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ABSTRACT

A system for the machine recognition of partial

shapes is described. Shape analysis met'-ods are reviewed

in context to the problem of machine recognition of

partial shapes, and their limitations.

The problem of defining the critical points for

shapes and partial shapes with various degrees of

curvature is considered. It is shown that the critical

points derived using criteria based on curvature alone

are insufficient to describe shapes represented by

smooth curves. A new method of shape analysis is

described which exhibits superior performance over the

critical point detection methods based on curvature

alone. The critical points determined by this method are

based on a set of coordinate axes that are dependent on

the shape itself. This gr.1rantees that the critical

7

points detected are independent of size,rotation, and

displacement of the shape. The results of applying this

new procedure to actual shapes are demonstrated and

discussed.

The vector concept of shape space- is introduced.

This space is described in terms of it's properties. Two
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theorems necessary for the machine recognition of

partial shapes are stated and proved using shape space

properties.

The critical points are organized into structural

units called feature vectors or subshape vectors using

the concept of Line of Sight of a Point. The feature

vectors are concatenated to form a globlal shape vector.

Shapes are compared feature by feature using a syntactic

technique which will point out if the two shapes are

similar or not. Examples are given for actual shape

data.
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MACHINE RECOGNITION OF PARTIAL SHAPES

USING

SHAPE VECTORS

CHAPTER I.

INTRODUCTION

THE PROBLEM AND THE SYSTEM MODEL

There are many practical applications where it is

necessary to identify objects oe shapes in successive

scenes. One such application is in the area of robot

vision. Here, an object may have to be tracked from the

instant the object enters the field of view, of the

robot, to the time the object leaves it's field of view.

Another application is in the data compression area of

communication systems, where the picture data has to be

transmitted over a channel to a receiver. The picture

data usually consists of sets of sequences of images of

scenes, where some kind of motion- (activity) has taken

place. The sequence of images in every set contains

some 'common information', which enables the ultimate

user (human viewer) to identify the set as belonging to

the same scene. Data can be compressed for the purpose
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of efficient transmission, if this 'common information'

can be identified and transmitted along with the first

frame in the sequence, while subsequently, instead of

transmitting complete frames, only the 'uncommon

information or changes in the scene are transmitted. A

transmitter which is capable of achieveing this goal

will require a 'smart receiver' which would be capable

of combining the common and uncommon information and be

able to simulate, predict or reconstruct the pictures of

the scene to the desired human fidelity criterion.

The above process of extracting information can be

divided into three steps or subprocesses, which are,

1) The correspondence process (the extraction of the

common information ) E88],

2) The interpretation process (the extraction of the

uncommon information) (88],

3) The predicition and simulation process.

For a communication system the first two are

exclusively the domain of the 'smart transmitter', while

the last is that of the 'smart receiver'. In a robot

vision system, the functions of the 'smart transmitter'

and the 'smart receiver' may be accomplished at the same

place.

2
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The correspondence process or problem is that of

identifying a poction of changing visual array as

representing th.e same scene or object in change or

motion.

The extraction of the uncommon information about the

sequence, or the interpretation process can be:

1) a qualitative process or

2) a quantitative process

The process is a qualitative process when the

extraction of information is based on statistics derived

by operations on adaptive blocks or blocks of variable

size, within the picture and the final output results in

statements like, ' the object located near the left

conner of the picture went through a rotation of 1.57

radians about the z axis while the background moved

forward by about a feet'.

The process is a quantitative process if the

extraction of information is based on statistics,

derived by operations on predefined or fixed blocks or

sub-blocks of the picture. e.g. operations based on

rows or columns . The representation of such information

is not qualitative. Usually such a representation is in

the form of numbers of data arrays which cannot be

directly interpreted. e.g. the 2-D array representating

3



the difference in the pixel intensities between two

frames in the sequence.

The correspondence process begins before the object

has completely entered the field of view and continues

even while the object is undergoing occlusion or leaving

the field of view. This suggests that a correspondence

process based on global, shape or object recognition

methods alone would not be adequate for such a system.

In this dissertation, a system which is capable of

identifying an object, when it is partly or partially in

field of view, with itself at some other time, when it

is completely in the field of view, will be called a

Partial Shape Recogntion System. In such a system

recognition of shapes is based upon identifying elements

or correspondence tokens in different views as

representing the same shape in at different times, and

thereby maintaining the perceptual identity of objects

in motion.

The correspondence tokens which are matched by the

correspondence process [881 include critical points,

edge fragments, bars, small blobs etc. These tokens are

detected first and organised hierachally into more

structured forms, and finally into distinct objects.

4
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The block diagram of a Partial Shape Recognition

System is shown in Fig. 1. The input to the system is a

digitized image of the scene. Refering to Fig. 1. the

output of the image processor can be divided into two

groups 1) data represented by lists, trees or directed

graph structures e.g. sequence of boundary points

describing a shape. 2) data represented by block like

structures e.g. average color or intensity information

of regions.

In this dissertation it will be assumed that the

output of the Image Processor is availabe. Furthermore,

attention will be restricted to the data of the first

type, or the area in the block diagram in Fig. 1.

enclosed by the dotted line. Specifically it will be

assumed that the sequence of boundary points describing

the shape is availabe.

As a first step the system of Fig. 1. linearly

interpolates a curve between the sequence of points

describing the boundary of the shape. This curve is

then resampled uniformly at constant arc lengths. The

degree of the interpolating curve may subsequently be

altered depending on knowledge about the shape obtained

from the data base, or with the help of information

through the feedback path shown in Fig. 1. The

5
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information necessary to alter the degree of the

interpolating curve can only be obtained after the shape

data has been processed at least once. The interpolated

curve is then examined for evaluation of critical points

and curvature. The combination of these two factors

helps in the extraction of features and the length of

segm.its to be matched. These features may be altered

deleted or merged based on the knowledge from the data

base or the feedback from the output table. Though

often, features may be deleted based on their relative

size, the rules for altering the feature structures are

not well established and will not be addressed.

The features are then converted into shape vectors

and stored in the data table. Information about the

segments of required length is also stored in the shape

data table. This information can be in the form of

curvature of the segments, length of segments,

interconnections between segments, frequency domain

information about curvature, and or, other space

invariant properties.

The shape data table which also includes information

about block processes is then compared with the shape

data table simulated by the predictor with knowledge

from the data base, and also with a copy of itself. N

7
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Comparison with the latter helps in extraction of

symmetry and other aspects of the shape. The results of

comparsion are stored in the output table. These results

are fed back into the various blocks of the system shown

in Fig. 1. The feedback is mainly to establish

relationships with other shapes on the scene, to delete

relatively less important critical points or features,

to update the data base, and to the change the degree of

the interpolating curve if necessary.

At the present the methods of recognizing shapes

[20], [21], [60], [65], [631, [66], [91], can be

categorized as either global or local in nature. Within

the class of global shape analysis methods, there are

two categories that under certain circumstances possess

the ability to recognize complete or whole shapes

independent of size, rotation, or location. These are

the Fourier descriptors methods and the Syntactic or the

Graphical methods. The Fourier descriptors based

algorithm performs satisfactorily on complete shapes.

The Fourier coefficients extracted, are indeed

independent of size, rotaion, and location when the

shapes are complete. However this method does not

perform satisfactorily and in fact fails entirely when

the class of shapes is allowed to include incomplete or

partial shapes. An example is presented in chapter II

8
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that demonstrates that Fourier descriptors method fails

to work on incomplete shapes. The results of the

experiment are discussed in order to point out

specifically why the algorithm cannot perform

satisfactorily on partial shapes.

The other class of global methods namely the

Syntactic methods [211, have restricted use in

recognition of shapes because these algorithms tactily

assume a priori that the shapes have been identified by

their parts. These algorithms then investigate the

relationship between the various parts of the shape. A

human shape, for instance has a hand or a face at some

definite orientation and location with respect to each

other.

The Local category of shape analysis algorithm [911,

uses curvature as a criterion for detecting the peaks

and valleys of a shape. These peaks and valleys are

called the local shape descriptors. This shape

comparision algorithm is not independent of rotation. In

Chapter II specific examples are given that demonstrates

that the present algorithm is not independent of

rotation.

In Chapter III. the concept of curvature is presented

form the point of view, of differential geometry. The

9



concept is presented so as to determine, why the local

shape descriptors in Chapter II are not independent of

rotation. Further it is shown that the critical points

found by using curvature as a criterion are insufficient

to describe many shapes. This is demonstrate by an

example.

In Chapter IV the concept of Line of Sight of a Point

(LSP) and Line of Sight of a straight line Axis (LSA)

are introduced. These concepts are then used to define

to Adaptive Line of Sight method (ALS) for determining

the critical points. The effect of this algorithm on

actual shape data is presented. The critical point

detected by this method are very close to those

perceived by the human vision system in most cases. The

ALS method can also be used as a basis for detecting the

axes of symmetry in a shape, if any exist. However, such

a task can be only be achieved at a post cognitive

level; i.e. the critical points found by the ALS method

can be used to locate the axes of symmetry. Location of

such an axes is an important part of shape analysis,

because, it seems that in the human vision system ,the

critical points located with respect to an axis of

symmetry are considered more important than critical

points located with respect to any other axis.

Unfortunately the ALS method cannot always detect an

10
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axis of symmetry at the precognitive level.

In Chapter V concepts from several areas of shape

analysis [19], [521, [91], are combined with some

entirely new concepts concerning shapes for the purpose

of providing the foundation for a new approach to define

shape as vectors in an appropriate space. The properties

of this space are stated definitively, after the concept

of size variable has been solidified. This vector space

is called the shape space. Two theorems usefuls in the

partial shape recognition problem are stated and proved

utilizing shape space properties.

In Chapter VI the concept of Line of Sight of a point

is used to organize critical points into feature vectors

in the shape space. These feature vectors are then

concatenated to form shape vectors. Procedures and

tests necessary for comparing shape vectors are

examined. The comparison procedure is based on a

Syntactic method which will point out whether one shape

is part of a more complex shape, or whether the shapes

are totally dissimilar.

The conclusion and discussion in Chapter VII places

into perspective the overall effectiveness of methods

for analyzing shape based on critical points, addresses

the question of thresholds, the problem of locating axes
P
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of symmetry in shapes, and the need for relocation of

critical points based on such axes.
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CHAPTER :.

OTHER METHODS AND THERE RELEIAWCE TO THE PROBLEM

II.a FOURIER DESCRIPTORS METHOD

There exist two types of Fourier descriptors. The

first type of descriptors, used by Zahn and Roskies

(981, have been called descriptors S, by Pavlidis (601.

In the method of descriptors Sn the shape is

represented by the continuous function,

a( t(k),k)04( k ) + t( k-) (11.1)

where t( k 1- 2,I(k)/L

L( k )- arc length between the starting

point and the k th point on the

curve.

( k )- net amount of angular change

between the starting point and

the k th point on the curve.

L * the perimeter of the curve

The descriptors for a continuous shape are then

defined as,
112a

l S - (t(k), kl)exp(-j2wnt)dt (11.2)

0

13
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These descriptors exhibit some notable shortcomings.

Among these are 1) the property of the closure of the

curve is not preserved 2) simple shapes such as squares

and triangles cannot be distinguished from one another

when only the vertices are given. The second type of

Fourier descriptors, namely the descriptors Tn [6],

[63], [66] exhibit charactersitics that are superior to

the descriptors S in the sense that the
n

reconstruction of the shape from a finite set of

coefficients leads to a closed curve. Also the

convergence properties are superior.

For the descriptors T the shape data is represented
n

in the complex form,

u(L) = x(L) + j y(L) (11.3)

where (x(I) , y(L)) are the coordinates of the point on

the curve and L is the arc length from the defined

starting point. The descriptors T are then given by,
L

L)ezp(-j2wrL/L)dl (11.4)

L

The Fourier descriptors based algorithm normalizes

for position by setting To to zero . Normalization for

scale, rotation, and starting point of a contour is

achieved by multiplying the n th coefficient by

14
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s exp( j ( +n )). The parameter s scales the shape to

the normalized size, the parameter ( *+ n 1 rotates

the contour to the normalized position. The

normalization is such that the coefficients T,1 and T,

are pure imaginary numbers and their sum has magnitude

one.

It is easy to see why such a normalization is

necessary for discrete data. In this case, the Fourier

descriptors are given by,.. N-1

T( n ) x( k ) + j y( k ))exp( -j2wnk/N)

k=O (11.5)

Multiplying (I.b.5) by a exp-j(* + n& ) the normalized

coefficients , T ( n ) are then given as,
N

T n ) - T( n ) s expj(* - n+ ) (11.6)

Next imposing the requirement on (I.b.6), that the

coefficient be purely imaginary at n - 1 leads to the

condition that,

-( +) 2m + (- 2W -(*-s)) (11.7)

where m is an integer.

Setting the real part to zero by appropriate choices of

(Panda= is equivalent to normalizing for rotation and

starting point of the contour. As a matter of fact, the

two equations could have been set equal to any constant.

• 15 -



The imaginary parts of the normalized coefficient at

n "± are,

N-1
IM(T ( 1 _ k)- (i +w))+y(k)cos(2ik- 1 .1 )-

N N

N-i

IM(T (-l 11-__ -x(k)sin(2LIk -( *-11 + y(k)cos(2wk -(-1
NN N

lI. (11.9)kl0

Summing and equating the magnitude, of the normalized

coefficients at ±l, to one, yields,

N-i -

a xk)sin( A + B)-sin(A-C))+(y(k)(cos(A-C)+cos(A-B))

knO (II.10)

where A - 2w k/N

B- *+a

C- -

Another function [641 which has also been used for

normalization is the standard deviation of the data,

(x~k-i)+ (y(k)-;) 1

kal

16
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N

where 1 = x(k)

Nka

y Yn~ yMk

It is apparent that both s and a are homogeneous

function of order one of the data points.

In a real shape recognition application it is not

known a priori whether the shape under examination is a

part of a more complex shape or a shape in its own

right. The above descriptors in their present form are

not capable of recognizing that a partial shape may be

part of a more complex shape. An example is presented to

demonstrate the validity of this contention. The shapes

used are shown in Fig. 2. Figure 2-a is a complete

shape, namely a swept wing plane, while Figure 2-b is a

partial shape, namely the front part of the plane. The

plots of the real and imaginary part of the normalized

Fourier descriptors obtained by using (11.10) for the

complete shape are shown in Fig. 3-a. The corresponding

plots for the partial shape are shown in Fig. 3-b.

Similar data obtained using (II.11) is shown in Fig. 4.

It is apparent that comparing the two sets of data

yields nothing more that a statement that the two shapes

are dissimilar. Two explanations for this are 1) the

17
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parameters sil and a are not independent of the shape

and 2) the Fourier descriptors method compares the

'frequencies' of the shapes. The frequencies of the

partial shape are not the same as the frequencies of the

complete shape.

Besides the above disadvantages there is a very

important aspect of the Fourier descriptors that seems

to have skipped the attention of most researchers in the

field. The fundamental reason for comparing shapes using

Fourier descriptors lies in the fact that the Fourier .-

coefficients for a given shape are unique; however there

are many transforms that will give a unique set of

coefficient for a shape. Considering the computational

power of the present day computers there is no reason to

treat other transforms as second class citizens.

21
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II.~ b LOCAL SHAPE DESCRIPTORS

Curvature has been used to determine representative

points on a shape by many researchers [14], [91].

Usually curvature is defined as an operation on three

points in a sequentially ordered list.

The local category of shape analysis algorithm (911

uses 'curvature' as a criterion for detecting the peaks

and valleys of a shape. These peaks and valleys are

called the local shape descriptors. This shape

comparision algorithm is not independent of rotation. A

specific example is given that demonstrates that the

present comparision type local shape analysis algorithm

is not independent of rotation. The definition of

curvature as given in (911 is examined and used to find

peaks and valleys (critical points) of a simple shape

(cardioid), before and after rotation.

The Local Shape descriptors method has been used

[91], for comparing shapes stored in a library. In this

method, the angle function is defined as,

s(k)=arctanl(y(k)-y(k-1))/(x(k)-x(k-l)) (11.12)

Curvature is then defined as the derivative of the angle

function, that is s'( k ). The peaks and valleys in s'(k,

are used for finding the peaks and valleys of the

22
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curve. Each local shape descriptor then consists of two

adjacent peaks and a valley [ alternate angles and a

distance).

It is apparent from (11.12) that this procedure

results in a nonlinear transformation on the data, also,

the function is not finite at t 1.57 radians. It may be

generally stated that this function may be used to

locate peaks and valleys where 1) the angle between

any three adjacent points is acute and 2) the shape

becomes parallel to the y-axis. These are equivalent to

the points where the angle becomes ± 1.57 radians with

respect to the x-axis. For example consider, the

cardioid shown in Fig. 5-a, this shape was generated by

sampling at constant intervals of (6.28/256) radians

rather than the arc length. This prevents an acute angle

from occuring between any three adjacent points on the

shape. The cardioid was then rotated by 1.57 radians.

The corresponding plots for the angle, the derivative of

the angle function, and the peaks obtained using this

method are shown in Figures 5-a, S-b, 6-a, and 6-b,

respectively. Note that the peaks obtained by this

method are not unique and are dependent on the rotation.

Every different rotation will yield a different set of

peaks. Spurious peaks will occur at the discontinuities

of the arctan function that may be 1.57 radians or

23
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II.c M.SCELLANEOUS OTHER METHODS

Severalmethods have been utilized in the past for

determining critical points [14],[191,[321. Most of

these methods are based on operations on a fixed number,

of points. These methods were originally meant for

ideal curves (noise free curves), where the operations

were defined on a set of adjacent points. To by pass

the effect of noise, and to arrive at a better estimate

of the parameters being evalued, these operations were

redefined, [141, [191, for points of the shape located

at some fixed distance (instead of adjacent points).

Since it is unlikely that an intelligent machine will

have a priori knowledge about the size of the shape to

be analyzed or the relationship of the number of sample

points to the size, the ambuiguities involved in

detection of critical points using methods that are

totally dependent on operations on fixed number of

adjacent points, are high. A brief description of some

of these methods which are represented here by

operations on three adjacent points is presented next.

27
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ZI.c.j THE METHOD OF CENTROIDAL VECTORS

In this method [19], the ith point on a shape at a

vector distance di &pj from a reference point

(typically the shape centroid )is said to be critical

with respect to the reference point if

((di_,- d1  ) and( di d j1 )

or

(( .1.- aj ) and ( i C~i-

have opposite sign.

This operation is very local in nature and is

extremely sensitive to noise. Round-off or truncation

errors also have a deleterious effect on the operation.

It also fails very often when dealing with smooth curves

or in situations where the centroid is located away from

the shape boundary as shown in Fig. 7.

II.c.ii METHOD O? CURVATURE VECTORS.

This method is basically a two pass process. In the

first pass, the ± th point on the shape with a curvature

28
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is set as a critical point if

or( - '+1
have opposite sign. In the second pass, the points at a

maximum distance from the straight line joining every

two successive critical points is set as critical. This

method like the previous method, is very sensitive to

noise. Though it works for most of the smooth curves,

there are instances where it fails. For example, this

method produces only one critical point for the cardioid

shape of Fig. 5.

II.c.iii THE MAGNITUDE OF CURVATURE METHOD

In the Magnitude of Curvature Method the ith point is

determined to be critical if,

I liI Threshold

The critical points were determined by using this method

on the elephant shape, which was obtained by non-

uniformly sampling a hand sketched figure. These

critical points are shown in Fig. 8. It is apparent that

some critical points were missed. For example the

critical points for the trunk are missing. This

procedure is more immune to the noise than the others;

30
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however, an equally critical problem is added.

Specifically, a threshold must be determined a priori.

Additionally the method fails completely on smoothly

varying curves such as the cardioid of Fig. 5.

II.c.iv THE LINE OF SIGHT METHOD.

A procedure that performs well for polygonal shapes and

curves with very few boundary points is called the Line

of Sight method. This method has not appeared before in

literature and is being presented for the first time. It

is described here to give a feeling for the problem of

locating critical points on a shape. It was also the

method which led to the developement of the concepts of

Line of Sight and the Adaptive Line of Sight method

described in subsequent chapters.

In this method, if d1  denotes the normal distance of

the i th point from a straight line L, then the i th

point on the shape boundary is said to be critical with

respect to the straight line L if

d - d. ) and ( d. - d

have opposite sign. The set of critical points found

with respect to the set of tangent lines drawn at all

32
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points on the shape, will then be called the critical

points. It is obvious that for shapes other than

polygonal an infinite number of axes or tangent lines

are required. Nonetheless, the attributes exhibited by

this method are very desirable. It is however necessary

to reduce the dimensionality of the problem; this is the

subject that is addressed by the Adaptive Line of Sight

method.
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CHAPTER III.

III.a THE NEED FOR DETECTING CRITICAL POINTS.

The classical method of comparing curves or shapes in

space using the geometric invariant parameters,

curvature and torsion is examined here. This is done to

demonstrate a need for detecting critical points based

on criteria other than curvature, and to pin-point the

difference between the definition of curvature as used

in the field of differential geometry and the definition

resulting from (11.12) The weakness of using

curvature as a criterion [91], for comparing practical

shapes is briefly mentioned. The cardioid shape is used

again, to show that even with the differential geometric

definition of curvature, curvature cannot be used as a

single entity for detecting critical points which may be

used for comparison of shapes.

III.b CURVES IN THREE DIMENSIONAL SPACE

The problem of shape recognition is analogous to

recognition of curves in space. Therefore, well known

concepts and theorems from differential geometry can be

34
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utilized in shape analysis. Let c be a curve in

nEuclidian space R of class C >- 1 whose domain is I -

where s is the parameter. Then a differential geometry

theorem that is particularly useful is (49],
n

Theorem: Every regular curve c:I . R can beS

parameterized by its arc length.

n
In other words, given a regular curve c:Is.R there

is a change of variablese : -0.; such that (c.e) '(s) -1,

where (c.8)is a composite function.

Let c - c( s ) be the parametric representation of the

curve under analysis with s as the natural parameter(i.e

1 dc/dsl 1 i) then the vectors t, n, b, satisfy the

Serret-Frenet equations (26], (401,

"b 0 0 b

-1 W
where,

1 curvature,

T - torsion,

t I tangent,

n 1 normal at the point,

b - binormal at the point,

and the dot notation denotes the deravative with respect

35



to the natural parameter s.

The parameters K and T are geometric invariants and

their existance and uniqueness is guaranteed by the

following theorem [401,

Theorem • Let ( s) and (s ) be arbitrary

continious functions for a < s < b . Then there exists,

except for position in space, one and only one curve c

for which 9 ( s ) is the curvature, T C s ) is the

torsion and s is the natural parameter.

When the curve under analysis lies in a plane, the

torsion T is equal to zero and the binormal b is

constant. Thus for a curve in the x-y plane (III.1)

reduces to,

(III.2) '

Now if e is the angle made with respect to the x-axis by

the tangent to the curve then,

cos . sin e i

-sine cos 1 (111.3)

where i and j are unit vectors in the x and y directions

respectively, differentiating (111.3) with respect to

the natural parameter s yields,
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[-sine cos a..
-cose -sine (111.4) "--

Substituting equation (111.3) in equation (III.4)

yields the result,

(1II.5).--

Comparing (111.2) with (111.5)

-a (111.6)

In view of the different representations of the word

curvature [14], (911 it is necessary to emphasize that

the derivative in (111.6) is with respect to the

natural parameter s and not with respect to some

arbitrary distance measure. If a curve is not

represented in terms of the natural parameter, but some

other real valued function (saye e ( s ) ) then this

transformation should be allowable. The implication is

that, s - I 1is a monotonic, injective mapping of the

interval I onto I . Where Is and I are the

respective domains in a and e over which the curve is

defined.

Therefore the function arctan( a ) with values

between ± 1.57 radians or arccos( e) with 8 between 0

and 3.14 are not allowable changes of parameter and any

37
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property based on these transformations may not be a

property of the curve but a property of the

representation. Thus if a curve or a shape has been

represented in terms of the sample number Ik' and if the

algorithm is unable to affect the one-to-one

transformation described above, then the following fact

from the Fundamental Theorem of calculus should be

exploited,

ds dc-

dk dki (111.7)

Using (111.7) it can be shown [40] that the magnitude

of curvature can be obtained from the following

relationship,

Il x c'l / I c, 13 if CI

otherwise (111.8)

Where the symbol x denotes the vector cross-product and

the symbol ' denotes differentiation with respect to k.

Curvature is a vector quantity and it points in the

direction of the normal to the curve.

An investigation of (111.2) suggests that curature

alone is sufficient to uniquely describe curves or

shapes in a plane. The problem of comparing planar

shapes, is then equivalent to comparing their

curvatures. This solution works well for ideal curves.
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However, it is ruled out as a sole model to be used by

systems, or algorithms, to analyze shapes in a manner

similar to the human vision. Explicitly the following

draw-backs make this solution unacceptable.

1) Curvature as defined above ( proportional to the

derivative of the tangent ) is an operation on three

adjacent points and any errors due to sampling or noise

tend to make the curvature functions of any two shapes,

otherwise alike for most visual purposes,

unrecognizable.

2) The curvature function does not automatically render

itself useful to syntactic comparision methods which is

an inherent aspect of human vision.

3) Curvature is inversely proportional to the size,

which implies that the plots of the logarithm of the

curvature of two identical shapes of different sizes

differ from each other by an additive constant. This

does not seem to be a problem at first glance, however,

it is a major problem when comparing partial shapes of

different sizes and different number of samples. Since

'human' vision can recognize partial shapes with no

extra effort, recognition of partial shapes should be a

built-in part of shape analysis algorithms. The specific

reason why an algorithm using only curvature as a

criterion does not work well for comparing partial
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shapes can be explanied as follows:

A partial shape contains a borrowed segment which

S." belongs either to another occluding object, or to the

boundary imposed at the limits of the field of view, or

to itself but not to the complete shape. In other words

a partial shape contains one or more segments which

belong to the complete shape and some which do not. The

task of comparing a partial shape to a complete one is

that of locating segments on both complete and partial

shapes respectively, such that their log ( K ) plots

differ by an additive constant. This constant can be

eliminated by subtracting the means over the respective

segments. The problem with this solution is that it is

always possible to find a segment of length t, on the

partial shape, ( where L can be made as small as

desired) such that by appropriate interpolation and

resampling within the limits of resolution, the

curvature of this segment can be made to match the

curvature of some segment on complete shape. Therefore

when no syntactic knowledge is* given, or the

relationship between the size and the number of samples

is unknown, it is not possible to decide on the

necessary length of the segments to be matched, before

it could be concluded that the partial shape is a part

of the complete shape. Hence without a priori knowledge

40
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about the complete shape, matching a few segments of the

partial shape to a complete shape would yield

inconclusive results.

It is imperative therefore to derive some syntactic

knowledge about the shape. For some shapes such as the

ones shown in Fig. 2., where the peaks and valleys in

the curvature correspond to the vertices or critical

point of the shape, enought syntactic knowledge can be

derived by finding the peaks and valleys in the

curvature plot to permit a comparison.

But for shapes like the one shown in Fig. 3,

sufficient information cannot be derived from the

curvature plot alone to permit a comparision. Consider

the curvature plot of the shape shown in Fig. 5. which

is shown in Fig. 9. The plot of Fig. 9. which was

obtained by using (111.8), has only one peak

corresponding to the apex of the cardioid. Also note

that the curvature function obtained by using (111.8)

for the cardioid before and after rotation are the

identical as predicted, in sharp contrast to the

differences demonstrated in Fig. 6-a and 6-b. Thus if

only the peaks and valleys in the curvature were used to

derive the syntactic knowledge about the shape, then the

cardioid would be described by only one point, namely

41
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the apex, This is clearly insufficient. Therefore, peaks

and valleys derived from curvature alone cannot be

uniformly used as a single entity to represent a shape.

This is not to imply that curvature is not a useful

parameter, but rather to demonstrate that additional

information, or attributes, are needed to fully describe

the shape.

4.3
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CHAPTER IV.

F.

IV.a LINE OF SIGHT CONCEPTS.

The set of points which define a shape may be

considered as a Fuzzy set in which various points are

assigned to it with various degrees of membership.

Defining a precise criteria on which a degree of

membership can be assigned to a point on a shape is very

difficult. However past reseachers have discovered [14],

[191, (321, (911, that the points which should have a .

higher degree of membership than the rest are: 1)

Points of Maxima 2) Points of Minima 3) Points of

Inflection 4) Points of Intersection 5) End points of

open curves 6) Points where the curvature changes sign

or magnitude.

In the past shape analysis efforts, points of maxima,

minima, and inflection points of curves have been

extracted from the shape data without due consideration

of the coordinate axes. This approach inevitably leads

to errors, because these points have no meaning unless

the coordinate axes are first defined. The problem with

such an approach is that if a set of coordinate axes is

44-
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chosen independent of the shape under analysis then the

maxima, minima, and points of inflection will not be

independent of rotation, of the shape, with respect to

the chosen coordinate axes. The conclusion is that the

coordinate axes upon which the maxima, minima, and

points of inflection are based must be dependent on the

shape itself.

The next logical question is whether there should be

one set of coordinate axes or many? The answer is not

straight forward. Some shapes require more than one set

of coordinate axes while others require only one. Before

discussing the method for determining critical points,

two definitions are presented which will be used in the

sequel.

Definition I: A curve c is said to be in Line of Sight

of a point P (LSP) if every point on the curve c can be

connected to P without intersecting the curve at any

other point. Otherwise the curve is said to be Not in

Line of Sight of the point P (NLSP).

Examples of (LSP) curves of a point P, where P is the

centroid C of the shape, which are then denoted as

(LSC)-curves , are shown in Fig. 10. The concept of

Line of Sight of a Point is useful not only in analysis

of shapes but, it also helps in reducing the number of
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computations involved in the ALS method.

Definition II: Line of Sight of a Straight line axis L:

Let n be the normal projection of a curve c onto a

straight line L. The curve c is then said to be in Line

of Sight of Axis L (LSA) if all points from c can be

mapped injectively onto n.

Examples of curves which are in Line of Sight of a

single straight line Axis (LSA) are shown in Fig. 11,

along with curves Not in Line of Sight of a single

straight Axis(NLSA).

In the Adaptive Line of Sight method, which is

discussed next the shape is divided into a set

of segments which are in line of sight of a set of axes.

Dividing the shape into this set of segments is

equivalent to defining the shape in terms of single

valued functions. It follows from the definition of

single valued function that fewer ambiguities should

result, that is, the maximas, minimas, and inflection

points are now determined from single valued functions

rather than a multivalued function. The actual method

for deterimining critical points is presented in the

next section.
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IV.b ADAPTIVE LINE OF SIGHT METHOD.

In the Adaptive Line of Sight method the critical

point determination is based on a set of coordinate axes

that are dependent on the shape under consideration. As

previously discussed, this will allow critical points to

be determined with fewer ambiguities. The procedure is

adaptive in the sense that it adapts to the shape data

under consideration. This will become evident in the

sequel.

The Adaptive Line of Sight method is a two pass

process. In the first pass, the shape is divided into a

minimum number of segments, or parts, by an appropriate

set of 'critical points'. The members of this

segmenting set of critical points are defined to be

those points, such that all boundary points in between

any two adjacent critical points have the following two

properties with respect to the straight line L joining

every two adjacent critical points:

1) the boundary points are on the same side of straight

line L joining the adjacent critical points,

2) and the points are in line of sight of L.

48
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From the definition of line of sight (Definition II)

it is clear that this means that the boundary curve has

a unique one to one projection on L. It should be

emphasized that the minimum number of critical points

are obtained during the first pass. This is done by an

exhaustive search process that locates all points such

that the above properties are satisfied. Often the

minimum is not unique, in which case, the required set

is obtained by summing all the minimal sets.

In the second pass, the points of maxima, minima and

inflection between every two critical points are

detected using the derivative of the normal distance of 7.

the point from L with respect to the distance along L. A

moving average of these normal distances may be used to

eliminate the effect of noise. The critical points found

in pass one, the segmenting set, and the critical points

found in pass two, are defined to be the members of the

Fuzzy shape set with the the degree of membership

depending on the number of minimal sets they are found

in. A through description of both the computational and

detection aspects of the Adaptive Line of Sight

Algorithm along with a complete flowchart, is given in

the Appendix.

The algorithm was used on the shapes shown in figures

49
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2-a, 2-b, 3, 12, and 13. The shapes in figures 2-a and

2-b were generated by sampling the curve, obtained by

linearly interpolating between the vertex points, at

constant intervals of arc length. The number of samples

for these shapes was arbitarily chosen to be 138 and 273

respectively. The cardioid shown in Fig. 3. which was

generated by sampling the function: r - 60 ( 1 + cose

at constant intervals of e and not the arc length, has

256 samples. The shapes shown in figures 7 and 8 were

obtained by sampling two hand sketched shapes, through a

tablet, which was used as an input device, for the

Tektronics 4081 graphics system. The sampling process

being physical, resulted in non-uniform sampling. These

shapes have 200 and 280 samples respectively. No

*interpolation or resampling was carried out before the

data representing these shapes was input to the ALS

algorithm.

The critical points obtained using the Adaptive Line

of Sight of algorithm on these shapes is shown in

figures 14, 15, and 16. Some of these shapes were

rotated to confirm that the algorithm was independent of

* rotation. It can be seen from these figures that in the

absence of predefined resolution the critical points

tend to occur in clusters, necessitating a post

processing step, such as replacing the clusters with a

so
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single point.

Note from the shape shown that the critical points

are very close to those perceived by human vision,

despite of the 'total dissimilarity in the shapes. Also

note that the post processing is done twice. First time

clusters are temporarily replace by single points to

count the number of critical points. The final

replacement of the clusters by single points occurs

when all the minimal sets have been superimposed.

In. the next chapter the basic concepts of size

variable, shape vector and shape space are introduced

they are then used in chapter V for organizing critical

points into feature vectors or subahape vectors.
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CHAPTER V

BASIC SHAPE CONCEPTS

V.a MEASUREM4ENT VECTOR.

In this chapter several general concepts from

allometric disciplines [52], are combined with some

entirely new concepts concerning shapes. This

combination provides the foundation for a new approach

to defining shape vectors in the appropriate shape

space. This new space is a combination of properties of

vector spaces and is called definitively shape space.

Applying the shape space concepts to the shape

analysis problem provides a basis for the recognition

that the features of two or more shapes under analysis

are the same. For instance, with shape space concepts it

is possible to determine that a partial shape,

independent of size or rotation, belongs to a more

complex whole shape.

-Typically in a shape analysis problem, an algorithm

operates on the shape data according to a set of
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criteria for the purpose of reaching a decision of some

sort. Usually the decision is whether or not two or more

shapes are the same. The shape analysis algorithm

utilizes measurements such as curvature, and

measurements between predefined points on the shape,

such as length width, diameter, area, etc. Therefore, if

K shapes are under analysis, and N measurements mak are

made on each shape, then the result is the K measurement

vectors,

M1  - (roL.?11 , 21 L 2 1  ,- * .

R k  - (ml2lkl ,m2 -k ,.M . ,ilk a k )

H1  " (ro1l'  '21 ''2K , • • ,1a3 1NK )

(V.l)

where the first subscript n refers to the nth

measurement between the predefined points on the k th

shape. The shape or the object is represented by the

second subscript. All measurements are assumed to be

positive and the angle elk is the angle made by the

nth measurement on the kth shape with respect to a

reference direction. Any two objects will then be said

to have the same shape with respect to these

measurements if one vector is a scalar multiple of the
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.7.1

other,

M = a (V.2)

where a is a scalar greater than zero.

V.b SIZE VARIABLE

The geometric significance of (V.2) is that in the N

dimensional space of positive measurements all points on

a straight line through the origin define the same

shape. Points can be uniquely located on the positively

directed line by finding the intersection of first order

surfaces with the line defining the shape. The class of

functions which define these surfaces are homogenous

functions of order one, of the measurements, mak n-l,

2,.N. The mathematical representating for this class

is,

Z (amml) •a ! mo)

(V.3)
S( m.) - *

where a is scalar

and 3 refers to a countably infinite class of

functions, with members Zi ( mk ).
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The distance from the origin to the intersection of a

particular member of the class Zj( maj ) with the ray

through origin defining the shape, is refered to as the

size, scale factor or the normalization factor with

respect to that member. Following Mosaiman (521

terminilogy, in the sequel Zj( mik ) will be refered

to as the size variable. Some examples of size variable

in a measurement space of two vectors are shown in Fig.

17a aid b.

When comparing shapes, it is necessary to choose a

size variable that is independent of the shape, under

comparison. A necessary requirement for the verification

o' this statement is the defintion of a shape vector

[52], as a vector valued function of vectors, and the

concept of shape space.

In all that follows it will be assumed that the

measurements are always made between the centroid of the

shape in question and some other fixed point on the

shape.
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V.c SHAPE VECTOR

mhe Shape vector S ki is defined to be the ratio of the

measurement vector Mk to the size variable Z .

k i

5ki Mk/ Zi

Sh , mlhkl ', L~ 'O . .

4Z 1( mak ) Zi( Mik Y I mak (V.4)

• .'

It may be noted that the first superscript of S

corresponds to the object whose shape is under

consideration while the second superscript corresponds to

the size variable chosen from the class.

Here the points to be emphasized are that,

1)All measurements are made between pre-defined points.

2)A shape vector is defined with respect to a size

variable Z j( mak). Thus only shape vectors defined

with respect to the same size variable can be compared.

3)If two shape vectors are equal, then the two objects

have the same shape with respect to the measurements.

4)The shape vector should be independent of the size

variable.
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These statements merit further discussion and

clarification because of their implications. Consider

for example the two different measurement vectors

extracted from the simple shape shown in Fig. 18. The

shape is a unit square. In the first case, the

measurement vector is,

MI"( roM 1 l2 '3 'm ) (  ,,1.414, 1)

(V.5)

while in the second case, the measurement vector is

S So
go'( m2  ,m' ,n )-( 1, 1, 1, ).

M 12 22 ' 32  42
(V.6)

where the ' in the above equation indicates that the

measurements are between a different set of feature

points of the shape. Observe that in the above two

equations, the measurement vectors are considered as a

function of the distances only. Comparison of

measurement vector as a function of the angle a., is

more complex and is delayed till chapter V. Now if,

Z.( mnk )i-msk (V.7)

is chosen as the size variable then the corresponding

shape vectors are,

S-(.707 , .707 , 1 , .707) (V.8)
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S 1 , 1 , 1 , ) (V.9)

Comparing these two shapes without any reference to the

size variable or the points between which the

measurements were made, one would conclude that the the

two shapes are not the same. Thus not only has the

functional form of the size variable to be the same but

the measurements involved in the functional relationship

have to be between the same feature points. Now consider

the shapes in Fig. 19. This is the typical situation in

which occlusion occurs or the shape is outside the field

of view of a camera (or some other measuring device).

Assume that both shape boundaries are represented by an

equal number of samples and that every point on each

shape boundary is defined as a feature point. Now, if the

*" standard deviation of the data is chosen as the size

variable then it is obvious that the standard deviation 7

of the two shape boundaries are different. Therefore,

this is a case where the size variable is dependent on

the shape, which implies that the shape vector is

dependent on the-size variable. Comparision of the two

shape vectors with such a size variable is bound to lead

to errors. These problems can be alleviated by defining

the quantities in the proper context. This can be

accomplished only if the variables are defined in the

proper space.
65
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V.d SHAPE SPACE

The space is defined in terms of its properties in

the usual manner and then two theorems addressing the

problem of partial shapes are stated and proved.

Assuming that Ski ( 5J) is a shape vector consisting

of well defined operations on the measurements of the

shape under consideration. These measurements are the m

hi hi
's previously defined; the elements of S. ( s*) are

obtained by the following operation, ;k .
si M.LsLank /Z( mik ) (V.10)

The shape vectors k* ( S*) must satisfy the following

properties in addition to the properties of normal

Euclidean space.

PROPERTIES OF SHAPE SPACE

, 1) The shape vector is independent of the size variable.

This implies that,
hi hi h i hkiW.1S, C as*)-aS (V.1) -

where n k , 2,.....,N, k-l, 2, .... K,

and a is a scalar.

2) The shape vector is independent of translation that is,
,', sk hI hj  hi"

S (Ski + so  S (s * (V.12)

where n i, 2 , . N....k, kul, 2, ....... K,
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and sois a constant vector.

3)The shape is independent of rotation.

S ( am u* ) - Sk( n ) (V.13)

where n-l, 2, ..... N .k-l, 2, .... K,

and ut is a constant angle.

The vector obtained by using a set of measurements on

a partial shape must still be contained in the

space.Unless a size variable is found which is

independent of both shapes ( both the partial and the

complete) it is not meaningfull to compare the shape

vector in shape space. It is not possible to find a

size variable which is a totally independent continious

function of measurements made on both shapes. This being

the case the only choice left is to split the shape into

parts or subshapes and define a size variable which is .

piecewise continuous over these parts. Two theorems

relating the subshape to the complete shape in shape

space are stated and proved. These theorems are used

extensively in the sequel.
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V.e THEOREMS ON CONCATENATED SHAPE VECTORS.

oI.

THEOREM 1 • The vector formed by concatenating a series

of shape vector is a shape vector.

Proof: It is required to show that the shape vector

resulting from concatenating a series of shape vectors

satisfy the three properties of shape space.Let the

concatenated shape vector be

ci hh 22 • . .
S - ( 1 S ~2 ,S ( "-

(V.14)

where u 1 ... U, v- 1 ... V, and w -1 ... W. and

the superscript c on S indicates that it is obtained by
Ci Ci

concatenating other vectors. Each element of ( so

can be represented by

U - mn /Z ( moe ) (V.15)

j a 1 ... J, and n o 1 ... N

where J is the total number of concatenated vectors,

while N is equal to the sum of the total number of

components of all the concatenated vectors.

Therefore,

S ( , , ...... so . .

(V.16)

Multiplying each component of (V.14) by the scalar a
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yields,
ci ci 1 11 22 22 h k

a S(se )-(a S(s.1 ),a S (s, ,. a S (sw .

(V. 17)

but from the (V.10) we have,

kk h (V.18)
S ( all~) a S ( S!(.8

using (V.17) in (V.18) results in

a S (sg* )(a cl ,a s2  a. .,s*, (V.19)

or

Sc1( *:i S Cj( a ).i (V.20)

* Equation (V.20) proves property i)

To prove that the shape vector satisfies proverty ii) it

is only necessary to observe that each member of the

concatenated vector is a shape vector.Therefore each

%ti af its:

S6 C) SO so) SO sej (V.21)

The proof for property iii) follows in a similar manner

Theorem2: The shape defined by a shape vector obtained

by concatenating a series of shape vectors is unique if

and only if the size variable and size defining each

member of the set are known.

Pr oo f:- The surface of a homogeneous function of

order one will intersect a positive directed straight
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line at only one point. Since a shape is defined as a

point on the shape ray, if follows that any point on

this ray can be uniquely determined by its intersection

of a size variable which is defined as a homogenous

function over the positive quadrant.

:4-. Assume otherwise. Then there is at least one

S1(s4) shape vector in the concatenated set whose size

variable Zb(mb) can be choosen arbitarily. Then the

concatenated vector under this assumption would still

satisfy the properties of the shape space, i.e.,
Ci cj SeI C)a S (so) -a S.) (V.22)

Now the R.H.S of (V.22) can also be expanded as

1 -11

(V.23)

ZI Z2 Zk(V.24)

but since Z can be choosen arbitrarily as long as it

satisfies the definition of a size variable( V.3).

Choose

k Zh (a m,) (V.25)

substituting (V.3) and (V.25) if (V.24) the following

relationship is obtained
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a S 2M

ZI Z2Zb (V. 26)

which is also equal to,

11 2b 1k l k+1W
- (a S a S 2  .. S ,aS

WV.2 7)

comparing (V.23) with (V.27) that,

a S s') S ( a S.i

which contradicts (V.10)

Q.E.D

In the next chapter a method of organizing critical

points into features is presented. The features are then

converted into feature vectors or shape vectors using

the concepts presented in this section. These shape

vectors are then concatenated to form global shape

* vectors.
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CHAPTER VI.

FEATURE SELECTION & COGNITIVE STEP

VI.a FEATURE VECTOR FORMATION PROCESS

The features of a shape are essential to defining the

shape in terms of parameters that can be ultimately used

-by machine for decision purposes. However, the manner in

which the feature defining procedure can be selected is

quite variable. Since a dependable feature selection

procedure is fundamental to the shape recognition

problem, it is essential that this aspect of shape

recognition be addressed with specificity. This point is

punctuated when it is realized that, irrespective of the

method of defining and detecting critical points, a

cognitive algorithm is still required which examines in

some sense, the critical points of the shape for the

purpose of reaching a decision about some aspect of the

shape. Consider, for example, the shape shown in Fig.

2-a, a shape such as this swept wing plane may have

thirty to fifty critical points. The human eye makes

numerous measurements, automatically and sub-
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consciously, between the feature points and determines

their relationship to one another. The 'most important'

k......;- 4- urre- sa" x= ombined with the relationship

between them, comprise the decision set. The term " most

important " is difficult to define mathematically,

because it is the result of training. An unrefined

cognitive procedure must therefore consider the set of

all possible measurements between the critical points.

Obviously this is a very large number of measurements
i

even for numbers as modest as thirty to fifty. It is

well known that this totality of measurements between

critical points is not essential to the decision

process.

It is necessary therefore to determine methods for

acquiring the minimal set of measurements or features

required for the decision process. The human, apparently

places heavy weighting on features that are formed by

critical points that are symmetrically opposite about an

axis and features that are extracted from adjacent

critical points concerning the shape. Without any prior

knowledge a human can find the sets of axes about which

some critical points are symmetrically placed with very

little effort. However, such a task is almost

insurmountable for a machine based algorithm unless it

is performed at a post-cognitive level. In the absence
74-
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of noise, machine recognition ( cognitive ) algorithms

perform reasonably well by using only features

cniting of adjacent critical points.

A cognitive algorithm that utilizes measurements such

as these in a continuous sequential manner would be

entirely adequate if the algorithm for detecting

critical points is totally immune to noise, round off,

and truncation errors. For example any extra critical

points that are the result of a burst of noise would

prevent any continuous sequential recognition algorithm

from yielding conclusive results.

One manner by which this problem can be circumvented

is to divide each of the shapes under analysis into

subshapes in terms of their features, and then compare

the features of these subshapes and the manner in which

they are related to each other. It is recalled from

chapter V that the properties of shape space dictate

that the measurements which define a feature must be

made from the centroid of the set of critical

points. it is necessary then to determine, in some

manner, the minimum number of critical points that
Iq

adequately define a feature. If each feature were

defined in terms of only two critical points, then all

features would be identical since the comparisons are
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made with respect to the same shape independent size

variable. Therefore, the minimum number of critical

points that can form a distinguishable feature is three,

and these must be adjacent. However unless the

relationship between these three point features with its

adjacent features is also, considered any comparison

(cognitive ) algorithm almost always leads to

ambiguities. The reason for this is because the three

point feature forms a triangle. An examination of the

shape shown in Fig. 2-a shows that it contains many

similar triangles.

Unfortunately the mathematics required to obtain the

optimal number of critical points that should form a

feature is not yet developed. Therefore, it is necessary

to resort to the psychological aspects of the human

recognition and decision process as well as the

practical aspects such as the implementation and

computational requirements. These criteria lead to the

features being selected as follows:

1) Reconstruct the shape by connecting all the adjacent

points by a straight line. This is called the critical

shape boundary.

2)The feature Pk is then formed by including critical

points, Ck and at most three adjacent critical points on

each side of C. The critical points chosen must be in
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line of sight Of Ck This means that it must be

possible to draw a straight line form Ck to each of the

other critical points defining the feature without

intersecting the critical shape boundary. The feature

obtained by this procedure cannot be defended as optimal

in any mathematical sense. However, it correlates quite

well with those entities that humans consider features.

The features corresponding to critical points C and12
C are shown in Fig. 20.
13

A desirable improvement to the above feature defining

procedure is an algorithm for deciding whether the line

joining Ck to another critical point in the feature lies

inside or outside the shape.

The cognitive step requires, as usual a dictionary of

the features of the complete shape against which the

partial shapes are to be compared. The partial shape

dictionary will henceforth be referred to as the problem

text. One page of the complete shape dictionary is shown

in Table 1. This page contains features twenty-one and

twenty-two of the swept wing plane of Fig. 21. The

table includesp in addition to the feature number, the
critical points of that feature along with their x and y

location, the x and y location of the centroid of all

the critical points contained in the feature, the size
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crtca.oit....* s i line o.ih of the . .. .. .

7--.

- sqrt ~~ -~' + ( Uk(I.°

of w her e te t re normalized components of the shapenme

vector, the usrp of nhe shape vector component and the

ofsight code. The of sight code is a binary code of

length seven, associated with wirh the kth feature k I

re K. The nth bit of the b te ois equal to one if the

critical point c a is in line of sight of the

critical point Ck, where I ,uk 4 and n -1. .. 7. -.

The normalized shape vector component are defined as i

Ssqrt {(k_ j - U Zi(i) .'k

(VI.3)

where same qu variable was chosen to have the form,dit' Zi- ,, ) + (Yk- ) }(vi:.2) !'

~~where the subscript k refers to the feature number,.i

while the subscript n refers tthe measurement. The
~angle alpha is measured with respect to a fixed i

I reference. and is obtained by the following equation, '

[ r c t an [ (yak " 7 ) / ( x ok "  )-

| ,.. ,,/4) .~if (XIk - F =e n I ~ ) <  e '

Sif(x 80 an

N--(yak-- >: .



the dictionaries begins with a feature set that is not a

subset of another feature set. This feature set is

defined as the uncovered feature set. The covered

feature sets are arranged in the order of cardinality

below the uncovered feature set on each page. The

purpose of this architecture is to simplyfy the

computational requirements for the cognitive step.

In general all the features in the dictionary will

not be contained in the problem text. It is also true

that the problem text contains features that are not

present in the dictionary. This becomes apparent by

examining Pig. 20. Therefore, the fact that a feature

is contained in the problem text, does not imply that

the partial shape is not a part of the complete shape,

because it is not necessary for the partial shape to

have fewer points that the whole shape. Therefore,

further examination is required before a decision

regarding the problem text can be made.

VI. b THE COCNIITIVE PROCESS

The decision procedure consists of selecting an

*arbitrary word from the problem text dictionary. A

81
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problem text word is of course a feature from the

partial shape under comparison. The shape vector from

the problem text is compared to the shape vector in the

dictionary always starting on page one of the

dictionary. The comparison continues until a match

occurs.

VI.b.i THE METRIC DISTANCE

The process of matching distances is straight forward

and can be achieved using linear correlation [23],

metric difference, or any other metric. The following

metric was used here,

SUMABSDIF - ABS H s J) (VI.4)

VI.b.ii THE ANGULAR CORRELATION

The angle is an unreliable variable for direct

comparision. Since the angle is circular variable [41,

methods of circular statistics should be used for it

comparison. To illustrate the issue at hand consider a

feature vector whose angle vector has the

following three components.

122 1.57 radians
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Now, if the feature undergoes an angular rotation of 2

radians then the corresponding angle vector ael will

have the following components in the new position.

- []radi ans
The last component @34 is equal to .72 radians as all

operations are performed modulo 6.28. Note a direct

'comparison of the above two vectors would not be

conclusive. Now, consider the angular displacemet vector

4* between n*p and Oad, It's components are,

2.00

d ,'2.001

4 radi ans.4.28I

Observe that even though a constant was added to all the

component of a., to obtain and the difference between

sP and is note a constant. Hence one might again be

lead to believe that the two angle vectors are not the

same. Using the methods of circular statistics [41, such

pitfalls can be easily avoided. One way of testing

whether the 4's from which the sample (components) are

drawn are unidirectional or whether there is any

statistical evidence of directedness is by the using the

mean vector length r as a measure of correlation.The mean

vector is given by,

83

V..*.-* -.... ,.. . .
.. . . . . . . , . , .- . . . , . . . , , . . . . .. ...- • - -. .- .. , ., ,, -.- . - -, .. .-. . - . ., .



W - ~ -- --- -

q (VI.5)

gal

where e.'s are unit vectors each pointing in the

direction of the a' 'S. Now if the resulting vector

length is denoted by R then,

R j ej (VI.6)

ra Iq IE R (VI.7)

Each of the egs can be expressed as,
Pd Pd

on - cos d  + sin 6. (VI.8)

substituting (VI.8) into (VI.9) the following expression for

r can be obtained

r ((P ) 6 d ) 2 2,. r =1{( Cosm + ( sin 6. .

ra1 tl (VI.9)

The following properties make r an useful parameter

for comparision of directedness of two circular vectors.

1) The value of r is independent of the zero

-direction.

2) r can vary between 0 and 1. If r is equal to 1 then

all the circular variables ( in this case the angular

displacement vector components) point in the same

direction, while r is equal to zero indicates that the

components are randomly distributed. Values in between "
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and I indicate various degrees of randomness in the

directedness of the components. In general for a word

to match a feature the following three conditions must

hold simultaneously,

1) The SUMABSDIF should be below a threshold

2) The RVALUE value of r) should be above a threshold

3) The word and the feature should have the same ofsight

code.

VI.b.iii LOCATION OF MISMATCHED POINTS

The next step is to compare the next problem text

feature vector in order of cardinality, to the next

feature in the dictionary and so forth. An example of

this technique is given by comparing Tables 1 and 2. In

this experiment a feature vector from the partial shape

was selected for comparison. It should be emphasized

that the feature vector is from the problem text of the

partial swept wing aircraft shown in Fig. 20. The

partial shape has been rotated and shifted as well as

scaled to insure that any direct template matching

procedure will fail. This also demonstrates that the

concatenated feature vector matching procedure described
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here is independent of rotation, size and location.

Feature vector twelve ( word ) was arbitrarily selected

from the problem text. By comparing tables 1 and 2 From

of the plot the RVALUE and the SUNABSDIF shown in Fig.

22-a and Fig. 22-b it is apparent that word 12 matched

feature vector 21 of the dictionary. It should be noted

that this match occurs even though the location of the

critical points and the centroid of the feature of the

partial shape are different from those same quantities

for the whole shape because of the rotation and shift.

In this way a correspondence table is then established

between the critical points of the features in the

dictionary to the critical points of the word in the

problem text°The next step is to proceed in sequential

order to the next word in the problem text e.g. word 13

(n$l) which is sequentially next to word, 12 (n) of the

problem text does not match feature vector 22 (m+l) of

the dictionary. However since feature vector 22 is on

* the same page as feature vector 21 ( m ) of the

dictionary , word 13 is mismatched to feature 22 because

it contains a critical point which is not contained in

word 12. An examination of tables 1 and 2 indicates

that the critical point C1  is contained in word 13 but

not in word 12.
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The mismatched critical point is first compared to

the correspondence table. If it is not found in the

correspondence table then it is stored in a mismatch

table. At any latter stage a mismatched critical point

is erased from the mismatched table if some word

containing the mismatched critical point matches some

feature of the dictionary.

In general if word n matches feature m then it is

expected that word ( n +1 ) will match feature ( m + 1).

If feature (m+l) is on the same page as feature m then

it is easy to isolate the mismatched point as in the

above example. If feature m+l is not on the same page as

feature m or the concept of pages is not used then in

order to isolate the mismatched critical point then the

feature m+1 and the word n+l have to be revised into

concatened shape vectors with each subshape vector of

three measurements. A revised feature vector for

feature 22 is shown in Table 3. While the revised words

for word 13 are shown Table 4. A comparison of the above

two tables again isolates C as the mismatched critical

point. It must be noted again from these tables that
angle being a multivalued function cannot be relied upon

as a variable that can be used in the direct comparison

process..
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The usefulness of the Fuzzy shape concept is ,,

demonstrated by the results of the ALS algorithm on the

pig of size B and the partial pig of size lIxB. More

than one minimal set can be obtained by starting at

various points on the back of the pig or the earlobe of

the pig. However, the points which are found most often

in minimal sets have been enclosed by circles and are

shown in Fig 23-a and 23-b. These clusters or points of

the highest degree of membership are retained by the

algorithm while the others are discarded. The effect of

postprocessing on the clusters of highest degree of

membership gives the final minimal set. The final

minimal set for the pig and the partial pig are shown in

Figures 24-a and 24-b respectively. Word 21 of the

partial pig is listed in table 6. The plot of the

RVALUE and the SUMABSDIF of word 21 when compared with

features with the same ofsight code in the dictionary is

given if Pig 25-a and 25-b. From these plots it is clear

that word 21 matched feature 31. The details of feature

31 are listed in table 5.
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CHAPTER VII.

CONCLUSION AND DISCUSSION

VII.a CONCLUSION

A system for the recognition of shapes which is in

some sense similar to human vision system is described.

The system is called the partial shape recognition

system since it is capable of recognizing shapes based

on comparison of properties of parts of a shape rather

than only the global properties. Though not all aspects

involved in implementing the system were discussed, some

of the necessary aspects were detailed.

A new concept of treating shapes as vectors in shape

space is introduced and described. Also two theorems

relating to the process of comparing partial shapes to

the complete shape were stated and proved.

A new procedure of determining ( the correspondence

tokens) the critical points of a shape is described. The

procedure is named the Adaptive Line of Sight method. In

the Adaptive Line of Sight method the critical point
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determination is based on a set of coordinate axes that

are dependent on the shape being examined. Examples were

given that demonstrate that the procedure produces "

critical points that are independent of rotation, size,

displacement and correspond closely to those produced by

normal human cognitive process.

It was shown that the critical points could be

organized to form feature vectors using the Line of

Sight of a Point concept. A technique for comparing the

feature vectors of a set of shapes is described. The

comparison procedure is based on syntactic technique

which will point whether one shape is part of a more

complex whole shape, or whether the shapes are totally

dissimilar.

VII.b DISCUSSION

VZI.b.i CAN COMPARISON OF SHAPES BE BASED ON

CRITICAL POINTS ALONE ?

Examples presented in the earlier sections showed 4

that the shape recognition technique based on comparing
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critical points of the highest degree of membership was

sufficient and gave good results. There are instances

however, when a match based on comparison of critical

points alone is insufficient. A simple example is that

of an ellipse. The critical points of the highest degree

of membership of the ellipse shape are the points where

the ellipse intersects it minor and major axes. These

critical points are also the critical points of a

polygon ( which looks different than an ellipse) formed

by joining the adjacent critical points by a straight

line. A comparison based on critical points alone would

not be able to make out the difference between the

polygon and the ellipse. In general the shape

represented by the critical shape boundary and the shape

boundary are indistinguishable. Another example is that

of the circle and, a circular arc which is greater than

a semi-circle but less than the circle. For the circle

all points will be determined to be equally important.

For the circular arc all points excluding the points

shown in Fig. 26. will be determined to have the same

degree of membership. The points shown on the circular

arc have a higher degree of membership than the rest.

Here a compmrison based on matching critical points of

the highest degree of membership would lead to wrong

results. In such instances it is proposed to match the

101 "
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VAXIS OF SYMMETRY

NOTE:ALL POINTS ON THE ARC ARE CRITICAL POINTS BY THE ADAPTIVE
LINE OF SIGHT METHOD; HOWEVER THE POINTS WITH THE
HIGHEST DEGREE OF MEMBERSHIP HAVE BEEN ENCLOSED BY CIRCULAR
DOTS

FIG. 26. A CASE FOR RELOCATION OF CRITICAL POINTS ?
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shapes based on the space invariant properties of the

segments C interpolated and resampled if necessary)

between critical points. Figure 1. thus shows a block

*length of the segments to be matcheds which is also

loaded into the shape data table.

In this paper the actual procedures for matching

segments were not completely addressed. The above

examples suffice to point out that comparison based on
.

curvature of segments, or other space invariant

properties of the segments ia also an integral part of

the partial shape recognition procedure.

VII. b. ii REASSIGNMENT AND RELOCATION OF CRITICAL POINTS

BASED ON SYMMETRY

There is one more problem associated with the case of

the circular arc. It is true that most humans assign the

highest degree of membership to the -end poinrts of the

arc but it is also true that most of them do not assign

similar degree of membership to the remaining points on

the arc. Specifically it is usually assumed that the

critical points found relative to the axis of symmetry '.

* .are more important than the rest. It can be argued that
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the determination of such an axis of symmetry occurs at

some post-cognitive level. In other words it occurs only

when parts of the shape are 'compared' with itself. The

comparison signified by the word .'compared' in the

previous sentence occurs before the axis of symmetry has

been located. It is this kind of comparison which has

been addressed in this paper. This ofcourse excludes the

redefinition of critical points and ressignment of their

degrees of membership based on the feed-back of the

results of comparison of the shape with a copy of it-

self (see Fig. 1.), and falls outside the dotted line

shown in Fig. 1.

VII.b.iii HOW TO SET THE THRESHOLDS.

An important question associated with the above

method is that of the thresholds in the algorithm. More

features can be determined at lower thresholds, while

many features can be eliminated at higher thresholds.
5%

Resampling the curve at uniform arc length is a

necessary first step in the determination of the

thresholds; even though we did not resample some of the

shape at uniform arc length to get a feel of the
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robustness of the algorithm. This is the reason why

some of the critical points were missed near the leg of

the pig shape in Fig. 16. In general the exact

threshold will depend on

1) Resolution of the Machine ( a machine may have

variable range of thresholds)

2) Knowledge from the data base (see Fig. 1.)

3) Feedback from the output table (see Fig. 1.)

It is not clear how the thresholds can be adjusted

using the feedback, however there appear to be at least

two factors which seem to influence this aspect, namely,

1) Error or Noise

2) Number of 'small features'

The former means an estimate of the error between the

best fit polynomial and the linearly interpolated curve.

The latter comes from a general observation that humans

tend to ignore (average out) features if they are

smaller than the overall global size, and if there are a --

large number of them. However if there are only a

couple of small features they often become a point of

'focus'. Thus small features cannot be generally

ignored.
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VII.c FUTURE WORK
.

It should be very clear from the problem statement in

the introduction that only the problems in the area

enclosed by the dotted line in Fig. 1. have been

addressed in this dissertation. A lot of work still

needs to be done in the future before the complete

implementation of the system shown in Fig. 1. becomes a

reality. Some of the important topics that need to

worked on are listed as follows:

1) Edges of objects or shapes, have been successfully

detected in images. For a brief summary of the methods

used to detect edges the reader is advised to refer to

[16). The problem of transforming the edges into a

sequence of points defining a shape has also been

attempted [101, [16]. These methods work reasonably

well on ideal data specially when the points are located

at nearly uniform intervals (e.g. eight connected

neighbourhood). However these methods fail to work on

general edge data (i.e. data defining the edge of the

object), which is normally obtained using edge detectors

[161, on actual 'real life' images. So work needs to be

done either to alter these methods so that they can

adapt to the edge data, or the methods of detecting
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edges need to be modified so as to produce output data

which is close to ideal.

2) The question of thresholds which has already been

addressed also needs to be worked on. Explict standards

defining the range of resolution' of the machine need to

to laid.

3) Most of the state of the art work [35], [54], [68],

[71], [881, pertaining to the interpretation process

described in Chapter I. deals with the extraction of

motion information from changes in the projection of the

object on a plane. Practically no actual work has been

done which exploits the relationship of the object with

respect to the background towards this end.

4) Though some guide lines can be drawn from the field

of psychology for the implementation of a workable "5"

knowledge data base shown in Fig. 1, the actual

implementation of a general of a data base comparable to

the human vision system is still a far cry form reality.
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APPENDIX A

DETAILS OF THE PROGRAM FOR THE ADAPTIVE LINE OF SIGHT

METHOD.

Ref ering to the flow-chart shown in FIG. 27. side A efer s*

to the condition when the computations are performed from I

to J modulo the number of points in the shape, while aide 5

refers to the condition when computations are performed from

, to to 2. Forward track or Ftrack denotes to a condition

when I is held constant while J is incremented. Backtrack

or Itrack denotes a condition when J-1 is held constant

while I is decremented.

Initially I and J are always chosen to be adjacent

points, first going in the clockwise direction then in the

anti-clockwise direction The details of the computational

blocke, the detection block/process and some other blocks are

as follows

COKIOATZONAL BLOCK

Find the equation of the straight line L joining I to J

Find the distance DISTAL7 between points I and J.

Find the equations of the straight lines normal to L and

joining every point P in between I and J.

find the intersection (XINTSZZJ , TZnTZL7) of each of
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-- a _ -the noma lie found in _the2 aov tis ftop~ wit ~~S'the sftraight 's a--

Fithe normal dinstaun ne SAbfove eey wit the srih s

strigh lin.

Find the normal vectors from the straight line to every

point P.

DETECTION FROCESS

In this block a detect switch is set indicating that a crit-

ical point has been detected at I and J7-1, if at the first

instance, a point is found which is not on the-same side of

L as other points, or a point cannot be sapped injectively

on to the straight line L. The former condition is checked

by comparing the magnitude of the su of every two adj acent

normal vectors with the magnitude of those forming the sum +

a TRUStOLD1, while the latter condition is checked by co-

paring the am of the distance DISTZIZ.J4DZSTYZZJ to DISTAL7

+ TRRZSNOL2. Where thresholds 1 and 2 are sot to account

for round-off, truncation, quantization-and other errors.

SWITCH BOARD

This is a control block which forces the computations to oc-

cur in an alternating sequence fORWARD-TRACK -&ACS-TRACE

-10 WARD- TRAC~e. . ... a
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APPENDIX B

DETAILS OF THE FEATURE VECTOR FORMATION PROGRAM.

To find whether a point within (n + 3) of the nth

critical point belongs to the nth feature it is not

necessary to carry out the computation for each of the

points within (n t 3). Specifically the following two

facts have been exploited to reduce computation:

1) Points within (n + 1) are always in sight of C

2) The Line of Sight of a Point is a symmetric relation.

Let the relation (is in Line of Sight of the Point)

be denoted by R; then if C1 RCh implies ChR Cj. Once

it is determined that CI R Ch then it is not necessary

to compute if Ch R Ci. In context with, our example,

C R C"+2  implies C 2 R C

and

C n R Cn+3  implies Cn+3 R Cn. 3

Thus it is necessary to check only if the critical

point C"+2 and C"+3 are in Line of Sight of Cn.

If, the point of intersection of the line joining Cn

to C+k, k-2, 3., with a line between C and Cj+i

J-l...N., is denoted by INT, and the coordinate of the
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following points are,

INT a (XINT, YINT),

Cn - (FEATIX, FEATIY),
CI

Cn+k (FEAT2X, FEAT2Y),

C - (CURVEIX, CURVEIY),

C+I - (CURVE2X, CURVE2X),

and the distances between the following points are,

INT and C - DIFI,n
INT and C - DIF2,

INT and C - DICI,

INT and C - DIC2,J+1

Cn and C n+k- DISFEA,

Cj and C J+ = CURVED,

then the relation R is not true if

DIFI + DIF2 - DISFEA

or

DICI + DIC2 - CURVED.

The matrix SWSET in the program is this binary

relation table. The output of the first proc matrix has

seven columns. The first column corresponds to the

sequence number of the critical point in the critical

point list. The next two columns are the coordinates of

the critical points. The last four columns contain the

boolean relations operator. Specifically they hold the

following the binary relations:
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R , R Cn Cn. 2 R Cn ,and Cn. 3. R C.

124



APPENDIX C

DETAILS OF THE PROGRAM FOR POST PROCESSING.

This program takes as input the critical points which

are represented by their sequence number in the shape

data list, and process them sequentially according to

the following steps:

1) Every set of five consecutive points is replaced by

their median point.

2) Every set of four consecutive points is replaced by

the second point if FRC - SET otherwise by the third

point if FLC - SET. Both FRC and FLC cannot be equal to

SET at the same time.

3) Every set of three consecutive points is replaced by

their median point.

4) Every set of two consecutive point is replaced by the

first point if TLC - SET otherwise by the second point

if TRC - SET. Both TLC and TRC cannot be equal to SET

at the same time.
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PROGRAM LISTING FOR THE ADAPTIVE LINE OF SIGHT METHOD.

INPUT: Three column data set named SHAPEXY. The first

column represents the sequence number of data points in

the shape data list. The 2nd and the 3rd columns are the

x and y coordinates of the shape data points.

OUTPUT: 1) A 10 column matrix array named INF. The

columns contain the following;

ist column - The number of critical point pair (the Ith

and the Jth point) found in the first pass.

2nd column - sequence number of the Ith critical point

in the shape data list.

3rd and 4th columns - the x and y coordinates of the Ith

point in column 2.

5th column - sequence number of the Jth critical point

in the shape data list.

6th and 7th columns - the x and y coordinates of the Jth

critical point in column 5.

8th column - the location (sequence number in the shape

data list) of a maxima or a minima in-between the Ith

and the Jth point.

9th and 10th columns - the x and y coordinates of the

point whose sequence number is in the 8th column.

OUTPUT 2) The input data.
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**~*****START SIUCHROUISE,
PROC PATRIX
FETCH SEAM!,
HNum(SEAPZXT),

FTAc-SET,
STRACI-RESETI
DISCON-RESBTi
CONNEC-SRTI
PATUN.DISCOH,
SIDUB-SET3
OPSIOST-SETj

'**'~STARTING AND ENDING POINTS FOR TOE ALGORITSK ARE I AND 3:

J-2;
ITZXin-1;
JTEXP-J;

''' ' N IS A INDEX WSICB POINTS TO THE NEXT CRITICAL POINT;

'~ " NEED A MATRIX TO STORE INFORMATION ABOUT A CRITICAL POINT
may the expected nhmber of critical points is 75 so dimension IMP
I3PwJ. (751,1,),

'COMPUTATION 3WOC~i
STARTt

DETZCTI-RESETi
DETECT2-RESZT:
DETECT3-RESET:
DETECT-RESET:
EXIT-RESET;

AQ*SEAPXY(J,3)-SEAPEXYI3),,
B0*SEAPEXY(J,2)-SEAPEY(1,2);
CO-SBAPEXY(J,2)#BEAPXT(I,3) I
IDO-SBAPEXY(1,2) ISEPEXYCJ,3);
SLOPEIJ-AQS/SQ,
INTERIJA(CQ-DQ) */UQj
DISTAI.-SQRT( (BQ#BQ) +(AQOAQ));
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PAGE 2

*VuZV TO ZKOI uaW MANY POINTS ARE IN BETWEEN;

I? (IM4
THEM
001

ED:

P~nJ-CI.1), I
END;
II P1-I
TREN
DOI
GO To UflOANDI
END:

d NINTZRCYaJ. CPT,1,I);

NOISTAIJeJ. (PT,1.l).
DISTIIJuJ. (PT.1,0);
CXSTYIIJnJ. (11,1.6):
VECTORXI-..(PT.l.I);
VZCTOYfl..(PT,1,6);
SU4VCI-J. (1T.1.l):
SUMVZCYJ-J. (PT,1,13;
M VZCXL-..(PT.1,I);

CERTAIN OPERATIONS NEED TO BE PtRrORIIED BETWEEN POINTS I AND J

CONSvZx..,
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FEATURE VECTOR FORMATION PROGRAM

INPUT: The input to the program is data set called

SHAPEXZ. SHAPEXZ contains the X and Y coordinates of

the critical pc nts.

OUTPUT: The output of the the program is a matrix called

DICTION. DICTION has seven columns. The lst column is

the sequence number F to which the critical pointn :"

belongs. The 2nd column is the sequence number of the

critical point in the list of critical points. The 3rd

column represent the binary relationship C R C , k-i,n n+k .-

2, 3,. The 4th and the 5th represent the x and y

coordinates of the critical point if R - 1; The 6th and

the 7th column contain the feature vector components Snk

and a respectively.

n.
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QO(:N,7)m8O3?(AN3)

01

lDI

i (MBCD > .Il6ll61) TH3N
00,

COW( gk,6)-CD3( BAo2)-CON( EA.S)fCON( 8A.1);
on;'

M3NN1-3;
3311-14-2 I

SwIWmJ.(33,4#.):
O .1 TO NMI

ZIP(CUNZ.3, VM w~

!I

?A(COW?.1)I31Z P2mON1,)
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plA22~m=(IP,j) ,ml2Y-CON(I?,2),

*8QUATZU
OLZ1.fATllPFz#fll DILIETFE~kTY-FZAT2Y;

flAwozmfloDLFlZ + DgLplT*DELfly;
DisflA.IOR?(DISFZ) I
DTZSUMBS(DSLMU)i
IF (VOUT -< .969891) TBHU
00,
P11.99909999,
PC-#$
END;
IF (O!UT > .11191) Taty
DO;
?H.DKRflY/DZfZ:
PC.1pzhZ1y-mIortAZJxI

OSZGETI

CD3VtH.OCI.lS) a

cD3YZDMN(UI.7)i
azLo. (rn-cUxvgt),
DZPSLOPUMSSCDI VSLO)i
lip (DIFSLOP > .9699861) THm

IF (C~RtVH >- 99999991 TSEN
DOI

YZNT=cONIXNI. 1)

Go TO STHPX:

IF (PH >- 9999999) TRIM
DO,
ZirToPtAT1X
yzr3TurjiVtgZn?*Os+CRVRCI
Go TO STSPIa
Z3DI
113?. (CURWZC-PC) */DIISLO;
TI WT-PNOIIN?+PC

CDNVE1X.ON x(NI, 1) aCOVJICON (NI. 2):
cU3v321-oWNCNI,3) ,CURV2aCON(NI,4),
PF3Mlo1fZATIXcK3RYI1X,

140
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PST!D1-IPZATlY-cUWVZlY.
Fl?02urZAT2X-cMRVZIX;
FSTTD2m-FAT2-UNVZlY;
lZ31FlATX-MOWZ2X;
SECYhI=?ZATIY-MURYE2Y;
StC1D2-PZAT2x-cMaVE3I,
SZCYD2-VZA?2Y-CU3VE2Y

ir (((PsTxDl-@) & (PSTYD1Ifl)OR(FST1D2-I)&(FSTYD2-6))OR
((SZc=1-)&(SECYD1ftl)) OR (CSECXD20)&(SECYD29))) TEEN GO TO OUT$;

DZIX-FZAT1X-X=R;
VZ?1!UFZA?1Y-YINT3

Drrl-SORtT(DZF1) r

OIF2Z-FZAT2Y-YINT;
DZF2nDIf2X#fIX40ZFl2Y#OZF21;
OXF2-5QRT(OZF2);

DIC3.wtlRVZ1T-YINT;
DICIuDIC1X$Dxc1ZeDxc1y$DIC1't:
OIClsORJT(DICl) i
OzClg-=1EVZZX-XZNT,
DIC2T-CURV2Y-r.NT;
DIC2-DICUxBDtC2X+DzC2Y#DzC2Yr,
DIC2-SORT(DZC2);
SUMDC.DIC1.01C2 ,SONDZF0111eD112;
0ZrF1.JW-SUNtDIC3DIF1-AlS(DZFLI)f
OIF2DISflA-SUMDIF3 OIFF2sABS (01FF2);

O-CON(I,);
*PRINT 0 XIN? YIN? DITi DIr2 DIC1 D1C2 DISFEA;

*PRIWT 0;

0.1

SIGHT=#;
APTZS?.CON(1,1:2) 3
CPT'EST-CON(IP,1:2);
8PflS?.COX(NI,),
*PRINT APTEST 9PTES? CPTEST:

GO TO OUTi:
END:
END;

OUTi:
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*IF (CClu1)o1(Z3)OCZ-4)OCI-31)OR(.32)OR(I-33)O(.34)OR(I-3)))

'DO

'11Z13 SITt

'1

IF (COOW!-1) TEDX

SWSZT(I,3)SIZGBT;

IF 11 a< MUM3) TBEM SVST(11) SIGH!:
GO TO LWENT

ID;:

CONI ( 333) SrTEEM iSE N 3.)-IG
Go O(NKsOPOfO 5sLT(:i)
ENDSWZT
*PINTC~

'1O11 N WEE!: O~l

'14
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MKSI07-42i

DO anI- T100111.

IP3.IW.1s

IP4DI41

DEP7nDW+7s
137-307i
D3736mlW7-4k
37M5s137-5s
1N34-137-4,
]37M33.17-3p
1172-137-2:
1171.w17-11
IF ((Z31 > WN) OR (1314 > MY) ) Z GO3 TO R0 ACK;

DICTION (101786 137,4 15) OMNI (IV IIWG, 122),
DICTION (IMS 6IV7,2) -COEI(IV i IWP, 7),
D1CTZ03C1117MS XW7, 1) = 13#J. (7,1,11,
DIZO3W(IW7U4sIV732,3)3. (2,1,I)I
0ICTX0N(137N6 :17M5,3) -*33.:
DICTO3l(11731a1V7,3)-AWV':

O'I

00 111-1 To 3NMI

If (AIDTuf) 1333 UIC1103(I1I,4:5)mJ.C1,2.I);

33173
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DO 1331*1 TO My
t33170701331 t 33106-13317-6,

p.P1..),/u 
..

DZCTZU(133Z36a133Z7,8) .0?;

IF (CESTRO1Z > 0 1 W NARCTA(CAGLZI:
IP (CSM1OIX < 9) 1333 331-).16.AaCTAN(CAVQL3)
It (( C31'OII.4) AND (CUIUOOI > 6)) T333 331.1.57;
It ((CUUUOII.6) AND (C33?3OY < 0) THE RV3 314.71;

10-31610

DO;

it (DICfZU(IX,3) HE 6) T333
DOI

IF czzczuu,) >U) 1133 DZCION(Z,7)sARCTAN(A);
IF CIXCINg,) () 1)1THE DICbON(hu.7)3.14ACTAN(A),
If ((IX(130.2.4) AND (ZY(130.) >6)) ?N31 OZCTIO(lo,l)u1.57;
ZIP ccZX(ZRG)E4) AND (11(130,) < 9)) THEN DICTON(8,7)04.71i
DICTI0NCZU,7) u331-OZCTION( 11,7)i
ACCDP-JDCION (IN.7):
MDOI&ARCOS (ADi)
DIC!IOUIL7)S-MDI?;
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PROGRAM LISTING FOR THE POST PROCESSING STEP

INPUT: A data array named AINP which consists of one

column of numbers representing the sequence number of

critical points in the SHAPE DATA LIST.

OUTPUT: The output is a post processed data array AINF.

For more details see Appendix C

1.

. '

145.
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774

MOC NARIUMM3! AZNIM5AZI-&W(Af1) I

00mmuO gST-is~

fTWAM3UMW I. A,2AMSOS(0t333=TSO (.

01

AM 1W.pAT3

A!Oai-AUSEUOkS (1,) AoO2-A528105 (2~,) iAO3A31S(,
A!004.AU~riUS1O (,)-J A4,1,01?O(,)

Dl

AINf~ou (KWIM SMza03 I

AIN?(NAINVaRARV,-j (40 ,.)

AUISOA NW sNVII=KY+,sP-VW3MWP=W

IZZ(iAUSO4 Tan)
AWC2AII342
AUZ4AUI wZS1044,)
ADZZ(NI-P:AIA112 zADIXX2-AXXX2A113 AX13AXX3AXX

Ant-N A~)iDX2AS(AII)aDX3S AXX)

2?((D~i301)AD ADX3 Q )AN (DXI 14))6TI



P ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ VG 2 .. t% -4.--~ ...... ---

00 K~l TOMINI

A~l-AlRM3 (1

AD30AMMM (3,

A013~mAD-AD3rAD1Dl~nBS (D231A)

GO TOM- 2TO N3V

A02-ARMZS03 (2.):
AD32D-A8103(3,)
A013DAmADL-AD3 vADi3AB AlD
IF (ADI3DA 30 2 ) 1331

AIMP (KIN.) .10331?:
&IMY (KIPI sVAINt2.) -AIM? (31V13 tELI,),
AIMr VMI~rolzmAiM.. (2.p..)I

AD2Y-AX138102 C1 2,): 02(2
AD1DASinADD2,i

IF (A0123ft ?NO13

NIVC~MW s.I0331!: 2
AXM(VI tHAZMVI,) AIF MICRW2 sPAINVA)
AIM CAII)j.1 1.i

01

*14



PROGRAM LISTING OF THE REVISED FEATURE VECTOR.

INPUT: Data set named AAUU with three columns. The Ist

column represents the sequence number of the critical

points in the critical point list, while columns 2 and

3 represent the x and y coordinates of the critical

points.

OUTPUT: The program has two output matrices, 1) STOREE,

2) SKNO

STOREE has six columns which contain the following:

1st - feature number F to which the critical point in
n

the second column belongs.

2nd - sequence number of the critical point in the

critical point list.

3rd and 4th - the x and y coordiantes of the critical

point.

5th and the 6th - the distance and the angle component

of the feature vector, namely a and a

SKNO has six columns which contain the following:

1st -x coordinate of the mean of the feature.

2nd - y coordinate of the mean of the feature.

3rd a the distance of the centroid of the feature from a

148 -
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E

fixed reference.

4th - angle made by the centroid with a reference

direction.

5th - size.

6th feature number F
n

149
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PRM ATRX~r= AA~iKmMMAAU) sV~w~MX-lSTRl~m. (N3*,.)

AA00-58SAA09

DO lalTo No

*PO#11 5I~ Onx pap-o

Z~n3,-.

IK392mnC-2

ZP~nl+2

ShOc MAZXMIsN3.a AAU-U(sXADU) uMi3M- SOI-.(M,,
AAD-min9*AADD: 4)

.3S~LU(K* 3I34

112.1.2+' I

TIII(1M3:MJ. 3.1)ZlJ (,,)

snDUZm(.)a

11uAU.Ln3AU.2.(,11

CAM-ATSJ. (CAM) 1

It-nx .AAN < 6 Te=DO

IF r (MIAI * U AND (1IAPI >l)) 2 ~
cUMANUL.102iIw5t7, IA1

-IS



_~~4- 7- ' I~- - - --. -

VAG& 2

un Wo

13Z.4.71y

IF (XICZA) opalUSD~

UIa(C(A.) ), 1Z) 2 0

XQ-ZM32+ZA-1;
ST3U(ZQ,f)laUov

If (UCZA 03 < 6) TN= DMg
IUloz T(MA) /XICZ(A.)
P6Z-AAH (PR1) ;
IU103.14 + MIS,
ZQ-13U2+A-1a

15moj. (1, 6,.

850 (1,.2) -NWMN;
1=0(1.3) uCKNYNO
SUI0(1, 4) .SIANOLS
150(1.5) -1Uh1

*flZN? MANX HWYI CuATmO ONAMLZ EU!Z;

DI
53'I SOR



PROGRAM LISTING FOR THE MATCHING PROCESS.

I.

INPUT: An eight column data set called GETI. The first

four columns correspond to the data from the dictionary

while the next four to the data from the problem text.

The first of the four columns corresponds to the p

sequence number of the feature F the 2nd corresponds

to the ofsight code of the feature, and the 3rd and the

4th corresponds to the distance and angle components of

the feature vector.

A word is picked and compared with features in the

dictionary with the same ofsight code.

OUTPUT: Plots for RVALUE and SUMABSDIF of the word

against features in the dictionary with the same ofsight

code.
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hROC MAltZxi132 GZT!: UZ.33W(GET!),
VOO.EGM?( 127:133,5:8);
*Paw3 WORD:

S20lBBJ. (1,3,.),
00 tal TO UK UT 7;

0131.G3TZ(,2)-WED(1,2)i
0132=G3T(12,2) -WORD(2,2)3
01s3=M2132)-WOUD(3,2)i
01344ZTX(14,2)-M30(4,2):
OISSoGIZ(XS,21-WRD(5,2)s
0136.GZTZ(C162) -WRD(6,2) 1
0137. 3Tl(17,2)-vWUD(7,2)s

IF (0131 - 1) 03 (0132 N3 6) 0R (0123 St 6) 0R (0134 NZ 9)
OR (01353us6) 0lt (01363we1) OR3(01336 u)f) Tozx
00 20 3NUT;

NXTRIC wGET(1:17,3)-M03D( #3);
*'RaXT NIT3C:
*nEZCMHSIIRC

AHGDI-GT(l:I7,4)-vW30( #4),
COM3-COS (AUG01?) iSIIIDL.813 (A3011) 3
.3
IF ( I a 126) TEDS 00;
*PRIhT ANO01? COSDEL SINDEL :330:

SUPDIIC-cOSDEL C+,) :SuNDzpS-SZuz4L ')
3OACuSUNOIFLC#SONI1C+8030113 STJMOI1S;
IF (1=121) TEEN Dot
PRINT1 SORDIPC SUMPS1 SOACEND,
S.1032(SOAC) 3

RUBOB0UO/.2)
If lm.2) vM o

STOVX(1.1)=G8?I(14.3)g
320UX(1.2) D017;
S2033(1, 3) mVALOu -
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oO0//STORR,

OUTPUT 0 OGT-O dUIANE' (COL2-FRATURE CL2wA5SSUM COL3-RVALUCfls
*1

PRCC GPLOT DATA-O:
*PLOT ABSSUR~rEAIURB.1I RVALO*FlATURZw2 /OVERLAY;
*PLOT ASSBUNVAUR-11
PLOT MBSSUMVEZATUR.E1/ 33110 VZRO;
*PLOT MBSUWRVALU2.VEATURZ /1.101:

SYMSOLI InZmUEELE VeuOZANDi
TME ABSOLUTE DIFFERENCE AAINS FEATURE NO.;
VOO!UOTEJ. ONLY FEATURES Or THE SARE OPSIGNT INFORMATION ARE COMPARED;
PROC GILOT:
*PLOT RVALUE*PrATURSv
PLOT RVALZfl.ATURZ.1/ EZEIC VURC:
TITLE ANGULAR CRRZ.ATZON AGAINST FEATURE NO.;
VOOTNCTZI ONLY FEATURES OF THE SAME 013 lOUT INFORMATION ARE COMPARED
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LISTING OF THE PROGRAM WHICH WAS USED TO PLOT

FIG. 17 'EXAMPLES OF SIZE VARIABLE IN 2-D SHAPE SPACE.'

INPUT: It has no input. OUTPUT: PLOTS SHOWN IN FIG. 17.
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DATA SIZE;
INPUT MI R2 C D Z r G 8;
CAM;S
I 1 2 6 3
3 5 1 2 I 3
PROC GPLOTi
PLOT NM1H2al C*D-2 Z*?-3 G'S-4/OVERLAT,
SY14BOLL I-JOINI
SIISOL2 I-JOIN:
STISOL3 1-JOIN:
SINVOL4 I-JOIN;
TITLE) PLOT OF A TWO DIMENSIONAL SBAPE LINE;
TITL22 SHOING TUE SIZE VARIABLE 0? TSE FORM K142mC0N5T;

DILTAWE 4 lI/1i

CC3.Cl)3SI,.
CC(I.2)=TEETAt
CC (1.23) -CS TETA)
CCCZ.3)-COSV!UETA) 
CC(I.f)w-.*SN(sETA);
CC(I.5)s2#COSCT8ETA) a
CC (1.7) -3 #OS (TSTA) I
CCCI.U)w1.5#SXN(TffZTA3 a
TSZTAm-UETA.DILTAr
END;
OUTPUT CC O0?OCCC (RENAME- (COLIN). COL2=H2 COL3-Z COL4-A
COL~w2 COLG-C COL7mD COL80))
DATA 3CC AND ;SET CCCIP ((Z >0 I) ANDC )aI:
PROC GILOT DATAOsICM
PLOT IU*Mo-3 Z*A=2 B'C=3 D*E04/GVPRLAY;
SymuOL I-JOIN I
5T10OL2 IwSPLINZ;
SYMBOL3 loSPLINE:
SYN50L4 loSPLINEI
TITLE). PLOT OP A TWO DIMENSIONAL SHAPE LINE;
TITLEI USING THE SIZE VARIABLE OP THE FORK SQRT(Kl *A*K2 ) CONSTANT;
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.5..

J -N

FAST FOURIER TRANSFORM

and
UN

RESAMPLING USING LINEAR INTERPOLATION.

;, ~~INPUT: TO THE RE-SPLING USING LINEAR INTERPOLATION '"

A data set named SHAPEXY consisting of the x and y

coordinates of the points between which the linear

interpolation is to be carried out before resampling.

OUTPUT: OF THE RESAMPLING USING LINEAR INTERPOLATION:

A data set named SHAPEl which has three columns. The

first column is the sequence number of the sample while

the next two are its x and y coordinates respectively.

The program is designed to include the input data in the

resamples. RES is a temporary array in the program which

stores the resampled values. Depending upon the

resampling interval ISAMP the dimensions of RES will

have to be altered for every run.

INPUT: TO THE FAST FOURIER TRANSFORM PROGRAM:

A data set of the form similar to SHAPE1 described

above.

OUTPUT: OF THE FAST FOURIER TRANSFORM PROGRAM: Plots of

" the real and imaginary parts of the transform,

normalized by the factor s and a respectively.

157 "
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PROC MATRIX;

MM-Ml=(SUARZKY)

CRY(I:=,) wSAV&XY;)
Can. (, ,3).'Y(

325-J. (396,2,f) I

*CALCULATE W RI NEAR LZUCTS:

DO 1-1 TO MY5 1,

B-CRYC1, 2) -CRM (4,2):

C-omRT(CI
DIJ-DIJC'
DII (10)Cs

*FIND TEE UESA4PLISO INTERVAL;

ZIANPaDIJO/128s

*LFIND THE POINTS IN SZZN, *

D0 1.1 TO UN BY I

AcLmCRM (J, 1) -CRM(1, 1)
Aa.-BS (ACL) I

158



To-M (1, 2)s

U1.ZNT(NZNT);
I? (AC. <.Jell)

DO 1-1 TO up By Ii

IF (C2 > TO) !UXW
!!T-!I.Z<ANI)TIN rmIZA
K? (C2 I) m-u-hMP

UU(E,2) TTS
GO To LALIp

ZD:

N.(cR(3,2) -amCR(2) I I(R(~)-R(.1

KEKRol ToIP yI

SPAMMOOQ0/1
S1A-101?(SPA)a
if (XI ( Ci) ToUW

K? MeI > Ci) TURN XXXXI-SPA, -

m-NIxxc,

RZS (R1,2)mTY

WNI
LAIELI t

ATJ. (K,i,iIlg
PRO (Iill,)-RE(I sU, 1) +"1

USJ 1i:11,2) m.311(I MR. 2) o.AT~i
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OO!1D? RES W-SADx(RAMS= fCOLlaX COL=Y) )
PRWPLO DAlJJL3! 3A3:?(1336 3 I
PLOT Y'Ii
?MR~ 31.0T of 113 SU3M VII PLANES
1211.32 0r StU~a

hROC MATRZXa

TF1-J. (W3.2, 9) 1

rn-mi-(W., 9 j

131.3. (W3.2. 6)a
RIMORAP1(, .2)a
ZK?-33A13) G.,3)a
13 (I Sur') afl!PT(an)a

*1
30 1&1 TO US S! 1:

131(J,)V3I(Zj,2a

30-. 1.20S)3 S
9JteJ. (.2, 4
VIJ2)% VI(,2
rZ(J2w ?Z(3T)

TWV?(1uV0 1)-VY.

M.J. (12SA);

NIZY (1 =Ad

ITZSZVEN.6
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1MIp 4

Aa.!IVC(2,1) 1
AZ.IY(2.2) s

Zr (aS IQ 9)

DO,

3ZROTMINS. 1)

mumR#AI
Ir (38R >- )?I AeTN A
ir(N<0AN t> ) V AP.11963-A3(A)

if (At A ND At ) 11 ) ME!N QAAo3119f3jAA(A)

If (SR >a 6)23W QUSSATMIOSS);
ZV (33 < 0 6Z at>o) TaZN'QSS-3.141592f535-ATA(Q9S)i
It 3 (2 9 I 3Z 481 TESK O~3.A3413#2f535+.A~m(O55);
PM~m(QAh+Qn3J /2i
ALIUA(OAA-08) 0/2,
PIM~h PK ALPRAi
S-AZ*AZ.SZ@3Z

01-21)Tp y

Itr3 WLTZPLCA!ZO 3!) TRW lI UAMA

ZIC (PS -' r) mm SZ-
ZPR (Z' U) Saul~o
UPR (IZIDO *l) 35JZU
ZrT (Z3VU ) 3WJ--U-1

AFPr3ZmOS13ZA) U

ZIZSZU(SZUA161



-XI

33T31 STANM DUVIATXON,

SAVIS*1TFm
NIAVOSAV1 C *) s
ST5~z13-IAV(+.)g

PRINT 15U3Z S SIZZI
MO.UENAPU1(,243) g

NAMA) AMQ()-J UN: ) #N-vl
MOC .2) -mOC 4-U. (33.1) #NNAIC 2)1
S8-AIASOu
SSASSC,+):
SIGwISA(,),

SCAPIORT(SCL)a

PRINT ICh B1V

F3REXu lKY
OUTUT F31 OO!.?3IC3UIANE(COLlsR COL2m1)):
OUTPUT YE? OUTut!(WIAIIZ-(COLLORI COL2=11));
OUTPUT TI? OUOTlTFT(RNANI- (COLl*REX CaL2u III));
DATA 313XsXs3..;SZT 133
DATA XP3TJ....L,53T 13!;
DATA NTF;Jw.JLS2T Tf?:
PROC PRINT DATAwEPlX;
PROC PRINT ]DATA-NV!!;
PROC PRINT DATA-NTP?:
PROC PLOT DATA-El;
PLOT RRV i
TI PLOT 01 T22 REAL PAR! OF TIC TRANSFORM OF TE REAL PART;

PROC PLOT DATA-ESl;
PLOT 1303;
T12LE PLOT Of TIC IINAR? PART 0f TUE REAL PART 0f TIC
TUANSIORRI

PROC PLOT DATA-UPE!;
PLOT 31T:#
TITLE PLOT 01 TE REAL PART 01 TNE TRANSFORM 0r TER IRAGIVARY PART;

PROC PLOT DATA-3131;
PLOT 113;i
TME PLOT OF TER ZNAONART PART 0F TIC TRANSFORN 0F TIC IMAGINARY PART;
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PROC MWO D&TA-U!W:
PLOT RRfl'J i
TMX. PLOT OF US ISML PAST OI US CDNMK1 !RUUORNh

PROC PLO! MAUU!VFI
PLOT UZI*i
misL PLoT or Tex ZMAZNART PART OF iUS CONILNI UMAS1ORflP
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LISTING FOR THE PROGRAM USED TO ROTATE AND SHIFT THE

DATA

INPUT: Two column input representating the data to be

rotated.

OUTPUT: Two column output representating the rotated

data

The input and output data set are both called SHAPEXZ.

..

.S.

..

- ~.....



hOC RhlRZ-CfgV#Z+W IZAPErl z-3I SAZs
CSAZZ(,)o ,ADfb;iZC.)

OWT 33A112 CO!.3IAPE12 (RZUAJ-(COLl-Z COL2-Y));
PROC PRIM! DATAAIMX
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LISTING FOR THE PROGRAM USED TO CHANGE THE DIRECTION OF

SCAN

FROM CLOCKWISE TO ANTICLOCKWISE.

INPUT: Three column input data set called SHAPEXY. The

first column is the sequence number while the last two

columns represents the x and y coordinates of the data

points.

OUTPUT: Data set SHAPEXZ with the stack of the input ,x

and y coordinates inverted.

'lb

1

°-
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ISOC NATRZ;
W"T SEAMY;

3-,. . 3. .

IF* (C.OcuXIS3ST) TRIM 0O TO XXii
DO Zal To ul

TZ~Z (1, 1) U3APIY( 1, 1),
TECfl(3Xe,2 s3) uSAIEI(1,2:3)l
SNDI

VUZZ TEIPIi
OUP? SEAMY UT a-SAMY (3WAuB.(COL1.J CL2-X COL3-Y));
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THE LISTING OF THE PROGRAM FOR FINDING THE CURVATURE:

INPUT: The input which follows after the cards statement

consists of two columns representating the x and y

coordinates of the data points.

OUTPUT: The output is a data set named SXY consisting of

eight columns. The first column represents the sequence

number of the data points. The 2nd and the 3rd represent

the input data. The fourth represents the magnitude of

curvature. The 5th and the 6th represent the x and y

components of the Vector Curvature. The 7th and the 8th

column represent the location of the critical points

which are defined as the points where the curvature is

two times the mean curvature.
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L-l~

19-J-31

DY-OX? CT)l
NDIY-SgR? (DX*DX+DYTDY)i
OTZ-OX/MDXY,
OT-DY/UDXYa
DUTI-DICUTI);
DUTY-Dx (UTT);
NUTT=SQRT (DO I'00T145?Y*DOTY)
IT NWTY-1 TREN DO:

END;
ELSE
DD;
NI.DTX/NUTY;
NNY-DU1T/NUTY;

DONN-LAG (31):
DNY-LMG (NT):
IF (((DUU16)6(DNUYIf))) THEN D;
if (NZ)(U~l THEN DO;

P3.--I plat

E.83 DOI

ELS DO(NIin)(U-))TE

SONtII'343+NNY*DNUYI
IF ((S-<I)) THEN DO:

ELSE DD;
NRJ-IS END;

VlD1

CAM;S
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MROC NAnuZxu
vmTC Al!

UI-*-3g

SXT(,1)sAIY(4tE,2);
SIT(,2).AI!C4s3,3);
SX(C, 3)=A= (4 X, 4) 1

* SX(,4)nAl!(4s,U)s

SXT(,)MAI(4:N.1g) i
SXY G 7) (AI? (4:X, 11) >(2#fMHaI))

ixt( ,l);S1QlM(SXl,7t8));
SI!( 7.8).X(,7:)AXY(4:U,3:4) ;
1331 AZT;
aaTNUT SXr 013?-SX? AWAKE (COLlmSAK COL2*X COL3wY COL4-qACURV COLS-CUR
I

COL6-CW!V COL-CRZT CLSCRIY));
OAA CAZICAWgS3T II!,
MOC PRINT DATA-cRZ!ZCAL;

DATA CRTCh;SZ! SXY;DROP SAM I Y MCOW C31VI CUWJY1

PROC PRINT MACRZTZCA;
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LISTING OF THE PROGRAM NEEDED TO INTERFACE

THE ADAPTIVE LINE OF SIGHT OUTPUT

TO

THE POST PROCESSING STEP.
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LISTING OF THE PROGRAM TO INTERFACE

THE ADAPTIVE LINE OF SIGHT OUTPUT

TO

THE PLOT ROUTINE.

INPUT: Data from the Adaptive Line of Sight program.

OUTPUT: PLOTS for showning the critical points obtained

using the Adaptive Line of Sight method.
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DAAMAlXJ-...,ST 3RAPZXY;DROP J;

DATA IN1OJ1-.JLtSZT INP;I (11 ME I);
DATA SNAP!:
KES IMAPEI IMPO$ By .11,
PROC GPLOT DATA-SEAPZ;

MPOT X'Y.1 XU'1Uul2 XLOC*YLOCo3 /OVERLAY H2330 WiNO:i
PLOT Y1Znl XI*ZI-2 YLOC'XLOCU3/OVZRLAY HZERO VZEROr
511301. I-JOI~s
521301.2 VwDIANONDr
SYKSOL3 V-SZP*:
TXT.31 PLOT 0F WE3 PARTIAL PIG 0f SIZE - 11)[3
TZTL92 CRITICAL POINTS OBTAINED USING TEE ADFLPTIVE LINE OF SIGHT MODl
FOOTNOTE1 TYPICAL HMINAL SET:
VOOTMOT22 NOTE USE PIG WAS SCALED DISPLACED AND ROTATED:
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