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Abstract

A powerful model for the stochastic analysis of directed acyclic graphs is developed. These graphs
represent event-precedence networks where events may occur serially, probabilistically, or concurrently.
When a set of events occurs concurrently, the condition for the set of events to complete is that any

" specified number of the events must complete. This includes the special cases that one or all of the events
,i complete. The distribution function associated with an event is assumed to have exponential polynomial
' form. Further generality is obtained by allowing these distributions to have a mass at the origin and/or

at infinity. The distribution function for the time taken to complete the entire graph is computed in a
semi-symbolic form. Applications of the model for the evaluation of concurrent program ,execution time
and to the reliability analysis of fault-tolerant systems are discussed. .,

1. INTRODUCTION

Many interesting problems can be modeled by directed graphs whose nodes represent events and

whose edges represent a precedence relation between the events. In this paper we consider the analysis of

event-precedence graphs that are series-parallel. Each node in the graph is assigned'a completion time

distribution that has exponential polynomial form. This form is quite general, and is closely related to

Neuts' phase-type distributions[20]I We allow distributions that have a mass at the origin and/or a mass

at infinity.

If a graph is composed of serial subgraphs, then all events in the first subgraph must be completed

before the first events in the second subgraph may begin. The division of a graph into parallel subgraphs

can be interpreted as either probabilistic or concurrent. In the probabilistic case, the events of exactly

one of the subgraphs will occur in any given traversal of the overall graph. In the concurrent case, the

traversal of all of the subgraphs begins in parallel, but they need not all complete. The overall graph is

considered to be completed when some specified number k of the n subgraphs have completed.

* Given a graph and probability distributions F(t) for the event completion time of individual nodes,

we compute the distribution functibn of the completion time of the entire graph in terms of the time

parameter 1. We also can compute the completion time distribution for any particular path through the

graph. A program called SPADE (Series -EAaretel , irected acyclic graph Evaluator) has been written

to compute these distributions.

The power of our model and solution method comes from several of its features.

1) The distributions of individual nodes are drawn from a large class of distributions, including
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defective distributions (A distribution function F(i) is defective if lim < 1).
9 -00

2) The distribution function for the completion of a graph is computed symbolically in t.

3) The interpretation of parallel subgraphs is chosen from a general and useful group of alternatives.

Parallel subgraphs are not required to have identical distributions.

4) We make no assumptions about the nature of the events except that they are statistically indepen-

*dent.

Because of the above features, our model can be applied to many different kinds of problems, including

performance analysis of concurrent programs and reliability/availability analysis of fault-tolerant systems.

A great deal of study has been done of event-precedence graphs which represent concurrent pro-

grams or transactions. Generally, it is assumed that all events must be completed; in some cases proba-

* bilistic branching is allowed. Extensive study of the analysis and scheduling of such graphs in the case

that the event times are constant has been done[3,221. When the event times are allowed to be ran-

• dom[7,9], the analysis of a graph becomes much more difficult. Two approaches which have been used are

o" Markov chain techniques and path analysis.

The first approach converts the graph into a continuous-time Markov chain 114,16,26,27]. This

approach restricts the node tiffifs to be exponentially distributed, and also quickly leads to an explosion in

the state-space of the Markov chain. The path analysis technique involves computing the distribution of

the time to traverse each pati through the graph. For complex graphs the number of paths can be rather

large, making the technique computationally expensive. In the general case, overlapping paths exist and

hence one can only obtain an approximation (or bounds) for the overall execution time distribution[9].

If the shape of the graph is restricted to series-parallel, the overall execution time distribution can

be obtained exactly by combining the distribution function of the individual nodes using multiplication

and convolution. This is the approach taken by Robinson 1241 and Kleinoder 1131 in using directed graphs

for the performance analysis of concurrent programs. Their graph model is a subset of ours, and is solved

numerically starting from empirical distributions for the nodes. We allow a more general interpretation of

parallel paths, and therefore can model more general programs, including those containing probabilistic

branching and the implementation of non-deterministic algorithms. Furthermore, we allow the node exe-

r.
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cution times to be defective random variables. This further widens the class of programs we can analyze.

For example, we can use our model to analyze the performance of programs in the presence of hardware

or software failures[15,181.

In addition to performance analysis, the SPADE model can be applied to reliability and availability

analysis. Approaches to reliability and availability analysis include the use of Markov and semi-Markov

models 127,281, fault trees 121, and reliability block diagrams 18,19). Generally, the analysis of these

models has been done numerically. Fault trees and reliability block diagrams are easily transformed into

our graph model, and then are solved symbolically. In general, Markov and semi-Markov chains are not

series-parallel, but any acyclic chain can be transformed into an equivalent series-parallel graph and

solved by SPADE.

In the next section, we describe the SPADE model. In section 3 we briefly describe the program

SPADE. Section 4 gives examples illustrating the use of our approach. The examples chosen are simple,

for the purpose of exposition. More complex problems can be and have been solved by the model.

2. THE SPADE MODEL

This section presents a definition of "series-parallel" graphs, describes how such graphs can be inter-

preted as representing events under precedence constraints and presents an algorithm for computing the

distribution function for the time needed to complete the specified events.

2.1. Series-Parallel Graphs

Acyclic directed graphs are useful for modeling events that are bound by precedence constraints.

Many problems that are NP-complete for arbitrary acyclic digraphs become tractable when restricted to

the class of series-parallel graphs Examples are the job sequencing problems discussed in [17] and [1].

There are many definitions for the term "series-parallel", and many different names for the series-

parallel structure. In 1131, such graphs are called "simple"; in 16] they are called "standard". We begin

by defining a finite linear graph to be an ordered quadruple G =(N ,A ,S, T) where

a) N is a finite set of elements called nodes

," . ... ~~. ........ . . .. . . • -.. ow
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b) A is a subset of N x N, called the set of edges

c) S is the subset of N containing those nodes that are not the second member of any edge in A (these

are the entrance or start nodes).

d) T is the subset of N containing those nodes that are not the first member of any edge in A (these

are the exit or terminal nodes).

Suppose GI=(N1, A1, S1, T ) and a 2=(N 2, A 2, S2, T2) are nonintersecting graphs. A graph

G =(N, A, S, T) is the series connection of GI and G2 if and only if

a) At least one of I T, I and I S2 is 1. That is, at least one of the two sets is a singleton.

b) N=N U N 2

c) A-=AI UA 2 U(TI x S2).

d) S=Sl, T=T2

A graph G is the parallel combination of GI and G 2 iff

a) N=N uLN2

b) A =A I U A 2

c) S=S1 U S2, T=T u T2

The class of series-parall graphs is the smallest class of graphs containing the unit.graphs (graphs

consisting of one node) and having the property that whenever G is the series or parallel connection of

two graphs in the clas, then G is in the class. Note that a series-parallel graph is by definition acyclic

and contains no redundant edges.

This definition is more restrictive than the definition of "minimal series parallel" given in 1291, and

less restrictive than the definition given in 11]. As pointed out in [1], any graph that is minimal series

* .. .~
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parallel can be rewritten (with the addition of suitable intermediate nodes) as a graph that is series-

parallel according to our definition.

Figure 1 shows several examples of series-parallel graphs. In this and all subsequent figures, the

direction of the edges is not shown explicitly; it is assumed that an edge points downward. Figure 2

shows two graphs that are not series-parallel. Graph G1 in figure 2 is not series-parallel under any

definition. Graph G2 is "transitive series-parallel" [29], but is not series-parallel because of the redundant

arc fromA to C.

Although the definition of series-parallel is binary in nature, it is convenient to think of each series

or parallel combination as being built from a subgraphs, rather than two. The parallel (series) combina-

tion of n subgraphs is defined to be the sequence of n -1 binary parallel (series) combinations of the sub-

graphs.

2.2. Graph Traversal Time

The nodes in a graph represent events that take time; with each node is associated a distribution

function. We define the traversal time distribution of a graph recursively.

If G consists of a single node, the traversal time distribution is given by the distribution function

associated with the node.

Suppose C was formed by combining the graphs G1, G2,..• , G. having independent distribution

functions F1 , F 2, " • " , F.. If the graphs were combined in series, then the graphs are traversed one at a

time, and the distribution function for the graph G is given by

1) r...(t)-- F,{t)
i-1l

where the symbol 0 represents convolution. The convolution of two CDFs F and Fk is defined by

t

Fjob(t) f FO z) F
0

Note that the order of traversal of the subgraphs does not matter.

If the graphs Qj were combined in parallel, we allow the parallelism to be interpreted as either pro-

babilistic or concurrent. For probabilistic parallel subgraphs, only one of the subgraphs is actually

-.......... ............. ..
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traversed. Each subgraph has associated with it the probability that it is chosen for traversal. Suppose

the probability that subgraph G is chosen is pi. Then the traversal time distribution for G is given by

2) Fp,.b()= pi F(t

For concurrent parallel subgraphs, the traversal time for G is given by the kt" smallest traversal time of

the n subgraphs. Two special cases occur so often that we treat them separately. If k is one, then the

traversal time is the minimum of the traversal times of the subgraphs. In that case we have

3) F j.(I) I- I - F,( Q

If k is n, then the traversal time is the maximum of those of the subgraphs, and we have

4) F .(~t ) A-- Fi (t)

i-1

In the general case, if the n subgraphs have identical distributions F, then the traversal time distribution

for G is (omitting the parameter t for better readability)

n

5) Fk/ = - i F'(1 - F)'-'

If the subgraphs do not have identical distributions, the expression for Fk/, is (see 15])

6) Fk/, = E (f-lF)(I(1-Fi))
IT1>k IGT jjT

where Tis a set of indices ranging over all combinations of indices chosen from {1, 2, , n }. That is,

T ranges over all choices)j, -,'' , j. ) such that m < n and j, < j 2 < "' < j*-

Equation 6 can be written in a form more suitable for mechanical computation. Given a vector

(F1, F 2," , F. ), let S (P) be the the elementary symmetric polynomial of degree i in P. That

is,

Sf F2
I LI -i j EU

where U ranges over all combinations of i indices chosen from (1, 2, - , n ). Then we have the follow-

ing lemma.

Lemma : If n subgraphs have distributions given by the elements of the vector r, the traversal time dis-

tribution for k out of the n subgraphs is given by

".-'.-'.-" .',-- : .. .- .- .- .... ... .- ..... -' ... .. ... .. - .. . .*
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'irst, we expand the second product in equation 6, so that we have

Fk /. WP) --- E ( jFj X r, (-1) 1V IT rF;)
lT 1 ,>*jT vgr, i'y

E F, ((-l)tv'IIri)
IT lk, jGUV
VC T'

Now we are interested in obtaining the coefficient for a particular product F . F 2  • F, where

i > k. That product appears whenever TC{j1 , ' ,j;.} and I T > k. Foreach m > k, there are

(,l ways of choosing T. Once T is chosen, V is determined and IV - i - m. Therefore thein)e

coefficient of interest is ( see (231)

L ~ ~ ~ ~ ~ -(A), in * (1' m E )
go -k M 0 M -0

Noting that this coefficient is independent of the particular i-tuple chosen, and that the sum of all such

i-tuples is exactly the elementary symmetric polynomial Si (P), we have the result desired.

Formula 6' is much more computationally tractable than formula 6, because the elementary sym-

metric polynomials can be computed efficiently. Let us write S; (j) for the elementary symmetric polyno-

mial of degree i chosen out of a vector A with j components. We can compute the polynomials Si (j) as

follows.

a) s 1() --Fl

6 ) S(j)= S(j-1) + F for j > I

c ) S,(j) = S..,(j-1) • F, for j > 1

d) Si(j)=Si-(j ) + (F .S(j-1)) forI < i <j

This method is shown graphically for j - 4 in figure 3. Note that we do not need to compute all of the

terms S, (j), but only the last n - k + 1 terms in each row. Using this method, the number of multipli-

cations of CDFs is O(n (n -k )).



3. Graph Interpretation

Suppose we are modeling program execution. Clearly, series subgraphs represent serial statement

ecution. The interpretation of parallel subgraphs depends on the type assigned to the parallelism. The

pe maximum corresponds to the kind of concurrency considered in [3 and by Robinson[24] and

leinoder[131. If parallel subgraphs are probabilistic, they can be interpreted as the alternatives in a con-

tional statement. Minimum parallel subgraphs will model the parallel execution of a non-deterministic

gorithm [25] in which the verification of all guessed solutions is attempted concurrently, and the first

aess to be verified provides a solution to the whole problem. We can also consider the unreliability of

Lsks by representing each task by a parallel combination of the task execution and the failure process of

,e task. We can thus model software reliability as proposed by Littlewoodf18].

SPADE graphs can also be used to model the lifetime of closed (non-repairable) fault-tolerant sys-

ems with permanent faults. Such systems are defined in [211, where they are analyzed by Markov chain

echniques. We should note that-our graphs do allow more general distributions of subsystem or com-

onent lifetimes than those allowed by the Markov chain techniques. A system consisting of a series com-

)ination of components is modeled by parallel graph nodes with type minimum; a parallel combination is

nodeled by parallel graph nodes with type maximum. Systems with redundant components which require

ome minimum number of the components to function can be modeled by k out of n parallel subgraphs.

We can also model the point (instantaneous) availability for the restricted class of repairable sys-

,ems where each component has an exponentially distributed lifetime and an independent repair facility.

1.4. Graph Analysis

The algorithm for computing the traversal time distribution for a series-parallel graph has two parts.

'irst we decompose the graph into a tree, such that the nodes of the graph appear as leaves of the tree,

md the sequence of series and parallel combinations that form the graph appear as internal tree nodes.

'igure 4 shows a graph and its tree decomposition. When the decomposition is parallel, we label the

nternal node with the particular interpretation (maximum, minimum, probabilistic, or k out of n ) placed

)n the traversal of the parallel subgraphs. It is possible to carry out this decomposition in time propor-

,ional to the number of nodes in the resulting tree. For a description of such a linear algorithm for



rposing any transitive series-parallel graph into a binary tree, see [29].

Every subgraph of the series-parallel graph corresponds to some subtree of the decomposition tree.

lefine the distribution of a tree node T to be the traversal time distribution of the subgraph to which

subtree rooted at T corresponds. The distribution of the root node of the decomposition tree is the

ersal time distribution of the entire graph. Thus, the second part of the algorithm consists of comput-

the distribution for each node of the decomposition tree. We visit all of the nodes of the tree in pos-

ler. If a node is a leaf, then its distribution is exactly that of the graph node corresponding to the leaf.

node is internal, then we apply one of the formulas I through 6' , depending on the type of the node,

,he immediate descendents of the node.

If we take as our unit of calculation the multiplication and convolution of distributions, then the

ie needed to calculate the CDF for a tree node of type series, maximum, minimum, probabilistic, or k

of n with identically distributed subgraphs is O(n ). If the type is k out of n with non-identically

;tributed subgraphs, the time is at worst (when k is small) O(n 2 ).

The overall time complexity of the algorithm depends on the representation of distributions, and on

e implementation of the various operations done on distributions.

S. Distribution Functions

Up to this point, we have made no assumptions about the character of the CDFs associated with the

des of our graphs except that they are statistically independent. For CDFs of any form, it would be

)ssible to compute numerically F(I) for traversal of the entire graph for any particular value of t. If

,e type of the CDF's is restricted to be of exponential polynomial form and the parameters are given, it

relatively easy to compute the overall CDF as a function of t.

An exponential polynomial is defined to be an expression of the form

E a i I k, e k ,

ote that this form is quite general. In particular, the CDF of each node can be exponential, hyperex-

Dnential, Erlang, or a mixture of Erlang distributions. Because the class of exponential polynomials is

losed under the operations of addition, subtraction, multiplication, differentiation and integration, a

." " " ". °'a" " ''. °'O. ° " ,,'. 
"
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Figure 2. Graphs which are not Series-Parallel
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Parallel subgraphs are allowed to have non-identical (but independent) distributions.

This generality allows us to model a wide-ranging set of applications including the execution time

analysis of concurrent programs, program execution in a failure-prone environment, reliability analysis of

non-repairable fault-tolerant systems, and availability analysis of a class of repairable systems.

Several generalizations of the techniques discussed in this paper are under investigation. These

include the restriction of a limited number of processors and hence the modeling of queuing for limited

resources, perhaps in a way analogous to the methods employed in [10,11]. We are also developing

SPADE-like methods specialized for solving acyclic Markov and semi-Markov chains.
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system is able to recover from the fault. The second way of leaving state B is for an error (owing to the

fault) to occur. The error rate is p. Once an error occurs, the system must detect the error; the error

detection rate is c. A detected error is covered with probability c and is not covered with probability I-c.

This Markov chain can be written as a graph suitable for input to SPADE, as shown in figure 12b.

Node A represents the time it takes for a fault to occur. Node B represents the time that passes before

either the fault is detected or the fault causes an error. With probability b/(b+p), the fault is detected.

In that case we go to node C1, which represents a state in which the system is able to recover. Otherwise,

the fault causes an error. That leads to state D, during which the system tries to recover from the crror.

Once the recovery attempt is finished, we exit either through node C2 if the error was covered, or node F

if the error was not covered. Nodes C1, C2 and F are zero nodes. They are required in order to express

the different ways of exiting from the graph.

Figure 12c shows the results obtained when SPADE is asked to analyze each path through the

graph. For each path, SPADE prints

(1) the names of one or more nodes that uniquely identify the path

(2) the probability of taking the path

(3) the conditional distribution for the path

SPADE also prints the unconditional CDF for the graph, computed as if the graph had a dummy

exit node collecting nodes C1, C2 and F.

The probability that the system recovers from a fault is given by the sum of the probabilities of

traversing the paths that go through BC and DC. The probability that the system does not recover is the

probability of traversing the path through DF.

5. CONCLUSION AND FUTURE WORK

We have developed a model for the execution time of stochastic activity networks of series-parallel

type. We allow node execution times to have quite general exponential polynomial forms and allow these

distributions to have a mass at origin and a mass at infinity. We further allow several interpretations of

parallel subgraphs, including the possibilities of required completion of one, all or k of n subgraphs.
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approximation given in 119] is in error. The approximation as computed using the method in 1191 is

7.1021*10 .

The bottom part of figure 10c shows the results obtained when all of the pi are set to zero, thus

these results are the mean, variance, and values of the CDF for the time to failure of the system when

components are not repaired.

4.5. Example 5 - Reliability of an Aircraft Flight Control System

To illustrate the use of k out of n parallelism, we consider example problem 7 in appendix G of 123.

This problem models an aircraft flight control system. The system contains three inertial reference sen-

sors (IRS) and three pitch rate sensors (PRS), that monitor the status of the aircraft. All of the sensors

are connected to each of four computer systems (CS). The computer systems.independently collect infor-

mation from the sensors and process the information. The computers are connected to each other and to

three secondary actuators (SA) through four identical bus systems (BS).

In order for the entire system to function (so that the aircraft remains airborne) at least two of each

type of component must be functioning. A graph that expresses a reliability model of the overall system

is given in figure IIa.

Note that the subgraph representing the computer systems and secondary actuators are 8 out of 4

systems. That is because the nodes represent times to failure. If the subsystems operate as long as 2 out

of the 4 components function, then they fail when 3 out of the 4 have failed.

Figure lib shows an input file for the graph and figure Hie shows the results. Note the use of the

shorthand method for specifying k out of n identical single-node subgraphs.

4.8. Example S - A Fault Handling Model

This example is also taken from [21. Consider the Markov chain in figure 12a. This is a model of

the sequence of events that follows the occurrence of a fault in a system that monitors itself periodically.

When the system is in state A, it is functioning properly, and the fault rate is X. In state B, a fault has

occurred. At this point, one of two things might happen. The first is that the system may detect the

fault itself. This happens with rate h. If the fault is detected, the system goes to state C, in which the

* * . ~ .. . . ~ . . * *
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system of components pictured in figure 10a. This is the example presented in 119), where an approxima-

tion method is given for computing the steady state unavailability of a series-parallel system. Using our

model, we can compute the steady state unavailability exactly, and in addition we compute the transient

unavailabilities.

Assume that each component is subject to failure, and has its own independent repair facility. If

the time to failure of component i is exponentially distributed with failure rate Xi and the time to repair

is exponentially distributed with repair rate P,, then the instantaneous availability is [27]

X + 3

Note that as 9 -oo, A, (t) approaches the steady-state availability. If pi = 0 (no repair), A, (t) reduces

to the reliability (as a function of time) of the component.

Let the distribution function associated with the graph node representing component i be 1 - Ai (t).

This distribution represents the unavailability of the component, and is in SPADE form with a mass at

infinity. We can use SPADE to compute the instantaneous unavailability for the system as a whole. For

subsystems in parallel, we must take the product of the component unavailabilities (the system is unavail-

able only when all parallel subsystems are unavailable). This is the "maximum" combination. For a

series of components, the availability is the product of the component availabilities (the system is avail-

able only when all subsystems are available). Thus the unavailability of the system is exactly the

"minimum" combination of the components.

When the components are combined in this way, the "traversal time" of the overall graph will be

the overall system unavailability I - A (t). By taking the limit of A (t) we obtain the steady-state system

availability, and by setting all pi = 0 we obtain system reliability as a function of the mission time t.

Figure 10b shows how the series-parallel system can be expressed in SPADE-form. We first analyze

the model with the same parameters as used in 119]. Those parameters are X6 = X6 = .005, X = .001,

Xi - .01 for all other i, pub = e = 1/6, p, = P -ul = 1/5, and p = 1/7.5 for all other i. The

results (with distributions functions deleted) are shown in the top part of figure 10c. The continuous pro-

bability is lim I-A (I), and hence is the exact steady state unavailability. It should be noted that the

" " ' J, -~*' -~~f*J''. . -7
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of three sequential phases[4]. The first phase, corresponding to seek time, is assumed to be exponentially

distributed with a mass at the origin:

reck () Nosed +(I - P.uet& ) (I - -ed

-• The second phase is the rotational latency phase, and is assumed to exponentially distributed. The third

phase, the transfer phase, is also assumed to be exponentially distributed.

*, Figure 8d shows an input file and results for this modifed model. We have used several convenient

features of SPADE to specify the model. We have defined an exponential polynomial called hyper, with

two parameters, to define the hyperexponential distribution. When we later assign distributions to the

nodes CPU1 and CPU2, we simply invoke that polynomial definition with appropriate arguments. We

* have also defined a subgraph called io, consisting of three nodes in series, to represent the three I/O

-" phases. Later, when we assign distributions to the nodes 10 1 and 10 2, we sy that they have the same

distribution as the subgraph io. In addition to being convenient, the use of the subgraph facility makes

the program execution time shorter, since each subgraph will be evaluated only once.

4.3. Example 3 - Program Execution with a Possibility of Failure

To see how SPADE can be used to analyze the finishing time of a program which is subject to

software or hardware failure, we consider an example taken from Wei and Campbell[30. In figure 9a, the

nodes in the graph represent segments of a process. Associated with each segment is the probability that

a failure occurs before execution of the segment is complete. In 1301, a formula is given for approximating

the overall failure probability. SPADE computes the failure probability exactly, and in addition computes

the CDF of the process completion time if a failure does not occur.

Figure 9b shows the results for the process graph. Figure 9c compares the exact results from

SPADE with the approximations obtained by the method used in (30]. As expected, the approximation is

better when the individual failure probabilities are smaller.

4.4. Example 4 - Instantaneous Availability

If a system is composed of components that each have an independent repair facility, the SPADE

model can be used to compute the instantaneous availability of the system. Consider the series-parallel

N % _..
. A"
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The time taken for a message to be consumed is assumed to be exponentially distributed with

parameter X. The distribution of the time taken for a message to be produced is given by

F(t)-p -- p * c- "'

If p is less than one, the distribution for the amount of time it takes to produce a message does not

reach one in the limit. We can interpret this as meaning that there is a chance that the message is never

produced, and that (1-p) is the probability that the message is never produced. The distribution F (t) is

translated by SPADE into the mixture distribution (1 - p) I + p (1 -

Figures 7b and 7c show an input file and the results obtained from SPADE. Because the overall

CDF does not reach one in the limit, SPADE shows the probability that the overall graph traversal takes

no time, the probability that it takes infinite time, and the probability that the graph is traversed in finite

nonzero time. In this example, the "infinite" probability is the probability that the number of messages

actually produced is less than two. The CDF given is conditional on the traversal time being finite.

- 4.2. Example 2 - CPU-I/O Overlap

Figure 8a shows a SPADE graph for one iteration of the program with CPU-I/O overlap considered

by Towsley, Chandy and Browne (261. In each iteration of the program there are two stages. The first

stage is always a CPU burst. The second stage consists of either pure input/output, or input/output that

may be overlapped with a second CPU burst. The probability that the second stage Consists of CPU-I/O

overlap is given by p.

The use of a "zero" node allows us to have one branch of the CPU1 node lead to a single node,

while the other branch leads to a group of nodes to be executed in parallel. Figures 8b and 8c show a

SPADE input file and the results obtained from that file.

We can also used SPADE to carry out the analysis of an iteration of this program assuming that no

concurrency is allowed. The resulting mean execution time is .27505. The speedup, defined to be the

ratio of the mean sequential execution time to the mean parallel execution time, is 1.21.

To show the versatility of SPADE, we now allow the CPU service time distribution to be a two-

stage hyperexponential (with the same mean as before). The I/O service time will be assumed to consist

*.€-.S .S-"'--" ."V~ ." 'i- - - .- ....... .
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any combination of variables, constants, and the operators +, -, *, /, exponentiation and parentheses. In

addition, SPADE contains a mechanism for specifying two types of functions of any number of parame-

* ters. The first type of function is defined to be an arithmetic expression. Once such a function is defined,

it can be used in other expressions wherever a variable would appear. The second type is defined to be an

exponential polynomial, and provides a convenient way for a user to pre-define commonly used distribu-

tion functions. The overall CDF of a graph is computed in the single time parameter t; the user must

bind any variable names used to particular values before the calculation is done.

Once a user has supplied a graph, exit types, probabilities, distributions, and values for variable

-- names, SPADE computes and prints the distribution for the traversal time of the graph and the mean and

variance of the traversal time. The user may request that the distributions be evaluated over specified

intervals of values.

When a graph has probabilistic parallel subgraphs, the user may be interested in knowing the proba-

bility that a particular node or subgraph was chosen, and the conditional distribution of the graph traver-

sal time given that particular choice. SPADE allows the user to request that traversal times be computed

for each possible path through the graph.

4. EXAMPLES

This section contains examples of models that can be analyzed using SPADE.

4.1. Example 1 - Producer-Consumer Problem

Consider the producer-consumer problem, where the number of messages produced (and consumed)

is two. The process of the production and consumption of the two messages is shown by the graph in Fig-

ure 7a. The nodes PI and P2-represent the production of the first and second messages; C1 and C2

represent the consumption of the messages. Obviously, each message cannot be consumed until it is pro-

- duced, but it is possible for message one to be consumed while message two is being produced. Haase 110]

- explores this problem when the production and consumption times are deterministic, with the objective of

discovering whether both messages are consumed by a given deadline. We assume the times to be proba-

bilistic, and use SPADE to compute the distribution of the time taken to consume both messages.

- ' .**.;* ;-*.*.... ... :.v. .*
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*i in the form of a simple input language.

A SPADE user must first specify a series-parallel event-precedence graph. This is done by entering

the node pairs which define the edges in the graph. SPADE allows the degenerate case where an edge is

specified by a single node. This allows for the specification of a node which is not part of any edge.a%

Because it is often the case that a graph contains many subgraphs which are identical copies of each other

both in shape and distribution, SPADE has a macro facility for the specification of subgraphs.

-. Because of our definition of series-parallel, every set of parallel subgraphs is immediately preceded

by some single graph node. (If a graph or subgraph as specified by the user has multiple entrance nodes,

SPADE provides a dummy single entrance node.) Therefore, it is convenient for the user to specify the

type of parallelism of subgraphs by assigning an 'exit type" to that single node. The possible exit types

are probabilistic, maximum, minimum, and k out of n. In the case of k out of n parallelism, the user

must specify values for k and n.

o" SPADE provides a shorthand form of specifying k out of n parallel subgraphs when the subgraphs

have identical distributions. It allows the user to say that the exit type of a node with only one outgoing

edge is k out of n. When that happens, SPADE assumes that there are n identical copies of the immedi-
%.

ate descent of the node. To use this shorthand feature when the identical subgraphs consist of more than

a single node, one would use the macro subgraph facility.

For each edge leaving a node with probabilistic exit type, the user must specify the probability that

the edge is traversed. It is possible for more than one edge to enter a single probabilistic subgraph. In

that case, the interpretation is that the probability of entering that subgraph is the sum of the probabili-

ties on all of the edges entering the subgraph. Later when the subgraph is itself decomposed, the multiple

edges will be split into more probabilistic subgraphs.

Every node must be assigned a probability distribution. SPADE provides a shorthand for the user

to specify the exponential distribution and the distributions Z and I. If any other distribution is desired,

the user must specify each term of the desired exponential polynomial.

Values for probabilities, k and " for k out of n exits, and the parameters a,, ki and 4, for exponen-

tial polynomials may all be specified in the form of symbolic expressions. The expressions may contain
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Thus the values for p., P., PC and F' in Fmu are

I00 P 0o + P  (p, '+ PC 3)

PC P3IPcN2
+ PCPS2 + Pc N 2

F 1Ppc2F2 + PCpS 2F, + p, 1PC2FIF2
Fe - P£IPC2 + PC 1P2 2 + PC PC2

The formulas for probabilistic, serial and minimum combinations are similar. If 0 1 ,G2 , . are k

" out of n parallel subgraphs having identical distributions p, Z + po + p, F we have the following.

5' ) Fh/. == ry~ R (n -r) Ptm P: p,.11 - ft ___ F 1- (3.U-}

M i- 0-I - -"

n-0,-0 j-*- -

Note that if p, and p ,, are zero, this reduces to equation 5. The product p C p, p ' -4" is the probabil-

ity that the traversal time is infinite for m of the subgraphs- and zero for i of the subgraphs. The rest of

the formula represents the time it takes to traverse k - i of the remaining pool of n - m - i subgraphs

that have finite nonzero traversal time.

If the subgraphs do not have identical distributions, we have

6'-) Fk,.(r) I P.. n P II P F( T,I/(.-1 T,1-IT,)(r)

I711<.-k rnT 1 iMerl T JEGUTz)'

TZ 9 TI
I T, <5"

Here T, is any permutation chosen from (1, • n ) and Tz is a permutation chosen from the remaining

indices. The products of probabilities represent the probability that the traversal time is infinite for

T, I of the subgraphs and zero for I TZ I of the subgraphs. Then equation 6' is used to calculate the

time it takes to traverse the remaining pool of subgraphs that have finite nonzero traversal time.

r . THE SPADE PROGRAM

SPADE is a program which implements the analysis of series-parallel event-precedence graphs. It is

written in C, and consists of about 2800 lines of code. SPADE may be used either interactively or in

batch mode. The data which must be supplied by the user is the same in either case. When used interac-

, tively, SPADE prompts the user for data entry, allowing retry whenever possible if invalid data is entered

and ensuring that all required data is entered. In batch mode, the user creates a file which contains data

.:;.-:.-..: .; ..:. . .;-,: ,, - a,.. *......- ..... . ... . ., , .. ..
. .. ..... - ,e nJ . ' * . _*. ,' *', * '-, , ..-• . . . ",.,.,' -... ' -' -'-'-'- € ",-," .".", ,- - .•.-,.,.,,..,, - -..
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precedence relations that otherwise would not adhere to our definition of series-parallel. For example, the

non series-parallel graph G2 in figure 2 can be written equivalently as the series-parallel graph in figure 6.

The limit of a distribution at infinity represents the prouaoility that an event ever finishes. If an

event represents part of a numerical algorithm that may not always converge, it is useful to be able to
.1

express the probability that the algorithm does not converge. Similarly, if we consider program execution

in a failure-prone environment, then we may allow for the possibility of a failure occurring before program

completion, so that the program never completes.

* The SPADE model allows each node in a graph to have a mixture distribution in the form of equa-

tion 11. Note that a node for which F(0) > 0 and lim F(t ) < I can be represented equivalently by
t -00O

three probabilistic parallel nodes, one having distribution 2, one having distribution I, and one having an

absolutely continuous CDF satisfying properties 7 through 10. This is illustrated in figure 5.

", Equations 1 through 6' for computing the distributions of combinations of subgraphs apply when

the component CDFs are absolutely continuous non-defective distributions. Mixture distributions in the

form of equation 11 are also closed under the operations sum, prob, max, min, and k /n. It is convenient

* to rederive formulas 1 through 6' for mixture distributions. First we make the following observations.

12) Z 2 = Z

13) J2 =

14) 1 Z - I

15) Z F - Ft

18) 1 F' I

Now suppose that a graph G is composed of two maximum parallel subgraphs G 1 and G 2 having distribu-

tions p, Z + pJ I+ pC F, and p,2 Z + p,,I + pC F 2. The distribution for the traversal time of G is

given by

4' ) &X PC IPzS2Z 2 + p, IP ZI + P, iPCZF2 + poP 2JZ + P oolo +

POOaPCtgF 2 - p ,p F1Z + PC P 02F11 + p~IpC2FIF2

=(P. IP.,)Z 4(P 00 + P . 2(P3 1-+P, 1))l + (P. 1, 2F2 + pc1pz2F, + PC 1pc2F1F2)

-" - " - -. ° • sa - o* . . .
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series-parallel graph whose nodes have exponential polynomials for CDF's will have an overall CDF that is

* also an exponential polynomial.

Of course, not every exponential polynomial is a valid CDF. For a function F(t) to be he CDF of

*, a nonnegative random variable, it must satisfy the following properties:

* 7) F(0) = 0

8) Jim F(t)_== I
.-- 00

*9)O <F(t) <I V1

10) F is monotone nondecreasing

It is useful to relax requirements 7 and 8, and require only

7,)F(O) > o

8' )lim F(t) < 1

If F(0) > 0, then F(0) is a discrete probability mass at the origin. If lir F(t) < 1, then F is a defective

distribution. F can be written as a mixture distribution [27] composed of the sum of two discrete parts

and a continuous part. Define Z to be the CDF of the discrete distribution with all of its mass at the

point 0. Thus Z (t) 1 for t > 0. Define I to be the CDF of the discrete distribution with all of its

. mass at infinity. Thus 1(1) = 0 for all finite t > 0, and I(oc) = 1. Every distribution F that is

exponential polynomial in form and satisfies properties 7' , 8' , 9 and 10 can be written as

11) Fmj.t(t)pZ( + p o I(t) + pc eC(t)

where p, + p,, + p, I and F' is an exponential polynomial with F'(0) 0 and lim F'(t) = 1.
9-00

F" j,,d is obtained from F by setting p, = F(0), p --- 1 - lim F(t) and F' F-
100 PC

F (0) is the probability that the event with distribution F takes no time. If an event represents the

failure of a component, it is useful to allow for the possibility that the component is defective to begin

with. Also, the distribution of the waiting time in a queuing system usually possesses a mass at the ori-

gin.

It is possible to have F - Z, in which case the event always takes no time. This is the counterpart

of an instantaneous transition in a stochastic Petri net [6]. These "zero" nodes can be used to specify

..-.-.

""*5, ,t,., dj "'" "- " "."" ' .''".. '' .,..'",".. .. "/. ..-.. ,,.s.
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Figure 7a. Prod ucer- Consumer Problem

COM roucr-osuerprblmprobability at 0: 0.0000e+400
- COMM prodcer-osmersproble probability at infinity: 9.7500e -0.

COMM wit 2 essgescontinuous probability: 0.0250e -01

GRAPH CF

*ARC P1 C1 -3.0083e+00 t( 1) exp(-2.OOO0e+00 t)

*ARC P2 C2 + 3.0083e+00 t( 1) exp(-5.OOO0e+O0 t)

ARC C1 C2 + 9.0250e -01 4( 0) exp( 0.OOODe+00 t)
END+ -9.0250e -01 40) erp(-2.OOO0e+00 t)

* M)+ -9.0250e -01 40) exp(-5.OOODe+O0 t)

EXIT PI MA + 9.0250e -01 t4 0) exp(-7.OOO0e+0O t)

DIST C1 EXP lambdia mean and variance are conditional on finite time
DIST P1 EN lambda

DITP -GNp, 0, mu mean: 1.2571e+00
DIT 2 ENp, 0, 0\u variance: 5.1878e-01

-P, 0, -mu
-:END t F(t)

1.0000 e+00 3.8824 e-01
*BIN lambda 1 / .23.00e08789-1

BIND mu 1/.53000+0 8.79e1
.2 BND p.955.0000 e+00 9.0178 e-01

- END 7.0000 e-00 9.0248 e-01
9.0000 e+00 9.0250 e-01

EVAL 1 10 2
END

Figure 7b. Input File for Example 1 Figure 7c. Results for Example 1



,

Figure 8c. CPU-IO Overlap

o.o

COMM CPU-I/O overlap CDF:
1.ooooe+00 t( 0) exp( o.ooooe+oo t)

GRAPH + -1.3 3 47e+00 t( 0) exp(-6.689e+00 t)
+ -1.OOlle+O0 t( 0) exp(-8.00o0e+00 t)

ARC cpul zero + 1.5609e+00 t( 0) exp(-1.4669e+01 t)ARC cpul iol + -2 .2512e -01 t( 0) exp(-2.6596e+01 t)
ARC zero cpu2
ARC zero io2 mean: 2 .2 73 3e-01
END variance: 2 .5755e-02

EXIT cpul PROB t F(t)
PROB cpul zero p
EXIT zero MAX 0.0000 e+00 0.0000 e+00
DIST cpul EXP mul 1.0000 e -01 2.0933 e -01
DIST zero ZERO 2.0000 e -01 5.2815 e -01DIST iol EXP lambda 30000 e -01 7.4775 e -01

- DIST cpu2 EXP mu2 4.0000 e -01 8.7095 e -01
DIST io2 EXP lambda 5.0000 e -01 9.3512 e -01
END 6.0000 e -01 9.6758 e -01

7.0000 e -01 9.8382 e -01
BIND mul 1 / 0.0376 8.0000 -01 9.9192 e -01
BIND mu2 1 / 0.125 9.0000 e -01 9.9595 e -01
BIND lambda 1 / 0.14995
BIND p .7
END

END
4*.

Figure 8b. Input File for CPU-I/O Overlap Figure 8c. Results for CPU-I/O Overlap

1%.'



COMM CPU-I/O overlap
COMM with 2-stage CPU service
COMM and 3-stage 1O service

SUBGRAPH io
-" ARC seek latency

ARC latency transfer
END

GRAPH
ARC cpul zero CDF:
ARC cpul iol 1.0000e+00 t( 0) exp( 0.0000e+00 t)

ARC zero cpu2 + -1.4178e+00 t( 0) exp(-1.0000e+01 t)

ARC zero io2 + -6.0884e+00 t( 0) exp(-1.2500e+01 t)

END + 7.2026e+00 t( 0) exp(-2.0000e+0I t)
+ 1.0119e+01 t( 0) exp(-2.2500e+01 t)

POLY hyper(xl,x2)\ + -1.4319e+01 t( 0) exp(-3.000e+01 t)
1, 0, 0\ + 5.1714e+00 t( 0) exp(-4.0000e+O1 t)

-x2/(x2-xl), 0, -xl\ + -1.9595e+01 t( 0) exp(-4.5455e+01 t)

xI/(x2-xl), 0, -x2 + 1.0076e+01 t( 0) exp(-5.0000e+01 t)
+ 2.9553e+01 t( 0) exp(-5.2500e+01 t)

DIST seek gen\ + -4.1718e+01 t( 0) exp(-6.0000e+01 t)
1, 0, 0\ + 2.0147e+01 t( 0) exp(-6.4103e+01 t)

-(1-pn), 0, -tseek +. -1.3064e -01 t( 0) exp(-9.000e+01 t)

DIST latency exp tlatency mean: 2.1611e-01
DIST transfer exp ttransfer variance: 1.1814e-02

EXIT epul prob t F(t)
PROB epul zero p
EXMT zero max 0.0000 e+00 0.0000 e+00

' DIST epul byper (mula,mulb) 1.0000 e -01 1.0188 e -01
DIST zero zero 2.0000 e -01 5.1780 e -01

: DIST iol subgraph io 3.0000 e -01 8.1418 e -01
* DIST cpu2 hyper (mu2a,mu2b) 4.0000 e -01 9.3859 e -01
" DIST io2 subgraph io 5.0000 e -01 9.7915 e -01

END 6.0000 e -01 9.9318 e -01
7.0000 e -01 9.9775 e -01

BIND mula I / .0156 8.0000 e -01 9.9925 e -01
BIND mulb 1 / .022 9.0000 e -01 9.9975 e -01
BIND mu2a 1 / 0.0250
BIND mu2b 1 /0.1
BIND p. 7

" BIND pn .001
BIND teek 1 /.05
BIND tlatency 1 /.02
BIND ttransfer 1 /.08
END

END

Figure 8d. Input File and Results for Modified CPU-I/O Overlap Model

% 
.



probability at 0: 0.0000e+00
probability at infinity: 2.5590e-01
continuous probability: 7.4410e-01

CDF:
-6.9806e -01 t( 5) exp(-3.OOOe+0 t)el + -2.5113t+00 t( 4) exp(-3.OOooe+0o t)

+ -3.3485e+o0 t( 3) exp(-3.OOOOe+0O t)
+ -3..85e+OO t( 2) exp(-3.OOooe+00 t)
+ -2.2323e+00 t( 1) exp(-3.0000e+00 t)e2 I+ 7.4410e -01 t( 0) exp( 0.O000e+0O t)

i p2 3  + -7.4410e -01 t( 0) exp(-3.00O0e+00 t)

e3 e mean and variance are conditional on finite time

mean: 1.8211e+00
variance: 6.3466e-01

e5 e6 RUD
P57  probability at 0: 0.0000e+00

probability at infinity: 2.8319e-02
continuous probability: 9.7168e-0i

CDF:
-9.4129e -01 t( 5) exp(-3.OOOe+00 t)

e8 + -3.2794e+O0 t( 4) exp(-3.0000e+00 t)
+ -4.3726e+00 t( 3) exp(-3.0OOOe+00 t)
+ -4.3726e+00 t( 2) exp(-B.OOOOe+0 t)

Figure 9o. Modules Which moy Foil + -2.9150e+00 t( 1) exp(-3.OOOOe+O0 t)
+ 9.7168e- 01 t( 0) exp( O.OOOe+O0 t)
+ -9.7168e- 01 t( 0) exp(-3.0OOOe+O0 t)

mean and variance are conditional on finite time

mean: 1.8261e+00
variance: 6.3643e-01

Figure Ob. Results for Example 3

1st dataset 2nd data set

SPADE Result .2559 .0283

Wei & Campbell .2864 .02864
approximation

Figure ge. SPADE Results vs. Approximation



Figure 1 Oc. Series-Parallel System

1 P 1 zero P2 zero P3 10 11

U2 U3 U4 U5 U6 U7 U8 U9

e(Xi+ M~t

Figure 10Ob. SPADE Graph for a Series-Parallel System



probability at 0: 0.0000e+00
probability at infinity: 9.9943e-01
continuous probability: 5.7430e-04

t F(t)

0.0000 e+00 0.0000 e+00
2.0000 e+00 5.5847 e -05
4.0000 e+00 1.5948 e -04
6.0000 e+00 2.6177 e -04
8.0000 e+00 3.4674 e -04
1.0000 e+01 4.1198 e -04
1.2000 e+01 4.5996 e -04
1.4000 e+01 4.9438 e -04
1.6000 e+01 5.1868 e -04
1.8000 e+01 5.3568 e -04
2.0000 e+01 5.4750 e-04

,REBND

t F(t)

0.0000 e+00 0.0000 e+00
2.0000 e+00 8.2537 e -05
4.0000 e+00 3.4181 e -04
6.0000 e+00 7.9804 e -04
8.0000 e+00 1.4741 e -03
1.0000 e+01 2.3941 e -03
1.2000 e+01 3.5830 e -03
1.4000 e+01 5.0651 e -03
1.6000 e+01 6.8641 e -03
1.8000 e+01 9.0021 e -03
2.0000 e+01 1.1499 e -02

Figure 1Oc. Results for Example 4
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Figure 11a. Aircraft Control System
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CDF:
1.0000e+00 t( 0) exp(0.0000e+00 t)

+ -9.7200e+02 t( 0) exp(-4.0000e-03 t)

COMM aircraft flight control system + 6.4800e+02 t4 0) exp(-4.3000e-03 t)

COMM (shorthand for k out of n subgraphs) + 6.2960e+03 t( 0) exp(-4.3000e-03 t)

+ 2.1800e+02 t( 0) exp(-4.5000e-03 t)
GRAPH + 4.3200e+02 t( 0) exp(-4.6000e-03 t)

ARC 21 PRS + -1.2960e+03 t( 0) exp(-4.7000e-03 t)
ARC z PRS+ -1.7820e+03 t( 0) exp(-4.8000e-03 t)

ARC z3 CS +s -1.1520e+03 t( 0) exp(-4.9000e-03 t)
ARC z4 SAS + -1.1160e+03 t( 0) exp(-5.OOOOe-03 t)
ARC :5 BS + 6.1200e-s02 t( 0) exp(-5.OOOe-03 t)
END + 1.2420e+03 t( 0) exp(-5.2000e-03 t)

EXIT ENTRANCE MIN + 1.8360e+03 t( 0) exp(-5.3000e-03 t)

DIST 21 ERO+ 1.1640e+03 t( 0) exp(-5.4000e-03 t)
DIS : ZRO+ 4.9200e+02 t( 0) exp(-5.5000e-03 t)

EXIT :1 KOFN 2,3 + -3.8400e+02 t( 0) exp(-5.6000e-03 t)
+ -1.0920e+03 t( 0) exp(-5.7000e-03 t)

DIST z2 ZERO + -1.0560e+03 t( 0) exp(-5.8000e-03 t)
EXIT :2 KOFN 2,3 +* -7.9200e+02 t( 0) exp(-5.9000e-03 t)

DIST z3 ERO+ 5.3000e+01 t4 0) exp(-6.OOOOe-03 t)
DIS : ZRO+ 1.4400e+02 t( 0) exp(-6.OOOe-03 t)

EXIT z3 KOFN 34+ 5.9400e+02 t( 0) exp(-6.2000e-03 t)

DIST z4 ERO+ 4.5000e+02 t( 0) exp(-6.3000e-03 t)

DIST z4 ZEO 2, + 9.W00e+01 t4 0) exp(-6.4000e-03 t)
EXT 4 OF 23+ 5.4000e+01 t( 0) exp(-6.5000e-03 t)

+ -1.9200e+02 t( 0) exp(-6.60D0e-03 t)
DIST 35 ZERO + -1.0800e+02 4( 0) exp(-6.7000e-03 t)

EXIT 25 KOFN 34+ -1.0800e+02 t4 0) exp(-6.8000e-03 t)

DIST IRS XP 00002+ 7.2000e+01 t4 0) exp(-7.0000e-03 t)

DIST PRS EXP 0.0003 mean: 8.6446e+02
DIST CS EXP 0.0004 variance: 2'.4563e+05
DIST SAS EXP 0.0005
DIST BS EXP 0.0006 tF(t)
END

1.0000 e+01 1.1431 e-04
EVAL 10 10 102.0000 e+01 4.5834 e-04

END 3.0000 e+01 1.0335 e-03

4.0000 e+01 1.8410 e-03
5.0000 e+01 2.8814 e-03
6.0000 e+01 4.1553 e-03
7.0000 e+01 5.6828 e-03
8.0000 e+01 7.4037 e-03
9.0000 e+01 9.3775 e-03
1.0000 e+02 1.1583 e-02

Figure 11b. Input File for Example 5 Figure 11c. Results for Example 5
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comm Ist data set
bind f1 .02
bind f2 .03
bind f3 .04
bind f4 .05
bind M5 .06
bind f6 .07
bind f7 .08
bind f8 .09
bind u 3
bind p23 .6
bind p57 .8
end
end

comm 2nd data set
bind f1 .002
bind f2 .003
bind M3 .004
bind 14 .005
bind f5 .006
bind 16 .007
bind f7 .008
bind f8 .009
bind u 3
bind p2 3  .6
bind p57 .8
end

end



AEX P()

BEXP(6+p)
C

BA D (1 -c)E F
Figure 12a. Markov Chain for

Single Fault Handling

ZERO ZERO

Figure 12b. SPADE Graph Equivalent

PATH: I PATH: 3

nodes on the path: Cl nodes on the path: F
probability of the path: 0.800 probability of the path: 0.020

CDF for the path: CDF for the path:
1.0000e+00 t( 0) exp( 0.0000e+00 t) 1.0000e+00 t( 0) exp( 0.0000e400 t)

-1.2500e+00 t( 0) exp(-l.OOOOe+00 t) + -1.1338e+00 t( 0) exp(-1.OOOOe -01 t)
4 2.5000e -01 t( 0) exp(-5.OO0e+00 t) + 1.3 889e -01 t( 0) exp(-I.0000e-00 t)

+ -5.1020e -03 t(O0) exp(-5.OOe-&00 t)

mean for the path: 1.2000e+00

variance for the path: 1.0400e+00 mean for the path: 1.1200e+01
variance for the path: 1.0104e+02

PATH: 2
OVERALL

nodes on the path: C2
probability of the path: 0.180 CDF:

1.ooooe+00 t( 0) exp( 0.ooooe+00 t)

CDF for the path: + -2 .26 76e -01 t( 0) exp(-1.OOOe -01 t)
1.O000e+00 t( 0) exp( 0.0000e+00 t) + -9. 7 222e -01 t( 0) exp(-1.OOOOe+00 t)

+ -1.1338e+00 t( 0) exp(-1.0000e -01 t) + 1.9898e -01 t(0) exp(-5.00OOe+00 t)
+ 1.3889e -01 t( 0) exp(-1.0000e+00 t)
+ -5.1020e -03 t( 0) exp(-5.0000e+00 t) mean: 3. 2 000e+00

variance: 3.7040e+01,
mean for the path: 1.1200e+01
variance for the path: 1.0104e+02

Figure 12c. Results for Example 6
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comm program execution with
comm a possibility of failure

graph
arc el e2
arc e2 e3
arc e2 e4
arc e3 e5
arc e5 e7
arc e5 z
arc e7 e8
arc z e8
arc e4 e6
arc e6 e
end

expo F(f, ui) I-f, 0, O\

exit-0 02 pro
exit e2 prob
prib e2 e3 p2

prob e5 e7 p57

dist z zero

dist el F(f2, u)
dist e2 F(r3, u)
dist e3 F(f4, u)
dist e4 F(f5, u)
dist e5 F(f&, u)
dist e6 F(f6, u)
dist e8 F(fS, u)

end
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