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Chapter I
INTRODUCTION

With the introduction and proliferation of computers into all facets
of the work place and the home enviromment, a new awareness of the
capabilities and short-comings of the computer for various tasks has
been found. The computer has proven very useful in performing
repetitive, mundane tasks in offices and nlnnflctnringlprocess control
enviromments, but lack of a good real-world/co-pntbr interface prohibits
many uses. Presently a computers input connections to the real-world
consist mainly of a keyboard and in some instances joysticks, graphics
pads, light pens, and other semsors of the physical world. Recent
research into this interface has provided the computer with 'ears’, that
is to say speech recognition. Not only can the computer hear, but it
can also act upon human voice commands and speech. A ’'voice’ and

associated language generation has also recently become a reality. The

computer can generate syntactically correct language and then change

this into intelligible human sounding speech. Perhaps the most
important, and by far the most complex, interface would be the ome which
gives the computer ’‘eyes’ or sight. Providing the computer with eyes
and vision opens new realms for computer asutomation that in the past
were either too difficult to perform blimdly or completely impossible.
This vision would allow the computer to perform difficult and tedious
medical or industrial inspections at a much higher rate than is possible
with human workers and also perform the inspections under hazardousAor
harmful envirommental circumstances. With knowledge of the inspection,
the computer could also make decisions, diagnoses and recommendations

based upon its previous knowledge.

The possibilities for industrial assembly, combining robots with
visual feedback, is staggering. With such devices, the jobs thought to
be too boring and mundane or hazardous ian the manufacturing field can be
replaced by sighted robots that do not complain about the working
conditions or monotony of the job. Just as computers and word
processors replaced manual record keeping, filing and typing in the

modern office to make it a rore enjoyable and productive working

-1 -
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atmosphere, the seeing computer will do the same for the industrial and

manufacturing fields.

A few of the many possible applications for intelligent seeing
computers were given above, but by no means even scratched the surface
as far as the uses that are currently enmvisioned or will be as the
research evolves. As stated above, ome of the earliest, and currently
used, applications for this artificial vision is in the area of
industrial and medical examination and inspection
(11,[26]1,052),0531,[107). Some of the inspections are those which
humans may deem overly tedious and boring, while other iaspection
methods performed by the computer caa not be carried out with the speed
and accuracy required, if even at all, by human workers. On a scale of
difficulty, that of the visual inspection process would have to be very
nesr the lower end of the scale. Very little, if anmy, interactiom with
the article being inspected takes place. Only a simple keep/return
decision or perhaps a diagnosis or recommendation may be required. The
problem amounts to providing the system with a ’'good’ product or example
and then comparing the viewed products or specimen to be inspected
against the good model. Provided all the tests and requirements are
met, the piece will be passed or a good diagnosis returned. If any one
of the possible visual tests fail, the article can them be rejected and
possibly sent back for correction. In the nedical case a diagnosis can

be generated or recommendations for further tests can be given.

The system envisioned here is good for its particular task but lacks
the intelligence to work outside the narrow area for which it was
ocrested. Perkaps more simply stated, the computer can not 'see’
anything that it has not been programmed to see and hence its usefulness
is extremely limited. The system can be improved with provisions to
glean information from its field of view that represents physical
properties of the objects being viewed and their relationship to the
surrounding area. This gained intelligence will allow the computer to
make judgements sbout its enviromment and alter it to meet specific

goals.

This would allow the computer to perform simple manufacturing and
assembly of multiple parts from various locations and orientations.

This gain in ability comes at a high cost in increased complexity. This

-2 -
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system is not programmed to see only one object at one orienmtation, but
several that must be recognized, tested and assembled into a product.
Even this problem would have to be classed as a minor ome when compared

with the visual system that humans use in everyday life,

This marriage of image sensors to computers has already started, but
the hurdles that must yet be crossed to reach what could be called
‘intelligent machine vision’' are both many and difficult. Both the
computer and the sensor are here at present, but like a young child
looking at the world he has never seen before, can not understand what
he sees and hence cannot constructively affect the eaviromment in which
he lives. VWe have been able to give machines the eyes and brains to
see, but have not yet been able to give thém intelligence, understanding
and vision. It is the aim of this work to provide the machine with s
small bit of information, knowledge and understanding so that one day we

may use what can truly be termed an intelligent seeing machine.

1.1  APPLICATIONS FOR ARTIFICIAL VISION

The possibilities and end uses for a computer that can intelligeatly
see are ondless. There has been much written in the general area of
machine intelligence and more specifically machine vision. A scan of
the references will provide many articles on various topics dealing with
artificial intelligence and vision. At present the systems that
actoally exist and are in use are few and far between, but their number
is growing and uses expanding. As a general rule, sighted computers can
be divided into two major categories, The first category comsists of
systems that simply inspect their respective input images for flaws or
abnormalities [1],[51],(53],[86]1, [107], and {145] and make decisions
based upon these investigations. The second category extends the first
in that it adds feedback to change its enviromment and hence act upon
what it has seen ([61],[67]1,[77] in such a way that it uses vision to

constructively interact with its eanviromment.

Many scientific disciplines have sought solutions for questions
associated with vision. What is vision? How is vision defined? How is
vision interpreted? These are just a few of the endless ammber of
questions that arise when dealing with the topic of vision.

Psychologists 1look to the internal thought processes to formulate
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theories about human interpretation of vision through visunal
stimulation. Physiologists on the other hand, are concerned with what
biological processes are necessary for the genmeration of the symaptic

signals associated with the sensations of vision.

From reseoarch carried out by the disciplines above, it has been found
that the human visual system is a very complex and complicated network
of biological subunits. Some examples of these subunits are the light
receptors, i.e. the rods and cones, the optic nerve for visual
transmission, and the brain with associated memory for interpretationm.
Each of these subunits constitute a very complex system in and of
itself. So it is not surprising to find that when the biological visual
system is modeled by hardware devices and software that the
nonbiological visual system will also be a very complex and complicated

set of subunits.

Just as the human visual system divides the whole of vision into many
separate but related parts, so then should anm artificial vision system.
The human eoye is not simply a sensor that transforms light into
electrical signals, but also an enormous parallel processor that
pexforms many of the lower level visval discrimination functions. Many
of the rods and cones of the retina are specially sensitized so as to
fire only for very specific physical occurrences. Examples would be
those that fire only when an object moves at a specific speed in a
specific direction, those that fire only whea an object accelerates and
many others related to various kinds of motion. There are also those
which fire only when stimulated by an input field containing vertical or
horizontal lines or boundaries. With this it can be seen that the eye
does a major amount of processing before the signal even enters the
optic nerve. The same cannot be said about the camera used for a
computer’s eye. By the time the visual signal reaches the brain a very
large amount of image processing has slready taken place. The brain
receives the information in a form far different from that which the eye
detected. The information content may be nearly the same, but the
actual amount of data is far differemt. The sensors, optic nerve and
other elements that connect the eye to the brain have performed what is

termed data compression.




1.2  IMPORTANCE OF IMAGE CODING

Of mans five senses, vision would have to be termed the most data
intensive. We, as sighted humans, tend to take the amount of
information processing done by our visual system for granted. As was
stated in the previous sectiom, the amount of data that reaches the
brain is far smaller than the amount of data that is actually incident
upon the retina. This data reduction or compression that takes place
prevents a computational overload on the brain by delegating some of the
lower level visual functions to other parts of the anatomy. In a
similar manner, artificial vision needs a means by which the amount of
data can be reduced, It is at this point that the similarity in the
structure of the human and artificial visual systems must stop. The
electronic camera is a much simpler device tham is the human eye, and
hence processing that occurs in the eye must, in the machine model, be
centrally processed. For this reason, and perhaps the alleviationm of
computational complexity, an intelligent visual system will also require

a means for data compression.

An intelligent vision system is not the only application requiring
the need for data reduction of imagery data and computational
requirements are not the only resources strained by the very large
amount of data present in imagery. Storage, transmission and system
complexity are all adversely affected by the high data rates present.
Many ideas remain on the drawing board or in limited use because of the
expense that this large data rate entails. The ideas of digital
television, video phones and facsimile have been with us for sometime,
but the enormous bandwidths associated with each make them impractical
when it is realized that bandwidth, like many material resources, is
limited. For these and other similar products it can be seen that if
commercial viability is to be obtained, then the video bandwidth
requirements mast be drastically reduced and this is achieved through

data compression.

Applications of data compression are not limited to the commercial
market alone. The military and space scientists also have many
applications that for one reason or another may require data

compression. On earth if new bandwidth is required it is a simple task

to run another cable or optical link, but for space it is much more




procedural plots, each pair consisting of two different gain values.
Figures 2.4, 2.6, 2.8, and 2.10 consist of methods which require forward
and inverse transformations at each iteration while the remaining plots
depict a method requiring retransformation oanly onm block intervals.
Figures 2.4 through 2.7 involve the pel recursive displacement
estimation approach while 2.8 through 2.11 involve coefficient recursive
displacement estimation. All of the plots are similarly constructed
where the horizontal, or X axis, represeunts the iteration number or the
number of° times equation (2.12) was executed. The vertical, or Y axis,
repre:~ats the displacement error in pixels. The test images used were
displaced by 2 pixels and the initial guess for the displacement was

assumed to be zero, hence the initial displacement error of 2.

The data compression that is achieved by the system can be attributed
to two major characteristics of the system and the data. The first is
due to the redundancy removal that is obtained by the prediction process
and the second is due to the fact that many of the transform
coefficients can be grossly gquantized or completely neglected with

acceptable results.

One of the major problems of coefficient recursive estimation is that
it is very scene and position dependent. In one scene or position the
displacement may converge in as few as 4 or 5 iteratioms where for
others it may fail to converge at all. Another problem may prove to be
the choice of a good value for the gain factor, epsilon. As figures 2.4
through 2.11 verify, the choice of the gain factor plays am important
role in the proper convergence of the algorithms and does not seem to be
related to the image itself. The FORTRAN computer program used to test
the algorithm and generate the iteration plots is contaimed in appendix

A.
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Results of this and the earlier pel-recursive method, in term of the
disp;nco-ont error, are given below for various values of the iteration
gain. The test image is a radially decaying cosine function of radius
60 and peak-to—peak amplitude of 220 at the center decreasing to 130 at
the circumference. The period also decreases radially, starting with a
period of 20 pixels at the cemter and ending with 10 pixels at the edge.

The equation used to generate the test image is
I(R) = 100exp(-0.01R)cos(2xR/P) + 128. (2.14)

The displaced image is shifted two pixels in the x direction between
time frames. Figure 2.1 is s picture of the actual test image.

SRR

;;‘.\ ; B oF £ S v e
FIGURE 2.1 Radially Decaying Cosine Fuaction

Figures 2.2 and 2.3 point out the differences between & normal hybrid
transform-DPCM coder-decoder pair, figure 2.2, and the motion
compensated hybrid transform-DPCM coder—decoder pair, given in figure

2.3.

Results for both pel recursive and coefficient recursive displacement
estimation for a single block from the test image are contained in

figures 2.4 through 2.11. The plots consist of 4 pairs of similar
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These transformed blocks are then arranged into a columm vector by
b

c¢olumn scanning the transformed block. They define the at? coefficient
of the qth block of the transformed image to be,
c (@ = IN(X_,t)é (2.6)
a q n .

and for the estimated displaced frame from the previous image,
N T A
cp(@,D) = IN(X - Dot - 0)d,. (2.7)

The comparable term for the pel recursive’s displaced frame difference
is the coefficient prediction error en(q.ﬁ) and is given by the equation

below.
e(a.D) = (1, t) - 1(x, - Dot = 01TY, (2.8)

Minimization with respect to the estimated displacement over the squared

prediction error with a steepest descent form is given below.

A A 2 A
Dn+1(q) = Dn(q) -(8/2)Vﬁn(q)en(q.0n(q)) (2.9)
Taking the required derivative will yield the following iteration
formula.
A N A
Dpep(@) =D, - ee,(q,D (a) W5_(g)®ala:D; () (2.10)

Rewriting the error term gives

A N N A T
Das1(@) = Dy = se(@,Dy () (W] (g) (1(X, t) = IX Dy, t=2)) ‘n](z.n)

Noting that I(Xq.t) is not a function of Bn(q) yields,
Dpeg (@ = Dy(a) - s6(a,D (@) P, IT(X D t-e))d,] (2.12)

When going to the next block the initial displacement estimate is set to
the final estimate of the previous block.

N A

When used for motion compensated interframe hybrid transform DPCN
coding, the coder transmits a quantized version of the coefficient
prediction error whenever it exceeds some threshold. This allows
updating the estimate of the displacement and also correcting the

prediction coefficients.
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This may seem to be a very strict requirement in that very little real

world motion would fit the model, but on the small scale of the pixel
most types of motion can be approzi'nated by nearly pure translation.
The background/foreground interaction still poses convergence problems.
They next define & displaced frame difference term as is given below to
represent the displacement between the actual value and its estimated

value.
) N

Where in this case the term ﬁ is defined to be the estimated form of the
displacement vector D. An attempt is made to minimize this difference

through the use of a steepest descent algorithm of the form givem below.
A A
Byss = Dy - (o720 [DFD(X,. D12 (2.4)

Here & is a gain term and Vﬁk is a two-dimensional gradieat operator
A

with respect to D,. Taking the required derivative in equation (2.4)

will then yield the following iteration formula.

Al A A Al

In this case Vx is the two-dimensional spatial gradient taken with

respect to the row and column directions and to be evaluated at the
. N

point X = Xk - 3 This toerm, 1like I(xk - D,t - <), may require

interpolating for noninteger values of 3 at each new iteration,

When actually used in an interframe motion compensated image coder,
the transmitter will transmit any values of the DFD(Xk,/I\)k) term, as well
as the required address information, if it exceeds some set threshold.
This quantized correction is then used by the transmitter and receiver

sections to update the appropriate estimates.

Following this same motion model, Netravali and Stuller [91]
formulated a method for interframe image coding termed coefficient
recursive estimation. It is an extension of pel-recursive with the
further addition of a unitary transformation so that the operations can
be carried out in the transform domain. The two methods are similar,
sssuming the same motion model, but now the image is partitiomed into
rectangular blocks of size Nr rows by N, columns. Esch element of the

block is then multiplied by the appropriate transformation vector.
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Ohtsuka [96] define a similar system that was actually implemented in

hardware. The method used for determining the displacement vector, as
before, is based on a correlational measure but now also takes into
account the displacement vector of the same spatially located block from

the previous frame.

Many other methods have been employed since the first frame
differencing techniques., A method by Price, Snyder, and Rajala [111] is
based upon a Fourier—-Domain filter based on a model of the human visual
system to detect motion, The model breaks up visual perception into two
distinct channels. The first, their so called x channel, is a temporal
low pass and spatial band pass channel. This channel carries the
information contained in two-dimensional patterns with high spatial
resolution but fairly low temporal dependance. They believe that it is
this channel that is respomsible for objects with structural complexity
but with little or no motion. The other, so called y channel, is just
the opposite., Its characteristics are spatial low pass and temporal
bandpass. This channel, they claim, conveys the informatiom of objects
with high temporal dependance and low spatial resolution. It is this y

channel that is used for the detection and analysis of motion.

2,2.3 Pel Recursive snd Coeffjcient Recursive Displacemen

Stuller, Netravali and Robbins of Bell Laboratories start from a
completely different point of view for motion. First, the end product
of their work is data compression and not tracking, although it could be
modified for such. The model is used for normal television data where
edjacent scan rows are scanned by an interleaved method. In the first
method of pel-recursive displacement estimation by Robbins and Netravali
[116], the image model for pure translation with no background is given

below.
I(xkpt) = I(Xk - Dpt - t) (2.2)

Where: I(Xk.t) is the intensity of the image at the spatial locatioam X,

and time t. I(Xy - Dp,t - ¢), is the intensity of the image at the
spatial location Xk adjusted by the displacement D at the previous time
t-t. This image model is defined only for objects undergoing pure

translation and not imnvolving background or foreground interactions,

- 13 -
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be possible as well as target motiom prediction. The displacement

vector need not be used strictly for motiom related studies but may also
be used in areas of data compression, remotely piloted vehicle comtrol,
and industrial manufacturing applications. With the detection and
interpretation of motion, a very important step toward artificial vision
will have been obtained.

Possible solutions of this problem that seem nontractable at present
may in the near future be made possible due to the advances in VLSI
technology, software development, parallel processing and electro-
optical systems. So even though the process may look overly complicated

and slow, there may be hope in the future.

) 2.2.2 Pzevious York jn the Fjeld of Motion

There has been a relatively small amount of work carried out in the
area of machine motion analysis until very recently when the required
hardware and software became available. The work has concentrated im
{ the areas of displacement estimation and interframe image coding. One
of the earliest, and perhaps the simplest, method used for motion
detection was simple image frame differemcing. That is, subtract the
previous frame, pixel by pizxel, from the curreat frame and flag as

motion any difference greater than some set threshold.

T

M(i,j,t) = ABS[I(i,j,t) - I(i,j,t - ©)] (2.1)

Motion will be defimed to have occurred whenever M(i,j,t) is greater
than some sst threshold. Although very simple, the method does show
good results for a very limited class of simple images, but this method
has many drawbacks that will limit its overall usefulness. First, the
output is very semsitive to noise in the input images because it is a

differentiating type process. Also any camera motion between image

v T
v, WL e

frames will translate into motion at every pizxel.

-

There have been numerous attempts at motion compensated image coding
in the past, each with its own set of advantages and disadvantages. An
early method by Giorda and Raccin [30] breaks the image up into a number
of small rectangular blocks and determines a displacement vector for
each block via ocorrelation. If the displacement can be found it is

transmitted, if not the entire block must be transmitted. Ninomiya and
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previous frame and if possible transmit the change information as a
function of motion. Even though the requirements can be simply stated

the actual implementation has proved to be difficult.

2.2.1 Dijisplacement and Motjon

Simply stated, motion is defined to be a time series of
displacements. That is, in order for motiom to be perceived, time must
pass and a displacement must take place. If artificial vision and
intelligence is ever to become a reality, then a sufficiently good model
for motion will have to be employed. For this reason, and the fact that
memory space is always limited, the vision system for motion analysis

should be based on some time adaptive displacement algorithm.

The problem can now be stated: Find s method to locate the spatial
displacement from one image frame to the next, such that an estimate of
the direction and magnitude of amy detected motion can be made. This
estimate should be based upon the current frame, previous frame and

previous displacement vectors.

The problem statement is simple enough, but the effort is complicated
by many other extermal factors. One of these factors involves
object/background and object/foreground interaction. For example, if an
object in the input frame moves in such a way so0 as to uncover some new
background, complications will arise in that the new information from
frame to frame now consists not only of the information contained in the
object motion, but also in the new background that is uncovered. The
imaging system should have the capability to detect the difference

. between the moving target snd the nommoving uncovered background.
Another problem simpler im scope than the above, but just as important,
involves the loss of moving objects from the field of view and the
addition of new moving objects into the field of view. Again the system
should be able to detect and track these new moving objects and discarxd
those that exit the field of view. Finally, objects moving in the field
of view may become partially or totally hiddean by both moving and
nonmoving objects and the system should be capable of adapting to this.

Once the motion has been identified, there can be many uses for the

information thus provided. Visual tracking of moving objects will then
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2.1.4 Other Methods

The above mentioned methods are just a few of the many possibilities
that have been proposed. Other methods include normal pulse code
modulation (PCM) as well as adaptive forms of PCM. There are methods
based on the statistics and histogram of images that code the most
common gray levels into short code words and rare gray levels into long

code words.

Hybrid coding is a combination of both transform and predictive
coding and lately has been studied quite extenmsively [36], [37]1, [54].
The references contain many other variations and combinations of these

and many more methods.

2.2 METHODS EMPLOYING MOTION COMPENSATION

Up to this point most of the mentioned coding schemes have been used
for intraframe image coding, with many being extended to include image
sequences or inter—frame image coding. The inclusion of the third
dimension, temporal or time, allows for the exploitation of the

correlation that exists in this temporal direction.

The human visval system is a very fine imaging system and very
susceptible to many kinds of image degradation. The degree to which
certain degradations affect the imaging process vary with respect to the
kind of degradation. It has been shown that the eye is very critical
about detail in still pictores but becomes less critical if the scene
contains motion. If the entire scene is undergoing a slow constant
translation the nﬁount of detail required remains high. 'With these
simple requirements in mind, it can be seen that any inter—-frame coding
system with a human as the final viewer will be required to maintain a
high degree of detail in areas of little or no motion and also during
times when the camera itself moves slowly as in panning. The areas that
may be somewhat degraded by the coding system with little loss of
information to the human visual system are the areas in the images

undergoing translation.

The area of motion compensated image coding lends itself directly to
these requirements. The premise of motion compensated image coding is a

simple one, transmit only the portions of the image that differ from the
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the predictive techmiques can not offer. Because of the rather high
correlation in most images, the enmergy tends to be concentrated in the
lower frequency or sequency coefficients. Hence, these traasform
coefficients can then be transmitted if their emergy content exceeds
some value., If the value does not exceed this threshold then the
coefficient may be grossly quantized or not transmitted at a2l1l. Habibi
and Wintz [35] combined this method with block guantization to obtain
good quality results on the order of 2 bits/pixel when the original
image was coded with 8, or a data reduction by a factor of 4. Ngan [95]
extended the normal transform coding with the addition of adaptation to

both the quantization and bit selection.

There are many different unitary transforms that can be used for
transform domain image coding. Some of the more popular are the
Hadamard, Fourier, Slant, Cosine, Sine and Karhunen-Loeve. Each method
packs the emergy differently and different results will be obtained if
the discard method remains the same. Hideo Kitajima [62] has provided a
method for determining the emergy packing efficiency of ome of the more

useful transforms, the Hadamard transform.

2.1.3 Predjctive Coding

Another widely used coding technique for digital images is what is
generally termed predictive coding [19]1,0231,0361,[37]1,(38],(55]1,[92],
and [122). The predictive coders differ from the above two methods in
that data is not just discarded. As the name implies, a prediction is
made by nusing local pixel intensity values in some predescribed
combination and then quantizing and transmitting the error. Because of
the high degree of correlation normally occurring between adjacent
pixzels the prediction process works quite well, which implies that the
error is normally much smaller than the original signal. This smaller
error signal, in terms of the mean square power, is what enables the
predictive coder to obtain its high degree of data compression. The
more structuvred and correlated the image, the better the predictor is

able to function and hence the lower the data rate for a fixed fidelity

criterion.
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2.1 PREVIOUS METHODS FOR IMAGE CODING

There is a wealth of information available on the topic of general
data coding and picture coding in the literature. Many different
methods, applications and theories are available from a large number of
authors. A review of many of coding solutions is available from
Netravali and Limb [92], Habibi [35]-[38], Pratt [110], Castleman [14],
Gonzales and Wintz [31], and Andrews and Hunt [4]. Some of the more
important methods will be briefly described in the following sections.

2.1.1 Subsampling

One of the simplest forms of data compression for digital images
involves subsampling the source image and interpolation of the discarded
points at the receiver. This canm be accomplished in two differeant ways.
The first involves using only the upper right hand pixel value of each
of the N by N sub~blocks and transmitting that value to represent the
A entire sub-block. The data rate here, as in the second method, is only
1/N2 of the original data rate. The second method is similar to the
first but transmits the average of the sub-block instead of the upper
right hand pixel.. As would bde expected, these methods tend to discard
much of the informatiom in order to decrease the data rate., If the
image was alrecady sampled above the Nyquist rate, then some data
reduction could take place with 1little loss to the quality of the
output. Normally the image is sampled less than the Nyquist rate and

any subsampling will cause a substantial information loss.

2.1.2 Transform Coding

The simple method of discarding data has been shown not to function
adequately for most images, but with the inclusion of a unitary
transformation data can be discarded with much less loss in image
quality. The function of the unitary transform is to redistribute the
image intensity emnergy in such a way that it is mostly contained in a
small number of transform coefficients. It does this by decorrelating
the spatial data and hence minimizing the statistical redundancy of the
information to be coded. Because the coding is dome in parts or
sections, an error in ome part will not propagate to other sectioms if,

for example, a channel error is made. Tbis is an advantage that many of
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Chapter II
MOTION COMPENSATED TMAGE CODING AND DISPLACEMENT
L3TIMATION
In chapter one some of the requirements and restrictions that

necessitate data compression as well as some possible applications for

its use wore presented. In this chapter the basic principles of data
compression will be reviewed and some examples of various methods will
be presented. Only a few of the many methods proposed in the past will
be presented due to the very large number of papers written on the

subject.

S v
NEPLAAARALS L oacnoasag

The purpose of data compression is to take a data sequence, be it

image data, speech or anmy other information source, and perform a data
manipulation in such a way so as to be able to reproduce the original
signal with an acceptable amount of degradation using a smaller
bandwidth. The degree to which this goal is reached is based both upon
the statistics and form of the image as well as the operation of the
coding system itself. This data compression is oftea ackieved through
removal of the large amount of interpixel correlation that is normally

present in most data.

One of the early uses of data compression was in the field of digital
voice communication. The signal generated by the human vocal system
tends to be quite correlated and hence various predictive techniques
have been used to obtain good compressidn results., When the field of
digital image coding opened, many of the methods used for speech were
directly adapted for use with the digital images. These procedures were
not able to take full advantage of the geometrical, statistical or
cognitive structure of the image data. Voice, being a single
dimensional signal, does not have the geometrical structure or the two-
dimensional statistical dependence that image data has. The optimal
compression scheme should be able to take full advantage of any

structure that the actusl image has to offer. In most cases only a

small subset of this structure is actually exploited.




difficult and expensive to put up a new satellite or add the required
hardware on a deep space probe. Military applications can include
remotely piloted vehicles, remote surveillance and other imagery
applications. One side effect of data coapression that often times is
important in military applications is that of secure data transmission.
If the transmitter and receiver are not a matched pair, the receiver
will not be able to recombine the data sequence to obtain the original
image. There are many different ways to achieve this bandwidth
reduction and most, if not all, exploit the high correlation between

adjacent pixels to reduce the data rate.

In chapter two previous work in the field of image coding is
presented. It provides a wide overview of the many differeant methods
that have been tested and employed in the past for bandwidth compression
or reduction. The emphasis of chapter two is in the area of motion
compensated image coding. This is coding that exploits knowledge of the
motion between frames in sequential image data. In chapter three a new
method for motion compensated 1image <coding, namely Prediction
Coefficient Energy Concentration is presented. The derivation of the
displacement estimation procedure as well as the coding procedure is
presented. In chapter four information on the implementation and
testing of the Prediction Coefficient Energy Concentration model is
provided. It presents the information that ties the theoretical aspects
of the algorithm to its actual simulation and modelling. The results of
the model as represented by a software implementation are presented in

chapter five. Actual output images as well as the analysis of the

algorithm is presented.
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2.2.4 Rosidual Recursive

The method of Residual Recursive by Rashid and Jomes [112], [113] is
similar to both the pel recursive and coefficient recursive methods of
the last section. This method is based upon anm earlier procedure
developed by Jones [54]), [55] for image coding, namely Adaptive Hybrid
Picture Coding or AHPC for short. The advantages offered by the
combination of AHPC and the recursive algorithms developed by Stuller,
Netravali, and Robbins lie in the determination of the gradient term.

Before getting to the motion related derivatiomn, it is necessary to
gsin some background information on AHPC. AHPC is a data reduction
coding method used for intraframe data compression. The method is based
upon a two step correlation removal technique. The first stage of the
process involves a one dimensional unitary transformation in the column
direction to reduce the cclumnwise correlation. The row correlation is
then reduced through a prediction process that operates in the row
direction. Data compression is achieved because the mean square power
of the prediction error and pradictor overhead is less than the mean
square power of the original. The prediction error will be shown to
spproximate the innovations process for the image data and hence the
image gradient. A block diagram for the AHPC process is provided in
figore 2.12.

The transformed pixels are modelled as a one dimensional
autoregressive series where the predicted value of the signal is defined
to be an optimally weighted 1linear combination of previously
reconstructed transformed picture elements e The weighting factors
are the predictor coefficients and hence the prediction equations can be

written as follows.

4
£, = z a,r (2.15%5)
n 51 )

The difference or error signal e, is then defined to be the difference

between the original signal s and the predicted value r .

e =g -1 (2.16)
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Using the mean square error as the optimality criterion, the value
for the predictor coefficients are chosen such that Pe' the mean square

error, is minimized and given below.

L

1 2

Po=1 2 ¢ (2.17)
=]

Because of the adaptadbility of the algorithm, the predictor coefficients
a8y remain constant for a single row or learning period of length L. Due
to the statistical change of the dats from row to row, the predictor
coefficients must also change at row boundaries. Hence, the optimal

error signal for a single lesrning period canm be writteam as below.

T,

6y = 3, - AR, (2.18)

The sample value n is allowed to vary from 1 to the learning period L.
Ai is a column vector of the optimal set of predictor coefficients and
Rn is & row vector of the p previous reconstructed transformed picture

elements.

As stated eoarlier, the optimal predictor vector is chosen to minimize
the average error signal power and amounts to minimizing the following

variance term.
1 T T,
VAR(e) = L[VAR(:) - COV(s.r)An - AnCOV(r.s) + AnVAR(r)An] (2.19)

The minimization is accomplished by taking the partial derivative with

respect to An‘

An(opt) = dVAR(e)/dAn (2.20)
This yields,

A (opt) = VAR(r) lcov(s) (2.21)

When complete statistical kmowledge of the source is not known, s method
is needed to produce good eostimates of the statistics during each
learning period. If the predictor vector is treated as a state and a
linear minimum error variance sequential estimate of the state is
desired, then sequential estimation theory can be used. In this case
Kalman filtering is used.
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Given the optimal set of predictor coefficients, the reconstructed
transformed picture elements can be generated from the following

equation.
s, = AR (p) + o (2.22)
B p o n
Here the p signifies the predictor length, Rn(p) the p previous
reconstructed transformed picture elements and KE is the quantized

identified predictor vector of length p. The identification filter
algorithm from [54] can then be written

A
A(k+1]S(k+1)) = [I - K(k+1)R:(k)]A(k|S(k)) + K(k+1)s(k). (2.23)

The differemce here between s(k) and S(k) is that s(k) is a single
observation while S(k) is all observations up to and including s(k).

Hence the desired idemtification algorithm becomes,
A(k+1) = A(K) + K(k+1)[s(k) - R:(k)A(k)] C(2.24)

where the bracketed term is simply the prediction error. The gain term
E(k+1) is given by,

K(k+1) = V, ()R _(K)/(V_ + R (X)V, (KR (K)). (2.25)
P z P A ?

Vo(k) is simply the variance of the identification error of A(k) as

given below.
N
A(k) = A(k) - A(k) (2.26)

Vz is a scalar term not obtainable recursively and is set to a coanstant
value. Given the background for AHPC, its relationship to motion
compensated image coding can be discussed. The image motion model for

both pel-recursive and coefficient recursive displacement estimation is
I(xkpt) = I(xk - Dpt - t) (2.27)

as was originally given in equation (2.2). In the transform domain the

equivalent coefficients are given below as originally in (2.6).
e (@) = IT(X , )4 (2.28)
o q’ n *

Note the values given for the displaced frame term as in equation (2.7).
The method of residunal recursive displacement estimation lends itself

more closely to coefficient recursive displacement estimation and hence
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will be compared as such. Note first that the transform domain
coefficients of the coefficient recursive method are also the signal
samples from AHPC,

cp(@) = s, (@) (2.29)

th

That is to say, the n"“ coefficient of the qth block is the same in both

notations provided the linear unitary transform is the same. Hence, the

displaced terms then become,

c,(q,D) = s,(q,D) , (2.30)
Replacing this notation in equation (2.17) yields

0@ = c(@) - AC (0. (2.31)

A
Where, as before, the capital letter Cn(q) defines a vector of the p
previous predicted values from the qﬂ’l block. On a coefficient-by—

coefficient basis, this can be written
p N
e (@) =c (@) - z a0 (@ (2.32)
k=1

Likewise the displaced term becomes
P

AA o
z ak(D)cn_k(q.D) (2.33)

(¢.D) = ¢ (q,D
e (a, -cn(q.)-kzl

N
Note that the predictor values ak(D) are now functions also of the
estimated displacement ’ﬁ Recall that the coefficient predictiom error,
now with the prime added, is

e’(q,D) = [I(X_,t) - IX_-D,t - 01T} (2.34)
a q, qo q » n* .
Vhich can also be written as,
. Y A
on(q.D) = cn(q) - cn(q,D). (2.35)

The comparable term in residual recursive displacement estimation is the
A
displaced residual difference or DRDn(q.D)

N N
DR.Dn(q.D) = en(q) - en(q.D). (2.36)

As before, a steepest descent algorithm is used to minimize the squared
difference with respect to Sn' The form of the algorithm is given

below.
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Daeg = D, ~(e/27 (DBD, (4,51 (2.37)

Taking the indicated gradieat results in

D D - eD D )pn DRD (q,D

Dn+1 = Dn - 8 Rnn(qp n)VD\n n(q, n) (2-38)
Before determining the gradient of the displaced residoal difference
term, it is necessary to rewrite it in its constituent elemental form.

From (2.32),(2.33) and (2.36)

A P A A P A A A
DRDn(q.Dn) = cn(q) - ;zl'kcn-k(q) - cn(q.Dn) +k§1'k(nn)°n—k(q'nn)
(2.39)

The c,_;(q) is the reconstructed versiom of c, ,(q) Noting equation
(2.39%)

P P
A . n - A A A n
DRD,(q,D ) = e'(q,D) = > ac () + 3 a (D)o _ (q,D)  (2.40)
k=1 k=1
Rewriting using only a single summation
(a,D H@b) - 3 ad D)8 . (q,D 2
DRD q,Dn) = ¢ (q,Dn - g;l'kcn-k(q) - ak( n) ok (O n) .41)

At this point it is necessary to make use of the following identity.

n i i
2. A - b».B., = ¢ . (A; - B;) (2.42)
121 L ot

That is given a, b, A, and B there exists a set of c¢’'s that satisfy the
above equation. In the most strict semse, if they pair up on a point by
point basis then the following equation will hold.

In this case,

Except for the possible case where A = Bi' in which case c; will equal
zero. So with this, there exists a set of coefficients by's that will
satisfy the following.
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A , A P A A A A
DRD (q,D ) = e’ (q,D ) - kZibk(D")[c“'k(q) - e x(a,D))] (2.45)

Because of the good prediction and error quantization, a simplifying

assumption can be made in that ¢, is equal to A or

a
¢y = Oy ' (2.46)
and
A A
¢p(a.D,) = €,(a.Dy). (2.47)

With this equation, (2.45) becomes
A , A P A A
DRD,(q,D,) = e;(q,D,) - k;;bk(pn)[cn-k(q) - cpg(a.Dy)] (2.48)
Using equation (2.35) yields,
A LA P , A
DRD,(q,D,) = e;(q,D,) - k}ibken_k(q'nn) (2.49)
This says that the displaced residual term is composed of the current

residual minus a linear combination of previous residuals or errors.
Combining (2.39) with (2.46) and (2.47) yields,

A A P p A A
DRDn(q,Dn) = cn(q) - cn(q.Dn) - églnkcn_k(q) + ézlak(bn)cn_k(q.Dn)

(2.50)

A A
Taking the derivative of DRDn(q,Dn) with respect to D, will show that
the first and third terms on the right side of equation (2.50) will go
A
to zero. These are not functions of Dn' The remaining gradient term is
then;

A DD (0.0 ) = W ¢ (@B +7A S
A n(q. R - e, q.Dn) A Z a

) A

k

This is the most gemeral form of the gradient equation, note that the
first term on the right hand side of (2.51) is what is termed the
coefficient gradient vector in coefficient recursive displacement
estimation. It is this term that is very closely approximated by the
AHPC residual or error signal. That is,
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A A
o (a,D) = 'V’Sn"u‘q'nn’ (2.52)

and hence it is not required to calculate the coefficient gradient at
every iteration. Replacing this in equation (2.51) will yield,

Ay A A A
W) DBD (q,D ) = e (q,D) +@\ > a,(D dc, ,(q.D,). (2.53)

Dn n k=1

The gradieant is equal to the AHPC residual plus the gradiemt of the
‘prediction term. Neglecting the second term, the form is similar to
that of coefficient recursive displacement estimation. Using equation
(2.53) in equation (2.38) will yield the following iteration formula.

A

A A A P
Dpyyp = Dn - eDRDn(q.Dn) [en(q.Dn) + V’B Z s

A A
(D )e (q.D )] (2.54)
a k=1 n ok n

k
If the last term in (2.54) is neglected, the following iteration formula
is very close to the form used in equatiom (2.12).

AN A A A '
D4y = Dn - sDRDn(q,Dn)on(q.Dn) (2.55)
Another approach that used all of the available informatiom . 1 be
obtained from the displaced residual difference term as given in
equation (2.36) when combined with (2.52) to yield the following.

A\

DRD, (q,D,) = -Wsncn(q.%n) (2.56)

The gradieant of this term then becomes,
A )

wl}nnxnn(q,nn) - -v%ncn_(q.’ﬁn) (2.57)
and the iteration formula can hence be written as,

A

Doy = /l}n - c%ncn(q./bn)wgncn(q./bn) (2.58)
or,

A A TAY

Dpyy = ’Bn - snnnn(q.nn)vfgncn(q,nn). (2.59)

Results for this method are given in figures 2.14 through 2.17 for
the same imsge data as was used for the earlier methods. The FORTRAN
program used to test the algorithm and generate the plots is contained

in appendix A.
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function of the data. Here, as in the two previous methods, the minimum
value of the metric or cost function determines the nearest ianteger
displacement. This is the method that was actually employed for the

results presented in the later sections.

3.4 DISPLACEMENT QUADRANT ESTIMATION

Given an estimate for the integer displacement, the next problem is
then to determine if this estimate is kigh or low in both the X and Y
directions. In other words, the displacement needs to be bounded to an
integer displacement cell., The problem can be better visualized by
looking at the four displacement cells, or quadrants, about the integer

estimate as is shown in figure 3.5.

O=M(K,L)
ITI II

dunbeteinudasdhain M obdeadonten it

FIGURE 3.5 Method for Minimum Quadrant Generation

-

The quadrants are numbered I through IV starting with the upper right

Y

hand corner and moving in a clockwise direction. Each quadrant has
sssociated with it four values of the metric, one being the minimum
value that defined the integer displacement estimate, Using the values .
gonerated by the chosen metric, it is possible to determine which [

quadrant is minimum. This is sccomplished by summing the values of the
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Where 1; is defined to be an integer displacement, I is the actual
intensity value of the curreat frame, while I(ﬁ) is the current frame
estimate conditioned on the integer valued displacement vector 6.
Therefore,

N JA
R= Zcmm.nvi LI, 1), (3.29)

)

I 1 )
_ A A A

The joint probability on I and I(D) is defined as Pi(D),i(I(D)'I)'

Rewriting the joint density im terms of a conditional density yields,

A
A (I(D)). (3.30)

A A | A
R = 1%) ;cmn).npi“m)(l I(D))Pi(m

A A A A
All of the terms C(I(D),I), P;[;p)(XII(D)) and P, {)(I(D)) are mom-

negative, so R can be minimized by minimizing the inner sum.

The conditional distribution is unknown. It is therefore assumed to
be uniform. This is equivalent to discounting the effects of the
statistical properties of the image sequence. With this assumption, it

is required to minimize

A
R =) CID),D. (3.31)
I

This is accomplished by determining the values of the cost functiom
over a -p to p neighborhood in both spatial directions with respect to
the previous frame. Further, a two valued threshold function needs to

be defined for the cost function.
C(a,b) =0 if b<a (3.32)
Cla,b) =1 if bda , (3.33)

The choice of this metric produces a unmiform cost function. When this
is combined with the absolute value method, it yields a counting

arrangement as follows.

o N-1 N-1 ]
M(i,j) = S Y C(T,ABS[I(m,n,t) - Imti,n+j, t-v)]) (3.34)
B=) n=Q

The value chosen for the threshold T is fairly arbitrary, but somewhat

loosely related to the variance of the noise and may even itself be a
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3.3.1 Sum of Absolute Values of Difforence Method X

The first method is based on the sum of the absolute values of the
difference term.
N-1 N-1
N(i,j) = > > ABS[I(m,n,t) - L(m+i,n+j,t—)] (3.26)
=0 n=0
Where both i and j are sllowed to vary from —p to p. ABS in the above
implies taking of the abszolute value of the quantity in the square
brackets. The best integer displacement is then defined to occur at the
point at which the metric N(i,j) is minimum. From a cost functiom point
of view, the absolute value function defines an absolute error cost

function.

3.3.2 Sum of Squares of Difference Method

The method is similarly defined as that in (3.26) with the use of a
squaring function instead of the absolute value. This offers the
advantage of penalizing the metric greater for large differences than
for a mumber of smaller differences.

N-1 N1
M(i,)) = 5 5 [I(m,m,t) - I(m+i,a+j, t—) ]2 (3.27)
m=0 n=0
Here again the minimum value of the metric defimes the location of the
best integer estimate. From 2 cost function point of view, the squaring

function defines a square—error cost function.

3.3.3 TIhzeshold Counting Method

To this point the method of threshold counting has proved to be the
most advantageous. It offers the advantage of not penalizing the metric
for small differences, on the order of the noise that may be present,
and counting all values above this threshold equally. As in the two
methods above, either the absolute value or squared difference method
could be used, but due to its simplicity the absolute value method has
been chosen. The procedure utilized produces an estimate that minimizes
the expected value of the cost. The expected value of the cost is
defined as the risk. That is,

R = E[C(I(D),I))] (3.28)
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3.3  DEIERMINING INTEGER DISPLACEMENT

The method outlined above requires a good estimate of the integer
displacement bounds. Several different methods have been tried for the
purpose of establishing the displacement and a few of the various
functional metrics, or cost functions, that can be used will be

discussed below.

In each of the metrics described below, the previous frame search
area is defimed over a ~p to p neighborhood for both spatial directions.
The metric differencing is performed om a pixel by pixel basi = every
pixel in the curreat block. A new value of the metric is generated
every time the curreant block is shifted with respect to the previous
frame block. The current block of size NxN is compared to all
contiguous NxN subsets of the previous frame local neighborhood of size
(2p+N) by (2p+N) as is shown in figure 3.4. Note that the metric
generated will be a (2p+l) by (2p+l) matrix, where each entry’'s location

is a function of displacement.

& 3

OA o o -]

[ [ ] [ ] [ -] (-] > [ ) (-] [ Z
[ ] L ] L ] [ o -] 2. L] o +
[-] o -] -] (-] o o - ] [-] >

o [ ] [ ] [ -] -] -] -] [-] 0_
5| CURRENT FRAME N

PREVIOUS FRAME NEIGHBORHOOD | |
— — y
2P + N

FIGURE 3.4 Pixel Neighborhood for Metric Determination
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The problem of finding the noninteger portion of the displacement has
been replaced by a two step process that is able to perform a similar
fanction. First, for the ome dimensional example, the actual
displacement must be bounded above and below by a high and low integer
estimate. Secondly the two values for the delta functions must be

generated via the solution of the regression equation given below.

f(aT) = ia(i) g(nT - L + i) + e(nT). (3.22)

i=0
Where L is the lower integer bound of the displacement estimate. Given
a sufficiently large number of values for f(aT) and g(nT) the values for
a(0) and a(l) can be found through least squares estimation. The same
procedure can be extended to the two-dimensional process, where four on—
sample delta functions replace the single off-sample functionm. As

before note
I(i,j.t) = 8(x,y)*I(i,j,t-t). (3.23)

where x and y denote the location of the delta function which need not
fall on the two—dimensional sampling grid. A time-modified
antoregressive model taking into account that the prediction is made

over the time boundary is then given by

) P
I(i,j.t) = § Z a(m,n)I(i-m, j-n,t-t) + e(i,j,t). (3.24)
»=~p n=-p

If, as before, the best integer estimate of the displacement bounds can
be found, a displacement-updated, time-modified autoregressive model can

be given as

1 1
I(i,j,t) = 5 Y a(mn)I(i~K+m, j-L+n,t-t) + e(i,j.t). (3.25)
=0 n=0

Here K and L designate the lower bounds of the integer displacement
estimate. Here, as in the one dimensional case, the regression
coefficients are able to perform the same function as the noninteger

portion of the displacement vector.
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For example, if the true value of the delta funmction occurs at t =
1.35T, it can be replaced by two different delta functions. One
positioned at t = 1T, and the other at t = 2T. The relative value of
each delts function is obtained from the following formulas, where 61(t)
is a lower bound of the shift function and Sh(t) is an upper bound of
the true value of the shift.

8,(t) =1 - o (3.20)
8,(t) = o (3.21)

In the example given above the value of the function at t=1T, labelled
5;(t), would be .65, while the value at t=2T, labelled 5y(t), would be
«35 and hence is able to perform the function of linear interpolation as
if it were a noninteger shift. Figure 3.3(b) shows the placement of the
two off sample delta fumctions for the noninteger shift im 3.3(s).

L.

i i r1t T I IR r
T nT
-1 1
FIGURE 3.3(b) Delta Fumction for Noninteger Shift {

The problem at hand uses this shifting and iaterpolation ability of

sultiple delta functions to bypass the need for sub-pixel determination

) TRy

of the shift vector. Assuming that a method can be found to determine
the nearest integer displacement, with the use of regression analysis

there is no need to find the noninteger portion of the displacement.

Instead, only the magnitudes and locations of the delta fuactions are
required. How the integer displacement is determined is givem in the

next section.
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the use of linear interpolation of the two adjacent points. The form of
the linear interpolation is given below where fb(n"l‘) designates the
function value at the lower bound of the interpolationm, fn((n’+1)’1')
designates the function value of the upper bound, and fm(n"l‘) is the
function value at the linear interpolated point between these bounds.

The n' is used here to denote a fixed value for n.

fo(n'Tre) = £,(a'T) + o(£ ((a'+1)T) - £,(a’'T)) (3.16)

In the above equation e is the distance from n’'T to the desired
interpolation point, or if you wish, the noninteger portion of the

displacement. Carrying this idea further, an interpolated function can
’ be generated by letting n’' vary over the appropriate limits to include
all values of the sampled function. Rewriting (3.16) in function form
yields,

fa(nT+e) = (l—e)fb(n'l') + efu((n+1)'l'). (3.17)

Note that in the two equations above, the shift or interpolation is
limited to the range of 0 to 1. That is, ¢ is bounded to the interval 0
to 1. From equations (3.16) anmd (3.17), it can be seen that the
interpolated portion of the function is a linear combination of the
points on either side. It is from this equation that the idea of
multiple delta functions performing interpolation can be found. The
first term on the right side of equation (3.17) can be modified by a
delta function at the origin with value 1-e. The second part of (3.17)
is modified by another delta function but at location t=T and of value
e. Rewriting (3.17)in a convolutional form yields,

fa(nT+e) = (1-e)f(aT)*8(t) + ef(nT)*8(t-T). (3.18)
Hence, the single off-sample delta functiom located at t=e has been ]
replaced by two on—sample delta functions. This can be further extended 7
to perform for any value of interpolation., That is, the displacement 4
does not have to be restricted to the 0—-1 range. VWhen this is the case, ‘]
e remains the noninteger portion of the displacement and both delta ‘4
functions are then shifted by the remaining integer amount of the ::
interpolation or shift. With S being the integer amount of shift, -
(3.18) can be written as follows. 4
f(oT+e) = (1-6)£(aT)®8(t-ST) + ef(nT)*5(t-(S~1)T) (3.19) ;
A
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FIGURE 3.2(b) Delta Function for Integer Shift

function can be obtained by a linear combination of delta functions
bordering the true time or phase shift., Using the method of 1linear
interpolation, the single off-sample delta function can be replaced by
two on-sample delta functions. The magnitude of each delta function is

based on the locatiom of the actuasl off-sample delta funotionm.

glnTd FlATO

o M\

i

-A_] /\

FIGURE 3.3(a) Sampled Function Noninteger Shift

Before the shift can be determined it is necessary to explain the
mechanics of this linear interpolation process. It is assumed that any

value of the function between sample points can be determined through
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The graphical representation of this case is given im figure 3.2(a) and
hence f(aT) and g(aT) for this specific example are given below.

£(aT) = Acos(zal + 9) (3.13)

g(aT) = Acos(w(nT - <) + @) (3.14)

Wi

glnT) FCnTD

7 /r%m\
/ \

A, )
il
W

FIGURE 3.2(a) Sampled Function Integer Shift

As long as t is an integer multiple of the sampling period T, as
shown in.figure 3.2(b), the same holds true for the sampled case as for

the continuous case and hence,
£(aT) = g(aT)*8(t -~ mrt) (3.15)
. where mr in an integer multiple of T.

Figure 3.3(a) graphically depicts the usual case in that the shift is
a noninteger multiple of the sampling period. The problem here is that
5(t~t) may not fall on a sampled time interval. Example t = 1.5T or 1.5
times the sampling interval and hence would lie halfway between the two
sampled time intervals. The method presented here attacks this problem
of noninteger shift with the help of linear interpolation. Assuming
that all points of the sampled time function between samples can be
determined sufficiently close by linear interpolation of the sample

points on each side, then a sufficiently good estimate of the shifted
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g(t) = Acos(w(t - ¢v) + ) (3.6)
Equation (3.4) for this specific example then becomes,
f(t) = Acos(w(t - ©) + 8)*§(t—x) (3.7

Where 8(t-t) is shown in figure 3.1(b).

!

L.

FIGURE 3.1(b) Delts Function for Continumous Shift

Using the Fourier transform to perform time comvolution yields
£(t) = Fl[FlAcos(w(t - ¢) + @)] F[8(t - ©)]] (3.8)
. £(t) = Acos(ut + O) (3.9)

where F designates the forward Fourier transform and £71 the inverse

transform. This is the case as was given in equatiom (3.5).

Getting closer to the problem at hand, the sampled versiomns of f(t)
and g(t), namely f(nT) and g(nT), obtained from the sampling faunction,

£(aT) = £(t)> 8(t=aT) (3.10)
can be written as follows..
g(nT) = £(aT-<) (3.11)

or

f(nT) = g(aT)*8(nT). (3.12)
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examining a single dimensional continuous time function example with the
help of linear systems -theory. The two-dimensional, noiseless, no
background case becomes, in a single dimension, the problem of
determining the phase shift between two identical, but time shifted,

time functions. For example if
g(t) = £f(t-<) (3.3)

the two functions are said to be ideantical, with the exception of the
time shift. The problem then of finding the time shift amounts to
finding the valne for t. Using the concept of convolutioa, g(t) and

f(t—t) can be related further by
f(t) = g(t)*5(t-x) (3.4)

where the function ®* is defimed to be comvolution and 5(t-t) is a delta
function located at t=tv. The problem remains to determine the time
displacement from the origia éo the location of the delta fumction.
Figure 3.1(a) graphically presents a possible represemtation of these
two continuous time functions shifted in time by t. This displacement
can be determined through the use of correlation or a matched filter

such that the output is the phase shift between the two signals.

gCtd FCid

-

FIGURE 3.1(a) Continuous Fuaction Shift Example

From the example in figure 3.1(a) f(t) and g(t) can be written as

below.

f(t) = Acos(wt + 9) (3.5)
- 37 -




AT T e = in T ———ee— CAR i S 3 Dt S M B Bran Avie et en vees S i - Jhdn £ ae -ghvun e Hhie 2t ar-o e

3.2  ALGORITHM DESCRIPTION

In the methods previously discussed for motion compensated image
coding, [91], (112], [113], and [116], the current image pixel is

modelled as a pixel from the previous frame displaced by some

displacement vector D. This can be shown as in (3.1).
I(xk' t) = I(xk -D, t-x) (3.1)

Where I(Xk.t) is the pixel intensity at location X, and t is the time
delay between adjacent frames. This functions adequately provided the
displacement is of iateger order. That is, no partial pizxel
displacements are allowed. If sub—pixel displacements do exist, this
necessitates the finding of a D vector that is also of sub-pixel order.
A somewhat more complicated approach, but offering the advantage of not
having to determine a displacement vector, can be found. The curreat
frame pixel intemsity is defined to be a linear combination of pixel

intensities from the previous frame.

M N
IXp,t) = D Y a(m,n)I(X (m,n),t—t) + e(X;,t) (3.2)
w=1 n=1

The disadvantage here is that although no motion vector is required, a
set of predictor coefficients a(m,n) is required. If the system is to
allow for a p pixel shift in any direction, the size of this ’‘a’ matrix
would be at least (2p+l) by (2p+l1). Hence, the amount of data
compression that can be achieved is greatly diminished as p gets large.
Note that this prediction matrix must be transmitted every time the

displacement changes between blocks.

The ideal sitwation would be to take advantage of the linear
combination method, so that the accuracy of the motion vector cam be
kept to integer displacements, and yet exploit the data compression that
the displacement vector approach offers. Going back to (3.2) it can be
seen that the solution of the problem involves the determination of the
prediction matrix a(m,n). This results in a two-dimensional regression
problem. Noting what the physical implicatior- are in relatiom to the
regression problem, it can be seen that the regression coefficieats
would be used to perform translation and hence the model can be

simplified. A better understanding of this concept can be obtained by
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3.1  UNDERLYING ASSUMPTIONS AND REQUIREMENTS

Before getting into the actual algorithm, there are a set of

assumptions and requirements that need to be stated.

1. Bach image in the sequence is broken up into a set of square
blocks. The motion for that block is assumed to be constant over
the entire block, regardless of the chosenm blocksize.

2. The motion as modelled by the algorithm is pure translation, that
is only motion that is translation or can be modelled by
translation between frames is actually modelled. Nontranslation
type motion and problems of occlusion will be handled by the
quantization of the residual and not entirely by the displacement
vector. Although in some cases, the prediction coefficients can
somewhat compensate for nonideal motion.

3. It is further assumed that the maximum displacement between
frames is kmown. The system is no more complex for large
allowable displacements, but the number of calculations increases
rapidly as the maximum allowable displacement increases. Hence,
the maximum displacement estimate should be kept as small as
possible to improve performance. For a majority of image work a
value of five or six pixels is appropriate.

4. It is known that the human visusl system will accept a higher
degree of degradation for scenmes undergoing translation than it
will for static scemes. For this reason, the blocks that are
undergoing translation are allowed s lower signal to noise ratio
than those which do not move. That is, the moving blocks can

have a higher degree of degradation than the stationary ones.

With this set of assumptions in hand, the goals of the algorithm can
be stated: the overall system should be able to obtain a fairly high
degree of data compression, but not at the expense of overall picture
quality. The system should be able to achieve a2 very low data rate for
image sequences with little or no motion. For the blocks in the image
that are undergoing translation the method should be able to determine
the motion vector to sab-pixel accuracy amd code the resulting output at

a sufficiently low data rate.
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Chapter III
PREDICTION COEFFICIENT ENERGY CONCENTRATION

In the 1last chapter some of the previous attempts at motion
estimation, and in particular motion compensated image coding, were
presented, sotting the groundwork material for this chapter. The method
of 'Prediction Coefficient Energy Conceantration’ differs from the
previous methods not in terms of optimal output, but only in the way in
which this goal is achieved.

As the name 'Motion Compensated Image Coding’ implies, motion or
movement estimation is used to decrease the data rate required in the
transmission of time sequential image data. The use of this motiom or
movement requires that a good estimate for the displacement be made
available to the image coder. It is the finding of this displacement
vector that is new and original in this work. Previous work only
required the displacement to be found to the nearest integer multiple of
the pixel spacing. This may suffice for some applications, but whers
the human observer is the final link in the coding system, these integer
only displacements tend to be somewhat annoying. For this reason, and
others concerned with actual displacement measurement, the noninteger
portion of the displacement is needed. The methods of pel recursive and
coefficient recursive displacement estimation use anm iterative recursive
minimization procedure to converge to a displacement that is of

noninteger order.

In this chapter a new method for finding the displacement vector for
use in a motion compensated image coding system is introduced and
investigated., The method of prediction coefficient emergy conceantration
differs from the earlier recursive methods in that a solution for the
displacement is explicitly defined and does not have to iterate to a
solution. Further, it differs by the fact that no actual noninteger
portion of the displacement actually has to be found. Instead this is
replaced by a coefficient prediction process that obtains the same
results, or in many cases better, with no increase in the algorithm

complexity.
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metric representing each cormer of esch quadrant where the center value,
being common to all quadrants, may be neglected as is shown in figure
3.5. Each quadrant then is represented by a sum of three metric values
and the minimum quadrant is defined to be the one with the minimum sum.
This in essence determines the integer bounds or integer displacement
cell for the noninteger portion of the displacement. In other words,
the true value of the displacemeant is not known, but it is assumed to
fall within the bounds of the displacement cell. Hence the locatioms of
the four delta funciions are defined to be at each corner of the
displacement cell. This yields the locations of the delta functions,
but not their magnitudes. The method for determining their magnitudes

is given in the following section.

At this point, it is informative to look at a two—dimensional example
for the displacement of a single pixel. PFigure 3.6(a) presents a
reference pixel from the curreat block. Figure 3.6(b) shows the
displacement associated with this pizel as well as the integer estimates
for the X and Y displacements. The four pixels that define the box are

used in a linear combination to estimate the reference pixel.

COLUMN COLUMN  COLUMN  COLUMN  COLUMN

J Jet J*2 J+3 Jre

ROW I X X X x X
ROW I+ X X X X X
REFERENCE PIXEL

ROV 1+2 X X Eif_ X X
ROW 143 X X X X X
ROW 1+4 X X X x X

FIGURE 3.6(a) Current Frame Pixel Location

- 48 -

- . . P v et e e e L L e T e e et e T RS e e T e e e e e e e
T R N R T N S AL PSR VLN
g e - . Co. . .

.........

.....

. Pt et . S e Tt
AP IR NP PR PPN AP




E."—;‘-.'-.‘-.'-«'n'-,'-.."~'_<.‘. AER A At aCh et e v N RO A AACICE AR et Dan i AALBt e b il S U SR S A e S M AN AR AR B

COLUMN COLUMN COLLMN COLUMN COLUMNN

J J*1 Je2 J+3 J+4
ROW I X X X X X
ROV 141 X x x X X
' INTRCER X
Raw 1+2 X b, SIS e o o
Tl T
Y | REFERENCE
; ¥ | PIXEL
ROV 143 X x —“Ix p TN
DISPLACEMENT
cELL
ROV 1e4 X x x x x

FIGURE 3.6(b) Displacement Measurements for Reference Pixel

3.5 PREDICIOR CORFFICIENT GENERATION

Having bounded the displacement estimation im both directions, the

time—modified, translation~updated regression model is given as before.

1 1
I(i,§,8) = 5 5 a(m,n)I(i-K+m, j=L+a, t=x) + e(i,]) (3.39)
=0 o=0

Yhere, as before, K and L designate the lower bounds on the displacement
estimation. As was noted earlier, the assumption is made that the
displacement remains constant over the block and hence the regressiom

coefficients will also remain constant over that block.

3.5.1 Ihe Regressiog Problem

The solution for a single dimensional regression process is straight
forward and will not be addressed here. Instead, only its relationship
to the problem at hand will be discussed.

The matrix equation normally used for single dimensional regression

can be written as follows
Y=XB + ¢ (3.36)

where Y is a dependent variable vector of size n. X is the sugmented
independent variable matrix of size n by p, where p is the number of
regression coefficients. B is then the parameter vector or vector

containing the predictor coefficients and is also of size p. Finally e

is the error vector or residual. The matrix normal equation is given by
- 49 -
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xTxp = xTy. (3.37)

The least squares estimate for B is b and can be obtained from

b = (xTx)"1xTy, (3.38)

A further restriction is placed on the current regression problem in
that it is an autoregressive series, or actually an autoregressive
spatial-time series, and curreat values are predicted from past time
values from the same goneral spatial 1location. The autoregressive

equation can be written as
Y=2ZB + e. (3.39)

Z represents a shifted version of Y, in this case both spatially and
temporally. In the particular case at hand, the derivation has to be
carried one step further, because it must take into account that the
data is two-dimensional and the prediction is made over a time boundary.
Note that the regression equation given in (3.35) is not in matrix form.
Some data manipulation is required if standard methods for regression

snalysis are to be used.

3.5.2 Method for Data Manipulation

First the coefficieat matrix a(i,j) needs to be placed in a vector
fitting the description of the B vector in (3.36), therefore
[a(0) ]
2(0,0)
B = 2(0,1) (3.40)
a(1,0)
3(1.1L

where it is augmented by a(0), the intercept or bias term. Next, the Z
matrix needs to be set up to perform the shifting that is accomplished
by the double summation in (3.35). In the equation for the Z matrix
that follows, the t-tv factor and lower integer bound terms are neglected
for simplicity.
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vector.

I(i,j)
I(i,j+1)

I(i,j+1)
I(i,j+2)

I(i, j+N) I(i,j+N+1)
I(i+1,3) I(i+1,j+1)

I(i+N, j+N) I(i+N, j+Ne1) L(i+Me1, j+N) T(i+N1, j+N1) |

two dimensional image intensity values.

I(i+1,j)
I(i+l,j+1)

I(i+1, j+N)
I(i+2,§)

Note.

I(i+1, j+1)
I(i+1, j+2)

I(i+l, j+N+1)
I(i+2,j+1)

(3.41)

Figure 3.7 is provided to show how the Z matrix is gemerated from the
the first column of Z is

augmented with 1’s to correspond to the intercept or bias term of the B

@ -5 D %
ROW ROW ROW
1 2 N
- -
ROW ROW ROW
N+1 N+2 2N
O — D é—_—é

(N=1 IN+1{[N=1)N+2

4 5
(b) Single Row Scan

PAFSIIE NI P

FIGURE 3.7(a) Z Matrixz Scan Diagram

.
Py

Filling in the remaining terms of the Z matrix ome row at a time

starting from the top and working down can be accomplished with the help
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of the scan diagrams given in figure 3.7. Figure 3.7(a) represents the
pixel groupings by row for the intemsities from the previous frame.
Each row of Z is represented by a box in figure 3.7(a). An expanded
version of ome of these boxes is shown in figure 3.7(b) where each
corner of the box designates a column in the Z matrix. Hence, for each
row in Z there is a corresponding group of four pixels whose inteasity
values are to be placed into the column associated with the number given
for each cormer, as is shown in figure 3.7(b). Note that each pixel
intensity may be used up to four times in the Z matrix. Finally, row
scan the current frame block placing each value into the column vector Y

as showa.

1¢i,j,t) |
I(i,j+1,t)

Y= |I(i,N, t) : (3.42)
I(i+l,j,t)

LI( i+N, j+N, t)

The scanning diagram for the current frame block is given below in
figure 3.8. The residual vector e is defined identically to that of the

Y vector.

With each of the variables Y, Z, B, and e defined, the current
problem reverts to that of a normal one dimensional antoregression
problem involving five coefficients and hence canm be solved as such.

The least squares estimate for B is b and is given by

b = (zT7) 12Ty, (3.43)

As with any system that requires a matrix inverse, it is possible
that the system may become ill conditioned and the inverse may not
exist. In the current system, this is remedied by using only the
estimate for the integer portion of the displacement. When this occurs,

the b vector is set to an identity transfer functiom, that is,
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; N+ 1 2N
q — - O—-O———-O0—> o——=0
— - O—-O——-O—> O——0

‘ 2
! :" N QuT
e, -O——-O—> O——=-0O—

FIGURE 3.8 Y Vector Scan Diagram
T = [0,1,0,0,0] (3.44)

and amounts to using oaly the information from the integer displacement

estimate in the predictiom process,

3.6 BLOCK PREDICTION AND RESIDUAL GENERATION

After the completion of the identificationm portion of the system, it
is necessary ‘to generate the data required for transmission. The data
required by the receiver is broken up into two separate parts. The
first part is the receiver control block, which contains the ianformation
generated by the identification portion of the system. The remaining
part is what is termed the residual data block. It contains the
information required by the receiver to update or correct the block
estimate when based only upom the control block information. The
receiver, as well as the receiver portion of the transmitter, takes the
control block information and ptodnc;s an estimate of the curremt block
using a similarly spatially located block from the previous

reconstructed frame.

1 1
e(i,j,t) = I(i,j,t) = S S a(m,a)I(i-K+m, j-L+n,t-t) - a(0) -
o=0 =0 (3.45)

‘Ll g

This residual term is them quantized for transmission.

In order to fully exploit the between frame redundancy, checks are 2
placed in the system to flag the types of changes that occur. The first :t;
~ Y

-
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check determines if any motion has occurred in the curreat block. If no
motion is found, the process simply goes to the next block with no
required data transmission. If motion has occurred, it is tested to
determine if an integer estimate is a suofficiently good estimate. If it
is deemed an integer only displacement, the block address aad
displacement are transmitted to the receiver. When integer displacement
is not accurate enough, the predicflon coefficients must be calculated.
At this point the transmitter must send the block address, integer
displacement, quadrant, predictor coefficients and possibly a quantized
version of the predictiom error. A final check is performed to
i determine if the error is still too large. If it is, the primary

blocksize is cut in half and the process is retried for each of the four
S sub-blocks.

3.7 CODING

As noted in the previous section, there are two types of information
that must be transmitted to the receiver. The first is the control
block information, which contains the information required to make the
motion compensated estimate and the second is the residual data block.
The residual data block is the quantized error of the actual predictionm,
aloang with the coding information needed by the quantizer. Each of

these will now be discussed in detail below.

3.7.1 Contzol Block Information

The control block information dats sequence contains the set up
variables needed by the receiver in order to start the prediction
process. The data sequence is of variable length, depending on the mode
of operation, of which there are four. As noted earlier, if no change

has ococurred for a block, then the receiver requires no update.

The four different modes of operation can be separated into two
groups of two categories. The two groups are integer and noninteger
displacements, while the two categories are the different blocksizes of
8 by 8 and 16 by 16. Table 3.1 shows the bit requirements for each mode
of operation and the bit breakdown. The assignment of the first 10 bits

remain the same for all four modes. These first 10 bits consist of a

bit for integer/noninteger mode, a blocksize bit for blocksize
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determination and 4 bits each for the integer X and Y displacement.
This will allow for a shift in either direction of from minus seven to
plus seven pixels. The remainder of the bit structure differs in
accordance with the blocksize bit and integer displacement bit. These
remaining bits contain the block address for the current block and, if
the noninteger bit is set, the quadrant number. Four of the predictor
coefficients are coded into this section, while the fifth, since it is
used by the residual quantizer, is coded in the residual block section.
The number of bits used is based on an image size of 256 pixels square
or smaller. If a larger image is used, then appropriate changes will

require the enlargement of the block sddress.

This control block is essentially the overhead required for the
prediction process and in itself produces a very low data rate. This
overhead is zero for the motiomless blocks and can range from about 0.07
up to 0.98 bits per pixel for blocks that contain motion. Hence, the
predictor overhead will normally contribute only a small portion of the
total data rate requirements. The majority of the bandwidth required is
a result of the prediction error and hence is required by the residual
data block.
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TABLE 1

..........

INTEGER NON-INTEGER
8x8 16x16 8x8 16x16
BIT
1 |0-Integer only 0-Integer only 1-Non-Integer 1-Non-Integer
2 j0-Blocksize = 8 1-Blocksize = 16 |0-Blocksize = 8 |1-Blocksize = 16
3 iX X X X
4 |X| X Direction X! X Direction X! X Direction X{ X Direction
5 (X | Displacement XY Displacement |X} Displacement |X| Displacement
6 |X X X X
7 1Y Y Y Y
8 {Y] Y Direction Y| Y Direction Y] Y Direction Y{ Y Direction
9 |YY Displacement Y\ Displacement ![YY Displacement |Y\ Displacement
10 |Y Y Y Y
11 |X X X X
12 |X X1 X Block X XI X Block
X Block ) X Block _
13 [X X Location X XY Location
Location Location
14 iX X X X
15 X Y X Y
16 |Y A Y‘ Y Block Y Y| Y Block
) .
17 Y Y\ Location Y Y1 Location
Y Block Y Block
18 (Y Y Y Y
Location Location
19 Y Y C
20 |Y Y C { Prediction
21 C C \ Coefficients
22 C YPrediction C
‘ L ] L]
|
2 ] C C
3 ; R Residual
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3.7.2 Residual Data Block

When the cumulative error between the predicted block and actual
block exceeds a set threshold, a residual block must also be
transmitted. This data is used to correct some of the errors that occur
in the prediction process. The block consists of two parts. The first
contains the mean and variance of the residual signal and the number of
quantizer levela. The remaining data is the quantized residual data.
Fizxed rate quantizers are inappropriate because the residoal signal is
non~stationary. A varisble rate quantizer, based on the mean and
variance of the residual signal and the predictor gain, performed quite
well in spite of the non—statiomary signal. For very small variance
errors no residual was needed. For larger errors, up to 7 bits were

available per pixel.

Due to the very large variation in the quality of the predicted
signal, an adaptive-variable—-length quantizer is required in order to
maintain a minimal data rate for a specified overall picture quality.
Here, as in much of the other work in image processing, there is no good
clear ocut numerical indication of picture quality. For the work
reported here two statistical imdicators were jointly used for intermal
judgement of picture quality. It is upon the basis of this judgement
that the residual data rate is determined. The first statistical
indicator is the error signal variance. It is expected that a low
variance value means good image reproduction whi'e a large error
variance indicates a large prediction error and hence a large residual
data rate requirement. The second statistical imdicator is the
prediction gain or predictor signal to noise ratio., While this does
take into account the error variance from above, it also takes iato

acoount the signal variance and is defined by
GAIN = 10Log(var(signal)/var(error)). (3.46)

i Using these two quality indicators as fidelity criteria, the adaptive

quantizer determines the required number and placement of quantizer

output levels in oxrder to achieve a specified output signal to noise
ratio., The residual variance is used as a simple yes/no indicator for S
) the quantizer. That 1is, if the error variance exceeds the preset _1

threshold, the quantizer will be used to transmit the residual. The
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predictor signal to noise ratio is then used by the quantizer, along
with the minimum acceptable signal to noise ratio, to determine how much
the predicted signal needs to be improved. This is equivalent to
determining the quantizer level requirements. The number of levels is
determined by finding the minimum number of levels needed to obtain the
preset ocutput signal to noise ratio, provided the error distribution is
Gaussian. Even though the global error distribution may be gaussian,
rarely will the local distributiom be so. For this reason, rarely will
the output signal to noise ratio match that which was preset. However,

this will bound the actual data rate requirements.

The quantizer employed in the actual implementation is a multiple
level and hence variable rate. The quantizer chooses the thresholds and
output levels optimally based om a distortion measure defined to be the
sum of the absolute values of the error. The choice of this distortionm
messure over the standard mean squared error results in a decrease of
the granular noise in the areas of the image with small signal variance.
Figures 3.9(a) and (b) are provided to show the differences in output
error distributions for the differeat distortion measures. Each is
assumed to have a Normal(0,1) imput error distribution. The curves
labelled 0,1,2,3, and 4 bits are .the error output distributions after
modification by the selected quantizer. If an infinite number of bits
were used, the output error distribution would be a delta functiom
centered about 0. Note that the mean square method tends to minimize
the area under the tails of the distributiom, while the absolute valze
method tends to concentrate more on the center portion of the
distribution. As noted earlier, the number of quantizer levels required
is based upon the error variance aand the predictor signai to noise

ratio.

When the error variance exceeds the set threshold, the difference
between the requested gain and the actual predictor gain is in a sense a
‘gain’ that must be gemerated by the quantizer. Gain is a2 term not
normally associated with quantizers, but in this case it is used to
compare the output quality with a given quantizer to the quality that
would be present if no quantizer were used. That is to say, how much is
the signal improved by using a quantizer to send the error as compared

to not sending the error at all.

- 58 -




R TR R e ——

This gain is determined as a function of the number of output levels.
It is then a simple procedure to determine how many levels are required
to meet gain feqnirenents to obtain this reproduced image fidelity
criterion. A plot of this gain as a function of output levels is given
in figure 3.10. From this, for a required gain, the number of output
levels can be determined. The similarity of this curve to the log rate

distortion curve is appareat.

QUANTIZER GAIN IN DB

iy

r— T —

.09 16.08 32.00 48.00 04.98 €2.00
NUMBER OF QUTPUT LEVELS

1

90.29 112.00  128.00

P

FIGURE 3.10 Quantizer Gain as s Function of Number of Output Levels
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Chapter IV
EXPERIMENTAL OPERATION

The presentation of results obtained from most forms of image
processing is a difficult ome, but even more so when the data coansists
of time varying image sequences, as is the case in motion compensated
image coding. Comparisons among published results are even more
difficult because of the lack of standard presentation procedures and
the lack of standard test image sequences. The performance of any
motion compensated coding system is extremely scene or sequence
dependent and hence, this dependence as a function of system and scene

characteristics will be presented.

The image sequences used for this system performance analysis consist
of 41 images of size 128 by 192 pixels quantized to 8 bits. The first
sequence is termed ‘'SLOW PHONE' and consists of a woman talking on a
phone while slowly rotating and moving the phome. The second sequence,
termed 'FAST PHONE', is similar to the first but contains faster aad
more motionm. Both sequences contain very complex motion with
foreground-background interaction and are similar to those that would be

encountered in a video—-phone setting.

A block diagram showing each of the subsystems mentioned in the
previous chapter and their relationship to one another is givenm in
figore 4.1. Note that the block diagram presents each snbsystem
serially connected with no indication for mode of operation. The mode,
recall there are four, is controlled by the data control and logic
block. Note also that the system can be easily implemented in parallel
in terms of block operations because oae block prediction is not based
on the previous block from the same frame, but only on blocks from the

previous reconstructed frame.

As stated above, the presentation of the results for time varying

imagery work is very difficult. VWhen images from the sequence are

viewed singularly, they appear ’‘cleaner’ or less noisy than they would
if viewed in the actual sequence. Also, some prediction errors that do

appear in the single frames are not as noticeable when the frames are
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FIGURE 4.7 Quadrant Determination Flow Chart
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4.4 MININUN QUADRANT GENERATION

Upon return from the metric subroutine, an eostimate of the integer
displacement is provided. The subroutine also supplies a variable that
is equal to the value of the metric at its minimum location. This value
can be used to determine how good of an estimate of the curreat block
can be gonerated using the previous frame and the integer displacement
estimate. For many blocks this estimate may prove to be sufficient.
For others, it indicates that more information will be required in the
image recomstruction. For the blocks that the estimate is sufficient,
no further displacement estimation is required. For the others, further
computations are required to improve the current frame estimate. This
further computation may involve determining a better estimate for the
displacement vector or, as in the method presented, solve for the

regression parameters.

When an integer—only displacement estimate is not good enough, the
next step is to calculate the best estimate for the quadrant in which
the true displacement falls. This is accomplished through the use of
the LOCATE subroutine as givem in appendix B, The accompanyiug
flowchart is provided in figure 4.7. Recall from chapter 3 that this
quadrant is generated by summing the values of the metric that surround
the best integer estimate. The quadrant is used to bound the
displacement estimate to a single integer displacement cell. This
subroutine locates the quadrant with the lowest sum of surrounding pixel

values. It does not determine the values for the coefficients.
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JBLOCK 4
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FIGURR. 4.6(c) Plot of Actual Metric
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Y SHIFT

FIGURE 4.6(a) Plot of Actual Metric
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FIGURE 4.6(b) Plot of Actual Metric
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estimate of the displacement. This presentation is achieved with the
use of subroutine INVERSE aand MPLOT as given in appendix B. Figures 4.6
(a) through (d) are examples of various actual metrics. From these, the

geometrical nature of the metric function can be seen.

The plots are arranged such that the base of each plot represeats the
value of the integer shift. Each base axis represents a direction of
shift. The values of shift for these examples range from minus nine to
plus nine in bdoth the X and Y direction. The magnitude of the plot can
be thought of as a measure of similarity between the curremt block and

various shifted blocks from the previous frame.
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difficult in practice. Following the flow chart of figure 4.5, the
process starts with setting an initial goess for the displacement vector
estimate, This is not used as starting point for iteration, but rather
as a method to save time. This value can be set to zero, if no motion
is expected, or to the value of the previous block estimate. The
subroutine will test the hypothesis that this is the correct integer 5
displacement, and if it falls within the threshold bounds, will exit the
sobroutine setting the actual estimate to the initial guess. If the
metric value falls outside the threshold, the entire procedure must be
executed for all allowable possibilities of block shift. The procedure
is executed as follows. First the shift vector estimate must be set to
the lowest possible value in both the X and Y directions. Solve for the ;-
metric or risk function based on this shift vector. Recall from Chapter 5
3 that the metric is defined to be a function of the sum of the
thresholded differences between the current frame block and the previous
frame pixel neighborhood. The shift vector is then incremented and a
new metric value caloculated. The procedure is continued until all
allowable pixel displacements have been tried. At this point, a matrix
of metric values, vwhose oentry position defines the associated
displacement estimate, is examined for a minimom value. The locatiom of
the minimum value designates the integer displacement estimate. If
there is more than one minimum value, the entire metric matrix is
recalculated using a smaller allowable error threshold. If after this o
is tried, and the allowable error canmot be decreased and there are
multiple minimum points, the smallest displacemeant value is chosen to be
the actual estimate. Along with the location of the smallest metric
value, the actual value of the metric is also returned to the calling
program as an aid inm quality measurement. The program is now ready to

return to the main driver program and continue,

Before continuing with the program procedure, it is informative to
look at some examples of the metric matrices generated by the algorithm.
Recall that the actual implementation looks for a minimum valne of the
metric matrix, but for ease of presentation the metric matrix has been :
modified. The modification is accomplished by reversing the magnitude :;
order of the data and rescaling to fit the 0 to 1 range. The reverse in
order exchanges places of the minima and maxima. Hence, in the

presentation the maximum value of the function defines the best integer
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FIGURE 4.5 Metric Subroutine Flow Chart
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Following constant initialization, the single image is broken up into

many small sub—images of size 16 by 16 and blockwise scanned top-to—
bottom and left-to—right. The following discussion refers to operations

on a single block.

First it must be determined if the particular block is a border
block. That is, does it border the outside of the image? The reason
for this is that border blocks request data from the previous
reconstructed pixel neighborhood that do not exist. This is dictated by
the possibility of a plus or minus p pixel shift in both directionms.
Rather than setting the nonavailable values to zero, it has proved
advantageous to set these terms to the mean value of the remaining pixel

neighborhood.

4.3 MNETRIC GENERATION

Given the curreat block and the previous pixel neighborhood, the next
step is to calculate the difference metric. The flow chart for
subroutine METRIC is provided in figure 4.5 while the subroutine listing
is provided in appendix B.

Subroutine METRIC serves a dual purpose. It is used to determine the
best estimate for the integer portion of the displacement based upon the
arithmetic metric used. It is also used to determine if this integer
estimate is a sufficiently good estimate. In the discussion to follow
the absolute value threshold method, or MAP estimator given in section
3.3.3, will be used. In the subroutine, like the main driver, it is
important to treat border and mnonborder blocks differently. The
execution is similar for both border and nonborder blocks, with the
exception of a correction factor that takes into account the possibility
of a smaller number of terms used in the border block calculations. The
correction factor is used to weight the estimates based on fewer terms
differently than it would if the entire previous data field had been

available.

It is this portion of the algorithm that is the most calculation
intensive, and hence the slowest to execute., Here again the algorithm,
slthough implemented in series, lends itself to parallel operationms.

The implementation of the algorithm is simple in concept, but more

- 69 ~

D e
PR N

st a9 ke gt o e

'
RS

- ‘
RPN Py



FIGURE 4.4 Main Control Program Flow Chart
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FIGURE 4.4 Main Control Program Flow Chart
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4.1 ALGORITHM IMPLEMENTATION

This method for motion compensated image coding lends itself very
well to modular programming design. The system must perform serially in
terms of most within block operations, but is easily adaptable to
perform parallel or concurrent operatioms across blocks. Because the
algorithm was modelled and simulated in software, only serial operations

can be used and hence, the discussion to follow will be restricted to a

purely serial implementation. Notes will indicate the parts of the

implementation that are easily converted to parallel operations.

As noted earlier, it is assumed that both the transmitter and ;q
receiver have complete knowledge of the initial image and motion lﬁ
compensated image coding starts with the second frame of the sequence.

The actual FORTRAN code used for the simulation is provided in appendix

e

ce e
PSR B NY

B and will be referred to throughout this chapter. Flowcharts for both

the main program and some of the subroutines will be provided in the

text as required.

v %
PRI

4.2 MAIN CONTROL PROGRAM

: .
e
PN

¥

Figure 4.4 provides a flow chart of the main control program and

RN XXX

'-
‘A_-l._

relates to the program 1listing MAIN in appendix B. The program
initialization section sets up the required run time constants used for
both variable assigmnment and program control. Some of the more

important constants will be discussed below.

-1

NPBITS is an integer number used to designate the number of bits used

Dokl &relhadh

. L,
S A

L

to quantize the predictor coefficients. The quantization method assumes
a uniform distribution from -2 to 2. The actual number of quantizer N
bits is ome greater than NPBITS to allow for a sign bit. The variables ’
VAREST, STDERR, and AVGERR are set constants used as threshold values -

throughout the program. VAREST is an estimate of the average difference

between two identical frames when viewed at the output of the imaging ﬁ}
device, or in other words an estimate of the imager noise. STDERR and o
AVGERR are threshold values for the error terms. ISIZE and JSIZE are
simply used to identify the image size and may be changed to fit any
image size as long as the DIMENSION statement settings are likewise -
adjusted.
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(a) FRAME 1 (b) FRAME 8 (c) FRAME 15

Figure 4.3
Original 'FAST PHONE' Sequence

(d) FRAME 22 (e) FRAME 29 (f) FRAME 36
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- Figure 4.2
Original 'SLOW PHONE' Sequence

(d) FRAME 22 (e) FRAME 29 (f) FRAME 36
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viewed in sequence becaunse of the integrating ability of the eye. For
simple comparison purposes, six frames from both of the original
sequences will be presented. Figures‘4.2(a) through (f) are frames from
the 'SLOW PHONE’ sequence and 4.3(a) through (f) are from the ’‘FAST
PHONE' sequence. It is important to note that much of the image quality
is lost in the photographic process and the associated copying and

printing.

The theoretical system presented in Chapter 3 has been programmed and
simnlated using FORTRAN and hence was not executed in hardware or real

time. More on the actual implementation of the algorithm will be

presented in the later sections.

The algorithm simulation starts with the assumption that both the
transmitter and receiver have full knowledge of the first frame. The
following frame starts the process of motion compensated image coding.
Transmission of the first frame may be accomplished using normal coding
techniques or transmitted using ordinary PCM methods. The process from
this point onward assumes that one frame is read at a time and processed
before the next frame can be read. Although nome is used in this
simuplation, it is understood that in a real world implementation a fixed
length buffer would have to be incorporated into the hardware. It is
assumed that an infinite length buffer is available in the simulation.
Although not used for buffer control, a very good built in feature of
the implementation is the setting of a required output signal to noise
ratio, If a fixed length buffer were used, the varying of this required
SNR could function as a buffer control parameter. That is, when the
buffer approaches full the required SNR could be allowed to drop. VWhen
the buffer neared empty, the output SNR could then be increased. This
would nearly eliminate the possibility of a buffer overflow, and hence a

loss of data.
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4.5 REGRESSION COEFFICIENT GENERATION

The generation of the delta function magnitudes is based on linear
regression theory and is accomplished in the subroutine COEFGN. The
magnitudes of the delta functions are used as weighting values to
estimate the current frame from the past frame. Given the integer
displacement value and the magnitudes of each of the delta functions,

the system is able to make 2 good prediction of the curremt block.

Because the displacement has been bdounded, the four pixels that are :
used to estimate the current pixel are known. What is not known, is how
these pixel intensities are combined to produce the curreant estimate.

The weighting values define how the previous pixels are to be combined
and are determined by solving for the parameters of the antoregressive

spatial-time series.

4.6 CURRENT BLOCK GENERATION

Subroutine PRED is the portion of the program that is used to
calculate the curreamt block estimate. Along with this estimate, an
error block is also calculated. From the error block, the error mean
and variance must be determined. The mean and variance are used as an
indication of how well the prediction process performed. If both the
mean and variance are within set limits, the process will simply go on
to the next block. If the error is deemed too large, the entire process
up to this point is redone on a smaller blocksize of 8 by 8. This says
that the single 16 by 16 block is brokem up into 4 sub-blocks and the
algorithm is executed for each of the sub-blocks. If the blocksize is

o already 8 by 8 and the error is still too large, the process must

generate a quantized error or quantized residual term.

The eorror in prediction can come about from many sources, some of
which are listed below. The motion that occurs may not fall into the
category of pure translation. That is, the motion may comsist of
various types of rotation. The objects could have rotated in the plane
of view or in any of the planes perpendicular to the plane of view,
hence taking into account the 3-D aspect of the objects. The model
cannot account for rotation. Hence, when this occurs errors will result

that must be quantized and transmitted. The other major source of error
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generation is from the problem of background/foreground interaction.

- Recall that the motion model was developed for the pure translation, no

* background cas¢ and hence only optimally estimates this type of motion.
S When the actual data does not fit the model, it may be necessary to
- quantize and transmit the error.

ey

4.7 ERROR QUANTIZATION

The error term resulting from the subtraction of the predicted block

from the actual block is very scene dependent. Because of this the

statistics for the error block are widely varied. The quantizer used
for the residual encoding is very important because it determines, to a
large exteant, the overall system data rate. The variance of the error
is a good indicator of image quality. That is, if the variance is low
the image reproduction should be good. Om the other hand, if the
variance of the error is large, it is expected that the reproduced image
will be somewhat degraded. It only seems logical, from the above
discussion, that the quantizer used shonld. be able to adapt to the
changes in statistics of the error and transmit only the data required

to reach some fidelity criterion.

Subroutines QUANTI and QUANTZ are used in the quantization of the
error signal. QUANTI determines the amount of gain the quantizer
produces for the various number of output levels. QUANTZ performs the

actual quantization and coding of the residual.
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Chapter V
RESULTS AND CONCLUSIONS

The presentation of results from time sequential image processing,
and even image processing in gemneral, proves to be a difficult task.
When a human viewer is the final link in this imaging system, the
important criteriom is not a set of numbers calculated from various
system parameters, but rather the important criteria is how does the
viewer subjectively judge the quality of the fimsl output. Although
there appears to be some correlation between some distortion measures,
‘such as the mean square error, and the subjective quality, this
correlation is not very strong. Another way to put this is, a decrease
in the mean square error may not always mean an increase in judged

subjective quality.

A presentation of output results of single images, not taken from an
image sequence, poses a simpler problem than those taken from image
sequences. Each image can be viewed subjectively apart from all others
because they are not dependent on images that come both before and after
in time. This method of presentation does not hold, as well as is not
feasible, for sequential image data. Vhen the sequences are composed of
thirty or more frames per second, the amount of space required to
present them in itself creates a problem. But more importantly, the eye
and associated biological processors prefer that the images be presented
in a sequential manner in the same spatial location., It appears that
the integrating ability of the eye plays an important role in the
subjective image judgement of time sequential imagery.

The output images will be presented in a fashion similar to the
presentation of the inpot images provided im chapter four. One should
note that quality degradation occurs at every step of the image transfer
process. That is, exposure, development, printing and copying all

degrade the true quality of the actual image.

Even though distortion measures such as the mean square error may not
be directly related to the subjective quality of the output image, it is

an indicator that allows for a comparison amomg differeat rums of the
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same program with varied parameters. It does function as a means to
compare outputs on a more numerical level. It seems logical that if the
system and algorithm remain the same, with only. minor modifications in
some system parameters, that the outputs can be compared on a more
quantitative basis. Stating this simply, the image sequence with the
best overall output signal to noise ratio should be the image sequence
judged best in a subjective analysis.

Another problem in the presentation of results arises from the very
large variation im possible iuput image sequences. Because the data
compression that occurs in the system is a direct result of the
exploitation of the between frame correlation, the amount of data
compression that can ococur is directly related to how well adjacent
frames are correlated. It has been shown in intraframe image coding
techniques [8], that the majority of the information of the image is
contained in the edges of the image. Along with the majority of the
information, the edges also require the majority of the bandwidth in a
data compression scheme. The same can be said for interframe image
coding if one defines what is meant by ’‘edge’ in interframe terms. If
an intraframe edge is defined to be a boundary between two regions of
near uniform luminance and can be estimated by using a spatial
derivative, the interframe edge can be defined as a boundary between
spatial regions of varying intensity temporally separated and can be
estimated with a temporsl derivative. What this says is that the edge,
in interframe terms, occurs at the portions of the image that change
between frames. This idea can be further restricted if the method of
interframe image coding is motion compensated. Now the edge can be
defined to occur at the regions of the image that interface the
background and foreground. Hence, if this interframe edge were viewed,
the edges would appear at points where the moving objects and background
meet. Just as in the intraframe case, the temporal edge requires the
largest amount of bandwidth for transmission, and hence contains the

majority of the new information contained in each image.

Because the amount of information that must be transmitted is
directly related to the quantity of temporal edges and hence motion, the
amount of motion that occurs in a given image sequence should provide s

good indication of the data rate requirements of the system.
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For presentation purposes, only a fraction of the total number of

images can be presented. Figures 5.1(a) through (£f) are a selected set
of output images from the °'SLOW PHONE' sequence with the following set
of selected parameters. These parameters will be changed to try and
show the effects of the various thresholds and quality settings on the
quality of the output.

Figures §5.2(a) through (f) are also from the ’'SLOW PHONE’ sequence
with the following set of selected parameters.

AVGERR = 4.0
SNRSET = 21.0

Figures 5.3(a) through (f) are selected images from the ’SLOW PHONE’

sequence with the following set of selected parameters.

Figures 5.4(a) through (f) are also images from the 'FAST PHONE'

sequence with the following set of selected parameters.

NPBITS = 10

As stated earlier, the most important aspect of the output is the
subjective quality of the images, but other parameters of the system may
provide insight into functioning of the algorithm, For this reason, a
set of eleven plots for each of the four output sequences will be

presented. The plots will be presented in groups of four, each onme
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(a) FRAME 1 (b) FRAME 8 (c) FRAME 15

Figure 5.1
Output 'SLOW PHONE' Sequence

(d) FRAME 22 (e) FRAME 29 (f) FRAME 36
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(a) FRAME 1 (b) FRAME 8 (c) FRAME 15
Figure 5.2
Output 'SLOW PHONE' Sequence

d) FRAME 22 (e) FRAME 29 (f) FRAME 36
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(c) FRAME 15

(a) FRAME 1 (b) FRAME 8

Figure 5,3

Qutput 'SLOW PHONE' Sequence
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Figure 5.4
Output 'FAST PHONE' Sequence
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plotting the same parameter as the others in the group, but with a
different image set or initial parameter setting.

The first set of plots, figures 5.5(a) through (d), provide a measure
of the amount of motion that is present in the image sequence. For the
purpose of the plots, motion is defined to have occurred within a block
if any information about that block must be transmitted. This includes
cases of integer—only displacement, non-integer displacement and
possible cases where no motion has occurred, bdut a residual data
sequence is required. For counting purposes, a block is defined as an
eight by eight sub—image. The results are plotted as a percentage of
the maximum number of sub-blocks possible. For the image size used,
with an eight by eight blocksize, the total number possible is 384. The
average number of blocks considered to be in motion in the sequence of
forty images is printed in the upper right—~hand corner of each figure.
Here, as in the remaining tem plot sets, the (a) plot relates to the
output figures provided in figures 5.1(a) through (f). Plots labelled
(b), (o), and (d) then relate to figures 5.2(a) through (f) to 5.4(a)
through (f) respectively.

The second set of plots, figures 5.6(a) through (d), present the
instantaneous data rate as a function of frame nmmber. Like the
previous set of plots foxr the block rate, the plots start from a small
value and quickly rise to s more stable value. This can be partially
explained by noting that it may take multiple frames to detect and

correct for very small amounts of motion between frames.

The next set of plots, figures 5.7(a) through (d), simply combine the
two previous sets of plots in such a way so that the interaction of the
block rate and data rate can be more easily seen. As would be expected.
the points tend to cluster about a line angled from the lower left to i ;:':1
the upper right. This simply shov? that an increase in motiom will '

require an increase in data rate.

Figures 5.8(a) through (d) provide a numerical indication of

instantaneous system distortion. When it comes to presentation of

-'I P
’ hadeiie S ta e s

results, not even the term ’'SIGNAL TO NOISE RATIO' has a universal
definition. As used here, signal to noise ratio is defined to be ten
times the log base 10 of the ratio of the signal variance to the error :::
¥
:::
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variance. The average is again printed in the upper right-hand cormer

of each plot. Note the broken Y axis for signal to noise ratio.

Figures 5.9(a) through (d) and 5.10(a) through (d) are preseanted to
show the interaction of the system gain, or signal to noise ratio, to
both the block rate and data rate. For these sets of plots, it would be
ideal if the system signal to noise ratio was not a function of data
rate or block rate., The ideal case would be one for which the output
signal to noise ratio would be constant regardless of the data rate or
block rate. That is, the quality of the output images should remain
constant regardless of what the input sequence contains. Neither of the

sets of plots show a tendency to disprove this idea.

The previous three sets of plots were functions of the overall system
gain. One of the internal parameters not measurable from the output of
the system that has proved informative, is the predictor gaian. The

i predictor gaim is defined to be, tem log base 10 of the ratio of the
variance of the signal to the variance of the error of prediction. This
. prediction error of the system is that error which would be generated if
' no residual were available for correction. Recall that this is one of

i the internal parameters used to judge what the data rate of the residual

.

should be. The plots of the predictor gain as a function of frame
number are provided in figure 5.11(a) through (d). Note that these

-(-'.‘

plots tend to be much more erratic and varying than do those of the

eatire system signal to mnoise ratio. Although not plotted, the

difference between system gain and the predictor gain shows the gain

that has to be generated by the quantizer and error coding section of

Y@L T
.

. the system.

Unlike the overall system gain, it is expected that the predictor
E gain would be related to both the data rate and block rate. Figures
t: 5.12(a) through (d) show the relationship between the predictor gain and
;_ the block rate. As wounld be expected, the points tend to cluster about
]
& a8 line with a slightly negative slope. Said another way, the predictor =7
t gain is higher for a smaller number of blocks in motion. The greater '3
" the number of blocks in motion, the lower the predictor gain. Likewise ﬂ
5 the predictor gain and system data rate exhibit similar characteristics :@
g in figores 5.13(a) through (d). The lower the predictor gain, the more Fi
i data that has to be transmitted through the quantizer and hence, the :ﬁ
’ higher data rates. 2
. - 8 - 3
] {
i.' ?.1
LS “J
) ‘-_1
., . e . i _..1
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The final plots provide a sort of statistical view of the predictor
error signal. Figures 5.14(a) through (d) present a log histogram of
the prediction errors. Figures 5.15(a) through (d) provide an
alternative view of the prediction error in a 1log cumulative

distribution function of the error.
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The iteration methods are also unable to cop. with occlusion as well as
non-translation types of motion. The Prediction Coefficient method is
able to partially alleviate these problems.

The results presented show a good degree of data compression, while
at the same time producing high quality output. The aslgorithm has been
tested on data similar to that which would be encountered in a video—
telephone setting. A large amount of the algorithm analysis has been
performed. To some degree it has been shown how various system
parameters effect the quality of the output and the data rate required
to achieve it. Also, the interaction among the predictor gain, the gain
produced by the quantizer, and the overall system gain have been
investigated. Actual output images have been presented for visual
comparison of the different preset parameters. Ideas and suggestions
were provided for possible future research to continue with the work
that has been started here.
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requirement in background and shadow areas than would be expected. In .
these background and shadow areas, both the signal variance and signal
power are low. There may be a way to take ianto account both the signal

variance and the signal power to improve the quantizing quality.

Finally, work is needed in the area of noise effects. A study of how
noise in the input sequence effects both the prediction process and the
output quality of the image sequence is needed. More importantly, how
noise in the digital chanmel effects the operation of the algorithm, sas
well as the quality of the final output, needs further research. The
implementation here assumed a noise free channel, but for real world

applications an additive noise channel will need to be modelled.

Only a few of the many possible refinements and extensions of this .
one particular method for motion compensated image coding have been
mentioned. The entire field of motion compensated image coding is still
in its infancy, with an enormous amount of work remaining. To even
attempt to list all of the possible paths for future research would be a

major undertaking. The fields of research remain wide open.

5.3  CONCLUSIONS

The method of Prediction Coefficient Energy Concentration has proved
to yield an i..nptovenent in motion compensated image coding when compared
with previously published results. The improvements come in both the
areas of algorithm complexity and in the method for determining the
displacement estimation. Previous methods for displacement estimation
have relied on an iterative procedure that was both time consuming and -
rigidly (fixed to translation types of motion only. The method of
Prediction Coefficient Energy Concentration has replaced the iterative
estimation procedure with a two-step estimation procedure. The first
step produces an estimate for the integer portion of the displacement.

The second step, if needed, produces a set of predictor coefficients
that are able to perform the same function as the nominteger portion of

the displacement.

The algorithm does not have the problems of convergence that many of
the previous methods exhibit. The replacement of the iteration

procedure with the two-step prediction process relieves this problem,
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Further work 1is required to determine the effectiveness of this
procedure as well as how this setting effects the actual quality of the
output. Signal to noise ratio is a term that is easily calculated, but
may not have a direct relationship to the actual quality of the output
image sequence. Perhaps some other figure of merit would function

better, .

The area of the procedure that requires the majority of the bandwidth
is also the area that offers the greatest potential for further :
research. This is the area of error quantization. The system as
presented here, assumed the error distribution to be Gaussian and
attempted to minimize the sum of the absolute value of the error. This
is a2 major oversimplification of the data that actually results. It is
known that the distribution is not Gaussian, but estimates of the actual
distribution are unknown. Better estimates of the actual error
distribution are required. Perhaps one solution would be to define a
set of possible distributions and determine which of these distributions
the current residual data best fits. It is expected that the errors
that arise from blocks located at the moving/nommoving interface would
differ substantially from those blocks that tend to have a constaat
translation. Yet another distribution would be required for areas where
background is uncovered. If it could be determined from which area a
block originated, an estimate for that local error distribution might be

generated.

Another problem in the area of quantization that merits further
research, is that of ©possible data dependent thresholding or
quantization. It has slready been stated that the eye will allow a
higher degree of degradation for portions of the image that are
undergoing translation thanm it will for non—moving portioms. It also
seems that the human visual system is very critical about small errors
when they occur in areas of the image with small signal variance. This
problem was partially addressed in that the signal to noise ratio was
defined as ten log the ratio of the signal variance to the error
varisnce, as opposed to ten log the ratio of the signal power to the
error power as is normally used. TLis forced a better residual update

in the areas of the image with small signal variance, such as the face

and hand areas of the images presented. It also forced a higher update
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alleviated with the help of a low pass filter on the output stage of the

motion compensation system to smooth the output.

5.2  RECOMMENDATIONS FOR FUTURE RESEARCH

This work has only scratched the surface as far as motion compensated
image coding is concerned. The groundwork material has been set and a
path started, but many more gquestions have been asked than have been
answvered. Much of the algorithm analysis and implementation work yet

remains.

One area of the algorithm analysis that needs to be studied in more
detail, is the area of optimal threshold and parameter selection. As
pointed out in the last section, effort is needed to determine optimal
values of the thresholds and how the choice of one effects the outpaut,
as well as the action of some of the other parameters. Ideally, some of
the pa£a-etets should be tied to the quality of the image data itself.
It will prove unproductive to try to gemerate an output image sequence
with a signal to noise ratio greater than that of the input sequence.
Along the same lines, the differemce in quality of display devices can
also contribute to the setting of various system parameters. That is,
the dynamic range and distortion of the display device needs to be
considered when the image quality requirements are defined. In general,
the choice for the threshold for determining if the displacement is
integer or nominteger as well as the choice for the threshold for
determining if sub-block processing is required, requires some more
effort. These two thresholds are not unrelated. For example, if the
error threshold is increased for the integer/monm-integer test, allowing
more blocks to pass as integer displacement, fewer will even reach the
portion of the algorithm that tests for sub—-block processing. Some work
needs to be performed to determine what the optimal threshold settings
are, how they are related to the actual image data, and also how they

are related to ome another.

One of the other preset system parameters that warrants farther
research, is the value for the output signal to noise ratio. As was
noted in one of the previous chapters, when a fixed length buffer is

used in the implementation, the value for this required signal to noise

ratio of the output could be used as a bduffer regulating parameter.
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f, 5.1  REMAINING PROBLEMS

'

: The overall results of this method for motion compensated image

= coding have proved promising. A fairly high quality output has been
achieved at a nominal overall data rate. Still, for video-telephone

applications the data rate remains too high. There remains a number of

DG AN R A A

problems with both the algorithm itself and its implementation.

Perhaps the biggest problem, other than the required bandwidth, for a
video—~telephone implementation, is that of computational speed. It is,
and would be, impractical to try to implement the algorithm in anything
other than a parallel architecture hardware device. At various points

throughout the different chapters, sections of the algorithm that lend

E%?
:

themselves to parallel implementation were noted. Real time processing
of video images is a very calculation intensive undertaking that
interfaces well with parallel processing techniques, The problem of
processing time may be negligible when a real time hardware parallel

processor is used.

Another problem of the computer simulation was that of the choice of

the various thresholds and other system parameters. No attempt was made

to optimize all of these parameters. Some of the thresholds and
E: parameters were chosen to estimate the noise introduced into the system
i by the imaging apparatus, while others, such as the predictor
ii coefficient coding length, were chosen by a mathematical model. The

image qua.ity and data rate requirements are opposing ends. That is,
o minimizing the data rate tends to decrease the image quality, as does

increasing the image quality require an increase in data rate. Both of

these are very debendent upon the settings of the various thresholds.

One of the problems that remains in the output image can only be seen
when the images are viewed in sequence as they were intended to be.
This problem comes about because of the ability of the human eye and
visual system to detect very minute changes in gray level, if it has
some geometric structure. This can be seen to occur in the image
sequence at lower data rates when the outlines of the sub-blocks of the ]
images become visible. Because of the straight line geametric nature of 1
the block boundaries, they appear more noticeable than ome would expect

for the size of the actual error. Perhaps this could be partially
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i Appendix A

PEL RECURSIVE, COEFFICIENT RECURSIVE AND RESIDUAL
RECURSIVE DISPLACEMENT ESTIMATION
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PROGRAM DISPEST1

COSSS08282988000098000808888088808280880888888888808088888888
Ce .
C: PROGRAM DISPEST1 ADTHOR - CARL BOWLING DATE 9/12/83 :

C* PROGRAM FOR DISPLACEMENT ESTIMATION .
Ce METHOD IS COEFFICIENT RECURSIVE BY STULLER AND .
C* NETRAVALI OF BELL LABORATORIES. IT MAY ALSO BE USED®*
g: FOR PEL RECURSIVE BY NETRAVALI AND ROBBINS :
Cs SUBROUTINES OR FUNCTIONS RPQUIRED - *
Ce IFORM - ROUTINE TO PERFORM TRANSFORMATION *
Ce PLOTS - CALCOMP TRANSLATOR AND PLOT SOFIWARE e
(C:: RINTRP - FUNCTION FOR INTEGER INTERPOLATION :
Ceo088838800808808858880888030808008088880888888880888808888Rs
c
REAL V(2 2),H(8,8), CLL(G 8),CP(6,256) ,CPP(6.,8) ,CPPP(6,8)
ER IL(6,2 6) P(6, 256) ILL(6,8) , IPP(6,8)
REAL G(6,8), GG( 6 ,8),CLLL(6, 8) , ERROR(6,8) ,DISP(250) ,XIT(250)
c DATA PI/3.14159265/
g INITIALIZE MATRICES TO VALUE OF 128
c DATA IL/1536*128/,IP/1536*128/
g SET UP THE TRANSFORMATION MATRIX IN THE H ARRAY
DATA H/12*1.00,4%-1.00,2*1.00,4*-1.00,4*1.00,2*-1.00,
1 2°1.00,2*-1 00. 1.00,2%-1.00,2%1.00,2*-1.00,
2 2*1.00,2*-1.00, 1. 00. -1.00,2*1. 00. -1.00,
3 1.00, -1.00, 1.00.2‘-1.00, 1.00, -1.00,
4 2¢1.00, -1.00, 1.00, -1.00, 1.00, -1.00,
c 5 1.00, ‘1.00/
C METHOD IS USED TO DETERMINE IF PEL RECURSIVE OR COEFFICIENT
C RECURSIVE DISPLACEMENT ESTIMATION IS USED. APPROPRIATE LINES
C MUST ALSO BE COMMENTED OUT DUE TO THE COMPILER USED.
C METHOD = 0 --> PEL RECURSIVE
S METHOD = 1 —-)> COEFFICIENT RECURSIVE
C LOOP IS USED TO DETERMINE IF EVERY LOOP ITERATION OR
C EVERY BLOCK ITERATION IS TO BE USED.
C LOOP = 0 —-) EVERY BLOCX ITERATION
g LOOP = 1 --)> EVERY LOOP ITERATION
C NPLOT IS A FLAG TO DIRECT THE PLOTTING OF THE DATA
C NPLOT = 0 --> GO TO 4025 SCREEN
g NPLOT = 1 --> GO TO 4662 PLOTIER
LOOP = 1
METHOD = 1
NPLOT = 0
SQRT2 = 1./((2.)**.3)
IF(METHOD.BFQ.0)SQRT2 = 0.0
V(1,1) = SQRT2
v(1,.) = V(1,1)
v(2,1) = V(1,1)
v(2,2) = -V(1,1)
FAC = ,5*SQRT2
DO 10 I=1,8
DO 10 J=1,8

H(I,J) = H(I,J)*FAC
CONTINUE
IF(IZ%HOD.NE.O) GO TO 40

DO I=1,8
20 K(I,I) =1.0
DO 30 I=1,2
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DISPEST1

CO8880083383000448088088828888388330448808888880883288088884
C* GENERATE THE TEST ARRAYS IN IP AND IL

.
Ce IP IS THE PRESENT IMAGE b
C* IL IS THE PREVIOUS IMAGE FRAME e
C‘ THE TEST ARRAY IS A RADIALLY DECAYING FRBAUENCY .

MODULATED COSINE FUNCTION, .
ct-Otcoc000-oo.o.cao-ttancocooaa.ctco‘c.o.-coo.ototatota.tos
C

DO 50 I=1,6

DO 50 J=1,60

R=SQRT( FLOAT( (I+7)%%2 + J*J ) )

IF ( R .GT. 60.0 ) GO TO 50

P=(1, - R/60.)*10. + 10,

IPT=100. * EXP(-.01*R) * COS(2.*PI*R/P) + 128.

IP(I,J+128) =IPT

IP(I,129-J)=IPT

IL(I.J+126)=IPT

IL(I,127-J)=IPT

50 CONTINUE

Pl ITEET BT e DT D P P T DL T P T P

C .
g: TRANSFORM THE ORIGINAL ARRAY WITH SUBROUTINE XFORM :

Co988208 3008380898000 0380080808008 03080383888880888880888508288

C NR - THE NUMBER OF ROWS IN TRANSFORMATION
C NC - THE NUMBER OR COLUMNS IN TRANSFORMATION

NC=8

TRANSFORM IS (V)*(I)*(H)
DO 80 J=1,256.,8

J IS THE BLOCK NUMBER
DO 60 K1 = 1,6

K1 IS THE ROW NUMBER
J1 =T +7

aa anan aan

1
CPPP(K1,k3) = IP(K1,K2)
CONTINUE

CALL XFORM(CPP,V,CPPP, H, NR,NC)
gg 700K1 = 1,6

60

1
CP(K1,K2) = CPP(K1,K3)
70 CONTINUE
80 CONTINUE

gooooo.oo-oooooo‘cooooooo.ooooo#toooooooo.o.ooooooo.totooooc
Ce »
C: END TRANSFORMATION - START OF DISPLACEMENT I'I'ERATION:

Ce8908088880080008880888008883080R800SRS0RSRSESS000SCtettORses

EPSIL - GAIN FACTOR (READ IN INTERACTIVELY)

ananann

...............
...............
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DISPEST1

IF(NPLOT.EQ.0) CALL ERASE
DI = 0.0

I IS THE BLOCK NUMBER (USE ONLY 10TH - 23RD)

ITNUM = 0
DO 150 I=10,23

JT - START COLUMN LOCATION OF CURRENT BLOCK
JD - START COLUMN LOCATION OF PREVIOUS BLOCK

JT = (I-1)*8 + 1
J =1

aQaan

aana

K =3
IF(LOOP.BQ.0) GO TO 95

IF LOOP SET TO 0, COMMENT OUT THE FOLLOWING TWO LINES
SOME COMPILERS MAY NOT ALLOW THE JUMP AROUND DO LOOPS

DO 140 J=1,8
DO 140 K=3,4
95 RD = FLOAT(II) - DI
JD = RD
RDIFF = RD - FLOAT(JD)

Co00080088880 0830000802080 80800 U SSEERS0 LSS0 ESSSe0S

aaan

Ce .
g: CALCULATE INTERPOLATED DISPLACED BLOCK :
CO800500000000080050800888080030883808088382088802888808880088
C

JD7 = JD+7

JDD = 0

DO 100 L=JD,JD?7

JDD = J'DD +

DO 10

(IL(I L, l'L(H L+1) ,RDIFF)
100 CLLL(K JpD) =

CO2808S300483098 3800800300000 06S 248888080838 RSPERNSSREERSRS

Ce* .
ce END OF FRAME INTERPOLATION DETERMINATION - *
g: FIND THE FRAME ERROR :
COtE282308083282804290283488080085880032800822020828005288284
C

CALL XFORM(CLL,V,CLLL, H, NR,NC)

DO 110 L=1,8

DO 110 M=3,4

ERROR(M,L) = CP(M,L+JJ-1) - CLL(M,L)
110 CONTINUE

Co098308800088888080088800880888838080088888¢8280S80SS00s0880sS

Ce .

C* FIND TIME DOMAIN GRADIENT OF THE DISPLACED FRAME »

g: CLLL. GRADIENT FOUND BY CENTRAL DIFFERENCE METHOD * ]

Co9808800808 0088080828030 000882082088888888000888R 0SSR OsSS q

c A
DO 130 L=3,4 4
DO 120 M=2,7 b
GRAD1 = a.LL(L+1 M) - CLLL(L-1,M) L
GRAD1 = 0, :

GRAD2 = CLLL(L,M+1) - CLLL(L,M-1) 4
120 G(L,M) = (GRAD1 + GRAD2) * .5 g
GRAD1 = (CLLL(L,2) - CLLL(L,1))*2. 1
GRAD2 = (CLLL(L+1 1) - CLLL{L-1,1)) ~
GRAD2 = 0, %
G(L,1) = (GRAD1 + GRAD2) *.5 .
GRAD1 = (CLLL(L,8) - CLLL(L.,7))*2,
GRAD2 = (CLLL(L+1,8) - CLLL{L-1,8})
GRAD2 = 0,

G(L,8) = (GRAD1 + GRAD2)*.S
CONTINUE

CALL XFORM(GG,V,G,H,6,8)

o

A

130
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DISPEST1
Coe8350008048840088088838088288308380028288008288088S2080880%
Ce s
C: GENERATE THE DISPLACEMENT ESTIMATE :

Ce83883083588008808888¢880¢8850SS2S0SPSRSLEERLEEL8SSPSL220222S

c

c IF(LOOP.EQ.1) GO TO 135

C IF LOOP IS SET TO 1, COMMENT QUT THE FOLLOWING TWQ LINES
g SOME COMPILERS MAY NOT ALLOW THE JUMP AROUND DO LOOPS

C DO 140 J = 1,8

c DO 140 K = 3,4

135 DI = DI - EPSIL*ERROR(K,J)*GG(K,J)
ITNUM = ITNUM + 1
XIT(ITNUM) = ITNUM
DISP(ITNUM) = DA - DI

140 CO E

NTINU
150 CONTINUE
IF(NPLOT.BEQ.1)CALL PLOTS(IBUF,1,15)
CALL H.OT(XOFF YOFF, -3)

Z .)
, ' ITERATION NUMBER'’,-16,8.,0.0,XIT(81),XIT(82))
., 'DISPLACEMENT ERROR',18,5.,90.,.DISP(81) ,DISP(82))

.0) "GO TO 155
; CALL NEWPEN( 'BLAC’)
4‘ gn‘ ANY SINGLE DIGIT NUMBER AND RETURN IF READY')

)CALL NEWPEN( 'BLAC’)

ISP 80,1,1,3)
4.45,.20,44,0.,-1)
4.5..14. =’,0.,1)
.5,.14,EPSIL,0.0,5)
SYMBOL(2.,5.,.2, 'EVERY LOOP ITERATION ’',0.,21)
SYMBOL(2.,5.,.2,'EVERY BLOCK ITERATION'’,0.,21)
L SYMBOL(2.,5.3,.2, ' COEFFICIENT RECURSIVE',0.
L

CALL SYMBOL(2.,5.3,.2,'PEL RECURSIVE',0.,13)
GO TO 90

5
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160 CALL PLOT(10.,10.,999)
500 FORMAT(1X,'/*’,'WHAT VALUE FOR THE GAIN EPSILON?')
510 FORMAT(F10.6)
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RESDISP
PROGRAM RESDISP

PRT FILE 5279 FROM VS1 COPY 001  NOHOLD
(998488804288048068844008882040882882088088038328808888888889
Ce *
C* PROGRAM BY - CARL. BOWLING .
g: LATEST UPDATE - OCTOBER 26, 1983 :
Ce PROGRAM FOR DISPLACEMENT ESTIMATION *
g: METHOD IS RESIDUAL RECURSIV :
g: SUBROUTINES OR FUNCTIONS REQUIRED - :
Ce XFORMB - PERFORMS A 1 OR 2 DIMENSIONAL UNITARY e
Ce TRANSFORNATION ON THE INPUT ARRAY, e
Ce COMP - ADAPTIVE HYBRID PICTURE CODING DATA be
Ce COMPRESSION ROUTINE, .
Ce PLOTS - ALL THE CALCOMP DRIVER SOFIWARE AND THE b
Ce TRANSLATOR SOFIWARE FOR THE TEKTRONIX .
ce 4662 PLOTTER AND 4025 DISPLAY. .
Ce RINTRP - FUNCTION TO INTERPOLATE BETIWEEN ADJACENT *
g: INTEGER VALUES, :
(S ITTITIIT LT DT TR DR L 2 e e I PP PR L P PP P P P 2
C

EXTERNAL HADGEN

REAL DLIF(S.B).DLTF(S.S).ERROR(8.8).CP(8.256)

REAL COEFF(8,3),CL(8,256) XIT(ZSO) ,DISP(250)
INTEGER IL(8,256),IP(8,256)

COMMON /CODPRM/ IR, IC, IBSZ ,NTYPE, (BSZ, OTYPE, IBLKSZ
COMMON /FT/ KFFT

DATA PI/3.14159265/

DATA NTYPE1/'IN*4'/,0TYPE1l/'REAL’'/

NTYPE1 IS THE DATA TYPE OF THE INPUT ARRAY (INTEGER®*4)
OTYPE1 IS THE DATA TYPE OF THE OUTPUT ARRAY (REAL*4)

INITIALIZE PAST AND PRESENT FRAME MATRICES TO VALUE OF 128
DATA IL/2048*128/,IP/2048%128/
SET CONSTANTS FOR TRANSFORM

NTYPE = NIYPEl
OTYPE = OTYPEl
KFFT =
IBLKSZ=
IBSZ =
BSZ =

(o] .
(oL 22022 L2 Al A2 At At ] 2 ad A I Al it idl i ddiad dddd

Ce GENERATE THE TEST ARRAYS IN IP AND IL
Ce IP IS THE PRESENT IMAGE FRAME

Ce IL IS THE PREVIOUS IMAGE FRAME

Ce THE TEST ARRAY IS A RADIALLY DECAYING FRBEQUENCY
Ce MODULATED COSINE FUNCTION. ONLY A PORTION OF THE
Ce* ENTIRE IMAGE IS USED.

CP9999908 8808808088880 230 22008008883 0400088300050250080sR80s
C

AN AQQAAON
lll

000000 O

LR X X X X B N J

DO 10 I=1,8

DO 10 J=1,60

R-SQRT( FLOAT( (I+7)%%2 + J*J ) )

IF ( R .GT. 60.0 ) GO TO 10

P=(1., - R/60.)*10. + 10.
IPT=100.%EXP(-.014R)*COS(2.*PI*R/P) + 128.
I,J+128)=IPT

(

(I,
(I,J+126)=IPT
(1,127-J)=IPT
INUE

10

AT AL LAt ok g e




RESDISP

CP2000000900 0830008808000 0800980808880888088888888888888RR8S

Ce .
C: START OF DISPLACEMENT ITERATION :
LTI TP LD L Y T e P e P T T P I R P PP PP TR L R Y
C
C EPSIL - GAIN FACTOR (READ IN INTERACTIVELY)
C DA IS THE ACTUAL FRAME DISPLACEMENT IN PIXELS
C DI IS THE ESTIMATE OF THE PIXEL DISPLACEMENT
g ITNUM IS THE ITERATION LOOP COUNTER
DA = 2.0
20 VWRITE(6,30)
30 FORMAT(1X,’'/®’,'WHAT VALUE FOR EPSILON? F10.6 FORMAT')
READ(5,40)EPSIL
c 40 FORIIAT(FIO.S)
g CHECKX IF GAIN IS GREATER THAN 1. IF SO STOP PROGRAM

IF(BPSIL.GT.1.) GO TO 130
SA}LL 6?1.8’13(130!".1.9)

Cee28088888830 883800288800 080008008208RPEELABEEBSISSSSESESe

C» s
Ce 1 ~ THE BLOCK NUMBER (USE ONLY 10TH ~ 23RD) e
Ce ITNUM - THE ITERATION NUMBER be
Cs JJ - START COLUMN LOCATION OF CURRENT BLOCK .
g: JD — START COLUMN LOCATION OF PREVIOUS BLOCK :
COSE08008280240888908505858380802888483888088300330888888088
c

IINUM = 1

XIT(1) = 1.

DISP(1) = 2.0

DO 120 I=10,23

JT = (I-1)*8 + 1

DO 120 J = 1,8

DO 120Kk =3,3

= FLOAT(JJ) - DI
J'D = RD

RDIFF = RD - FLOAT(JD)

C
Ce8890908888088 3808888083088 080088¢3 0088 RSSLSSPSoSP0SSERess

C* s
Ce CALCULATE INTERPOLATED DISPLACED BLOCK .
rc:: IN THE TIME DOMAIN : _
COO...O.“.“‘.‘...O‘OOO“‘..tt“‘OO‘0‘.“.‘.‘.“0..“.“‘.‘ :
c ;
JD7 = JD+7
JDD = 0
DO 50 L=JD,JD7 1
IDp = JOD + |
DO 50 M=1,8
X = RINTRP(IL(M,L),IL(M,L+1),RDIFF)
50 gxéxg(u JDD) = X ]
60 WRITE(1) (DLIF(L.M).M=1.8) }
REWIND 1
C‘..‘..‘.‘.O‘.“““‘0..‘.“‘..‘...““..“.t“.“"‘t‘..“. i
Ce .
g: END OF DISPLACED BLOCK INTERPCLATION .
C* CALCULATE THE RESIDUAL SEQUENCE FOR USE AS THE .
g: GRADIENT. .
C.“.‘.O.‘...‘0.‘....“‘.t.‘O.‘O‘....Q‘.O‘t.“.t‘.‘t..t"..O

c
NTYPE = OTYPEl
IR =0
IC = +1
CALL XFOM(HANEN 8,8,1,2,DLTF)
REWIND 2

PRSP AP > -SRI
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DO 70 L=1,8
70 READ(2) (DLTF(L M) ,M=1,8)
REWIND 2
CALL COMP(DLTF,8,8,3,COEFF)
REWIND 1
DO 80 L~-1,
80 ké"ll’ﬂ!(l) (DLTF(L M) ,M=1,8)

IR =0
IC = -1
CALL XFORMB(HADGEN,8,8,1,2,DLTF)
REWIND 1
REWIND 2
DO 90 L-1,8
90 READ(2) (DLTF(L M) ,¥=1,8)
?”9 100 L=1
100 DLTF(L.M) = DLTF(L.H)/FLOAT(IBLKSZ)
REWIND 1
REWIND 2

L IITIITI PR DR E P P TR LR P e T P P PP T T T T PP T L P
Cs
C: END OF RESIDUAL CALCULATION

»

»

c .
g: FIND THE TIME DOMAIN FRAME ERROR :
*

COt232888008880228883248822483884048040088020848028822080488
C .
DO 110 L=1 8
DO 110 M=
110 ERROR(M, L) = FLOAT(IP(H L+JJ-1)) - DLIF(M,L)

COSS00S0S290800888580983080008048380800888808008888808¢888888
Ce s
(é: GENERATE THE DISPLACEMENT ESTIMATE :
(9808283800008 0008080000808880800S00000008R8RSIRELSS000S

C
DI = DI - EPSIL‘ERROR(K.J)‘DLTF(K i)
IINUM = TTNUM +
IIT(ITNOM) = I'I'NUM
DISP(ITNUM) = 2.0 - DI
120 CONTINUE

C

g ALL OF THE CALLS BELOW ARE USED TO PLOT THE RESULTS
CALL PLOT(1.35,6.0,-3)
CALL FACTOR(.65)
CALL SCALE(DISP,5.,80,1)
CALL SCALE(XIT,S8. 80.1) :
CALL AXIS(0.0,0.0,'ITERATION NUMBER',-16,8.,0.0,XIT(81),XIT(82))
CALL AXIS(0.,0.,’DISPLACEMENT ERROR’,18,5.,90.,DISP(81),DISP(82))
CALL LINE(XIT,DiSP,80,1,1,3)
CALL SYMBOL(6.3,4.45..20.44,0 ,~1)
CALL SYMBOL(6.5,4.5,.14,'=',0.,
CALL NUDBER(6.7.4.5,.14.EPSIL 0.0,5)
CALL SYMBOL(1.0,5.0,.28, 'DISPLACEMENT ESTIMATION'.O ,23)
CALL SYMBOL(2.0,5.4,.20, 'RESIDUAL RECURSIVE',
CALL PLOT(10.,10.,2)
CALL TSEND
CALL ANMODE
GO TO 20

130 CALL PLOT(10.,10.,999)

STOP
END
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250

anan

260

Qoo

270

280

290

ann 0o a0

''''''''''''''
‘‘‘‘‘‘‘‘

PCEC

K= ISTY - 1

=K +1

R(

ERRSI L) = ER16(I.J)
IERS = UM +

R = IERSQR + IER®*IER
IER = ER'6(I,J) + 128
IF(IER.GT.255) IER=255
IF(IER.LT.1) IER = 1
BIST(IRR) = HIST(IER) + 1,
CONTINUE

CALCULATE THE MEAN AND VARIANCE OF THE QUANTIZED VERSION FOR
COMPARISON.

Al = IERSUM

i} = &R'I‘(G(FLOAT(IERSQR) - (A1%A1/256.))/255.)

IF(IPRT EQ. 2)'RITE(6 1060) IBLK, JBLK, MIN, (LOC(KC) ,KC=1,2) , AVG, STD,
Al1,S1,INTBIT,NB

CONTINUE

CALCULATE THE SIGNAL TO NOISE RATIO

ITOTAL = 0

DO 270 I=1,ISIZE

DO 270 J=1,JSIZE
ITOTAL = ITOTAL + B(I,J)

CONTINUE
TOTAL = FLOAT}ITOTAL)
IMEAN = TOTAL/SIZE

»JSIZE

DO 280 I=1,ISIZE

PSSP = PSSP + ERRSIG(I,J)*ERRSIG(I,J)
IERR = B(I,J) - EST(I,J)

INTER = B(I,J)

SIG = FLOAT(INTER) -~ XMEAN

PSSS = PSSS + SIG*SIG

PSSE = PSSE + FLOAT(IERR*IERR)
IA(I,J) = EST(I,J

S8SS = SSS + PSSS8

SSP = SSP + PSSP

SSE = SSE + PSSE

IF(IPRT.BQ.2) WRITE(6, 1070)SSE §SS
SNR = 10.*AL0G10(SSS/SSE)

SNRP = 10.*AL0G10(SSS/SSP)
SNRARY(IMAGE) = SNR

SNRPAR( IMAGE) = SNRP

IF(IPRT.BQ.1) WRITE(6,1080) SNR, SNRP

WRITE OUTPUT IMAGE OUT TO UNIT 10

CALL OOMTAL(EST, ISIZE, JSIZE, 10)
WRITE(6,1090)FF

IF(IPRT.GE.1) WRITE(6,1100)

CALCULATE MOTION RATE (#BLOCKS IN MOTION)
NTAB = 0

DO 330 I=1,24

DO 325 K=1,16
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e NON-INTEGER DISPLACEMENT ASSUMED AT THIS POINT  *
L J
ce LOCATE THE MINIMUM QUADRANT WITH RESPECT TO THE *
ce INTEGER DISPLACEMENT. .
Co82 29298 SENEREES 0L A VEEESLLLISLBESERLSSSS2EESSSERERES
c
CALL FILL(IBLK,JBLK,I1M1,J1M1,8,MTAB, 24,16, RR’)
INTBIT = 1
CALL LOCATE(LOC, F, 21,21, MIN)
c NBITS = NBITS + 21 + 4*NPBITS
¢ SET UP THE REGRESSION PROBLEM
K =0
DO 190 L=1,8
I = L + IXOFF
DO 190 M=1,8
J = N + IYOFF
E=K+1
DO 180 N=
(K, M) = D8 (J+QOFF(MIN,N,1),I + QOFF(MIN,N,2))
180 CONTINU
OUT(K) = C8(M,L)
190 CO
C
¢
¢ CALCULATE THE NEW PREDICTION COEFFICIENTS
¢
c CALL COEFGN(X, OUT, RCOEF, K)
¢ QUANTIZE THE PREDICTOR COEFFICIENTS

DO 200 I=1,4
200 RCOEF(I) = (AINT(RCOEF(I)‘RLEVH. + .5))/RLEVEL
IF(K.NE.129) GO TO 2

M
210 CONTINUE

COSS804SS0SSISULESARERSEELIILVVEIS LSRS0S 022000

Cs *
C: CALCULATE THE PREDICTED IMAGE BLOCK :
COEES028S80880084040284840008032482400888SE0842SSS820808004
C
CALL PRED(C8,D8,E8,2 , IXOFF, IYOFF, VA, AV, QOFF, MIN, RCOFF, INTBIT,

# NBITS, RETCOD, ERS, DIST LVLARA)
IF(IPRT.BQ.2) WRITE(6,1050) I1,T1,MIN, LOC(1) ,LOC(2) ,AV, VA, INTBIT,
# NBITS, RETCOD

IF (RETCOD.FQ.1)NBITS = NBITS - 21
IF(RETCOD.EQ.1) GO TO 170

WRITE ESTIMATE AND ERROR OUT TO 16X16 ARRAY
K = IBLK1

aAno

ERROR(K,L) = E8(
ER16(K,L) = ERS8(

220 CONTINUE

230 CONTINUE

240 CONTINUE

C
C WRITE QUANTIZED PREDICTION VALUE OUT TO ESTIMATED MATRIX
C CALCULATE THE MEAN AND VARIANCE OF THE PREDICTION ERROR
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C8(K,L) = C(I,Y)
CONTINUE

IAVG = IFIX(FLOAT(ITOTAL)/64. + .5)
CALL INITI(D8,28,28,IAVG)
150 CONTINUE

TRANSFER DATA FROM D -> D8

ISTX = IX - 10 + JBLK1
ISPX = ISTX + 27

ITY = ISTY - 10 + IBLK1
IPY 27

ISX

ISY
IHY

140

ano

:
2

IF
155 M
N

2‘\

& 8-ngnanyE

~0
™ =

160

CALCULATE THE METRIC FOR THE 8 BY 8 BLOCKS

aAaQaAnaQn

IF(IBLOCK.HQ.1) CALL INITI(F,21,21,0)

' CALLn umn) ic(cs.D8,F,28,21,8, IMIN, LOC, IBLOCK, KCONS , ITHRSS,
IXOFF = LOC(2) - 1
IYOFF = LOC(1) - 1

TEST FOR INTEGER DISPLACEMENT
IF(IMIN,GT.ITHRS8) GO TO 170
INIBIT = 0O

ann

COP89008980808300035880880000880880888880888808808888%880S28000s

Ce .
g: INTEGER DISPLACEMENT ASSUMED AT THIS POINT :
(9858208080084 00888544804228800888880888588880032808888888
C

RCOEF(1) = 0.0

RCOEF(2) = 0.0

RCOEF(3) = 1.0

RCOEF(4) = 0.0
c MIN = 1
g TEST FOR NO DISPLACEMENT

IF(IXOFF.P.10 .AND. IYOFF.BQa. 10) GO TO 210
CALL FILL(IBLK,JBLK, I1M1,J1M1,8,MTAB,24,16,'II")
NBITS = NBITS + 20
GO TO 210
c 170 CONTINUE
COP98009880008000008808280883200002000080820088008080000S4ES
Ce »
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AVG = AV

TR v~
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PCEC

PERFORM TEST TO DETERNINE IF SUB-BLOCK PROCESSING

MAY HELP. TEST VARIANCE OF ERROR.

annannan

IF(VA.LT.STDERR .AND. ABS(AV) .LT.AVGERR) GO TO 240

CO0000803080009882000880800800880880830000883080808308888888

4 ]
g‘ 908 o s S80S soes L ] [ 2 1 2088 & s 8
C. ® [ ] * @ [ ] ] $ & s & ® L *
Ce o . o0 . . s . s 0 s .
CO 280 L ® S99 S9% P8ss L ] [ ] s 8 L 1 1 ] L ]
c. s ® ¢ ] L [ I L s @ E J  J [ ]
c. L IR J [ IR L * * 8 L ] s & L g *
C‘ [ £ 1 L] Lt 1} sees Lt 23] 888 s$80 *998 @ s &

® L
g.‘.o.“.0....“...‘.““ iSSP PSS EL LSS VRIS EVSSSRS
C
g RESET DISPLACEMENT MAP
c CALL FILL(IBLK,JBIK,0,0,16,MTAB,24,16,' ')

g CORRECT DATA RATE FOR SUB-BLOCK PROCESSING
IF(INIBIT.BQ.1) NBITS = NBITS - 18 - 4*NPBITS
IF(INITBIT.BQ.0.AND. (IXOFF.NE.10 .OR. IYOFF.NE.10))NBITS=NBITS- 18
DO 230 I1=1,2
IBLK1l = (I1-1)°*8
DO 230 J1=1,2

LK1 = (J1-1)*8
IIM1 = 11 ~ 1
JIM1l = J1 - 1
KCONS(1) = 1
ECON8(2) = 1
KCON8(3) = 28

c KCON8(4) = 28

¢

g START DATA TRANSFER FOR 8 BY 8 BLOCKS

g

c IF(IBLOCK.EQ.1) GO TO 130

g SECTION FOR NON-BORDER BLOCK TRANSFER
I = IBLK1
DO 120 k=1,8
I=1+1
J = JBLK1
DO 120 L=1,8
I =T+
C8(K,L) = C(I,))

120 CONTINUE

GO TO 150
c 130 CONTINUE
g SECTION FOR BORDER BLOCK TRANSFER
ITOTAL = 0
I = IBLK1
DO 140 K=1,8
M= ISTY + 1
I=1I+1
J = JBLK1
DO 140 L=1,8
N=IX+7J
J=2J4+1
ITOTAL = ITOTAL + IA(M,N)
- 144 -
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CALL FILL(IBLK,JBLK,0,0,16,NTAB,24,16, 'RR’)
CALL LOCATE(LOC,F,21,21,MIN)

QUADRANT NUMBER NOW CONTAINED IN MIN

CALCULATE THE NEW SET OF PREDICTOR COEFFICIENTS
FOR THE CURRENT BLOCK.

THE FOUR VALUES ARE CONTAINED IN ARRAY RCOEF.

LOCATION OT THE 4 COEFFICIENTS
RCOEF(1) | RCOERF(2)
RCOEF(3) | RCOEF(4)

SET UP THE REGRESSION PROBLEM
USE EVERY OTHER VALUE FOR THE PREDICTION PROCESS

AAQAOAAANANAOAAANANNOANN

K = 0
DO 80 J=1,16,2
M = J + IXOFF
DO 80 I=1,16,2
N = I + IYOFF
K=K +1
DO 70 L=1,4
70 X(K,L) = D(N-#QOFF(HIN L.1) ,MQOFF(MIN,L,2))
c 80 OUT(K) = C(I,J)
(é GENERATE THE PREDICTION COEFFICIENTS FROM THE MODEL
c CALL COEFGN(X, OUT, RCOEF,K)
g QUANTIZE PREDICTOR COEFFICIENTS TO NPBITS BITS
DO 90 I=1,4
90 RCOEF(I) = (AINT(RCOEF(I)‘RLEVH. + .5))/BRLEVEL
c IF(K.NE.129) GO TO 1
((:: IF INVERSE DOESN'T EXIST, THEN SET COEFFICIENTS
¢ 100 CONTINUE
C INTEGER DISPLACEMENT ASSUMED AT THIS POINT
g SET UP THE PREDICTOR COEFFICIENT VECTOR
INIBIT = 0
RCOEF(1) = 0.0
RCOEF(2) = 0.0
RCOEF(3) = 1.0
RCOEF(4) = 0.0
c MIN = 1
(é CHECK IF WITH ERROR - NO DISPLACEMENT
IF(IXOFF.BEQ.10 .AND. IYOFF.EQ.10) GO TO 110
CALL FILL(IBLK, JBLK,0,0,16,MTAB,24,16,'I1’')
NBITS = NBITS + 18
c 110 CONTINUE
g
g CALCULATE THE PREDICTED IMAGE BLOCK
C
c

CALL PRED(C,D, 0! 36, 6vIIOF1)7. IYOFF, VA, AV, QOFF, MIN, RCOEF, INTBIT,

#mTSRETCOD 6,DIST
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START THE A IMAGE BLOCK TRANSFER INTO THE D SUB-
MATRIX, THAT IS THE PAST FRAME MATRIX.

aqaann

ISTX = ISTX - 10

=)
8
-

I

IZE) IHX = JSIZE
ISY = 1

50 IZE) IHY = ISIZE

BREN =
5
3

I

1
={SY. IHY
60

g 7 £ 59 £ PR &2 PR Bt
8Fl8uu8
MO ZNOX

g

SOLVE FOR THE METRIC MATRIX-AND INTEGER DISP.
'5!8 ACl'IgAL METRIC VALUES ARE CONTAINED IN THE

acanaaaQan

IF(IBLOCK.BFQ.1) CALL INITI(F,21,21,0)
IF(JPLT.BQ.1)CALL INITI(F,21,21,256)
CALL METRIC(C,D,F,36,21,16,IMIN,LOC, IBLOCK, KCON, ITHRSH,11,11)

TEST IF ONLY INTEGER DISPLACEMENT - IF SO
GO TO IMAGE PREDICTION SECTION.

IXOFF = LOC(2) -1

IYOFF = LOC(1) - 1

CALL MPLOT(F,IE,21,IPLT, IMAGE, IBIK, JBLK, LOC, NGRD)
E%HI'F.LE.IHRSB) GO TO 100

aann

Q

NON-INTEGER DISPLACEMENT ASSUMED AT THIS POINT

aanaaQ

NBITS = NBITS + 18 + 4°*NPBITS
INIBIT = 1

DETERNINE IF PLOTS REQUIRED

IF(JPLT.EQ.1 .AND. IBLOCK.PQ.0 .AND. IMAGE.GT.S)
# CALL MPLOT(F,XE,21,IPLT, INAGE, IBLX, JBLK, LOC, NGRD)

SECTION FOR NON-INTEGER PORTION OF THE DISPLACE-
MENT ESTIMATION,

(2 elrlripiricislririnieie]
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C
c

DO 260 IBLK = 1,ISTOP
ISTY = (IBLK-1)%16 + 1
ISPY = ISTY + 15

DO 260 JBLK = 1,JSTOP

COPY THE REQUIRED BLOCK FROM IMAGE B INTO
MATRIX C THE PRESENT FRAME MATRIX.

QAN

Coos00800888 0880000388800 8830008 8888808830820 8088088888

Ce ISTX IS THE X STARTING POINTER FOR A AND B *
Ce ISPX IS THE X ENDING POINTER FOR A AND B .
Ce ISTY IS THE Y STARTING POINTER FOR A AND B e

Ce ISPY IS THE Y ENDING POINTER FOR A AND B *
2 DT DT LD Y P e I T e e L P T PP PR DA Py P R 2 T L

c
ISTX = (JBLK-1)%16 + 1
IX = ISTX
ISPX = ISIX + 15
RESET INIBIT
INIBIT: 0 - INTEGER ONLY DISPLACEMENT
1 -~ NON-INTEGER DISPLACEMENT
INIBIT = 0
TEST IF BLOCK IS ON THE BORDER, IF SO SET D MATRIX TO THE
AVERAGE OF THE B SUBMATRIX. IBLOCK IS A BORDER FLAG
IF IBLOCK = 0 THEN NON-BORDER BLOCK
LOCK = 1 THEN BORDER BLOCX

IB
IBIX .BQ. 1 .OR, IBIX .BQ. ISTOP) GO TO 2
JBIX .BQ. 1 .OR. JBLK .BQ. JSTOP) GO TO 2

QOaQaan anaan

IF
IF(
IF(

SECTION FOR NON-BORDER BLOCKS

QANONON

IBLOCK = 0

K =0

l‘!) 10 I-Isu ISPX
L=
Bo 10 I'IST! ISPY
C

( .K) = B(I.J')
GO TO 40

r-oﬂ

10

SECTION FOR BORDER BLOCKS

anNnOnOOn

20 IBLOCK =1
K=0
ITOTAL = 0
DO 30 J’-ISTX. ISPX

t"Sl"N
ON

32 I-{ST!.ISPY
- +

(]:I’{OT% = I‘{(YI‘AL + IA(I1,7)

IAVG = IFIX(FLOAT(ITOTAL)/256. + .5)
CALL INITI(D,36,36,IAVG)

CONTINUE

30

40
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NIBITS - RUNNING TOTAL FOR BITS USED
NIMAGE - NUMBER OF IMAGES TO BE PROCESSED
MINIMOM OUTPUT SNR

NPBITS = %o
STDERR = gi
ISIZE = 192
JSIZE = 128

IPRT =
IPLT =

B
5

0

OCDO

-
N
[N K-X-Y-1

NLO

0
4.

a0
g

PROGRAN CONSTANT INITIALIZATION
FLOAT(2**NPBITS)
NPBITS + 1
VAREST*128

INT(VAREST®*512. + .5)
ISTOP = ISIZE/ 16
JSTOP = JSIZE/16
SIZE = FLOAT(ISIZE‘JSIZE)
SSST = 0.0
SSET = 0.
SSPT = 0.
TART = 0
DRTT =
CALL READ(IA ISIZE, JSIZE,21)

ALLOW FOR MORE THAN 1 ERROR

CALL ERRSET(208,1000,1,0,0)
CALL ERRSET(253,1000,1,0,0)

INITIALIZE HISTOGRAM VECTOR
CALL INITR(HIST,1,258,0.0)

CALL INITI(LVLARA,1,128,0)
QUANTI(DIST)

3
e

b@:o

(sIrizigleIrizly]

CALL

IF(IPLT.BQ.1 .AND. KPLT.BQ.1)CALL PLOTS(IBUF,1,15)
Co08002880880800880834880¢080088880808380880888880808880888
Cs *
g: START ACTUAL IMAGE SBQUENCE LOOP :

Co03000088308888000008088 9880888308888 SSEEEOSEEEN0SERES

IF(IPRT GE. 1)'RITE(6 1020) NPBITS, VAREST, STDERR, AVGERR, SNRSET
DO 500 IMAGE = 1,NIMAGE
CALL READ(B, ISIZE JSIZE,21)

IF (IPRT.GE.1) WRITE(6,1010) FF, IMAGE
IF(IPRT.GE.2) WRITE(6,1030)
c IF(IPRT.GE.2) WRITE(6,1040)
C
g INITIALIZE IMAGE CONSTANTS
g-__
c NBITS - A COUNTER FOR THE DATA RATE
c NBITS =
g INITIALIZE NOTION TAB ARRAY
c CALL INITI2(MTAB,24,16,16448)
¢
C SET UP THE BLOCK COUNTERS '10 STEP THROUGH THE
C IMAGE IN 16 BY 16 BLOCKS. LK IS THE BLOCK
s ROW NUMBER AND JBLK IS THE BLOCX COLUMN NUMBER.
- 140 -
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PROGRAM PCEC
C.‘.“..“l....‘...“..O‘.‘......‘.‘......‘.‘..‘.‘...‘.‘...

C» ]

C* PROGRAM BY: CARL BOWLING .

cs LATEST UPDATE: JULY 18,1983 .

Ce PROGRAM FOR 2~D DELTA FUNCTION LOCATION DETERMIN- *

C* ATION. TO BE USED FOR MOTION COMPENSATED IMAGE®

cs CODING. .

¢ SUBROUTINES NEEDED: .

C* READ - READS IN IMAGES .

g Ce INITR - INITIALIZES A REAL ARRAY TO A CONSTANT *
A Ce INITI - INITIALIZES AN INTEGER ARRAY TO A CONST*
- Ce INITI2 - INITIALIZES AN INTEGER®2 ABRRAY TO A
- c* CONSTANT .
; Ce LOCATE - LOCATES THE MINIMOM QUADRANT VALUE .
3 Ce METRIC - COMPUTES THE DIFFERENCE METRIC .
C* PRED - CALCULATES THE PREDICTED VALUES .

. Ce COEFGN - PREDICTION COEFFICIENT GENERATOR .
> C* COMTAL - OUTPUTS AN TO TAPE IN COMTAL FORMe
C* PLOT - ALL THE CALCOMP DRIVER SOFTWARE AND  *

: Ce THE TRANSLATOR SOFIWARE FOR THE TEK  *
C* 4662 PLOTTER. .

Ce INVERT - SCALES DATA 0-1 IN INVERTED ORDER .

Ce PUR - DRIVER FOR PURJOY 3D PLOT ROUTINE .

cs FILL - KEEPS TRACK OF BLOCKS WITH MOTION -
Co288000088000800300880¢808083800888880888808880883808888880Cs

C
INTEGER®*2 IA(192,128), 8(192 128) ,BST(192,128) ,MTAB(24,16) ,FF
INTEGER*2 ERRSIG(192,128)
4.4.2).KCON(4) 08(8 8),D8(28,28) ,E8(8,8) ,KCON8(4)
21),C(16,16), D(36 6) ,FRROR(16,16) , LVLARA(128)
8,8) ,ER16({16,16),LOC(4) , RETCOD
,OUT{(64) ,HIST(258) , XHIST(258) , RCOEF(4) ,XE(21,21)
émxnu) , SNRARY{ 50) , SNRPAR( 50) , DRTARY(50) , TARARY( 50)
COMMON/ THRESH/ STDERR, AVGERR, SNRSET
COMMON/ RCODE/ RETCOD
DATA QOFF/2%0,2%-1,2%1,4%0,2*-1,2%1,2%0,-1,2%0,2*-1,2%0,-1,0,2°*1,

290,2+1,0/

A
DATA FF/3084/
C299028002803980840080030000888500008888859982008888888488

Ce* *

g: PROGRAM CONSTANT INITIALIZATION SECTION :
COES0890295980828585959088009020988088988888888888888088

C

g PROGRAN CONSTANT KEY

C NPBITS - NUMBER OF BITS TO QUANTIZE PREDICTOR OOEFFICIENTS
C (ACTUAL NUMBER IS 1 GREATER TO INCLUDE SIGN)

C VAREST - ESTIMATE FOR AVERAGE ABSOLUTE DIFFERENCE BEIWEEN
C CONSTANT FRAMES

C STDERR - ERROR STANDARD DEVIATION THRESHOLD

C AVGERR - ERROR AVERAGE THRESHOLD

C ISIZE - INPUT HEIGHT OF THE PICTURE IN PIXELS

C JSIZE - INPUT WIDTH OF THE PICIURE IN PIXELS

C IPRT - PRINTER FLAG

C = O0: DON'T PRINT DATA

C = 1: PRINT DATA

C = 2: PRINT ALL DATA (STEP BY STEP)

C IPLT - PLOTTER DIRECTOR FLAG

C = 0: PLOT WILL BE DIRECTED TO 4662 PLOTTER VIA GPIB
C = 1: PLOT WILL BE DIRECTED TO THE 4025 SCREEN

C NOTE: MAKE SURE THE REQUIRED TXTLIBS ARE AVAILABLE
C JALT - METRIC PLOT FLAG

C = 0: NO METRIC PLOT DRAWN

C = 1: METRIC PLOT WILL BE DRAWN

C KPLT - PLOTTER FLAG

C = ¢0: NO PLOTTING IS NEEDED

C = 1: SOME TYPE OF PLOTTING IS REQUIRED
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MOTION COMPENSATED IMAGE CODING USING PREDICTION
COEFFICIENT ENERGY CONCENTRATION - PROGRAM LISTINGS
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SUBROUTINE XFORM

SUBROUTINE XFORM(C,V,.XI,H,N,M)
(920088428 88083880038080208002430008800888088000083888888008
Cs .
g: SUBROUTINE TO PERFORM A LINEAR TRANSFORMATION :
Ce TRANSFORMATION IS GIVEN BY: o
g: (M (1I) (/) :
Ce890485588808048483088300800030003828308888840838230888808808

c
REAL C(N,M),V(2,2),H(M,N),T(6,8) ,XI(N,N)
CALCULATE (V)*(XI)
DO 30 L=1,6,2
=L

I2=L+1

DO 10 I=1I1,12

NN = I-L+1

DO 10 J=1,8

T(I,J)=0.0

DO 10 K=1, 2

I3 =L+X -

T(I J) = T(I, J) + V(NN,K)*X1(13,T)
NTINUE

aQaa

10
CALCULATE ((V)(XI))*H
DO 20 I=I1,I2

aQanon

DO

C(I, J')tC(I I)+T(1,K) *H(K,J)
20 CONTINUE
30 CONTINUE
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SUBROUTINE RINTRP
FUNCTION RINTRP(I1,12,X)

c“.“““‘.‘.‘.‘.“.‘..‘“.‘““.‘.....“......‘.““‘...“

Ce .
g: FUNCTION RINTRP :
Ce PURPOSE: .
Ce THIS FUNCTION IS USE TO PERFORM A LINEAR *
g: INTERPOLATION BEIWEEN INPUT INTEGER POINTS :
ce* EXPLANATION OF CALL VARIABLES b
Ce Il - LOWER BOUND VALUE .
Ce I2 - UPPER BOUND VALUE *
C: X - THE NON-INTEGER INTERPOLATION :
gooot-.oooooot..ca‘oooo.otoo.oo‘otoo.00.0.:td.000t.ottooooc.

c
Y1 = FLOAT(I1)
Y2 = FLOAT(12)
IF(X.FQ.0.0) RI = Y1
IF(X.FQ.0.0) RETURN
RINTRP = Y1 + (Y2 - Y1)*X




CoMP
i 50 S2 = 82 + R(K)SVI(K)
: DO 60 K=1,N
! G(K) = V1{K)/(VV + §2)
: 60 BT = BT + A(K)*R(K)
DO 70 K=1,N
DO 70 L=1,K
V(K,L) = V(K,L) - G(K)*V1(L)
70 V(L,K) = V(K,L)
E=S- I
DO 80 K=1,N

80 A(K) = A(K) + G(K)*E
SHIFT THE PAST VALUE VECTOR

DO 90 L=2,N

90 R(N+2-L) = R(N+1-L) y
R(1) = 8

100 CONTINUE

DO 110 K=1,N

110 CN(K,I) = A(K)

RESET R-REGISTER TO INITIAL SIGNAL VALUE

DO 120 J=1,N
120 R(J) = X1

DETERMINE RESIDUAL SIGNAL

DO 130

130 RT = R'.l' + A(K)‘R(I)
E=S-RT

XIN(I,J) = E

SHIFT R-REGISTER

140 X
140 R(N-*?.-I) = R(N+1-K)

R
150 CONTINUE
160 CONTgUE
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CONP
SUBROUTINE COMP
SUBROUTINE COMP(XIN, NF, NSF, N, CN)

C
Ce80980 8884388038083 0808838088S08SPESLLLRLLLESESLS88S8SSS00S

C.  J
Ce SUBROUTINE - COMP .
Ce PURPOSE .
Ce THIS SUBROUTINE IS USED TO PERFORM ADAPTIVE®
Ce HYBRID PICTURE CODING (AHPC) ON AN INPUT ¢
& ARRAY. "
Ce EXPLANATION OF CALL VARIABLES: .
Ce XIN - THE INPUT DATA AND RESIDUAL OUTPUT MATRIX +
Ce NF - NUMBER OF LINES IN THE INPUT MATRIX . g
Ce NSF - NUMBER OF SAMPLES PER FRAME-SAMPLES/LINE :
Ce N - NUMBER OF PREDICTOR COEFFICIENTS TO BE USED® 5
cs X - MATRIX CONTAINING PREDICTOR COEFFICIENTS s
Ce DEFINITION OF VARIABLE TERMS: ' . "
Ce v THE ERROR COVARIANCE MATRIX .
Ce A - THE PREDICTOR COEFFICIENT VECTOR . :
Ce VARI - INITIAL VALUE FOR ERROR COVARIANCE MATRIX * &
Ce v - VARIANCE OFFSET .
Ce XV - THE INPUT LINE TEMPORARY VECTOR .
Ce G - THE GAIN VECTOR .
Ce R - THE PAST VALUE VECTOR .
cs E - THE ERROR OR RESIDUAL TERM . 3
Ce EXTERNAL ROUTINES REQUIRED: . y
cs NONE .
c..‘.‘.........“.....‘.“‘.‘.“.‘““.‘.“....“‘.'........ J
c 3
. REAL A(6),V1(6),XIN(NF,NSF),R(6),XV(256),G(6),V(6,6) ,CH(N, NF) X
¢ SET UP THE CONSTANTS AND INITIAL VALUES o
DATA V/36%0.0/,A/1.0,~.5,-.2,.3,.4,-.5/ 3
INSF = NSF -
VW =1.0 b
; VARI ='100.0 s
¢ IN THE DO 160 LOOP, I IS THE LINE NUMBER (1 - NF) 3
DO 160 I=1,NF -
DO 10 J=1,N 2
DO 10 K=1.N -
V(I,K) = 0.0 %
IF(7.BQ.K) V(J,K) = VARI X
o 10 CONTINUE . ;,
¢ X1 IS THE FIRST VALUE OF EACH LINE, USED TO INITIALIZE THE R VECT
. X1 = XIN(I,1) ;
L9
¢ SET UP THE INPUT VECTOR AND THE PAST VALUE VECTOR »
DO 20 J=1,NSF '
20 XIV(J) = XIN(I,J) :
DO 30 J=1,N »
o 30 R =W ]
¢ IDENTIFICATION LOOP (IDENTIFY THE PREDICTOR COEFFICIENTS) '
¢
DO 100 J=1,NSF
S = XV(T)
S2 = 0.0
RT = 0.0
DO 40 K=1,N
V1(K) = 0.
DO 40 L=1.N
40 VI(K) = VI(K) + V(K,L)*R(L)
DO 50 K=1,N
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325
330

500

1010
1020

1030

#'8 ’,
FORMAT(/, ' Y X QUAD XDiS
#e

A" S Rl Tl 2 g

PCEC
IF(MTAB(I,K).NE.16448)NTAB = NTAB + 1
CONTINUE
IF}("}%.GE.I)WRITE(&IIIO) (MTAB(I,K),K=1,16)

SSST = SSST + SSS

SSET = SSET + SSE

SSPT = SSPT + SSP

DRTARY (IMAGE) = DRA’IE

NIBITS = NIBITS + NBITS

TDRATE = FLOAT(NIBITS)/(FLOAT(IMAGE)®*SIZE)
ég(IPRT.EGE <1)WRITE(6,1120) NBITS, DRATE, NIBITS, TDRATE

SNR = 10.*ALOG10(SSST/SSET)

SNRP = 10.®ALOG10(SSST/SSPT)
SNRARY(NIMAGE+1) = SNR

SNRPAR (NIMAGE+1) = SNRP
DRTARY(NIMAGE+1) = DRTT/FLOAT(NIMAGE)
TARARY (NIMAGE+1) = TART/FLOAT(NIMAGE)
NN = NIMAGE + 1

WRITE(9) NN

WRITE(9) (SNRARY(I), I=1,NN)

(SNRPAR(I) ,I=1,NN)

DRTARY(I), I=1,NN)

)
E.I)WRITE(G 1080 )SNR NRP
FORMAT(1X, A1, ' IMAGE MUEWCE NUMBER ',12)
FORNAT(]X,'BITS/COEF. = ',12, AREST = ' F5.2,
' STDERR = ’,F5.2,' ERR = 5 2,’ SNRSET = ’',F5.2)
IDIS ~ PRE-AVG ~ PRE-STD AFT-A

AFT-STD',/)

FORMAT(1X,80('~"))
FORMAT(2X,21I5,14,215,2F10.3,317)
FORMAT(IX.SIS.4F10.3. I7)
FORMAT(1X,2F10.1)
FORMAT(1X, 'SIGNAL TO NOISE RATIO ’,2F10.5,' DB')
FORMAT(1X, A1)
FORMAT(1X, ' ")
FORHAT(IX.'V.K( 1,717
FORMAT (1X, '#BITS =',17,' . 'DATA RATE ',F6.4,' TOTAL = ',I7,

# ' COMULATIVE DATA RATE ’,F6.4)

[elelrigle]

STOP

END

BLOCK DATA

BLOCK DATA FOR POINTERS FOR SUBROUTINE METRIC
IN ORDER THEY ARE ISTART, XSTOP, YSTART, YSTOP
MAX IS 21 AND MIN IS 1

COMMON /PNTR/ IRANG
INTEGER IR.ANGE(4)/8 14,8,14/
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J
CHANGE ;
SUBROUTINE CHANGE ]
SUBROUTINE CHANGE(A, B, NBY, N, IDIR) j
C.‘...‘.‘..."“...“.“...“‘..‘...‘..“...“......“““.‘ &
Cs a
Ce SUBROUTINE: CHANGE . k
Ce PURPOSE: . 3
Ce THIS SUBROUTINE IS USED TO CONVERT A REAL#*4% X
C* INTO A REAL*S AND VIS-VERSA ACCORDING TO * ;
cs THE VALUE OF IDIR . ]
Ce EXPLANATION OF CALL VARIABLES: . ]
Ce A -"B - REAL*4 ARRAY .
Ce B - B - REAL®S ARRAY .
Ce NBY - I - IST SIZE VARIABLE FOR A AND B *
Ce N - 1 - 2ND <IZE VARIABLE FOR A AND B * )
Ce IDIR - I - DIRECTION FLAG FOR TRANSFER * ]
Ce +1 MOVE A -> B . ;
Ce -1 MOVEB -> A . -
C* . .
Ce SUBROUTINES NEEDED: .
s NONE .
c.‘....‘.....‘“‘.“......“.“‘.‘.‘.““.‘““..‘.‘..““.. :
(NBY,N) ]
REAL*8 B(NBY,N)
IF(IDIR.LT.0) GO TO 20
DO 10 J=1,N
DO 10 I=1,NBY
RETURN
20 DO 30 J=1,N
DO 30 I=1,NBY 4
30 A(LJ) = B(I,J) }
RETURN ]
END {
4
]
%
1
. L
]
d
N
A
1
{
- }
¢ 1
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SUBROUTINE COEFGN
SUBROUTINE COEFGN(X, OUT, COEF, IERN)

Coe02308332208833038808 8880888888888 SESRSESRESSSABEEESRESSS

L

SUBROUTINE: COEFGN *

PURPOSE: .
THIS SUBROUTINE IS USED TO COMPUTE A SET OF*
REGRESSION COEFFICIENTS TO FIT THE DATA
INPUT IN THE MATRIX X AND THE VECTOR OQUT.
THE COEFFICIENTS ARE THEN OUTPUT IN THE
RCOEF VECTOR OR THE COEF VECTOR.

EXPLANATION OF CALL VARIABLES:

X - I - MATRIX OF SIZE 4 BY 64 WHICH
CONTAINS THE REGRESSION DATA

ouT - I ~ VECTOR OF SIZE 64 CONTAINING
THE REGRESSION DATA

RCOEF - 0 ~ OUTPUT VECIOR OF SIZE-4 THAT
CONTAINS THE INBEQUALITY
CORRECTED REGRESSION
COEFFICIENTS.

COEF -~ O - QUTPUT VECTOR OF SIZE 4 THAT
CONTAINS THE REGULAR
REGRESSION COEFFICIENTS,

IERN - O ~ ERROR CHECK FOR NON-EXISTANCE
OF INVERSE

NOTE: ONLY 1 OF THE COEFFICIENT GENERATION METHODS
CAN BE USED. THE (!IOICE IS MADE BY PLACING
THE NAME RCOEF OR COEF IN THE SUBROUTINE
STATEMENT - THIS VECTOR IS THEN RETURNED TO
THE CALLING PROGRAM.

EXPLANATION OF CALL VARIABLES:
SUBROUTINES NEEDED
TRANSP - 'I'RANSPOSI A MATRIX
MMUL - MATRIX HULTIPLICATION ROUTINE
CHANGE - CHANGES REAL*8 TO REAL*4 AND BACK
LINV2F - MATRIX INVERSE (IMSL ROUTINE)

IR 3 3 N N A R N N N N N B N R N K N NI N R N K N N N N N N N N

C828838 0380888800082 L8S0SRN0LES 0L ENIESLSLEESERSE LSS0

aAanan

Qo

10

20

REAL X(64,4) ,XT(4,64) ,XTX(4,4) ,XTXI(4,4),COEF(4),00T(64),XTOUT(4)

REAL A(4),XTXIA(4),RCOEF(4),XTXIXT(4,64)
REAL*8 XTX8(4,4) ,XTXI8(4,4),WORK(100)
DATA A/4°1./

24.4)

4i§.64.4)
IXI8,3,WORK, IERN)

CHECK FOR PROBLEMS WITH THE INVERSE EXISTING, IF PROBLEM
DOES EXIST RETURN TO MAIN AND CORRECT

IF(IERN FQ.129)RETURN

CALL CHANGE(XTXI,XTXI8,4,4,- )

CALL MMOUL(XT,OUT, XTOUT, 4 ,64,1,4 64.1)
CALL MMUL(XTXI,XTOUT,COEF,4.4,1,4,4,1)

ADD CORRECTION FOR BEQUALITY AND INEQUALITY CONSTRAINTS

CTOTAL =
'IOTAL = 0 0
DO 10 I=1,4
CTOTAL = CTOTAL + COEF(I)
DO 10 J=1,4
TOTAL = 'IY)TAL + X'I'XI(I.J')
TOTAL = /TO
CTOTAL = 1. - CTOTAL
CALL ML(XTXI A, XTXIA,4,4,1,4,4,1)
TOTAL = TOTALSCTOTAL
DO 20 I=1,4
RCOEF(I) = XTXIA(I)*TOTAL + COEF(I)
RETURN

'''''''''''''''''''''''''''
........................

..........................

COEFGN




- ————

COMT AL
SUBROUTINE COMTAL
SUBROUTINE COMTAL(IN,NBY, N, LOUT)

Co3880838 8800008 REREEREECEL VLRSS E VIS RLEEELE 0008 SSESSRESHS

C‘ L
Ce SUBROUTINE: COMTAL .
Ce PURPOSE: .
ce THIS SUBROUTINE IS USED TO TRANSLATE AN »
C* INTEGER®2 ARRAY TO 1 BYTE PIXEL VALUES AND *
g: %E IT OUT IN COMTAL FORMAT TO DISK OR  *
ce EXPLANATION OF CALL VARIABLES: .
Ce IN - T - INTEGER®*2 IMAGE ARRAY .
Ce NBY - I - 1ST SIZE VARIABLE FOR IN *
! ce N - I - 2ND SIZE VARIABLE FOR IN *
! Ce LGST - I - LOGICAL OUTPUT NUMBER FOR THE *
[ g: DATA TO BE WRITTEN .
Ce SUBROUTINES NEEDED: *
i c: NON :
C0.0..0.0'.‘.‘.‘..‘.“O‘O..‘“C.....““.‘...‘.tt“...“““
INTEGER*2 IN(NBY,N) , INORK(512)
LOGICAL*1 OUT(2,512)
EQUIVALENCE (IWORK(1),0UT(1,1))
DO 20 I=1,NBY
DO 10 J=1,N
10 IWORK(J) = IN(I,J)
20 WRITE(LOUT,30) (OUT(2,J),J=1,N)
30 FORMAT(4(128A1))

RETURN
END

-
...........
----------------------
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FILL

SUBROUTINE FILL

SUBROUTINE FILL(IBLK, JBLK, IBLKS,JBLKS , IBLKSZ, MDATA, NBY, N, KIND)
CO88992888920000388830008800088080880080008284800888000888000¢

C* .
Cc* SUBROUTINE:FILL .
Ce PURPOSE: .
Ce THIS SUBROUTINE IS USED TO KEEP AN OUTPUT *
Ce* ARRAY WITHR THE TYPE OF MOTION INVOLVED. b
Ce AN 'I’ IN THE OUTPUT ARRAY MEANS THAT THE *
Ce MOTION FOR THAT BLOCK OR SUB-BLOCK WAS .
Ce INTEGER ONLY. AN 'R’ IMPLIES THAN SOME *
Ce NON-INTEGER PORTION OF THE DISPLACEMENT WAS®*
g: USED :
Ce EXPLANATION OF CALL VARIABLES: .
Ce IBIK - I - Y LOCATION OF MAJOR BLOCK .
Ce JBLK - I - X LOCATION OF MATOR BLOCK .
[ Ce IBLK8 - I - Y LOCATION O SUB-BLOCK .
1 Ce JBLE8 - I - X LOCATION OF SUB-BLOCK .
Ce IBLESZ - I - CURRENT BLOCKSIZE .
Ce MDATA - O - ARRAY FOR INFORMATION .
Cs NBY - 1 - 1ST SIZE VARIABLE FOR MDATA *
C* N - I - 2ND SIZE VARIABLE FOR MDATA *
N Ce KIND - I - MOTION TYPE IN QUOTES: .
- Ce ‘RR’ -> NON-INTEGER DISP. .
b Ce 'II’ -> INTEGER DISPLACEMENT *
. g: ' ' => NO DISPLACEMENT :
Ce SUBROUTINES NEEDED: .
g: NONE :
COSSSSS0022020883280930008028088000080080003888088888882008088
INTEGER*2 HDATA(I‘BY N) ,KIND
MI1 = 2‘(IBII—1)
MX2 = MX1 +

MYl = 2‘(J'BLK—1) +1
MY2 = MY1 + 1
IF(IBLKSZ.PQ.8) GO I'Eg 10

MDATA(MX1,MY1) =
MDATA(MX1,MY2) = KIND
MDATA(MX2,MY1) = KIND
MDATA(MX2,MY2) = KIND
RETURN

10 CONTINUE

MX2 = MX1 + IBLKS

MY2 = MY1 + JBLKS
MDATA(MX2,MY2) = KIND
RETURN

END

[y P )
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INITI

SUBROUTINE INITI

SUBROUTINE INITI(A,N1,N2,IVAL)
CPES89835958880308000888304588008083800808038004888800488898

C* *
Ce SUBROUTINE INITI *
Ce PURPOSE .
C* "THIS SUBROUTINE IS USED TO INITIALIZE A be
g: INTEGER ARRAY TO A CONSTANT VALUE :
c* EXPLANATION OF CALL VARIABLES : .
Ce 0 INTEGER ARRAY TO INITIALIZE *
Ce Nl = I - 1ST SIZE VARIABLE FOR A e
Ce N2 - I - 2ND SIZE VARIABLE FOR A .
g: IVAL - 1I- %A)LUE THE ARRAY IS INITIALIZ-‘
Ce SUBROUTINES NEEDED: ‘
g: NONE :
COe889235208888888588829044883886080088003084048388820088888

INITIGER A(NL,N2)
DO 10 J=1,N2
DO 10 I=1,N1

10 A(I,J) = IVAL
RETURN

END

bl ondnds

- 153 -

.....................




Ny L e A vt it e e~ ier R e gl A At e BLS YAt A/ et MadiOuni A i (et e e S Sk iU IR

.............................

INITI2
SUBROUTINE INITI2
SUBROUTINE INITI2(A,N1,N2,IVAL)

Cee03330808050808003000853030008SS83080800000880388098353888388

C* s
Ce SUBROUTINE: INITI2 b
Ce PURPOSE: .
Ce THIS SUBROUTINE IS USED TO INITIALIZE A .
(é: INTEGER*2 ARRAY TO A CONSTANT VALUE :
Ce EXPLANATION OF CALL VARIABLES: .
Ce A - O - INTEGER ARRAY TO INITIALIZE *
Ce N1 - I - 1ST SIZE VARIABLE FOR A e
Ce N2 - 1 - 2ND SIZE VARIABLE FOR A e
g: IVAL -1I- _\rlsLUE THE ARRAY IS INITIALIZ:

Ce SUBROUTINES NEEDED: .
. NONE .
C“‘..“.....‘.‘“.“.“."‘..“.‘..".““‘...‘.““.“““
INTEGER®2 A(N1,N2)
DO 10 J=1,N2
DO 10 T=1,N1
10 A(1,J) = IVAL
RETURN

END
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INITR
SUBROUTINE INITR
SUBROUTINE INITR(A,N1,N2,VAL)

c.‘.‘..‘."“‘.‘.'O....‘..“‘““‘..“‘.‘..‘.“...““.““

Ct $
5 Ce SUBROUTINE: INITR .
- Ce PURPOSE: .
Ce THIS SUBROUTINE IS USED TO INITIALIZE A s
2 g: REAL ARRAY TO A CONSTANT VALUE :
. Ce EXPLANATION OF CALL VARIABLES .
\ Ce -0 - m.u TO BE INITIALIZED *
I Ce N1 -I- 1s1' SIZE VARIABLE FOR A .
- Cs N2 - I - 2ND SIZE VARIABLE FO .
2 . g: VAL -I- VALUE THE ARRAY IS mrrm.rzmo
Ce SUBROUTINES NEEDED: '
g: NONE :
- CO......“.....‘OO.‘0.0..0..‘..Ott.“..‘.‘...‘.‘.O..“‘..O“
. REAL A(N1,N2)
DO 10 J=1,N2
DO 10 I=1,N1
10 A(I,J) = VAL
RETURN
END
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INVERT
SUBROUTINE INVERT

SUBROUTINE INVERT(IA,A,N)
COP9300230088088808048800084388388080380800088548884880838888

C»* .
Ce SUBROUTINE: INVERT .
Ce PURPOSE: e
c* THIS SUBROUTINE IS USED TO INVERT THE SCALE®*
g: ORDAE% AND SCALE THE INPUT DATA TO BEIWEEN :
Ce* EXPLANATION OF CALL VARIABLES : .
Ce IA - I - INTEGER ARRAY OF INPUT DATA *
Ce A = 0 - OUTPUT SCALED REAL ARRAY e
Ce N = I - SIZE OF THE INPUT AND OUTPUT *
Ce ARRAYS by
Ce ]
Ce SUBROUTINES NEEDED: *
g: NONE :
COO8E2000880888038803800035850088800800802085888883838828888

DIMENSION IA(N,N),A(N,N)

C FIND MAX AND MIN VALUES

MAX = -1000000

10 CONTINUE

11 FORMAT(1X

:
o B
3

A(I J) = (XMAX - FLOAT(IA(I,J)))/DIF
CONTINUE

RETURN
END

20
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LOCATE

SUBROUTINE LOCATE

SUBROUTINE LOCATE(LOC, E,NBY, N, MIN)
COSES52E2E2E484048888433044SS58828082002080S008883008888

c.  J
Ce SUBROUTINE: LOCATE .
Ce PURPOSE: .
C* THIS SUBROUTINE IS USED FOR LOCATION THE *
Ce NON-INTEGER PORTION OF THE DISPLACEMENT  *
g: VIA FINDING THE MINIMUM QUADRANT .
Cs EXPLANATION OF CALL VARIABLES : .
Cs Loc ~ METRIC MINIMOM LOCATION (X.Y) *®
C» E - 1 - INPUT MATRIX HOLDING METRIC *
Ce NBY - I - 1ST SIZE VARIABLE FOR E .
Ce N - I - 2ND STZE VARTABLE FOR E .
E: MIN - O - MINIMUM QUADRANT NUMBER .
Ce SUBROUTINES NEEDED: .
ce NONE .
g‘.‘.‘.‘“."..‘.‘...‘.‘..“‘.‘.“‘...‘..“““‘...“‘..“O.
¢
INTEGER Q(4), B(NBY N) ,LOC(2)
COMMON /PNTR/IRANGE(4)
c LOCATE ABSOLUTE mmm QUADRANT BY SUMMING CORNER
g VALUES OF QUADRANTS AS GIVEN BELOW.
£ o |
c v
C
c 11X I II
¢
g
¢ TEST IF INTEGER DISPLACEMENT ESTIMATE AT BORDER OF METRIC
c CALCULATIONS. (ERROR WILL RESULT IN THAT METRIC VALUES OUTSIDE
g DISPLACEMENT STEPS WILL BE ZERO.)
I = LOC(1)
T = LOC(2)
IML=I-1
IP1=1+1
™1 =T - 1
JP1 = J’ +
IF(I.F IRANGE(I) .OR. I.BQ.IRANGE(2)) GO TO 20
; IF(J.B0.IRANGE(3) .OR. J.PQ.IRANGE(4)) GO TO 40
(é DISPLACEMENT ESTIMATE NOT ON BORDER OF METRIC ,
Q(1) = E(IM1,J) + E(IM1,JP1) + E(I,JP1) }
a(2) = E(I,JP1) + E(IP1.JP1) + E(IP1,T)
Q(3) = E(IP1,J) + E(IP1,IM1) + E(I,JTM1)
c Q(4) = E(I,TM1) + E(IM1,IM1) + E(IM1,J)
‘é FIND MIN QUADRANT ]
IMIN = o(1)
MIN = \
DO 1 o M=2,4
IF(Q(M) .GE. IMIN) GO TO 10
MIN =
IMIN = o(u)
10 CONTINUE ,
mrmm
20 CONT
; IF(J. m IRANGE(3) .OR.J.BQ.IRANGE(4)) GO TO 60
g SECTION FOR ESTIMATE ON BORDER IN THE Y DIRECTION
) IF(I.PQ. IRANGE(2)) GO TO 30
¢ ESTIMATE LOW IN Y DIRECTION ONLY
‘é TEST IF IN QUADRANT II OR III ,1
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Q(2) = E(JP1,I) + E(IP1,JP1)
Q(3) = E(I,JN1) + E(IP1,JM1)

MIN = 2
IF(Q(3) .LT.Q(2) )MIN=3
RETURN

30 CONTINUE

HIGH IN THE Y DIRECTION ONLY
TEST IF IN QUADRANT I OR IV ONLY

Q(1) = E(IM1,JP1) + E(I,JP1)
ag) -IE(IHI.IHI) + B(I,IM1)
IF(Q(4) .LT.Q(1)) MIN = 4
RETURN
40 CONTINUE
SECTION FOR ESTIMATE ON BORDER IN THE X DIRECTION
IF(J.B2.IRANGE(4)) GO TO 50

ESTINATE LOW IN THE X DIRECTION ONLY
TEST IF IN QUANDRANT I OR II ONLY

Q(1) = E(IM1,J) + E(IM1,JP1)
Q(2) = E(IPl J) + E(IP1,JP1)

MIN =
IF(Q(2) LT.Q(1)) MIN = 2
RETURN

50 CONTINUE

HIGH lN THE X DIRECTION ONLY
TEST IF IN QUADRANT III OR IV ONLY

Q3 = E(IPLIND + E(IPLY)
Q8 = B(I-1.3-1) + E(I-1,D)

MIN = 3
IF(Q(4) .LT.Q(3)) MIN = 4
RETU

60 CONTINUE

aQan aoan aaan

anan

C
c SECTION FOR ESTIMATE ON ONE OF THE CORNERS
C THIS WILL FIX THE QUADRANT SUCH THAT IT LIES ON THE INTERIOR
g OF THE METRIC MATRIX.
MIN = 1
IF(I.PQ.IRANGE(2) .AND. J.BQ.IRANGE(4)) MIN = 2
IF(I.BQ.IRANGE(1) .AND. J.PBQ.IRANGE(4)) MIN = 3
IF(I.BQ.IRANGE(1) .AND. J.PFQ.IRANGE(2)) MIN = 4
fes
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PURPOSE:

THIS SUBROUTINE IS USED TO CALCULATE SOME
PREDEFINED METRIC BEIVEEN THE TWQ INPUT
MATRICES A AND B AND OUTPUT THE VALUES OF
THE METRIC IN MATRIX D. (ALL INTEGER)

CALL VARIABLES:
- I - 1ST MATRIX FOR METRIC
- I - 2ND MATRIX FOR METRIC

EXPLANAT{ON OF
B
D

N1
N2
N3
IMIN

LL(1)
LL(2)
IB

KCON
ITHR

I1
J1

SUBROUTINES NEEDED:
NONE

[ I T I I | [ A |
et et ed Pt

o OO

0

METRIC

SUBROUTINE MEIRIC

SUBROUTINE METRIC(A,B,D,N1,N2,N3, IMIN,LL, IB, KCON, ITHR, I1,J1)
(I T PTPERLPrE P P T I e TR P AP PR P Ty 2 P P e T

SUBROUTINE:METRIC

OUTPUT MATRIX CONTAINING THE
METRIC VALUES - METHOD OF
THRESHOLD EXCEEDING COUNTING
SIZE VARIABLE FOR B

SIZE VARIABLE FOR D

CURRENT IMAGE BLOCKSIZE
MINIMUM VALUE FOR SUM OF THE
ABSOLUTE VALUE OF THE ERROR
AT THE MINIMUM METRIC LOCATION
OUTPUT 1ST METRIC LOCATION
OUTPUT 2ND METRIC LOCATION
BORDER BLOCK FLAG (0/1)
START/STOP FLAG VECTOR
DIFFERENCE THRESHOLD FOR 1ST
TEST RETURN

A PRIORI X INTEGER ESTIMATE
FOR THE DISPLACEMENT

A PRIORI Y INTEGER ESTIMATE
FOR THE DISPLACEMENT

L K B B NN B K BK 2K 2N 3K Y Y BN 3K B AR S N K X N B A N A N N N B N N N J

COe30333534000083520080038380000848088082838838848882888808888
INTEGER LL(4)6D(%? ,N2) ,A(N3,N3) ,B(N1,N1) ,KCON(4) ,IPOS(256,2)

COMMON /PNTR/ IRANGE(4)
C IMIN = 2000000
KTHR = 3
KTEST = N3 %2
IISIZE = KTEST
c SIZE = IISIZE
g SET UP INITIAL DISPLACEMENT ESTIMATE (A PRIORI GUESS)
ISTART = 1
ISTOP = 11
JSTART = J1
JSTOP = J1
c ICOUNT = 1
g DETERMINE IF CURRENT BLOCK IS BORDER BLOCK
c IF(IB.EQ.1) GO TO 80
(9998800050 00000800800080888808038828¢48844448480800020828884
Ce .
g: SECTION FOR NON-BORDER BLOCKS :
(980800280000 8000000808008000884008288043880488880808888888
C
10 CONTINUE
c KTEST = IISIZE
g THE DO 30 LOOPS ADJUST THE DISPLACEMENT ESTIMATE

'''''''''''''''''''

DO 30 I-ISTART ISTOP

Illal-

DO 30 I=JSTART, JSTOP

.......

................
----------
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METRIC

KCOUNT IS USED FOR THE THRESHOLD EXCEEDING COUNTING METHOD
KSUM IS USED FOR SUN OF ABSOLUTE VALUE OF DIFFERENCE METHOD

KCOUNT = 0
KSUN = 0
JM1 =J -1

THE DO 20 LOOPS EVALUATE A SINGLE METRIC VALUE

DO 20 K=1,N3

IK = K + IM1

DO 20 L =1,N3

JL = L + JM1

KDIF = IABS(A(L, I) - B(JL, IK))
KSUM = KSUM + KDIF
IF(XDIF,GT.KTHR)KCOUNT = KCOUNT + 1
CONTINUE

D(Y,I) = KCOUN'I‘

E(J,I) =

IF(KCOUNT GT K'I'EST) GO TO 30

RESET COUNTING METHOD POINTERS AND MINIMUM VALUE
KTEST = KCOUNT
LL(1) = J
LL(2) = I
30 CONTINUE

TEST FOR POSSIBLE MULTIPLE MINIMA (NCOUNT = #MINIMUMS)

ann

aan

20

anon

anan

NCOUNT = 0

DO 40 I=ISTART, ISTOP

DO 40 J=JSTART, JSTOP
IF(D(I,J) .NE.KTEST)GO TO 40
NCOUNT = NCOUNT + 1
IPOS(NCOUNT,1) = I
(];(l;OS(NCOUNT.Z) =7J

NTINUE
IF(NCOUNT.R2.1) GO TO 70
MULTIPLE MINIMA POINTS FOUND, RETRY WITH SMALLER ALLOWABLE ERROR

KTHR = KTHR - 1
IF(KTHR.GE.1) GO TO 10
50 CONTINUE

MULTIPLE MINIMA POINTS AT SMALLEST ALLOWABLE ERROR
TAKE THE SMALLEST DISPLACEMENT TO BE THE ESTIMATE

MMIN = 242
"DO 60 INUM = 1,NCOUNT
MOT = (IPOS(INUNM, 1)-11)‘(IPOS(INUM 1)~11) +(IPOS(INUM,2)-11)*
# (IPOS(INUN,2)-11)
IF(MOT.GT.MMIN) GO TO 60

SET THE COUNTERS TO THE SMALLEST DISPLACEMENT

MMIN = MOT
LL(1) = IPOS(INUM,1)
LL(2) = IPOS(INUM,2)
60 CONTINUE
70 CONTINUE
IMIN = E(LL(1),LL(2))
IF(IMIN.LE.ITHR .OR. ICOUNT.EQ.2) RETURN
ICOUNT = 2

SET FULL RANGE METRIC POINTERS

ISTART = IRANGE(1)
ISTOP = IRANGE(2)

40

annan [ 1z ]

aan

ann

80 CONTINUE
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METRIC
((:: IMIN = 2000000

COSSSE22280050853840804838008808S00L200SSERRENSERERESELRELH
Cs .
g: SECTION FOR BORDER BLOCKS :
CHS982S2802588838388090888888083882800300888SRENARESERERS

C
%IIOIbISTAkT ISTOP
DO 110 J=JSTART, JSTOP
KCOUNT IS USED FOR THE THRESHOLD EXCEEDING COUNTING ME'IHOD

KSUH IS USED FOR SUM OF SQUARES OF DIFFERENCE METH
EK IS A COUNTER FOR NUMBER OF PIXEL IN BORDER BLOCKS

anaan

DETERMINE IF OUTSIDE OF BORDER

IF(IK.LT.KCON(2) .OR. IK.GT.KCON(4)) GO TO 90
DO 90 L=1,N3 :
JL =L+ M

DETERMINE IF OUTSIDE OF BORDER
g(J’L&T.ICON(l) .OR. JL.GT.KCON(3)) GO TO 90

KDIF = IABS(A(L, K) - B(JL, IX))

KSUM = KSUM + KDIR

IF(KDIF.GT.KTHR)KCOUNT = KCOUNT + 1
90 CONTINUE

IXX = KX
IF(KK.NE.0) GO TO 100
NO PIXEL OVERLAP

KSUM = 255 * TISIZE
KCOUNT = IISIZE
KK = IISIZE

100 CONTINUE

AT LEAST SOME PIXEL, OVERLAP

IF(ICOUNT.Ba.1) GO TO 105
IF(KX.BQ,.IISIZE) GO TO 105

ADJUST FOR NON-FULL BLOCK

KSUM = IFIX((SIZE/FLOAT(KK))*KSUM)
COUNT = KCOUNT
KCOUNT = INT(COUNT®*(SIZE/XKK) + .5)
105 D(J,I) = KCOUNT

U
IF (KCOUNT.GE.KTEST) GO TO 110
RESET COUNTING METHOD POINTERS AND MINIMUM

KTEST = KXCOUNT

LL(1) = J

LL(2) = I

IMIN = KSUM
110 CONTINUE

TEST FOR POSSIBLE MULTIPLE MINIMA (NCOUNT = #MINIMUMS)

NCOUNT = 0

DO 120 I=ISTART, ISTOP

DO 120 J=JSTART,JSTOP

IF(D(I,J) .NE. KTEST) GO TO 120

ana

aQanon

ann

ana

QN

anon

aann A
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NCOUNT = NCOUNT + 1

IPOS(NCOUNT,1) = I

IPOS(NCOUNT,2) = J
INUE

CONT.
IF(NCOUNT.EQ.1) GO TO 140
MULTIPLE MINIMA POINTS FOUND, RETRY WITH SMALLER ALLOWABLE ERROR

KTHR = KTHR - 1
IF(KTHR .GE. 1) GO TO 80

MOULTIPLE MINIMA POINTS AT SMALLEST ALLOWABLE ERROR
TAKE SMALLEST DISPLACEMENT TO BE DISPLACEMENT

MMIN = 242

DO 130 INUM = 1,NCOUNT

MOT = (IPOS(INUM,1) - 11)*(IPOS(INUM,1) - 11)
# (IPOS(INUM,2) - 11)*(IPOS(INUM,2) - 11)

IF(MOT.GT.MMIN) GO TO 130 :

SET COUNT TO SMALLEST DISPLACEMENT

MNIN = MOT
LL(1) = IPOS(INUM,1)
LL(2) = IPOS(INUM,2)
130 CONTINUE
140 CONTINUE
IMIN = E(LL(1),LL(2))
IF(IMIN.LE.ITHR .OR. ICOUNT.EQ.2) RETURN
ICOUNT = 2

SET FULL RANGE METRIC POINTERS

ISTART = IRANGE(1)
ISTOP = IRANGE(2)

120

ey
DA R)
St

ana

QOO

ana

anon
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SUBROUTINE MMUL

SUBROUTINE MMUL(A,B,C,NA,MA,MB,N1,N2,N3)
(99805888000 800008200888030808208000008830880030880834000040

Ce .
Ce SUBROUTINE : MMUL e
Ce PURPOSE: .
Ce THIS SUBROUTINE IS USED TO MULTIPLY IWO b
Ce ARRAYS TO FORM A THIRD IN THE FORMp .
g: (A)*(B) = (C) .
Ce EXPLANATION OF CALL VARIABLES e
Ce A - I- 18T REAL INPUT MATRIX e
Ce B -I- 2ND REAL INPUT MATRIX .
Ce C ~ 0 - REAL OUTPUT MATRIX .
Ce NA - I - 1ST SIZE VARIABLE OF A AND C *
Ce MA ~ I - 2ND SIZE VARIABLE OF A, 1ST B *
Ce MB - 1 - 2ND SIZE VARIABLE OF B AND C *
C* N1 ~ I — USABLE FORM OF NA e
Cs N2 ~ I — USABLE FORM OF MA .
g: N3 ~ I - USABLE FORM OF MB :
Ce SUBROUTINES NEEDED: .
g: NONE :
co.au.oocataooto.oo..-‘totooo‘oooto.toa.oo.atotoaot‘..ootooo

A(NA uA) B(MA, MB) , C(NA, MB)
DO 20 I

20 J’=1 5

10 E=1

=T+ A(I K)*B(K,J)

»

8"’8

10
20

ar
Can
Et‘
"

......................
..................




SUBROUTINE MPLOT

SUBROUTINE MPLOT(F,XE, ISIZE, IPLT, IMAGE, IBLK, JBLK, LOC, NGRD)
COSE253083084888983082082083580888480248808888808088280488888

Ce *
g: SUBROUTINE MPLOT :
Ce PURPOSE: .
C* THIS SUBROUTINE IS USED TO PLOT A 3-D DATA-*
Ce BASE IN TWO DIMENSIONS. IN THIS CASE IT IS*
Ce USED TO PLOT DIFFERENCE METRIC (ACTUALLY AN®*
g: INVERTED SCALED VERSION) . :
Ce EXPLANATION OF CALL VARIABLES: .
Ce F - I - METRIC ARRAY TO BE PLOTTED .
Ce XE - T - REAL WORK ARRAY VERSION OF F *
Ce ISIZE - I - SIZE OF SQUARE METRIC »
C* IPLT - I - DISPLAY DEVICE FLAG by
Ce* =0 PLOT TO 4662 PLOTTER .
Ce =1 PLOT ON 4025 DISPLAY .
Ce IMAGE - I - INTEGER VALUE OF FRAME NUMBER *
Ce IBLE - I - BLOCK LOCATION VARIABLE .
Ce JBLK - I ~ BLOCK LOCATION VARIABLE .
Cc* LOC - I - MINIMDM VALUE LOCATION .
g: NGRD -I-ARRAYRE!UIREDBYTRE3DH.OT:
ce SUBROUTINES NEEDED *
Ce INVERT - CHANGES ORDER AND SCALE 0-1 .
Ce ERASE - CLEARS 4025 SCREEN .
Ce FACTOR - SCALES DATA BEFORE PLOTTING by
Ce PUR - 3-D PLOT ROUTINE DRIVER .
(C:: PLOTS - CALCOMP PLOTTING SOFIWARE PACKAGE :
cttoooo‘ooooo.otttt.oo.o.oo-t.o.a‘ooo.aottaotaoto.toc-oooatt

INTEGER F(ISIZE, ISIZE),LOC(4)
RF.AL XE(%SIZE , ISTZE) ,NGRD(4) ,XY(2,6)

c
c CALL INVERT(F,XE, ISIZE)
g SET 3D PLOT PARAMETERS - LOOK AT SUBROUTINE PUR FOR MORE DETAILS
NGRD(1) = 0
NGRD(2) =1
NGRD(3) =1
NGRD(4) =1
X=0.0
Y=15.2
IF(IPLT.BQ.1) CALL ERASE
IF(IPLT.BQ.0)CALL PLOT(X,Y,-3)
IF(IPLT.EQ.0)CALL PLOTS(IBUF,1,15)
IF(IPLT.BQ.1)CALL FACTOR(.400)
IF(IPLT.BQ.0)CALL FACTOR(.40)
CALL PUR(XE, ISIZE, ISIZE, ISIZE,XY,0,NGRD,15)
IF(IPLT.EQ.1)CALL FACTOR(.40)
IF(IPLT.EQ.0)CALL FACTOR(.40)
CALL PL0T(0.0,4.3,-3)
CALL SYMBOL(1.,6.9,.20,'FRAME’,0.0,5)
C CALL SYMBOL(1.,6.6,.20,'IBLOCK’,0.,6)
C CALL SYMBOL(1l.,6.3,.20,'JBLOCK’,0.,6)
XFRAME = IMAGE + 1

C 2.6,6.9,.20
C CALL NUMBER(2.6,6.6,.20,XBL0OCK,0.0,-1)
C CALL NUMBER(2.6,6.3,.20,YBLOCK,0.0,-1)
C CALL SYMBOL(1.,6.,.20,'X SHIFT',0.,7)
c CALL SYMBOL(1.,5.70,.20,'Y SHIFT',0.,7)
XSHIFT = LOC(1) - 11
YSHIFT = LOC(2) - 11
c CALL NUMBER(2.6,6.0,.20,XSHIFT,0.0,-1)
C CALL NUMBER(2.6,5.7,.20,YSHIFT,0.0,-1)
c IF(IPLT.EQ.1) CALL SIMBOL(0.0,0.0,.10,'.',0.0,1)
IF(IPLT.BQ.1) CALL ANMODE
IF(IPLT.BQ.1) CALL TSEND




B A S Ty

IF(IPLT.BQ.0) CALL PLOT(10.,10.,999)
WRITE(LUNIT, 400)

READ DUMNY ARGUMENT FOR PLOTTER DELAY
READ(5,410) INSWER

400 FORMAT(1X,’/*INPUT ANY SINGLE DIGIT NUMBER TO CONTINUE’)
410 FORI%’NI’(II)

Qoo
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: SUBROUTINE PRED .

SUBROUTINE PRED(C, D, ES, ICD, IS, IXF, IYF, STD, AVG, QOFF, MIN, COEF, IFLAG,

# NBITS, RETCOD, F, DIST LVLARA)
CO0000800088800048000000080800088800008040089888880088800889

Ce . ;
Ce SUBROUTINE: PRED . ‘
Ce PURPOSE: . ‘
C* THIS SUBROUTINE IS USED TO CALCULATE THE * ’
Ce CURRENT IMAGE FRAME FRON INFORMATION . ;
Ce CONTAINED IN THE PREVIOUS IMAGE FRAME AND * ,
Ce THE PREDICTION COEFICIENTS GENERATED FOR *
g: THE CURRENT FRAME :
Ce EXPLANATION OF CALL VARIABLES : e
Ce* C = INTEGER ARRAY FOR CURRENT b
Ce IMAGE BLOCK *
Ce D = I - INTEGER ARRAY FOR PREVIOUS e
Ce ESTINATED IMAGE .
Ce ES ~ 0 - INTEGER ARRAY FOR CURRENT be
Ce ESTIMATED IMAGE by
Ce ICD - I - SIZE OF THE D NATRIX .
Ce IS - I - SIZE OF THE ES AND C MATRICES *
Ce IXF =~ I - X OFFSET VARIABLE be
Ce IYR -~ I - Y OFFSET VARIABLE e
Ce STD = O - STANDARD DEV OF THE ERROR b
Ce AVG = 0 - AVERAGE OF THE ERROR .
Ce QOFF -~ I - ARRAY OF POINTER VALUES be
Ce MIN = I - MINIMUMN QUANDRANT NUMBER e
Ce COEF -~ I - PREDICTION COEFFICIENT VECTOR *
- Ce IFLAG -~ I - INTEGER DISPLACEMENT FLAG .
Ce NBITS - O - DATA RATE COUNTER .
Ce RETCOD ~ O - LARGE ERROB/BLIB E BIT .
Ce . - 0 - OUTPUT WORK ARRAY (ERROR?) *
Ny g: DIST -~ I - PREDICTOR GAIN (IN DB) :
p Ce SUBROUTINES NEEDED: .
g: QUANTZ - SETS VALUES FOR ADAPTIVE QUANTIZER‘

c““““...‘..‘..‘...“..“.0““‘...‘..‘.."...“.“.‘“.‘

INTEGER C(IS, IS),D(ICD, ICD),QOFF(4,4,2) ,ES(IS, IS),RETCOD
INTEGER F(IS.1S).G(16,16), LVLARA(1

REAL XLEVEL(128).X0UT(128), oomm) ,DIST(1)
COMMON/THRESH/ STDERR, AVGERR, SN

SIZE = IS**2

Sl

CHECK FOR INTEGER DISPLACEMENT _ )
IF(}ELAG .NE.0) GO TO 10 y
KSTOP = 3

ana

10

[=1=1=1-]
b dace -z AR

1,18
IXF

o O
HHH
N+

O+
. | o
(-T2

-
/-3

BWHWHE NN

[ N

PREDICTION BASED ON PREDICTION COEFFICIENTS

- DO 20 M=KSTART,KSTOP
TEMP = TEMP + OOEF(M)*FLOAT(D(II+QOFF(MIN,M,1),JT+QOFF(MIN,M,2)))
e 20 CONTINUE

3 J) =
2 IERROR = C(I J') - ES(I I
= F(I,]) = mni

IERR
IERROR*IERROR
C(I, D) *C(1I,]) {

L Dy Iy
aQann

R GO P )

-k A

+ee
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Qaan aana aQaaQn

Qaacan

anaaan

anaan a

aQANa

30

55
56

11

40
50

NA = NA + C(I,])
CONTINUE

AVGK = KA

AVGN = NA
VARK =
VARN =
(AVGK®*AVGK/SIZE)) /(SIZE~-1.)
(AV GN‘AVGN/ SIZE))/(SIZE-1

S SNRS

IF(STD.LT. STDERR ,AND. ABS(AVG).LT.AVGERR) GO TO 70

RETURN AND RETRY I
1) LARGE ERROR FOR 16X16 BLOCK
2) LARGE ERROR FOR INTEGER DISPLACEMENT ON 8X8 BLOCK

IF(IS.BQ.16) RETURN
IF(IFLAG.EQ.0)RETCOD = 1
IF(IFLAG.BQ.0) RETURN

CORRECT FOR LARGE ERROR WITH BLOCK ADAPTIVE QUANTIZER
DETERMINE QUANTIZER GAIN REQUIRED TO OBTAIN SET SNR

REQGAN = SNRSET - SNR
QUANTIZE THE MEAN AND VARIANCE BEFORE ERROR QUANTIZATION

AVGl = (FLOAT(INT(AVG®*2.0 + SIGN(.5,AVG))))/2.0
SID1 = (FLOAT(INT(STD*8.0 + .5)))/8.0

CHECK FOR QUANTIZER LEVEL OVERFLOW

IF(ABS(AVG1) .GT.32.0) WRITE(6,55)
IF(STD1.GT.64.) WRITE(6, 56)

FORMAT(1iX, ‘ AVERAGE ERROR TO LARGE, LOOK AT PRED. ')

FORMAT(1X, ' STANDARD DEVIATION ERROR TO LARGE, LOOK AT PRED.’)
IF(ABS(AVG1) .GT.32.0) AVG1=32.*SIGN(1., AVG)

IF(STD1.6T.64.0) STD1=64.0

SUBROUTINE QUANTZ WILL DETERMINE THE NUMBER OF LEVELS REQUIRED

REQGAN = 10.*ALO0G10( VARKK/3.)
CALL QUAN'IZ(REGAN AVG1, STD1, LEVEL, XLEVEL, X0UT, DIST)

ITS = NBITS + 23 + INT(SIZE‘AL(X}(FLOAT(LEVH.))/AL(X}(Z ) +1.,0)
LVLARA(LEVEL) LVLARA(LEVEL)
IF(LEVEL.LE. 128)“1'1‘2(6 11)LEVE. REIGAN AVG1, STD1, VARNN, VARKK, AVGK
FORMAT(1X, *REQUIRES', 13, BITS',6F10.4)

7 BITS FOR THE MEAN
9 BITS FOR THE STD
BITS FOR THE NUMBER OF LEVELS

0 J=1,18
0 I=1,1IS
= C(I,J) - ES(I.))

0 K=1,LEVEL
GT.XLEVE(K)) GO TO 4
INT(XOUT(K) + SIGN( 5,X0UT(K)))

88 °

NTINUE
ES(I,Y) = ES(I,J) + IQUAN
G(I ) = c(1,757- BS(I.D)
CONTINUE

CONTINUE

RESTRICT OUTPUT FOR 0-255.

DO 80 J=1,IS

DO 80 I=1,IS

IF(ES(I,J§ .GT.255) ES(I,J) = 255

AT DRSS PRSP PR LK. RPLPLPLPLE SR MEN PR SUT ST



IF(ES(I,J).LT.0) ES(I,J) =0
80 CONTINUE

END

AL A ,- ‘.- 7
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N TRANSP
SUBROUTINE TRANSP

SUBROUTINE TRANSP(A,B,N1,N2,N3,N4)
cooaot‘-a‘ono‘aaooato‘o‘ooaa‘ooo‘-oo‘oo.ot...t:.o.'o.oac.ooc

2ND USING SIZE VARIABLE
Ce SUBROUTINES NEEDED:
NONE

Cs .

. Ce SUBROUTINE: TRANSP ‘
X Ce PURPOSE:

. g: THIS SUBROUTINE IS USED TO TRANSPOSE ARRAIS:

S Ce* EXPLANATION OF CALL VARIABLES : *

= C* A I — INPUT DATA ARRAY *

y Ce B - 0 - QUTPUT REAL DATA ARRAY s

Ce N1 -I- IST ACTUAL SIZE VARIABLE OF A *

Ce IN CALLING PROGRAM *

Ce N2 - I - 2ND ACTUAL SIZE VARIABLE OF A *

Ce IN CALLING PROGRAM .

Ce N3 - I - 1ST USING SIZE VARIABLE .

Cs N4 -I- s

*

*

.

.

*

ctooooo.“oooct.oootoooo.oaoooottoaoooacttoot.oooaoao“-.ta
REAL A(N1,N2),B(N2,N1)
DO 10 I=1,N3
DO 10 J=1,N4
10 B(J,I) = A(LD)
RETURN

END

Rl ol
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QUANTI
SUBROUTINE QUANTI

SUBROUTINE QUANTI(DIST)
(2288883824883 035844558888883R80280885889330008888888880888

C. s
Ce SUBROUTINE QUANTI *
ce PURPOSE: .
C* THIS SUBROUTINE IS USED TO GENERATE THE .
C* FUNCTIONAL VALUES FOR A NORMAL(0,1) *
EI DISTRIBUTION. s
ce EXPLANATION OF CALL VARIABLES : .
Ce DIST ARRAY CONTAINING GENERATED .
ce DATA .
Ce .
Ce sunnou'rmm NEEDED .
g: MDNRIS - GENERATE VALUES FOR GUASSIAN DIST s
c.‘O.‘0.00.......OO"....0.“.O...‘.“..0‘..0..“.’0.‘0..‘.O
c REAL X(1001),F(1001),00T(1003),X0UT(128) ,XLEVEL(128) ,DIST(1)
g GENERATE THE VALUES FOR THE N(0,1) DISTRIBUTION
DO 10 I=1,1001
X(I) = m.omn - 501.)/100.
p(n = ,398942*EXP(~.5*(X(I)*X(I)))
10 CONTINUE
DIST(1) = 0.
DO 90 LEVEL=2,128
ILEVL = LEVEL
START = 1./XLEVL
NLEVL1 = LEVEL ~ 1
mcm' = START
DO 20 1-1 NLEVL1
CALI, MDNRIS (PERCNT, xuzvn.(n IER)
20 mm PERCNT + STAR
| EL(LEVEL) = 1ooo.
smm = START/2.
PERONT = BEGIN
DO 30 I=1,LEVEL
CALL MDNRIS (PERCNT, XOUT(I), IER)
30 PERCNT = PERCNT + START
DO 40 I=1,1001
40 ou'ru) = 0.0
DO 70 I=1,1001
VALUE = (FLOAT(I-501))/100.
c nnmnnx WHICH LEVEL IT FALLS WITHIN
DO 50 II=1,LEVEL
F(Vﬁ.tm .GT.XLEVEL(II)) GO TO 50
GO TO 60 y
50 CONTINUE ]
v 60 CONTINUE
C XOUT(KE) IS THE AMOUNT OF SHIFT |
IVAL = INT((VALUE - XOUT(K))*100 + 501.5) "

OUT(IVAL) = OUT(IVAL) + F(I)
70 CONTINUE
. C——————CALCULATE THE DISTORTION
. DIS = 0.0
. DO 80 I=1,1000
- IX = X(I)%X(I)
80 DIS = DIS + XX*(OUT(I) + OUT(I+1))*.005
90 DIST&&EVEL) = 10,.*AL0G10(1./DIS)

END
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QUANTZ

SUBROUTINE QUANTZ

SUBROUTINE QUANTZ (REQGAN, XBAR, STD, LEVEL, XLEVEL, XOUT, DIST)
LT T L e e T T LT I T L T T T P P T L I T T

C* .
Ce SUBROUTINE :QUANTZ be
Ce PURPOSE: .
Ce THIS SUBROUTINE IS USED TO SET UP THE .
g: QUANTIZER LEVELS AND THRESH :’
Ce EXPLANATION OF CALL VARIABLES: e
Ce REQGAN- I - REQUIRED GAIN OF THE QUANTIZER *
Ce XBAR - I - MEAN OF GUASSIAN DISTRIBUTION *
Ce STD - I - VARIANCE OF GAUSIAN DIST. .
Ce LEVEL - O - NUMBER OF LEVELS USED FOR CODE *
Cc* ILEVEL- O - DISTRIBUTION THRESHOLDS *
Ce XOUT - O - QUANTIZED OUTPUT LEVELS .
Cs DIST - I - ARRAY CONTAINING GAINS FOR EACH*
g: NUMBER OF LEVELS :
Ce SUBROUTINES NEEDED: .
C* MDNRIS -~ ROUTINE TO FIND AREA UNDER CURVE ¢
Ce FOR A NORMAL(0,1) GAUSSIAN DIST. *
Ce (IMSL LIBRARY) :

.

CO88583800023338880845823824408558884288882803838888488808s
REAL XOUT(128) ,XLEVEL(128),DIST(1)

DETERMINE THE NUMBER OF LEVELS REQUIRED FOR ERROR TRANSMISSION
BASED ON THE VALUE FOR REQGAN

aana

IF (REQGAN. LT DIST(I)) GO TO 6
CONTINUE A

6 CONTINUE

DETERMINE THE THRESHOLD LEVELS
LEVEL = II

ILEVL = LEVEL
START = 1./XLEVL

aan

DO 10 I=1,NLEVL1
CALL MDNRIS(PERCNT, XLEVEL(I), IER)
XLEVEL(I) = XLEVEL(I)*STD +
PERONT = PERCNT + START

10 CONTINUE

DETERMINE THE OUTPUT LEVELS

XLEVEL(LEVEL) = 100000.
BEGIN = START/2.
PERONT = BEGIN
DO 20 I=1,LEVEL
CALL MDNRIS(PERCNT, XOUT(I), IER)
X0UT(I) = XOUT(I)*STD + XBAR
PERONT = PERCNT + START

20 CONTINUE
RETURN

END

ann
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