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EXECUTiVE SUMMARY

This report consists of three self contained parts.

Part A, entitled "Noise Suppression and Signal Estimation,"

presents a summary of various adaptive noise-cancelling

prefilter techniques that were investigated. Part B, enti-

tled "Autoregressive Spectral Estimation in Noise for Speech

Analysis Applications," presents a fundamentally new

"weighted information" approach to the spectral estimation

problem. Finally, Part C presents a summary of the publi-

cation activities associated with this research effort.

Each part of this report is self-contained with sep-

arate contents, list of figures, references, etc. To assist

the reader, a brief summary of parts A and B along with a

general table of contents is provided below.

A. NOISE SUPPRESSION AND SIGNAL ESTIMATION

The goal of this research effort was to investigate

adaptive estimation methods for noise suppression and per-

formance enhancement of narrowband coding systems for speech

signals. Zn the original proposal special reference w-is

made to combining pitch tracking adaptive filters wita lin-

ear predictive coding algoritnms and tnese methods are dis-

cussed in chapter II of part A. The results of this initial

............. ..,.. ......< .,........-.. ,.% .. ..-.-..- < .. -..-. - -. 4. <-. -..,.: . -4 < : .: . < < .;%1.-



effort led to the investigation of several topics which are

briefly summarized below.

In chapter ii of part A various prefiltering techniques

for improving linear predictive coding systems are eval-

uated. This includes the examination of a -refilter con-

sisting of an adaptive digital predictor (ADP) with pitch

period delay. Two adaptive algorithms, the least mean

squared and the sequential regression, are evaluateG for

ADP. The method proved successful in suppressing white

noise in voiced speech sounds but did not work well when the

noise was narrowband such as a single sine wave. This is

due to the fact that interaction between the pitch period

and the narrowband noise produces a bias error in the adap-

tation of the filter.
Chapter "II of part A discusses a new robust pitch

estimation procedure which was developed as an outgrowth of

tne efforts described in chapter i. The performance of the

pitch tracking filter depends on the quality of the pitch

period estimate used to set the input delay. It was found

that a tapped delay line adaptive digital filter provides a

robust pitcn estimate. This method allows for better reso-

lution of the pitch frequency than the traditional tech-

nijues such as autocorrelation and harmonic analysis and has

a better noise tolerance than these technqiues.

Failure of the pitch tracking adaptive filters to sup-

press narrowband noise prompted the investigation of several

otner prefiltering methods. The most successful of the
d
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filters evaluated was the spectral subtraction techni jue

discussed in chapter IV of part A. Two modifications to the

original method proved very useful for improving noisy

speech. First a dual time constant noise spectrum estimate

improved white noise suppression and secondly a spectrl

notch feature greatly improved narrowband noise quieting.

Also, very successful was a new filter method based on udap-

tive filtering. These filters have been investigated using

speech in the military aircraft environment, such as heli-

copter, AWACS, etc. informal listening tests indicate good

noise suppression.

Chapter V of part A discusses two-dimensional filter

approaches. The use of a two-dimensional filter approach to

suppress noise in the short-time Fourier transform domain

found to have a significant potential. From the inform-i

listening tests, the two dimensional processed speech suinds

quieter with added clarity.

Chapters VI and Vil of Part A are concerned witri f-it

algorithms for efficient solution of the linear estimatiorn

problem and a new recursive linear estimator suitable for

rapid estimation of a signal in noise. Efficient methods

are developed for optimization of the filter coefficient3.

Optimal selection of data to be processed is shown to be

related to a classic integer programming problem.

lii
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B. AUTOREGRE6SiVE 6PECTRAL EJTIMATION IN NOISE IN THE
CONTEXT OF SPEECH ANALYSIS

In tnis part of the report, an improved method of spec-

tral estimation is described. The method treats the problem

of estimating autoregressive (AR) process parameters from

sequential discrete time observation corrupted by additive

independent noise with known power spectral density. The

method has a theoretical foundation relating it to princi-

ples of information theory as well as the linear predictive

(LP) procedures popularly employed for speech analysis. The

estimation procedure enjoys the advantages of noise suppres-

sion filtering metnods such as those discussed in Part A.

Furthermore the method is able to relax the usual LPC error

criterion in those spectral regions where the residual

speech distortion due to noise suppression is expected to be

ni gh. The method is very general and applies both to wide-

band and narrowband noise environments. The solution ob-

tained by using this method is shovn to be unique.

Computational procedures appropriate for speech anal-

ysis applications are developed. The complexity of these

]lgorithms for speech applications is only moderately expen-

sive when compared to the present used methods. The algo-

rithms have been tested using simulated Gaussian and speech

signals with knoon spectral characteristics corrupted by

simulated .aussiin noise of known power spectral density.

The results obtained by this method are compared with the

results obtained by currently popular methods of AR spectral

1



estimation in noise. By using scatter plots, it is shown

that the estimation error is significantly lower when com-

pared to the results obtained by other methods.
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CHAPTER I

INTRODUCTION

Digital encoding of speech signals has proven to be an

effective means of bandwidth compression. Expanding use of

narrowband digital encoding systems has revealed some disap-

pointing limitations in their performance. One limitation

is degredation of intelligibility in the presence of back-

ground noise [1,2]. This difficulty has drawn bore atten-

tion as speech encoding systems have attempted to move into

military applications. These applications may include the

environments such as airborne command posts, cockpits of jet

aircraft, helicopters and many others. The goal of this

study was to investigate several methods of improving the

performance of narrowband coding systems in the presence of

acoustically coupled background noise. To complement this,

an additional goal was to investigate fast algorithms to

implement these algorithms along with descrete-time estima-

tion algorithms.

Noise Suppression

The problem of noise in speech encoders can be

addressed as a simple noise filter problem by placing a

simple filter in front of the encoder. The problem with

.'6



this approach is that most background noise of interest is

not stationary and cannot be predicted ahead of time. Noise

filters with adaptive structures have shown some promise as

prefilters for speech encoding systems [3]. Several of the

adaptive filter techniques were investigated in this

study. Chapter II describes an adaptive filter which takes

advantage of pitch information to reduce background noise.

Two adaptive algorithms, the Least Mean Square Algorithm

(LMS) [4] and the Sequential Regression Algorithm (SER) L5J,

were evaluated for the adaptive digital predictor.

Performance was evaluated using signal to noise ratio

measurements.

It has been recognized that pitch estimation is not

simple if the speech is corrupted by noise [6]. The cur-

rently popular pitch extraction methods are generally of two

types, autocorrelation analysis and harmonic analysis. The

autocorrelation method performs an autocorrelation on the

windowed speech data and the pitch period for the voiced

speech is estimated by using the peaks in the

autocorrelation function. On the other hand, the pitch

extraction methods are based on performing a discrete

Fourier transform on the windowed speech data [7]. However,

these methods do not fare well for noisy speech. Chapter

III presents a method for determining the pitch period of a

voiced speech signal using a tapped delay line adaptive

digital filter (TDLADF). These filters have been wjd, ly

used in sonar applications '8-9]. This approach uses the

7
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TDLADF to estimate the time delay between two parts of the

same signal. The time delay then corresponds to the pitch

of the signal. This time delay is estimated by processing

the weights of the TDLADF.

Several prefiltering methods based upon adaptive tech-

niques are discussed in Chapter IV. One popular method of

prefiltering speech involves direct modification of the

short-time Fourier transform (STFT) of a speech signal typ-

ically called spectral subtraction [10]. This method esti-

mates the STFT of the background noise and then subtracts

this from the STFT of the speech plus background noise. The

work described in Chapter IV is limited to filtering tech-

niques for suppressing narrowband background noise in speech

signals. The methods included are a modified spectral sub-

traction technique, an inverse transform filter, an adaptive

notch placement technique and an adaptive filter

technique. These methods are evaluated using signal to

noise ratio measurements and log area ratio performance

measurements.

Chapter V presents some interesting image processing

techniques to enhance speech. In this approach, the STFT

representation of a segment of speech in treated as a two-

demensional image data [11]. It has been shown that by the

use of image processing operations, such as contrast

enhancement and smoothing, background noise can be sup-

pressed and the speech signal can be enhanced.

II



Past Recursive Estimators

Real time implementation of the before mentioned filter

techniques requires considerable computational power. It is

important that all the alogorithms involving in the encoding

process be as efficient as possible. During the course of

this study, fast algorithms have been developed for linear

estimators for rapid estimation of signal in noise. Chapter

VI presents a simple and an efficient algorithm for the

solution of a generalized least squares estimation prob-

lem. Chapter VII presents a recursive linear estimator for

rapid estimation of a signal in noise. Efficient methods

are developed for optimization of the filter coefficients.

Optimal selection of data to be precessed is shown to be

related to a classic integer programming problem L12-13].

Finally, Chapter VIII summarizes the results and

provides suggestions for further study.

-,9



CHAPTER 11

PREFILTERING WITH AN ADAPTIVE DIGITAL PREDICTOR

Although linear preditive coding (LPC) techniques used

to Encode narrowband speech signals are efficient at data

:ompression [6,14], they degrade significantly if the speech

is corrupted with noise [1,2,15]. Frequency domain filter-

ing techniques using pitch period information have been

evaluated and found to be of limited usefulness [16]. The

objective of this Chapter is to examine the performance of a

time domain filtering technique using an estimate of the

pitch period and an adaptive digital predictor (ADP), Figure

1, to reduce the noise to speech signals [3].

The noise filtering properties of the ADP with pitch

period delay are examined. The primary areas discussed here

are the ADP's performance with various noise types. Per-

formance will be evaluated using signal-to-noise ratio (SNR)

measurements. This performance measure is used for conven-

ience in the parameter sensitivity investigations although

it is recognized that intelligibility is not always a func-

tion of objective measures of speech quality.

Two adaptive algorithms, the LMS [4] and the SER [5],

were evaluated for the ADP. These algorithms are discussed

in the next section. Synthetic speech was used in all

10



evaluations. The section on Data Generation discusses how

this speech was generated. The effect of pitch estimate

errors on performance is dealt with in the Pitch Estimate

Error section. The ADP's performance for various types of

noise is the subject of the Narrowband Noise section.

Filter Configurations

Two adaptive algorithms will be considered, the LMS

algorithm [4] and the SER algorithm [5]. The LMS algorithm

is a suboptimal least squares approach derived using the

method of steepest descent. The SER algorithm is optimum in

the least squares sense and depends upon the matrix

inversion lemma to compute the inverse of the auto-

correlation matrix at each iteration. If

= f(k-A) f(k-l-) ... F(l-M-l-A) (2.1)

is the input vector to the adaptive filter of length M, then

the LMS algorithm [4] is given by

Ar = Ar_ 1 + vFr e(r), (2.2)

where Ar is the vector of filter coefficients,rI
e(r) = f(r) - FTAr_ 1  (2.3)

as shown in Figure 1, and v is a convergence parameter. The

SER algorithm [5] is given by

Ar = Ar-I + Qr Fr e(r) 2.4)

where e(r) is defined by (2.3) with

Qr= Qr-1 - (1/6) Qr-1 Fr Fr r-l (2.5)

and

6=1 + FQr_ Fr, (2.5)

r --l l
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Figure 1. ADP Configuration

where Ar is again the coefficient vector, Fr is given by

(2.1) and Qr is the inverse of the autocorrelation matrix of

the input to the ADP. Note that (2.5) and (2.6) update Qr

through the matrix inverse lemma.

Data Generation

In these simulations the test data was limited to a

single vowel sound /a/. This was done in order that the

dynamics of the adaptive filter itself may be observed with-

out the added complexity of interaction of two phonemes. To

generate the vowel sound used for the test, natural speech,

sampled at 8000 tHz, was first analyzed by linear prediction

analysis (LPA). An eighth order model was used. The

resulting LPA parameters were then used to synthesize the

test waveform. In this way the pitch period and spectral

characteristics of the test signal were completely known.

Figure 2 shows the waveform and spectrum of the test signal.

12
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Figure 2. Test signal time

and frequency plot.

Noise signals for the test were chosen to be simple but

representative of the general types encountered. The three

noise signals used were wideband, narrowband and a single

sinewave. The wideband noise was generated by a Gaussian

psuedo-random number generator. For the narrowband noise,

the wideband generator output was passed through a digital

resonator with center frequency at 2664 Hz and bandwidth of

400 Hz. The sinewave noise consisted of a single sinewave

of constant amplitude at a frequency of 2664 Hz. Figure 3

shows the spectra of the noise signals used.

Pitch Estimate Error

An essential part of the filtering technique is the

estimate of the pitch period. It would be useful to know

just how accurate the estimate must be to allow the fitter

13
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to perform satisfactorily. Figure 4 shows the results of a

computer simulation of the ADP in which the pitch estimate

given to the ADP is varied from thie actual pitch period of

the speech signal. The input signal was corrupted to 1.5 a3

SNR at the input of the filter with the wideband noise spec-

ified in the previous section. The SNR of the output i s

plotted against the pitch estimate (in data sample periods)

used by the ADP. Curves are shown for four and eight weight

ADP's. One should note that the filter performs properly

only when the estimated pitch falls within a window near the

actual pitch period. The width of this window is approx-

imately equal to the number of weights in the filter. The

plot in Figure 5 extends from pitch estimates +60 to -60. A

minus pitch estimate means that the delay is in the ref-

erence input side of the adaptive filter, see Figure 1,

instead of the filter side. One should note that there are

two more acceptance windows located at zero and -50. 9n ly

the windows located at +50 and -50 give improvement in SN R

over the unfiltered signal. Note also that total signt.1

improvement is higher if the pitch estimate is slightly

-*lower than the actual signal pitch. These results imply

that the pitch estimate need not be perfect but must fall in

a window bounded on the high side by thie actual pitch and

with width approximately that of the filter weights. The

results in Figure 4 and 5 are for the LMS algorithm. 'he

SER algorithm shows the same window effect. 'he window

15
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d width was also found to be relatively insensitive to the

type and intensity of the noise used to corrupt the test

signal.

Narrowband Noise

* Using real speech, Sambur has shown that this ADP con-

figuration provides improvement in SNR in the case of wide-

band noise [3]. More challenging though is the case of

narrowband noise such as is found in many industral and

military environments. Figure 6 shows the overall

performance of the filter with the LMS algorithm for the

single vowel sound /a/ corrupted by varying intensities of

wideband, narrowband and single sinewave noise. SNR of the

output is plotted against the SNR of the input. Figure 7

shows the same results for the SER algorithm. In each case

the filter was allowed to run to convergence before actual

SNR calculations were made. One should note that in all but

the sinewave noise case, some improvement in SNR was

realized. Also note that the sub-optimal LMS algorithm

provided more improvement in SNR than the SER algorithm.

Conclusion

A technique using an adaptive digital predictor with

pitch period delay to reduce noise in speech signals has

been examined. It has been shown for the case of a simple
."

vowel sound that wideband and narrowband noise can be

reduced. However, single sinewave interference was not
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reduced. The LMS algorithm provided better performance than

the SER algorithm. Sensitivity to pitch period errors was

also investigated. Criteria for the accuracy of the pitch

period estimate necessary to maintain satisfactory perform-

ance were developed.
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CHAPTER III

PITCH ESTIMATION BY ADAPTIVE FILTERING

Estimation of the fundamental frequency or "pitch" of a

voiced speech signal is one of the basic steps in most

speech analysis and speech encoding systems [17]. The cur-

rently popular pitch extraction methods are generally of two

types, autocorrelation analysis and harmonic analysis. The

autocorrelation technique performs an autocorrelation on the

windowed speech data [6]. If the windowed data contains

several pitch periods, the resulting autocorrelation

function will have a peak at the delay corresponding to the

pitch period. Rather than work with the raw speech data,

most schemes will lowpass filter or center clip or both

before performing the autocorrelation. This can enhance the

result and lower the computation required. In some schemes

the input to the autocorrelation process is the prediction

residual from an appropriate linear prediction algorithm.

In any case, the pitch is estimated by identifying the ap-

propriate peak in the autocorrelation function.

Pitch extraction methods based on harmonic analysis

usually start by performing a discrete Fourier transform on

the windowed speech data [7j. The transformed data is ex-

amined to locate the line spectra features that are charac-

teristic of pitch periodic time signals. Spacing of the
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line spectra features can then be used to estimate the pitch

frequency.

This chapter presents a method for determining the

fundamental frequency of a speech signal using a tapped

delay line adaptive digital filter (TDLADF). Like the

autocorrelation method, this technique tries to measure the

time delay between successive pitch period waveforms. The

use of TDLADF to estimate the time delay between two signals

has been well developed for use in sonar applications

[8, 9]. Instead of estimating the delay between two

different signals, this application uses the TDLADF to

estimate the time delay between two parts of the same

signal. The weights of the TDLADF are processed to

determine the pitch estimate.

The General Time Delay Case

Figure 8 shows the general structure of a TDLADF with

its filter input and reference input. If a signal is ap-

plied to the filter input and a delayed version of the same

signal is applied to the reference input, the adaptive algo-

rithm will minimize the error signal by adjusting the

weights of the tapped delay line filter to approximate the

unknown delay in the reference input. The resulting con-

verged filter will then have a weight with a value of one at

the delay line tap that correponds to the unknown delay and

zeros in all the other weights. In most cases it is not

necessary to wait until the adaptive algorithm converges to

21



* . * I - - . -. . . . . . . . .

determine the time delay [a j. After only a few iteration

steps, a scan of the weight values for the maximum positive

value gives a very close estimate to the actual time delay.

The Pitch Estimation Configuration

Figure 9 shows the TDILADF configured for pitch period

estimation. The filter input delay is established by the

shortest pitch period expected (approximately 3-5 ms). The

length of the tapped delay line filter is then determined by

the longest pitch period expected (usually 15-20 ma). For

example, an expected pitch period range from 5 ms to 15 ms

would require a delay of 50 samples and filter length of 100

samples if the sample rate was 10kHz. In the configuration

of Figure 9, the TDI.ADF approximates the delay between two

successive pitch periods. Since successive pitch waveforms

of natural speech are not exactly alike, the weights will

never converge to a single impulse. Still, a clear peak in

the weight function will be evident.

Figure 10 gives a plot of the TDLADF weights for the

utterance "They shook hands for good luck-" The seech data

for this example was sampled at 8kHz. The example used a 40

weight adaptive filter with a 40 sample delay on the input.

in this plot, the relative darkness of any point shows the

value of a particular weight at that point in time. The

more positive the value of the weight, the darker it appears

on the plot. Since the presence of a pitch periodic signal

will be indicated by a positive peak In the weights, only
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the positive values of weights are shown. The changes in

the pitch period are clearly visible as the peak i.n the

weight values tracks the delay between successive pitch

periods. Note that a singular peak is not discernible

during the unvoiced "sh" of the word shook.

The Adaptive Algorithm

The adaptive algorithm used for the example of Figure

10 is based on Widrow's LMS adaptive algorithm [4]. In this

algorithm the weights of the tapped delay line are updated

by the relation

W(n+1) = W(n) + u e(n) F(n)

where W(n) is the vector of weights, u is the convergence

parameter, F(n) is the input signal vector, and e(n) is the

error at step n. The LMS algorithm is one of the slower

converging adaptive algorithms. This is not a problem in

this application since complete convergence is neither

required nor wanted for proper pitch estimation. It has

been found that the weights in the LMS algorithm can more

quickly track a varying pitch period if the algorithm is

prevented from converging completely. This is done by

adding a relaxation parameter to the weight update equation

[19J. The modified update equation is

W(n+1) = vW(n) + ue(n) F(n)
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where v is the relaxation parameter. Suitable values of v

were found to be in the range of .90 to .99. Other adaptive

algorithms may be suitable for this application. This study

in concerned with the ILMS algorithm.

Visible Detail

Since the TDLADF generates an estimate of the pitch at

each incoming data sample, it can reveal subtle variations

in the pitch period that would go unnoticed with other pitch

estimation schemes. Both the autocorrelation and harmonic

analysis techniques must work with data windows that are

several pitch periods wide to get good results. Subtle

variations in the pitch are averaged out in the process.

Figure 11 shows an expanded plot of the start of the

word "they" from the example in Figure 10. The time plot of

the actual signal is included with the TDLADF weight plot.

Small changes in the pitch period from one pitch period to

the next are evident in the weight plot. Note the jump in

the pitch period associated with the change in voicing.

Even more subtle features of the pitch period variations may

be observed if an adaptive algorithm with faster convergence

characteristic is used. Figure 12 shows the same example

signal of Figure 11 processed by a sequential regression

(SER) adaptive algorithm [20]. The SER algorithm is

computationally intensive but does converge quickly and,

therefore, more detail can be seen in the weight plot.
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* Pitch Period Resolution

Normally, the time resolution of the pitch period esti-

mate would be limited to the data sampling interval. The

estimate can be improved by using a parabolic interpolation

over several weight values in the vicinity of the pea.k

weight.

Noise Tolerance

The original motiviation for using an adaptive filter

for pitch detection occurred while studying the effect of

background noise on low bit rate speech coding systems. The

adaptive technique was found to be very robust in the

presence of various kinds of noise. Rigorous comparisons

with other methods have yet to be made. Figure 13 gives the

results of several tests that calculated the average pitch

estimate error for various input signal to noise ratios. It

has been found that the slow convergence rate of the LMS

adaptive algorithm automatically provides much of the

smoothing needed by other methods in the presence of noise

[21].

Computational Considerations

From a computational standpoint, the TDLADF for pitch

detection is very costly. The LMS algorithm requires

approximately 200 multiplies per data sample. Since most of

the pitch information is contained in the lower 1000 Hz of

the spe-!ch signal, the data can be lowpass filtered and then
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down sampled. The number of computations is cut by about

the down sampling rate. Down sampling for pitch detection

is also common among autocorrelation methods.

One side effect of the down sampling is reduced pitch

period resolution. Interpolation will help, but the TDLADF

technique offers another alternative. Figure 14 shows a

block diagram for a two stage adaptive pitch estimator. The

"course" stage uses the lowpass filtered, down sampled

version of the signal to obtain an approximate value of the

pitch period. This estimate is then used to adjust the

delay on the second "fine" stage. The second stage TDLADF,

though not down sampled, need only be wide enough to accom-

modate the expected error in the first estimate. Processing

the weights in the "fine" stage gives the same resolution as

the original sampled case but at lower computational cost.

initial test with this structure showed that the compu-

tational savings were bought at the cost of slightly lower

noise tolerance.

Possible Applications

Most interest in pitch estimation techniques centers

around the real time encoding of speech data. The TDLADF

does not seem to be well suited to this application due to

the computational requirements. Recent development of VLSI

circuits to implement the adaptive filter algorithms

directly in hardware may eventually do away with that limi-

tation.
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Other applications for pitch estimation are in disease

diagnosis. Detailed study of the speech waveforms of some

patients can aid in the detection of certain disorders of

the vocal tract and nervous system [22]. The ability of the

TDLADP to display subtle features in the pitch period may

prove useful for such diagnosis. The computational load

should not present a problem in this application since the

analysis need not be done in real time.
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Chapter IV

NOISE SUPPRESSION METHODS

FOR SPEECR APPLICATIONS

Use of linear predictive coding and other speech encod-

ing techniques in military environments has revealed some

disappointing limitations in the narrowband digital encoding

of speech. Moderate acoustic background noise can severely

degrade the overall system performance [2]. This Chapter

investigates both frequency and time domain noise suppres-

sion techniques that appear to be effective on background

noise with non-stationary narrowband characteristics.

Methods Investigated

Subtraction of an estimated noise spectrum in the

frequency domain has been shown to be very effective on

narrowband interference signals [23,24]. Two modifications

to the original technique were investigated as a part of

this study. First, placing zeros in suspected large inter-

ference bands was found to improve the subjective quietness

of the speech. Secondly, it was also found that a dual time

constant spectral averager allows for better noise spectrum

estimation.

Time domain filters, designed to track and reject sus-

pected narrowband noise signals, have the potential of being
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more computationally efficient than frequency transform

methods. Four methods for designing time domain filters

were investigated. First, a time domain filter may be

formed from the proper inverse transform of the inverse of

the estimated noise spectrum [25]. Another technique

searches the noise spectrum for the largest suspected inter-

ference signal and then designs a time domain notch filter

with appropriate center frequency and bandwidth. The third

technique is an adaptive predictor [18] which adaptively

designs a time domain noise suppression filter based on a

sample input of the backgroand noise. The fourth is a mod-

ification of the adaptive predictor to allow for flatter

passbands.

General Spectral Subtraction

The spectral subtraction noise reduction method is the

process of subtracting an estimate of the noise power spec-

tral density (PDS) from the corrupted input signal's PSD in

an attempt to improve the signal-to-noise ratio (SNR). This

subtraction is adaptive in that the estimate of the noise

PDS is updated during the absence of speech. The algorithm

involves: 1) breaking the input signal into frames and

estimating the PSD of each frame by an FFT, 2) updating the

estimate of the noise PSD if no speech is present, 3) sub-

tracting the current noise PSD from the signal PSD and 4)

transforming the frequency domain result back into the time

domain using the input signal's original phase information.
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The Noise PSD Estimate

The performance of the spectral subtraction technique

depends a great deal on the accuracy of the estimation of

the noise PSD. Errors in the noise PSD estimate usually

show up as tone burst or spectral artifacts in the output

signal. If the noise signal is assumed to be stationary on

a short time basis, then some form of smoothing of the frame

to frame variations will improve the noise PDS estimation.

A first order recursive smoother was used to average each

descrete frequency power estimate over several frames. The

recursive smoother computes the running average of each

discrete frequency by

En(k) = Pn(k) + c(Enl(k) - Pn(k))

where En is the recrusive estimate of the PSD based upon Pn,

the noise PSD in the nth frame, c is a constant which sets

the effective time constant for the average, and k is the

decrete frequency index. No smoothing was done between

adjacent discrete frequencies. The appropriate time con-

stant for the smoother depends on the frame to frame varia-

bility of the noise. A fixed time constant of about 5

frames worked reasonably well. However, a dual time con-

stant scheme based upon adjacent power estimates proved

better. If the new power estimate of a particular deicrete

frequency is greater than the last estimate then a shorter

time constant (1-2 frames) is used. If the new estimate is

less than the current estimate then a long time constant (4-

5 frames) is applied. This "fast attack -- slow decay"
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scheme reduced the number of spectral artifacts due to ran-

dom variations in the noise.

Frequency Domain Notch Filter

The difficulty with very high intensity narrowband

noise is that the spectral artifacts due to the noise PSD

estimation errors can be very large in the vicinity of the

noise concentration. Smoothing is impractical to suppress

these large artifacts. It was found, however, that total el-

imination of the speech PSD in the area of the large narrow-

band noise reduced the number of large artifacts without

greatly distorting the speech signal.

After the noise PSD estimate is subtracted from the

input signal PSD, zeros are placed in the resulting PSD at

discrete frequency locations that have abnormally large

noise power estimates. This eliminates any large noise

artifacts that might remain due to error in the noise PSD

estimate. Emperical experiments showed that any discrete

frequency in the noise estimate that has a power level over

four times the average over all frequencies was a good can-

didate for a frequency domain zero.

Filter Design by Inverse Transform

Once the noise PSD has been estimated, a suppression

filter for the noise is easily designed by taking the

inverse DFT of the inverse of the PSD [25]. The resulting

impulse response forms the weights of a transversal
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filter. Linear phase response may also be obtained by

proper choice of phase.

To keep the computational load reasonable, the trans-

versal filter must be limited to between 10 and 20

weights. This requires sampling the noise PSD at only 10 to

20 equally spaced frequencies. The resulting poor frquency

resolution allows very narrowband noise to be ignored if it

falls between frequency samples. For this reason, no per-

formance comparisons were made for this filter technique.

Filter Design by Notch Placement

Since many of the background noises encountered contain

one predominant narrowband component, it is unnecessary to

use a filter with as many coefficients as is generally

required by the inverse transform method. A much more

heuristic, yet very practical approach, is to direct the

noise filter design process directly toward the major spec-

tral component of the noise.

The method considered here first analizes the estimated

power spectrum of the noise to identify the maximum. This

maximum is then the primary target of the noise filter.

Using the amplitude and bandwidth of the local maximum found

in the noise spectrum, a recursive notch filter is

designed. The notch filter used in this research was a

bilinear transformation of the transfer function,

4
H(S)
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where is the frequency of infinite attenuation and wb is

the -3dB bandwidth centered about wo" This filter was

chosen because its gain at the high and low frequency

extremes approach unity resulting in minimal amplitude dis-

tortion for portions of the spectrum that are not near the

center frequency.

The values of w and wb are obtained by analizing that

estimated noise PSD in the following manner. First, the

current estimate of the noise PSD is searched for the larg-

est peak that is above a set threshold value. The notch

filter center frequency is then set to the frequency of this

peak. The bandwidth of the notch filter is set equal to the

width of the peak that extends above the threshold value.

The threshold value was chosen to be four times the average

value of the current noise PSD. The factor four was chosen

after many experiments with various noise sources.

The advantages of this recursive notch filter method

center around the speed with which such a filter may be

implemented. The recursive filter requires very few opera-

tions per data sample and the filter parameters need to be

calculated only once per frame. Still, the most time con-

suming operation is the calculations of the noise PSD esti-

mate. Hardware FFT processors should make this practical.

Some background noise sources, such as helicopter

noise, contain more than one narrowband noise component.

The above method can be extended by cascading several notch
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filters. Each filter would adapt and track each narrowband

noise.

Filter Design by Adaptive Filter

Design of noise suppression filters by linear predic-

tion has been shown effective for narrowband noise [25].

Figure 15 shows the block diagram of an adaptive predictor

for noise suppression in speech. When a noise signal is

applied, the adaptive algorithm adjusts the weights of the

transversal filter to minimize the error signal. As the

algorithm converges, the transfer function of the system

approximates the inverse filter that would be required to

suppress the input noise signal. When speech is detected,

the adaptive algorithm is turned off and the filter weights

are held constant at their current values. Adaptation

resumes when speech is no longer indicated. For this

research, the least mean square (LMS) algorithm [18] was

used for the automatic adjustment of the weights.

SPEECH SPEECH
INPUT 4"'OUTPUT

ADAPTIVEELAY FILTER

SPEECH
NO SPEECH ---

DECISION

Figure 15. Adaptive Predictor for Speech
Filtering
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Figure 16. Adaptive Transfer Filter

In these experiments, white psuedo-random noise is used

for the bias noise source. The flattness of the passbands

and the depth of the stopbands are controlled by the bias

noise to input noise ratio. The power of the noise bias was

set based on experimental results to be one-fourth the ex-

pected average power of the input speech signal. Flatter

passbands and deeper notches could also be achieved by using

more weights in the filter.

Comparison of Filter Methods

A series of tests were conducted to evaluate each of

the filter methods previously described except the inverse

transform method. The noise used for these experiments was

a sample of noise recorded in a RH-53 helicopter. All the

tests were run at a simulated sample rate of 8000 Hz. The

four techniques evaluated were: a) Spectral subtraction

(SSB) with noise PSD smoothing the frequency domain notch

placement, b) Adaptive notch placement (ANF) using two

second order notch filters, c) Adaptive predictor filter
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(APF) using a 15 weight filter, d) Adaptive transfer filter

(ATF) using a 15 weight filter. The performance of each

filter was compared using a signal-to-noise ratio calcula-

tion based on the average spectral error in the corrupted

signal before and after filtering. The spectral error was

averaged over the speech portions of the input signal

only. Also, performance was compared by computing the av-

erage log area ratio (LAR) error for a 10th order linear

predictor L26].

Objective Comparisons

Figure 17 shows the input and output signal-to-noise

ratios for various levels of input noise. Figure 18 shows

the LAR error for various levels of input noise. Note that

only the SSB and ATF methods consistantly improve SNR and

LAR error. Note also that the ATF scored best in SNR im-

provement but the SSB proved better in LAR error reduc-

tion. The deep narrow notches formed by zero placement in

the SSB filter cause much spectral error but are easily

smoothed over by the relatively low order linear predic-

tor. The APF performed poorly due to its tendency to dis-

tort the spectrum in the passbands of the filter. The ANF

successfully suppressed the large narrowband noise compon-

ents but did not filter the subtiler narrowband noise that

was below its threshold.
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Subjective Comparisons

Informal listening tests indicated that all the methods

evaluated reduced the perceived level of background noise.

Casual listening greatly favored the SSB technique. The SSB

metnod was the only one to remove entirely the large narrow-

band components of the test helicopter noise. All the other

methods had audible residuals of the major noise
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components. The ATF method had the least destortion, while

the APF tended to emphasize the higher frequencies.

Conclusions

Of the four filter methods evaluated, none ofie a

complete cure for background noise in speech. Spectral

subtraction with zero placement and the adaptive transfer

filter were the most effective. The spectral subtraction

technique may have an advantage in applications with linear

predictive coding since it performed best in the log area

ratio error evaluation. Formal subjective tests need to be

done to determine the effect these filters have on the in-

telligibility of noisy speech. The adaptive notch placement

scheme and the adaptive predictor were not very effective on

the test signals used but might be useful in other applica-

ti ons.
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CHAPTER V

ENHANCEMENT OF SPEECH SIGNALS

BY TWO DIMENSIONAL SIGNAL PROCESSING

Recently there has been considerable interest in

investigating new avenues for removing high ambient noise in

speech [i, 2, 27-31]. Chapter IV presented a discussion and

evaluation of several filtering techniques for suppressing

background noise in speech signals. Spectral subtraction is

an effective method for removing narrowband noise from

speech signals. However, there are difficulties with the

technique when the noise is wideband or random in nature.

For example, consider the white noise case. The average

value of the noise spectrum can be easily subtracted from

the corrupted signal but the frame to frame variations of

the noise will still appear in the output signal as chirps

or musical noise. Over estimating the average noise level

is helpful in removing this residual noise but only at the

cost of removing more speech signal.

The random nature of the chirp noise suggests that some

kind of spectral smoothing might be useful to suppress the

residual random variations that remain after subtraction of

the average noise level. Smoothing of noisy spectral data

to minimize the effects of residual artifacts in spectral
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subtraction has been shown to be useful for image resto-

ration applications [27]. The power spectrum of each frame

of data can be smoothed using any one of several techniques.

The linear predictive coding process itself offers some

amoothing since only a limited number of poles are available

for modeling the signal. In channel vocoder systems, some

spectral smoothing can be added by slight overlap of the

analysis channels [28]. Frame to frame correlation of

speech frequency data has also been used in channel vocoders

for noise suppression [29]. in such a system, the output of

each frequency channel is lowpass filtered to remove any

rapid variations. Logarithmic filtering of the envelope of

individual frequency channels has been shown to be useful

for enhancing speech corrupted by white noise [30]. Some

frame to frame smoothing is introduced in spectral sub-

traction if the frame size and overlap are made relatively

large [51].

The acoustic tube model for speech production implies

that the power spectrum of any one frame of data will be

fairly continuous as a function of frequency. Also, since

the speech parameters do not change rapidly, the frame to

frame variations of amplitude of any one frequency will also

be continuous. This dual continuity of speech spectral data

in both time and frequency suggests that some type of two

dimensional filtering might be applicable.

When the speech power spectrum data is displayed as a

spectrogram, an image is formed with dimensions of time and
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frequency. The spectrogram makes visible both the time and

frequency correlation of the speech spectrum. This image

can then be processed using two dimensional techniques to

smooth, improve contrast, or otherwise enhance the spectral

• features. The resulting processed spectrum can then be

combined with the original phase data and inverse trans-

formed to recover the speech signal. This procedure has

been investigated for detecting single tones in white noise

[32]. This chapter presents some interesting results on

applying two dimensional processing techniques to achieve

speech enhancement.

Two Dimensional Representation

The speech signal is first converted to the short-time

Fourier transform (STFT) domain by suitable sampling, win-

dowing and discrete Fourier transformation. The transform

results in a complex two-dimensional function, which can be

represented in the form M(k,n)/ P(k,n), where M(k,n)

corresponds to the magnitude and P(k,n) corresponds to the

phase with k and n respectively representing the frequency

and the time indices. The plot of M(k,n) is usually called

spectrogram. Since M(k, n) is an image, all the image

processing techniques are available to 'clean' the image.

Figure 19 shows a simplified block diagram of a two-

dimensional filter approach. The two blocks in the middle

simply identify that the magnitude and the phase functions

are modified using two separate two-dimensional filters.
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The resulting modified magnitude and phase functions are

then recombined using an appropriate inverse transform and

synthesis method [6] to form the time domain signal.

Filtering in the Double Transformed Domain

To introduce this approach, consider the spectrogram

M(k, n) displayed in Figure 20a for the uncorrupted speech

"Don't gift wrap the tall glass. They shook hands

for good luck."

Now consider the two-dimensional discrete Fourier transform

of M(k, n),

-3t[M(k, n)] : FM(k, n) /FP(k, n) (5.1)

The function FM(k, n), corresponding to the spectrogram in

Figure 20a, is displayed in Figure 20b. It is clear that

the two dimensional transform of M(k, n) does not have the

usual connotation, as M(k, n) is a function of time and

frequency. However, the function in (5.1) exhibits some

interesting properties that are amenable for noise

filtering. Figure 21a displays the spectrogram for the two

sentences given earlier when the speech is corrupted by

white noise to a SNR of about 0 dB. Figure 21b displays the

function FM(k, n) in (5.1) for the spectrogram in Figure

21a. It is clear from Figures 20a and 21a that there is

hardly any resemblance between these spectrograms even

though the speech content is the same. However, the story
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a. CLEAN SPEECH SPECTROGRAM

Don't gift wrap the tall glass. They shook hands for good luck.
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Fiqure 20. Clean speech spectrogrami- and two-dimensional transform.

a. NOISY SPEECH SPECTROGRAM
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Figure 21. Noisy speech spectrogram and two-dimensional transform.
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is different for FM(k, n). Figures 20b and 21b clearly show

high energy concentrations near the origin. This

observation is used in the following.

An example of how a speech signal may be filtered by a

two-dimensional modification of the spectrogram is shown in

Figure 22. The first three parts of the figure, Figures

22a, b, and c, show the original speech spectrogram, the

noisy speech spectrogram, and the two dimensional Fourier

transform of the noisy speech spectrogram. Figure 22d is

obtained from Figure 22c by using a two-dimensional filter.

This simply corresponds to passing the noisy spectrogram

through a band pass filter. Removing the high frequencies

smooths the spectrogram while removing the low frequencies

enhances the contrast between the background and the speech

signal. Figure 22e corresponds to the filtered speech

spectrogram, which is obtained from Figure 22d by inverse

transforming. It is clear from Figures 22a and 22e that the

filtered spectrogram shows a great deal more features of the

original speech signal than the original noisy speech

spectrogram. The results presented in Figure 22 are for

magnitude filtering only. The original noisy phase can be

' used for reconstructing the time domain signal.

The results presented in this chapter are still at a

preliminary stage. However, the results indicate that there

is a significant potential in studying these concepts. In

informal listening evaluation, the two-dimensional processed

speech sounds quieter with some added clarity. Formal
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b. NOISY SPEECH SPECTROGRAM

C. TWO-D TRANSFORM OF NOISY SPECTROGRAM
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Figire 22. Results at each step of a two-dimensional filter process.
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listening tests need to be conducted to justify the results.

Other aspects that need to be investigated are in the area

of improving the phase estimate and making use of the im-

proved noisy phase in reconstructing the phase. The work

done by Oppenheim et al [33] should be helpful in this en-

deavor. At the same time, the study done by Wang and Lim

[34] that the phase is unimportant in speech enhancement

should put a different light on the phase in the recon-

struction of speech.

Conclusion

This chapter presented some preliminary results on

using image processing techniques for speech enhancement.

The basic idea is that the two dimensional Fourier trans-

forms of clean and noisy speech spectrograms have most of

the speech energy concentrated near the origin and the spec-

trogram constructed from this high energy area obtained from

the noisy spectrogram has more features of the original

speech signal than the original noisy speech spectrogram.

From the informal listening tests, the two dimensinal pro-

cessed speech sounds quieter with some added clarity.

Further work is necessary in this area.
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CHAPTER VI

DISCRETE TIME ESTIMATION

The basic problem of prediction is important in many

areas, such as speech processing [6], seismic signal proces-

sing [35], control theory 136] and many others [37]. The

problem is usually reduced to finding the inverse of the

data covariance matrix. Considerable deal of work has been

done for the case of stationary process wherein the

covariance matrix results in a Toeplitz-type matrix. The

special structure of the Toeplitz matrix of order M allows

for an inversion in O(M2 ) operations (multiplications and

additions) compared to O(M3 ) operations required for the

inversion of an arbitrary matrix [38]. In this chapter, a

prediction method is presented for the case of non-Toeplitz

covariance matrices. A brief review of the problem is

presented below. Given the data yi, 0 < i < N-I, find the

coefficients ai , 1 < i < M, in an Mth order predictor

M
y = - ay , 0 < p < N-I (6.1)D Yp ~ Yp-i --

such that the mean squared error

Error = (y ;2 (6.2)

p P
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is minimized. In matrix form, the least squares problem can

be formulated by starting with

do 0 " 0

dl Yl . . 0 a1
* . . . a2

YO (6.3)

aM
dN-I YN-1 YN-2 YNM a -

If di = Yk+i k > 1, then we identify the prediction as the

k step prediction using an mth order predictor. In symbolic

matrix form, (6.3) can be written as

d M . (6.4)

where the bars below d and a denote that they are vectors.

It is well known that the least squares solution of

(6.4) is given by

2M= (Y MT) -I YM d- (6.5)

The recursive solutions for (6.5) have been developed by

Lee, Morf, Kailath, Friedlander and others [39-46]. The

method presented here is based purely on matrix algebra and

can be related to the earlier work. The number of oper-

ations required by this method is O(M2 )c, where c is a con-

stant.
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Set up of Recursion Equations

The solution in (6.5) will be computed in the following

manner. Let

ET= [ep+k_ ep+k_2 ... e0] (6.6)

where

ei = dN_ 1_ (6.7)

Let

E 8 BT  (6.8)

where
" T [U()](6.9)

P-1

"" . 0
0 0 Y

r 1Yo(6.10)

yo Y .

-K YK+I YK+p-1

To relate (6.8) to (6.3), we need to define K N-M in

(6.10).
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The least squares solution of (6.8) can be obtained

f rom

(B BT RIP E (6.11)

and 1s

2P (B B P B E (6.12)

and the solution in (6.5) is given by

= gMi)uM(m-2) ... UM4(O) (6.13)

The vector p in (6.9), derived in (6.12), will be computed

recursively and the derivation for this is discussed in the

next two sections.

Structure of B BT
P P

The matrix B~ in (6.10) can be expresseed in two forms.

* First,

B B P-1(6.15)
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Second,

A T
Bp I K (6.16)

where

A =[0 0.. . 0 YO. YK-I] (6.17)

and

- = YK+ p-I]" (6.18)

From (6.14), we can write

BT  Bp'I Bp" -8p-I Xp- 1

Bp P = T T 2 T" (6.19)

P- p [4 1  ~ .>. +4- XT -1

From (6.16), we can write

[AT  A 2 p- T T yT_ 1;Y Bp BT P P _ + -CP-I

B = (6.20)BT c_1T
Bp- 1 -1 +C 1 YK Bp 1 B- 1 + CT

Equations (6.19) and (6.20) will be used in the fol-

lowing for the proposed recursive algorithm.

Special Structure of Equation (6.11)

For ease of notation, let us define

BP-I A -'- TPI9 (6.21)
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B- I -1 L (6.22)

Cp' Y = G (6.23)

" E = (6.24)

Bi = R .• (6.25)• p-1 p I p-I

Equation (6.11) can now be expressed for stages (p-i) and p

respectively by

R (6.26)
.: R~~p1  I p 1  H 1 " ,1( .7

'iJwhere we have used (6.19) for R p and

2 + (_ (6.28)

Recursive solutions for (6.27) - (6.28) require the

knowledge of the solution of the following equations

R P 1  a = T ' (6.29)

R 6 = L(6.30)

,p-I "-p-I -I

-L
ii"Rp-1 -P- I Pl

,-G .(6.31)

• -1 I -1 - 1 I

5.
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This requires a few intermediate steps, and are discussed

below.

Intermediate Steps

Consider the equations

[R 1 + C cT  ' = 6.3)

[Rp- + p-1 - ] 6' = P (6.33)

+ c] (6.34)

It is well known that [47]

R-i -R1 Rp C T R (6.35)S+ Ap1 p-1 -I -1 p-1

.- "1

with

1+ T R 1  C (6.36)

Using the solutions for (6.29) - (6.31), we can write

.1--. ) 4 1  =,1 + G T I (6 37)

2) xj c -P_~ (6.38)
12 (6p-1 K
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4n the solut s of (6.9 ) . (63 f

the p-th stage. For the p-th stage, (6.29) - (6.31) can be

expressed in the formi =
T  (6.41)

r1 -* p-I ] I + K Yp+K 1(6.42)

R-+-I L6(2) .p-1 + - p+K

i j~p- L-p-i) L-p-iK(64

Note that in (6.42), equation (6.20) is used for pwhere

r0 =I'AT A- + y .(6.44)

-p1- p- 1 y 2

The solutions for equations (6.41) - (6.43) are given

below. First

R(x- P 1 a -1) T _1( 4 )

(. T  T (6.45a)% (2) = ,-P **j* _ -t -p
0 rp -p- K 6
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$1 cx (1) = aI ap(2) 6-I (6.45b)

Second,

( [4-1 b"P-1 + YK Yp+K] (ap-I + 1-1 (L-I +C -1 Yp+K(

~ (2) = - (1) + - 1 -I) + )+ p+K (6.46b)p p -- I 1YK

Third,

YK Yp+K -.--- 1 -1
y- T  

(6.47a)
--p-1 L -1

-p() = yp_l - yp(2) p_l 
(6.47b)

The proof for these is rather straight forward, and is

illustrated below for (6.41). Premultiplying both sides of

(6.41) by
- (6.48)

and using (6.30) and simplilfying, we have (6.45a). Con-

sidering the first set of equations in (6.41), we have

Rp- 1 
2'p-1 + IP.-1 ap(2)-T-P_-I (6.49)

By using (6.29) and (6.30) in (6.48), we have

R~1 ~~- + ct( 2) -6- p..I 0
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and (6.45b) follows. In a similar manner, the others can be

shown.

Final Solution

Using the analysis discussed above, we can obtain the

solution of (6.27), and is

v~p(2) o (o p+K + - -) -_I !-1 (6.50a)
rp- 6 s-i Lp-

) (1) = p-I - jp(2) 6 P_1

It is clear that the solutions for equations (6.26),

(6.29) - (6.31) are assumed to be known for stage (p-i).

The solutions for stage p are given in (6.45) - (6.47) and

(6.50). It is interesting to point out that we have used

four sets of equations to solve the generalized prediction

problem as compared to one set of Teoplitz-type normal

equations for the stationary process. Parallels can be seen

between the above solution for one set of equations and the

classical solutions of Toeplitz-type normal equations [48].
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CHAPTER VII

*DESIGN OF FAST RECURSIVE ESTIMATORS

In many signal processing applications, computational

speed is of considerable importance. It is often desired to

have an excellent estimate available, and generated rapidly

from a large amount of data. This means that only a limited

number of multiplications are allowed in obtaining the esti-

mate. It is therefore important that the multiplications be

selected so that they are maximally effective in generating

a good estimate. The coefficient involved in the multipli-

cation should be optimal, and the data multiplied should be

optimally selected with regard to some performance measure.

it is reasonable, if much data is to be processed, to spend

a great deal of design effort in solving the optimization

problem. Of course this design effort, if it is very in-

volved, must be done before the data becomes available, i.e.

it must not require the data but only a statistical

knowledge of the data.

In this Chapter we propose a recursive digital filter

with a fixed number of multiplications as our estimating

structure. In certain cases [49], primarily when state

models are available, recursive estimators have proved to be

a computationally efficient means of solving the normal

62



equations and generating the best linear estimate. Of

course the Kalman filter [50] is the best known of such

results. The filter structure we propose is not in general

optimal. It is in part dictated by the allowable number of

multiplications. The coefficients are optimized, and tne

structure is optimized to the extent that the best measure-

ments are selected. Optimal measurement strategies have

previously been considered in control and estimation appli-

cations with state models and white noise L51-54]. in this

Chapter however, we only assume the availability of a sta-

tistical knowledge of the observation set and its relation

to the signal to be estimated. At each stage, a subset of

the data is to be summed and multiplied by the best coef-

ficient, and combined with a linear combination of previous

estimates to provide the new estimate. The parameter opti-

mization component of the design is relatively simplified,

with no difficult matrix inversions required to obtain the

best set of coefficients. The choosing of the best data

selection vector is shown to be related to a classical

family of integer programming problems which have received

much attention [12, 13, 55], and include the famous

"Traveling Salesman Problem." For a good review of the

integer programming problem imbedded in this study the

reader is referred to [12]. The most computationally ef-

ficient means of solving the problem available at this time

may be found in [13].
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Problem Statement

Consider the situation in which a large volume of data

is available. This data is collected in one large vector,

y, having elements yi. A recursive estimator is to be de-

signed, of the form

* T M
T + E Y = M+,M+2,...j J j j. i J- J "

(7.1)

where aj. and yji are scalars to be selected in order to

minimize the performance measure

3 E{ (x-xp)

(7.2)

The parameter x is the unknown signal to be estimated by

processing the data according to (7.1). The vector, *j, is

a selection vector whose elements are only 0 or 1. Thus the

estimator has its complexity restricted to M+I multipli-

cations per iteration. The problem is to select the coef-

ficients, aj and Yji, and the selection vector, Ej, in order

to obtain the best possible performance. The only as-

sumption required for the design is that

P E(YyT }  (7.3)
Y

P YX  Efyz} (7.4)

are known quantities. The design is to be carried off line,

so that the only significant calculations which must be done
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in real time are the M+1 multiplications. For 2sjM, the

structure of the filter is

T -

x1  E Y +"j- ji J-i

(7.5)

while x, is of the form

r.: * i-
KT

(7.6)

Since these initial estimates require fewer multiplications,

they could be generated more quickly than the later esti-

niates provided by (7.1). Thus a different and variable

period between estimates could be used during start up.

The problem will be solved by using the fact that

min j mn (min J I givene I
Gi'" a j )'C jC },G (Y a j,.-. cj ,{i jti

(7.7)

Thus the problem is solved by considering a standard L-Q

*, parameter optimization problem, and then optimizing with

respect to the selection vector, ej.

Parameter Optimization

The estimate obtained from (7.5) may be written as

i=i
j-m+l,M+2 ,... (7.8)
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where pis calculated recursively according to the -Igo-

ri thin

T T +NT

£ -L

Tx a C y+ E

(7.10)

and the vectors, P ,are calculated as

T T T-

(7.11)

The initial condition for (7.10) is

(7.12)

and for (7.11),

B 1  -5 1 c 1 (7.13)

For notational convenience, we designate

T T

~1 ii(7.14)

The performance measure may be written as

- E( (x-sct y - Y

J-M+1,M*2.... (7.15)
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Optimization at each stage requires that

Zi .r 0; -aM0; i1J...,M

4~ (.16)

as necessary conditions for an optimum. This leads to the

set of linear equations

pv d

i (7.17)

where

vi J

(7.18)

P is an (M+l) x (M+l) symmetric matrix partitioned as

i

". (7 .19)

and dj is partitioned as

-. dj "

(7.20)

The submatrix, P , has as its ikth element

T

. 001k 0jiPyy 0jk (7.21)
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The term P ,,, is a scalar defined as

P P C

(7.22)

while PEp is an M dimensional row vector whose kth element

i s

toBk jkj (7.23)

It is assumed that ej 0 0. The term de is a scaler

T
. ~ (7.24)

and dp is an M dimensioned column vector with kthelement

d 0 T P
_k ik yx (7.25)

Equations such as (7.17) occuring in linear estimation

theory are generally referred to as normal equations. When

P is nonsingular, the optimal set of coefficients is ob-

tained by solving for vj as

j I i 
(7.26)

During the start up period (2sjM), the preceding equations

(7.15 - 7.26) are applicable with M replaced by j-1. When

the set of coefficients obtained from (7.26) is used we get

ST -I
min( j Igiven c ) d P d

tmj ,{yi) (7.27)

where P E I
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According to (7.7), we want to minimize (7.27) with

respect to %. where the elements of %j can be only 1 or 0.

Clearly this is equivalent to maximizing the expression.

i* d Tp -1 d
J =d P

(7.28)

Optimizing the selection Vector

It will be shown that the maximization of J is related

to a classic problem L12 , 13, 55] generally referred to as

the quadratic assignment problem. Maximization of J is

equivalent to maximizing a ratio of quadratic forms in

Although this is an easy problem, with an elegant solution

when ej may be freely chosen [56], it is a difficult problem

when each element of ej is either a zero or a one. There-

fore in most applications one would probably have to

restrict the selection of ej to a search for the best out of

a reasonable number of candidate vectors. The candidate

vectors would be hueristically selected, with some guiding

principles which will be discussed.

It is known L57] that p71 can be written as

MA1

(7.29)

where

c -o c] (7.30)
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B- -P1 P C
CE ~ (7.31)

A-P c 1-F C-2~ PCP (7.32)

The performance measure may be written as

J* d TAd+2d TBd Wd Cd
C C E (7-33

where we have left off the subscript j for convenience.

Using the matrix inversion lemma [58], we see that (7.30)

can be expressed as

CU P 8 00-1-[P 001p O PBSPO1 Poo -1 ()c P c

We may write

d M WT

(7.35)

Be BP (7.36)

if jis defined according to

T

iTj j

7 (7-37)
LJY, j

Substitution from (7.22) and (7.34 -7.37) in the last term

of (7.133) gives

T Q2 2 Ed Cd -
0 ETR

(7.38)

where R is defined as

70



.R P Y Y O 0 0- 1 7 Y p Y

and Q2as

22 Y Y Y (7.40)

where

I a p 6 8 1FP (7.41)

Similarly, the second term in (7.33) is of the form

2d T -2c TQ12 C
e B R (7.42)

where

The first term is of the form

T

d TAd - 1

£ Rc(7-44)

with Q11 defined as
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Thus the expression for J - may be written as

* 6T[Q 11+ 2Q 12 + Q223C

c Re (7.46)

This is more conveniently written as

~T [Q4 .. TQJ

c Re (7.47)

After su~bstituting in (7.47) for the terms Qiwe get

PX YX TR

(7.48)

where

M- O -1T

The first term is a scalar, unaffected by the choice of

The second term is a ratio of two quadratic forms in

Thus (7.48) may be written as

J* P T + J**
7K yE(7-50)

where

C G~p PT Ge

T
cO £ ,eI (7-51)

and

* RJ.(7.52)
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The goal of selecting j is to maximize the ratio expressed

in (7.51). The symmetric weighting matrices in the quad-

ratic forms in the numerator and denominator are positive

semi-definite, and positive definite respectively. We

remark that the maximization of (7.51) must be done at each

stage, and so it is a significant task. (We have left off

ththe index J indicating the j stage.)

Although problems related to the performance indicator

(7.51 ) have been treated in the literature [53-55J, the

difficulty of the quadratic assignment problem should not be

underestimated. As an example, for even a modest amount of

data, say y is of length 26, it would take over a minute to

calculate (7.51) for each possibility, assuming the calcu-

lation could be done in a microsecond. If the length of the

data vector were 100, the time required to check all pos-

sibilities would be measured in centuries.

Instead of checking all possibilities, we can restrict

ourselves to the most likely candidates, and we can elimi-

nate those selection vectors which have previously been

used, or which can be formed by summing those selection

vectors already used. Knowledge of the truly optimal linear

estimate,

-1 1
x P P y E- aty t
• " (7.55)

can be used to find the likely candidates. As a simple

example, if
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X= l.1yI + Ay2 + 1.Oy3

+ .11y 4 + .09y5
(7.54)

then one would probably guess that cT  [11100], ET

[00011J would be excellent choices for selection vectors.

Furthermore one would expect performance to be good with

only two multiplications allowed. We believe, however, that

even with problems as simple as this, intuition is subject

to error when choosing selection vectors. Naturally when y

is a very long vector some computational assistance will be

required to select the candidate vectors. It should be

remembered that this is a part of the design, and that the

purpose of going to this design effort is to restrict our-

seleves to an algorithm with few multiplications required so

that the filtering algorithm generates estimates quickly.

We are willing to spend considerable extra design effort to

get a fast processor.

The Design Algorithm

To start the algorithm, we must select a,, and c, to

minimize J1 where

JEf(x-x I

• - .... - - * "' . -..."

.:, (7.55)
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This gives for a,,

aj M C X/ P YY

(7.56)

Since when this a, is used,

. .£'

J 1 PXX - ipyxTCI/ciT P yC 1

(7.57)
we select to maximize the quality

('7-58)

Thus a, and -E, are obtained, and Iis found as

T T

-" (7 .59)
-[ The next step is to form the term

M2 % = I T / l T P y y 01 )

t-- (7 .60)

p',-"a nd ev a lu a te

*' -=

1 yy 21

(7.61)

The terms GTp and G Pe are calculated. The expression

indicated by (7(51)

Thenetstep"-" isto"" form"" t "e ter

M"'. - B' Ti($TPB)li"lmlI ,= ,ii~ Iiii



rT 2T P PTG
**y £2 22 2

2 C£2 TG2 TP yC 2

(7.62)

is maximized with respect toc2

The coefficients, a2 and Y2 1 are found according to

(7.26), i.e.

P IP -1d

Y2 £ 2 2  28 £

~ [~ 0 ~ 2 P~B~~(7.63)

where

T£22 P 2  P8 0
21 2 YYl

I£6 c yp sl d. d8  T

(7.64)

Then P2 is found as

T T + T
82 ~2 2 2

(7.65)

Using the notation indicated by (7.14)

TT T
031 B3 -1 - 2

T T T
832 - 3 - 2  1 7.6
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and according to (7.14)

T, Ti T

Tj31 1 2

3  jBT {I (7.67)

The matrix M3 is formed as

-~n 1 Tp -1 BTM 3" ="03 [0B3 Pyy03 - I 03T

(7.68)

Equations (7.61) and (7.62) are applicable with the sub-

script "2" replaced by "3" and E3 is selected accordingly.

The new coefficients are obtained by solving (7.26)

a P d13 a, n d I

where Y3 JY3

".3

P C TP C ml (7.70)
3 3  3  33

T Tw T

(7.71)

These steps can be generalized. Let us assume that we

are in the start up period (j<M+l), and have Pj, , and yj

where

!1 rY411!J
is1 J 1 j j-J (7-.72)
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-2 -. -. aWw!

We then solve for pj according to (7.11)

T T + L1

22i J-1 (7.73)

and form

J+l ,p-J-iT

: (7.74)"

Next, the matrix Mj+ 1 is calculated:

-- - - --1I -

j+1 J+1 yy J+I J+1 (7.75)

and j+I is evaluated as (

G T ~
J+1 - [I-P 2+11

(7.76)
The vector Ej+l which maximizes

T* T T T T
J+1 Ej+1 J+ I pyx yx J+l Y G j+ l +1 Gj+1 p yyJ+1

(7.77)
is selected.

We then solve for the coefficients

!+11 CJICJ1 1+1 0J+j1jJi.
IT-+ . p 0J+I'JlOJ10J+I d oJ +1 (778)
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where

pc 1+I " cj PYYjji "+T' d5I"5I :.6 ~ ~ ~ ~ ~ ~ O~ C L Y. y+z B n

The algorithm is then repeated as given until it is desired

to limit the number of multiplications to M+l as we have

indicated in this paper. Assuming that we have pj, oj,

and yj for j>M+l, where

[TiBt u ,.I

(7.80)

we solve for PJ according to (7.9). Then (7.75) through

(7.78) are applied and (7.77) is maximized. Equation (7.78)

is used to select the new coefficients. The algorithm is

thus established for all j.

The reader may be troubled at this point because it

appears that an ever larger matrix needs to be inverted at

each stage, during the start up period and that a large

matrix (if M is large) needs to be inverted thereafter. We

shall show that there are computationally efficient re-

cursive means of carrying out the required matrix inversion.

Efficient Matrix Inversion

The Start Up Period:

It is necessary at each stage to calculate two matrix

inverses P Pj- and pj-1. In this section we indicate how
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to calculate these terms at stage j+l given these terms are

available at stage j. Thus a recursive procedure is es-

tablished. During the start up period we note that

P++ Xx+ "'++" + 0'" 1% VV 0
The~ 1+1 - Jj 8  (7.81)

The Matrix inverse [571, can be written as

1222 (7.82)

where

-T TiTpyyo % 0 j P ]-1
@22 "r 00 - T1P7 1  " ( )

~P (7.83)
.1 yyij

12
.'-... - 6t1P5r~~s 2 2

@12 Tylj (7.84)

and 11 is

T - T
1 _ P y 0a, 1 a225 Pyy,____ + _ ~.V~

Oll aT~p, +1 (j'),,)2

j (0 P y

(7.85)

Using the matrix inversion lemma [58], we see that (7.83)

may be written as

%-1

-1P -1 r T rrp-1 TOT s r
.22 0B 0 0r  r yyj P (7.86)
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where

T -o i Y Y 0( 7 .8 7 )

Equation (7.86) requires only the inversion of a scalar, and

since j1 is known, we see that we have an efficient way

of finding Ppj+1- given P Once P -1 is known it
P~~j~l PPj j+p-1

is not a difficult matter to calculate Pj+l using equations

(7.29 - 7.32) and (7.34). In this case also, only a scalar

needs to be inverted. During the start up period then,

matrix inversion does not present a problem. This is also

the case during the remaining period with jM+l.

After Start Up:

In the previous section a method was developed for

inverting a matrix of increasing dimension, using the result

from the previous stage. In this section we are inverting a

different matrix of the same dimension at each stage.

Because the matrix at one stage is very closely related to

the matrix at the previous stage, it is possible to obtain

the new inverse from the old, with surprisingly small amount

of calculation.

It is known that the lower right hand portion of P

is the same as the upper left hand portion of P j. Spe-

cifically,
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:1 P vy 0 1 d11 d12'P T I85 1 I T,* ~2 1J(7.88):1+1 IL 0 0P C 1

and

00 0T% OT ~ [ T :::
(7.89)

where

(7.90)

Suppose that P -1 is known and partioned as
- - $3$3 j

0 b11
jbI  b2 2

(7.91)
where bll is an (M-l) x (N-l) matrix and b2 2 is a scalar.

We know from [57], that this matrix inverse can also be

written as

S - 1D
-I 1 + C11 -CODC l2Cl _C1 121P-..[-DC2C D

,12 11

(7.92)
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I-..

where

Db T -1 C 1 -11-[22 - 12 11 C12] (793)

Comparing (7.91) and (7.92) it is clear that we can solve

for Cil1 in terms of known quantities.

c1 bn [1-Clbn-
11 12 12(7.94)

From the matrix inversion lemma, the above may be evaluated

as

-1T - T

C11 -b11  17+C 12 L1- 12 12 b 121 (7.95)

Therefore when P -1 is known we may evaluate CIlI with only
P.j3 J

a scalar inversion. As will be seen, knowledge of C1 'I will

allow us to easily evaluate P j+l As in the obtaining of
(7.92), we can derive an expression for Pj-l

P Pj+l

where 1 i d f n d as,

. -1' d i2 d 12 -1 2 12d

Fd

I -

(7.96)

where F is defined as,

[C d12 d12 -1
11 d~i(7.97)
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but may be more conveniently obtained, again using the

matrix inversion lemma:

F - - 1 T - 1 T _ d
111 1 2- 1 d 1 2 -1 ] d 1 2C 1(,n (7.98)

Only a scalar need be inverted.

Therefore we have established a convenient mechanism of

generating P -i. First obtain CII-I using (7.95). Then

obtain F using (7.98) and substitute the results in (7.96).

-1After obtaining P - it is easy to calculate Pjl using
PIj+I

equations (7.29 - 7.32) and (7.34). For both start up and

afterwords, we have thus established a methodology for re-

cursively calculating matrix inverses. This, in effect,

frees up more time for the quadratic assignment problem

which is now clearly seen to be the only real difficulty in

the design procedure. We will not consider matrix inversion

during the transition between start up and fixed length

operation here.

An Example

In this section, we shall illustrate the design of the

filtering algorithm with an academic example. It is assumed

that 4 measurements are available

Y x + Vk, k - 1,..., 4

and that x and vk are uncorrelated. The noise, vk, is zero

mean with known statistics
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E v 2= Ev3
2  E(vivk)=0;ifk

Efv2
2 ]- 2 E{v4

2112 (7-100)

and the desired signal, x, is known to have zero mean and

variance of unity. The optimal linear estimate is easily

found to be

; 0 - PXYp ly - .374yI + .187y 2 + .034y3 + .031Y4' (7.101)

and the minimum mean square error is

0 0 .(7.102)

In applying our algorithm we first want the best esti-

mate which involves a single multiplication

S TY (7.103)

We evaluate the choice of E1  which maximizes (7.58),

limiting ourselves to three candidates which appear to be

possibilities,

.. ,,. ,fr[oool.

(7.104)

It turns out that the middle choice is the one which maxi-

mizes (7.58), so evaluating a1 gives for the first estimate

A

-= 286(Y1+y2 ) (7.105)
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and results in a performance,

1 " -._ .429 (7.106)

For the next stage one could argue that the best thing to do

is to make a distinction between the two terms in (7.101)

with the larger coefficients, or to give some weighting to

the smaller terms. Thus we select E2 from among the candi-

dates

: 2  1([1000]

(1oo1] (7.107)

As it turns out, the last choice is the best, resulting in

the largest value of (7.62). Thus the best estimate at

stage 2 is

x2 .35(y 3+y 4) + (7.108)

Substitution from (7.105) gives

.g A

" 2 - .035 (y3 +y4 ) + .266(yl+y 2 ) (7.109)

and this seems reasonable in view of (7.105). The per-

formance measure is

2 - Ef(x-x " .399 (7.110)

As an observation, the other two candidates would result in

equivalent performance with each other, a fact which could

easiily be reasoned to. The reader is encouraged to work

through this example to notice that there is not enough
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difference in the choice of G2 to make one confident that

the "intuited" solution is always going to be the correct

solution vector even in an academic problem. This points

out the need for a mathematical approach such as developed

here.

Discussion

We have presented a method for designing a recursive

linear filter with a fixed number of multiplications allowed

for each interaction. This is ideal for the situation when

estimates are going to be required rapidly, and there will

be a large amount of data available all at once. The

problem has had two aspects, parameter optimization, and

selection vector optimization. The parameter optimization

has been shown to have a solution which may be obtained in a

computationally efficient manner. The selection vector

optimization problem is difficult. We have related it to a

classic problem in operations research, referred to as the

quadratic assignment problem. The difficulty may be limited

by limiting the candidate vectors to a few reasonable

choices.

In this Chapter we have considered only stagewise opti-

mization rather than optimization over the entire sequence

of estimates generated. Since even the simpler problem

considered here has an open research area imbedded in it

(the quadratic assignment problem), it may be premature to

*" consider solving the more general dynamic optimization
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problem. The solution of such a problem is ultimately de-

sirable and could be pursued within the context of modern

control theory. It is also desirable to solve a problem

similar to that posed here, but in a more general vector

format. The formal mathematics of parameter optimization is

not a difficulty in pursuing the vector problem. Indeed it

is again the integer programming that presents a compu-

tational limitation. While we acknowledge that one may be

reasonable speed hours of computational effort in the design

of a rapid algorithm, it is clearly not reasonable to spend

centuries at such design.

It is the belief of the authors that the design pre-

sented herein, coupled with some heuristic appraoches toward

limiting the number of selection vector candidates, repre-

sents a reasonable approach to the design of a rapid

recursive algorithm for a certain class of important esti-

mation problems.
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CHAPTER VII

CONCLUSIONS

The goal of this research was to investigate the pos-

sibility of combining an adaptive filter with a linear pre-

dictive coding algorithm to form a robust and efficient

system for narrowband encoding of speech signals corrupted

by noise. Various prefiltering techniques for improving

linear coding systems were evaluated. Primary techniques of

interest were the pitch tracking adaptive filter and the

spectral subtraction filter. The pitch tracking adaptive

filter proved successful in suppressing white noise in

voiced speech sounds but did not work well when the noise

was narrowband such as a single sine wave. It was found

that interaction between the pitch period and the narrowband

noise produces a bias error in the adaptation of the filter.

Failure of the pitch tracking adaptive filters to sup-

press narrowband noise prompted the investigation of several

other prefiltering methods. The most successful of the

filters evaluated was the spectral subtraction technique.

7Two modifications to the original method proved very useful

for improving noisy speech. First a dual time constant

noise spectrum estimate improved white noise suppression and
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secondly a spectral notch feature greatly improved narrow-

band noise quieting. Also, very successful was a new filter

method based on adaptive filtering.

Work with the spectral subtraction filter method sug-

gested a more general approach to speech filtering. Short

time Fourier analysis of speech produces a two dimensional

representation of a speech signal which may be processed

much like image data. The investigation found that some

types of speech and noise signals may be separated using two

dimensional filtering on the short time Fourier transform

representation of a noisy speech signal.

The performance of the pitch tracking adaptive filter

depends on the quality of the pitch period estimate used to

set the input delay. Early attempts to implement the filter

were frustrated by the degradation of currently available

pitch algorithms in the presence of noise. It was found

that the adaptive filter itself could be modified to provide

a robust pitch estimate. This technique was used ex-

tensively throughout the research to provide pitch estimates

for various processing algorithms.

To complement the filtering algorithms, fast algorithms

have been derived for "efficient solution of the linear

estimation problem. These include a fast algorithm for the

solution of the general discrete time linear estimation

problem and a new recursive linear estimator suitable for

rapid estimation of a signal in noise. The approach is

related to the classical integer programming problem.
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Suggfestions for Further Study

The results presented here suggest several avenues one

could take in the areas discussed. These are presented

below.

0 Considering that the adaptive algorithms are compu-

tationally complex, fast algorithm development in this

area is important.

0 The results presented on the enhancement of speech

signals by two dimensional signal processing are still

at a preliminary stage. This approach may be

considered as a special case of the problem of

estimating time varying process parameters in the

presence of stationary noise. This area is wide open

0 as all the image processing techniques are available

for noise suppression, coding, data compression, etc.

*Most of the estimation algorithms are based upon the

least squares analysis (12 analysis). It is worthwhile

to investigate the possibilities of using 11 (or in

general 1p, 1 < p _< 2) analysis for signal estimation

when the signal is burnied noise. Again, this area has

wide implication in speech processing.

* In the results presented on the design of fast re-

cursive estimators, we have considered only stage wise

optimization rather than optimization over the entire

sequence of estimates. The more general dynamic opti-

mization problem may be a difficult problem to tackle.
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However, it is desirable to solve this problem and

could be pursued within the context of modern control

theory.
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CHAPTER 1

INTRODUCT ION

Nearly all sciences are concerned with the analysis of

measurement data. The following chapters will present a new

tool for the analysis of time series measurements; in par-

- . ticular, a new method of spectral estimation is presented.

Many spectral estimation methods already exist and, in-

creasingly, new methods continue to be developed; therefore,

it is appropriate to reflect, briefly, upon the reasons for

such continued activity in an area already so well re-

searched.

A synergism exists between advances in computer tech-

nology and advances in practical methods of time series

analysis. As more effective (and complex) methods of time

series analysis are developed, the demands for smaller,

cheaper, and faster digital circuitry (capable of imple-

menting these methods within the size/cost/power constraints

of various applications) are increased. As smaller,

cheaper, faster and more reliable digital circuitry becomes

available, more complex (and effective) methods of time

series analysis become practical. Fundamentally, however,

it is the demand for improved solutions to engineering prob-

lems that motivates the desire for more effective methods of

time series analysis.
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Motivation

Most information we have about the wo~rld around us is

received indirectly through time series measurements. In

the case of vision, one determines the shape (and other

characteristics) of an object by reception (measurement) off

light waves scattered by the object. In the case of speech,

one determines the intended message of the speaker by re-

ception (measurement) of acoustic pressure waves. Pros-

pecting, manufacturing, astronomy, medicine, and economics

are but a few of the areas that can benefit from improved

methods of time series analysis.

Spectral estimation is one of the most important areas

of time series analysis. In many cases, knowledge of the

time series spectrum is adequate to answer all important

questions regarding the system producing the time series; in

the case of a stable time-invariant linear input-output

system, knowledge of the output process spectrum (together

with the statistics of the stationary input process) will

completely characterize the system.

Noise corruption is among the fundamental problems of

time series analysis. All useful analysis techniques for

measurement data are at least mildly tolerant of noise since

there always exists a small probability of measurement

error; some techniques are specifically designed to account

for knowledge of the noise statistics in the analysis of

noise-corrupted measurement data. Regardless of the analy-

sis technique, the fundamental performance limits are always
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reduced by the presence of noise.1 Consequently, it is

always advisable to minimize noise corruption as much as is

practical; still, practical constraints imposed by some

situations do not permit the reduction of noise corruption

to insignificant levels so that sophisticated analysis tech-

niques are required to achieve the best possible per-

fo rmance.

Spectral estimation is of fundamental importance to the

various applications of speech analysis and practical con-

straints imposed by many of these applications do not permit

the reduction of noise corruption to insignificant levels.

Examples of such applications include low data rate

digital voice communications systems and speech

recognition/understanding systems among others; often the

* . cost and/or inconvenience of shielding from environmental

noise makes significant acoustic noise corruption inevi-

table.

Autoregressive (AR) spectral models have been suc-

cessful for various systems involving speech analysis; more-

over, numerous speech synthesis systems based upon the AR

model have become commercially available in recent years.

Because the currently available practical methods for AR

parameter estimation yield poor results in common noise

I1n some specialized circumstances the performance
limits are unchanged by the presence of noise. Even when
this is the case, the complexity of the analysis methods
required to achieve these limits is usually increased by the
noise presence.
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environments but are effective in sufficiently quiet en-

vironments, it is reasonable to retain the AR model for the

speech process while attempting to develop improved methods

for estimating the AR parameters.

The fundamental limit to the performance of any esti-

mation procedure depends upon the available information. In

theory, even the most obscure (but not unrelated) additional

information may be used to improve a parameter estimate; of

course, one should rely first upon information that is both

easily available and expected to provide substantial im-

provement.

Most recent efforts to overcome the poor performance of

classical AR estimators in noise, including the present one,

have attempted to employ information regarding the noise

statistics in addition to the noise corrupted time series

observations. This information is often provided simply by

deploying additional sensors intended to measure the noise

directly; other speech analysis systems employ prior seg-

ments of the primary observation signal that are thought to

be free from speech activity to predict the current relevant

noise statistics.

The present work does not address the problem of ob-

taining accurate noise statistics. Assuming appropriate

noise statistics to be available, the following chapters

develop a new and improved method of estimating the AR

signal parameters from noise corrupted time series obser-

vations.
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As might be expected, the method entails increased

computational cost over less effective techniques; it is

expected that performance requirements of speech analysis

(and other) applications - as well as cost reductions that

are continually provided by advances in computer technology-

shall, in many cases, make the advantages of this method

appear relatively inexpensive.

Overview

Chapter II provides a general discussion of the various

issues and techniques of spectral estimation; particular

attention is given to the problems of AR spectral esti-

mation. In addition, this discussion introduces basic

formulae and provides an historical perspective for the

subsequent chapters.

Chapter 1ff presents the theoretical foundations of the

new (weighted information) estimation procedure. After some

additional motivational discussion, the method is formulated

as an approximation to an ideal (but intractable) formu-

lation and a generalization of a commonly employed (noise

filtering) estimation procedure. In addition to the general

formulation, significant contributions of this chapter

include the analogy leading to equation (3.20) and the

properties developed in the fifth section.

Chapter IV discusses a variety of computational methods

relevant to AR estimation based upon the weighted infor-

mation formulation. It is considered that the area of
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computational procedures as requiring the greatest attention

for further extension and refinement of this work. Only the

formulae for vector quantization, in particular FaUatioris

(4.58a) and (4.81), appear ready for detailed

cost/performance analyses.

Chapter V demonstrates clearly that the weighted infor-

mation formulation leads to reduced estimation error as

compared to the more common noise filtering formulation.

Examples from both simulated and real speech are provided.

The demonstration relies upon the reader's visual assessment

of scatter plots; thus it is somewhat qualitative. A more

quantitative assessment (e.g. a compp.riaon of empirical

variance to theoretical performance bounds) would be inter-

esting; however, one would still have difficulty evaluating

the significance of a reduction in empirical variance to the

performance of a particular system. Without a full imple-

mentation one must rely upon experience and judgement as

well as the available experimental evidence.

Finally, Chapter VI summarizes the results of this

effort and provides suggestions as to how this work may be

effectively extended and refined.
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CHAPTER 11

GENERAL DISCUSSION

Spectral estimation is a problem of statistical infer-

ence with a long history due to its pervasive importance in

scientific applications [I]. Modern empirical spectral

analysis began to take shape as an organized discipline with

the introduction in 1893 of the periodogram by Schuster [2].

Given N observations fxn; n=O,1,...,N-1 of a time

series at unit time intervals the periodogram, f(e), is

defined as

f(e) = XN(eie) XN(e-ie)/N (2.1)

where

N-1

XN(Z) = xn z n ; z = eie  (2.2)

n=O

Still in use today, the periodogram was practically the sole

computational tool of empirical spectral analysis until Yule

introduced in 1927 his method of autoregressive (AR) spec-

tral analysis [3].

An AR(P), or pth order autoregressive, model spectrum,

g(e), is characterized by a model gain, r, and a monic pth
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order polynomial, zPAp(z), and is defined by them as

g(e) = q2/IAp(eie)1 2  (2.3)

The polynomial may be characterized by a variety of parame-

ter sets. One parameter set, known as predictor coef-

ficients (an; n=1,2,...,Pl, defines the polynomial according

to

P

Ap(z) = _ n -n ; a 1 (2.4)
n=O

In contrast to Schuster's nonparametric method of spectral

analysis, Yule's parametric method first introduces the

above mathematical model, justified by physical arguments,

and then uses the available data to estimate the model pa-

rameters. These estimates are provided by the solution to

the Yule-Walker [4] equations

P

Iin-miam = 72 6n ; n=O,1,...,P (2.5)

m=0

where

N-n-l

rn = xm xm+n/N ; n=O,1,...,P (2.6)

m=O

are the biased sample autocorrelation lag estimates.

-ll
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Model Selection

A variety of other parametric spectral models have been

introduced and studied during the past half century; several

of them are worth noting. The moving-average (MA) model,

like the AR model, is characterized by a polynomial but

differs in that the polynomial appears in the numerator; the

Schuster periodogram may be viewed as an MA model spec-

trum.1 Similarly, ARMA models are described by both numer-

ator and denominator polynomials; these spectra are of

particular importance in engineering applications since they

characterize all stable linear systems with a finite dimen-

sional state vector. The Blackman-Tukey [5] model spectrum

consists of a finite sum of cosine terms; it is obtained by

Fourier [6] transformation of the product of the autocorre-

lation sequence and a finite support window. The Pisarenko

[7] model consists of a constant plus a finite number of

delta functions. Various combinations of these models are

also occasionally employed.

Most often a new model is introduced (together with a

procedure for estimating its parameters) simply because it

seems reasonable relative to the phenomenon being studied

and due to deficiencies in the currently popular

IFacts such as these tend to blur the distinction
between parametric and nonparametric methods. Since any
estimate can be described as a member of some parametric
family once it has been derived, the distinction may be seen
as one of spirit rather than substance.
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models.2' 3 More recently the various results of this "un-

scientific" approach have been "justified" theoretically;

this justification usually takes the form of a principle

that should be employed as a guide when the requirement of

consistency with the available information leaves several

alternatives. The principle is usually embodied in the form

of a functional whose extreme value is to be found while the

information is provided in the form of constraint equations

(or inequalities) for this variational problem.

Much of the current literature is devoted to the "prin-

ciple of maximum entropy" which was enunciated by Jaynes

[8, 9]. If the process is zero-mean stationary and Gaus-

sian it is completely characterized by its power spectral

density function, g(e), (or "spectrum" for short) and the

process entropy is expressed in terms of it by

Q = in g(e) de/2r (2.7)

2We shall adopt this pragmatic view later when modeling
speech in an acoustically noisy environment.

3Sometimes a model is used in spite of its less
reasonable form simply because the available parameter
estimation methods yield more successful overall results.
Thus AR models are employed (instead of the Pisarenko model)
to estimate the frequencies of pure sinusoids in white noise
from short data records.

4 The Gaussian assumption may be avoided in the case of
correlation constraints. Working directly with probability
densities the Gaussian form may be derived as that which
maximizes the entropy [10, p. 944].
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As demonstrated by Burg [11], if the entropy is subsequently

5maximized subject to correlation constraints

rn = g(e) ein dO/2w ; n=O,1,...,P (2.8)nI

one may derive the AR(P) form for g(e) as given by Equation

(2-3). The AR(P) form together with the constraint Equa-

tions (2.8) are then sufficient to yield the Yule-Walker

Equations (2.5) from which the model parameters may be de-

termined. If cepstral constraints 6 are employed in place of

correlation constraints the spectrum maximizing Equation

(2.7) has an MA form while both correlation and cepstral

constraints lead to an ARMA model. The Pisarenko model is

"justified" by deriving it as the minimum energy solution

under correlation constraints7, excepting the energy ,. = 0)

constraint [12].

Another principle discussed in the recent literature is

the "principle of minimum cross-entropy" [13]. Introduced

by Kullback (under the name "directed divergence") as an

5 The values on the left-hand side are given in terms of
the data; for example, by Equation (2.6).

6 These place constraints directly on the "cepstrum" (or
log power spectrum) and are expressed by Equations (2.8) if
g(e) is replaced by its logarithm while the left-hand side
values are expressed in terms of the data.

7 It may also be related to the maximum entropy prin-
ciple by noting that the AR(P) model approaches the
Pisarenko model as ro is decreased to the oint where the
correlation matrix becomes singular [7, p. 35].
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information measure [14], it has a number of interesting

properties neatly collected in [15]. In terms of proba-

bility densities the cross-entropy is given by

/C
S(q,p) = J q(i) ln[q(i)/p(R)] d! (2.9)

and measures the expected information for discrimina ion 8

per observation from q(X) [14]. A symmetric version of this

measure, S(q,p) + S(p,q), was introduced earlier by Jeffreys

[16] who emphasized the invariance of this measure with

respect to coordinate transformations; unlike entropy,

cross-entropy shares this important property.

As an inference procedure, minimum cross-entropy analy-

sis requires a prior estimate of the density, p(R), as well

as new information in the form of constraints and derives a

new posterior estimate of the density, q(i), by minimizing

S(q,p) subject to the constraints [17]. In the case that

the prior density is uniform the procedure is equivalent to

maximum entropy; with correlation constraints the posterior

density is found to be Gaussian AR(P) with parameters satis-

fying the Yule-Walker Equations (2.5).

8 Fully, S(q,p) is said to measure the expected informa-
tion for discrimination in favor of the (correct) hypothesis
that the density is q(!) and against the (competing) hypoth-
esis that the density is p(i) per observation from q(x).
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Parameter Estimation

The foregoing discussion leaves the impression that the

correct path to formation of a spectral estimate is clear:

simply select a guiding principle (undoubtedly related to

the notion of entropy), gather the available information,

and solve the well defined mathematical problem that re-

sults. Seldom is the practical situation so simple.

Typically the numerical constraints are not given con-

veniently, say, in terms of exact knowledge of the autocor-

relation function at equally spaced lags. More often, only

a few irregularly spaced noise corrupted samples of the time

series are available; from this data the numerical con-

straints must be estimated. Even when permitted the luxury

of bountiful regularly spac-id and noise-free data,numerous

difficulties remain. Assuming a maximum entropy principle,

should estimates of the autocorrelation, cepstral, or some

other numerical constraints be formed? How should these

estimates be formed and how many9 of them should be formed?

The Yule AR(P) estimation procedure outlined at the

beginning of this chapter provides one solution: having

selected the model as AR and its order as P, form the biased

autocorrelation lag estimates, Equation (2.6), and use these

9This is the problem of order determination. Various
estimators of the order parameter, based upon notions of
information theory, have been proposed and discussed by
Akaike [18] and Parzen 119, 20] among others. Often the
order parameter is selected simply upon the basis of experi-
ence with the phenomenon under study.
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as if they were the true values. These autocorrelation lags

then uniquely determine the AR(P) model parameters (and

vice versa) via the Yule-Walker Equations (2.5). This de-

scription is explicit but fails to provide significant in-

sight as to why it might be good. The formulation may be

derived from a variety of viewpoints, each with its own

merit and yielding greater understanding of the procedure.

Linear Prediction (LP) theory leads to one derivation

of this formulation [21]. In this derivation the AR model

is viewed as a predictor and the model parameters are deter-

mined to minimize the prediction error

P

en =xn - n =xn + am Xnm (2.10)m10
m=l

in a mean-square sense. Depending upon the details of

treatment of the ends of the data record one may derive the

Yule-Walker procedure (also known as the "autocorrelation LP

method") or a variant known as the "covariance LP method".

Both of these methods have their proponents. The Linear

Prediction theory is very similar to Yule's original consid-

erations in which the en are viewed as random driving dis-

turbances to the pth order inhomogeneous difference Equation

(2.10).

Other variants of the autocorrelation LP method are

based upon a recursive lattice structure :or the prediction

filter [22]. In addition to the "forward" predictor Ap(z),

these variants consider a "backward" predictor, Bp(z); both

117

. . .- **4** .-



predictors are characterized by the set of reflection coef-

ficients ikn; n=1,2,...,Pl according to

An(z) = An_1(z) + kn z-Bn_1 (z) ; Ao(z) = 1 (2.11a)

Bn(z) = z-IBn_1(z) + kn An_1(z) ; Bo(z) = I (2.11b)

The z-transform of the forward prediction error process

after n filtering stages is simply An(z) X(z); similarly the

z-transform of the backward prediction error process is

Bn(z) X(z). Mean-square criteria are applied to the forward

and backward error processes to obtain a variety of

estimators for the reflection coefficients; one of

particular importance, due to Burg [23], determines kn to

minimize the sum of the variances of the forward and

backward error processes after n filtering stages. For

truely ergotic processes, all these AR estimation procedures

are asymptotically equivalent to the autocorrelation LP

method for large values of N; as parameter estimation

procedures these methods are most important for problems

involving mildly nonstationary data of limited quantity.

In addition to these various "minimum mean square pre-

diction error" formulations, another important derivation of

the Yule procedure is due to Itakura and Saito [24]. As-

suming an AR(P) model for the zero-mean stationary Gaussian

process, they employ the maximum likelihood method and show
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that the solution is obtained, asymptotically for large N,

by minimizing a "spectral matching criterion"

I(f,g) =fjL[f(e)/g()] - ln[f(e)/g(e)j - i de/2w (2.12)

where f(e) is the Schuster periodogram given by Equatiot

(2.1).

It is readily verified, by differentiating I(f,g) with

respect to the parameters of g(e), that the minimum is ob-

tained when the correlation matching property

I. f() ein O de/2- = (0) ei n O de/2w (2.13)

-. ,-.

is satisfied for n=O,1,...P. By recognizing the left-hand

side as the lag product autocorrelation estimates

rn f f(e) eine de/2, (2.14)

the correlation matching property leads easily to the Yule-

Walker Equations (2.5); see [25, pp. 445-6]. Recently Kay

[26] has developed another variant by similarly applying the

maximum likelihood method to zero-mean stationary Gaussian

AR(P) processes but eliminating the large N approximation;

again this variant treats the problem of limited data.

The functional (2.12), although it is usually attrib-

uted to Itakura and Saito in the current speech literature,

was apparently first developed by Pinsker [27]. Assuming
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only that the two processes are zero-mean and Gaussian,

Pinsker showed
10

Lim S(p,q)/N = I(p,q)/2 (2.15)~N-0

This theorem provides an information theoretic interpreta-

tion of the Itakura-Saito spectral matching criterion.

Moreover, from a functional inference point of view, one

might derive the Yule-Walker procedure by replacing q by an

assumed AR(P) spectral model, g(O), replacing p by a rough

spectral estimate provided by f(O), and then minimizing

I(f,g).

The last derivation should be contrasted with the mini-

mum cross-entropy development discussed earlier. In that

formulation the AR(P) form was derived from given correla-

tion constraints while this formulation derives the cor-

relation constraints from the given AR(P) form. Both

developments employ (different) prior estimates and minimize

a measure of information divergence between the prior and

posterior estimates; however, the information divergence is

not a symmetric measure and the unknown (posterior) estimate

appears as the second argument in the current formulation

1OThe notation is somewhat abused here. On the left
p and q represent the joint probability densities of N con-
secutive random variables; on the right p and q are power
spectral density functions.
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*- while it appears as the first argument in the minimum cross-

entropy development. Nonetheless, the resultant procedures

are both the same as the Yule procedure. in the next chap-

ter a variant of this last derivation will be considered.

Noise Corruption

The problem of noise corruption to the observations

pervades estimation problems. Generally all useful estima-

tors are at least mildly tolerant of noise corruption while

their performance degrades if the corruption becomes par-

ticularly severe. The most common problem considered is

that of an additive independent noise process; this problem

is of considerable importance in practical applications.

Upon initial reflection, the problem of estimating the

parameters of both the noise and signal processes from time

series observations alone may seem impossible. Indeed, the

problem of determining the individual variances of two inde-

pendent additive zero-mean stationary white Gaussian proces-

ses is completely confounded regardless of the quantity of

data available. However, if one process is non-Gaussian,

estimates of third and higher order statistics can be useful

in estimating these lower order statistics. Parzen discus-

ses the use of the "bispectrum" to estimate the spectrum of

a non-Gaussian process in additive independent white Gaus-

sian noise [28].

When both processes are Gaussian the problem is not

always confounded. Since the sum of two additive
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independent ARMA processes is also an ARMA process one might

hope to find estimators for the parameters of the two addi-

tive processes when the number of parameters for the com-

bined process is not exceeded by the total number of

parameters of the two processes. For example, Pagano [29j

discusses the problem of estimating the P + 2 parameters of

additive AR(P) and white processes by first estimating the

2P + 1 parameters of a single equivalent ARMA(P,P) process

and then using these 2P + 1 estimates to initialize a pro-

cedure for estimating the originally sought P + 2 parame-

ters; it seems critical however that the order of the AR

process does not degenerate (i.e. is actually nonzero).

This latter problem is fairly close in spirit to the

problem considered in the following chapters. There the

signal and noise processes are additive, independent, and

zero-mean Gaussian; moreover, the signal process is AR(P).

The problem may seem more complex because the noise process

need not be white; however, a considerable simplification is

achieved because the noise process spectral density (hence,

all its statistics) is assumed to be known in addition to

the time series observations. In practice the noise statis-

tics are estimates provided by other observations but the

large amount of data available for these estimates makes

them quite reliable.
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Noise Filtering

Wiener [30] considered the intimately related problem

of extrapolating a time series from noise corrupted obser-

vations. When the zero-mean signal and noise prncesses are

additive and independent with known power spectral density

functions (g(e) and ,L(e) respectively) then the minimum

variance linear extrapolating filter is the Wiener filter

whose frequency response characteristic is

H(8) = g(e)/[g(e) + R(e)] (2.16)

This is sometimes referred to as the unrealizable Wiener

filter since it is noncausal; the corresponding impulse

response function extends both backward and forward in time

to infinity. It is easy to show that the variance of the

extrapolation can only be reduced to zero if the support of

the signal spectrum has a null (or zero-measure) inter-

section with the support of the noise spectrum; in this case

the frequency response, H(e), will be unity on the support

of g(e) and zero elsewhere. Others, most notably Kalman

[31], have since extended and refined Wiener's pioneering

work.

A common procedure for dealing with additive noise is

to first form a realizable estimate of the Wiener filter (or

some other "optimal" filter), H(9), and apply it to the

noise corrupted observations. The resulting data are then

treated as noise-free observations of the signal process and
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standard estimation procedures are employed to obtain an

estimate of the signal spectrum. When the noise spectrum,

L(e), is known this procedure involves some mildly circular

reasoning since Equation (2.16) indicates that knowledge of

H(e) is equivalent to knowledge of g(9).11 Nonetheless, this

process has been demonstrated to be advantageous in speech

analysis and other applications; a survey of these methods

may be found in [32].

Much recent effort [33-39] has concentrated upon imple-

mentation structures and estimation procedures for H(8);

typically these procedures employ side information in ad-

dition tn the noise corrupted time series observations.

Often the methods are nonlinear and time-varying with both

theoretical and heuristic foundations. Regardless of the

technique, one may always subsequently define a short-time-

invariant linear equivalent frequency response character-

istic in terms of the short-time input and output signal

z-transforms, X(z) and Y(z), by

O() : Y(eiO)/X(eiO) (2.17)

"1 Hence we would have = ILH/(1-H). The conceptual
difficulties may be circumvented by considering the overall
noise cancelling filter/spectral estimation scheme as a
single estimation procedure; especially since the procedure
usually does not employ (2.16) to form the final estimate of
the signal spectrum.
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One convenient categorization distinguishes frequency

P" domain methods [33-36] from time domain methods [37-39].

Among the frequency domain methods, the noise cancelling

filter frequency response characteristic usually appears

explicitly; the simpler (and less heuristic) methods present

H(0) as a function of the short-time signal to noise spec-

tral density ratio estimate
1 2

SNR(e;a) = i[f(e)]f- [(e)] 0'j/[L(e)]t (2.18)

Two important classes of filter response characteristics are

the subtraction class given by
1 3

H1 (e;a,P) = jSNR(e;a)/[1 + SNR(e;a)jj} (2.19)

and the soft suppression class given by

!A
H2 (0;o,P3) = f[1 + HI1(e;a,1/2)]/2jj,(e;cP)/[1 +

(2.20a)

12 Equation (2.18) employs the monus function, defined
by x-y = (x-y + Ix-yI)/2, to insure a nonnegative result.

13Various special frequency response characteristics
are worth separate mention here. The Wiener filter [30]
frequency response is fI(0;1,1). The power subtraction
filter and the magnitude subtraction filter (35] have fre-
quency response characteristics HI (e;1,1/2) and fj(e;1/2,1)
respectively. Finally, the soft suppression class due to
McAulay and Malpass [36] has the frequency response
7 2 (e;1,P).
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where

.(= exp[-PJ 1o[2 4[I + SNR(e;&,,] ] (2.20b)

and 1o[-] denotes the zeroth order modified Bessel function

of the first kind. These "suppression rules" are plotted

for selected values of a and as a function of SNR(9) in

Figure 1.

Effect on Resolution

In speech applications, vocal tract resonances are not

extremely sharp and are moderately well separated in fre-

quency; consequently one is generally concerned with ac-

curate estimation of the spectral shape and high resolution

estimation is not a priority. 1 4 In other applications (such

as sonar, radar, and medicine) accurate frequency estimation

and resolution of discrete ("line") and narrowband spectra

are issues of fundamental importance. Periodogram and

Blackman-Tukey spectral estimates have a fundamental fre-

quency resolution limit determined by the length of the

observation interval; AR estimators have become quite popu-

lar due, in part, to their greatly improved resolving power.

4Hence, even very low resolution methods that divide
the ( 4 kHz) voice bandwidth into fewer than two dozen
"channels" can be quite effective.
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Still, the resolution (as well as other performance indi-

cators) varies among the different AR estimators and, for

each, is influenced by a variety of factors.

Noise corruption is one of the important factors

limiting the resolving power of AR estimators. Several

authors have considered the problem of estimating the pa-

rameters of a fixed number of sinusoids from discrete-time

observations corrupted by zero-mean additive white Gaussian

noise of unknown variance. For this specialized problem the

Cramer-Rao performance bounds1 5 may be computed [40]. As is

well known, the complicated nonlinear maximum likelihood

estimation procedure will achieve these bounds; Tufts and

Kumaresan [41], using AR estimation procedures, have de-

veloped computationally simpler high resolution frequency

estimators that nearly achieve these bounds while Cadzow,

et. al. [42] claim still better performance using a singular

value decomposition (SVD) approach. In many practical cir-

cumstances additional information may be available so that

15 1n general, the Cramer-Rao bounds indicate the mini-
mum variance a parameter estimate can achieve [43]. An
estimate achieving the minimum variance is an "efficient"
estimate. In [40] the bounds upon an unbiased f'requency
estimate are considered (they depend upon the assumed
distribution as well as the number of data points) and arer resented as a function of the signal to noise ratio. In
44), the efficiency loss of any method based upon the use

of correlation estimates instead of the original data is
studied.
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these bounds may be 3xr-eded; 16 for example, Quirk and

Liu 145] describe a simple filtering and decimation scheme

(which employs knowledge of the frequency bands in which the

sinusoids are located) that improves the resolution of (any)

subsequent AR estimator. In a similar vein, adaptive pre-

* filters (that employ a reference process correlated with

either the signal or noise portion of the objective process,

but not both) have been devised to "enhance" narrowband

signals in noise [46].

Quantization and Computation

While spectral estimation, per se, is not concerned

with the problems of quantization and computation, the ulti-

mate utility of an estimation procedure can depend strongly

upon these (and other) issues. If the procedure explicitly

recognizes that only one of a finite predefined set of

conclusions can be reached, the situation is sometimes dis-

tinguished by referring to the "detection" (instead of the

"estimation") problem.

In many digital speech recognition and communication

systems the goal of spectral analysis is to solve a detec-

tion problem; in addition, the system designer must solve

the problem of selecting the best finite set of models to

16 More precisely, the true bounds are reduced by the
availability of additional information. Consequently new
estimators that account for this additional information can
be devised that outperform (in terms of variance) any esti-
mator that does not account for the additional information.
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employ. Until recently, these systems would find the solu-

tion to an estimation problem and then employ a (somewhat ad
hoc) quantization procedure to select a model from among the

finite set. If the number of models in the finite set was

sufficiently large, this procedure could be quite effective;

however, one measure of goodness for the finite set of

models is often how few models are in the set.

In the past decade technological advances have permit-

ted the use of increasingly complex computational procedures

while still meeting size/cost/power constraints imposed by

the application. Consequently more sophisticated and ef-

fective (but previously unmanagable) techniques for esti-

mation/detection and quantization of spectral models have

been studied in earnest. The numerous variants of a class

of techniques generally referred to as "vector quantization"

[47-53] have recently achieved considerable success by re-

ducing the finite number of models by about 9 orders of

magnitude with only slight degradation in other measures of

system performance.

Many of these vector quantization techniques are

founded upon minimization of the asymptotic information

divergence I(f,g). Of considerable interest in the use of

this measure is the triangle equality property; if g(9)

minimizes I(f,g) over the set of all stable AR(P) models and

h(B) is any other model in a (possibly finite) subset then

I(f,h) = I(fg) + I(g,h) (2.21)
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As a consequence of this property one may solve the detec-

tion problem, which minimizes I(f,h), by first solving the

estimation problem, which minimizes I(f,g), and then solving

the quantization problem which minimizes I(g,h).

Remarks

The general problem of spectral estimation has been

discussed; this discussion has emphasized issues and methods

associated with autoregressive estimation. Autoregressive

spectral models are important in numerous practical applica-

tions; consequently they have received considerable at-

tention in the literature. The AR form may be derived from

either the maximum entropy or the minimum cross-entropy

principle when correlation constraints are considered; al-

ternatively the AR form may be assumed and correlation con-

straints derived using a linear prediction formulation. The

correlation constraints, together with the AR form, are

sufficient to derive the Yule-Walker equations which relate

the model parameters to the prescribed correlation values.

The asymptotic maximum likelihood formulation of

Itakura and Saito assumes an AR form and derives the corre-

lation constraints; in the course of this development a

"spectral matching criterion" is minimized. The earlier

derivation by Pinsker of this spectral matching criterion

from an asymptotic information divergence formulation makes

clear that, while the AR form is necessary to derive the
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Yule-Walker equations, the spectral matching criterion is

applicable independant of the spectral model form.

Noise corruption pervades estimation problems and use-

ful estimators are generally at least mildly tolerant of

additive noise. Often additional data is available to help

characterize or distinguish the noise and signal processes;

many estimation problems are concerned with the development

of effective and computationally feasible methods for in-

corporating this additional information. A common pro-

cedure, employed when an accurate noise spectrum estimate is

known, first applies an estimated noise cancelling filter to

the corrupted data and then uses the output as "noise-free"

data from which to estimate the signal spectrum. Ultimately

the effect of noise corruption will be to decrease the best

performance possible with any spectral estimator.

In the following chapters a new spectral estimator is

developed. As is common, the fundamental observations are

assumed to be equally spaced samples of a zero-mean station-

ary Gaussian time series corrupted by additive independent

zero-mean stationary Gaussian noise of known power spectral

density, R~(e). This problem occurs in many applications

involving speech analysis (as well as others) wherein the

noise spectrum is estimated from data taken during speech

inactivity.

The amount of data available to estimate the signal

spectrum is usually limited by the nonstationary character

of speech; the speech statistics are usually stationary only
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over very short time intervals varying in duration. One

study [54] has observed speech waveforms and subjectively

judged that the duration for which a segment may be con-

sidered stationary varies from about 4 ms. to over 360 ms.

with most of the distribution contained in the range of 12

me. to 174 ms.; most speech analysis systems employ a fixed

analysis interval approximately 20 to 25 ms. in duration.

The use of a fixed analysis interval (with no particular

attempt at optimum time alignment of end points) is simply a

practical method of limiting the computational burden; while

suboptimal spectral estimates are thereby achieved for long

acoustic events, perhaps the most severe deleterious effect

is the slurring of very short events and transitions.

In order to employ at a later time a noise estimate

obtained during speech inactivity, the noise statistics are

assumed to remain stationary over much longer time inter-

vale; since one of the primary noise sources is ambient

environmental noise acoustically coupled to the speech, the

validity of this assumption must be checked in each situ-

ation. In many practical circumstances the noise is

stationary over long intervals; for example, in aircraft,

the noise statistics typically vary only with the flight

condition. On the other hand, if the corrupting noise is

another speech signal the assumption of long term noise

stationarity is certainly invalid.
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CHAPTER lII

THEORETICAL FORMULATION

In this chapter several related procedures for esti-

mating AR(P) process parameters from noise corrupted time

series observations are developed. In the first section the

problem is motivated as one arising in speech applica-

tions. In the next section an ideal formulation is discus-

sed; unfortunately the resulting nonlinear system of

equations is sufficiently complicated to make analytical

solution intractable.1  In the third section a first ap-

proximation to the ideal formulation is developed and shown

to be essentially equivalent to the noise filtering pro-

cedures discussed in Chapter II. In the fourth section a

second, improved, approximate formulation employing a

weighted information measure is developed;2 some important

'Numerical solution may be feasible in some cases but

this is not investigated in the present work.

2 This weighted information formulation assumes a cen-

tral role in this work. In fact, this was the original
foundation and was developed heuristically following the
work of Chu and Messerschmitt [55, 56]. The theoretical
foundation (as an approximation to the "ideal" formulation)
was subsequently developed because the heuristic development
could only specify the weight function qualitatively and a
more quantitative characterization was required.
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properties of the weighted information measure are derived

in the fifth section. Finally, the last section reflects

upon these formulations, their relationship to other estima-

tion procedures, and problems of spectral estimation and

speech analysis to which they may be applied.

Application to Speech Analysis

Acoustic events in speech are often modeled as a white

zero-mean Gaussian stationary excitation of a linear system.

The linear system response is usually identified with the

vocal cavity response which depends upon the position of

speech articulators (tongue, lips, teeth, etc.); the exci-

tation is usually assumed to be physically localized al-

though its position may vary with different speech events.

The linear system model may be criticized in various

ways; still it has had considerable success in practical

situations. The particular case of an AR (or all-pole

linear) system model can be justified on the basis of a

lossless acoustic tube of varying cross-sectional area. The

analogy of an acoustic tube with the oral or nasal cavity

alone is clear; however, some speech sounds reflect the

combined response characteristics of the oral and nasal

cavities indicating that a full ARMA model would be more

appropriate. A more complete discussion of acoustic tube

modeling of the vocal tract may be found in [21].

Based upon the considerable success of AR models in

speech applications, as well as the physical analogies that
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may be drawn between AR models and the vocal tract via

acoustic tube modeling, the AR speech model is adopted here.

In most applications the deleterious effects of the pressure

Z transducer, analog amplifier, anti-aliasing prefilter, and

the digitizer have been carefully minimized and may be ig-

nored. Some applications permit the system designer to

ensure that the pressure transducer response reflect only

the speech of the intended speaker; more often, conflicting

goals deny the designer this flexibility so that the micro-

phone transduces other ambient environmental acoustic events

that appear as unwanted "noise" in the observed signal.

Consequently, while the AR model is adopted for the speech

spectrum, it is inadequate as a model for the observed sig-

nal spectrum.

Some ambient noise is a direct environmental response

to the speech itself (e.g. echoes) or is short, transient,

and generally unpredictable by nature (e.g. a gunshot,

dropped book, engine backfire, cough, etc). Other ambient

noise is repetitive (e.g. machine-gun fire) or steady by

nature (e.g. drone of engines, rushing air, running water,

whine of a turbine). This last (steady) type of noise is

the primary focus of many speech analysis systems; typically

these systems exploit the steady nature of the noise to

determine noise statistics during speech activity from sig-

nal observations made during speech inactivity. With multi-

ple transducers (or other clever system design techniques)

the statistics of a much broader class of noises may be
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known during speech activity. In the following it is only

assumed that, during each analysis interval, the noise in

the primary (objective) observation signal be zero-mean

Gaussian stationary additive and independent of the speech;

the noise is, therefore, completely characterized by a spec-

tral density function, 4(0), which is assumed to be known.

The goals of speech analysis are many and varied. In

communications the goal is often to achieve a minimal data

rate subject to a quality or communicability constraint. In

artificial intelligence the goal is usually to "understand"

the speech with phonetic or written transcription often

arising as an intermediate step. Some other goals include

the identification of the speaker, the identification of the

language, translation of the voice of one speaker to that of

another in the same or a different language, and the

screening/diagnosis of disease (e.g. laryngeal cancer).

Spectral estimation is at the foundation of speech analysis

for all these goals and accurate AR model estimation in

noise is fundamental to the estimation of speech spectra in

practical environments.

Ideal Formulation

Let

h(O) = g(9) + L(O) (3.1)
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be the observed process power spectral density model where

L(e) is the known additive noise process spectrum and g(e)

is the unknown AR(P) power spectral density model character-

izing the signal process; see Equation (2.3). Let f(O) be

the Schuster periodogram defined for the N time series ob-

servations by Equation (2.1). If the signal and noise pro-

cesses are independent zero-mean real stationary Gaussian

processes then the maximum likelihood method is asymp-

totically equivalent, for Large N, to minimizing I(f,h) with

respect to the AR(P) process parameters. Any parameter set

minimizing I(f,h) and corresponding to a stable AR(P) pro-

cess shall be considered here to be an ideal solution to the

estimation problem.

This formulation of the estimation problem as a minimi-

zation problem may also be derived from an information theo-

retic viewpoint. Let r(e) be the true observed process

power spectral density so that I(f,h) represents the asymp-

totic information divergence between the true spectrum and

an arbitrary model spectrum. Clearly it is desirable to

find the model h(e) minimizing I(?,h); if the minimum value

is zero then h(e) = !() almost everywhere. Since r(e) is

unavailable, replace it by a rough estimate, f(O), and find

h(e) to minimize I(f,h).

Minimization of I(f,h) is subject to several inter-

esting interpretations; the maximum likelihood and minimum

information divergence interpretations have been given
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above, a third noise filtering interpretation is now pro-

vided. Notice that I(f,h) = £(Hf,g) where H(e) is the fre-

quency response of the Wiener filter given in !quati,>ns

(2.16). The quantity H(e)f(e) may be interpreted as a rough

estimate of the spectrum of a process obtained by passing

the observed process through a filter whose power3 spectral

response characteristic is H(e); minimization of I(f,h) -

I(Hf,g) may then be understood as a standard LP (or maximum

entropy, etc.) fit to the noise filtered process. Of

course, H(e) is not known but is a function of the unknown

parameters of g(e); one must simply imagine finding a pa-

rameter set defining H(G) that also corresponds to the best

LP fit, g(8), to the output process.

The functional I(f,h) is minimized by computing its

derivative with respect to each parameter of g(e) and set-

ting the result to zero. For an arbitrary parameter, ,

this is

fH(e) g(e) - H2(e) f(G)]/g2 (G)j (ag(e)/8) do/2r = 0

(3.2)

3 This is not to say that the observed process is passed
through a Wiener filter whose frequency response is H(e).
Recall that the Wiener filter Is designed to minimize the
mean-square prediction error; the output process doing this
does not have the signal process spectrum, g(9), but instead
the spectrum H( )g(e). Alternatively, H(e)f(e) may be
interpreted as a rough estimate of the cross-spectrum
between the input and output processes of the Wiener filter.
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Using Ea'uAIcns (2.3) and (2.4), the partial derivatives of

g(e) are

ag(e)/8q 2 = g(e)/o 2  (3.5a)

and, for 1=1,2,...,P

P
ag(e)/al = -g2 (9) Z 2 am cos[(1-m)e]/a 2  (3.3b)

m=O

Defining
4

= 2) f(e) - H(O) g(e)j ein dO/2r (3.4)

and substituting Equation (3.3) in Equation (3.2) yields

P P

(am/o2) L (a1/-2 ) Vj_= 0 (3.5a)
m=0 1=0

and, for I=1,2,...,P

" (am/w 2 ) Vj-m = 0 (3.5b)

m=O

while a little further manipulation of Equations (3.5)

4 It is worth noting that the quantities, Vn, defined by
Equations (3.4) are the components of the gradient vector of
I(Hf,g) where differentiation is defined with respect to the
inverse correlation parametrization of g(e); see Equation
(3.22).
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yields, for 1=0,1,...,P

P

L am Vj...m 0 011.)

The symmetry of the functions f(e), g(6), and 11(6) may be

used to demonstrate that V-n Vn while it is easy to see

that Equations (3.6) are satisfied if

Vn =0 ;n=0,1, ...,rP (35.7)

To show that Equations (3.7) must be satisfied if a

stable filter is to be obtained, rewrite the system of

Equations (3.6) in matrix form as

1 a, .. ap.. ap 0 0.. 0 0 VO 0

al a2 .. ap 0 0 1.. 0 0 V1  0

*p1a ... 0 p2.. 1 0

ap. ap *00 0 0 J L0 ap... ...a,1 0 Vp .. L 0
Lp 0 .. 0 0 0 ap. 1 .alV

(3.8)

The coefficients of a stable P...st order predictor fan; n

1,2,..,-11are given recursively in terms of a stable pth

order predictor according to

al al
P I+ p J]- (3.9)

ap0

1)41



- -. --- - .... ..-. . - 7 .'7-7

where 1 is the identity matrix, Jis the reversal matrix

o 0 * 0 1
o 0 * 1 0

J = (3.10)
0 1 ... 0 0

1i 0 ... 0 0J

kp =ap is a reflection coefficient5 and

[I + kp J 1  [I -kp J]/(I- kP2) (3.11)

Applying the nonsingular transformation 6 [I + kp J1-1 to

Equation (3.8) does not change the solution and yields

I l a-1 0 0 0 ... () 0 V0  0
a1  a 2 ... 0 0 0 1 ... 0 0 V1  0

ap..1 0 ... 0 0 0 aP..2 ...1 0 Vp..1  0

0O 0 .. 0 0 0 ap.i.&1V

(3.12)

5These are the same reflection coefficients used in the
forward-backward recursion; see Equation (2.11)

6 Bounded input, bounded output (BIBO) stability re-

qu ires and is guaranteed by the condition IknI < 1 for n
,2,...,P which also guarantees that the indicated

transformation is nonsingular.
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The last equation shows Vp to be a linear combination of

VoVI,...,VpI and the reduced system

1 a1  * ap.. 0 .o0V1 N1a, a2 0'" 1 01

Lap_ 0 ... 00 p 1 LVPj L0

(3.-13)

is of the same form as Equation (3.8). Consequently, sta-

bility requires that each Vn be a linear combination of the

previous V1 , I=0,1,...,n-1, while the final reduced system

is simply Vo = 0. Hence, if only stable minima of I(f,h)

are sought these minima must satisfy Equations (3.7) which

may be rewritten, for n=O,1,...,P, as

frO) H(O) f(e) ein e de/2w = fH(e) g(e) eine dO/2w (3.14)

-w -ii

This is a highly complicated nonlinear system of equa-

tions that appears to be very difficult to solve analyti-

cally. Note that, in the absence of noise, (e) = 0 and

H(O) = 1 so that the system reduces to Equations (2.13) as

expected; in this case it is well known that the system

always possesses a unique stable solution.

In general no admissable solution exists; the following

example will serve to illustrate. Consider an AR(O) process

corrupted by white noise of known variance . The system of
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equations reduces to
ii

ro = (S) do/2w = ,2 + (3.15)

-fwf

If ro > the system is solved by o2 = ro _ i which yields

the minimum value I(f,h) = I(f,ro) = 0. If ro < the

system does not possess a real solution; however, I(f,h) is

always minimized by selecting I2 = ro . .

Noise Filtering Formulation

Since Equations (3.14) appear so difficult to solve, it

is natural to consider alternate formulations. From the

observation that I(f,h) = I(Hf,g) and the interpretation of

H(e) as the power spectral response of a noise filter a

simple and reasonable procedure is to replace H(G), which

depends upon unknowns, by an estimate H(e). Several classes

of estimates have been presented in Equations (2.19) and

(2.20).

Once the data has been processed by the filter with

power response H(9) a "noise-free" rough estimate is avail-

able

(0= ) (a) f(e) (3.16)

Then, minimization of I(f,g) = I(Hff,g) is achieved by the
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solution tc the equations

fH(e) f(O) ein do/2w g(e) ein O do/2w

,f - for n=O,1,...,P (5.17)

This, of course, leads easily to the Yule-Walker equations

with the difference that the estimated correlation values

are now given by the left-hand side of Eouation (3.17); the

reader is urged to compare this equation with Equations

(3.14) and (2.13).

Weighted Information Formulation

The previous approximate formulation encompasses a wide

variety of estimation procedures that have been studied in

recent years. If f(e), given by Equation (3.16), is a good

rough estimate of the noise-free power spectral density the

resultant model parameters can be expected to be accurate.

Consequently, considerable effort has been expended trying

to find the best form of H(O) and, ultimately, the best

means of computing the correlation values on the left hand

side of Equation (3.17).

Generally speaking, any estimate can be expected to be

more accurate if there is less corrupting noise; in particu-

lar, f(e) can be expected to be more accurate in those spec-

tral regions where the signal to noise density ratio is

large. Since the reliability of the rough estimate f(e)

varies with frequency, the criteria for fitting a model to
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f(e) should reflect this variation in reliability. The

frequency weighted spectral distance measure introduced by

Chu and Messerschmitt [55, 56] provides precisely the re-

- quired flexibility for such a criteria. The criteria is

derived from the asymptotic information divergence, t(f,g),

by noting that the integrand in Equation (2.17) is a non-

negative error measure; the frequency weighted variant is

obtained by introducing a multiplicative nonnegative weight

function to the integrand of I(f,g) to yield

Iw(f,g) = ()[f(e)/g(e)- ln[f(e)/g(e)] - 11 de/2w

-. - W (3.18)

If W(e) is constant, minimization of Iw(f,g) - I (Hffg)

is equivalent to minimization of I(f,g) = I(fif,g). To re-

flect the greater reliability of f{() in some spectral re-

gions, W(e) should be selected to be large where the signal

to noise density ratio is large. To remain consistent with

AR estimation procedures that work well in the absence of

noise, H(e) should approach unity and W(O) should approach a

constant as 0(0) approaches zero. Specific procedures for

selecting f(O) have been studied in the past [32-39] and

important examples are given in Equations (2.19) and (2.20);

the above considerations provide a qualitative understanding

of an appropriate selection for W(O) but a more specific,

quantitative understanding is required.
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To minimize Iw(Hf,g) Equation (3.18) is differentiated

with respect to the parameters of g(e) and the results are

set to zero. The procedure is the same, mutatis mutandis,

as that followed for minimizing I(Hf,g) and yields the

system of equations

f(e) H(9) f(e) eine de/2r = (e) g(O) ei n9 de/2w (3.19)

Comparison of Equations (3.19) to Equations (3.14), which

result from the ideal formulation, immediately suggests the

required quantitative criteria for selecting W(e). Specifi-

cally, W(O) should be selected so that, at least approxi-

mately,

w(e) = H(O) (3.20)

and H(O) should estimate H(e). This selection is supported

by the previous heuristic considerations which indicated

that W(e) should be large where the signal to noise density

ratio is large.

Properties of the Weighted Information

In this section three important results concerning the

weighted information measure, Iw(f,g), are developed. These

results also apply to the asymptotic information divergence,

I(f,g), as a special case where W(G) = 1. The first result

generalizes the triangle equality property for I(f,g), see
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Equation (2.21); that this property generalizes appro-

priately is of interest to the use of the weighted

information measure in place of the (unweighted) asymptotic

information divergence for vector quantization.

The Kullback information number and the asymptotic

information divergence are well known to be convex with

respect to general classes of probability and spectral den-

sities. With the appropriate definition for convex super-

position of AR(P) spectra, the second important result is

that the class of stable AR(P) spectra is convex and the

weighted information measure is strictly convex with respect

to this class.7  As a consequence, Iw(Hf,g) can have at most

one local minimum with respect to this class; moreover, if

such a minimum exists it is also a global minimum.

Finally, the third result shows that the second mixed

partial derivative of Iw(Hf,g) defines a positive definite

quadratic form. This shows that any stable solution to

Equation (3-19) is a local minimum of IW(Hf,g); this could

also have been demonstrated using the strict convexity.

Combined with the previous result this shows that Equation

7A set, 97, is convex if it always contains the convex
superposition of two elements in the set. A convex super-

position is a ap = CS(xjx 2 ;y) defined for 0 < Y < I and
all xl X2 E.7 suc that x3 = xi if X= an" - = 2
if Y =0; if Xl = x2 then x% = x2 = xI for all Y. A func-
tion f(x) defined on a convex set . is said to be convex if
Yf(x 1) + (1-Y) f(x2) > f(x3 ) and strictly convex if equality
implies 1 x2 •
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(3.19) can have at most one stable solution (although un-

stable solutions can, and often do, exist); moreover, if

such a solution exists, it is the global minimum among

stable AR(P) spectral models.

The question of existence is not addressed in this set

of results. The existence of a stable solution to Enuatins

(3.19) is assumed but remains an open question in general;

existence can be demonstrated in special cases, e.g. W(e) =

1, while experimental results are discussed in Chapter V.

Because the proofs are nonconstructive, they do not assist

with the question of existence nor do they provide algo-

rithms for computation of a solution; computational pro-

cedures are discussed in Chapter IV. It is worth noting

that if no solution to Equations (3.19) exists then, since

Iw(Hf,g) must possess a minimum in the closure of the set of

stable AR(P) spectra, the minimum occurs as a limit point of

the set.

To simplify the following discussion the set of stable

AR(P) spectra shall be denoted p. Each element of the set

may be characterized by a P+1-tuple of real parameter values

satisfying appropriate (stability) criteria. Four charac-

terizations of ap are presented below:

Predictor Coefficients. Let Ap(z) be given by Equation

(2.4) with all roots of Ap(z) inside the unit circle. Then

(oa 1 ,a2 ,...,aP) denotes an arbitrary element of Sp if

> 0.
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Reflection Coefficients. Let Ap(z) be given by

J"Itilation (2.11) with IknJ ( 1 for n=1,2,...,P. Then

(w,k1 ,k2 ,...,kp) denotes an arbitrary element of Sp if

0-> 0.

Autocorrelation Coefficients. Let the real symmetric

Tbeplitz quadratic form given by

P

T(T) - ni Xm n (3.21)

m,n=O

be positive definite. Then (ro,rl,...,rp) denotes an arbi-

trary element of*P.

Inverse Correlation Coefficients. Let

P

1 1/g(e) = Zul ein s  (3.22)
".- n=-P

be a positive function of 6 in L-w,W). Then (uoUl,...,uP)

denotes an arbitrary element ofNp.

These represent only a few of the infinitely many ways

of characterizing Sp. The first three parametrizations are

well known with the corresponding terminology well estab-

lished in the literature. Each set of predictor coeffi-

cients is related to a unique set of reflection coefficients

by a continuous bijection defined by the Levinson-Durbin

recursion. Each set of autocorrelation coefficients defines

a unique set of predictor coefficients according to the

Yule-Walker equations while the autocorrelation coefficients
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may be retrieved from the predictor coefficients using F~itat-

tions (2.3) and (2.8).

The last parametrization is less common than the other

three; these parameters have been denoted "inverse cor-

relation coefficients" since they are the autocorrelation

coefficients of a moving-average process whose spectral

density function is inverse to that of the defined AR(P)

spectrum. Each set of predictor coefficients uniquely de-

fines the inverse correlation coefficients according to

P-n

un = am am+n/r2 ; ao = I ; n=O,1,...,P (3.23)

That the predictor coefficients may be retrieved in a unique

fashion from the inverse correlation coefficients is more

difficult to establish. Positivity of Equation (3.22) gen-

erally establishes only the possibility of several appro-

priate predictor coefficient sequences; closer inspection

reveals that only one of these sequences satisfies the sta-

bility requirements. The question is taken up in somewhat

greater detail by Blackman and Tukey [5, pp. 126-7].

The first result follows easily using the inverse cor-

relation coefficient parametrization of the AR(P) spectral

density, Equation (3.22), together with Equations (3.19) and

(3.18).
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Theorem 3-1. (Triangle Equality). Let g1 (e) be an

AR(P) spectral density satisfying Equation (3.19) and let

92(e) be any other AR(P) spectral density. Then

IW(Hf,g 2) = IW(Hf,gl) + IW(gl,g2 ) (3.24)

The inverse correlation coefficient parametrization of

AR(P) models in Rp is used here to define the convex super-

position of two models according to

U3 CS (T'X,2;V) =YI + (1-.Y) U2 (3.25)

for 0 < Y < 1. Since (3.22) remains a strictly positive

function for U3 when Ul and U2 define strictly positive

functions, this shows Ap to be a convex set and leads to the

second result.

Lemma 3-1. (Strict Convexity). Let g3 (e) be a stable

AR(P) spectrum defined by the convex superposition of the

two stable AR(P) spectra g1 (e) and g2 (0). Then

Iw(f,83) _< YIw(f,g1) + (I-Y) Iw(f,g 2 ) (3.26)

for 0 < Y < 1 with equality only if g1 (G) = g 2 (0).

Proof. Using the inverse correlation coefficient pa-

rametrization and the definition of convex superposition for

AR(P) spectra it is easy to show that
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g3(e) /11'Y/g 1(e)] + [(1-y)g 2(e)11 (3.27)

Together with Equations (3.18) this yields

YIw(f,g I ) + (-Y) Iw(f,g 2 ) - Iw(fg 3 )

: fw(e) inj[gi(e)]Y [g2(e)]lYlg3 (e)J do/2w (3.28)

From the theorem on geometric and harmonic means the argu-

ment of the logarithm in Equation (3.28) is not less than

one and equals one only if g1 (e) = g2 (e). The lemma follows

easily.

Theorem 3-2. (Uniqueness). Iw(f,g) can have at most

one local minimum in'p; if such a minimum exists it is also

a global minimum.

Proof. Let g1 (e) and g2 (e) be two distinct local mini-

ma and form their convex superposition g3 (e). Without loss

of generality assume Iw(f,gl)> Iw(f,g2 ). With Y 1 the

previous lemma gives

I(f,g3 ) < YIw(f,gI) + (I-Y) Iw(f,g2 ) < Iw(f,g I) (3.29)

But g3 (e) is arbitrarily close 8 to g1 (e) for Y arbitrarily

8 The Euclidean metric applied to the inverse corre-
lation coefficients shall suffice to define closeness here.
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close to one, so that this inequality contradicts the

assumption that g1 (e) is a local minimum. The second part

of the theorem follows by assuming gl(e) is a local minimum

while 92(e) is any distinct element of Wp such that

IW(f,g 2 ) < Iw(f,gI) and then repeating the above argument.

In order to establish the final theorem of this section

the second mixed partial derivative of IW(Hf,g) is shown to

define a positive definite quadratic form. The variables

uo  for n=O

Vn = (3-30)
2 un for nO

are defined for n=0,1,...,P so that the first partial deriv-

atives are

Vn = 8Iw(ff,g)/ avn

= W(e)jf(e) f(e) -g(e)j cos(ne) de/2w (3.31)

and the second mixed partial derivatives are

Lnm = 8Vn/ avm

= W(e)[g(e)]2 cos(no) cos(me) d8/21r (3.32)

Clearly, the quadratic form
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Xn Xm Ln = fw(e)[ g (e)]2 lizxn cos(ne)2 de/2w
m,n0OfW1= (3-33)

is positive definite. This proves the following

Theorem 3-3. (Absence of False Solutions). Any stable

AR(P) solution to Equations (3.19) is a local minimum.

Note that this does not eliminate the possibility of

unstable solutions to Equations (3.19), nor does it estab-

lish the existence of a stable solution. Since the previous

theorem has established the uniqueness of a minimum this

theorem establishes the

Corrollary 3-1. Equations (3.19) can have at most one

stable AR(P) solution. If such a solution exists it is the

unique absolute minimum of Iw(Hf,g) overWp.

Remarks

Three general formulations for estimating the parame-

ters of an AR(P) process in noise have been discussed. The

first "ideal" formulation has theoretical foundations

resting upon principles of information theory as well as the

maximum likelihood method. The second two formulations are

developed as approximations to the first.

The need for approximate formulations arises due to the

difficulty posed by the nonlinear equations resulting from

the ideal formulation. The first approximate formulation
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leads to the Yule-Walker equations but with modified corre-

lation values; algorithms for solving the Yule-Walker equa-

tions are computationally simple and well understood while

methods for evaluating the modified correlation values have

been carefully studied in recent years.

While this first, noise filtering, approach has led to

demonstrable performance improvements in noise environments

over the standard noise free formulation (and reduces to the

noise free formulation in noise free environments), still

better performance is desired. Rather than attempt direct

solution of the ideal formulation the second approximate

formulation is developed. Evidence that this weighted in-

formation formulation leads to improved performance over the

noise filtering formulation is presented in Chapter V;

neither approximate formulation is expected to perform as

well as the "ideal" formulation.

The weighted information formulation is related to

other techniques that have appeared in the literature.

Consider the situation wherein the desired signal spectrum

is essentially zero outside the region ee[-w/Z, w/Z) while

the noise spectrum is essentially zero inside this region.

The foregoing theory indicates that an appropriate selection

for the weight function is

1 ~e, [-w/ , 1r/12)

W He) = = (3.34)

0 otherwise
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so that the weighted information is

IW(Hfg) fIf(e)/(e)] - ln[f(e)/g(e)] 11 dO/2v (3.35)

With the change of variable 6/1) =0 this may be rewritten

Iw(Hf~) =(II/Z) I~f(§l/Z)Ig0/lZ))]

in[f(§/Z)/g(b/))- 11 d§/2w (3.56)

Clearly the indication here is to low pass filter and deci-

mate the observed signal before fitting the AR(P) model to

the resulting data. This is precisely the technique em-

ployed by Quirk and Liu [45] to improve the resolution of

AR(P) estimation in noise; they considered the use of AR(P)

estimators to determine the frequencies of sinusoids in

noise and demonstrated that the filtering/decimation scheme

is clearly advantageous when the sinusoids are a priori

known to lie in some fixed frequency range.

The problem which motivates the present work concerns

signal and noise spectra that are both generally nonzero

throughout the entire frequency range, [-rl); hence the

luxury of simple filtering/decimation schemes is not permit-

ted. On the other hand, the difficulties associated with

very limited quantities of data are not the primary focus of

this work so that the asymptotic formulation is considered

adequate.
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Computational issues for the weighted information for-

mulation are discussed in Chapter IV. Equations (3.19) are

cast in algebraic form and their (exact) analytical solution

is discussed. Approximate (numerical) solution methods

might be developed based upon the resulting analytical

system of equations or directly upon minimization of

Iw(Hf,g); the latter approach is adopted to develop a simple

iterative procedure based upon the notion of a contraction

mapping. In addition, computational procedures appropriate

to the use of the weighted information for vector quantiza-

tion are discussed. Since in many applications the "vector

quantization codebook" may be designed "off-line" using

noise free speech data, questions associated with the code-

book design problem are not discussed; instead, computa-

tional procedures for the "on-line" minimization of IW(Hf,g)

over the finite codebook are developed.
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CHAPTER IV

COMPUTATIONAL PORMULAT ION

In this chapter computational procedures for the

solution of Equations (3.19) are discussed. In the first

section the system is reduced to an algebraic form by as-

suming the weight function to take the form of an AR(M)

power spectral density; once cast as a nonlinear algebraic

system of equations, analytic procedures for solving the

system are discussed. In the second section, techniques for

evaluating the coefficients of the system are discussed.

Analytic solution of the nonlinear algebraic system

becomes increasingly difficult as the order of the weight

function, M, is increased. While numerical polynomial root

solving procedures could be systematically applied, the

third section develops instead an iterative procedure based

upon the idea of a contraction mapping. Together with

sampled frequency domain processing techniques, these iter-

ative procedures do not restrict the weight function to an

all-pole form. The fourth section develops computational

formulae required for the use of the weighted information in

vector quantization; an extension of Jensen's theorem is

developed to permit closed form evaluation of the ap-

propriate integrals when the weight function assumes an
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AR(M) form. Finally, the last section concludes this chap-

ter with some final remarks concerning these computational

methods.

Reduction to Algebraic Form

Let

Pn f W(O) H(e) f(e) eine do/2(

ff (4 .1 )

n =0,1,... ,P

denote the coefficients appearing on the left hand side of

OnEquations (3-19). Let

P JW(e) g(O) ei n de/2- (4.2)

n =

denote the quantities appearing on the right hand side of
Equations (3.19). Observe that the index of Pn is permitted

to range beyond P to P+M. If W(e) is an AR(M) spectrum

given by

w(e) o2/[BM(eie) BM(e-ie)] (4.3a)
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where

M

BM(z) = E bm zm; bO = 1 (4.3b)

rn=0

and if g(e) is an AR(P) spectrum given by EquAi,-,n (2.3)

and (2.4) then their product is an AR(P+M) spectrum given by

W(e) g(e) = p2 o 2 /[Cp+M(eie)+M(eM(eiO)] (4.4a)

where

P+M

Cp+M(z) = Ap(z) BM(z) = Zcmz-m; c0 = 1 (4.4b)
M--O

The quantities defined by Equation (4.2) are related to

the polynomial coefficients in Equation (4.4b) by the Yule-

Walker equations

PO " P+M 1 1

P PO PP+M-I 0i 0

. (4.5)

PP+M PP+M-1 Po .c p+J o

"..

Equations (3.19) assign numerical values to some of the

entries in the coefficient matrix according to

P = Pn n=O, 1,...P (4.6)
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while the remaining entries are to be considered as un-

knowns. The elements of the column vector are defined as a

linear combination of the coefficients of the unknown poly-

nomial, Ap(z), by Equation(4.4b) which may be rewritten in

matrix form as

1 1 0 ... 0 1

c1 bI  1 ... 0 a,

• - . .. . (4.7)

cP+M 0 0 ... bM apJ

Equations (4.5), (4.6), and (4.7) define a nonlinear

system of P+M+1 multivariate polynomials in the P+M+1 un-

knowns a, aI, a2 , ..., ap, PP+, IP+2, .... PP+" Each

polynomial is a first order function of each unknown while

each term in these polynomials may involve up to two dis-

tinct unknowns. The properties of the weighted information

developed in Chapter III indicate that this system of

equations can have at most one stable solution; if a stable

solution exists it is the solution sought.

Assuming the AR(M) weight function to be stable the

product polynomial, Cp+M(z), also has all its roots inside

the unit circle and may be expressed recursively in terms of

a set of reflection coefficients according to

Cn(z) = Cn 1 (z) + kn z-n Cn_ 1 (z
-I); Co(z) = 1 (4.8)
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for n 1,2,...,P+M. If the coefficient matrix in Eauation

(4.5) were entirely known then the Levinson-Durbin re-

cursionI could be applied to yield Cp+M(z). Since some of

the entries in the coefficient matrix are unknown, the

Levinson-Durbin recursion cannot proceed beyond the determi-

nation of Cp(z); the remaining reflection coefficients

Ikp+1 , kP+2,..., kp+M) are unspecified (beyond the stability

requirement that Ikn < I) by Equations (4.5) and may be

considered as new unknowns replacing IPP+1 , P+2'''' P+MI "

These remaining reflection coefficients should be se-

lected so that Cp+M(z) = 0 modulo BM(z). Once these have

been determined the solution may be obtained by simple poly-

nomial division from

Ap(z) = Cp+M(Z)/BM(z) (4.9)

together with

P+M
o2= (P ") 2)Ti-n (4.10)

n=l

To determine the remaining reflection coefficients it

is generally simpler to consider the polynomials

1This well-known algorithm may be found in many fairly
recent publications; for example, see [21, p. 55ff]. An

Kexposition by the authors is contained in [57] and [58].
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CP+M(Z) = -(P+M) C P+M(S) (4.11)

BM(Z) = Z-M BM(z'1) (4.12)

so that the condition to be satisfied is

Cp+M(z) =0 modulo IM(z) (4.13)

Modulo reduction is then accomplished more simply by re-

peated use of the substitution

M-1

=- - bMI. Z-1 (4.14)

1=0

in Cp+MI~z) until all powers of z- larger than M-1 have been

eliminated. The reduction process is facilitated by using

the recursion (4.8) to express Cp+pq(z) as

*~~~ =(Z P(Z) EM~z + P (zl)?~)(.5

where

~~z=1  niz)+k~ ~(-) n -z1); E (z)=1 (4.16a)

iFn(z)=z 1 Fn-1(z) + kP ~ E-n1 _Jn-1 '); F (z)=0 (4-16b)
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and

Cp(z) = z- P Cp(z -1 ) (4.17)

With these formulae the reduction is accomplished in part by

determining

DM_ (z) =Cp(z) mod BM(z) (4.18a)

and

DMI(z) = Cp(z) mod BM(z) = z- P 'p(z- ) mod BM(z) (4.18b)

The condition to be satisfied is then

DM_ (z) EM(z) + DMl(z) P1 (z) = 0 mod BM(z) (4.19)

Modulo reduction of the left-hand side of Equation

(4.19) leads to an M-19t order polynomial whose M coef-

ficients must be equated to zero; this yields a system of M

nonlinear polynomial equations in the M unknowns ikp+i,

kP+2, ... , kp+MJ. While these equations are nonlinear some

reflection will reveal that each polynomial equation is

linear (i.e., of first degree) in each of the unknowns; the

nonlinearity enters by way of terms involving products of

different unknowns.
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Because of this structure, systematic algebraic elimi-

nation 2 will yield an Mth order polynomial in a single un-

known; each acceptable root of this polynomial will yield an

M-1 s t order polynomial in a second unknown. Continuing in

this fashion one successively solves Mth, M-Ist, ... order

polynomial equations possibly generating M factorial po-

tential solutions of which at most one satisfies the sta-

bility criteria. This method is feasible for small values

of M (e.g. M < 4) but for larger values of M one must gener-

ally resort to numerical polynomial root solving pro-

cedures.
3

For the case M=2, let

-1

D1 (z) = do + di z (4.20a)

D1 (z) = do + d, z-1  (4.20b)

2 Several methods (such as those due to Euler, Bezout,
or Sylvester) are available; one should take care not to
introduce extraneous roots. For a general discussion see
[59, Vol. II, p. 70ff] or [60, p. 277ff].

3 The recommendation that M not exceed four is made
based upon the fact that general polynomial equations of
degree five and higher cannot be solved algebraically [59,
Vol. I1, p. 286]. Of course this does not eliminate the
possibility of transcendental solutions [59, Vol. I, p. 274]
or the possibility that some special structure, may be
discovered (or imposed) to aid in the solution.

166

• '- °....................... - . •. °-. . - ... .. -°. . . .. -- . .



and let

G5(z) = Dj(z) E2(z) + D1 (z) F2(z) gm g - (4.21)

denote the left hand side of Eq uat 1or~ (4.19). Using

Equations (4.16) these coefficients are

g= do, kP+2 (4.22a)

g= do kp~l kP+2 + do kp~l + d, kP+2 (4.22b)

= d + d kp~l k ~+ d, kp..j (4.22c)

93 = d,(4.22d)

while modulo reduction yields

-0 b2 92 + b1 b2 93 0 (4.23a)

-1 b1 2 + (b b2)8 (4.23b)

Expanding Equations (4.23) yields

P0 kP+ + P1  kp..1 (qo kP+2 + qI) (4.24a)

PO kP+ + PI kp+1 (q0o P+2 +(4.24b)
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where

PC, d (4.25a)

p1 =di b1 b2  do b2 (4-25b)

p0  d, (4.25c)

2_1 b~b 2) -,b 1 (.25d)

qo d, b2  (4.25e)

q, d1 b (4.25f')

1 2.

qo d, b, do (4.25g)

q, d1 b (4.2 5h)

So that the solutions are given, upon elimination, by

=p~ (po kP+ + pl)/(qo kp~ + qj) (.6

and

kP+2  [S s1  4828 (4.27)
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where

- (4. 28c)
32 Po qo -pi qc

Evaluation of Coefficients

There are numerous methods of coefficient evaluation

that may be considered consistent with the foregoing formu-

lation. Generally this -section will present a few of the

possibilities for evaluating the coefficients defined by

Equation (4.1). In addition, some discussion will be de-

voted to characterizing the weight function according to

Equations (4.3). While performance of the estimation pro-

cedure will undoubtedly depend upon the specific method of

coefficient evaluation, no one method can be strongly advo-

cated (i.e. to the total exclusion of other methods) at this

time; in addition, final selection of a method may be in-

fluenced by other ancillary requirements of the specific

application. Because no single explicit procedure is to be

recommended here the discussion stresses concepts rather

than detailed mathematical formulae.

Time domain noise filtering methods usually determine

(adaptively) the coefficients of a finite impulse response

(IR) linear filter whose power spectral response is H(0) .
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By simply cascading two of these filters a new filter is

created whose power spectral response is H(e) H(e). The

coefficients in Equation (4.1) may then be computed in the

* usual manner (lag products of the windowed data) from the

output of the cascaded filter structure. This scheme, de-

picted in Figure 2, assumes the relationship expressed by

Equation (3.20) although this relationship may generally be

avoided by replacing one of the filters in the cascade by a

filter with W(O) as its power spectral response. For each

data window, a "snapshot" of the impulse response of the FIR

filter could be used to estimate the parameters of W(e).

Since the response of the FIR filter may differ slightly

from the response of the weight function a somewhat more

consistent procedure would use the weight function pa-

rameters to implement an infinite impulse response (fIR)

filter as the second filter in the cascade.

Frequency domain noise filtering methods generally

provide greater flexibility in response function selection

than is available with time domain methods. These methods

involve an explicit transformation to the frequency domain,

often by using the discrete Fourier transform (DFT), -.L.d

determine the multiplicative response function, H(e), in

sampled form using a formula such as Equation (-.19) or

(2.20). The sampled form of H(e) may be used to estimate

the parameters of W(e). If the noise filtered signal is not

required, frequency samples of the weight function may be

used multiplicatively before evaluating the coefficients;
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alternatively, one may avoid re-evaluating the weight func-

tion and simply apply H(O) twice. This latter alternative

is depicted in Pigure 3.

A mixed time-frequency domain method is employed to

obtain some of the results presented in Chapter V. In this

method a Hamming window is applied to the observed data

which is then zero-extended before computing the DFT. A

sampled noise spectrum estimate is used together with these

transform values to compute a noise filter spectral re-

sponse, H(O), according to Equations (2.19) or (2.20).4

This frequency sampled noise filter response is applied

multiplicatively to the transform values and an inverse DFT

of these modified transform values (with their original

phase values) is computed. A random phase characteristic is

computed and introduced to the frequency sampled noise

filter spectral response which is inverse transformed to

obtain an impulse response characteristic. Standard (auto-

correlation method) LP analysis is applied to this impulse

response characteristic to determine the parameters of the

weight function. These parameters are used to implement a

4 1t is generally found to be useful to modify the fre-
quency response characteristic slightly by smoothing the
response obtained from (2.19) or (2.20) across frequency.
The smoother should eliminate features narrower than those
expected in the final signal spectrum while retaining
broader features; a recursive median filter with a total
length of about 2.5% of the single-sided bandwidth is a
current favorite of this author. End conditions (near the
DC and Nyquist frequencies) can be properly handled using
the known periodic nature of the frequency response.
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(lattice structure) filter; beginning in the all-zero state

the noise filtered (inverse transformed) data values are

passed through this filter which is then permitted to "ring"

awhile. 5  Lag products computed from this output then pro-

vide the required coefficient estimates; the overall pro-

cedure is depicted in Figure 4.

Finally, it is worth mentioning that each of these

methods has recommended computing the final coefficient

estimates as lagged products. The reason for this is that

various quantization effects may occur up to the point of

obtaining the modified data samples; however, if full pre-

cision is maintained in the final lag product computations,

the resulting coefficient estimates will define a positive

definite symmetric Tbeplitz quadratic form in all but a very

few highly exceptional cases (such as all modified data

samples being identically zero).

Iterative Techniques

Equations (3.19) may be solved when the weight function

has an AR(M) form by using the algebraic procedures de-

scribed in the first section of this chapter; this method is

appropriate if M < 4. Unfortunately, it is expected that

accurate estimation of speech spectra will require weight

functions with greater variation than is possible with an

5That is to say that a zero input is applied to the
filter after all the noise filtered data values have been
applied as input.
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AR(4) form. The procedures of the first section might be

extended by applying numerical polynomial root solving pro-

cedures when M becomes large but at present such an approach

appears somewhat cumbersome.6  In this section alternate

numerical formulations are discussed that do not make spe-

cific (parametric) assumptions as to the form of the weight

function; these techniques are iterative and based upon the

notion of a contraction mapping. A good general reference

for this section is Collatz [61].

Most (single-step) iterative procedures can be ex-

pressed in the form 7

-(n+1) - (v(n)) (4.29)

6 For the reader wishing to pursue this approach it is
worth noting that one stumbling block is that the previous
uniqueness theorem has not eliminated the possibility of an
unstable (or imaginary) solution to Equations (4.5), (4.6),
and (4.8) for which some (but not all) of the reflection
coefficients are real and in the interval (-1, 1). If one
could devise a method which guarantees that only the
solution sought has real parameters isolated in (-1, 1), or
some other known interval, the development of a numerical
algorithm would be greatly facilitated. The reader is re-
ferred to [60, p. 99ff] or any similar discussion of nu-
merical methods for determining real roots of polynomials.

7 Parenthesized superscripts shall denote instances of
the parameter vector while subscripts shall denote com-
ponents of the parameter vector.
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L

where V(n ) is the nt h iterate of the parameter vector V.

The solution sought is a fixed point of the map 0. If 0

satisfies a Lipschitz condition
8

(,(r1  -< lv 1 -y(2)I (4.30)

for some 0 < .W < 1 then r is said to be a contraction map.

Contraction maps are often used to prove existence theorems

because the sequence of iterates generated by (4.29) is

Cauchy.

The problem of designing an iterative procedure for

solving a system of equations can be viewed as the problem

of finding a contraction map whose fixed points coincide

with the solutions sought. One usually begins with a map

having the appropriate fixed points and then tries to show

it satisfies a Lipschitz condition; often one employs the

mean value theorem which states that if -n is a continuously

differentiable function of the parameter vector V then9

8 The map 0 is assumed to have its domain in a Banach
space with norm 11-11 and its range contained by the domain.

9 Two notational conventions are introduced here. First
vnh denotes Bn/8av and second the Einstein summation con-
vetion (with respect to repeated subscripts) is employed.
The summation range is 0,1,...,P so that the Einstein con-
vention implies summation with respect to the
subscript i (only) over this range on the right hand side of
(4.31). These conventions are used in this section only.
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(4.31)

for some 0 ( N( . If one can determine a constant 9'< I

majorizing the norm of the matrix with components 9 n/ then

0 has been demonstrated to satisfy a Lipschitz condition.

Using Equations (3.22), (3.30), (3.31), (3.32) and

(4.1) the system of Equations (3.19) may be expressed as

=n 0 ;n 0,1,...,P (4.32)

where

Vn nLnmV (4.33)

Defining

Ln fW(e)[g(9fl3 cos(ne) cos(me) cos(le) de/21r (4.34)

and

0 n m

6nm =(4.35)
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the following relations may be easily verified

Lnm/j = -2 Lnmi (4.36)

Vn/ = - Lnm/i Vm - Lrm Vm/1

=2 Lnm1 vm Lnm 6mI

2 ni - Lnj Lri (4.37)

Consider the map O'with components
I0

n - [LL]nmV (4.38)

where A is a nonzero scalar constant. Use of this map for

an iterative procedure is essentially a modified Newton

method. First observe that 0 has a fixed point if and only

if the second term on the right hand side of (4.38)

vanishes. This term vanishes if and only if Equati ons

(4.32) are satisfied since, as shown in Chapter III, L (and

so also L- 1 and L-1 ) is positive definite.

10 1f L denotes the matrix with intries L and L- 1

the inverse of this matrix then shall Tenote L1
evaluated at the initial iterate and [Lo 1 ]nm its
entries.
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Next, using (4.37), consider

Vnl A [L- Int Vm/1

= 6n, - Lo I ]nm Lm, (4-39)
.0

which, if evaluated at V = V(0), is

= (1-X) 6n, (4.40)

Clearly, (4.40) is majorized by Y= 11-Xl so that

A should be selected in the range 0 < X< 2 if the Lipschitz

condition is to be satisfied. More generally, since the

last term in (4.39) is positive definite, A should be se-

lected in the range 0 < A < 2/Ama where

Amax> Sp qn[L 1 ] nm Lm, q, (4.41)
Ilq l = 1

bounds the matrix norm. With this selection

inf SUp qn[L"."f~l = I  qn on/, q, =  1 - A li L:, q,

> 1-xXma x > -1 (4.42)

and the matrix norm of 9'n/I is bounded by one.

Apparently the choice A = 1/.max would lead to the most

rapid convergence while smaller values would lead to slower
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convergence and guarantee that Pn/1 is positive definite.

Unfortunately, the right hand side of inequality (4.41) is a

function of the parameter vector and cannot be bounded by

a constant, Xmax, for all V in Wp; consequently the Lip-

schitz condition cannot be satisfied everywhere in Jp.

If a solution, g.(e), exists in p it is possible to

find a constant Gmax sufficiently large such that

g*(e) < Gmax (4.43)

for all Oe[-IT,9n). For such a constant the solution will be

contained in that portion of .p for which

g(e) < Gmax (4.44)

for all e[-on). Then from

sup (l[ Lo I~ Lm q,

< SUP q Lni qm/6

<WWmax Gmax/6 (4.45)

where

w(e) < Wmax  (4.46)

181

. . . . . . . . . . .



for all eL[-W,w) and

E5 q I = i n am qm > 0 (4.47)

it is clear that any choice

Amax > Wx Gm/ax/ (4.48)

will suffice to satisfy the Lipschitz condition for that

portion ofWp.

To recapitulate, the map 0, defined by (4.38), has

fixed points coinciding with the solutions to (4.32). More-

over, if there exists a solution in p and the domain of

' is suitably restricted to a subset of arp containing this

solution then there exists A> 0 sufficiently small such

that F satisfies a Lipschitz condition on this subset and

(4.39) is positive definite. This implies that application

of the map i to any element of the subset will generate a

new parameter vector closer (in norm) to the solution.

Hopefully, repeated application of o will generate a se-

quence of parameter vectors approaching the solution; this

will be the case if each new parameter vector is also in the

restricted domain of 0.

Providing a guarantee that each new parameter vector

will be within the restricted domain of 0 is not a simple

task. Without such a guarantee it is possible to devise a

computational test to check for this condition; then, if the

182

'. " " . " " - - ,- o .
•

' o . ° • ". ' . " - • - "• " ' - '• ,' - " "- - " ,'° 
° °

" - " -. , ". -"J."



L

test is violated, some method must be devised to restart the

iterations. In practice the situation is not expected to be

quite so pathological; if A > selected to be conservatively

small (smaller if the solution is expected to be a sharply

peaked spectrum) and a reasonably good initial estimate is

provided, one does not expect to encounter convergence dif-

ficulties. This more optimistic approach shall be taken in

the following.

To implement the iterative procedure assume W(e) is

available in sampled form. The components of the nth iter-

ate parameter vector may be used to evaluate

P

gn(e) = 1/ v ( n ) cos(le)} (4.49)
1=0

in sampled form. If the sample mesh is equally spaced at

ek = wk/N ; k = -N,..,OI,•• ,N-I (4.50)

then the components V(n) may be computed from

N-1

(mn) Pm- w(ek) gn(ek) cos(mek)/2N (4.51)

k=-N

and the components of the next iterate are provided by

v(n+1) - v(n) - -[(n1 ])m Vm (4.52)
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A crude test that the nth iterate is inWp is provided in

the course of these computations by verifying that the de-

nominator of (4.49) is positive on the sample mesh.

The procedure can be initialized by the solution to the

Yule-Walker equations where the elements of the coefficient

matrix are given by Pm" Equations (3.23) and (3.30) may

then be used to evaluate v( 0 ) while the elements [Lo1 ]nm may

be obtained by inverting the real symmetric matrix with

entries

N-1

[Lon= j W(Ok) [go(6k)] 2 cos(nek) cos(mek)/2N (4.53)
k=-N

The coefficients pm may be evaluated from

N-I

P= m W(OO H(k) f(ek) cos(mek)/2N (4.54)
k =-N

Alternatively, the computational methods described in the

previous section may be employed to evaluate the Pm as

lagged products of modified data values.

A simple test for iteration completion is to simply

check that

P

= : Lv(n)]2 (4*55)
m=O

is less than some small preselected value. Finally, to

obtain filter coefficients as are required by many
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applications, it is perhaps simplest tc first compute

correlation values from

N-i
rm : g gn(ek) cos(mek) (4.56)

k=-N

and then solve the Yule-Walker equations.

If at some step prior to iteration completion an iter-

ate falls outsideUp, one may attempt to reinitialize the

procedure using one of the last few iterates inside Up.

Formulae for Vector Quantization

In this section formulae relevant to the problem of

minimizing Iw(Hf,g) over a specified finite collection of

AR(P) model spectra are developed. Consider first that

according to Equation (3.24) this problem is equivalent to

minimizing IW(gl,g) where g1 (e) is an AR(P) model spectrum

satisfying Equation (3.19). Next, observe that minimizing

Iw(gl,g) is equivalent to minimizing

JW(g1 ,g) : W(8) g1 (O)/g(e) + W(O) ln g(e)] do/2w (4.57)

Since g(e) is an AR(P) model given by Equation (3.22) the

first term in Equation (4.57) may be rewritten as

w(e) gl(e)/g(e) de/2w = Unl P'nj (4.58a)

W n=-P
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where the fact that gl(e) satisfies Equation (3.19) has been

used together with Equation (4.1). Similarly, the second

term in Equation (4.57) may be rewritten as

fw(e) in g(e) do/2w = ln(u 2 ) w(e) de/2w

- w(e) ln[Ap(eie) Ap(e-ie)] de/2r (4.58b)

In general Jw(gl,g) will be minimized over the finite

collection of AR(P) spectra by evaluating this quantity for

each model spectrum in the collection. For any given model

spectrum the first term may be easily evaluated using

(4.58a); the coefficients pn may be determined from the data

using one of the methods outlined in the second section of

this chapter. The second term presents somewhat greater

op difficulty; when W(e) = 1 the last term in (4.58b) may be

shown to vanish as a consequence of Jensen's theorem but, in

general, this term will not vanish.

When W(e) has an AR(M) form an extension of Jensen's

theorem, which shall be developed presently, permits the

evaluation of this term from a simple formula. In order to

establish the general theorem it shall be necessary to first

establish the following lemma.

Lemma 4-1. Let

AP = *I (I - nm z) (4.59)

m=l
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have no roots inside the unit circle, r. if T" and T, are

also within the unit circle then

Ttk = ln Ap(z-')/I(z-Tk)(1- Tjz)j dz/2,i

= ln Ap(Tk )i/(1TkT ) (4.60)

Proof. The method of proof is essentially the same as

that used for Jensen's theorem by Hille [62, pp. 256-7J.

Assume without loss of generality that a narrow strip from

7k to k = Tk/ IrkT is free of the 17m and consider the inte-

gral

I ilni(z-Tk)/(1- , z)]i d[ln Ap(z-1 )J/2wi (4.61)

around the contour, V , depicted in Figure 5. The loga-

rithm, determined so that ln(-1) =wi, is analytic within

V and Ap(z-1 ) has neither poles nor zeros within W so

.k = 0. As the radius of the circular portion of the

contour, W , surrounding the singularity Tk tends to zero it

offers no contribution to this integral. As the distance

between the two straight sections of the contour tends to

zero they provide the contribution

k JZ[Ap(z
- )]. d[Ap(z- ,)]

k

= n Ap(rj1) - in Ap(P-1) (4.b2)
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II

Figure 5.The Contour V in the Complex Z-Plane
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Por the remaining portion of the contour, integratinn by

parts yields

*(1 - 7kTI ) T1lk Ok - k + &r/ 2Iwi (4.63)

where the integrated part is

Ar= [in Ap(z 1l) in[(z-'rk)/(1-.rlz)fl :+
=in AP(Pk' 1 2ni + in[ vk-7k)/(l- -rIVk)H

-in Ap(ilj) [In[( is-Trk)/(1- rj &k~jj

=2iri In AP(ti1 ) (4.64)

Substitution of (4.62) and (4.64) along with Ik =0 into

Equation (4.63) completes the proof.

A simple variable substitution may be used to obtain

the related formula

Tk #In Ap(z)j/j(z-Tk)(1- Tgz)j dz/2wi

l in AP(l)j/(1- 7kri (4.65)

which together with (4.60) establishes the
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Corollary 4-1.

T Il Ap(z) Apz'I/(- Tjzfl dz/2vri

= in Ap(Tkl) Ap(TF'-)1/(1-TkT, )(4.66)

Finally, sufficient background has now been presented

to establish the

Theorem 4-1. Let W(e) have an AR(M) form given by

w(e) 19I(e'0)12 (4.67)

where fl(z) has the partial fraction expansion

M
Swj 1 (1- Tz-) w/BMq(z) (.68)

with TI<1. Then with g(e) given by equation (2.3) the

second term in (4.57) is

i() n g(O) do/21r n T2 fW(O) dO/air T (4.69)

where

M
T =2 Ci (Tj 1 ) in Ap(T- 1) (4.70)

k=1
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Proof. Using (2.3), (4.67), and (4.68)

T 1f.(O l InIApe"() 2 de/21r

- CWkw In Ap(z) Ap(z- 1 )j/K(z-k)(1-Tz)j dz/2ni

k,=1r (4.71)

Together with the above corollary this yields

M

T = [ tWt /(1-'rk, )I in Ap(lj'I ) Ap(TT') (4.72)

k,f=l

and (upon splitting the logarithm and collecting terms)

Equation (4.70).

With W(e) = 1 this theorem yields

fin g(e) dO/2w = in a2 (4.73)

which is a special case of Jensen's theorem [62, Theorem

9.2.5]. The first term in Equation (4.69) is easy to com-

pute while the second term, T, given by Eq:-ation (4.70) may

offer the reader some difficulty. First observe that (4.70)

requires knowledge of the parameters of the partial fraction

expansion (4.68). These are fairly easy to determine once
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the roots Tk of BM(z) are known by recognizing that wk

equals
1 I

(z-rk) z f(z) = 'YW(Z-7k)/IzP BM(z)j (4.74)

evaluated at z = 1 k . Hence, the basic difficulty is that of

determing the roots, Tk .

Since extracting the roots of BM(Z) can be a difficult

problem for large values of M it is advantageous if BM(z) is

already known as a product of low order factors. To ac-

complish this, recall that BM(Z) is determined so that W(e)

approximates H(O). If W(e) is a product of known AR(2)

models

w(e) = w1(e) W2(e) ... wM/2(e) (4.75)

then BM(z) is easily known as a product of second order

factors. In order to determine W(O) in this manner one may

first determine WI(6) to approximate H(e), then W2 (e) to

approximate H(e)/W I (e), then W3 (e) to approximate

fH(e)/[W1 (e) W2 (e)] and so on. To obtain the best overall

approximation it is probably advantageous to develop some

simple ad hoc method to force the approximation at each

1 1This assumes the roots, Tk, are distinct. The

formulae become mildly more complicated when this is not the
case.
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stage to fit no more than one strong resonance in the

function being approximated.

Remarks

This chapter has explored computational procedures

related to the weighted information estimation formulation

developed in Chapter III; it is worth noting that none of

these methods is entirely satisfactory for all applications.

The first section employed an assumed AR(M) form for

the weight function which enabled the problem to be cast in

the form of a nonlinear system of polynomial equations.

Solution of the system was found to be A relatively simple

task for small values of M but one that becomes rapidly more

complex as M is increased beyond four. As a general ap-

proach, the assumption of a parametric form for the weight

function has considerable promise for the development of

efficient computational methods; the basic difficulty is

that of finding a clever parametrization which provides

sufficient flexibility in the form of the weight function

(for the given application) while leading to a simple and

efficient computational algorithm.

The second section discussed the computation of various

coefficients that arise within the computational formulae.

Choice of a specific procedure will ultimately be influenced

by the demands of the specific application; interdepeniant
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factnrs to be considered include the quantity of data avai L-

able, rounding/truncation effects, fixed/floating point rep-

resentation format, algorithm structure, memory require-

ments, and computational speed. The coefficient evaluation

procedures discussed are variants of methods proposed sand

sometimes implemented) for real time speech analysis appli-

cations.

The third section discussed single-step iterative

methods within the general framework provided by the notion

of a contraction mapping. Multi-step methods were not dis-

cussed; in general, convergence characteristics are more

difficult to prove for multi-step methods in spite of the

fact that they tend to converge faster in practice.1 These

iterative methods offer significantly more flexibility in

the form of the weight function 1 3 at the expense of a

greater computational cost. The notion of a contraction

map, sometimes employed for nonconstructive existence

proofs, provides a useful general framework within which a

'Faster convergence, in terms of a reduced number of
iterations, should not be confused with reduced computa-
tional cost. Each iteration of a multi-step method gener-
ally is more expensive computationally than a comparable
single-step method so that a detailed analysis is usually
required to compare costs.

13That is, compared to the parametric approach to
weight function selection discussed in the first section.
In this sense one might describe these methods with a
seemingly contradictory phrase such as "nonparametric
autoregressive estimation".
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variety of iterative methods may be discussed; the specific

method presented is a modified Newtonian iteration chosen

as a tradeoff between simplicity and effectiveness. A pos-

sibly more effective iterative procedure would be a steepest

descent method; generally such a procedure attempts to mini-

mize a scalar function U U(T) by using a map with com-

ponents

" vn Vn- X au/avn (4.76)

where the scalar function X = X () is chosen to minimize

U(W) at each iteration.

The fourth section considers the problem of minimizing

IW(Hf,g) over a given finite collection of AR(P) models.

The procedure involves the computation of a cost function

for each model in the collection. The cost function in-

volves two terms; the first term is evaluated quite simply

(regardless of the form of the weight function) using

formula (4.58a) which is identical to one arising in

"standard" (unweighted) vector quantization. The second

term is usually quite simple in "standard" vector quanti-

zation, see Equation (4-73), but becomes far more complex

when the weighted information formulation is employed.

An extension of Jensen's theorem provides a formula

which may be employed to evaluate this term when W(O) has an

AR(M) form; however, the reader is admonished to bear in
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mind that it is probably far simpler to discretize this

integral and evaluate it numerically as a sum of products

from

N-1

f'.w(e) in g(e) de/2- = W(ek) Wk (4-77)

,_ k=-N

where

Wk [in g(Ok)j/(2N) (4.78)

This has the additional advantage of not imposing an AR(M)

form upon the weight function. More generally, W(e) might

be expressed as a sum of perhaps only a dozen nonnegative

"shape functions" by

w(e) = jk*k(e) (4.79)
• k

so that, if the quantities

-Wk  J k(e) in g(e) de/2w (4.80)

are precomputed for each AR model in the finite collection,

the second term may be easily evaluated from

f (0) in g(O) dO/2w = Ck 3 rk (4.81)

-it k

196
.':-....**.* *.-.*.-....- S. -.". . .. * * . . - .- . *

. . . . . . . . . . . . . . .

* - - . -. -



CHAPTER V

RESULTS

In this chapter the weighted information estimation

formulation is demonstrated to provide improved performance

relative to the noise filtering formulation. It is worth

noting that, although existence has not been proven in pre-

vious chapters, several thousand data frames have been ana-

lyzed using the weighted information formulation and not one

counterexample has been encountered.

Gaussian Signals

In order to study the performance of the weighted in-

formation formulation pseudorandom sequences were gener-

ated. A zero-mean white Gaussian process was simulated

using a congruential multiplicative random number generator;

the resulting sequence of independent uniformly distributed

samples was transformed to Gaussian form using the Box-

MUller transformation followed by Central-Limit aver-

aging.1  Zero-mean AR(P) Gaussian processes were simulated

1 In theory, the Box-MUller transformation is adequate.

However, if the input deviates from a uniform distribution
the output will, correspondingly, deviate from a Gaussian
distribution; Central-Limit averaging will tend to reduce
any such deviations from a Gaussian form.
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by applying the simulated white Gaussian process to an all-

pole -,lattice structure) digital filter; the first few

thousand output values from the filter were consistently

ignored in order to avoid the transient response of the

filter.

By adding two independent zero-mean 4aussian AR pro-

cesses at a specified signal to noise ratio appropriate test

data was produced. For many of the examples the "signal"

process had an AR(2) spectrum defined by the reflection

coefficient values

k= -.8 and k2 = -.9 (5.1)

This signal process spectrum, evaluated from these parameter

values, is displayed in Figure 6a. While some examples

employ a white Gaussian corrupting noise process, others

employ an AR(2) process defined by the reflection coef-

ficient values

k= +.8 and k2 = -.9 (5.2)

This "colored" noise process spectrum is displayed in Figure

bb.

As a basis for comparison, the standard autocorrelation

analysis method was applied to 100 different 400 sample

Hamming windowed frames of data from the uncorrupted signal

process. Each resulting estimate is characterized by a pair
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Figure 6b. True Spectrum; Test Noise Process

Figure 6. Test Signal Spectra
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of reflection coefficients which define a single dot in

Figure '. For this "scatter plot" 'and all subsequent

scatter plots) the ordinate and the abcissa correspond to

the first and second reflection coefficients, respectively;

for convenience, cross-hairs indicate the location of the

true parameter values.

Figures 8 and 9 each present various estimates of a

single 200 sample Hamming windowed frame of data. In both

cases the frame of data consists of the signal and colored

noise processes summed at a 10 dB signal to noise ratio.

The periodogram estimates in Figures 8a and 9a clearly dis-

play the signal resonance (near the fractional frequency

value of .8) and the noise resonance (near the fractional

frequency value of .2).

Figures 8b and 9b display power spectrum estimates

obtained using the noise filtering formulation. The esti-

mate presented in Figure 8b is a result of using the noise

filter response displayed in Figure 8c which was determined
2. •

by using the power subtraction rule; similarly, Figure 9b

results from the use of the noise filter response displayed

in Figure 9c which was determined by using the magnitude

subtraction rule.

2 As indicated in the caption, the noise filter response

was smoothed across frequencies before being applied. Al-
though many smoothing al orithms are possible, only a re-
cursive median smoother (with a length about 2.5% of the
displayed bandwidth) was ever employed to obtain results
presented in this chapter.
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Figures 8d and 9d display power spectrum estimates

obtained using the weighted information fo'rmulation. The

algebraic solution method, which requires an A1R(M) form for

the weight function, was used in both cases; coefficient

evaluation was performed using the mixed time-frequency

domain method presented in Figure4. The same noise filter

response functions were employed and the weight functions,

displayed in Figures 8e and 9e, were determined as an AR(2)

fit to their respective noise filter response functions.

By comparing Figures 8 and 9 to the true signal spec-

trum shown in Figure 6a the deficiencies of these typical

estimates becomes apparent. In Fiue8b the noise

filtering formulation leads to an estimate which is overly

flat; the weighted information formulation ( P~igure 8d) has

improved the estimate by raising the peak and lowering the

valleys. In Figure 9b the noise filtering formulation leads

to an estimate which is overly sharp; the weighted infor-

mation formulation ( Figure 9d) has improved the estimate by

lowering the peak and raising the valleys. Since the weight

functions are similar in both figures it is apparent that

frequency weighting cannot be simply interpreted as

increasing or decreasing the sharpness of a spectral esti-

mate; rather, the weight function reduces distortions in the

estimate by requiring a more accurate fit to the data in

those spectral regions where the weight function is large.

Figures 10 and 11 present the result of analyzing 100

different 400 sample Hamming windowed frames of data using
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various different methods. Figure 10 presents the rtsuits

obtained using the noise filtering formuls~tion; the smoocthed

noise filter response was determined using different rules

ranging (roughly) from the least severe rule in 10i a

to the m~ost severe in Pi~rure 1iOe. The results presented in

K-Figure 11 represent an analysis of the same 100 data frames

and the same noise filter response functions but the ana-

lysis uses the weighted information formulation with -in

AR(2) weight function fit to the noise filter response

function.

It is clear that in each case (a through e) the esti-

mation error is reduced by the weighted information formu-

lation. The best results in both figures are obtained by

the most severe rules. Figure 10, while exhibiting less

variance, shows an increased deviation (bias) of the main

cluster from the true values for the more severe rules;

apparently, variance error of the noise filtering formu-

* - lation may be reduced at the expense of increased bias error

by using the more severe rules. Comparing, for example,

Figures 10e and lie it is apparent that the weighted infor-

* mation formulation achieves still greater variance reduction

while correcting the bias error. Comparison of Figures lie

and 7 indicate that one has little, if any, hope of

achieving significantly better performance than that pro-

* vided by the weighted information formulation in this case.

__ Figures 12 and 13 show similar results for the same 100

* frames of data; the analysis methods used to produce these
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figures differ from the method used to produce :'-u, 10

and 11 only in that no smoothing algorithm was applied to

the noise filter response. All the same trends are appairent

in figures 12 and 13 as were apparent in p.iwui,.s 10 and 11;

somewhat greater variance is exhibited in these figures

indicating that smoothing produces a generally beneficial

effect in this case.

Figures 14, 15, 16, and 17 display similar results for

the case of white corrupting noise at a 10 dB signal to

noise ratio. Again, each plot represents analysis of the

same 100 different 400 sample Hamming windowed frames of

data. For each method of determining noise filter response,

the weighted information formulation leads to less variance

and bias error than the comparable (unweighted) noise

filtering formulation. As may be expected,3 all these esti-

mators yield poorer performance in this white noise case

than in the previous colored noise case.

Figures 18, 19, 20, and 21 again present similar re-

sults; while the corrupting noise is still white the signal

to noise ratio is now zero dB. One small difference is

worth noting: in Figures 10 through 17 the parts b, c, and

d employed a soft suppression rule with suppression factors

3 The reader will recall that if the signal and noise
processes are completely separated in frequency (i.e., do
not have overlapping spectra), the Wiener filter can com-
pletely eliminate the noise. Since the colored noise case
exhibits greater spectral separation from this signal pro-
cess than the white noise case, an estimate can be expected
to provide superior performance.
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of 4, 6, and 8 respectively; in Figure- 18 through 21 the

parts b, c, and d again employ a soft suppression rule but

with increased suppression factors of 6, 8, and 10 re-

spectively.

Speech and Speech-Like Signals

Many speech waveforms exhibit a nonrandom periodic

character; their spectra display a fine harmonic structure

(with peaks separated by integral multiples of the pitch

frequency) with a roughly AR modulation. The harmonic

structure is generally attributed to the periodic glottal

pulses while the AR modulation is generally attributed to

the response characteristics of the vocal tract.

To simulate such waveforms the all pole filter with

frequency response displayed in f.gure 6a was excited with a

periodic stream of impulses (with a period of 79 samples).

No figure comparable to Figure7 is included here since, in

the absence of noise, the analysis of 100 different 400

sample Hamming windowed frames of data (with a random dis-

tribution of phase displacement) presents no apparent esti-

mation error. 4  Consequently, while part of the apparent

estimation error in the scatter plots of Figures 10 through

21 must be attributed to the random character of the signal

4 That is, on the scale used for these scatter plots.
On a greatly enlarged scale, a small amount of bias and
variance error may be observed.
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itself, all of the apparent estimation error in the fol-

lowing scatter plots (Fires 24 through 35 may be attri-

buted to the presence of noise.

Fiiures 22 and 23 each present various estimates of a

single 200 sample Hamming windowed frame of data. Ln both

cases the frame of data consists of the aforementioned peri-

odic signal process and a colored Gaussian noise process

summed at a 10 dB signal to noise ratio. The periodogram

estimates in Figures 22a and 23a clearly display the fine

harmonic structure of the signal spectrum near the filter

resonance (fractional frequency of .8) while this structure

breaks down near the noise resonance (fractional frequency

of .2).

Figures 22b and 23b display estimates obtained using

the noise filtering formulation; Figures 22c and 23c display

the noise filter response characteristics that produced

these estimates. Clearly the estimate appearing in FIgurc

22b is overly flat while the estimate appearing in Figure

23b is overly sharp. Figures 22d and 23d display the

estimates obtained using the weighted information

formulation; comparison with Figure 6a reveals that both

these estimates are improved relative to their counterparts

in Figures 22b and 23b. Finally the AR(2) weight functions

approximating the noise filter response functions are

presented in Figures 22e and 23e.

Figures 24, 25, 26, and 27 display a variety of scatter

plots; each scatter plot presents the result of analyzing
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100 different 400 sample Hamming windowed frames of data;

the same 100 data frames were employed for each plot. As

mentioned above, because the signal process is periodic and

not random in character all of the apparent estimation error

can be attributed to tne added colored Gaussian noise

(SNR = 10 dB).

Figures 24 and 25 employ smoothed noise filter response

characteristics while Firrures 26 and 27 employ the un-

smoothed characteristics. 5  Figures 24 and 26 display the

results obtained with the noise filtering formulation while

Figures 25 and 27 display the results obtained with the

AR(2) weighted information formulation. Once again, th-

weighted information formulation leads to less estimation

error than the comparable noise filtering formulation; in

Figures 25d and 25e the estimation error is so small as to

be almost imperceptible on the scale employed for these

plots. Smoothing still appears to display a generally

beneficial effect.

Figures 28, 29, 30, and 31 present similar results for

the case of white Gaussian noise corruption to the periodic

signal processes (SNR =10 dB). As with the Gaussian signal

5Some caution is advised regarding the use of smoothers
here. The dimensions of the lobes within the fine harmonic
structure are controlled by the length and shape of the data
window so that a smoother that works well with one frame
length may not work well with longer frames or a differently
shaped window.
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process, '±iI the estimates present degraded performance in

this white noise case as compared to the colored noise case.

To complete these simulations, 3i2ur-" 3, 33, 34, and

55 present analysis results for the case of white Gaussian

noise corruption to the periodic signal process at a zero dB

signal to noise ratiio. As with the Gaussian signal pro-

cess, parts b, c, and d of these figures employ soft sup-

pression rules with increased suppression factors of 6,

8,and 10 respectively.

The following summarizes the description of these scat-

ter plots. Figures 10-13 and 24-27 correspond to colored

noise corruption at a 10 dB signal to noise ratio; Figures

14-17 and 28-31 correspond to white noise corruption at a 10

dB signal to noise ratio; Figures 18-21 and 32-35 correspond

to white noise corruption at a 0 dB signal to noise ratio.

Figures 10-21 correspond to a Gaussian random signal;

Figures 24-35 correspond to a periodic (period = 79 samples)

signal. Figures 10, 11, 14, 15, 18, 19, 24, 25, 28, 29, 32,

and 33 employ a smoothed noise filter response while the

remainder employ an unsmoothed response; parts a and e of

each of these figures determine the noise filter response

using the power and magnitude subtraction rules respectively

while parts b, c, and d employ the soft suppression rules.

in Fiigures 10-17 and 24-31 the suppression factors for parts

b, c, and d are 4, 6, and 8 respectively; in Fifgures 18-21

and 32-35 the suppression factors and 6, 8, and 10 re-

spectively. Finally, Figures 10, 12, 14, 16, 18, 20, 24,
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26, 28, 30, 52 and 54 display the results of the un-

weighted) noise filtering analysis while F!iPur-. 11, 13, 1'),

17, 19, 21, 25, 27, 29, 31, 33, and 35 display the results

of the AR(2) weighted information analysis.

Before concluding this chapter, several exampLe.3 re-

sulting from the analysis of a real speech segment are pro-

vided. Figure 36a shows a periodogram estimate obtu.ined

from a Hamming windowed 400 sample segment taken from the

vowel portion of the word "wrap", from the fine harmonic

structure it is apparent that the pitch of this segment is

about 135 Hz (about 59 samples). Figure 36b shows a tenth

order AR estimate of the spectrum obtained as the result of

an autocorrelation method analysis of the same Hamming

windowed segment; four vocal tract resonances are clearly

visible.
7

Figures 37a and 37b show periodogram and tenth order AR

estimates obtained from this same vowel segment after adding

white noise at a 10 dB signal to noise ratio. Clearly, the

fine harmonic structure of the periodogram estimate has been

partially obscured and, while four resonances are still

visible, the AR estimate is severely distorted.

6 The word, spoken in cjntext by an adult male in a
quiet environment, was taken from the sentence "Don't gift
wrap the tall glass." and was appropriately filtered before
sampling at 8 kHz.

7 Lower and higher order analyses were applied to this
segment and it was judged from plots such as these that a
tenth order model is appropriate.
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Figures 38 and 39 display the result of applying vari-

ous other estimators to the same white noise corrupted data

frame. Figure 38 shows results obtained with the smoothed

power subtraction rule and figure 39 shows results obtained

with the smoothed magnitude subtraction rule. Part a of

each figure shows the result obtained with the noise fil-

tering formulation; the noise filter response functions are

displayed in part b. The weighted information estimates,

displayed in part c, were obtained using the modified Newton

iteration described in Chapter IV; the' weight functions,

displayed in part d, were selected as an AR(6) fit to the

noise filter response functions displayed in part b.

Comparison of figures 38a and 39a to figure 36b reveals

the deficiencies of these noise filtered estimates; in par-

ticular, the reader should note the amplitude of the third

and fourth (highest frequency) resonance peaks as well as

ItU-e depth of the valleys near the fractional frequency

values of zero and one. These features are partially cor-

racted in figures 38c and 39c by the weighted information

formulation; most notable is the correction of the valley

depth near the fractional frequency value of zero. Also

worth noting is the improved valley depth near the frac-

tional frequency of one in figure 38c and the improved

amplitude of the fourth resonance peak in figure 39c.

aThe weight functions need not be selected to have an
AR form; however, with this iterative method, convergence is
more difficult to achieve with more complex weight function
forms.
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CHAPTER VI

CONCLUSION

A new method of spectral estimation has been presented.

The method addresses the problem of noise corruption to the

time series measurements and assumes knowledge of the noise

power spectral density.1  The method has been demonstrated

to yield superior performance, in terms of reduced esti-

mation error, and has been suggested for use in speech

analysis applications.

Although the Gaussian assumption is invoked for the

theoretical development of the method, examples have been

provided that show the method yields superior performance

for other signals as well. Similarly, the method is

considered to be fairly robust with respect to the other

assumptions2 It is worth noting that while the AR signal

model has been assumed throughout, this assumption is by no

means necessary to the theoretical development so that

.a

IActually, only knowledge of the frequency response of
a filter designed to eliminate the noise is assumed. Know-
ledge of the noise power spectral density merely leads to
one common method of designing such a filter.

2A possible exception is the assumption of independence
between the signal and noise processes for it is this as-

" sumption that leads to the model of additive signal and
noise power spectral densities.
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other ',e.g. ARMA, Pisarenko, etc.) models may also be con-

sidered.3

Computational procedures relevant to the problem of AR

model estimation (using the weighted information formu-

lation) have been explored. An algebraic method, applicable

when the weight function assumes an AR(M) form, has been

discussed; when M < 4, this metnod will obtain the solution

using an algorithm of reasonable complexity for many appli-

cations. Iterative techniques have been discussed that

obtain the solution while permitting an extremely flexible

class of weight functions; the price of this greater flexi-

bility is a considerable increase in complexity as well as

the need for much user interaction. Several methods of

coefficient evaluation were presented; one was implemented

and used to obtain the simulation results.

* The problem of AR model detection (vector quantization)

requires the evaluation of two integrals for each model in

the finite collection. Evaluation of the first integral is

accomplished by Equation (4-58a); this equation requires the

* same number of additions, multiplications, and (read-only)

storage locations as is required by the usual (unweighted)

3 The new formulation would still require minimization
of IW(ftf,g) and the analogy leading to Equation (3.20) still
applies. The only difference is in the selection of a para-
metric signal model and the system of equations that fol-
lows. Uniqueness questions would need to be addressed
separately but one may hope to find that similar convexity
arguments would apply. Of course, the computational pro-
cedures discussed earlier may no longer be appropriate.
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metnod of vector quantization. The second integral is

evaluated as a constant ,independent of the data but de-

pending upon the model) by the usual (unweighted) methods of

vector quantization; EquaA.or (4.81) is advocated for evalu-

ation cf tne second integral with the weighted information

formulation. With about a dozen terms, as suggested for

speech analysis applications, evaluation of the second inte-

gral using Ek!uation (4.81) is about equivalent in complexity

to evaluation of the first integral.

Suggestions for Future Research

There are numerous ways to extend and refine the ideas

and methods presented here. The following suggestions,

offered in no particular order, are thought to be worth-

while.

* Extension to other spectral models. As mentioned

earlier, the AR model form is not necessary; moreover,

for some applications it may not even be appropriate.

e Assuming an AR model, determine the conditions for (and

a proof of) existence. Empirical evidence for ex-

istence is strong; it is thought that the conditions

are quite mild from a practical viewpoint (e.g. that

the weight function is bounded). While the question of

existence is mostly of theoretical interest by itself;

the methods used to prove existence (and the precise
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c'nditions for existence) should have practical value.

Fcr example, a proof based upon a contraction map is

iiiely to yield a highly effective iterative solution

procedure as well.

S Further investigation of methods of coefficient evalu-

ation. These should be studied in close relation to

the specific application in order to select a design

offering a reasonable tradeoff between computational

effort and performance.

* Investigation of numerical methods for solution of the

ideal formulation. It is thought that the ideal formu-

lation should yield still better performance, particu-

larly at very low signal to noise ratios; it is

expected that these methods will be very compu-

tationally expensive.

*Development of related formulations assuming a cor-

related noise model. The cross-spectrum (between the

signal and noise processes) may be known, say, as a

function of the unknown signal model spectrum and the

known noise spectrum in some applications; this may

occur, for example, if additive independent signal and

noise processes were passed through a known nonlinear

Asystem prior to observation.
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0 Further investigation of computational methods ap-

propriate for the AR weight function model; investi-

gation of computational methods appropriate for other

parametric weight function models. While the unique-

ness result guarantees that only one product model,

Cp+M(z), satisfying equations (4.13) and (4.15) has all

its "additional" reflection coefficients tkp+1, kP+2,

.. , kp+M inside the interval (-1,1) it is not known

if the other product models satisfying these equations

have all their "additional" reflection coefficients

outside this interval (of course, they must have at

least some of their "additional" reflection

coefficients outside this interval); if this were true,

the development of an efficient algorithm for higher

order AR weight function models would be greatly

facilitated. In general, it is considered that

parametric weight function models provide the greatest

hope for procedures yielding a flexible choice of

weight function together with an efficient solution

algorithm.

*Investigation of the appropriate selection of "shape

functions" in connection with use of the weighted in-

formation formulation for vector quantization, see

equations (4.79), (4.80), and (4.81). For speech

analysis applications, Jt is expected that each shape
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function as the power spectral response function of a

btndpass filter with response characteristics similar

tcx those filters found in "channel vocoder" systems.

OPerformance evaluation in specific 'speech analysis and

ether) applications using (global) measures appropriate

to the particular application. In a voice communi-

cations system an appropriate measure may be the result

of some formal subjective listening test. In a recog-

nition system the recognition error rate may be an

appropriate measure. Systems that predict stock market

activity might measure overall investment performance.

* Extension of the formulation to problems of multi-

dimensional spectral estimation.

*Use of the basic concepts/ideas of the weighted infor-

mation formulation to develop a procedure treating the

issues of limited data and noise corruption simultane-

ously, perhaps in combination with notions of Kalman

filtering and the Burg algorithm.
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PUBLICATION ACTIVITIES

In this part, a list of papers that are published

and/or to be published is given along with a brief summary

for each paper.

List of papers and their Summaries

1. L. D. Hoy, D. L. Soldan, and R. Yarlagadda, "An Adaptive

Approach to Narrowband Linear Predictive Coding of

Speech", proc. of the Fifteenth Annual Asilomar

Conference on Circuits, Systems and Computers, Pacific

Grove CA, pp. 331-334, 1981.

Summary

Linear predictive coding is an efficient

narrowband coding technique for speech signals but

degrades significantly in the presence of noise. This

paper examines a prefilter consisting of an adaptive

digital predictor with pitch period delay. Preliminary

results indicating the performance of two adaptive

algorithms are presented. It is shown that the ADP can

improve speech signal quality, as measured by signal-

to-noise ratios, when the speech is corrupted by

wideband noise. The performance sensitivity to pitch

period errors is also examined.
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2. D. L. Soldan and L. D. loy, "Pitch Extraction with an

Adaptive Filter", MIDCOW/82, Professional Program Session
Record 3/2, Dallas, Texas, 1982.

Summary

This paper presents a technique of estimating the

fundamental frequency or "pitch" of a voiced speech

signal that is based on a tapped delay line adaptive

digital filter (TDLADF). This method allows better

resolution of the pitch frequency than traditional

techniques such as autocorrelation and harmonic

analysis. It also appears to have better noise

tolerance than these techniques. Advances in VLSI

design should allow real-time processing using the

TDLADF in the future.

3. L. Hoy, B. Burns, D. Soldan and R. Yarlagadda, "Noise

Suppression Methods for Speech Applications", Proc. of

the 198) int. Conf. on Acoustics, Speech and Signal

Processing, pp. 1133-1156, Boston, Mass., 1983.

Summary

This paper presents a discussion and evaluation of

several filtering techniques for suppressing narrowband

background noise in speech signals. The methods

discussed are a modified spectral subtraction
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technique, an inverse transform filter, an adaptive

notch placement technique, an adaptive predictor, and a

modification of the adaptive predictor. Performance of

the filter methods are compared using a spectral error

measurement and an area ratio parameter error

measurement. Although the modified adaptive predictor

provided the best improvement in spectral error,

results indicate the modified spectral subtraction

method to be the most suitable for use with linear

predictive coding systems.

4. R. D. Preuss and R. Yarlagadda, "Autoregressive Spectral

Estimation in Noise in the Context of Speech Analysis",

to be presented at the Second ASSP iorkshop on Spectral

Estimation, Tampa, Florida, 1983.

Summary

An improved method of spectral estimation is

described. The method treats the problem of estimating

autoregressive (AR) process parameters from sequential

discrete time observations corrupted by additive

independent noise with known power spectral density.

The method has a theoretical foundation relating it to

principles of information theory as well as the linear

predictive (LP) procedures popularly employed for

speech analysis. Simulation results are used to

support the theoretical development and demonstrate the
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advantages of the method as compared to currently

popular methods of estimating speech spectra from noise

corrupted observations.

5. C. S. Sims and R. Yarlagadda, "Design of Fast Recursive

Estimators", to be published as a full paper in the IEEE

Trans. on Acoustics, Speech and Signal Processing.

Summary

A recursive linear estimator is proposed for rapid

estimation of a signal in noise. Efficient methods are

developed for optimization of the filter

coefficients. Optimal selection of data to be

processed is shown to be related to a classic integer

programming problem.

6. R. Yarlagadda and C. S. Sims, "A Note on the General

Discrete-Time Linear Estimation", submitted for

publication.

Summary

This paper presents a simple and an efficient

algori.thm for the solution of a generalized least

squares prediction problem. The derivations are

presented in terms of matrix point of view.
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