, possibly with another assumption.

* This sort of non-monotonic reasoning requires facilities for maintaining

evidence for facts and resolving conflicts [10]. In [31, facts are based on

endorsements and in [4) facts are considered true based on a support list. The

. reader should investigate these methods; however, an extension to the latter

method is provided in Section III.

Section IV is an example of a belief maintenance system for fuzzy logic applied

'- to the classification of regions within a scene. The system maintains

" dynamically accrued facts and assumptions with measures of belief.

ii:
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2.0 FUZZY SET THEORY-AND FUZZY LOGIC

Fuzzy set theory, introduced by Zadeh (19) in 1965o deals with the notion of

imprecision in discrimination between sets of objects. Conventional or 'crisp'

sets have sharp boundaries and objects either belong to a specific set or do

not belong to that set. Fuzzy sets, on the other hand, contain objects which

have a degree of membership between 1 (full membership) and 0 (nonmembership).

An example may further clarify the difference. The crisp set of BRIGHT pixels

may be defined as all pixels where the average pixel intensity is above some

threshold. The fuzzy set of BRIGHT pixels assigns a degree of membership to

each pixel value, such that pixels with a low intensity have a low degree of

membership in the set of BRIGHT pixels and vice versa for pixels of high

intensity.

Let S be a set of objects and F be a fuzzy subset of So such that for each s in

S, there is an associated degree of membership in F. If S is the set of pixel 4

intensities (values 0 to 255) then BRIGHT could be a fuzzy subset of So where

each pixel intensity in S has a degree of membership in the set BRIGHT. In the

following example of a four interval set BRIGHT, the degree of membership is .3

for a pixel intensity of 120.
rip

BRIGHT - 0/(0-63) + .3/(64-127) + .7/(128-191) + 1.0/(192-255)

If the fuzzy subset is continuous rather than discretized into intervals, the

membership function becomes a curve as in Figure 1.
BRIGHT i

1.0 "

• "--NOT VERY
• BRIGHT VERY

'U • - .SBRIGHT

SI I I I I "

63 127 I11 266

PIXEL INTENSITY VALUE
Ficure 1

2
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In a rule based system the predicates or facts as well as the antecedents and

consequents of the rules are in the form:

"attribute of object IS/HAS value".

If V is a variable for the attribute of an object where the domain of V is So

then the proposition "V is F", where F is a fuzzy set, induces a possibility

distribution, u, over the set S, such that u(s) - F(s). F(s) is the degree of

membership of s in F and u(s) is the possibility that V = s given the data "V
V is F". The differences between possibility values and probability values is

heavily debated and not an issue here, yet an example may provide some insight

into the difference. In the above fuzzy set BRIGHT we see that pixels with an

intensity value between 128 and 191 are given a .7 degree of membership in

BRIGHT. This can be viewed as a 70% possibility that a pixel intensity is

BRIGHT, yet it cannot be interpreted as .7 probability. In probability, the

sun of all the individual probabilities is 1, while in possibility many set

members may have the value of 1 (full membership). Therefore the proposition

"V is F" assigns a possibility or degree of membership based on the fuzzy set

F, to each val us V can represent.

Rules are represented in a conditional form such as

"if V is F then N is G"

where F and G are fuzzy subsets of S and T respectively. This rule induces a

conditional possibility distribution u(st) where

u(s,t) - min (1, 1 - F(s) + G(t)).

.. Compound antecedents or consequents are dealt with by two other compositional

rules. The conjunction form

. "V1 is F1 and V2 is F2 ... Vn is Fn"

L*where Fj is a fuzzy subset of Sj, induces a joint possibility distribution

u(sl, s2,...sn) where

u(sls2,...sn) - min Fj(sj)J for J-1,n.

3
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The di s1 uncti on f orm

"V1 is F1 or V2 is F2 ... Vn is Fn"

where F is a fuzzy subset of Sj, induces a joint possibility distribution

u(sl,s2,...sn) where

u(sl,s2,...sn) = max CFJ(sj)J for jul,n.

Combinations of these compositional rules and the conditional rule can be used

to generate possibility distributions. For example,

"if V1 i s F1 or V2 is F2 then W is G"

induces the possibility distribution u(sls2,t) where

u(sls2,t) - min (1, 1 - max [F1(sl),F2(s2)J + G(t)).

There are also modification rules such as "not" and "very".

"V is not F" induces ul(s) * 1 - F(s).

"V is very F" may induce u"(s) [F(s)] squared.

Inferencing about fuzzy knowledge is based on modus ponens. That is, given A

and the knowledge that A implies B, then B is inferred. This is a conjunctive

of the form

"V is F and (if V is F then W is G)"

where F and G are fuzzy subsets of S and T respectively. This induces the

* joint possibility distribution u(st) where

u(s,t) a min EF(s), min [1,1-F(s)+G(t)])

- min [F(s), 1-F(s)+G(t)].

".5. 4
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Since the possibility distribution u(t) for "W is G" is what is being inferred*

then the maximum u(st) for each t is the possibility distribution for each

G(t). This leads to

u(t) = maximum u(s,t) over all s

a max [min (F(s), 1-F(s)+G(t)l] over all s.

- min (F(s), 1-F(s)+G(t)) when s is known

The strength of a fuzzy set value can be determined in several ways.

1. The expected value may be obtained by some method such as mean

distribution and the strength of a fuzzy set Is the membership val ue at

that expected value.

2. The strength could also be the sum of the membership values for each

interval. This is the Integral of a continuous function over the fuzzy

set.

3. A threshold membership value is determined and some measure of those

intervals which exceed the threshold is used as the strength of the

fuzzy set.

9.,
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L 3.0 BEL IEF MAINTENAMCE

Figure 2 gives an example of a reasoning system for image understanding. The

fuzzy belief maintenance system receives predicates from the inference engine

and maintains consistency among beliefs. Section IV gives an example of this.

In reasoning over a set of rules and facts, there may be equally certain yet

conflicting facts, or there may not be enough current knowledge to confirm a

fact. An assumption is advanced and the reasoning process continues (as may

the knowledge acquisition process). .At some point in this process, the

assumption may be confirmed and all knowledge inferred from the assumption is
fL updated accordingly, or the assumption is denied and the knowledge which is

singularly inferred from the assumption is removed from the set of current

beliefs.

Inconsistency in the current set of beliefs occurs when a belief or predicate

has two conflicting values. Conflict resolution in this sense then encompasses

dealing with two confirming pieces of evidence as well as complementary pieces

of evidence.

Conflict resolution occurs at the instant a conflict arises. There are four

.*-. meta-rules for the resolution process.

1. If neither the current belief of a fact nor the new belief of that fact

are based on any assumption, then if the new belief is stronger than

Sthe current belief (measures of strength discussed above), replace the

current belief with the new belief and propagate the new belief value

-to all the other facts dependent on the fact.

2. If the current belief of a fact is based on an assumption and the new

belief of that fact is not, then replace the current belief with the

new belief and propagate that value to all the other facts dependent on

the fact.

3. If the current belief of a fact is not based on an assumption and the

new belief of that fact is, then do nothing.

S.

6

.% % % % . .'. .% ~ %* .''. ,...' .*%*.'. S~* * ~ .L



4. If the current belief and new belief of a fact are based on

assumptions# then if the new belief is. "significantly less assumption

based", replace the current belief with the new belief and propagate

the new belief value to all the other facts dependent on the fact.

In the fourth meta-rule above the qualifier "signficantly less assumption

based" is some measure of inherited assumption which is a distance function in

the inference network. Intuitively# beliefs based on some distant assumptions

may also have inherited some facts, while beliefs based on less distant

assumptions are likely to have inherited less facts. Practically, retaining

the most distant belief will mean less propagation.

The format for beliefs being maintained is:

(FACT) (FUZZY SET) (BASIS) (VALUE)

where FACT is a predicate from the knowledge base (le, REGION-INTENSITY is

BRIGHT);

FUZZY SET is the fuzzy set associated with the fact (ie, the fuzzy set

BRIGHT);

BASIS is the support for the fact (this includes a tag for indicating

inheritance of assumption, all rules which infer the FACT, and the

accompanying facts which triggered the rules);

VALUE is the real value of the fact (ie, 128 is the REGION-INTENSITY).

If VALUE is empty then the expected value of the fuzzy set can be -

computed and used as the value.

7



[: 4.0 EXAMPLE OF BELIEF MAINTENANCE FOR REGION CLASSIFICATION

In the following example, the fuzzy techniques and the belief maintenance

system, described above, are integrated into a region classification tool.

Sensor input to the system is provided by MW4 and IR sensors. In addition,

wind velocity in scene, sensor inclination (vertical direction), apriori

knowledge (ie, map), and region knowledge from previous scenes or from other

regions in the current scene, are inputs to the system.

fj~. Example Rule Base:

R1 HIGH(LINE OF SIGHT FROM INCLINATION) ==>> (SKY)

R2 (SKY) ==>> UNLIKELY(ROAD) and UNLIKELY(RIVER)

R3 HIGH(TEXTURE FROM MM) ==>> (ROAD)

R4 LOW(TEXTURE FROM MIW) and (WINDY) =->> (RIVER)

R5 HIGH(INTENSITY FROM IR) ==>> (ROAD)

R6 LOW(INTENSITY FROM IR) ==>> LIKELY(RIVER)

The quantifiers/qualifiers preceding the predicates, modify the predicates in

specified ways (see [18-22]). HIGH may shift all the degrees of membership to

the right and LOW may shift all the degrees to the left as in the following

example.

domain:pixel values 0-50 51-101 102-152 153-203 204-255

(average) INTENSITY .1 .7 1 .6 .1

HIGH INTENSITY 0 0 .1 .7 1

LOW INTENSITY 1 .6 .1 0 0

Thus, an IR intensity value of 100 would be a 0 degree of membership in the

fuzzy set HIGH INTENSITY, and .6 degree of membership in LOW INTENSITY. LIKELY

increases the degree of membership for each interval, while UNLIKELY decreases
._

the degrees of membership. In the following example, ROAD is a fuzzy set over

the domain of depth, such that a road is less likely to be classifiable 10 km

from a sensor than a road 2 km fran a sensor. The following example

increases/decreases ROAD by .2 degrees of possibility.
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domat n:Mt4 range(km) 1-3 3-5 5-7 7-9 9-11 11-
(default) ROAD 1 1 .8 .6 .3 .1

LIKELY ROAD 1 1 1 .8 .5 .3

UNLIKELY ROAD .8 .8 .6 .4 .1 0

The predicates and associated fuzzy sets in the example are as follows.'.9

The SKY domain is the mean horizon height in an image (512 lines) such that a

region between 350 and 400 pixels has a .8 degree of possibility (pixels

numbered from bottom).

SKY - 0-101 102-204 205-307 308-409 410-511

degree 0 .2 .5 .8 1

The ROAD domain is the depth of region such that a region at 8 km has a .6

degree of possibility.

ROAD = 1-3 3-5 5-7 7-9 9-11 11-

degree 1 1 .8 .6 .3 .1

The RIVER domain is the depth of region similar to ROAD.

RIVER = 1-3 3-5 5-7 7-9 9-11 11-

degree 1 .9 .7 .4 .2 .1

The WINDY domain is the velocity at time of image.

WINDY = 05-5 5-10 10-15 15-20 20-25 25-30 30-

degree 0 .1 .3 .5 .7 .9 1

The LINE OF SIGHT (LOS) domain is the inclination in angular degrees of

sensor. The possibility of regions belonging to a certain class may be
influenced by the line of sight (see rule 1).

LOS -301 -20' -10' 0' 10' 20' 30'

degree .1 .5 .8 1 .8 .5 .1

9



The TEXTURE domain is based on the mean intensity value from MW in a

granularity measure from 1-8s where 1 is low texture.

TEXTURE- 1 2 3 4 5 6 7 8

degree 0 .3 .6 .9 1 .7 .4 .1

The INTENSITY domain is the mean pixel brightness of IR.

INTENSITY - 0-50 51-101 102-152 153-203 204-25!

fl degree .1 .7 1 .6 .1

Given a value for a fact* the fact and current degree of membership for the

value are added to the list of beliefs. If no value is known but the fact is
either input or inferred then the fact is added to the list of beliefs and the

value will be the mean distribution of the fuzzy set.

In the following example, nothing is known at the start of the classification,

but as requests for more information are answered by the DASM knowledge is
accrued and a classification is arrived at. The system begins with the initial

classification RIVER (possibly from apriori knowledge of the sceps).

1. (RIVER) (1 .9 .7 .4 .2 .1) (A) )

Information is requested by the system to continue processing. The information

may come from sensors, apriori knowledge, etc. LINE OF SIGHT at a 10 degree

incline is Input from DASH.

2. (LOS) (.1 .5 .8 1 .8 .5 .1) ) (+101)

Rule 1 is triggered, adding SKY to the belief list.

3. (SKY) (.2 .4 .7 .8 .8) (R1 2) ()

10



4. (ROAD) (.5 .5 .5 .5 .5 .5) (R2 3) )

Rule 2 infers ROAD above and infers RIVER below.
4-C

(RIVER) (.5 .5 .5 .5 .5 .5) (R2 3) )

Since the original RIVER was assumption based, it is replaced. i

1. (RIVER) (.5 .5 .5 .5 .5 .5) (R2 3) () Z

The system requests more information from DASM.

5. (TEXTURE) (0 .3 .6 .9 1 .7 .4 .1) ) (6) ;"
C.-

6. (WINDY) (0 A .3 .5 .7 .9 1) ) (25 mph)

Rule 3 is now triggered, inferring ROAD again.

(ROAD) (.6 .6 .6 .6 .6 .5) (R3 5) )

Since the original ROAD and the new ROAD are both fact based, the fuzzy sets

are ORed (max of each interval). p

4. (ROAD) (.6 .6 .6 .6 .6 .5) (R2 3, R3 5) C) U.

Rule 4 Infers RIVER with a value below some threshold and the new value for

RIVER is ignored. RIVER could have ben ORed with the original value producing

the same results.

(RIVER) (.1 .1 .1 .1 .1 .1) (R4 5 6) )

Suppose a strength of .7 is needed to conclude a fact.

ROAD has a strength of .6 and RIVER has a strength of .5 resulting in a request
from DASM for more information in order to obtain a stronger conclusion. Here

the intensity value from an IR sensor Is input to the system.

11 U.
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7. (INTENSITY) (.1 .7 1 .6 .1) ) (45)

Rules 5 and 6 are triggered inferring RIVER and not inferring ROAD at all.

(ROAD) (0 0 0 0 0 0) (R5 7) C)

ROAD is ignored since the value or strength is nil.

(RIVER) U 1 .9 .6 .4 .3) (R6 7) C)

V The new RIVER is ORed with the original RIVER resulting in a strong conclusion

for river.

1. (RIVER) (11 .9 .6 .5 .5) (R2 3, R6 7) C)

At this point, RIVER has a strength of .75 and the particular region Is

classified as a river.

12
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5.0

Fuzzy logic provides a tool for belief measures in reasoning systems with

uncertain and Imprecise facts. The non-monotonic belief system proposed here

reasons over incomplete and inconsistent knowledge. Assumptions assist the

acquisition of knowledge and can be removed frau the set of currently believed

facts when the assumptions conflict with non-assumed facts. This belief system

enhances the acquisition and inferencing of knowledge in a fuzzy reasoning

system.
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