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Chapter I

INTRODUCTION

With the introduction and proliferation of computers into all facets

of the work place and the home environment, a now awareness of the

capabilities and short-comings of the computer for various tasks has

been found. The computer has proven very useful in performing

repetitive, mundane tasks in offices and manufacturing process control

environments, but lack of a good real-world/computer interface prohibits

many uses. Presently a computers input connections to the real-world

consist mainly of a keyboard and in some instances joysticks, graphics

pads, light pens, and other sensors of the physical world. Recent

research into this interface has provided the computer with 'ears', that

is to say speech recognition. Not only can the computer hear, but it

can also act upon human voice commands and speech. A 'voice' and

associated language generation has also recently become a reality. The

computer can generate syntactically correct language and then change

this into intelligible human sounding speech. Perhaps the most

important, and by far the most complex, interface would be the one which

gives the computer 'eyes' or sight. Providing the computer with eyes

and vision opens now realms for computer automation that in the past

were either too difficult to perform blindly or completely impossible..

This vision would allow the computer to perform difficult and tedious /
medical or industrial inspections at a much higher rate than is possible

with human workers and also perform the inspections under hazardous or

harmful environmental circumstances. With knowledge of the inspection,

the computer could also make decisions, diagnoses and recommendations

based upon its previous knowledge.

The possibilities for industrial assembly, combining robots with

visual feedback, is staggering. With such devices, the jobs thought to

be too boring and mundane or hazardous in the manufacturing field can be

replaced by sighted robots that do not complain about the working

conditions or monotony of the job. Just as computers and word

processors replaced manual record keeping, filing and typing in the

modern office to make it a rore enjoyable and productive working

• ''- ''". "'. .., . . ' , .' . ' - -.. -:-_-,-i.- -.- , i . , . i . . - . --. l, .. .,-,,



atmosphere, the seeing computer will do the same for the industrial and

manufacturing fields.

A few of the many possible applications for intelligent seeing

computers were given above, but by no means even scratched the surface

as far as the uses that are currently envisioned or will be as the

research evolves. As stated above. one of the earliest, and currently

used, applications for this artificial vision is in the area of

industrial and medical examination and inspection

[l1,[26][52],[53,[l107]. Some of the inspections are those which

humans may deem overly tedious and boring, while other inspection

methods performed by the computer can not be carried out with the speed

and accuracy required, if even at all, by human workers. On a scale of

difficulty, that of the visual inspection process would have to be very

near the lower end of the scale. Very little, if any, interaction with

the article being inspected takes place. Only a simple keep/return

decision or perhaps a diagnosis or recommendation may be required. The

problem amounts to providing the system with a 'good' product or example

and then comparing the viewed products or specimen to be inspected

against the good model. Provided all the tests and requirements are

mot, the piece will be passed or a good diagnosis returned. If any one

of the possible visual tests fail, the article can then be rejected and

possibly sent back for correction. In the medical case a diagnosis can

be generated or recommendations for further tests can be given.

The system envisioned here is good for its particular task but lacks

the intelligence to work outside the narrow area for which it was

created. Perhaps more simply stated, the computer can not 'see'

anything that it has not been programmed to see and hence its usefulness

is extremely limited. The system can be improved with provisions to

glean information from its field of view that represents physical

properties of the objects being viewed and their relationship to the

surrounding area. This gained intelligence will allow the computer to

make judgements about its enviroiment and alter it to meet specific

goals.

This would allow the computer to perform simple manufacturing and

assembly of multiple parts from various locations and orientations.

This gain in ability comes at a high cost in increased complexity. This

-2-



system is not programmed to see only one 'object at one orientation, but

several that must be recognized, tested and assembled into a product.

Even this problem would have to be classed as a minor one when compared

with the visual system that humans use in everyday life.

This marriage of image sensors to computers has already started, but

the hurdles that must yet be crossed to reach what could be called

'intelligent machine vision' are both many and difficult. Both the

computer and the sensor are here at present, but like a young child

looking at the world he has never seen before, can not understand what

he sees and hence cannot constructively affect the environment in which

he lives. We have been able to give machines the eyes and brains to

see, but have not yet been able to give them intelligence, understanding

and vision. It is the aim of this work to provide the machine with a

small bit of information, knowledge and understanding so that one day we

may use what can truly be termed an intelligent seeing machine.

1.1 M!LIhflDS FOR F IIhL fISIr

The possibilities and end uses for a computer that can intelligently

see are endless. There has been much written in the general area of

machine intelligence and more specifically machine vision. A scan of

the references will provide many articles on various topics dealing with

artificial intelligence and vision. At present the systems that

actually exist and are in use are few and far between, but their number

is growing and uses expanding. As a general rule, sighted computers can

be divided into two major categories. The first category consists of

systems that simply inspect their respective input images for flaws or

abnormalities [l],[51],[53],[863, [107], and (145] and make decisions

based upon these investigations. The second category extends the first

in that it adds feedback to change its environment and hence act upon

what it has seen [613,[671,[77] in such a way that it uses vision to

constructively interact with its environment.

Many scientific disciplines have sought solutions for questions

associated with vision. What is vision? How is vision defined? How is

vision interpreted? These are just a few of the endless number of

questions that arise when dealing with the topic of vision.

Psychologists look to the internal thought processes to formulate

-3-
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theories about human interpretation of vision through visual

stimulation. Physiologists on the other hand, are concerned with what

biological processes are necessary for the generation of the synaptic

signals associated with the sensations of vision.

From research carried out by the disciplines above, it has been found

that the human visual system is a very complex and complicated network

of biological subunits. Some examples of these subunits are the light

receptors, i.e. the rods and cones, the optic nerve for visual

transmission, and the brain with associated memory for interpretation.

Each of these subunits constitute a very complex system in and of

itself. So it is not surprising to find that when the biological visual

system is modeled by hardware devices and software that the

nonbioloSical visual system will also be a very complex and complicated

set of subunits.

Just as the human visual system divides the whole of vision into many

separate but related parts, so then should an artificial vision system.

The human eye is not simply a sensor that transforms light into

electrical signals, but also an enormous parallel processor that

performs many of the lower level visual discrimination functions. Many

of the rods and cones of the retina are specially sensitized so as to

fire only for very specific physical occurrences. Examples would be

those that fire only when an object moves at a specific speed in a

specific direction, those that fire only when an object accelerates and

many others related to various kinds of motion. There are also those

which fire only when stimulated by an input field containing vertical or

horizontal lines or boundaries. With this it can be seen that the eye

does a major amount of processing before the signal even enters the

optic nerve. The same cannot be said about the camera used for a

computer's eye. By the time the visual signal reaches the brain a very

large amount of image processing has already taken place. The brain

receives the information in a form far different from that which the eye

detected. The information content may be nearly the same, but the

actual amount of data is far different. The sensors, optic nerve and

other elements that connect the eye to the brain have performed what is

termed data compression.

-4-



1.2 IMPORTANCE OF . CODING

Of mans five senses, vision would have to be termed the most data

intensive. We, as sighted humans, tend to take the amount of

information processing done by our visual system for granted. As was

stated in the previous section, the amount of data that reaches the

brain is far smaller than the amount of data that is actually incident

upon the retina. This data reduction or compression that takes place

prevents a computational overload on the brain by delegating some of the

lower level visual functions to other parts of the anatomy. In a

similar manner, artificial vision needs a means by which the amount of

data can be reduced. It is at this point that the similarity in the

structure of the human and artificial visual systems must stop. The

electronic camera is a much simpler device than is the human eye, and

hence processing that occurs in the eye must, in the machine model, be

centrally processed. For this reason, and perhaps the alleviation of

computational complexity, an intelligent visual system will also require

a means for data compression.

An intelligent vision system is not the only application requiring

the need for data reduction of imagery data and computational

requirements are not the only resources strained by the very large

amount of data present in imagery. Storage, transmission and system

complexity are all adversely affected by the high data rates present.

Many ideas remain on the drawing board or in limited use because of the

expense that this large data rate entails. The ideas of digital

television, video phones and facsimile have been with us for sometime,

but the enormous bandwidths associated with each make them impractical

when it is realized that bandwidth, like many material resources, is

limited. For these and other similar products it can be seen that if

commercial viability is to be obtained, then the video bandwidth

requirements must be drastically reduced and this is achieved through

data compression.

Applications of data compression are not limited to the commercial

market alone. The military and space scientists also have many

applications that for one reason or another may require data

compression. On earth if new bandwidth is required it is a simple task

to run another cable or optical link, but for space it is much more

- -
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procedural plots, each pair consisting of two different gain values.

Figures 2.4, 2.6, 2.8, and 2.10 consist of methods which require forward

and inverse transformations at each iteration while the remaining plots

depict a method requiring retransformatiou only on block intervals.

Figures 2.4 through 2.7 involve the pel recursive displacement

estimation approach while 2.8 through 2.11 involve coefficient recursive

displacement estimation. All of the plots are similarly constructed

where the horizontal, or I axis, represents the iteration number or the

number of times equation (2.12) was executed. The vertical, or Y axis,

repre :.its the displacement error in pixels. The test images used were

displaced by 2 pixels and the initial guess for the displacement was

assumed to be zero, hence the initial displacement error of 2.

The data compression that is achieved by the system can be attributed

to two major characteristics of the system and the data. The first is

due to the redundancy removal that is obtained by the prediction process

and the second is due to the fact that many of the transform

coefficients can be grossly quantized or completely neglected with

acceptable results.

One of the major problems of coefficient recursive estimation is that

it is very scene and position dependent. In one scene or position the

displacement may converge in as few as 4 or 5 iterations where for

others it may fail to converge at all. Another problem may prove to be

the choice of a good value for the gain factor, epsilon. As figures 2.4

through 2.11 verify, the choice of the gain factor plays an important

role in the proper convergence of the algorithms and does not seem to be

related to the image itself. The FORTRAN computer program used to test

the algorithm and generate the iteration plots is contained in appendix

A.
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Results of this and the earlier pel-recursive method, in term of the

displacement error, are given below for various values of the iteration

gain. The test image is a radially decaying cosine function of radius

60 and peak-to-peak amplitude of 220 at the center decreasing to 130 at

the circumference. The period also decreases radially, starting with a

period of 20 pixels at the center and ending with 10 pixels at the edge.

The equation used to generate the test image is

l(R) - l00oexp(-0.01R)cos(2nr1P) + 128. (2.14)

The displaced image is shifted two pixels in the x direction between

time frames. Figure 2.1 is a picture of the actual test image.

FIGURE 2.1 Radially Decaying Cosine Function

Figures 2.2 and 2.3 point out the differences between a normal hybrid

transform-DPCHM coder-decoder pair, figure 2.2. and the motion

compensated hybrid transform-DPCJ( coder-decoder pair, given in figure

2.3.

Results for both pel recursive and coefficient recursive displacement

estimation for a single block from the test image are contained in

figures 2.4 through 2.11. The plots consist of 4 pairs of similar

- 16 -



These transformed blocks are then arranged into a column vector by

column scanning the transformed block. They define the nth coefficient

of the qth block of the transformed image to be,

cn(q) = IT( 1 q.t)4 n  (2.6)

and for the estimated displaced frame from the previous image,

cnlq,D) - I (Iq - Dt - (2.7)

The comparable term for the pal recursive's displaced frame difference
A

is the coefficient prediction error en(q.D) and is given by the equation

below.

en(qD) = [I(Xq,t) - I(Xq - Dit - )]T~n (2.8)

Minimization with respect to the estimated displacement over the squared

prediction error with a steepest descent form is given below.

A(/ An 2 A,

Dq) e(qoD (q)) (2.9)

Taking the required derivative will yield the following iteration

formula.
A A

Dn(q) = Dn - efn(qoDn(q))n(q)en(q, Dn(q)) (2.10)

Rewriting the error term gives
SA AA "

Dn~l(q) - Dn - se(q,D n(q))[ (VDn(q) (I(Xq t) - I(Iq-Dna t-))T&n] (2.11)

Noting that I(Xqot) is not a function of Dn(q) yields,

A A T A

Dn+l(q) - Dn(q) - se(q, D(q))[(Vx I (Xq-t (2.12)

When going to the next block the initial displacement estimate is set to

the final estimate of the previous block.

D0(q) - DNrNcl(rql) (2.13)

When used for motion compensated interframe hybrid transform DPCM

coding, the coder transmits a quantized version of the coefficient

prediction error whenever it exceeds some threshold. This allows

updating the estimate of the displacement and also correcting the

prediction coefficients.

- 15-



This may seem to be a very strict requirement in that very little real

world motion would fit the model, but on the small scale of the pixel

most types of motion can be approximated by nearly pure translation.

The background/foreground interaction still poses convergence problems.

They next define a displaced frame difference term as is given below to

represent the displacement between the actual value and its estimated

value.

A
DFD(Xk,D) - I(Xkt) - I(1 k - D,t - ) (2.3)

A

Where in this case the term D is defined to be the estimated form of the

displacement vector D. An attempt is made to minimize this difference

through the use of a steepest descent algorithm of the form given below.

AD~ D^t_ k12= - (a/2), [DFD(Ikk)]2 (2.4)

Kere a is a gain term and VA is a two-dimensional gradient operator
A Dk

with respect to Dk. Taking the required derivative in equation (2.4)

will then yield the following iteration formula.

A A A A

Dk+- - Dk - oDFD(XkoDk)Vxl(Xk - Dkt - ) (2.5)

In this case VZ is the two-dimensional spatial gradient taken with

respect to the row and column directions and to be evaluated at the
A A

point I - Ik - D. This term, like I(Xk - Dt - v), may require

interpolating for noninteger values of B at each new iteration.

Then actually used in an interframe motion compensated image coder,

the transmitter will transmit any values of the DFD)(XkDk) term as well

as the required address information, if it exceeds some set threshold.

This quantized correction is then used by the transmitter and receiver

sections to update the appropriate estimates.

Following this same motion model, Netravali and Stuller [91]

formulated a method for interframe image coding termed coefficient

recursive estimation. It is an extension of pel-recursive with the

further addition of a unitary transformation so that the operations can

be carried out in the transform domain. The two methods are similar,

assuming the same motion model, but now the image is partitioned into

rectangular blocks of size Nr rows by N€ columns. Each element of the

block is then multiplied by the appropriate transformation vector.

- 14 -
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Ohtsuka [96] define a similar system that was actually implemented in

hardware. The method used for determining the displacement vector, as

before, is based on a correlational measure but now also takes into

account the displacement vector of the same spatially located block from

the previous frame.

Many other methods have been employed since the first frame

differencing techniques. A method by Price. Snyder, and Rajala [111] is

based upon a Fourier-Domain filter based on a model of the human visual

system to detect motion. The model breaks up visual perception into two

distinct channels. The first, their so called x channel, is a temporal

low pass and spatial band pass channel. This channel carries the

information contained in two-dimensional patterns with high spatial

resolution but fairly low temporal dependance. They believe that it is

this channel that is responsible for objects with structural complexity

but with little or no motion. The other, so called y channel, is just

the opposite. Its characteristics are spatial low pass and temporal

bandpass. This channel, they claim, conveys the information of objects

with high temporal dependance and low spatial resolution. It is this y

channel that is used for the detection and analysis of motion.

2.2.3 Rel kecursive and Coefficient Recursive Disnlacemon

Stuller, Netravali and Robbins of Bell Laboratories start from a

completely different point of view for motion. First, the end product

of their work is data compression and not tracking, although it could be

modified for such. The model is used for normal television data where

adjacent scan rows are scanned by an interleaved method. In the first

method of pel-recursive displacement estimation by Robbins and Netravali

(1161, the image model for pure translation with no background is given

below.

I(Ik, t) = I(Xk - Dt - ) (2.2)

Where: I(Xkt) is the intensity of the image at the spatial location Xk

and time t. I(1 k - D,t - ). is the intensity of the image at the

spatial location 1 k adjusted by the displacement D at the previous time

t-'. This image model is defined only for objects undergoing pure

translation and not involving background or foreground interactions.

- 13 -



be possible as well as target motion prediction. The displacement

vector need not be used strictly for motion related studies but may also

be used in areas of data compression, remotely piloted vehicle control,

and industrial manufacturing applications. With the detection and

interpretation of motion. a very important step toward artificial vision

will have been obtained.

Possible solutions of this problem that seem nontractable at present

may in the near future be made possible due to the advances in VLSI

technology, software development, parallel processing and electro-

optical systems. So even though the process may look overly complicated

and slow, there may be hope in the future.

2.2.2 Previous Wok in hte F f Motio

There has been a relatively small amount of work carried out in the

area of machine motion analysis until very recently when the required

hardware and software became available. The work has concentrated in

the areas of displacement estimation and interframe image coding. One

of the earliest, and perhaps the simplest, method used for motion

detection was simple image frame differencing. That is, subtract the

previous frame, pixel by pixel, from the current frame and flag as

notion any difference greater than some set threshold.

M(i,j.t) - ABS[I(i,j,t) - I(i,j,t - )] (2.1)

Notion will be defined to have occurred whenever M(i,j,t) is greater

than some set threshold. Although very simple, the method does show

good results for a very limited class of simple images, but this method

has many drawbacks that will limit its overall usefulness. First, the

output is very sensitive to noise in the input images because it is a

differentiating type process. Also any camera motion between image

frames will translate into motion at every pixel.

There have been numerous attempts at motion compensated image coding

in the past, each with its own set of advantages and disadvantages. An

early method by Giorda and Racciu [30] breaks the image up into a number

of small rectangular blocks and determines a displacement vector for

each block via correlation. If the displacement can be found it is

transmitted, if not the entire block must be transmitted. Ninomiya and

- 12 -



previous frame and if possible transmit the change information as a

function of motion. Even though the requirements can be simply stated

the actual implementation has proved to be difficult.

2.2.1 DispL ceuent .An Notio

Simply stated, motion is defined to be a time series of

displacements. That is, in order for motion to be perceived, time must

pass and a displacement must take place. If artificial vision and

intelligence is ever to become a reality, then a sufficiently good model

for motion will have to be employed. For this reason, and the fact that

memory space is always limited, the vision system for motion analysis

should be based on some time adaptive displacement algorithm.

The problem can now be stated: Find a method to locate the spatial

displacement from one image frame to the next, such that an estimate of

the direction and magnitude of any detected motion can be made. This

estimate should be based upon the current frame, previous frame and

previous displacement vectors.

The problem statement is simple enough, but the effort is complicated

by many other external factors. One of these factors involves

object/background and object/foreground interaction. For example, if an

object in the input frame moves in such a way so as to uncover some new

background, complications will arise in that the new information from

frame to frame now consists not only of the information contained in the

object motion, but also in the new background that is uncovered. The

imaging system should have the capability to detect the difference

between the moving target and the noimoving uncovered background.

Another problem simpler in scope than the above, but just as important,

involves the loss of moving objects from the field of view and the

addition of new moving objects into the field of view. Again the system

should be able to detect and track these new moving objects and discard

those that exit the field of view. Finally, objects moving in the field

of view may become partially or totally hidden by both moving and

nomoving objects and the system should be capable of adapting to this.

Once the motion has been identified, there can be many uses for the

information thus provided. Visual tracking of moving objects will then

- 11 -
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2.1.4 Othe Methods

The above mentioned methods are just a few of the many possibilities

that have been proposed. Other methods include normal pulse code

modulation (PCX) as well as adaptive forms of PcM. There are methods

based on the statistics and histogram of images that code the most

common gray levels into short code words and rare gray levels into long

code words.

Hybrid coding is a combination of both transform and predictive

coding and lately has been studied quite extensively [36], (37], [54].

The references contain many other variations and combinations of these

and many more methods.

2.2 METHOD MLQoi MOTIO COMPENSATION

Up to this point most of the mentioned coding schemes have been used

for intraframe image coding, with many being extended to include image

sequences or inter-frame image coding. The inclusion of the third

dimension temporal or time, allows for the exploitation of the

correlation that exists in this temporal direction.

The human visual system is a very fine imaging system and very

susceptible to many kinds of image degradation. The degree to which

certain degradations affect the imaging process vary with respect to the

kind of degradation. It has been shown that the eye is very critical

about detail in still pictures but becomes less critical if the scene

contains motion. If the entire scene is undergoing a slow constant

translation the amount of detail required remains high. 'With these

simple requirements in mind, it can be seen that any inter-frame coding

system with a human as the final viewer will be required to maintain a

high degree of detail in areas of little or no motion and also during

times when the camera itself moves slowly as in panning. The areas that

may be somewhat degraded by the coding system with little loss of

information to the human visual system are the areas in the images

undergoing translation.

The area of motion compensated image coding lends itself directly to

these requirements. The premise of motion compensated image coding is a

simple one, transmit only the portions of the image that differ from the

- 10 -



the predictive techniques can not offer. Because of the rather high

correlation in most images, the energy tends to be concentrated in the

lower frequency or sequency coefficients. Hence, these transform

coefficients can then be transmitted if their energy content exceeds

some value. If the value does not exceed this threshold then the

coefficient may be grossly quantized or not transmitted at all. Habibi

and Wintz [35] combined this method with block quantization to obtain

good quality results on the order of 2 bits/pixel when the original

image was coded with 8. or a data reduction by a factor of 4. Ngan [95]

extended the normal transform coding with the addition of adaptation to

both the quantization and bit selection.

7here are many different unitary transforms that can be used for

transform domain image coding. Some of the more popular are the

Hadamard, Fourier, Slant, Cosine, Sine and Karhunen-Loeve. Each method

packs the energy differently and different results will be obtained if

the discard method remains the same. Hideo [itajima [62] has provided a

method for determining the energy packing efficiency of one of the more

useful transforms, the Hadamard transform.

2.1.3 Predictive Coding

Another widely used coding technique for digital images is what is

generally termed predictive coding [19],[23],36].[37],[38],[55],[92],

and [122]. The predictive coders differ from the above two methods in

that data is not just discarded. As the name implies, a prediction is

made by using local pixel intensity values in some predescribed

combination and then quantizing and transmitting the error. Because of

the high degree of correlation normally occurring between adjacent

pixels the prediction process works quite well, which implies that the

error is normally much smaller than the original signal. This smaller

error signal, in terms of the mean square power, is what enables the

predictive coder to obtain its high degree of data compression. The

more structured and correlated the image, the better the predictor is

able to function and hence the lower the data rate for a fixed fidelity

criterion.

-9-



2.1 PRVIO EMp7'OD FORIAG CODING

There is a wealth of information available on the topic of general

data coding and picture coding in the literature. Many different

methods, applications and theories are available from a large number of

authors. A review of many of coding solutions is available from

Netravali and Limb [92], Habibi [35]-[38], Pratt [110], Castleman [14],

Gonzales and Wintz [31], and Andrews and Hunt (4]. Some of the more

important methods will be briefly described in the following sections.

2.1.1 Subssoina

One of the simplest forms of data compression for digital images

involves subsampling the source image and interpolation of the discarded

points at the receiver. This can be accomplished in two different ways.

The first involves using only the upper right hand pixel value of each

of the N by N sub-blocks and transmitting that value to represent the

entire sub-block. The data rate here, as in the second method, is only

1/N 2 of the original data rate. The second method is similar to the

first but transmits the average of the sub-block instead of the upper

right hand pixel. As would be expected, these methods tend to discard

much of the information in order to decrease the data rate. If the

image was already sampled above the Nyquist rate, then some data

reduction could take place with little loss to the quality of the

output. Normally the image is sampled less than the Nyquist rate and

any subsampling will cause a substantial information loss.

2.1.2 Transform Coding

The simple method of discarding data has been shown not to function

adequately for most images, but with the inclusion of a unitary

transformation data can be discarded with much less loss in image

quality. The function of the unitary transform is to redistribute the

image intensity energy in such a way that it is mostly contained in a

small number of transform coefficients. It does this by decorrelating

the spatial data and hence minimizing the statistical redundancy of the

information to be coded. Because the coding is done in parts or

sections, an error in one part will not propagate to other sections if,

for example, a channel error is made. This is an advantage that many of

-8-



Chapter II

NOTION CONPENSATED TAGE CODING AND DISPLACEMENT
'.4TI/ATION

In chapter one some of the requirements and restrictions that

necessitate data compression as well as some possible applications for

its use were presented. In this chapter the basic principles of data

compression will be reviewed and some examples of various methods will

be presented. Only a few of the many methods proposed in the past will

be presented due to the very large number of papers written on the

subj ect.

The purpose of data compression is to take a data sequence, be it

image data, speech or any other information source, and perform a data

manipulation in such a way so as to be able to reproduce the original

signal with an acceptable amount of degradation using a smaller

bandwidth. The degree to which this goal is reached is based both upon

the statistics and form of the image as well as the operation of the

coding system itself. This data compression is often achieved through

removal of the large amount of interpixel correlation that is normally

present in most data.

One of the early uses of data compression was in the field of digital

voice communication. The signal generated by the human vocal system

tends to be quite correlated and hence various predictive techniques

have been used to obtain good compression results. When the field of

digital image coding opened, many of the methods used for speech were

directly adapted for use with the digital images. These procedures were

not able to take full advantage of the geometrical, statistical or

cognitive structure of the image data. Voice, being a single

dimensional signal, does not have the geometrical structure or the two-

dimensional statistical dependence that image data has. The optimal

compression scheme should be able to take full advantage of any

structure that the actual image has to offer. In most cases only a

small subset of this structure is actually exploited.

-7



difficult and expensive to put up a new satellite or add the required

hardware on a deep space probe. Military applications can include

remotely piloted vehicles, remote surveillance and other imagery

applications. One side effect of data compression that often times is

important in military applications is that of secure data transmission.

If the transmitter and receiver are not a matched pair, the receiver

will not be able to recombine the data sequence to obtain the original

image. There are many different ways to achieve this bandwidth

reduction and most, if not all, exploit the high correlation between

adjacent pixels to reduce the data rate.

In chapter two previous work in the field of image coding is

presented. It provides a wide overview of the many different methods

that have been tested and employed in the past for bandwidth compression

or reduction. The emphasis of chapter two is in the area of motion

compensated image coding. This is coding that exploits knowledge of the

motion between frames in sequential image data. In chapter three a new

method for motion compensated image coding, namely Prediction

Coefficient Energy Concentration is presented. The derivation of the

displacement estimation procedure as well as the coding procedure is

presented. In chapter four information on the implementation and

testing of the Prediction Coefficient Energy Concentration model is

provided. It presents the information that ties the theoretical aspects

of the algorithm to its actual simulation and modelling. The results of

the model as represented by a software implementation are presented in

chapter five. Actual output images as well as the analysis of the

algorithm is presented.

6
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2.2.4 Residual Reursive

The method of Residual Recursive by Rashid and Jones (112], [113] is

similar to both the pal recursive and coefficient recursive methods of

the last section. This method is based upon an earlier procedure

developed by Jones [54], [55] for image coding, namely Adaptive Hybrid

Picture Coding or AHPC for short. The advantages offered by the

combination of AHPC and the recursive algorithms developed by Stuller,

Netravali, and Robbins lie in the determination of the gradient term.

Before getting to the motion related derivation, it is necessary to

gain some background information on AHPC. APC is a data reduction

coding method used for intraframe data compression. The method is based

upon a two step correlation removal technique. The first stage of the

process involves a one dimensional unitary transformation in the column

direction to reduce the coluenwise correlation. The row correlation is

then reduced through a prediction process that operates in the row

direction. Data compression is achieved because the mean square power

of the prediction error and predictor overhead is less than the mean

square power of the original. The prediction error will be shown to

approximate the innovations process for the image data and hence the

image gradient. A block diagram for the ABPC process is provided in

figure 2.12.

The transformed pixels are modelled as a one dimensional

autoregressive series where the predicted value of the signal is defined

to be an optimally weighted linear combination of previously

reconstructed transformed picture elements rn. The weighting factors

are the predictor coefficients and hence the prediction equations can be

written as follows.

rn  akrn-k  (2.15)
k-1

The difference or error signal en is then defined to be the difference

between the original signal a. and the predicted value ru .

"n  sn -rn (2.16)
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Using the mean square error as the optimality criterion, the value

for the predictor coefficients are chosen such that Pol the mean square

error, is minimized and given below.

L 7e 2  (2.17)
P= -1

Because of the adaptability of the algorithm, the predictor coefficients

ak remain constant for a single row or learning period of length L. Due

to the statistical change of the data from row to row, the predictor

coefficients must also change at row boundaries. Hence, the optimal

error signal for a single learning period can be written as below.

n = sn -An (2.18)

The sample value n is allowed to vary from 1 to the learning period L.

T is a column vector of the optimal set of predictor coefficients and

R. is a row vector of the p previous reconstructed transformed picture

elements.

As stated earlier, the optimal predictor vector is chosen to minimize

the average error signal power and amounts to minimizing the following

variance term.

VAR(e) - I[VAR(s) - COV(s.r)A n  V(rs) + AnVAR(r)A (2.19)
L a a n n

The minimization is accomplished by taking the partial derivative with

respect to An.

An(opt) - dVAR(e)/dAn (2.20)

This yields,

An(opt) VA(r)-ICOV(s) (2.21)

When complete statistical knowledge of the source is not known, a method

is needed to produce good estimates of the statistics during each

learning period. If the predictor vector is treated as a state and a

linear minimum error variance sequential estimate of the state is

desired, then sequential estimation theory can be used. In this case

Kalman filtering is used.
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I

Given the optimal set of predictor coefficients, the reconstructed

transformed picture elements can be generated from the following

equation.

-_-T

3n = ARn(P) +e (2.22)

Here the p signifies the predictor length, R (p) the p previous

reconstructed transformed picture elements and IT is the quantized

identified predictor vector of length p. The identification filter

algorithm from [54] can then be written

T A

A(k+1iS(k+l)) - [I - l(k+l)R (k)]A(klS(k)) + K(k+l)s(k). (2.23)

The difference here between s(k) and S(k) is that s(k) is a single

observation while S(k) is all observations up to and including s(k).

Hence the desired identification algorithm becomes,

- T
A(k+l) = A(k) + K(k+l)[s(k) - RT(k)A(k)] (2.24)p

where the bracketed term is simply the prediction error. The gain term

K(k+l) is given by,

K(k+l) - VA(k)R (k)/(V + I T(k)V (kR(k)). (2.25)A p z p A p

VA(k) is simply the variance of the identification error of A(k) as

given below.

A(k) A(k) - A(k) (2.26)

V is a scalar term not obtainable recursively and is set to a constant

value. Given the background for AHPC, its relationship to motion

compensated image coding can be discussed. The image motion model for

both pel-recursive and coefficient recursive displacement estimation is

I(xk.t) - I(x k - D,t - r) (2.27)

as was originally given in equation (2.2). In the transform domain the

equivalent coefficients are given below as originally in (2.6).

-n(q) = IT(1qt) n (2.28)

Note the values given for the displaced frame term as in equation (2.7).

The method of residual recursive displacement estimation lends itself

more closely to coefficient recursive displacement estimation and hence
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will be compared as such. Note first that the transform domain

coefficients of the coefficient recursive method are also the signal

samples from AHPC.

cn(q) - sn(q) (2.29)

That is to say, the nth coefficient of the qth block is the same in both

notations provided the linear unitary transform is the same. Hence, the

displaced terms then become,

on(qD) - sn(q,D) (2.30)

Replacing this notation in equation (2.17) yields

en(q) - cn(q) - AnCn(q). (2.31)

A

There, as before, the capital letter Cn(q) defines a vector of the p

previous predicted values from the qth block. On a coefficient-by-

coefficient basis, this can be written

p
en(q) - on(q) - I k (2.32)

k-1

Likewise the displaced term becomes

A P A A A

en(qD) - c(q,D) - I k(Dlcn-k (q,D) (2.33)
k-1 -

Note that the predictor values ak(D) are now functions also of the
A

estimated displacement D. Recall that the coefficient prediction error,

now with the prime added, is
A A

en(q,D) - [I(Xq, t) - I(Iq - Dt - d)TU. (2.34)

Which can also be written as,

A A

en(qD) - c(q) - cn(qD). (2.35)

The comparable term in residual recursive displacement estimation is the
A

displaced residual difference or DRDn(qD)

DRDn(qD) - On( q ) - An(q,D). (2.36)

As before, a steepest descent algorithm is used to minimize the squaredA

difference with respect to Dn . The form of the algorithm is given

below.
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A A A 2
=D -(e/2)VQ [DRD (q, Dn ) (2.37)

n D n n

Taking the indicated gradient results in

A A A A

Dn+I M D - 6DRDn(q, n)VD DIDn (q,D n ) (2.38)
nn n

Before determining the gradient of the displaced residual difference

term, it is necessary to rewrite it in its constituent elemental form.

From (2.32),(2.33) and (2.36)

A P A A P A A A

DRD(qD) = a(q) - a =l k c n - k (q) - a a(qn) + I ak(Dn)c n-kA( q Dn

k-i k-1
(2.39)

The cn-k(q) is the reconstructed version of cn.k(q) Noting equation

(2.35)

A A A A (24A
DDn(q,D e(q,Dn) - k (q) + ak(Dn)c n-k(q,Dn )  (2.40)

k-i k-i

Rewriting using only a single smuaation

A A A A
DDn(q,D n ) = e(q Dn) - k c - ak(Dn )c n-k (q.D u (2.41)

At this point it is necessary to make use of the following identity.

n n n
aiAi i i B i  I ii A i - Bi) 2.42)

That is given a, b, A, and B there exists a set of c's that satisfy the

above equation. In the most strict sense, if they pair up on a point by

point basis then the following equation will hold.

aiAi - biBi M ci(Ai - Bi) (2.43)

In this case,

ci - [(aiAi) - (biBi)]/(Ai - B i) (2.44)

Except for the possible case where Ai - Bi , in which case ci will equal

zero. So with this, there exists a set of coefficients bk's that will

satisfy the following.
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A A P A AA
DRDn(qDn) = e'n(q,DU) - kbk(Dn)[cn.k q) - nk(qDna)] (2.45)

k1=i

Because of the good prediction and error quantization, a simplifying
A

assumption can be made in that cn is equal to c n or

A
cn = Cn (2.46)

and

A A
Cn(q,Dn ) - cn(qDn). (2.47)

With this equation, (2.45) becomes

A A P A A
DRD,(q,D) - en(q.D) - I=bk(Dn ) [Cn.k(q) - nk(q,Dn)] (2.48)

k-1

Using equation (2.35) yields,

A A P A
DRDn(q,Du) = en(qD n) -k=1 b-e- -(qD n ) (2.49)

This says that the displaced residual term is composed of the current

residual minus a linear combination of previous residuals or errors.

Combining (2.39) with (2.46) and (2.47) yields,

A A p p A A
DRDn(q,D n) cn(q) - Cn (q,D)- I akc nk(q) + I ak (Dn )c nk(q,DU)

k=1 k-i1 -k f

(2.50)

A A
Taking the derivative of DRDn(q,Dn ) with respect to Dn will show that

the first and third terms on the right side of equation (2.50) will go
A

to zero. These are not functions of Dn . The remaining gradient term is

then,

A A P A A
7tDRD qD) = kcqD ) + 7 a (Dn)c-(qD) (2.51)

This is the most general form of the gradient equation, note that the

first term on the right hand side of (2.51) is what is termed the

coefficient gradient vector in coefficient recursive displacement

estimation. It is this term that is very closely approximated by the

AHPC residual or error signal. That is,
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A A
a (q,D -VA c (q.D) (2.52)

n n D n n
u

and hence it is not required to calculate the coefficient gradient at

every iteration. Replacing this in equation (2.51) will yield,

AA P A A
nDRD(qD (q.D) +% a (D )  (q D  (2.53)
Da n k=1l -

The gradient is equal to the AHPC residual plus the gradient of the

prediction term. Neglecting the second term, the form is similar to

that of coefficient recursive displacement estimation. Using equation

(2.53) in equation (2.38) will yield the following iteration formula.

AN A A P A Aq/)
Dn+ - sDRD (qD )[n (qDn) + Vl Iak(Dn)c nk(q (2.54)Dn n . n nnDn -knnk n

If the last term in (2.54) is neglected, the following iteration formula

is very close to the form used in equation (2.12).

AA A A
SD n- DRD (q,D n)e n(qD u) (2.55)

Another approach that used all of the available information -i be

obtained from the displaced residual difference term as given in

equation (2.36) when combined with (2.52) to yield the following.

DI D-(q, n V A c (q/ (2.56)
U

The gradient of this term then becomes,

SDRDn(q,/) -V c(q.,S) (2.57)

n a

and the iteration formula can hence be written as,

Dn+1 V~-\ c~ (q.1~) c ( q, (2.58)n- n n n ' a2
n n

or,

A A A()I. A
Dn+l n -sDR nD)1 cn(q,Dn )  (2.59)

n

Results for this method are given in figures 2.14 through 2.17 for

the same image data as was used for the earlier methods. The FORTRAN

program used to test the algorithm and generate the plots is contained

in appendix A.
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FIGURE 2.13 Residual Recursive Displacement Estimation
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FIGURE 2.14 Residual Recursive Displacement Estimation
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function of the data. Here, as in the two previous methods, the minimum

value of the metric or cost function determines the nearest integer

displacement. This is the method that was actually employed for the

results presented in the later sections.

3.4 D QUAD ESTIMATIO

Given an estimate for the integer displacement, the next problem is

then to determine if this estimate is high or low in both the X and Y

directions. In other words, the displacement needs to be bounded to an

integer displacement cell. The problem can be better visualized by

looking at the four displacement cells, or quadrants, about the integer

estimate as is shown in figure 3.5.

I V

FIGURE 3.5 Method for Minimum Quadrant Generation

The quadrants are numbered I through IV starting with the upper right

hand corner and moving in a clockwise direction. Each quadrant has

associated with it four values of the metric, one being the minimum

value that defined the integer displacement estimate. Using the values

generated by the chosen metric, it is possible to determine which

quadrant is minimum. This is accomplished by summing the values of the
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A
Where D is defined to be an integer displacement, I is the actual

Aintensity value of the current frame, while T(D) is the current frame
A

estimate conditioned on the integer valued displacement vector D.

Therefore,

A A A
S C(I(D),I)P i(D),i(IlD),I±). (3.29)

I(D) I

A A
The joint probability on I and I(D) is defined as Pi(D),i(I(D),I).

Rewriting the joint density in terms of a conditional density yields,

A A A
I ) C(I 'IPiliD) DP (IM). (3.30)

A A A
All of the terms C(I(D),I), Pili(D)(III(D)) and p A (I(D)) are non-

negative, so R can be minimized by minimizing the inner sum.

The conditional distribution is unknown. It is therefore assumed to

be uniform. This is equivalent to discounting the effects of the

statistical properties of the image sequence. With this assumption, it

is required to minimize

A
R - C(I(D),I). (3.31)

I

This is accomplished by determining the values of the cost function

over a -p to p neighborhood in both spatial directions with respect to

the previous frame. Further, a two valued threshold function needs to

be defined for the cost function.

C(a,b) - 0 if b<a (3.32)

C(a,b) = 1 if b>a (3.33)

The choice of this metric produces a uniform cost function. When this

is combined with the absolute value method, it yields a counting

arrangement as follows.

N-1 N-1
M(ij) = I I C(T,ABS[I(m,nt) - I(m+i,n+j,t-C)]) (3.34)

m2O U.0

The value chosen for the threshold T is fairly arbitrary, but somewhat

loosely related to the variance of the noise and may even itself be a
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3.3.1 Absolute VLlues of1 Diffeec Method

The first method is based on the sum of the absolute values of the

difference term.

H-I. H-i

N(i,j) - . I ABS[I(m,n,t) - I(m+i,n+j,t--')] (3.26)
m-O n-O

Where both i and j are allowed to vary from -p to p. ABS in the above

implies taking of the absolute value of the quantity in the square

brackets. The best integer displacement is then defined to occur at the

point at which the metric M(i,j) is minimum. From- a cost function point

of view, the absolute value function defines an absolute error cost

function.

3.3.2 IuM of .uazu 21 Difference ethod

The method is similarly defined as that in (3.26) with the use of a

squaring function instead of the absolute value. This offers the

advantage of penalizing the metric greater for large differences than

for a number of smaller differences.

N-1 N-1

M(i,j) - I [I(m,n,t) - I(m+i,n+jt-r)] 2  (3.27)
w-O n-O

Here again the minimum value of the metric defines the location of the

best integer estimate. From a cost function point of view, the squaring

function defines a square-error cost function.

3.3.3 Tzushol Couakiu Notkh

To this point the method of threshold counting has proved to be the

most advantageous. It offers the advantage of not penalizing the metric

for mall differences, on the order of the noise that may be present,

and counting all values above this threshold equally. As in the two

methods above, either the absolute value or squared difference method

could be used, but due to its simplicity the absolute value method has

been chosen. The procedure utilized produces an estimate that minimizes

the expected value of the cost. The expected value of the cost is

defined as the risk. That is,

R - E(C(I(D),I))] (3.28)
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3.3 IIEMDMUMXRL&

The method outlined above requires a good estimate of the integer

displacement bounds. Several different methods have been tried for the

purpose of establishing the displacement and a fow of the various

functional metrics, or cost functions, that can be used will be

discussed below.

In each of the metrics described below, the previous frame search

area is defined over a -p to p neighborhood for both spatial directions.

The metric differencing is performed on a pixel by pixel basi every

pixel in the current block. A now value of the metric is generated

every time the current block is shifted with respect to the previous

frame block. The current block of size NxN is compared to all

contiguous NxN subsets of the previous frame local neighborhood of size

(2p+N) by (2p1N) as is shown in figure 3.4. Note that the metric

generated will be a (2p+l) by (2pOl) matrix, where each entry's location

is a function of displacement.

* 0 0 0 0 0 a a a 0

0a 0

0 0 a 0 C 0 0

*0 0 0N 0 0 0 0 0

o a a a a a 0 a 0 0

?R;EVIOUS FRAME NE I ;HBORHOO

2P + N

FIGURE 3.4 Pixel Neighborhood for Metric Determination
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The problem of finding the noninteger portion of the displacement has

been replaced by a two step process that is able to perform a similar

function. First, for the one dimensional example, the actual

displacement must be bounded above and below by a high and low integer

estimate. Secondly the two values for the delta functions must be

generated via the solution of the regression equation given below.

1
f(nT) = 5 a(i) g(nT - L + i) + e(nT). (3.22)

i=O

Where L is the lower integer bound of the displacement estimate. Given

a sufficiently large number of values for f(nT) and g(nT) the values for

a(0) and a(1) can be found through least squares estimation. The same

procedure can be extended to the two-dimensional process, where four on-

sample delta functions replace the single off-sample function. As

before note

I(ij.t) = 6(xy)*I(ijt-?). (3.23)

where x and y denote the location of the delta function which need not

fall on the two-dimensional sampling grid. A time-modified

autoregressive model taking into account that the prediction is made

over the time boundary is then given by

p p
I(i~j~t) ' Y a(m,n)I(i-m,j-n,t-) + e(i,j,t). (3.24)

m.-p n--p

If, as before, the best integer estimate of the displacement bounds can

be found, a displacement-updated, time-modified autoregressive model can

be given as

1 1

I(ijt) = a(m,n)I(i-K+m,j-L+n,t-) + e(i,j,t). (3.25)
m,,O un0

Here K and L designate the lower bounds of the integer displacement

estimate. Here, as in the one dimensional case, the regression

coefficients are able to perform the same function as the noninteger

portion of the displacement vector.
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For example, if the true value of the delta function occurs at t

1.35T. it oan be replaced by two different delta functions. One

positioned at t - iT. and the other at t = 2T. The relative value of

each delta function is obtained from the following formulas, where 6 1 (t)

is a lower bound of the shift function and 6 h(t) is an upper bound of

the true value of the shift.

61(t) 1 1 - e (3.20)

6h(t) a e (3.21)

In the example given above the value of the function at t-lT. labelled

61 (t). would be .65, while the value at t=2T, labelled 6h(t), would be

.35 and hence is able to perform the function of linear interpolation as

if it were a noninteger shift. Figure 3.3(b) shows the placement of the

two off sample delta functions for the noninteger shift in 3.3(a).

T nT

FIGURE 3.3(b) Delta Function for Noninteger Shift

The problem at hand uses this shifting and interpolation ability of

multiple delta functions to bypass the need for sub-pixel determination

of the shift vector. Assuming that a method can be found to determine

the nearest integer displacement, with the use of regression analysis

there is no need to find the noninteger portion of the displacement.

Instead, only the magnitudes and locations of the delta functions are

required. How the integer displacement is determined is given in the

next section.
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the use of linear interpolation of the two adjacent points. The form of

the linear interpolation is given below where fb(n'T) designates the

function value at the lower bound of the interpolation, fu((n'+l)T)

designates the function value of the upper bound, and f,(n'T) is the

function value at the linear interpolated point between these bounds.

The n' is used here to denote a fixed value for n.

fm(n'T+e) - fb(n'T) + e(fu((n'+l)T) - fb(n'T)) (3.16)

In the above equation e is the distance from n'T to the desired

interpolation point, or if you wish, the noninteger portion of the

displacement. Carrying this idea further, an interpolated function can

be generated by letting n' vary over the appropriate limits to include

all values of the sampled function. Rewriting (3.16) in function form

yields.

f,(nT+e) = (l-e)fb(nT) + efu((n+l)T). (3.17)

Note that in the two equations above, the shift or interpolation is

limited to the range of 0 to 1. That is, e is bounded to the interval 0

to 1. From equations (3.16) and (3.17). it can be seen that the

interpolated portion of the function is a linear combination of the

points on either side. It is from this equation that the idea of

multiple delta functions performing interpolation can be found. The

first term on the right side of equation (3.17) can be modified by a

delta function at the origin with value 1-e. The second part of (3.17)

is modified by another delta function but at location t-T and of value

e. Rewriting (3.17)in a convolutional form yields,

fm(nT+e) - (1-e)f(nT)*6(t) + ef(nT)*6(t-T). (3.18)

Hence, the single off-sample delta function located at t-e has been

replaced by two on-sample delta functions. This can be further extended

to perform for any value of interpolation. That is, the displacement

does not have to be restricted to the 0-1 range. When this is the case,

e remains the noninteger portion of the displacement and both delta

functions are then shifted by the remaining integer mount of the

interpolation or shift. With S being the integer amount of shift,

(3.18) can be written as follows.

fl(nT+e) (1-e)f(nT)*6(t-ST) + ef(nT)46(t-(S-l)T) (3.19)
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ST rtT

FIGURE 3.2(b) Delta Function for Integer Shift

function can be obtained by a linear combination of delta functions

bordering the true time or phase shift. Using the method of linear

interpolation. the single off-sample delta function can be replaceA by

two on-sample delta functions. The magnitude of each delta function is

based on the location of the actual off-sample delta function.

gnDfCrmT)

-A

i- 1i

FIGURE 3.3(a) Sampled Function Noninteger Shift

Before the shift can be determined it is necessary to explain the

mechanics of this linear interpolation process. It is assamed that any

value of the function between sample points can be determined through
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The graphical representation of this case is given in figure 3.2(a) and

hence f(nT) and g(nT) for this specific example are given below.

f(nT) - Acos(-rnT + 0) (3.13)

g(nT) - Acos(w(nT - T) + 0) (3.14)

A g 3n) f(mT)

nm /

-A-

FIGURE 3.2(a) Sampled Function Integer Shift

As long as r is an integer multiple of the sampling period T, as

shown in.figure 3.2(b), the same holds true for the sampled case as for

the continuous case and hence,

f(nT) - s(nT)C8(t - ar) (3.15)

where ar in an integer multiple of T.

Figure 3.3(a) graphically depicts the usual case in that the shift is

a noninteger multiple of the sampling period. The problem here is that

6(t- ) may not fall on a sampled time interval. Example v - 1.5T or 1.5

times the sampling interval and hence would lie halfway between the two

sampled time intervals. The method presented here attacks this problem

of noninteger shift with the help of linear interpolation. Assuming

that all points of the sampled time function between samples can be

determined sufficiently close by linear interpolation of the sample

points on each side, then a sufficiently good estimate of the shifted

-39-
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S(t) -Acos(W(t + Q)* ) (3.6)

Equation (3.4) for this specific example then becomes.

f(t) - Acos(W(t - T) + e)*6(t--) (3.7)

There 6(t-T) is shown in figure 3.1(b).

FIGURE 3.1(b) Delta Function for Continuous Shift

Using the Fourier transform to perform time convolution yields

f(t) - F1'[F[Aoos(w(t - vc) + 0)] F[5(t - 03]] (3.8)

f(t) - Acos(Ot + 0) (3.9)

where F designates the forward Fourie'r transform and f1the inverse

transform. This is the case as was given in equation (3.5).

Getting closer to the problem at hand, the sampled versions of f(t)

and g(t), namely f(nT) and g(nT), obtained from the sampling function,

f(nT) - fVt)' f(t-nT) (3.10)

can be written as follows..

g(nT) - f(nT--c) (3.11)

or

f(nT) s (nT)*6(nT). (3.12)
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examining a single dimensional continuous time function example with the

help of linear systems -theory. The two-dimensional, noiseless, no

background case becomes, in a single dimension, the problem of

determining the phase shift between two identical, but time shifted,

time functions. For example if

g(t) - f(t-r) (3.3)

the two functions are said to be identical, with the exception of the

time shift. The problem then of finding the time shift amounts to

finding the value for v. Using the concept of convolution, g(t) and

f(t-'v) can be related further by

f(t) - g(t)6(t--) (3.4)

where the function 0 is defined to be convolution and 6(t-T) is a delta

function located at t-v. The problem remains to determine the time

displacement from the origin to the location of the delta function.

Figure 3.1(a) graphically presents a possible representation of these

two continuous time functions shifted in time by v. This displacement

can be determined through the use of correlation or a matched filter

such that the output Is the phase shift between the two signals.

.- 0-
C t f-C t

-AJ

FIGURE 3.1(a) Continuous Function Shift Example

From the example in figure 3.1(a) f(t) and S(t) can be written as

below.

f(t) -Acos(wt + 0) (3.5)
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To.7

3.2 DESCRIEf2

In the methods previously discussed for motion compensated image

coding, (91], (112], (113], and [116], the current image pixel is

modelled as a pixel from the previous frame displaced by some

displacement vector D. This can be shown as in (3.1).

I(Xk~t) - I(X k - D, t - c€) (3.1)

Where I(Xk,t) is the pixel intensity at location I k and v is the time

delay between adjacent franes. This functions adequately provided the

displacement is of integer order. That is- no partial pixel

displacements are allowed. If sub-pixel displacements do exist, this

necessitates the finding of a D vector that is also of sub-pixel order.

A somewhat more complicated approach, but offering the advantage of not

having to determine a displacement vector, can be found. The current

frame pixel intensity is defined to be a linear combination of pixel

intensities from the previous frame.

'M N
I(Xkt) M I I a(m,n)I(Xk(mn),t-d) + e(Xk-t) (3.2)i !=1 n'l

The disadvantage here is that although no motion vector is required, a

set of predictor coefficients a(m,n) is required. If the system is to

allow for a p pixel shift in any direction, the size of this 'a' matrix

would be at least (2p+l) by (2p+l). Hence, the amount of data

compression that can be achieved is greatly diminished as p gets large.

Note that this prediction matrix must be transmitted every time the

displacement changes between blocks.

The ideal situation would be to take advantage of the linear

combination method, so that the accuracy of the motion vector can be

kept to integer displacements, and yet exploit the data compression that

the displacement vector approach offers. Going back to (3.2) it can be

seen that the solution of the problem involves the determination of the

prediction matrix a(m,n). This results in a two-dimensional regression

problem. Noting what the physical implicatio, are in relation to the

regression problem, it can be seen that the regression coefficients

would be used to perform translation and hence the model can be

simplified. A better understanding of this concept can be obtained by
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3.1 UNDLYI ASlmZQNS An REQUaN

Before getting into the actual algorithm, there are a set of

assumptions and requirements that need to be stated.

1. Each image in the sequence is broken up into a set of square

blocks. The notion for that block is assumed to be constant over

the entire block, regardless of the chosen blocksize.

2. The motion as modelled by the algorithm is pure translation, that

is only motion that is translation or can be modelled by

translation between frames is actually modelled. Nontranslation

type motion and problems of occlusion will be handled by the

quantization of the residual and not entirely by the displacement

vector. Although in some cases, the prediction coefficients can

somewhat compensate for nonideal motion.

3. It is further assumed that the maximum displacement between

frames is known. The system is no more complex for large

allowable displacements, but the number of calculations increases

rapidly as the maximum allowable displacement increases. Hence,

the maximum displacement estimate should be kept as small as

possible to improve performance. For a majority of image work a

value of five or six pixels is appropriate.

4. It is known that the human visual system will accept a higher

degree of degradation for scenes undergoing translation than it

will for static scenes. For this reason, the blocks that are

undergoing translation are allowed a lower signal to noise ratio

than those which do not move. That is, the moving blocks can

have a higher degree of degradation than the stationary ones.

With this set of assumptions in hand, the goals of the algorithm can

be stated: the overall system should be able to obtain a fairly high

degree of data compression, but not at the expense of overall picture

quality. The system should be able to achieve a very low data rate for

image sequences with little or no motion. For the blocks in the image

that are undergoing translation the method should be able to determine

the motion vector to sub-pixel accuracy and code the resulting output at

a sufficiently low data rate.
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Chapter III

PREDICION COEFFICIENT NERGY CONCEN71ATION

In the last chapter some of the previous attempts at motion

estimation, and in particular motion compensated image coding, were

presented, setting the groundwork material for this chapter. The method

of 'Prediction Coefficient Energy Concentration' differs from the

previous methods not in terms of optimal output, but only in the way in

which this goal is achieved.

As the name 'Motion Compensated Image Coding' implies, motion or

movement estimation is used to decrease the data rate required in the

transmission of time sequential image data. The use of this motion or

movement requires that a good estimate for the displacement be made

available to the image coder. It is the finding of this displacement

vector that is new and original in this work. Previous work only

required the displacement to be found to the nearest integer multiple of

the pixel spacing. This may suffice for some applications, but where

the human observer is the final link in the coding system, these integer

only displacements tend to be somewhat annoying. For this reason, and

others concerned with actual displacement measurement, the noninteger

portion of the displacement is needed. The methods of pel recursive and

coefficient recursive displacement estimation use an iterative recursive

minimization procedure to converge to a displacement that is of

noninteger order.

In this chapter a new method for finding the displacement vector for

use in a motion compensated image coding system is introduced and

investigated. The method of prediction coefficient energy concentration

differs from the earlier recursive methods in that a solution for the

displacement is explicitly defined and does not have to iterate to a

solution. Further, it differs by the fact that no actual noninteger

portion of the displacement actually has to be found. Instead this is

replaced by a coefficient prediction process that obtains the same

results, or in many cases better, with no increase in the algorithm

complexity.
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metric representing each corner of each quadrant where the center value,

being common to all quadrants, may be neglected as is shown in figure

3.5. Each quadrant then is represented by a sum of three metric values

and the minimum quadrant is defined to be the one with the minimum sum.

This in essence determines the integer bounds or integer displacement

cell for the noninteger portion of the displacement. In other words,

the true value of the displacement is not known, but it is assumed to

fall within the bounds of the displacement cell. Hence the locations of

the four delta functions are defined to be at each corner of the

displacement cell. This yields the locations of the delta functions,

but not their magnitudes. The method for determining their magnitudes

is given in the following section.

At this point, it is informative to look at a two-dimensional example

for the displacement of a single pixel. Figure 3.6(a) presents a

reference pixel from the current block. Figure 3.6(b) shows the

displacement associated with this pixel as well as the integer estimates

for the I and Y displacements. The four pixels that define the box are

used in a linear combination to estimate the reference pixel.

COUMN COLUMN COLUMN4 COLUMN COLUMN
J J+l 3+2 J+3 J-4

ROWI X X X X X

ROW 141 X X X X X

REFERENCE PIXEL

ROW 142 X X X

RO 1-3 X X X X X

ROW I1 X X X X X

FIGURE 3.6(a) Current Frame Pixel Location
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OOWI4 C8LM4 COLu*I CMALVi CO.LSIN
i .+1 J.+2 J.3 .+4

Row I X X X X X

Ow 141 X X X X X

ZNTEMR X

M~W 1+2 X X

4Dx Af PIXELb

FI.UREI: TPiCELel :4'

M 1+4 X X X X "1 "X

Raving bounded the displacement estimation in both directions. the

time-modified. translation-updated regression model is given as before.

I(i'j't) - a(m~n)I(i-K+m.J-L+n.t--v) + e(i,j) (3.35)
wooin a-0

Iher., as before, K and L designate the lower bounds on the displacement

estimation. As was noted earlier, the assuption is made that the

displacement remains constant over the block and hence the regression

coefficients will also remain constant over that block.

3.5.1 _ng R,.uuealna Prokla

The solution for a single ditensional regression process is straight

forward and will not be addressed here. Instead, only its relationship

to the problem at hand will be discussed.

The matrix equation normally used for single dimensional regression

can be written as follows

Y - mB + e (3.36)

whore Y is a dependent variable vector of size n. X is the augmented

independent variable matrix of size n by p. where p is the number of

regression coef ficients. B is then the parameter vector or vector

containing the predictor coefficients and is also of size p. Finally a

is the error vector or residual. The matrix normal equation is given by
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.1

XTb xTy (3.37)

The least squares estimate for B is b and can be obtained from

b - (xTX)-IXTY (3.38)

A further restriction is placed on the current regression problem in

that it is an autoregressive series, or actually an autoregressive

spatial-time series, and current values are predicted from past time

values from the same general spatial location. The autoregressive

equation can be written as

Y - ZB + e. (3.39)

Z represents a shifted version of Y, in this case both spatially and

temporally. In the particular case at hand, the derivation has to be

carried one step further, because it must take into account that the

data is two-dimensional and the prediction is made over a time boundary.

Note that the regression equation given in (3.35) is not in matrix form.

Some data manipulation is required if standard methods for regression

analysis are to be used.

3.5.2 Method for Data Kanivulation

First the coefficient matrix a(i,j) needs to be placed in a vector

fitting the description of the B vector in (3.36), therefore

a(O)

a(0,O)

B = a(0,1) (3.40)

a(1.O)

Sa(11)

where it is augmented by a(O), the intercept or bias term. Next, the Z

matrix needs to be set up to perform the shifting that is accomplished

by the double summation in (3.35). In the equation for the Z matrix

that follows, the t-r factor and lower integer bound terms are neglected

for simplicity.

- 50 -

. ... ..... •..... •,o.



1 Ii. J+l) I i. J+2) ( i+1 IJ+1) Ii+l1DJ+2)

Z -1 I(i.j+N) I i. j N+l) I (i+1, j+N) I(i+1,j4.N+1) (3.41)

1 I(i+1,j) I(i+1,j+1) I(i+2,j) I(i+2,j+l)

1 I(i+N-J+N) I(i+Nl IJ+N) I !i J.N) I (i+N+1_J+N4) j

Figure 3.7 is provided to show how the Z matrix is generated from the

two dimensional image intensity values. Note, the f irst column of Z is

augmented with l's to correspond to the intercept or bias term of the B

vector.

ROW ROW ROW
1 2L.v N

ROW ROW ROW
N+1 N+2 L.. /2N

o a a
0 ,a

o a a

o aa a2 3

RW ROW ROW
2

)N+1 (N-i +N+2 N

FIGURE 3.7(a) Z Matrix Scan Diagram (b) Single Raw Scan

Filling in the remaining terms of the Z matrix one row at a time

starting from the top and working down can be accomplished with the help

-... ba

Z = I~~j+) l~~j+~l) Ili~~j+) Ii~l~+N~) 1.41
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of the scan diagrams given in figure 3.7. Figure 3.7(a) represents the

pixel groupings by row for the intensities from the previous frame.

Each row of Z is represented by a box in figure 3.7(a). An expanded

version of one of these boxes is shown in figure 3.7(b) where each

corner of the box designates a column in the Z matrix. Hence, for each

row in Z there is a corresponding group of four pixels whose intensity

values are to be placed into the column associated with the number given

for each corner, as is shown in figure 3.7(b). Note that each pixel

intensity may be used up to four times in the Z matrix. Finally, row

scan the current frame block placing each value into the column vector Y

as shown.

I(i,j,t)

l(i,j+lt)

Y I(i,N,t) (3.42)

I(i+l,j,t)

I( i+N, j+N, t)

The scanning diagram for the current frame block is given below in

figure 3.8. The residual vector * is defined identically to that of the

Y vector.

With each of the variables Y, Z, B, and e defined, the current

problem reverts to that of a normal one dimensional autoregression

problem involving five coefficients and hence can be solved as such.

The least squares estimate for B is b and is given by

b (ZTZ)- ZTY (3.43)

As with any system that requires a matrix inverse, it is possible

that the system may become ill conditioned and the inverse may not

exist. In the current system, this is remedied by using only the

estimate for the integer portion of the displacement. When this occurs,

the b vector is set to an identity transfer function, that is,
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FIGURE 3.8 Y Vector Scan Diagram

bT - (0olo0,0,0] (3.44)

and amounts to using only the information from the integer displacement

estimate in the prediction process.

3.6 P, RcEICflR! AM RKEIS GE R AD O

After the completion of the identification portion of the system, it

is necessary -to generate the data required for transmission. The data

required by the receiver is broken up into two separate parts. The

first part is the receiver control block, which contains the information

generated by the identification portion of the system. The remaining

part is what is termed the residual data block. It contains the

information required by the receiver to update or correct the block

estimate when based only upon the control block information. The

receiver, as well as the receiver portion of the transmitter, takes the

control block information and produces an estimate of the current block

using a similarly spatially located block from the previous

reconstructed frame.

1 1

e(i,j,t) - I(i,jt) - C a(mn)I(i-K+m,j-L+nt-r) - a(O)
MO u-O (3.45)

This residual term is then quantized for transmission.

In order to fully exploit the between frame redundancy, checks are

placed in the system to flag the types of changes that occur. The first
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check determines if any motion has occurred in the current block. If no

motion is found, the process simply goes to the next block with no

required data transmission. If motion has occurred, it is tested to

determine if an integer estimate is a sufficiently good estimate. If it

is deemed an integer only displacement, the block address and

displacement are transmitted to the receiver. When integer displacement

is not accurate enough, the prediction coefficients must be calculated.

At this point the transmitter must send the block address, integer

displacement, quadrant, predictor coefficients and possibly a quantized

version of the prediction error. A final check is performed to

determine if the error is still too large. If it is, the primary

blocksize is cut in half and the process is retried for each of the four

sub-blocks.

3.7 CODING

As noted in the previous section, there are two types of information

that must be transmitted to the receiver. The first is the control

block information, which contains the information required to make the

motion compensated estimate and the second is the residual data block.

The residual data block is the quantized error of the actual prediction,

along with the coding information needed by the quantizer. Each of

these will now be discussed in detail below.

3.7.1 Cntrol Block Information

The control block information data sequence contains the set up

variables needed by the receiver in order to start the prediction

process. The data sequence is of variable length, depending on the mode

of operation, of which there are four. As noted earlier, if no change

has occurred for a block, then the receiver requires no update.

The four different modes of operation can be separated into two

groups of two categories. The two groups are integer and noninteger

displacements, while the two categories are the different blocksizes of

g by 8 and 16 by 16. Table 3.1 shows the bit requirements for each mode

of operation and the bit breakdown. The assignment of the first 10 bits

remain the same for all four modes. These first 10 bits consist of a

bit for integer/noninteger mode, a blocksize bit for blocksize
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determination and 4 bits each for the integer X and Y displacement.

This will allow for a shift in either direction of from minus seven to

plus seven pixels. The remainder of the bit structure differs in

accordance with the blocksize bit and integer displacement bit. These

remaining bits contain the block address for the current block and, if

the noninteger bit is set, the quadrant number. Four of the predictor

coefficients are coded into this section, while the fifth, since it is

used by the residual quantizer, is coded in the residual block section.

The number of bits used is based on an image size of 256 pixels square

or smaller. If a larger image is used, then appropriate changes will

require the enlargement of the block address.

This control block is essentially the overhead required for the

prediction process and in itself produces a very low data rate. This

overhead is zero for the motionless blocks and can range from about 0.07

up to 0.98 bits per pixel for blocks that contain motion. Hence, the

predictor overhead will normally contribute only a small portion of the

total data rate requirements. The majority of the bandwidth required is

a result of the prediction error and hence is required by the residual

data block.
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II

TABLE 1

INTEGER NON-INTEGER

8x8 16x16 8x8 16x16
BIT'1

1 O-Integer only O-Integer only 1-Non-Integer 1-Non-Integer

2 O-Blocksize = 8 1-Blocksize = 16 O-Blocksize = 8 1-Blocksize = 16

3X X X X

4 X X Direction X X Direction X X Direction X X Direction

5 X Displacement X Displacement X Displacement Displacement

6 X X X X

vYY

8 Y Y Direction Y Direction Y Y Direction Y Direction

9 Displacement Y Displacement Y Displacement Displacement

10 Y Y Y

11 X x X

X Block X Block

13 X X Location X X Location
Location Location

14 X x x x

15 X Y X Y

16 Y Y Y Block Y Y Y Block

17 Y Y Location Y Y Location
Y Block Y Block

18 Y Y Y Y
Location Location

19 Y Y C

20 Y V C Prediction

21 C ) C Coefficients

22 C Prediction C

62 C C

63 IR Residual

Required if=1
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3.7.2 Residual Data Block

When the cumulative error between the predicted block and actual

block exceeds a set threshold, a residual block must also be

transmitted. This data is used to correct some of the errors that occur

in the prediction process. The block consists of two parts. The first

contains the moan and variance of the residual signal and the number of

quantizer levels. The remaining data is the quantized residual data.

Fixed rate quantizers are inappropriate because the residual signal is

non-stationary. A variable rate quantizer, based on the mean and

variance of the residual signal and the predictor gain, performed quite

well in spite of the non-stationary signal. For very mall variance

errors no residual was needed. For larger errors, up to 7 bits were

available per pixel.

Due to the very large. variation in the quality of the predicted

signal, an adaptive-variable-length quantizer is required in order to

maintain a minimal data rate for a specified overall picture quality.

Here, as in much of the other work in image processing, there is no good

clear out numerical indication of picture quality. For the work

reported here two statistical indicators were jointly used for internal

judgement of picture quality. It is upon the basis of this judgement

that the residual data rate is determined. The first statistical

indicator is the error signal variance. It is expected that a low

variance value means good image reproduction whit e a large error

variance indicates a large prediction error and hence a large residual

data rate requirement. The second statistical indicator is the

prediction gain or predictor signal to noise ratio. While this does

take into account the error variance from above, it also takes into

account the signal variance and is defined by

GAIN - lOLoS(var(signal)/var(error)). (3.46)

Using these two quality indicators as fidelity criteria, the adaptive

quantizer determines the required number and placement of quantizer

output levels in order to achieve a specified output signal to noise

ratio. The residual variance is used as a simple yes/no indicator for

the quantizer. That is, if the error variance exceeds the preset

threshold, the quantizer will be used to transmit the residual. The
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predictor signal to noise ratio is then used by the quantizer, along

with the minimum acceptable signal to noise ratio, to determine how much

the predicted signal needs to be improved. This is equivalent to

determining the quantizer level requirements. The number of levels is

determined by finding the minimum number of levels needed to obtain the

preset output signal to noise ratio, provided the error distribution is

Gaussian. Even though the global error distribution may be gaussian,

rarely will the local distribution be so. For this reason, rarely will

the output signal to noise ratio match that which was preset. However,

this will bound the actual data rate requirements.

The quantizer employed in the actual implementation is a multiple

level and hence variable rate. The quantizer chooses the thresholds and

output levels optimally based on a distortion measure defined to be the

sum of the absolute values of the error. The choice of this distortion

measure over the standard mean squared error results in a decrease of

the granular noise in the areas of the image with small signal variance.

Figures 3.9(a) and (b) are provided to show the differences in output

error distributions for the different distortion measures. Each is

assumed to have a Normal(O.1) input error distribution. The curves

labelled 0,1,2,3, and 4 bits are the error output distributions after

modification by the selected quantizer. If an infinite number of bits

were used, the output error distribution would be a delta function

centered about 0. Note that the mean square method tends to minimize

the area under the tails of the distribution, while the absolute value

method tends to concentrate more on the center portion of the

distribution. As noted earlier, the number of quantizer levels required

is based upon the error variance and the predictor signal to noise

ratio.

When the error variance exceeds the set threshold, the difference

between the requested gain and the actual predictor gain is in a sense a

'gain' that must be generated by the quantizer. Gain is a term not

normally associated with quantizers, but in this case it is used to

compare the output quality with a given quantizer to the quality that

would be present if no quantizer were used. That is to say, how much is

the signal improved by using a quantizer to send the error as compared

to not sending the error at all.
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This Lain is determined as a function of the number of output levels.

It is then a simple procedure to determine how many levels are required

to meet gain requirements to obtain this reproduced image fidelity

criterion. A plot of this gain as a function of output levels is given

in figure 3.10. From this. for a required gain, the number of output

levels can be determined. The similarity of this curve to the log rate

distortion curve is apparent.

2

Z3

--

C

16.08 3i. 00 46.80 14.66 a 66.6 s 112.96 2:M.as
NUMBER OF OUTPUT LEVELS

FIGURE 3.10 Quantizer Gain as a Function of Number of Output Levels
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Chapter IV

E LIJMTAL OPERATION

The presentation of results obtained from most forms of image

processing is a difficult one, but even more so when the data consists

of time varying image sequences, as is the case in motion compensated

image coding. Comparisons among published results are even more

difficult because of the lack of standard presentation procedures and

the lack of standard test image sequences. The performance of any

motion compensated coding system is extremely scene or sequence

dependent and hence, this dependence as a function of system and scene

characteristics will be presented.

The image sequences used for this system performance analysis consist

of 41 images of size 128 by 192 pixels quantized to 8 bits. The first

sequence is termed 'SLOW PHONE' and consists of a woman talking on a

phone while slowly rotating and moving the phone. The second sequence,

termed 'FAST PHONE', is similar to the first but contains faster and

more motion. Both sequences contain very complex motion with

foreground-background interaction and are similar to those that would be

encountered in a video-phone setting.

A block diagram showing each of the subsystems mentioned in the

previous chapter and their relationship to one another is given in

figure 4.1. Note that the block diagram presents each subsystem

serially connected with no indication for mode of operation. The mode,

recall there are four, is controlled by the data control and logic

block. Note also that the system can be easily implemented in parallel

in terms of block operations because one block prediction is not based

on the previous block from the same frame, but only on blocks from the

previous reconstructed frame.

As stated above, the presentation of the results for time varying

imagery work is very difficult. When images from the sequence are

viewed singularly, they appear 'cleaner' or less noisy than they would

if viewed in the actual sequence. Also, some prediction errors that do

appear in the single frames are not as noticeable when the frames are
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4.4 XI 9hh GI-Ah

'Upon return from the metric subroutine, an estimate of the integer

displacement is provided. The subroutine also supplies a variable that

is equal to the value of the metric at its minimum location. This value

can be used to determine how good of an estimate of the current block

can be generated using the previous frame and the integer displacement

estimate. For many blocks this estimate may prove to be sufficient.

For others, it indicates that more information will be required in the

image reconstruction. For the blocks that the estimate is sufficient,

no further displacement estimation is required. For the others, further

computations are required to improve the current frame estimate. This

further computation may involve determining a better estimate for the

displacement vector or, as in the method presented, solve for the

regression parameters.

When an integer-only displacement estimate is not good enough, the -,

next step is to calculate the best estimate for the quadrant in which

the true displacement falls. This is accomplished through the use of

the LOCATE subroutine as liven in appendix B. The accompanying

flowchart is provided in figure 4.7. Recall from chapter 3 that this

quadrant is generated by summing the values of the metric that surround

the best integer estimate. The quadrant is used to bound the

displacement estimate to a single integer displacement cell. This

subroutine locates the quadrant with the lowest sum of surrounding pixel

values. It does not determine the values for the coefficients.
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FRAME 7
IBLOCI 4
JBLOCK 4
X SHIFT 0
Y SHIFT -1

ne=UI.4.6(o) Plot of Actual **trio

FRAME 7
IBLOCK 4
JBLOCK 3
X SHIFT -i
Y SHIFT 0

FIGURE 4.6(d) Plot of Actual Metric
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FRAME 7
IBLOCK 7
UBLOCK 4
X SHIFT 0
Y SHIFT 0

FIGURE 4.6(a) Plot of Actual Metric

FRAME 7
IBLOCK 6
UBLOCK 4
X SHIFT 0
Y SHIFT -1

FIGURE 4.6(b) Plot of Actual Metric

-73 -



estimate of the displacement. This presentation is achieved with the

use of subroutine INVERSE and MPLOT as given in appendix B. Figures 4.6

i (a) through (d) are examples of various actual metrics. From these, the

- geometrical nature of the metric function can be seen.

, The plots are arranged such that the base of each plot represents the

value of the integer shift. Each base axis represents a direction of

shift. The values of shift for these examples range from minus nine to

plus nine in both the I and Y direction. The magnitude of the plot can

be thought of as a measure of similarity between the current block and

various shifted blocks from the previous frame.

17%
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difficult in practice. Following the flow chart of figure 4.5, the

process starts with setting an initial guess for the displacement vector

estimate. This is not used as starting point for iteration, but rather

as a method to save time. This value can be set to zero, if no motion

is expected, or to the value of the previous block estimate. The

subroutine will test the hypothesis that this is the correct integer

displacement, and if it falls within the threshold bounds, will exit the

subroutine setting the actual estimate to the initial guess. If the

metric value falls outside the threshold, the entire procedure must be

executed for all allowable possibilities of block shift. The procedure

is executed as follows. First the shift vector estimate must be set to

the lowest possible value in both the I and Y directions. Solve for the

metric or risk function based on this shift vector. Recall from Chapter

3 that the metric is defined to be a function of the sum of the

thresholded differences between the current frame block and the previous

frame pixel neighborhood. The shift vector is then incremented and a

new metric value calculated. The procedure is continued until all

allowable pixel displacements have been tried. At this point, a matrix

of metric values, whose entry position defines the associated

displacement estimate, Is examined for a minimum value. The location of

the minimum value designates the integer displacement estimate. If

there is more than one minimum value, the entire metric matrix is

recalculated using a smaller allowable error threshold. If after this

is tried, and the allowable error cannot be decreased and there are

multiple minimum points, the smallest displacement value is chosen to be

the actual estimate. Along with the location of the smallest metric

value, the actual value of the metric is also returned to the calling

program as an aid in quality measurement. The program is now ready to

return to the main driver program and continue.

Before continuing with the program procedure, it is informative to

look at some examples of the metric matrices generated by the algorithm.

Recall that the actual implementation looks for a minimum value of the

metric matrix, but for ease of presentation the metric matrix has been

modified. The modification is accomplished by reversing the magnitude

order of the data and rescaling to fit the 0 to 1 range. The reverse in

order exchanges places of the minima and maxima. Hence, in the

presentation the maximum value of the function defines the best integer
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FIGURE 4.5 Metric Subroutine Flow Chart
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°

Following constant initialization, the single image is broken up into

many small sub-images of size 16 by 16 and blockwise scanned top-to-

bottom and left-to-right. The following discussion refers to operations

on a single block.

First it must be determined if the particular block is a border

block. That is, does it border the outside of the image? The reason

for this is that border blocks request data from the previous

reconstructed pixel neighborhood that do not exist. This is dictated by

the possibility of a plus or minus p pixel shift in both directions.

Rather than setting the nonavailable values to zero, it has proved

advantageous to set these terms to the mean value of the remaining pixel

neighborhood.

4.3 METRIC GENERATION

Given the current block and the previous pixel neighborhood, the next

step is to calculate the difference metric. The flow chart for

subroutine METRIC is provided in figure 4.5 while the subroutine listing

is provided in appendix B.

Subroutine METRIC serves a dual purpose. It is used to determine the

best estimate for the integer portion of the displacement based upon the

arithmetic metric used. It is also used to determine if this integer

estimate is a sufficiently good estimate. In the discussion to follow

the absolute value threshold method, or MAP estimator given in section

3.3.3. will be used. In the subroutine, like the main driver, it is

important to treat border and nonborder blocks differently. The

execution is similar for both border and nonborder blocks, with the

exception of a correction factor that takes into account the possibility

of a maller number of terms used in the border block calculations. The

correction factor is used to weight the estimates based on fewer terms

differently than it would if the entire previous data field had been

available.

It is this portion of the algorithm that is the most calculation

intensive, and hence the slowest to execute. Here again the algorithm,

although implemented in series, lends itself to parallel operations.

The implementation of the algorithm is simple in concept, but more
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FIGURE 4.4 Main Control Program Flow Chart
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FIGURE 4.4 Main Control Program Flow Chart
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4.1 ALI OQT~ I N=ON

This method for motion compensated image coding lends itself very

well to modular programming design. The system must perform serially in

terms of most within block operations, but is easily adaptable to

perform parallel or concurrent operations across blocks. Because the

algorithm was modelled and simulated in software, only serial operations

can be used and hence, the discussion to follow will be restricted to a

purely serial implementation. Notes will indicate the parts of the

implementation that are easily converted to parallel operations.

As noted earlier, it is assumed that both the transmitter and

receiver have complete knowledge of the initial image and motion

compensated image coding starts with the second frame of the sequence.

The actual FORTRAN code used for the simulation is provided in appendix

B and will be referred to throughout this chapter. Flowcharts for both

the main program and some of the subroutines will be provided in the

text as required.

4.2 MAIN C PIUI

Figure 4.4 provides a flow chart of the main control program and

relates to the program listing MAIN in appendix B. The program

initialization section sets up the required run time constants used for

both variable assignment and program control. Some of the more

important constants will be discussed below.

NPBITS is an integer number used to designate the number of bits used

to quantize the predictor coefficients. The quantization method assumes

a uniform distribution from -2 to 2. The actual number of quantizer

bits is one greater than NPBITS to allow for a sign bit. The variables

VAREST, STDERR, and AVGERR are set constants used as threshold values

throughout the program. VAREST is an estimate of the average difference

between two identical frames when viewed at the output of the imaging

device, or in other words an estimate of the imager noise. STDERR and

AVGERR are threshold values for the error terms. ISIZE and JSIZE are

simply used to identify the image size and may be changed to fit any

image size as long as the DIMENSION statement settings are likewise

adjusted.
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(a) FRAME I (b) FRAME 8 (c) FRAME 15

Figure 4.3

Original 'FAST PHONE' Sequence

(d) FRAME 22 (e) FRAME 29 (f) FRAME 36
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(a) FRAME 1 (b) FRAME 8 (c) FRAME 15

Figure 4.2
Original 'SLOW PHONE' Sequence

...... 1...7

(d) FRAME 22 (e) FRAME 29 ()FRAME 36
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viewed in sequence because of the integrating ability of the eye. For

simple comparison purposes, six frames from both of the original

sequences will be presented. Figures 4.2(a) through (f) are frames from

the 'SLOW PHONE' sequence and 4.3(a) through (f) are from the 'FAST

PHONE' sequence. It is important to note that much of the image quality

is lost in the photographic process and the associated copying and

printing.

The theoretical system presented in Chapter 3 has been programed and

simulated using FORTRAN and hence was not executed in hardware or real

time. More on the actual implementation of the algorithm will be

presented in the later sections.

,he algorithm simulation starts with the assumption that both the

transmitter and receiver have full knowledge of the first frame. The

following frame starts the process of motion compensated image coding.

Transmission of the first frame may be accomplished using normal coding

techniques or transmitted using ordinary PCM methods. The process from

this point onward assumes that one frame is read at a time and processed

before the next frame can be read. Although none is used in this

simulation, it is understood that in a real world implementation a fixed

length buffer would have to be incorporated into the hardware. It is

assumed that an infinite length buffer is available in the simulation.

Although not used for buffer control, a very good built in feature of

the implementation is the setting of a required output signal to noise

ratio. If a fixed length buffer were used, the varying of this required

SNR could function as a buffer control parameter. That is, when the

buffer approaches full the required SNR could be allowed to drop. When

the buffer neared empty, the output SNR could then be increased. This

would nearly eliminate the possibility of a buffer overflow, and hence a

loss of data.
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4.5 REGRESSION COEFFICI GENERATI

The generation of the delta function magnitudes is based on linear

regression theory and is accomplished in the subroutine COEFGN. The

magnitudes of the delta functions are used as weighting values to

estimate the current frame from the past frame. Given the integer

displacement value and the magnitudes of each of the delta functions,

the system is able to make a good prediction of the current block.

Because the displacement has been bounded, the four pixels that are

used to estimate the current pixel are known. What is not known, is how

these pixel intensities are combined to produce the current estimate.

The weighting values define how the previous pixels are to be combined

and are determined by solving for the parameters of the autoregressive

spatial-time series.

4.6 C BLC GENERATIO

Subroutine PIED is the portion of the program that is used to

calculate the current block estimate. Along with this estimate, an

error block is also calculated. From the error block, the error mean

and variance must be determined. The mean and variance are used as an

indication of how well the prediction process performed. If both the

mean and variance are within set limits, the process will iimply go on

to the next block. If the error is deemed too large, the entire process

up to this point is redone on a smaller blocksize of 8 by 8. This says

that the single 16 by 16 block is broken up into 4 sub-blocks and the

algorithm is executed for each of the sub-blocks. If the blocksize is

already 8 by 8 and the error is still too large, the process must

generate a quantized error or quantized residual term.

The error in prediction can come about from many sources, some of

which are listed below. The motion that occurs may not fall into the

category of pure translation. That is, the motion may consist of

various types of rotation. The objects could have rotated in the plane

of view or in any of the planes perpendicular to the plane of view,

hence taking into account the 3-D aspect of the objects. The model

cannot account for rotation. Hence, when this occurs errors will result

that must be quantized and transmitted. The other major source of error
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generation is from the problem of background/foreground interaction.

Recall that the motion model was developed for the pure translation, no

background case and hence only optimally estimates this type of motion.

When the actual data does not fit the model, it may be necessary to

quantize and transmit the error.

4.7 ERROR QUANTIZATION

The error term resulting from the subtraction of the predicted block

from the actual block is very scene dependent. Because of this the

statistics for the error block are widely varied. The quantizer used

for the residual encoding is very important because it determines, to a

large extent, the overall system data rate. The variance of the error

is a good indicator of image quality. That is, if the variance is low

the image reproduction should be good. On the other hand, if the

variance of the error is large, it is expected that the reproduced image

will be somewhat degraded. It only seems logical, from the above

discussion, that the quantizer used should be able to adapt to the

changes in statistics of the error and transmit only the data required

to reach some fidelity criterion.

Subroutines QUANTI and QUANU are used in the quantization of the

error signal. QUANTI determines the amount of gain the quantizer

produces for the various number of output levels. QUANTA performs the

actual quantization and coding of the residual.
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Chapter V

RESULTS AND CONCLUSIONS

The presentation of results from time sequential image processing,

and even image processing in general, proves to be a difficult task.

When a human viewer is the final link in this imaging system, the

important criterion is not a set of numbers calculated from various

system parameters, but rather the important criteria is how does the

viewer subjectively judge the quality of the final output. Although

there appears to be some correlation between some distortion measures,

such as the mean square error, and the subjective quality, this

correlation is not very strong. Another way to put this is, a decrease

in the mean square error may not always mean an increase in judged

subjective quality.

A presentation of output results of single images, not taken from an

image sequence, poses a simpler problem than those taken from image

sequences. Each image can be viewed subjectively apart from all others

because they are not dependent on images that come both before and after

in time. This method of presentation does not hold, as well as is not

feasible, for sequential image data. hen the sequences are composed of

thirty or more frames per second, the amount of space required to

present them in itself creates a problem. But more importantly, the eye

and associated biological processors prefer that the images be presented

in a sequential manner in the same spatial location. It appears that

the integrating ability of the eye plays an important role in the

subjective image judgement of time sequential imagery.

The output images will be presented in a fashion similar to the

presentation of the input images provided in chapter four. One should

note that quality degradation occurs at every step of the image transfer

process. That is, exposure, development, printing and copying all

degrade the true quality of the actual image.

Even though distortion measures such as the mean square error may not

be directly related to the subjective quality of the output image, it is

an indicator that allows for a comparison among different runs of the
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same program with varied parameters. It does function as a means to

compare outputs on a more numerical level. It seems logical that if the

system and algorithm remain the same, with only minor modifications in

some system parameters, that the outputs can be compared on a more

quantitative basis. Stating this simply, the image sequence with the

best overall output signal to noise ratio should be the image sequence

judged best in a subjective analysis.

Another problem in the presentation of results arises from the very

large variation in possible input image sequences. Because the data

compression that occurs in the system is a direct result of the

exploitation of the between frame correlation, the amount of data

compression that can occur is directly related to how well adjacent

frames are correlated. It has been shown in intraframe image coding

techniques [8], that the majority of the information of the image is

contained in the edges of the image. Along with the majority of the

information, the edges also require the majority of the bandwidth in a

data compression scheme. The same can be said for interframe image

coding if one defines what is meant by 'edge' in interframe terms. If

an intraframe edge is defined to be a boundary between two regions of

near uniform luminance and can be estimated by using a spatial

derivative, the interframe edge can be defined as a boundary between

spatial regions of varying intensity temporally separated and can be

estimated with a temporal derivative. What this says is that the edge,

in interframe terms, occurs at the portions of the image that change

between frames. This idea can be further restricted if the method of

interframe image coding is motion compensated. Now the edge can be

defined to occur at the regions of the image that interface the

background and foreground. Hence, if this interframe edge were viewed,

the edges would appear at points where the moving objects and background

meet. Just as in the intraframe case, the temporal edge requires the

largest amount of bandwidth for tranmission, and hence contains the

majority of the new information contained in each image.

Because the amount of information that must be transmitted is

directly related to the quantity of temporal edges and hence motion, the

mount of motion that occurs in a given image sequence should provide a

good indication of the data rate requirements of the system.
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For presentation purposes, only a fraction of the total number of

images can be presented. Figures 5.1(a) through (f) are a selected set

of output images from the *SLOW PHONE' sequence with the following set

of selected parameters. These parameters will be changed to try and

show the effects of the various thresholds and quality settings on the

quality of the output.

NPBITS - 10
VA.EST - 1.0
STDMn - 3.0
AVGE1 - 3.0
SNRSET - 24.0

Figures 5.2(a) through (f) are also from the 'SLOW PHONE' sequence

with the following set of selected parameters.

NITS - 10
VAREST - 1.5
STDERk - 4.0
AVGER - 4.0
SNRSET - 21.0

Figures 5.3(a) through (f) are selected images from the 'SLOW PHONE'

sequence with the following set of selected parameters.

NPBITS - 10
VAREST - 1.0STDE"R - 2.0

AVG RR - 2.0
SNRSET - 27.0

Figures 5.4(a) through (f) are also images from the 'FAST PHONE'

sequence with the following set of selected parameters.

• 1.
N' PBITS - 10
VAREST - 1.0

.. STDERR - 3.0
AVGERR - 3.0
SNRSET - 24.

As stated earlier, the most important aspect of the output is the

subjective quality of the images, but other parameters of the system may

provide insight into functioning of the algorithm. For this reason, a

set of eleven plots for each of the four output sequences will be

presented. The plots will be presented in groups of four, each one
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...............

(a) FRAME 1 (b)FRAME 8 (c) FRAME 15

Figure 5.1

Output 'SLOW PHONE' Sequence

(d) FRAME 22 (e) FRAME 29 (f) FRAME 36
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*(a) FRAME 1 (b) FRAME 8 (c) FRAME 15

Figure 5.2

Output 'SLOW PHONE' Sequence* k

a) FRAME 22 (e) FRAME 29 (f) FRAME 36
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(a) FRAME I3b.RM ()FAE1

Figure 5.3

Output 'SLOW PHONE' Sequence

(d) FRAME 22 (e) FRAME 29 (f) FRAME 36
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(a) FRAME I (b) FRAME 8 (c) FRAME 15

Figure 5.4

*] Output 'FAST PHONE' Sequence

(d) FRAME 22 (e) FRAME 29 (f) FRAME 36
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plotting the same parameter as the others in the group, but with a

different image set or initial parameter setting.

The first set of plots, figures 5.5(a) through (d), provide a measure

of the mount of motion that is present in the image sequence. For the

purpose of the plots, motion is defined to have occurred within a block

if any information about that block must be transmitted. This includes

cases of integer-only displacement, non-integer displacement and

possible cases where no motion has occurred, but a residual data

sequence is required. For counting purposes, a block is defined as an

eight by eight sub-image. The results are plotted as a percentage of

the maximum number of sub-blocks possible. For the image size used,

with an eight by eight blocksize, the total number possible is 384. The

average number of blocks considered to be in motion in the sequence of

forty Images is printed in the upper right-hand corner of each figure.

Here, as in the remaining ten plot sets, the (a) plot relates to the

output figures provided in figures 5.1(a) through (f). Plots labelled

(b), (c), and (d) then relate to figures 5.2(a) through (f) to 5.4(a)

through (f) respectively.

The second set of plots, figures 5.6(a) through (d), present the

instantaneous data rate as a function of frame number. Like the

previous set of plots for the block rate, the plots start from a mall

value and quickly rise to a more stable value. This can be partially

explained by noting that it may take multiple frames to detect and

correct for very small mounts of motion between frames.

The next set of plots, figures 5.7(a) through (d), simply combine the

two previous sets of plots in such a way so that the interaction of the

block rate and data rate can be more easily seen. As would be expected.

the points tend to cluster about a line angled from the lower left to

the upper right. This simply shows that an increase in motion will

require an increase in data rate.

Figures 5.8(a) through (d) provide a numerical indication of

instantaneous system distortion. When it comes to presentation of

results, not even the term 'SIGNAL TO NOISE RATIO' has a universal

definition. As used here, signal to noise ratio is defined to be ten

times the log base 10 of the ratio of the signal variance to the error
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variance. The average is again printed in the upper right-hand corner

of each plot. Note the broken Y axis for signal to noise ratio. .

Figures 5.9(a) through (d) and 5.10(a) through (d) are presented to

show the interaction of the system gain, or signal to noise ratio, to

both the block rate and data rate. For these sets of plots, it would be

ideal if the system signal to noise ratio was not a function of data

rate or block rate. The ideal case would be one for which the output

signal to noise ratio would be constant regardless of the data rate or

block rate. That is, the quality of the output images should remain

constant regardless of what the input sequence contains. Neither of the

sets of plots show a tendency to disprove this idea. -

The previous three sets of plots were functions of the overall system

gain. One of the internal parameters not measurable from the output of

the system that has proved informative, is the predictor gain. The

predictor gain is defined to be, ten log base 10 of the ratio of the

variance of the signal to the variance of the error of prediction. This

prediction error of the system is that error which would be generated if

no residual were available for correction. Recall that this is one of -'

the internal parameters used to judge what the data rate of the residual

should be. The plots of the predictor gain as a function of frame

umber are provided in figure 5.11(a) through (d). Note that these

plots tend to be much more erratic and varying than do those of the

entire system signal to noise ratio. Although not plotted, the

difference between system gain and the predictor gain shows the gain

that has to be generated by the quantizer and error coding section of

the system.

Unlike the overall system gain, it is expected that the predictor

gain would be related to both the data rate and block rate. Figures

5.12(s) through (d) show the relationship between the predictor gain and

the block rate. As would be expected, the points tend to cluster about

a line with a slightly negative slope. Said another way, the predictor

gain is higher for a smaller number of blocks in motion. The greater

the number of blocks in motion, the lower the predictor gain. Likewise

the predictor gain and system data rate exhibit similar characteristiCs

in figures 5.13(a) through (d). The lower the predictor gain, the more

data that has to be transmitted through the quantizer and hence, the

higher data rates.
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The final plots provide a sort of statistical view of the predictor

error signal. Figures 5.14(a) through (d) present a log histogram of

the prediction errors. Figures 5.15(a) through (d) provide an

alternativ, view of the prediction error in a log cumulative

distribution function of the error.
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The iteration methods are also unable to cop,- with occlusion as well as

non-translation types of motion. The Prediction Coefficient method is

able to partially alleviate these problems.

The results presented show a good degree of data compression, while

at the same time producing high quality output. The algorithm has been

tested on data similar to that which would be encountered in a video-

telephone setting. A large amount of the algorithm analysis has been

performed. To some degree it has been shown how various system

parameters effect the quality of the output and the data rate required

to achieve it. Also, the interaction among the predictor gain, the gain

produced by the quantizer, and the overall system gain have been

investigated. Actual output images have been presented for visual

comparison of the different preset parameters. Ideas and suggestions

were provided for possible future research to continue with the work

that has been started here.
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requirement in background and shadow areas than would be expected. In

these background and shadow areas, both the signal variance and signal

power are low. There may be a way to take into account both the signal

variance and the signal power to improve the quantizing quality.

Finally, work is needed in the area of noise effects. A study of how

noise in the input sequence effects both the prediction process and the

output quality of the image sequence is needed. More importantly, how

noise in the digital channel effects the operation of the algorithm, as

well aa the quality of the final output, needs further research. The

implementation here assuned a noise free channel, but for real world

applications an additive noise channel will need to be modelled.

Only a few of the many possible refinements and extensions of this

one particular method for notion compensated image coding have been

mentioned. The entire field of motion compensated image coding is still

in its infancy, with an enormous amount of work remaining. To even

attempt to list all of the possible paths for future research would be a

major undertaking. The fields of research remain wide open.

5.3 CONCLIilO

The method of Prediction Coefficient Energy Concentration has proved

to yield an improvement in motion compensated image coding when compared

with previously published results. The improvements come in both the

areas of algorithm complexity and in the method for determining the

displacement estimation. Previous methods for displacement estimation

have relied on an iterative procedure that was both time consuming and

rigidly fixed to translation types of motion only. The method of

Prediction Coefficient Energy Concentration has replaced the iterative

estimation procedure with a two-step estimation procedure. The first

stop produces an estimate for the integer portion of the displacement.

The second stop, if needed, produces a set of predictor coefficients

that are able to perform the same function as the non-integer portion of

the displacement.

The algorithm does not have the problems of convergence that many of

the previous methods exhibit. The replacement of the iteration

procedure with the two-step prediction process relieves this problem.
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Further work is required to determine the effectiveness of this

procedure as well as how this setting effects the actual quality of the

output. Signal to noise ratio is a term that is easily calculated, but

may not have a direct relationship to the actual quality of the output

image sequence. Perhaps some other figure of merit would function

better.

The area of the procedure that requires the majority of the bandwidth

is also the area that offers the greatest potential for further

research. This is the area of error quantization. The system as

presented here, assumed the error distribution to be Gaussian and

attempted to minimize the sum of the absolute value of the error. This

is a major oversimplification of the data that actually results. It is

known that the distribution is not Gaussian, but estimates of the actual

distribution are unknown. Better estimates of the actual error

distribution are required. Perhaps one solution would be to define a

set of possible distributions and determine which of these distributions

the current residual data best fits. It is expected that the errors

that arise from blocks located at the moving/non-moving interface would

differ substantially from those blocks that tend to have a constant

translation. Yet another distribution would be required for areas where

background is uncovered. If it could be determined from which area a

block originated, an estimate for that local error distribution might be

generated.

Another problem in the area of quantization that merits further

research, is that of possible data dependent thresholding or

quantization. It has already been stated that the eye will allow a

higher degree of degradation for portions of the image that are

undergoing translation than it will for non-moving portions. It also

seems that the human visual system is very critical about small errors

when they occur in areas of the image with small signal variance. This

problem was partially addressed in that the signal to noise ratio was

defined as ten log the ratio of the signal variance to the error

variance, as opposed to ten log the ratio of the signal power to the

error power as is normally used. TLis forced a better residual update

in the areas of the image with small signal variance, such as the face

and hand areas of the images presented. It also forced a higher update
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alleviated with the help of a low pass filter on the output stage of the

motion compensation system to smooth the output.

5.2 RECOMMENDATIONS FOR FUTURE RESEARCH

This work has only scratched the surface as far as motion compensated

image coding is concerned. The groundwork material has been set and a

path started, but many more questions have been asked than have been

answered. Much of the algorithm analysis and implementation work yet

remains.

One area of the algorithm analysis that needs to be studied in more

detail, is the area of optimal threshold and parameter selection. As

pointed out in the last section, effort is needed to determine optimal

values of the thresholds and how the choice of one effects the output,

as well as the action of some of the other parameters. Ideally, some of

the parameters should be tied to the quality of the image data itself.

It will prove unproductive to try to generate an output image sequence

with a signal to noise ratio greater than that of the input sequence.

Along the same lines, the difference in quality of display devices can

also contribute to the setting of various system parameters. That is,

the dynamic range and distortion of the display device needs to be

considered when the image quality requirements are defined. In general,

the choice for the threshold for determining if the displacement is

integer or non-integer as well as the choice for the threshold for

determining if sub-block processing is required, requires some more

effort. These two thresholds are not unrelated. For example, if the

error threshold is increased for the integer/non-integer test, allowing

more blocks to pass as integer displacement, fewer will even reach the

portion of the algorithm that tests for sub-block processing. Some work

needs to be performed to determine what the optimal threshold settings

are, how they are related to the actual image data, and also how they

are related to one another.

One of the other preset system parameters that warrants further

research, is the value for the output signal to noise ratio. As was

noted in one of the previous chapters, when a fixed length buffer is

used in the implementation, the value for this required signal to noise

ratio of the output could be used as a buffer regulating parameter.
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5.1 RJXAININ PROB

The overall results of this method for motion compensated image

coding have proved promising. A fairly high quality output has been

achieved at a nominal overall data rate. Still. for video-telephone

applications the data rate remains too high. There remains a number of

problems with both the algorithm itself and its implementation.

Perhaps the biggest problem, other than the required bandwidth, for a

video-telephone implementation, is that of computational speed. It is,

and would be, impractical to try to implement the algorithm in anything

other than a parallel architecture hardware device. At various points

throughout the different chapters, sections of the algorithm that lend

themselves to parallel implementation were noted. Real time processing

of video images is a very calculation intensive undertaking that

interfaces well with parallel processing techniques. The problem of

processing time may be negligible when a real time hardware parallel

processor is used.

Another problem of the computer simulation was that of the choice of

the various thresholds and other system parameters. No attempt was made

to optimize all of these parameters. Some of the thresholds and

parameters were chosen to estimate the noise introduced into the system

by the imaging apparatus, while others, such as the predictor

coefficient coding length, were chosen by a mathematical model. The

image quality and data rate requirements are opposing ends. That is,

minimizing the data rate tends to decrease the image quality, as does

increasing the image quality require an increase in data rate. Both of

these are very dependent upon the settings of the various thresholds.

One of the problems that remains in the output image can only be seen

when the images are viewed in sequence as they were intended to be.

This problem comes about because of the ability of the human eye and

visual system to detect very minute changes in gray level, if it has

some geometric structure. This can be seen to occur in the image

sequence at lower data rates when the outlines of the sub-blocks of the

images become visible. Because of the straight line geometric nature of

the block boundaries, they appear more noticeable than one would expect

for the size of the actual error. Perhaps this could be partially

,'. - 1I1 -
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Appendix A

PL RECURSIVE, CEFFICIEN RECURSIVE AND RESIUAL
RECURSIVE DISPLACENT ESTIMATION

I

p
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DISPESTI

PROGRAM DISPESTI

Co *
CO PROGRAM DISPEST1 AUTHOR - CARL BOWLING DATE 9/12/83 '
C' C
CO PROGRAM FOR DISPLACEMENT ESTIMATION *
Co METHOD IS COEFFICIENT RECURSIVE BY STULLER AND 0
Co NETRAVALI OF BELL LABORATORIES. IT MAY ALSO BE USED*
C* FOR PEL RECURSIVE BY NETRAVALI AND ROBBINS

Co SUBROUTINES OR FUNCTIONS RBIURED -
C* XFORM - ROUTINE TO PERFORM TRANSFORMATION
C* PLOTS - CALCOMP TRANSLATOR AND PLOT SOFTWARE '
C* RNTRP - FUNCTION FOR INTEGER INTERPOLATION
C*

C
REAL V(2.2) ,H(8,8) ,CLL(6,8) ,CP(6,256) ,CPP(6-,8) ,CPPP(6,8)
INTEGER IL(6,256) ,IP(6,256),ILL(6,8),IPP(6,8)
REAL G(6,8) ,GG(6,8) ,CLLL(6,8) ,ERROR(6,8) ,DISP(250) ,XIT(250)
DATA PI/3.14159265/

C
C INITIALIZE MATRICES TO VALUE OF 128
C

DATA HL/1536'128/,IP/1536'128/
C
C SET UP THE TRANSFORMATION MATRIX IN THE H ARRAY
C

DATA H/12'1.00,40-1.00,2'1.00,4"-1.00,4*1.00,2*-1.00,
1 201.00,20-1.00, 1.00,2'-1.00,201.00,2'-1.00,
2 201.00,20-1.00, 1.00, -1.00,201.00, -1.00,
3 1.00, -1.00, 1.00,2*-1.00, 1.00, -1.00,
4 2'1.00, -1.00, 1.00, -1.00, 1.00, -1.00,
5 1.00, -1.00/

C
C METHOD IS USED TO DETERMINE IF PEL RECURSIVE OR COEFFICIENT
C RECURSIVE DISPLACEMENT ESTIMATION IS USED. APPROPRIATE LINES
C MUST ALSO BE COMENTED OUT DUE TO THE COMPILER USED.
C METHOD = 0 -- > PEL RECURSIVE
C METHOD - 1 -- > COEFFICIENT RECURSIVE
C
C LOOP IS USED TO DETERMINE IF EVERY LOOP ITERATION OR
C EVERY BLOCK ITERATION IS TO BE USED.
C LOOP - 0 -- > EVERY BLOCK ITERATION
C LOOP - 1 -- > EVERY LOOP ITERATION
C
C NPLOT IS A FLAG TO DIRECT THE LOTTING OF THE DATA
C NPLOT - 0 -- > GO TO 4025 SCREEN
C NPLOT - 1 -- > GO TO 4662 PLOTTER
C

LOOP - 1
METHOD - 1
NPLOT = 0
SQR 2 = 1./((2.)00.3)
IF(METHOD.E! .0)SQR12 = 0.0
V(1,1) = SQRT2
V(ill ) = V(1,1)
V(2,1) = V(1,1)
V(2,2) =-V(1,1)
FAC - .5*SQRT2
DO 10 1-1,8
DO 10 3-1,8
H(I,3) - H(I,J)0FAC

10 CONTINUE
IF(METHOD.NE.0) GO TO 40
DO 20 1-1,8

20 H(II) - 1.0
DO 30 1-1,2

30 V(I,I) - 1.0
40 CONTINUE
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DISPEST1

C* GENERATE ifIE TEST ARRAYS IN IP AND IL,
Co IP IS THE PRESENT IMAGE FRAME *
Co IL IS THE PREVIOUS IMAGE FRAME
co THE TEST ARRAY IS A RADIALLY DECAYING FRIQUENCY
C* MODULATED COSINE FUNCTION.

C
DO 50 1-1,6
DO 50 3-1,60
R-SQRT( FLOAT( (I+7)**2 + 3*3 ) )
IF ( R .GT. 60.0 ) GO TO 50
P-(1. - R/60.)*10. + 10.
IPT-100. $ EXP(-.01*R) * COS(2.*PIOR/P) + 128.
IP(I,1+128) -IPT
IP(I,129-3) -IPT
IL(I,+126)-IPT
IL(I,127-1)-IPT

50 CONTINUE
C

Co
Cs TRANSFORM THE ORIGINAL ARRAY WITH SUBROUTINE XFORM *C.

C NR - THE NUBER OF ROWS IN TRANSFORMATION
C NC - lTfE NUMBER OR COLUMNS IN TRANSFORMATION

NR-6
NC-c

C
C TRANSFORM IS (V)*(I)*(H)
C

DO 80 1-1,256,8
C
C I IS THE BLOCK NUMBER
C

DO 60 11 - 1,6
C
C K1 IS THE ROW NUMER

37 - I + 7
[3 - 0
DO 60 K2 - 1,17
K3 - K3 + 1
CPPP(Klo.3) - IP(K1,K2)

60 CONTINUE
CALL XFORN(CPP, V, CPPP, H, NR, NC)
DO 70 1i - 1,6
K3 - 0
DO 70 K2-3, 7
13 - K3 + 1
CP(Kl,K2) - CPP(11,13)

70 CONTINUE
80 CONTINUE

C

Co
Co iD TRANSFORMATION - START OF DISPLACEMENT ITERATION*
Co

C
C EPSIL - GAIN FACTOR (READ IN INTERACTIVELY)
C DA IS THE ACTUAL FRAME DISPLACEMENT IN PIXELS
C DI IS THE ESTIMATE OF THE PIXEL DISPLACEMENT
C ITNUK IS THE ITERATION LOOP COUNTER
C

DA - 2.0
1OFF - 1.35
YOFF - 1.5
IF(NPLOT.ElQ.0)CALL PLOTS(IBUF,1,15)
IF(NPLOT.BQ.0)XOFF - .1
IF(NPLOT.BQ.0)YOFF - .1

90 CONTINUE
WRITE(6,500)
READ(5.510) EPSIL
IF(EPSIL.GT.1) STOP
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DISPESTI

IF(NPLOT. B. 0)CALL ERASE
DI - 0.0

C
C I IS TE BLOCK NUMBER (USE ONLY 101 - 23RD)
C

ITNUM = 0
DO 150 1=10,23

C
C YY - START COLUMN LOCATION OF CURRENT BLOCK
C YD - START COLUMN LOCATION OF PREVIOUS BLOCK
C 33 = (I-1)*8 + 1

K=3

IF(LOOP.BQ.0) GO TO 95
C
C IF LOOP SET TO 0, COMMENT OUT THE FOLLOWING TWO LINES
C SOME COMPILERS MAY NOT ALLOW THE YUMP AROUND DO LOOPS
C

DO 140 3-1,8
DO 140 K-3,4

95 RD - FLOAT(X3) - DI
3D - RD
RDIFF - RD - FLOAT(3D)

C
C*

C* CALCULATE INTERPOLATED DISPLACED BLOCK
Co 0

C
YD7 - JD+7
3DD - 0
DO 100 L-.TD,3"D7
YDD - IDD + 1
DO 100 W-1,6
I - RI(IL(M,L),IL(M,L+),RDIFF)

100 CLLL(M,3'DD) = I
C

c END OF FRAME INTERPOLATION DETERMINATION - 0
Cs FIND THE FRAME ERROR 0

C

CALL FORM( CLL, v, aLL, H, NR, NC)
DO 110 L-1,8
DO 110 N-3,4
ERROR(M,L) - CP(M,L+3.-1) - CLL(M,L)

110 CONTINUE
C

Cs
Ce FIND TIME DOMAIN GRADIENT OF THE DISPLACED FRAME *
Co CLLL. GRADIENT FOUND BY CENTRAL DIFFERENCE METHOD
C* 

C
DO 130 L=3,4
DO 120 H-2,7
GRADi - CLLL(L+1,M) - CLLL(L-1,M)
GRADI - 0.
GRAD2 - CLLL(L.M4-) - CLLL(L,M--)

120 G(L,M) = (GRADi + GRAD2) * .5
GRA1 - (CLLL(L,2) - CLLL(L, 1))*2.
GRAD2 - (CLLL(L+1,1) - CLLL(L-1,1))
GRAD2 - 0.
G(L,1) = (GRADI + GRAD2) *.5
GRAD1 - (CLLL(L.8) - CLLL(L,7))*2.
GRAD2 - (CLLL(L+1,8) - CLLL(L-1,8))
GRAD2 - 0.
G(L,8) (GRADi + GRAD2)*.5

130 CONTINUE
CALL IFORM (GG, V,G,H,6,8) 129
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DISPESfl.

C

C.
co GENERATE THE DISPLACEMENT ESTIMATE

C
IF(WOOP.BQ.1) GO TO 135

C
C IF LOOP IS SET TO 1, COMMENT OUT THE FOLLOWING TWO LINES
C SOME COMPILERS MAY NOT ALLOW THE TUMP AROUND DO LOOPS
C
C D0140 1- 1,8
C DO 140 X -3.4

135 DI - DI - EPSIL*ERROR(K,Y)*GG(K,3)
1MMU - ITNUM + 1
IIT(ITNUM) ITNUM
DISP(ITNJN) DA - DI

140 CONTINUE
150 CONTINUE

IF(NPLOT.EQ.1)CALL PLOTS(IBUF,1 ,15)
CALL PLOT (XOFF, 10FF, -3)
IF(NPLOT.BQ.0)XOFF - 0.0
IF(NPLOT.BQ.0)YOFF - 0.0
CALLT FACTOR (. 65)
IF(NPLOT.Hl.0)CALL FACTOR( .25)
CALL SCALE(DISP,S.,80,1)
CALL SCALE(XIT,8.,80,1)
CALL AXIS(0.0,0.0,'ITERATION NUNBER',-16.8.,0.0,XIT(81),XIT(82))
CALL AXIS(0.,0.,'DISPLACENT ERROR'.18,5.,90..DISP(81),DISP(82))
IF(NPLOT.BQ.0) GO TO 155

C IF(NPLOT.BO.1)CALL NEWPEN('BLAC')
VRITE(6,520)

520 FORMAT(1I,'/* HIT ANY SINGLE DIGIT NUMBER AND RETURN IF READY')
READ(5.530)IANS

530 FORMAT(I2)
C IF(NPLOT.BrQ.1)CALL NEWPEN('BLAC')

155 CONTINUE
CALL LINE(IIT,DISP.80.1,1.3)
CALL SYMBOL(6.3,4.45,.20,44,0.,-l)
CALL SYBL(6.,4.5,.14.'',0.,1)
CALL NU)ER(6.74.5.14,EPSIL..O5)
IF(LOOP.BQ.1)CALL SYNBOL(2.,5 ... 21 'EVERY LOOP ITERATION ',0.,21)
IF(LOOP.ElQ.0)CALL SYMBOL(2.,5.,.2.'EVERY BLOCK ITER.ATION'.0.,21)
IF(METOD.BQ.1)CALL SYMBOL(2..S.3, .2, 'COEFFICIENT RECURSIVE', .

# ,21)
IF(METROD.BQ.0)CALL SYMBOL(2.,S.3,.2,'PEL RECURSIVE',0.,13)
IF(NPLOT.BQ.1) GO TO 90
CALL TSEND
CALL ANNODE
GO TO 90

160 CALL PLOT(10.,10.,999)
500 FORMAT( 11, '/*' ,'WHAT VALUE FOR TEE GAIN EPSILON?')
510 FORMAT(F1O.6)

STOP
END
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RESDISP

PROGRAM RESDISP
PIT FILE 5279 FROM VS1 COPY 001 NOHOLD

Cs *
co PROGRAM BY - CARL BOWLING *
co LATEST UPDATE - OCTOBER 26, 1983
C.
Co PROGRAM FOR DISPLACEMENT ESTIMATION *
C* METHOD IS RESIDUAL RECURSIVE
Co
C* SUBROUTINES OR FUNCTIONS REQUIRED-
C.
Co IFORMB - PERFORMS A 1 OR 2 DIMENSIONAL UNITARY
co TRANSFORMATION ON THE INPUT ARRAY.
co COMP - ADAPrIVE HYBRID PICTURE CODING DATA
C* COMPRESSION ROUTINE.
co PLOTS - ALL THE CALCOMP DRIVER SOFTWARE AND THE *
co TRANSLATOR SOFTWARE FOR THE TEKTRONIX
C* 4662 PLOTTER AND 4025 DISPLAY.
Ce  RINTRP - FUNCTION TO INTERPOLATE BETWEEN ADJACENT *
Co INTEGER VALUES.
Cs S

C
EXTERNAL HADGEN
REAL DLIF(8,8) ,DLTF(8,8) ,ERROR(8,8) ,CP(8,256)
REAL COEFF(8,3) ,CL(8,256) ,XIT(250) ,DISP(250)
INTEGER IL(,256),IP(8,256)
COMON /CODPRM/ IRICIBSZ.NTYPE.cBSZ,OTYPEIBLKSZ
COMMON /FT/ K[FT
DATA PI/3.14159265/
DATA NTYPEI/'IN*4'/,OTYPE1/'REAL'/

C
C NTYPE1 IS THE DATA TYPE OF THE INPUT ARRAY (INTEGER*4)
C OTYPE1 IS THE DATA TYPE OF THE OUTPUT ARRAY (REAL*4)
C
C INITIALIZE PAST AND PRESENT FRAME MATRICES 1O VALUE OF 128
C

DATA /l/20480128/,IP/20480128/
C
C SET CONSTANTS FOR TRANSFORM
C

NTYPE - NTYPE1
OTYPE = OTYPE1
KFFT = 0
IBLKSZ- 8
IB SZ = 8
OBSZ - 8

C

Co
co GENERATE THE TEST ARRAYS IN IP AND L
C* IP IS THE PRESENT IMAGE FRAME
Ce IL IS THE PREVIOUS IMAGE FRAME *
C* THE TEST ARRAY IS A RADIALLY DECAYING FRElQUENCY
C* MODULATED COSINE FUNCTION. ONLY A PORTION OF THE *
Cs ENTIRE IMAGE IS USED.
C*

C
DO 10 1-1,8
DO 10 3-1,60
3=-SQRT( FLOAT( (I+7)**2 + 3*3
IF ( R .GT. 60.0 ) GO TO 10
P-(1. - R/60.)*10. + 10.
IPT-100.*EXP(-.01*R)*COS(2.*PIORP) + 128.
IP(I,3+128)-IPT
IP(I,129-3)-IPT
IL(I,3+126) -IPT
IL(I, 127-3) -IPT

10 CONTINUE
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Co *
C* START OF DISPLACEMENT ITERATION
C* S

C
C EPSIL - GAIN FACTOR (READ IN INTERACTIVELY)
C DA IS THE ACTUAL FRAME DISPLACEMENT IN PIXELS
C DI IS THE ESTIMATE OF THE PIXEL DISPLACEMENT
C ITNUM IS THE ITERATION LOOP COUNTER
C

DA - 2.0
20 WRITE(6,30)
30 FORMAT(IX. '/*', 'WHAT VALUE FOR EPSILON? F10.6 FORMAT')

READ(5,40)EPSIL
40 FORMAT(F1O.6)

C
C CHECK IF GAIN IS GREATER THAN 1. IF SO STOP PROGRAM
C

IF(EPSIL.GT.1.) GO TO 130
CALL PLOTS(IBUF,1.9)
DI - 0.0

C

Co
Ce I - THE BLOCK NUMBER (USE ONLY 10TH - 23RD)
C* ITNUM - THE ITERATION NUMBER
C* jJ - START COLUMN LOCATION OF CURRENT BLOCK
C* JD - START COLUMN LOCATION OF PREVIOUS BLOCK
C* S

C
ITNUM - 1
XIT(1) 1.
DISP(1) - 2.0
DO 120 1-10,23
33 - (I-1)'8 + 1
DO 120 1 = 1.8
DO 120 K - 3,3
RD - FLOAT(JJ) - DI
JD - RD
RDIFF - RD - FLOAT(UD)

C

C*
C* CALCULATE INTERPOLATED DISPLACED BLOCK 5
Co IN THE TIME DOMAIN
Co *

C
JD7 - 3D+7
IDD - 0
DO 50 L=3D,JD7
JDD - 3DD + 1
DO 50 M-1,8
X RINTRP(IL(ML),IL(ML+1),RDIFF)

50 DLIF(M,IDD) - X
DO 60 L=1,8

60 WRITE(l) (DLIF(LM) ,M-1,8)
REWIND 1

C

Co *
Co END OF DISPLACED BLOCK INTERPMLATION
Co
C* CALCULATE TE RESIDUAL SEQUENCE FOR USE AS TE
Co GRADIENT.
C'

C
NTYPE - OTYPE1
IR-0
IC - +1
CALL XFORMB(HADGEN,8,8,1,2,DLTF)
REWIND 2
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70 READ(2)(DLTF(L.M),M=1,8)
REWIND 2
CALL COP(DLTF.8.8,3 ,COEFF)
REWIND 1
DO 80 L=1,8

80 WR.ITE(1) (DLTF(LDM) ,)I=,8)
REWIND 1
IR= 0
IC - -1
CALL IFORB(HADGEN8,8,1,2.DLTF)
REWIND 1
REWIND 2
DO 90 L-1,8

90 READ(2) (DLTF(LM),N=1,8)
DO 100 L-1,8
DO 100 M-1,8

100 DLTF(LM) = DLTh(L.M)/FLOAT(IBLKSZ)
REWIND 1
REWIND 2

C

Cs
co END OF RESIDUAL CALCULATION

Cs
C* FIND THE TINE DOMAIN FRAME ERROR

co

C
DO 110 L-1,8
DO 110 N-3,3

110 EUROR(M,L) - FLOAT(IP(M,L+33T-1)) -DLIF(M,L)

C

C.
Co GENERATE THE DISPLACEMENT ESTIMATE

Cs

C
DI - DI - EPSIL*ERRR(K,J)*DLF(K,3)
INUM - 1M + 1
IITINUM) =ITNUM

DISP(ITNUM) 2.0 - DI
120 CONTINUE

C
C ALL OF THE CALLS BELOW ARE USED TO PLOT THE RESULTS
C

CALL PLOT(1.35.6.0,-3)
CALL FACrOR(.65)
CALL SCALE(DISP,5.,80,1)
CALL SCALE(XIT.8.,80,1)
CALL AIIS(0.0,0.0,'ITERAIION NUMBER',-16,8.,0.0,XIT(81),XIT(82))
CALL AXIS(0.DO.,'DISPLACENENT ERROR',18,5.,90.,DISP(81),DISP(82))
CALL LINE(XIT,DISP,80.1.1,3)
CALL SYNBOL(6.3,4.45,.20,44,0.,-1)
CALL SYNBOL(6.5D4.5. .14, '-',0. ,X)
CALL NUNBER(6.7,4.5..14,EPSIL.0.0,5)
CALL SYHBOL(1.0,5.0,.28.'DISPLACEMENT ESTIMATION' ,0.,23)
CALL SYNBOL(2.0.5.4,.20.'RESIDUAL RECURSIVE ,O.,18)
CALL PLOT(10.,10.,2)
CALL TSEND
CALL ANMODE
GO TO 20

130 CALL PLOT(10.,10.,999)
STOP
END
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C
IERSUM - 0
IE-RSQR - 0
K I STY - 1
DO 250 I=1,16

L 11I - 1
DO 250 1-1,16
L= L + 1
IER - B(KL) - ERROR(I,J)
EST(K,L) - ERROR(I.1)
ERRSIG(KL) - E116(I,3)
IERSUX - IERSUM + IER
IERSQR - IERSQR +IEROIER
MRE - FJ26(I.1) + 128
IFP(IER. GT. 2 55) IER2 5 5
IP(IER.LT.1) IER - 1
RIST(IER) - HIST(IEI) + 1.

250 CONTINUE
C
C CALCULATE THE MEAN AND VARIANCE OF THE QUANTIZED VERSION FOR
C COMPARISON.
C

Al - IBESUM
Si - SQRT((FLOAT(IERSQR) -(Al*A11256.))/255.)

Al - Al/256.
IW(IPKT.NQ.2)WRITE(6,1060)IBLK.BLK.MIN.(LOC(KC),KC=1,2),VG.STD,

# Al, S1,INTIT,?BIT
260 CONTINUE

C
C CALCULATE THE SIGNAL ID NOISE RATIO
C

ITOTAL - 0
DO 270 I-1,ISIZE
DO 270 J-1,3SIZE
ITOTAL - ITOTAL + B(I,X)

270 CONTINUE
TOTAL - FLOAT(ITOTAL)
INEAN - TOTAL/SIZE
SSE - 0.0
SSS - 0.0
SSP - 0.0
DO 290 3=1,ISIZE
P555 = 0.0
PSSE - 0.0
PSSP - 0.0
DO 2 80 1-1, IS IZE
PSSP - PSSP + ERRSIG(I,1)ERSIG(I,3)
IERR - B(I,J) - EST(I,3)
INTER - B(IXJ
SIG - FLOAT(INTER) - 1MEAN
PSSS - PSSS + SIG'SIG
PSSE - PSSE +FLOAT(IERRXIERR)

280 IA(I.J) - EST(I,3)
SSS - SSS + P555
SFP - SSP + PSSP

290 SSE - SSE +PSSE
IF(IPIT.B.2)WRITE(6,1070)SSE, SSS
SNI - 10.*ALOG1(SSS/SSE)
SNRP - 10.*ALOG1(SSS/SSP)
SNRARY( IMAGE) -SNR
SNRPAR(IMAGE) - SNRP
IF(IPRT.BQ.1)URITE(6,1080)SNR, SNIP

C
C WRITE OUTPUT IMAGE OUT TO UNIT 10
C

CALL COMTAL(EST, ISIZE,ISIZE,10)
C WRITE(6,1090)FF

IF(IPT.GE.1)WRITE( 6,1100)
C
C CALCULATE MOTION RATE (#BLOCKS IN MOTION)
C

NTAB - 0
DO 330 1-1,24
DO 325 1-1,16
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co NON-INTGER DISPLACEMENT ASSUMED AT THIS POINT
C. e
Cs LOCATE THE MINIMUM QUADRANT WITH RESPECT TO THE *
Co INTEGER DISPLACEMENT. *
cc *

C

CALL FILL(IBLLJBLKIM1,JIM1,8,MTAB,24,16,'RR')
INIBIT - 1
CALL LOCATE(LOCF,21,21,MIN)
NBITS = NBITS + 21 + 4*NPBITS

C
C SET UP THE REGRESSION PROBLEM
C

K-0
DO 190 L-1,8
I = L + I1OFF
DO 190 M-1.,8
I M + IYOFF
K K+I
DO 180 N-1.4
X(KN) = D8(J+QOFF(MIN,N,1) ,I + QOFF(MIN,N,2))

180 CONTINUE
OUT(K) = C8(M,L)

190 CONTINUE
C

C
C1  CALCULATE THE NEW PREDICTION COEFFICIENTS I
C---
C

CALL COEFGN(X, OUT, RCOEF, K)
C
C QUANTIZE THE PREDICTOR COEFFICIENTS
C

DO 200 1-1,4
200 RCOEF(I) - (AINT(RCOEF(I)*RLEVm., + .5))/RLEVEL

IF(K.NE.129) GO TO 210
RCOEF(1) - 0.0
RCOEF(2) = 0.0
RCOEF(3) - 1.0
RCOEF(4) = 0.0
KIN - 1

210 CONTINUE
C
Cs e

Co CALCULATE THE PREDICTED IMAGE BLOCK C
C* C

C
CALL PRED(C8,D,ES,28,8,IXOFF,IYOFF,VA.AVQOFF,MIN,RCOEF,INIIT,

# NBITS, RETCOD, ERS, DIST, LVLARA)
IF(IPRT.BQ.2)WRITE(6,1050)1, 1,MIN.LOC(I),LOC(2), AV,VA, INlIT,

# NBITS,RETCOD
IF(RETCOD.BQ.1)NBITS = NBITS - 21
IF(RETCOD.BX.1) GO TO 170

C
C WRITE ESTIMATE AND ERROR OUT TO 16X16 ARRAY
C

K - IBL1
DO 220 1=1,8K=K+1
L= BLK1
DO 220 J-1,8
L= L+ 1
ERROR(K,L) = E8(I,3)
ER16(K,L) = US(I,3)

220 CONTINUE
230 CONTINUE
240 CONTINUE

C
C WRITE QUANTIZED PREDICTION VALUE OUT TO ESTIMATED MATRIX
C CALCULATE THE MEAN AND VARIANCE OF THE PREDICTION ERROR
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C8(lDL) =C(I.3)
140 CONTINUE

IAVG - IFIX(FLOAT(ITOTAL)/64. +.5)

CALL INITI(D8.28,28,IAVG)
150 CONTINUE

C
C TRANSFER DATA FROM D -> D8
C

ISfl - IX - 10 + TBLK1
ISPI - IST1 + 27
ITY = ISTY - 10 + IBLKl
IPY - ITY + 27
151 = ISfl
MH - ISPI
ISY - ITY
IN! - InY
IF(IBLOCK.EQ.0) GO TO 155
IF(ISZ.LT.1) 181 - 1
IF(IH.GT.ISIZE) 1HZ - ISIZE
IP(ISY.LT.1) IS! - 1
IF(I]Kl.GT.ISIZE) INY - ISIZE

155 M 0
N- 0
IF(ISTX.LT.1) X - 1 -ISTI
IF(ITY.LT.1) N - 1 -ITY
KCONS(l) - N + 1
KCON8(2) K + 1
K M
DO 160 I-ISXIHZ
K K +1
L- N
DO 160 1-ISYIHfY
L- L + 1
DS(L,[) - IA(I3J)

160 CONTINUE
C

C CALCULATE THE MIC POR THE 8 BY 8 BLOCKS
Cl
C.
C I(BOK~1 ALIIIF2,10

CAI(ILOC.Q L .F.1,21 ,IKNO.BOLCNTR8
CAL 11,11)..8218II.LCILOKKO$,TR8
11F -LO(2 )
IX0FF - LOC(i) -1

CYF LCl
C TETPRITGRDSACMT
C TETFRITGRDSLCMN

IFII.TIHR8 OT 7
IF(W INTIT HR8 G 0O17

CMT

C.

Ce INTBGER DISPLACEMENT ASSUMED AT THIS POINT
Co.

C
RCOEF(l) - 0.0
RCOEF(2) - 0.0
RCOEF(3) - 1.0
RCOEF(4) - 0.0
KIN - 1

C
C TEST FOR NO DISPLACEMENT
C

IF(IXOPF.BQ.10 .AND. IYOFF.BQ. 10) GO TO 210
CALL FILL(IBLKJBLLIK, Ml~,8,M'AB.24,16,'II')
NBITS - NUITS + 20
GO 70 210

170 CONTINUE
C
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AVG = AV
C
C I
C] PERFORM TEST TO DETERMINE IF SUB-BLOCK PROCESSINGC MAY HELP. TEST VARIANCE OF ERROR.

C

IF(VA.LT.STDERI .AND. ABS(AV).LT.AVGERR) GO TO 240
C

Cs *
Co* * * * • * ***$ ** *

C c c e e SC* * S
Ce 0

C
C RESET DISMq.ACEMENT MAPC

CALL FILL( IBLKBLK 00,16 *AB 2416,' ')
C
C CORRECT DATA RAT FOR SUB-BLOCK PROCESSING
C

IF(INIBIT. .1) NBITS = NBITS - 18 - 4*NPBITS
IF(IN7BIT.BQ.0.AND. (IOFF.NE.10 .Oi. IYOFF.NE.10))NBITSNIBITS- 18
DO 230 11-1,2
IBLK1 - (I1-1)08
DO 230 31-1.2
JILKi - (11-1)08
IlMl Ii - 1
1Mi - 1 - 1

KCON(1) - 1
KCON8(2) - 1
KCON8(3) - 28
KCON8(4) - 28

C

C

C
C START DATA TRANSFER FOR 8 BY 8 BLOC
C
C

IF(IBLOCK.r.1) GO TO 130
C
C SECTION FOR NON-BORDER BLOCK TRANSFER
C

I - IBLKl
DO 120 1=1.8

3 - 3BLK1
DO 120 L=1,83-3+1
C8(KL) - C(I,3)

120 CONTINUE
GO TO 150

130 CONTINUE
C
C SECTION FOR BORDER BLOCK TRANSFER
C

ITOTAL = 0
I - IBLK1
DO 140 K-1,8
M - ISTY + I
I -I + 1
3 - JEBLXi
DO 140 L-1,8
N - II + 3

ITOTAL - ITOTAL + IA(M,N)
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CALL FILL(IBLK,JBLK,0,0,16,MrAB.24,16,'R,)
CALL LOCATE(LOC,F,21,21,MN)

C
C QUADRANT NUMBER NOW CONTAINED IN MIN
C

CTHlE FOUR VALUES ARE CONTA.4INED IN ARRAY RCOEF.

C
C
C

C LOCATION O' THE 4 COEFFICIENTSCi
C RcOEFP(1) IRCOEF(2)

C
C RCOEF(3) RCOEF(4)
C
CC
C SET UP THE RBRESSION PROBLEM
C USE EVERY OTHER VALUE FOR THE PREDICTION PROCESS
C

1-0
DO 80 X-1,16.2
M - I + I.0FF
DO 80 1-1,16,2
N - I + YOFF
K-K+1
DO 70 L-1,4

70 X(KL) - D(N+QOFF(MINL,1),M--QOFF(MIN,L,2))
80 OUT(K) - C(Il)

C
C GENRATE THE PREDICTION COEFFICIENTS FROM THE MODEL
C

CALL COEFGN(X, OUT, RCOEF, K)
C
C QUANTIZE PREDICTOR COEFFICIENTS TO NPBITS BITS
C

DO 90 1-1,4
90 RCOEF(I) - (AINT(RCOEF(I)*RLEVEL + .5))/RLEVa

IF(K.NE.129) GO TO 110
C
C IF INVERSE DOESN'T EXIST, THEN SET COEFFICIENTS
C
100 CONTINUE

C
C INTEGER DISPLACEMENT ASSUMED AT THIS POINT
C SET UP THE PREDICTOR COEFFICIENT VECTOR
C

IN7BIT - 0
RCOEF(1) - 0.0
RCOEF(2) - 0.0
RCOEF(3) = 1.0
RCOEF(4) = 0.0
MIN - 1

C
C CHECK IF WITH ERROR - NO DISPLACEMENT
C

IF(IXOFF.BQ.10 .AND. IYOFF.BQ.10) GO TO 110
CALL FILL(IBLK,J BLK, 0,,16,MTAB,24,16,'II')
NBITS - NBITS + 18

110 CONTINUEC

Ci CALCULATE THE PREDICTED IMAGE BLOCK

C -
C

CALL PRED(CD.ERR o.36,16,IXOFFIYOFF,VA.AV.)FFNINRCOEF, IT.
S TR1 .RVfTCOD. ER16 ,DIST, LVLARA)
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Cl START THE A IMAGE BLOCK TRANSFER IN"D TRE D SUB-
C MATRIX, MTA IS THE PAST FRAME MATRIX.

C
C

ISI-ISI-1
ISPI - ISTI - 35
ITTX - ISTX + 10
MP - IST -30
ISI - ITX 3
ISI - ISPI
151 - IT!I
IN! - HPY
IffyLOIEQ0 GO I 5
IF(ISLTC.B1) GO TO 1 0
IF(IHX.GT.1) SE -I JSZ
IF(IZX.LT.1)ZE IS - SZ
IF(ISY.GT.1)ISE -I IIZ

50 IY.TISE 1-0-ISZ
N0 - 0
NFIT.T1 0 -IT

IF(ITT.LT.1) NM 1 -IT

KCO(T) -.1 N 1 1T
KCoN(2) - N + 1
K-K()-
DO 60M 15,
DO6 -. X 1 E[
LK N
DO N0II! I
LO 60L-S,1 N

60 DLK + 1AI
60 0() - LJ
KCON(3) L

CCN4
C

C SOLVE FOR THE METRIC MATRIX-AND INTEGER DISP.
C THE ACTUAL METRIC VALUES ARE (DNTAINED IN THE
C F MATRIX.
c
C.
c
C IF(IBLOCK.BQ.1) CALL INITI(F.21,21 .0)

IF(3PLT.BQ.1)CALL IITI(F21,21,256)
CALL NETRIC(C,DF,36,21,16,IMI:N,LOC,INWL4CKKCON,ITRSH.11,11)

C
C TEST IF ONLY INTEGER DISPLACEMENT - IF SO
C GO TO IMAGE PREDICTION SECTIOIN.
C

110FF - LOC(2) - 1
110FF - LOC(1) - 1

C CALL MPLOT(FD XE,21, IPLTD IMAGE, IBLI, JELK LOC, IIRD)
IF(ININ.LE.THRSH) GO TO 100
IN7B IT - 0

C-

CI NON-INTEGER DISPLACEMENT ASSUMED AT THIS POINT

C

NBITS - NBITS + 18 4*NPBITS
INTB IT - 1

C
C DETERMINE IF PLOTS REQUIRE
C
C IF(JPLT.BQk.1 .AND. IBLAOCK.EQ.0 .AND. IMALE.GT.5)
C # CALL MPLOT( F, XE 21,*IPLT. IMAE, IELK JBLl, LOC,MIRD)
C
C - ---- ----- - -

C ~ SECTION FOR NON-INTEGER PORTION OF THE DISPLACE-
M AENT ESTIMATION.
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C-
C

DO 260 IBLK - 1, ISTOP
ISTY - (IBLK-1) *16 + 1
ISPY = ISTY + 15
DO 260 JBLl - 1 ,JSTOP

C
C-- C

C KATZ C THE PRESENT FRAME MATRIX.
C

Co ISTX IS TKE I STARTING POINTER FOR A AND B
Co ISPX IS TEE I ENDING POINTER FOR A AND B *
Co IST! IS THE Y STARTING POINTER FOR A AND B S
C* ISPY IS THE Y ENDING POINTER FOR A AND B

C
IST - (3"BLK-1)016 + 1
I - ISTX
ISPx - ISTX + 15

C
C RESET IN7BIT
C INIBIT: 0 - INTEGER ONLY DISPLACEMENT
C 1 - NON-INTEGER DISPLACEMENT
C

IN'MIT - 0
C
C TEST IF BLOCK IS ON THE BORDER, IF SO SET D MATRIX TO THE
C AVERAGE OF THE B SUBMATRIX. IBLOCK IS A BORDER FLAG
C IF IBLOCK - 0 THEN NON-BORDER BLOCK
C IF IBLOCK - 1 IEEN BORDER BLOCK
C

IF(IBLK .MQ. 1 .OR. IBLK .MQ. ISTOP) GO TO 20
IF(3BL .BQ. 1 .OI. J BL .BQ. ISTOP) GO TO 20

C

C SECTION FOR NON-BORDER BLOCKS
C-

IBLOCK - 0
DO 10 T-ISTX, ISPX
1=[+1
L- 0
DO 10 I-ISTY,ISPY
L- L+ 1

10 C(L,K) = B(I,3)
GO TO 40

C

CI SECTION FOR BORDER BLOCKS
CC-
C

20 IBLOCK - 1

ITOTAL - 0
DO 30 =I-STX, ISPX
K-K+ 1
L- 0
DO 30 I=ISTY, ISPY
L- L+ 1
ITOTAL - ITOTAL + IA(I,3)

30 C(L,K) - B(I,)
IAVG - IFIX(FLOAT(ITOTAL)/256. + .5)
CALL INITI(D,36,36,IAVG)

40 CONTINUE
Cc ---- -----------
CI

- 141 -



PCEC

C NTEITS - RUNNING TOTAL FOR BITS USED
C NINAGE - NUMER OF IMAGES TO BE PROCESSED
C SNISET - MINIMUM OUTUT SNI
C

NPB ITS - 10
VAREST - 1.00
STDEU= 3.0
AVGEUR = 3.0

ISIZE - 128
IPRT -1
IPLT -0
MPT - 0

KPLT - 0

NIMAGE - 40

C

NPBITS - NPBITS + 1
ITNUS - VAREST128

ITRS - INT(VAREST'512. +.5)
IS70P - ISIZE/ 16
3STOP - ISIZE/16
SIZE - FLOAT(ISIZEOISIZE)
SSST - 0.0
SSEr - 0.0
sspr - 0.0
TART - 0.0
DRTT - 0.0
CALL D.EAD(IAD ISIZE. JSIZE, 21)

C
C ALLOW FOR MDRE IM 1 ERROR
C
C CALL URRSEr(208,1000.1.0,0)
C CALL1 flRSET(253.1000,1,0,0)
C
C INITIALIZE HISTOGRAM VECTOR
C

CALL INIT(HIST1258.0.0)
CALL INITI(LVLABA.1,128,0)
CALL QUANTI(DIST)
IF(IPLT. BQ.1 .AND. KPLT. BQ.1)CALL FLOTS( IBUF, 1,15)

C.
Ce START ACTUAL IMAGE SEQUENCE LOOP

co

IF(IPRT. GE.1) VRITE( 6,1020) NPBITS, VAREST. STDERED AVGERR, SNRSET
DO 500 IMAGE - 1,NIMAGE

* CALL READ(BISIZE,SSIZE,21)
IF(IP&T.GE.1)WRITE(6,1010)FF, IMAGE
IF(IP&T.GE.2)WRrTE( 6,1030)
IF(IPIT.GE.2) VRITE(6,1040)

C -- - -- ___

CI INITIALIZE IMAGE CDNSTANTS
C-
C

C ND ITS - A ODUN(ER FOR THE DATA RATE
NBITS, - 0

C
C INITIALIZE MOTION TAB ARRAY
C

CALL INITI2(MTAB.24,16,16448)
C

C SET UP THE BLOCK COUNTERS TO STEP THROUIGH THE
C IMAGE IN 16 BY 16 BLOCKS. IBLK IS THE BLOCK

ROW NUER AND IBLK IS TOE BLOCK COLUMN NUMBER.
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PROGRAM PCEC
,o.-ce* * s*** ** * * **** *** ***** * *** .. * ***..* * ** .** *

Co
C* PROGRAM BY: CARL BOWLING
Cs LATEST UPDATE: JULY 18,1983
Co *
Co PROGRAM FOR 2-D DELTA FUNCTION LOCATION DETERMIN- *
C* ATION. TO BE USED FOR MOTION COMPENSATED IMAGE*
Co CODING.
C* s
C* SUBROUTINES NEEDED: 0
Co $
Cs READ - READS IN IMAGES s
C* INITR - INITIALIZES A REAL ARRAY TO A CONSTANT 0
Co INITI - INITIALIZES AN INTEGER ARRAY TO A CONST'
Co INITI2 - INITIALIZES AN INTEGERs2 ARRAY TO A '
Cs CONSTANT
C* LOCATE - LOCATES TE MINIMUM QUADRANT VALUE
Co METRIC - COMPUTES THE DIFFERENCE METRIC 0
Co PRED - CALCULATES THE PREDICTED VALUES 0
C' COEFGN - PREDICTION COEFFICIENT GENERATOR 0
C' COMTAL - OUTPUTS AN ARRAY TO TAPE IN CODNTAL FORM*
Co PLOT - ALL THE CALCOMP DRIVER SOFTWARE AND 0
C' TEE TRANSLATOR SOFTWARE FOR THE TEK 0
C' 4662 PLOT=.
Co INVERT - SCALES DATA 0-i IN INVERTED ORDER
Co PUR - DRIVER FOR PURTOY 3D PLOT ROUTINE $
C' FILL - KEEPS TRACK OF BLOCKS WITH MOTION
Co

C
INTEGER'2 IA(192,.28),B(192,128).EST(192,128),rAB(24,16),FF
INTEGER'2 ERRSIG(192,128)
"i. ER QOFF(4,4,2) ,KCON(4) ,C8(8,8) ,DS(28,28) ,ES(8,8) ,KCON8(4)
I1EGER F(21,21).C(16,16),D(36,36),ERROR(16,16),LVLARA(128)
INTEGER !38(8,8) ,E1.6(16,16) ,LOC(4) ,RETCOD
REAL 1(64,4),OUT(64),EIST(258),XHIST(258),RCOEF(4),XE(21,21)
RAL XY(2,6) ,NGD(4).SNRARY(50),SNRPAR(50),DRTARY(50),TARARY(50)
REAL DIST(128)
COMON/THRESH/ STDERR, AVGER, SNRSET
COMMON/ RCODE/ RETCOD
DATA QOFF2*0,2*-1,20,4*0,20-1,2*1,2*0,-1.200,2*-1,2"0,-1,0,2"1,

A 200201.0/
DATA FF/3084/

C'
C' PROGRAM CONSTANT INITIALIZATION SECTION
C'

C
C PROGRAM CONSTANT KEY
C
C NFBITS - NUMER OF BITS TO QUANTIZE PREDICTOR COEFFICIENTS
C (ACTUAL NUMER IS 1 GREATER TO INCLUDE SIGN)
C VAREST - ESTIMATE FOR AVERAGE ABSOLUTE DIFFERENCE BETWEEN
C CONSTANT FRAMES
C STDERR - ERROR STANDARD DEVIATION THRESHOLD
C AVGERR - ERROR AVERAGE THRESHOLD
C ISIZE - INPUT HEIGHT OF THE PICTURE IN PIXELS
C 3SIZE - INPUT WIDTH OF THE PICTURE IN PIXELS
C IPRT - PRINTER FLAG
C - 0: DON'T PRINT DATA
C - 1: PRINT DATA
C - 2: PRINT ALL DATA (STEP BY STEP)
C IPLT - PLOTIER DIRECTOR FLAG
C - 0: PLOT WILL BE DIRECTED TO 4662 PLOTTER VIA GPIB
C 1 1: PLOT WILL BE DIRECTED TO TEE 4025 SCREEN
C NOTE: MAKE SURE THE REQUIRED TITLIBS ARE AVAILABLE
C JPLT - METRIC PLOT FLAG
C 0 0: NO METRIC PLOT DRAWN
C = 1: METRIC PLOT WILL BE DRAWN
C KPLT - PLOTTER FLAG
C 0 0: NO PLOTTING IS NEEDED
C = 1: SOME TYPE OF PLOTTING IS REQUIRED
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NION COMPENSAT'ED IMAGE CODIG USING PREDICTION
COEFFICIENT ENERGY CONCENTRATION - PROGRAM LISTINGS
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SUB ROUTINE XFORM

SUBROUTINE XFORM( C, V.IR, N, N)

Cs
Co SUBROUTINE TO PERR A LINEAR TRANSFORMATION

C.
C* TRANSFORM&TION IS GIVEN BY:

co (V)(II)(H)

REAL C(N,M),V(2,2),E(K,M),T(6,8),XI(N,M)
C
C CALCULATE (V)0(1I)

DO 30 L-1.6.2
Il-L

* * I2-L+1
DO 10 1-11, 12
NN - I-L+1
DO 10 7-1,8
T(1I1)-.0
DO 10 K-1,2
13 - L + K - 1
T(I3J) - T(I,3) + V(NN,K)*XI(I3,S)

10 CONTINUE
C
C CALCULATE ((V)(X1))*E
C

DO 20 i-11,1
DO 20 3-1,8
C(I,3)-0.0
DO 20 X-1,8
C(I,l)-C(I.l)4T(I,K)*H(L3Y)

20 CONTINUE
30 CONTINUE

END

* -137 -



SUBROUTINE RINXTRP

FUNCTION RINT2P(I ,I2,X)

co FUNCTION RINTRP
C.
co PURPOSE:
Co THIS FUNCTION IS USE TO PERFORM A LINEAR *
Co INTERPOLATION BETWEEN INPUT INTEGER POINTS *Co

Cs EXPLANATION OF CALL VARIABLES S
Co I1 - LOWER BOUND VALUE *
Co 12 - UPPER BOUND VALUE
Co I - THE NON-INTEGER INTERPOLATION
C

Y1 - FLOAT(I1)
Y2 - FLOAT(I2)
IF(X.RQ.0.0) RI - Y1
IF(X.B.0.0) RETURN
RDTREP Yi + (Y2 - YI)*X
RETURN
IEND

..
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50 S2 - S2 + R(K)*V1(K)
DO 60 K-1,N
G(K) VI(K)/(W + S2)

60 RT - RT + A(K)*R(K)
DO 70 K-,N
DO 70 L-1K
V(KL) = V(KL) - G(K)*V1(L)

70 V(LK) = V(K,L)
E - S - RT
DO 80 K-I.N

80 AK) - A(K) + G(K)*E
C
C SHIFT THE PAST VALUE VECTORC

DO 90 L-2,N
90 R(N+2-L) - R(N+1-L)

R(1) - s
100 CONTINUE

* .DO 110 K-1,N
110 CX(KLI) - A(K)

C
C RESET R-REGISTER TO INITIAL SIGNAL VALUE
C

DO 120 =1,N
120 R(3) - X1

DO 150 3-1,NSF
s - IV()
IT - 0.0

C
C DETERMINE RESIDUAL SIGNAL
C

DO 130 K-iN
130 rT - RT + A(K)R(K)

E-S-RTIIN(I,J) = H
C
C SHIFT R-REGISTER
C

DO 140 K-2.N
140 R(N+2-K) = R(N+1-K)

M(l) - s
150 CONTINUE
160 CONTINUE

RETURM
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Co" 1
]

SUBROUTINE COMP "

SUBROUTINE COMP(XIN, NF, NSF, N, CM)
C'

Co SUBROUTINE - COMP
Co PURPOSE:
C' THIS SUBROUTINE IS USED TO PERFORM ADAPTIVE*
C' HYBRID PICTURE CODING (AHPC) ON AN INPUT *
C' ARRAY.
C'
C* EXPLANATION OF CALL VARIABLES: *
C* XIN - THE INPUT DATA AND RESIDUAL OUTPUT MATRIX * 
C* NF - NUMBER OF LINES IN THE INPUT MATRIX *
C* NSF - NUMBER OF SAMPLES PER FRAME-SAMPLESMLINE * -"
Co N - NUMBER OF PREDICTOR COEFFICIENTS TO BE USED*
C* CM - MATRIX CONTAINING PREDICTOR COEFFICIENTS *
Co * -
C* DEFINITION OF VARIABLE TERMS:
Cs V - THE ERROR COVARIANCE MATRIX .
Cs A - IE PREDICTOR COEFFICIENT VECTOR
C* VARI - INITIAL VALUE FOR ERROR COVARIANCE MATRIX *
C* W - VARIANCE OFFSET
Co XV - THE INPUT LINE TEMPORARY VECTOR
C* G - THE GAIN VECTOR
Co R - THE PAST VALUE VECTOR *
Cs E - THE ERROR OR RESIDUAL TERM *
C'
C' EXTERNAL ROUTINES RB(UIRED: '
Cs NONE
C*

C
REAT A(6),V(6),XN(NFNSF),R(6),XV(256),G(6),V(6,6),C(NNF)

C
DATA V136"0.0/,A/1.0,-.5,-.2,.3,.4,-.5/

XNSF = NSF
W = 1.0 r
VARI = 100.0

C
C IN THE DO 160 LOOP, I IS THE LINE NUMBER (1 - NF)
C

DO 160 I=1,NF
DO 10 1=1,N
DO 10 K=1,N
V(i) = 0.0
IF(I.BQ.K) V(JK) = VARI

10 CONTINUE
C
C Xl IS THE FIRST VALUE OF EACH LINE, USED TO INITIALIZE THE R VECT
C

X1 - XIN(I,1)
C
C SET UP THE INPUT VECTOR AND THE PAST VALUE VECTOR
C

DO 20 X=I,NSF
20 XV(l) - XIN(I,J)

DO 30 1=1,N
30 R(J) = Xl

C
C IDENTIFICATION LOOP (IDENTIFY THE PREDICTOR COEFFICIENTS)
C
C

DO 100 3-1,NSF
S - XV(3)
S2 - 0.0
RT - 0.0
DO 40 K-1,N
Vi(K) - 0.
DO 40 L-1,N

40 Vl(K) - Vl(K) + V(K,L)'R(L)
DO 50 K-1,N
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PCC

IF(NTAB(I,K).NE.16448)NTAB -NTAB + 1
325 CONTINUE

IP(IPIT.GE.1)VRT(6,1110) (MTAB(IiK) ,K-1,,16)
330 CONTINUE

TARARY(INAGE) -NTAB
TART - TART + NTAB

IF(IPIT.GE.1)VRITE(6,1100)
DRATE - FLOAT(NBITS)/SIZE
DRTr - DITI + DR.ATE
SSST - SSST + SSS
SSET - SSET +SSE
SF! - 5SF! + SF
DRTARY(IM&GE) - DRATE
N7mITS - N7BITS + NBITS
TDRATE - FLOAT(N2RITS) /(FLOAX(IXAGB) *SIZE)
IF(IPRT.GE.1)lITE(6.1120)N~ITS. DRAZE.NmBITS,TD&AI

500 CONTINUE
SNI - 10.*AL0G10(SSST/SSET)
SNIP - 10.*ALOG1O(SSST/SSPr)
SNRARY(NIXAGE+l) - SNR
SNIPAR( NIMAGE+1) - SNIP
DRTARY(NIMAIGE+1) - DRTT/FLOAX(NIAGE)
TARARY (NIME~1) - TART/FLOAT (NIMAGE)
NN - NIMAGE + 1
WRITE( )NN
VRITE(9 (SNIARYIM, I-1, NN)
WRITE(9 (SNIPAR(I) ,I-1,NN)
VR1TE(9) (DRTARY(I),I-1,NN)
VRITE(9) (TARARY(I),I-1,NN)
WrIE(9) (HIST(I)J,-1,2S6)
WRITE(9)(LLAIA(I -1,128)
IF(IPRT.GE.1)VRITE(6,1080)SNK, SNIP

1010 FORMT(1X, Al, IIAGE SBQUENCE NUMBER '12)
1020 FORXAT(1X.'BITS/COEF. - '.12.' VAREST - l.FS.2.

#ISTDERR - ',FS.2,' AVGHRR - '.FS.2,' SNRSET - ',FS.2)
1030 FORMAT(/,' y X QUAD XDIS YDIS PRE-AVG PRE-STD AFT-A

#9TG AFr-STD'./)
1040 FORNAT(1X80(-'))
1050 FORMAT(2X.2I5,14,2I5,2F10.3,3I7)
1060 FORMAT(IX,5 IS,4Fl0.3,2I7)
1070 FORMAT(1I,2Fl0.1)
1080 FORMAT(IlX'SIGNAL TO NOISE RATIO 1,2F10.5,' DB')
1090 FORMAT(1I.A1)
1100 FORMAT(1I,,'_______________
1110 FORXAT(lX.'I',16(1X,A1),'i')
1120 FORXAT(1X,'#BITS -',17,' .DATA RATE 1,F6.4,' TOTAL ',7

#I' CUXULATIVE DATA RATE ',F6.4)
S70P

BLOCK DATA
C
C BLOCK DATA FOR POINTERS FOR SUBROUTINE METRIC
C IN ORDER THEY ARE ISTART.XSTOP,YSTARTDYSTOP
C MA IS 21ANDMINIS 1
C

COMMON /PNTR/ RANGE
INTEGER IRANGE(4)/8,14,8,14/
END
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SUBROUTINE CHANGE

SUBROUTINE (IANGE(A, B, Y, N. IDIR)

C*
co SUBROUTINE:CRANGE
C* PURPOSE:
Co THIS SUBROUTINE IS USED TO CONVERT A REAL*4*
C* INTO A REAL'8 AND VIS-VERSA ACCORDING TO *
C* THE VALUE OF IDIR
C.
Co EXPLANATION OF CALL VARIABLES:
Co A - B- REAL'4 ARRAY
Co B - B- R.AL*8 ARRAY
C* NBY - I - IST SIZE VARIABLE FOR A AND B *
Co N - I - 2ND IZE VARIABLE FOR A AND B *
C* IDIR - I - DIRECTION FLAG FOR TRANSFER *
C: +I MOVE A- B
C' -1 MOVE B -)A
C*
C* SUBROUTINES NEEDED: *
Co NONE
C*

REAL A(NBY,N)
REAL'S B(NBY, N)
IF(IDIR.LT.0) GO TO 20
DO 10 -1I,N
DO 10 I-1,NBY

10 B(I.J) = A(I,3)
RETURN

20 DO 30' .=1,N
DO 30 I=1,NBY

30 A(I,3) = B(I,3)
RETURN
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COEFGN

SUBROUTINE COEFGN

SUBROUTINE COEFGN(X, OUT, COEF, IERN)

C* SUBROUTINE: COEFIGN
C* PURPOSE:
C* THIS SUBROUTINE IS USED TO COMPUTE A SET OF*
C* REGRESSION COEFFICIENTS TO FIT THE DATA *
Cs INPUT IN THE MATRIX X AND THE VECTOR OUT. *
C* THE COEFFICIENTS ARE THEN OUTPUT IN THE *
C' RCOEF VECTOR OR THE COEF VECTOR.
C*
Cs EXPLANATION OF CALL VARIABLES:
C' X - I - MATRIX OF SIZE 4 BY 64 WHICH *
C' CONTAINS THE REGRESSION DATA '
C' OUT - I - VECTOR OF SIZE 64 CONTAINING *
C' THE REGRESSION DATA
C' RCOEF - 0 - OUTPUT VECTOR OF SIZE-4 THAT *
C' CONTAINS THE INEQUALITY
C' CORRECTED REGRESSION
Co COEFFICIENTS.
C' COEF - 0 - OUTPUT VECTOR OF SIZE 4 THAT *
C' CONTAINS THE REGULAR
C' REGRESSION COEFFICIENTS.
C' IERN - 0 - ERROR CHECK FOR NON-EXISTANCE *
C' OF INVERSE
C' *
C' NOTE: ONLY 1 OF THE COEFFICIENT GENERATION METHODS '
C* CAN BE USED. THE CHOICE IS MADE BY PLACING '
C' THE NAME RCOEF OR COEF IN THE SUBROUTINE
C* STATEMENT - THIS VECTOR IS THEN RETURNED TO '
C' THE CALLING PROGRAM.
C'
C* EXPLANATION OF CALL VARIABLES:
C' SUBROUTINES NEEDED:
Co TRANSP - TRANSPOSES A MATRIX
C' MXUL - MATRIX MULTIPLICATION ROUTINE
C' CHANGE - CHANGES REAL*8 TO REALS4 AND BACK *
C' LINV2F - MATRIX INVERSE (I3L ROUTINE)
C'

REAL 1(64,4) ,XT(4,64) ,Xx(4,4) ,XrXI(4,4) ,COEF(4) ,OUT(64) ,XTOUT(4)
REAL A(4) ,XTXIA(4) ,RCOEF(4) ,XTXIXT(4,64)
REAL*8 XTX8(4,4) ,lTXI8(4,4) ,WORK(100)
DATA A/401./
CALL TRANSP(X.XT.64,4,64,4)
CALL MMJL(XTXX,4,64,4,4,64,4)
CALL CHANGE(Xrx,XTX8,4,4,1)
CALL LINV2F(XTXs,4,4,XrXI8,3 ,WORK, IERN)

C
C CHECK FOR PROBLEMS WITH THE INVERSE EXISTING, IF PROBLEM
C DOES EXIST RETURN TO MAIN AND CORRECT
C

IF( IERN. BQ.129)RETURN
CALL CHANGE(XTXI,MlT 8,4,4 ,-1)
CALL MMUL(XTOUT,lTOUT,4,64,1,4,64,1)
CALL MMUL(XTXIXTOUT,COEF,4,4,1,4,4,1)

C
C ADD CORRECTION FOR BQUALITY AND INEQUALITY CONSTRAINTS
C

CTOTAL - 0.0
TOTAL = 0.0
DO 10 1-1,4
CTOTAL - CTOTAL + CORP(I)
DO 10 3-1,4

10 TOTAL - TOTAL + XITXI(I,J)
TOTAL - 1./TOTAL
CTOTAL - 1. - CTOTAL
CALL XML(XITXI,A,ITXIA,4,4,1,4,4,1)
TOTAL - TOTAL*CTOTAL
DO 20 1-1,4

20 RCOEF(I) = TIA(I)*TOTAL + COEF(I)
RETURN
END
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CON"AL

SUBROUTINE CONTAL

SUBROUTINE C)MTAL( IN, Y, N, LOUT)

C*
co SUBROUTINE: COHIAL
co PURPOSE:
C* THIS SUBROUTINE IS USED TO TRANSLATE AN *
C INTEGER*2 ARRAY TO 1 BYTE PIXEL VALUES AND *
C* WRITE IT OUT IN CONTAL FORMAT TO DISK OR *
C* TAPE
co C EXPLANATION OF CALL VARIABLES:
C* IN - I - INTEGER*2 IMAGE ARRAY
C: NBY - I - 1ST SIZE VARIABLE FOR IN *
C* N - I - 2ND SIZE VARIABLE FOR IN
co LCwT - I - LOGICAL OUTPUT NUMBER FOR TE*
C* DATA TO BE WRITTEN
Co
C* SUBROUTINES NEEDED: *
co NONE

INTEGER*2 IN(NBY,N),IWORK(512)
LOGICAL*1 OUT(2,512)
EQUIVALENCE (IWORK(1) ,OUT(I,1))
DO 20 I=1,NBY
DO 10 J=1,N

10 IWORK() = IN(I,J)
20 RITE(LOUT,30) (OUT(2,J) ,J=1,N)
30 FORMAT(4(128AI))

RETURN
END
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FILL

SUBROUTINE FILL

SUBROUTINE FILL( IBLJELL IBLK8,JBLKS, IBLLSZ, UDATA, NBY, N, KIND)

SCt
C* SUBROUTINE:FILL
Co PURPOSE: S
C* IRIS SUBROUTINE IS USED TO KEEP AN OUTPUT 0
C* ARRAY WITH THE TYPE OF MOTION INVOLVED. *
C* AN 'I' IN THE OUTPUT ARRAY MEANS THAT THE *
C: MOTION FOR THAT BLOCK OR SUB-BLOCK WAS
C' INTEGER ONLY. AN 'R' IMPLIES THAN SOME "
Cs NON-INTEGER PORTION OF THE DISPLACEMENT WAS*
C* USED
C* S
Co EXPLANATION OF CALL VARIABLES: 0
C' IBLK - I - Y LOCATION OF MAJOR BLOCK 0
C' JBL - I - X LOCATION OF MAJOR BLOCK
Cs IBLKS - I - Y LOCATION 0 SUB-BLOCK *
Cs TBLK8 - I - X LOCATION OF SUB-BLOCK
C' IBLKSZ - I - CURRENT BLOCKSIZE *
C' MDATA - 0 - ARRAY FOR INFORMATION
Co NBY - I - 1ST SIZE VARIABLE FOR MDATA '
C* N - I - 2ND SIZE VARIABLE FOR MDATA *
C* KIND - I - NOTION TYPE IN QUOTES: 0
C* 'RR' -> NON-INTEGER DISP. *
C 'II' -> INTEGER DISPLACEMENT '
C' ' ' -> NO DISPLACEMENT
Co
Co SUBROUTINES NEEDED:
Cs NONE
Co

INTEGER*2 MDATA(NBY, N), KIND
JiM1 - 2*(IBLK-1) + 1
M12 - NXl + 1
Y11 - 2*(JBI-1) + 1

MY2 - NYI + 1
IF(IBLKSZ.BQ.8) GO TO 10
MDATA(MX1,MY1) - KIND
MDATA(MXlMY2) = KIND
MDATA(MX2,MY1) - KIND
MDATA(MX2,MY2) - KIND
RETURN

10 CONTINUE
M12 - Nl + IBLK8
NY2 - Nil + TBLK8
MDATA(MX2,MY2) = KIND
RETURN
END
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INITI

SUBROUTINE INITI

SUBROUTINE INITI(A, Ni ,N2, IVAL)

Co
co SUBROUTINE: INITI $
co C* PURPOSE: 0
co THIS SUBROUTINE IS USED TO INITIALIZE A $
Cs INTEGER ARRAY TO A CONSTANT VALUE 0
Co S
C* EXPLANATION OF CALL VARIABLES:
Co A - 0 - INTEGER ARRAY TO INITIALIZE
Cs Ni - I - 1ST SIZE VARIABLE FOR A
Cs N2 - I - 2ND SIZE VARIABLE FOR A 4
C* IVAL - I - VALUE TR ARRAY IS INITIALIZED*
Cs TO
Cs SUBROUTINES NEEDED: *
Co NONE
Cs

INITIGER A(NI,N2)
DO 10 3-1,N2
DO 10 I-1,Ni

10 A(M1) = IVAL
RETURN
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INITI2

SUBROUTINE INITI2

SUBROUTINE INITI2 (A, Ni,N2, IVAL)

co
C* SUBROUTINE: INITI2 0

co PURPOSE:
C* THIS SUBROUTINE IS USED TO INITIALIZE A
CsINTEGER02 ARRAY TO A CNSTANT VALUE

co
C' EXPLANATION OF CALL VARIABLES:*
C* A - 0 - INTEER ARRAY TO INITIALIZE *

coNi - I - 1ST SIZE VARIABLE FOR A$
C*N2 - I - 2ND SIZE VARIABLE FOR A

Cs IVAL - I - VALUE MHE ARRAY IS INITIALIZED*
co TO
C' SUBROUTINES NEEDED:
C* NONE
C' $

INTEGER02 A(N1,N2)
DO 10 J-1,N2
DO 10 I-1,Nl

10 A(I,3) -IVAL
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IrrR

SUBROUTINE INITR

SUBROUTINE INITR(A, Ni , N2 VAL)

C.
co SUBROUTINE: INITR
Co PURPOSE:
C• THIS SUBROUTINE IS USED TO INITIALIZE A *
c C*REAL ARRAY TO A CONSTANT VALUE

cs EXPLANATION OF CALL VARIABLES: •
C* A - 0 - REAL ARRAY TO BE INITIALIZED *
c* Ni - I - 1ST SIZE VARIABLE FOR A
c* N2 - I - 2ND SIZE VARIABLE FOR A
• "VAL - I - VALUE THE ARRAY IS INITIALIZED0
Co TO
C* SUBROUTINES NEEDED: *
Co NONE

~C •.

Sc REAL AMlq, N2)
:. DO 10 Y..1,N2

DO 10 I-1,N1
10 A(I.3) VAL

RETURN
END
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INVERT

SUBROUTINE INVERT

SUBROUTINE INVERT(IA, A, N)

Cs •
C* SUBROUTINE: INVERT
C* PURPOSE:
C* THIS SUBROUTINE IS USED TO INVERT THE SCALE*
Co ORDER AND SCALE THE INPUT DATA TO BETWEEN *
Co 0 AND 1
Co EXPLANATION OF CALL VARIABLES:
C•  IA - I - INTMER ARRAY OF INPUT DATA *
C* A - 0 - OUTPUT SCALED REAL ARRAY
C* N - I - SIZE OF THE INPUT AND OUTPUT *
C* ARRAYS 5
C. •
Co SUBROUTINES NEEDED:
Co NONE
C. €

DIMENSION IA(NN) ,A(NN)
C
C FIND MAX AND MIN VALUES
C

MAX - -1000000
MIN - 1000000
DO 10 -lI.N
DO 10 I-=,N
IF(IA(IJ) .GT.MAX)MAX -IA(IJ)
IF(IA(IJ).LT.MIN)MIN = IA(I,3)

10 CONTINUE
IAX = MAX
DIF = MAX - IN
WRITE( 6, 11)MAX, KIN. DIF

11 FORMAT(XX.2nI0,F10.4)
CC REKORDER AND SCALE

DO 20 J3-iN
DO 20 I-l.N
A(I,3) - (XZAX - FLOAT(IA(I,)))/DIF

20 CONTINUE
RETURN
END
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LOCATE

SUBROUTINE LOCATE

SUBROUTINE LOCATE(LOC, E, NBY, N, MIN)

C.
C* SUBROUTINE: LOCATE
Ct PURPOSE:
C* THIS SUBROUTINE IS USED FOR LOCATION THE *
Co NON-INTEGER PORTION OF THE DISPLACEMENT *
Co VIA FINDING THE MINIMUM QUADRANT 0
Cs .
Cs EXPLANATION OF CALL VARIABLES: 0
Co LOC - I - METRIC MINIMUM LOCATION (X.Y) *
Co E - I - INPUT MATRIX HOLDING METRIC *
C* NBY - I - 1ST SIZE VARIABLE FOR E 0
C* N - I - 2ND SIZE VARIABLE FOR E
Co MIN - 0 - MINIMUM QUADRANT NUMBER
Co
Co SUBROUTINES NEEDED:
C* NONE

C
INTEGER Q(4),E(NBY,N),LOC(2)
COMMON /PNTR/IRANGE(4)

C LOCATE ABSOLUTE MINIMUM QUADRANT BY SUMMING CORNER
C VALUES OF QUADRANTS AS GIVEN BEOIW.
C
C
C IV I
C
C III II
C
C
C
C TEST IF INTEGER DISPLACEMENT ESTIMATE AT BORDER OF METRIC
C CALCULATIONS. (ERROR WILL RESULT IN THAT METRIC VALUES OUTSIDE
C DISPLACEMENT STEPS WILL BE ZERO.)
C

I = LOC(1)
I - LOC(2)
IM1= I - 1
IPI = I + 1
SKI1 I - 1

IF(I.(.IANGE(1) .OR. I.EQ.IRANGE(2)) GO TO 20
IF(S.BQ.IRANGE(3) .OR. Y.EQ.IRANGE(4)) GO TO 40

C
C DISPLACEMENT ESTIMATE NOT ON BORDER OF METRIC
C

Q(1) = E(IM1,1) + E(IM1,lP1) + E(I,JP1)
Q(2) - E(IIP1) + E(IP1,lP1) + E(IP1.)
Q(3) = E(IP1,3) + E(IP1,$M1) + E(I,JM1)
Q(4) - E(ISM1) + E(IM1JM1) + E(IM1,3)

C
C FIND MIN QUADRANT
C

IMIN = Q(1)
MIN 1
DO 10 M.-2,4
IF(Q(M) .GE. IMIN) GO TO 10
MIN M
IMIN - Q(M)

10 CONTINUE
RETURN

20 CONTINUE
IF(3.I .IRANGE(3).OR.Y.Q.IRANGE(4)) GO TO 60

C
C SECTION FOR ESTIMATE ON BORDER IN THE Y DIRECTION
C

IF(I.Ba.IRANGE(2)) GO TO 30
C
C ESTIMATE LOW IN Y DIRECTION ONLY
C TEST IF IN QUADRANT II OR III
C
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LOCATE

Q(2) - E(JP1I) + E(IP1,JP)
Q(3) - E(IJK1) + E(IP1,JM1)
KIN- 2
IF(Q(3) .LT.Q(2) )NIN-3RETURN

30 CONTINUE
C
C HIGH IN TE Y DIRECTION ONLY
C TEST IF IN QUADRANT I OR IV ONLY
C

Q(1) - E(IM1oJP1) + E(IoJP1)
Q(4) - E(IK1,JK1) + E(IIM1)
MIN - 1
IF(Q(4) .LT.Q(1)) MIN - 4
RETURN

40 CONTINUEC
C SECTION FOR ESTIMATE ON BORDER IN MEE I DIRECTION
C

IF(3.BM.IRANGE(4)) GO TO 50
C
C ESTIMATE LOW IN TE X DIRECTION ONLY
C TEST IF IN QUANDRANT I OR II ONLY
C

Q(1) - E(ImI,3) + E(IMI,JP1)
Q(2) - E(IP1,3) + E(IP1,,P1)
MIN = 1
IF(Q(2).LT.Q(1)) MIN - 2
RETURN

50 CONTINUE
C
C HIGH IN TEE X DIRECTION ONLY
C TEST IF IN QUADRANT III OR IV ONLY
C

Q(3) - E(IP1,JM) + E(IP1,3)
Q(4) - E(I-1°J-1) + E(I-1J)MIN - 3
IF(Q(4) .LT.Q(3)) MIN - 4
RITURN

60 CONTINUE
C
C SECTION FOR ESTIMATE ON ONE OF THE CORNERS
C THIS WILL FIX TEE QUADRANT SUCH THAT IT LIES ON THE INTERIOR
C OF THE METRIC MATRIX.
C

MIN - 1
IF(I.BQ.IRANGE(2) .AND. J.BQ.IRANGE(4)) MIN- 2
IF(I.BQ.IRANGE(1) .AND. J.BI.IRANGE(4)) MIN - 3
IF(I.Q.ZRANGE(1) .AND. I.BI.IRANGE(2)) MIN = 4
REIURN
END
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METRIC

SUBROUTINE METRIC

SUBROUTINE METRIC(A,B,DN1,N2,N3,IMIN,LL,IB,KCONITHR,II,J1)

Cs

C* SUBROUTINE: METRIC
Co PURPOSE:
Co THIS SUBROUTINE IS USED TO CALCULATE SOME
C* PREDEFINED METRIC BETWEEN THE TWO INPUT *
C* MATRICES A AND B AND OUTPUT THE VALUES OF *
Co THE METRIC IN MATRIX D. (ALL INTEGER)
C'
C* EXPLANATION OF CALL VARIABLES:
Cs A - I - 1ST MATRIX FOR METRIC
C' B - I - 2ND MATRIX FOR METRIC *
C' D - 0 - OUTPUT MATRIX CONTAINING THE *
C* METRIC VALUES - METHOD OF
Co THRESHOLD EXCEEDING COUNTING '
C* Ni - I - SIZE VARIABLE FOR B
C* N2 - I - SIZE VARIABLE FOR D
C°  N3 - I - CURRENT IMAGE BLOCKSIZE
Cs  IMIN - I - MINIMUM VALUE FOR SUM OF THE *
Co ABSOLUTE VALUE OF THE ERROR '
C* AT THE MINIMUM METRIC LOCATION*
C* LL() - 0 - OUTPUT 1ST METRIC LOCATION '
Co LL(2) - 0 - OUTPUT 2ND METRIC LOCATION '
C' ID - I - BORDER BLOCK FLAG (0/1)
Co KCON - I - START/STOP FLAG VECTOR s
Co ITIR - I - DIFFERENCE THRESHOLD FOR 1ST *
Co TEST RETURN 0
C* 11 - I - A PRIORI X INTEGER ESTIMATE '
C' FOR THE DISPLACEMENT
C' 11 - I - A PRIORI Y INTEGER ESTIMATE '
C* FOR THE DISPLACEMENT
Co
C' SUBROUTINES NEEDED:
C' NONE
Co

INTEGER LL(4) ,D(N2,N2) ,A(N3 ,N3) ,B(NI,NI) ,KCON(4) ,IPOS(256,2)
INTEGER*2 E(16,16)
CONNON /PNR IRANGE(4)

C ININ = 2000000
KTIE = 3
[TEST = N3 *2
IISIZE - KTEST
SIZE - IISIZE

C
C SET UP INITIAL DISPLACEMENT ESTIMATE (A PRIORI GUESS)
C

ISTART - I
ISTOP - I1
ISTART - 11
IS7OP - 1
ICOUNT - 1

C
C DETERMINE IF CURRENT BLOCK IS BORDER BLOCK
C

IF(IB.B.1) GO TO 80
C

Cs
Co SECTION FOR NON-BORDER BLOCKS
C'

C
10 CONTINUE

[TEST - IISIZE
C
C THE DO 30 LOOPS ADJUST THE DISPLACEMENT ESTIMATE
C

DO 30 I-ISTARTISTOP
II a I - 1
DO 30 I-ISTART.STOP

C
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METRIC

C [COUNT IS USED FOR THE THRESHOLD EXCEEDING COUNTING METHOD
C [SUM IS USED FOR SUM OF ABSOLUTE VALUE OF DIFFERENCE METHOD
C

[COUNT - 0
KSUM - 0IMI-= 3- 1

C
C THE DO 20 LOOPS EVALUATE A SINGLE METRIC VALUE
C

DO 20 K-1,N3
IK - K + IN1
DO 20 L = 1,N3
JL - L + IM1
KDIF - IABS(A(L,K) - B(IL,IK))
KSUM - [SUM + IIF
IF(KDIF.GT.EHR)KCOUNT - KCOUNT + 1

20 CONTINUE
D(JI) - KCOUNT
E(3.I) - KSUM
IF(KCOUNT.GT.frEST) GO TO 30

C
C RESET COUNTING METHOD POINTERS AND MINIMUM VALUE
C

[TEST - KCOUNT
LL(1) - I
LL(2) - I

30 CONTINUE
CC TEST FOR POSSIBLE MULTIPLE MINIMA (NCOUNT = #MINIMUMS)

NCOUNT - 0
DO 40 I-ISTART, ISTOP
DO 40 I-=START,STOP
IF(D(I,3) .NE.KTEST)GO TO 40
NCOUNT - NCOUNT + 1
IPOS(NCOUNTl) - I
IPOS(NCOUNT,2) - 1

40 CONTINUE
IF(NCOUNT.DB.1) GO TO 70

C MULTIPLE MINIMA POINTS FOUND, RETRY WITH SMALLER ALLOWABLE ERROR
C

[I'R - [THR - 1
IF(KTHR.GE.1) GO TO 10

50 CONTINUE
C
C MULTIPLE MINIMA POINTS AT SMALLEST ALLOWABLE ERROR
C TAKE IRE SMALLEST DISPLACEMENT TO BE THE ESTIMATE
C

MMIN - 242
DO 60 INUM - 1,NCOUNT
MOT - (IPOS(INUM,1)-11)*(IPOS(INUM,1)-11)+(IPOS(INUM,2)-11)*

# (IPOS(INUM,2)-11)
IF(MOT.GT.MMIN) GO TO 60

C
C SET THE COUNTERS TO WE SMALLEST DISPLACEMENT
C

MNIN - NOT
LL(1) = IPOS(INUM,1)
LL(2) - IPOS(INUM,2)

60 CONTINUE
70 CONTINUE

IMIN - E(LL(1),LL(2))
IF(IMIN.LE.ITHR .OR. ICOUNT.BQ.2) RETURN
ICOUNT - 2

C
C SET PULL RANGE METRIC POINTERS
C

ISTART - IRANGE(1)
ISTOP - IRANGE(2)
ISTART - IRANGE(3)
ISTOP - IRANGE(4)
GO TO 10

80 CONTINUE
[TEST - 002
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C IMIN 2000000
C

Co
C* SECTION FOR BORDER BLOCKS *
Co

C
DO 110 I-ISTARTISTOP
Iml - I - 1
DO 110 T-ISTART,ISTOP

C
C KCOUNT IS USED FOR THE THRESHOLD EXCEEDING COUNTING METHOD
C [SUM IS USED FOR SUM OF SQUARES OF DIFFERENCE METHOD
C HK IS A COUNTER FOR NUMER OF PIXEL IN BORDER BLOCKS
C

[COUNT - 0
KSUM = 0
KK = 0
311 - I - 1
DO 90 K=1,N3
II - K + Iml

C
C DETERMINE IF OUTSIDE OF BORDERC

IF(IK.LT.KCON(2) .OR. IK.GT.KCON(4)) GO TO 90
DO 90 L-1,N3
JIl - L + 3M1

C
C DETERMINE IF OUTSIDE OF BORDER
C

IF(J'L.LT.KCON(1) .OR. TL.GT.KCON(3)) GO TO 90
KK = KK + 1
KDIF - IABS(A(L,[) - B(JLIK))
KSUM = KSUM + [DIF
IP(KDIF.GT.KTHR)KCOUNT - KCOUNT + 1

90 CONTINUE
X[K - KK
IF(KK.NE.0) GO TO 100

C
C NO PIXEL OVERLAP
C

KSUM - 255 * IISIZE
[COUNT - IISIZE
KK - IISIZE

100 CONTINUE
C
C AT LEAST SOME PIXEL OVERLAP
C

IF(ICOUNT.BQ.1) GO TO 105
IF(K.E.IISIZE) GO TO 105

C
C ADJUST FOR NON-FULL BLOCK
C

[SUM = IFIX((SIZE/FLOAT(KK))*KSUM)
COUNT - [COUNT
[COUNT - INT(COUNT*(SIZE/XKK) + .5)

105 D(3,I) - KCOUNT
E(3,I) - [SUM
IF([COUNT.GE.KTEST) GO TO 110

C
C RESET COUNTING METHOD POINTERS AND MINIMUM
C

[TEST - [COUNT
LL(1) -
LL(2) - I

C I1T - KSUM
110 CONTINUE

C
C TEST FOR POSSIBLE MULTIPLE MINIMA (NCOUNT = #MINIMUMS)
C

NCOUNT - 0
DO 120 I-ISTARTISTOP
DO 120 T-JSTART,JSTOP
IF(D(I,3) .ME. [TEST) GO TO 120
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NC0UNT = NCOUNT + 1
IPOS(NCOUNT.1) = I
IPOS(NCOUNT.2) = I

120 CONTINUE
IF(NCOUNT.EQ.1) GO TO 140

C
C MULTIPLE MINIMA POINTS FOUND, RETRY WITH SMALLER ALLOWABLE ERROR
C

KIR = KTHR - 1
IF(KTHR .GE. 1) GO TO 80

C
C MULTIPLE MINIMA POINTS AT SMALLEST ALLOWABLE ERROR
C TAKE SMALLEST DISPLACEMENT TO BE DISPLACEMENT
C

NMIN = 242
DO 130 INUM = 1,NCOUNT
MOT = (IPOS(INUM.1) - ll)*(IPOS(INUM.1) - 11)

# (IPOS(INUM,2) - 11)*(IPOS(INUM,2) - 11)
IF(MOT.GT.MMIN) GO TO 130

C
C SET COUNT TO SMALLEST DISPLACEMENT
C

M/IN =NOT
LL(1) IPOS(INUM,1)
LL(2) - IPOS(INUM,2)

130 CONTINUE
140 CONTINUE

IMIN - E(LL(1),LL(2))
IF(IMIN.LE.ITHIR .OR. ICOUNT.I .2) RETURN
ICOUNT - 2

C
C SET FULL RANGE MEIRIC POINTERS
C

ISTART = IRANGE(1)
ISTOP = IRANGE(2)
ISTART - IRANGE(3)
IST0P = IRANGE(4)
GO TO 80
END
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SUBROUTINE MMDL

SUBROUTINE MWJL(A, B,C. NAMA,MBN1JN2,N3)

co
C* SUBROUTINE:MMUL
C* PURPOSE:
co THIS SUBROUTINE IS USED TO MULTIPLY TWO S
C* ARRAYS TO FORM A THIRD IN TEE FORM
'C (A)*(B) = (C)
CS S
Ce EXPLANATION OF CALL VARIABLES: *
" A - I - 1ST REAL INPUT MATRIX *
co B - I - 2ND REAL INPUT MATRIX
C* C - 0 - REAL OUTPUT MATRIX
Co NA - I - 1ST SIZE VARIABLE OF A AND C 0
C: MA - I - 2ND SIZE VARIABLE OF A, 1ST B *
C JIB I - 2ND SIZE VARIABLE OF B AND C 0
Co Ni - I - USABLE FORM OF NA
Cs N2 - I - USABLE FORM OF MA
co N3 - I - USABLE FORM OF MB
Cs S
C* SUBROUTINES NEEDED:
C* NONE S
C* S

REAL A(NA,MA) ,B(MADB) ,C(NA,MB)
DO 20 I-1,Nl
DO 20 1=1,N3
T 0.
DO 10 K-1,N2

10 T = T + A(IK)eB(K,)
20 C(I,3) = T

REIURNEND
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MPLOT

SUBROUTINE MPLOT

SUBROUTINE HPLOT(F,* EDIS IZE. IPLT, IMAGE, IBLK, JBLK, LOCMRD)

C'
C' SUBROUTINE HPLOT
co
C' PURPOSE:
C' THIS SUBROUTINE IS USED TO PLOT A 3-D DATA-*
C' BASE IN T10 DIMENSIONS. IN THIS CASE IT IS*
C' USED TO PLOT DIF FER ENCE METRIC (ACTUALLY AN*
C' INVERTED SCALED VERSION).
C'
C' EXPLANATION OF CALL VARIABLES:
C. F - I - METRIC ARRAY TO BE PLOTTED '
C* XE - T - REAL WORK ARRAY VERSION OF F'
C' ISIZE - I - SIZE OF SQUARE METRIC
C' IPLT - I - DISPLAY DEVICE FLAG
Co = 0 PLOT 11) 4662 PLOTTER

Co = 1 PLOT ON 4025 DISPLAY
C' IMAGE - I - INTEGER VALUE OF FRAME NUMBER'
Cs IBLK - I - BLOCK LOCATION VARIABLE
C' IBL - I - BLOCK LOCATION VARIABLE
C' LOC - I - MINIMUM VALUE LOCATION
C' NGRD - I - ARRAY RBQUIRED BY THE 3D PLOT'
C'
C' SUBROUTINES NEEDED:
C' INVERT - CHANGES ORDER AND SCALE 0-1
C' ERASE - CLEARS 4025 SCREEN
C' FACTOR - SCALES DATA BEFORE PLOTTING
C' PUR - 3-D PLOT ROUTINE DRIVER
C' PLOTS - CALCON? PLOTTING SOFTWARE PACKAGE'
C'

INTEGER F(ISIZE, ISIZE) .LOC(4)
REAL XE(ISIZE.ISIZE),NGRD(4),XY(2,6)
LUNIT = 6

C
CALL D4VERT(F,XED ISIZE)

C
C SET 3D PLOT PARAMETERS - LOOK AT SUBROUTINE FUR FOR M)RE DETAILS

NGRD(1 - 0
NGRD(2) = 1
NGRD(3) = 1
NGRD(4) - 1
1 = 0.0
Y - 5.2
IF(IPLT.EQ.1) CALL ERASE
IF(IPLT.EQ.0)CALL PLOT(X,Y.-3)
IF(IPLT.ErQ.0)CALL FLOTS(IBUF,1,15)
IF(IPLT.BQ.1)CALL FACTOR( .400)
IF(IPLT.EQ.O)CALL FACTOR( .40)
CALL PUR(XE, ISIZE, ISIZE, ISIZE. IY,0 ,MIRD, 15)
IF(IPLT.BQ.1)CALL FACXOR(.4O)
IF(IPLT.BQ.0)CALL FACTOR( .40)
CALL PLOT(0.0,4.3,-3)

C CALL SYNBOL(l.,6.9,.20,'FRAME',0.0,S)
C CALL SYMBOL(1.,6.6,.20.'IBLOCK',0.,6)
C CALL SYJBOL(1.,6.3,.20, 'JBLOCK',0.,6)

IFRAME - IMAGE + 1
IBLOCK - JBLK
TBLOCK - IBLK

C CALL NUER(2.6,6.9,.20,FRAME,0.0,-1)
C CALL NU)BER(2.6,6.6,.20,XBLOCKO.0.-1)
C CALL NUJUER(2.6.6.3..20,YBLOCK,0.0 -1)
C CALL SYMBOL(1.,6.,.20,'X SHIFT',0.,7)
C CALL SYMBOL(1.,5.70,.20Y SHIFTI.0.,7)

ISHIFT - LOC(1) - 11
YSHIFY - LOC(2) - 11

C CALL NUNBER(2.6,6.0,.20,XSHIFr,..0,-1)
C CALL NUNBER(2.6,5.7,.20,YSHIFr,0.0,-1)
C IF(IPLT.BQ.1) CALL SYBOL(0.0,0.0.10'.',0.0.1)

IF(IPLT.BQ.1) CALL ANNODE
IF(IPLT.BQk.1) CALL TSEND
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IF(ILFLT..BQ.0) CALL PLOT(.,10.,999)
WRTE(LUNIT,400)

c
C READ DUN(Y ARGUMENT FOR PLOTTER DELAY
C

READ(S. ,410) INSWER
400 FORMAT( IX, /*IN]PIT ANY SINGLE DIGIT NUMBER TO CDNTINIJE')
410 FORMAT(I1)

RETURN

IEN
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SUBROUTINE PIED

SUBROUTINE PRED(Co D. ES. ICD, IS, IXF, IPF, STD, AVG. QOFF, MIN, COEI. IFLAG,
# NBrITS. RETCOD, F, DIST, LVLAR.A)

Cs
Co SUBROUTINE:PRED
Co PURPOSE:
C* THIS SUBROUTINE IS USED TO CALCULATE THE *
Co CURRENT IMAGE FRAME FROM INFORMATION
C* CONTAINED IN THE PREVIOUS IMAGE FRAME AND *
Co THE PREDICTION COEFICIENTS GENERATED FOR *
Co THE CURRENT FRAME
Co *
Cs EXPLANATION OF CALL VARIABLES: S
C* C - I - INTEGER ARRAY FOR CURRENT
Cs IMAGE BLOCK

. Cs D - I - INTEGER ARRAY FOR PREVIOUS
Cs ESTIMATED IMAGE
C* ES - 0 - INTEGER ARRAY FOR CURRENT
Co ESTIMATED IMAGE
Co ICD - I - SIZE OF THE D MATRIX
Co IS - I - SIZE OF THE ES AND C MATRICES *
C* IXF - I - I OFFSET VARIABLE
C* IYF - I - Y OFFSET VARIABLE
C- STD - 0 - STANDARD DEV OF THE ERROR
C' AVG - 0 - AVERAGE OF THE ERROR
Cs QOFF - I - ARRAY OF POINTER VALUES
C' KIN - I - MINIMUM QUANDRANT NUMER
C' COEP - I - PREDICTION COEFFICIENT VECTOR *
Co IFLAG - I - ITGER DISPLACEMENT FLAG
C' NB ITS - 0 - DATA RATE COUNTER
C' RETCOD - 0 - LARGE UROR/BXSIZE BIT
C* F - 0 - OUTPUT WORK ARRAY (ERROR?)
C' DIST - I - PREDICTOR GAIN (IN DB)
C'
C' SUBROUTINES NEEDED:
C' QEOANU - SETS VALUES FOR ADAPTIVE QUANTIZER0

INT79ER C(IS, IS) .D(ICD,ICD),,QOFF(4,4,2),ES(ISIS),RETCOD
INTEGER F(IS.IS) G(16,16) LVLARA(1)
REAL XLEVEL(128) ,IOUT(128),COEF(4) ,DIST(1)
COMION/THRESR/ STDERE, AVGERR, SNESET
SIZE - IS*'2
RETCOD - 0
rSTART - 1
KSTOP - 4

C
C (NECK FOR INTEGER DISPLACEMENT
C

IF(IFL.NE.0) GO TO 10
iSTART - 3
_STOP - 3

10 KA- 0
NA - 0
[V - 0
NV - 0
DO 30 3-1,IS
33 - I + IXP
DO 30 1-1,IS
II - I + lYF
TEMP - 0.0

C
C MAKE PREDICTION BASED ON PREDICTION COEFFICIENTS
C

DO 20 M-KSTART.1KSTOP
TEMP - TEMP + COEF(M)'FLOAT(D(II+QOFF(MIN.M,1),3Y+QOFF(MINM.2)))

20 CONTINUE
ES(I,3) - TEM + .5
IERROR - C(I,3) - ES(I,3)
F(1,3,) - miEoR
IA - KA + ERROR
KV - KV + IERRORIERROR
NV - NV + C(I,3)*C(I.3)
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NA - NA + C(I,3)
30 CONTINUE

AVOK - KA
AVGN - NA
VARK - [V
VARN - NV
VARIK - (VARl - (AVGK*AVGK/SIZE))/(SIZE-1.)
VARNN - (VAIN - (AVGN*AVGN/SIZE))/(SIZE-1.)
IF(VARNN.BQ.0.0)SNR - SNRSET
IF(VARNN.BQ.0.0)GO TO 15
SNR - 1O.*ALOG10(VARNN/VARKK)

15 STD - SQRT(VARXT)
AVG - AVGX/SIZE
IF(STD.LT. STDBRR .AND. ABS(AVG).LT.AVGERR) GO TO 70

C
C RETURN AND REMRY IF:
C 1) LARGE ERROR FOR 16X16 BLOCK
C 2) LARGE ERROR FOR INTEER DISPLACEMENT ON 818 BLOCK
C

IF(IS.BQ.16) REXURN
IF(IFLAG.BQ.0)RETOD = 1
IF C IPLAB. BQ * 0) RE7URN

C
C CORRECT FOR LARGE ERROR WITH BLOCK ADAPTIVE QUANTIZER
C DETERMINE QUANTIZE! GAIN REQUIRED TO OBTAIN SET SNR
C

RBQGAN - SNRSET - SN!
C
C QUANTIZE THE MEAN AND VARIANCE BEFORE ERROR QUANTIZAT ION
C

AVG1 - (PLOAT(INT(AVG*2.0 + SIGN(.5,AVG))))/2.O
STD1 - (FLOAT(INT(STD*8.0 + .5)))/8.0

C
C CHECK FOR QUANTIZE! LEVEL OVERFLOW
C
C IF(ABS(AVG1) .GT.32.o)WRrTE(6,5S)
C IF(STDl.GT.64.)WRlTE(6,56)

55 FORXAT( II,' AVERAGE ERROR TO LARGE, LOOK AT PIED. )
56 FORXAT( 11.STANDARD DEVIATION ERROR TO LARGE, LOOK AT PIED. )

C IF(ABS(AVG1) .GT.32.0)AVG1-32.*SIGN(l.,AVG)
C IF(STD1.GT.64.0)STD1-64.0
C
C SUBROUTINE QUANZ WILL DETERMINE THE NUMBER OF LEVELS REQUIRED
C
C REQGAN - 10.*ALOG1O(VARKK/3.)

CALL QUANIZ (REQGANDAVGl * STD1, LEVELILEVEL, lOUT, DIST)
NB1TS - NUITS + 23 + INT(SIZE*ALOG(FLOAT(LEVEL)/ALOG(2.) + 1.0)
LVLARA(LEVEL) - LVLARA(LEVEL) + 1

C IF(LEVEL.LE.128)WRIT( 6,11) LEVEL, REQOAN,"AM STh1,VARNN, VARXK, AVGX
11 FORMAT(1I,'RBQUIRES'.I3,' BITS',6F10.4)

C
C 7 BITS FOR TEE MEAN
C 9 BITS FOR TEE STD
C 7 BITS FOR TEE NUMBER OF LEVELS
C

DO 60 J-1, IS
DO 60 I-1,18
IER - C (1. ) - ES(I,3)

DO 40 K-1,LEVEL
IF(X.GT.XLEVEL(K)) GO TO 40
IQUAN - ENT (XOUT(K) + SIGN(.5,1OUT(K)))
GO TO 50

40 CONTINUE
50 CONTINUE

ES(I J) - ES(I 3) + IQUAN
G(I3I) . 0(I,35 - ES(I.3)

60 CONTINUE
70 CONTINUE

C
C RESTRICT OUTPUT FOR 0-255.
C

DO so 1-1 1 i
DO 80 I-1 I

*IF(ES(I,31.GT.255) ES(I3J) - 255
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IF(ES(I,3) .LT.0) ES(I,3) -0
80 CONTINUE

RETURN
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SUBROUTINE TRANSP

SUBROUTINE TRANSP(A,B,N1,N2,N3 ,N4)

C*
C* SUBROUTINE: TRANSP
Cs PURPOSE:
co *THIS SUBROUTINE IS USED TO TRANSPOSE ARRAYS*
C.
C* EXPLANATION OF CALL VARIABLES:
C* A - I - UT DATA ARRAY
C* B - 0- OUTPUT REAL DATA ARRAY
Cs Ni - I - 1ST ACTUAL SIZE VARIABLE OF A
Co IN CALLING PROGRAM
C* N2 - I - 2ND ACTUAL SIZE VARIABLE OF A *
C* IN CALLING PROGRAM
C* N3 - I - 1ST USING SIZE VARIABLE
C* N4 - I - 2ND USING SIZE VARIABLE

, .
C' SUBROUTINES NEEDED:
Cs NONE
Cs

REAL A(N,N2),B(N2,N1)
DO 10 I=1,N3
DO 10 Y-l,N4

10 B(1,1) = A(I.J)
RETURN
END
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SUBROUTINE QUANTI

SUBROUTINE QUANTI (DIST)

C. •
Co SUBROUTINE QUANTI
C* PURPOSE:
C* THIS SUBROUTINE IS USED TO GENERATE THE *
C* FUNCTIONAL VALUES FOR A NORAL(0,1)
Co DISTRIBUTION. S
C• *
Ce EXPLANATION OF CALL VARIABLES: *
Co DIST - 0 - ARRAY CONTAINING GENERATED *
Cs DATA
Cs S
co SUBROUTINES NEEDED: S
Co MDNRIS - GENERATE VALUES FOR GUASSIAN DISTS
C•

REAL I(1001),F(1001),OUT(1003),XOUT(128),XLEVEL (128),DIST(1)
C
C GENERATE 7HE VALUES FOR THE N(0,1) DISTRIBUTION
C

DO 10 1-1,1001
X(I) - (FLOAT(I) - 501.)/100.
P(I) - .398942*EXP(-.5'(X(I)*X(I)))

10 CONTINUE
DIST(1) = 0.
DO 90 LEVEL-2,128
XLEVL = LEVEL
START - 1. /XLEVL
NLEVL1 - LEVEL - 1
PERCNT - START
DO 20 I-1,NLEVL1
CALL NIMRIS (PERCNT, XLEVEL ( I), IER)

20 PERO(T - PEROqT + START
XLEVEL(LEVE-) - 1000.
BEGIN - START/2.
PEROIT - BEGIN
DO 30 I-1,LEVEL
CALL MDENIS(PEROIT, XOUT(I),IER)

30 PERCNT - PERCNT + START
DO 40 1-1,1001

40 OUT(I) - 0.0
DO 70 1-1,1001
VALUE - (FLOAT(I-S01))/100.

C DETERMINE WHICH LEVEL IT FALLS WITHIN
DO 50 II=1,LEVEL
IF(VALUE.GT.XLEVU(II)) GO TO 50
K - II
GO TO 60

50 CONTINUE
60 CONTINUE

C-XOUT(K) IS THE AMOUNT OF SHIFT
IVAL - INT((VALUE - XOUT(K))*100 + 501.5)
OUT(IVAL) - OUT(IVAL) + F(I)

70 CONTINUE
C CALCULATE THE DISTORTION

DIS - 0.0
DO 80 1-1,1000
IX - X(I)'I(I)

80 DIS - DIS + XX*(OUT(I) + OUT(I+1))0.005
90 DIST(LEVEL) = 10.*ALOG10(1./DIS)

RETURN
END
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SUBROUTINE QUANTZ

SUBROUTINE QUANT(RBQGAN. XBAR, STD, LEVEL., XLEVEL. XOUT, DIST)

C' *
Co SUBROUTINE: QUAN'Z •
C' PURPOSE:
C' THIS SUBROUTINE IS USED TO SET UP THE
Co QUANTIZER LEVELS AND THRESHOLDS
Cs *
Co EXPLANATION OF CALL VARIABLES:
Co REQGAN- I - RBQUIRED GAIN OF THE QUANTIZER •
Co XBAR - I - MEAN OF GUASSIAN DISTRIBUTION *
C' STD - I - VARIANCE OF GAUSIAN DIST.
C' LEVEL - 0 - NUMBER OF LEVELS USED FOR CODE '
co XLEVEL- 0 - DISTRIBUTION THRESHOLDS 0
C' lOUT - 0 - QUANTIZED OUTPUT LEVELS
C* DIST - I - ARRAY CONTAINING GAINS FOR EACH*
Co NUMBER OF LEVELS
Co '
C' SUBROUTINES NEEDED:
C' MDNRIS - ROUTINE TO FIND AREA UNDER CURVE '
Co FOR A NORMAL(0,1) GAUSSIAN DIST. •
C' (IJISL LIBRARY)C'

REAL XOUT(128) ,XLEVEL(128) ,DIST(1)
C
C DETERMINE THE NUMBER OF LEVELS RIMUIRED FOR ERROR TRANSMISSION
C BASED ON THE VALUE FOR RBQGAN
C

IIl
DO 5 1-2,128
II - II + 1
IF(RBQGAN.LT.DIST(I)) GO TO 6

S CONTINUE
6 CONTINUE

C
C DETERMINE THE THRESHOLD LEVELS
C

LEVEL - II
XLEVL - LEVEL
START - 1./XLEVL
NLEVL1 = LEVEL - 1
PEROIT - START
DO 10 I-1, LEVU1
CALL MDNRIS(PERQIT, XLEVEL( I),IER)
XLEVEL(I) - ZLEVEL(I)'STD + XBAR
PEROIT - PERCNT + START

10 CONTINUEC
C DETERMINE THE OUTPUT LEVELS
C

XLEVEL(LEVEL) - 100000.
BEGIN - START/2.
PEROCT - BEGIN
DO 20 I-1,LEVEL
CALL UDNRIS (PERCNT, XOUT( I), IER)
XOUT(I) = XOUT(I)'STD + XBAR
PERCNT = PERCNT + START

20 CONTINUE
RETURN
END
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