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EXECUTIVE SUMMARY

This report consists of three self contained parts.
Part A, entitled "Noise OSuppression and Signal Zstimation,"
presents a summary of various adaptive noise-cancelling
prefilter techniques that were investigated. Part B, enti-
tled "Autoregressive Spectral Estimation in Noise for Speech
Analysis Applications," presents a fundamentally new
"weighted information" approach to the spectral estimation
problem. Finally, Part C presents a summary of the publi-
cation activities associated with this research effort.

Each part of this report is self-contained witn sep-
arate contents, list of figures, references, etc. To assist
the reader, a brief summary of parts A and B along with a

general table of contents is provided below.
A. NOISE SUPPRESSION AND SIGNAL ESTIMATION

The goal of this research effort was to investigate
! adaptive estimation metnods for noise suppression and per-
formance enhancement of narrowband coding systems for speech
signals. tn the original proposal special reference wis
made to combining pitch tracking adaptive filters wita lin-

ear predictive coding algoritnms and tnese methods are dis-

cussed in chapter II of part A. The results of this initial




effort led to the investigation of several topics which are
briefly summarized below.

In chapter il of part A various prefiltering techniques
for improving 1linear predictive coding systems are eval-
uatead. This includes the examination of a »refilter con-
sisting of an adaptive digital predictor (ADP) with pitch
period delay. Two adaptive algorithms, the 1least mean
squared and the sequential regression, are evaluatec for
ADP. The metnod proved successful in suppressing white
noise in voiced speech sounds but did not work well when the
noise was narrowband such as a single sine wave. This is
due to the fact that interaction between the pitch period
and tne narrowband noise produces a bias error in the adap-~
tation of the filter.

Chapter IlI of part A discusses a new robust pitch
estimation procedure which was developed as an outgrowth of
tne efforts described in chapter II. The performance of the
pitch tracxing filter depends on the quality of the pitch
period estimate used to set the input delay. It was found
that a tappad delay line adaptive digital filter provides a
rcbust pitcn estimate. This method allows for bett2r reso-~
lution of the pitch frequency than the traditional tech-
nigues sucn as autocorrelation and harmonic analysis and has
a better noise tolerance than these technqiues.

Failure of the pitch tracking adaptive filters to sup-
press narrowband noise prompted the investigation of several

otnher prefiltering methods. The most successful of the

11
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filters evaluated was the spectral a3subtraction teciniju=2
discussed in chapter IV of part A. Two modifications to the
original method proved very useful for improving novisy
speech. First a dual time constant noise spectrum estimate
improved white noise suppression and seccndly a spectral
notch feature greatly improved narrowband noise quieting.
Also, very successful was a new filter method bassd on udap-
tive filtering. These filters have been investigated using
speech in the military aircraft environment, such as heli-
copter, AWACS, etc. Informal listening tests indicate good
noise suppression.

Chapter V of part A discusses two-dimensjonal filter
approaches. The use of a twc-~dimensional filter approach tu
suppress noise in the short-time Fourier transform domain
found to have a significant potential. From the informal
listening tests, the two dimensional processed speech sounds
gquieter with added clarity.

Chapters VI and VII of Part A are concerned witn faast
algorithms for efficient solution of the linear estimation
problem and 2 new recursive linear estimator suitable for
rapid estimation of a signal in noise. Efficient methods
are developed for optimizaticon of tne filter coefficients.
Optimal selection of data to be processed is shown to be

related to a classic intzger programming problem.

i1
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B. AUTOREGRESSiVE SPECTRAL ESTIMATION IN NOISE 1IN THE
CONTEXT OF SPEECH ANALYSIS

In tnis part of the report, an improved method of spec-
tral estimation is described. The method treats the problem
of estimating autoregressive (AR) process parameters from
sequential discrete time observation corrupted by additive
independent noise with known power spectral density. The
m2tnod has a theoretical foundation relating it to princi-
ples of information theory as well as the linear predictive
(LP) procedures popularly employed for speech analysis. The
estimation procedure enjoys the advantages of noise suppres-
sion filtering methods such as those discussed in Part A.
Furthermore the methcd is able to relax the usual LPC error
criterion in those spectral regions where the residual
speech distortion due to ncise suppression is expected to be
high. The method is very general and applies both to wide-
band and narrowband noise environments. The solutvion ob-
tainzd by using this method is showWwn tc be unique.

Computational procedures apprepriate for speech anal-
ysis applications are developed. The complexity of these
aigorithms for speecn applications is only moderately expen-
3ive when compared to the present used metnods. The algo-
rithms nave been testad using simulated Gaussian and speech
sjgnals with xnown spectral characteristics corrupted by
simulated vaussian noise of Known power spectral density.

Tne results obtained by this method are compared with the

results obtained by currently popular metnods of AR spectral




estimation in noise. By using scatter plots, it is shown

that the estimation error is significantly lower when com-

pared to the results obtained by other methods.
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CHAPTER [
INTRODUCTION

Digital encoding of speech signals has proven to be an
effective means of bandwidth compression. Expanding use of
narrowband digital encoding systems has revealed some disap-
pointing limitations in their performance. One limitation
is degredation of intelligibility in the presence of back-
ground noise [1,2]. This difficulty has drawn hore atten-
tion as speech encoding systems have attempted to move into
military applications. These applications may include the
environments such as airborne command posts, cockpits of jet
aircraft, helicopters and many others. The goal of +this
study was to investigate several methods of improving the
performance of narrowband coding systems in the presence of
acoustically coupled background noise. To complement this,
an additional goal was to investigate fast algorithms to
implement these algorithms along with descrete-time estima-

tion algorithms.

Noise Suppression

The problem of noise 1in speech encoders can be
addressed as a simple noise filter problem by placing a

simple filter in front of the encoder. The problem with
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this approach is that most background noise of interest is

not stationary and cannot be predicted ahead of time. Noise
filters with adaptive structures have shown some promise as
prefilters for speech encoding systems [3]. Several of the
adaptive filter techniques were investigated in this
study. Chapter II describes an adaptive filter which takes
advantage of pitch information to reduce background noise.
Two adaptive algorithms, the Least Mean Square Algorithnm
(LMS) [4] and the Sequential Regression Algorithm (SER) [5],
were evaluated for the adaptive digital predictor.
Performance was evaluated using signal to noise ratio
measurements.

It has been recognized that pitch estimation is not
simple if the speech is corrupted by noise [6]. The cur-
rently popular pitch extraction methods are generally of two
types, autocorrelation analysis and harmonic analysis. The
autocorrelation method performs an autocorrelation on the
windowed speech data and the pitch period for the voiced
speech is estimated by using the peaks in the
autocorrelation function. On the other hand, the pitch
extraction methods are based on performing a discrete
Fourier transform on the windowed speech data [7]. However,
these methods do not fare well for noisy speech. Chapter
III presents a method for determining the pitch period of a
voiced speech signal using a tapped delay 1line adaptive

digital filter (TDLADF). These filters huve been widely

used in sonar applications (8-9]. This approach uses the
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TDLADF to estimate the time delay between two parts of the
same signal. The time delay then corresponds to the pitch
of the signal. This time delay is estimated by processing
the weights of the TDLADF.

Several prefiltering methods based upon adaptive tech-
nigues are discussed in Chapter IV. One popular method of
prefiltering speech involves direct modification of the
short-time Fourier transform (STFT) of a speech signal typ-
ically called spectral subtraction [10]. This method esti-
mates the STFT of the background noise and then subtracts
this from the STFT of the speech plus background noise. The
work described in Chapter IV is limited to filtering tech-
niques for suppressing narrowband background noise in speech
signals. The methods included are a modified spectral sub-
traction technique, an inverse transform filter, an adaptive
notch placement technique and an adaptive filter
technique. These methods are evaluated using signal to
noise ratio measurements and 1log area ratio performance
measurements.

Chapter V presents some interesting image processing
techniques to enhance speech. In this approach, the STFT
representation of a segment of speech in treated as a two-
demensional image data [11]. It has been shown that by the
use of 1image processing operations, such as contrast

enhancement and smoothing, background noise can be sup-

pressed and the speech signal can be enhanced.
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Real time implementation of the before mentioned filter
techniques requires considerable computational power. It is
important that all the alogorithms involving in the encoding
process be as efficient as possible. During the course of
this study, fast algorithms have been developed for 1linear
estimators for rapid estimation of signal in noise. Chapter
VI presents a simple and an efficient algorithm for the
solution of a generalized least squares estimation prob-
lem. Chapter VII[ presents a recursive linear estimator for
rapid estimation of a signal in noise. Efficient methcds
are developed for optimization of the filter coefficients.
Optimal selection of data to be precessed is shown to be
related to a classic integer programming problem [12-13].

Finally, Chapter VIII summarizes the results and

provides suggestions for further study.
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CHAPTER II
PREFILTERING WITH AN ADAPTIVE DIGITAL PREDICTOR

Although linear preditive coding (LPC) techniques used
to Encode narrowband speech signals are efficient at data

compression [6,14], they degrade significantly if the speech

ig corrupted with noise [1,2,15]. PFrequency domain filter-

ing techniques using pitch period information have been
evaluated and found to be of limited usefulness [16]. The
objective of this Chapter is to examine the performance of a
time domain filtering technique using an estimate of the
pitch period and an adaptive digital predictor (ADP), Pigure
1, to reduce the noise to speech signals [3].

The noise filtering properties of the ADP with pitch
period delay are examined. The primary areas discussed here
are the ADP's performance with various noise types. Per-~
formance will be evaluated using signal-to-noise ratio (SNR)
measurements. This performance measure is used for conven-
ience in the parameter sensitivity investigations although
it is recognized that intelligibility is not always a func-
tion of objective measures of speech quality.

Two adaptive algorithms, the LMS [4] and the SER [5],
were evaluated for the ADP. These algorithms are discussed

in the next 3ection. Synthetic speech was used in all




evaluations. The section on Data Generation discusses how

this speech was generated. The effect of pitch estimate
errors on performance is dealt with in the Pitch Estimate
Error section. The ADP's performance for various types of

noise is the subject of the Narrowband Noise section.

Filter Configurations

Two adaptive algorithms will be considered, the LM3
algorithm [4] and the SER algorithm [5]. The LMS algorithm
is a suboptimal least squares approach derived using the
method of steepest descent. The SER algorithm is optimum in
the 1least squares sense and depends upon the matrix
inversion 1lemma to compute the inverse of the auto-
correlation matrix at each iteration. If
PL = £(k-8) f(k-1-4) ... F(k-M-1-8) (2.1)
is the input vector to the adaptive filter of length M, then
the LMS algorithm [4] is given by
AL = A1 + VP, e(r), (2.2)
where A, is the vector of filter coefficients,

e(r) = £(r) - F?Ar_l (2.3)
as shown in Figure 1, and v is a convergence parameter. The

SER algorithm [5] is given by

Ap = A,_; +Q, F, e(r) \2.4)

where e(r) is defined by (2.3) with

Qp = Qu_p - (1/8) Qu_y Fp FL Q._; (2.5)

and

5=1+ PlQ._y Fp, (2.5)
11
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ADAPTIVE
A FILTER

r A tatput

Patch Estinate

Figure 1. ADP Configuration
wnere A, is again the coefficient vector, F, is given by
(2.1) and Q, is the inverse of the autocorrelation matrix of
the input to the ADP. Note that (2.5) and (2.6) update Q.

through the matrix inverse lemma.

Data Generation

In these simulations the test data was limited to a
single vowel sound /a/. This was done in order that the
dynamics of the adaptive filter itself may be observed with-
out the added complexity of interaction of two phonemes. To
generate the vowel sound used for the test, natural speech,
sampled at 8000 Hz, was first analyzed by linear prediction
analysis (LPA). An eighth order model was used. The
resulting LPA parameters were then used to synthesize the
test waveform. In this way the pitch period and spectral
characteristics of the test signal were completely known.

Figure 2 shows the waveform and spectrum of the test signal.
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Figure 2. Test signal time
and frequency plot.

Noise signals for the test were chosen to be simple but
representative of the general types encountered. The three
noise signals used were wideband, narrowband and a single
sinewave. The wideband noise was generated by a Gaussian
psuedo-random number generator. For the narrowband noise,
the wideband generator output was passed through a digital
resonator with center frequency at 2664 Hz and bandwidth of
400 Hz. The sinewave noise consisted of a single sinewave
of constant amplitude at a frequency of 2664 Hz. PFigure 3

shows the spectra of the noise signals used.

Pitch Estimate Error

An essential part of the filtering technique is the

estimate of the pitch period. It would be useful to know

just how accurate the estimate must be to allow the filter

13
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to perform satisfactorily. PFigure 4 shows the results of a
computer simulation of the ADP in which the pitch estimate
given to the ADP is varied from tne actual pitch period of
the speech signal. The input signal was corrupted to 1.3 a8
SNR at the input of the filter with the wideband noise spec-
ified in the previous section. The 3NR of the output is
plotted against the pitch estimate (in data sample periods)
used by the ADP. Curves are shown for four and eight weight
ADP's. One shcould note that the filter performs properly
only when the estimated pitch falls within a window near the
actual pitch period. The width ¢f tnis window is approx-
imately equal to the number of weights in the filter. The
plet in Figure 5 extends from pitch estimates +60 to -€0. A
minus pitch estimate means that the delay is in the ref-
erence input side of the adaptive filter, see Figure 1,
instead of the filter side. One should note that there are
two more acceptance windows located at zero and -50. oOnly
the windows located at +50 and -50 give improvement in 3NR
over the unfiltered signal. Note also that total signal
improvement is higher if the pitch estimate is slightly
lower than the actual signal pitch. These results imply
that the pitch estimate need not be perfect but must fall in
a window bounded on the high side by the actual pitch and
with width approximately that of the filter weights. The
results in Pigure 4 and 5 are for the LMS algorithm. The

SER algorithm shows the same window effect. The window

15
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width was also found to be relatively insensitive to the

type and intensity of the noise used to corrupt the test

signal.

Narrowband Noise

Using real speech, Sambur has shown that this ADP con-
figuration provides improvement in SNR in the case of wide-
band noise (3]. More challenging though is the case of
narrowband noise such as is found in many industral and
military environments. Figure 6 shows the overall
performance of the filter with the LMS algorithm for the
single vowel sound /a/ corrupted by varying intensities of
wideband, narrowband and single sinewave noise. 3NR of the
output is plotted against the SNR of the input. TFigure 7
shows the same results for the SER algorithm. In each case
the filter was allowed to run to convergence before actual
SNR calculations were made. One should note that in all but
the sinewave noise case, some improvement in SNR was
realized. Also note that the sub-optimal LMS algorithm

provided more improvement in SNR than the SER algorithm.

Conclusion

A technique using an adaptive digital predictor with
pitch period delay to reduce noise in speech signals has
been examined. It has been shown for the case of a simple
vowel sound that wideband and narrowband noise can be

reduced. However, single sinewave interference was not

17
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reduced. The LMS algorithm provided better performance than
the SER algorithm. Sensitivity to pitch period errors was
also investigated. Criteria for the accuracy of the pitch
period estimate necessary to maintain satisfactory perform-

ance were developed.
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CHAPTER III

P VO

PITCH ESTIMATION BY ADAPTIVE FILTERING

Estimation of the fundamental frequency or "pitch" of a
voiced sgpeech signal is one of the basic steps in most .
speech analysis and speech encoding systems [17]. The cur-
rently popular pitch extraction methods are generally of two
types, autocorrelation analysis and harmonic analysis. The
autocorrelation technique performs an autocorrelation on the

windowed speech data [6]. If the windowed data contains

| ] . p . 8
Y ) ;. N TR
, 4%t "l,.,-.' \ P

several pitch periods, the resulting autocorrelation
function will have a peak at the delay corresponding to the
pitech period. Rather than work with the raw speech data,
- most schemes will 1lowpass filter or center clip or both
- before performing the autocorrelation. This can enhance the
- result and lower the computation required. In some schemes
the input to the autocorrelation process is the prediction
residual from an appropriate linear prediction algorithm.
; In any case, the pitch is estimated by identifying the ap-
propriate peak in the autocorrelation function.

Pitch extraction methods based on harmonic analysis
usually start by performing a discrete Fourier transform on
- the windowed speech data [7]). The transformed data is ex-
amined to locate the line spectra features that are charac-

+ teristic of pitch periodic time signals. Spacing of the
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line spectra features can then be used to estimate the pitch
frequency.

This chapter presents a method for determining the
fundamental frequency of a speech signal using a tapped
delay 1line adaptive digital filter (TDLADF). Like the
autocorrelation method, this technique tries to measure the
time delay between successive pitch period waveforms. The
use of TDLADF to estimate the time delay between two signals
has been well developed for wuse in sonar applications
(8, 9]. Instead of estimating the delay between two
different signals, +this application uses +the TDLADF +to
estimate the time delay Dbetween two parts of the same
signal. The weights of +the TDLADF are processed to

determine the pitch estimate.

The General Time Delay Case

Figure 8 shows the general structure of a TDLADF with
its filter input and reference input. If a signal is ap-
plied to the filter input and a delayed version of the same
signal is applied to the reference input, the adaptive algo-
rithm will minimize the error signal by adjusting the
weights of the tapped delay line filter to approximate the
unknown delay in the reference input. The resulting con-
verged filter will then have a weight with a value of one at
the delay line tap that correponds to the unknown delay and
zeros in all the other weights. In most cases it is not

necessary to wait until the adaptive algorithm converges to

21
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- determine the time delay [8)]. After only a few iteration
steps, a scan of the weight values for the maximum positive

value gives a very close estimate %o the actual time delay.

The Pitch Estimation Configuration

Figure 9 shows the TDLADF configured for pitch period
estimation. The filter input delay is established by the
shortest pitch period expected (approximately 3-5 ms). The
length of the tapped delay line filter is then determined by
the longest pitch period expected (usually 15-20 ms). For
i example, an expected pitch period range from 5 ms to 15 ms
would require a delay of 50 samples and filter length of 100
samples if the sample rate was 10kHz. In the configuration
of Figure 9, the TDLADF approximates the delay between two
& successive pitch periods. Since successive pitch waveforms
of natural speech are not exactly alike, the weights will
never converge to a single impulse. ©Still, a clear peak in
the weight function will be evident.

Figure 10 gives a plot of the TDLADF weights for the .
utterance "They shook hands for good luck." The seech data
for this example was sampled at 8kHz. The example used a 40
weignt adaptive filter with a 40 sample delay on the input.
in this plot, the relative darkness of any point shows the
value of a particular weight at that point in time. The
more positive the value of the weight, the darker it appears
on the plot. Since the presence of a pitch periodic signal

will be indicated by a positive peak in the weights, only

<. 22
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the positive values of weights are shown. The changes in
the pitch period are clearly visible as the peak in the
weight values +tracks the delay between successive pitch
periods. Note that a singular peak is not discernible

during the unvoiced "sh" of the word shook.

The Adaptive Algorithm

The adaptive algorithm used for the example of Figure
10 is based on Widrow's LMS adaptive algorithm [4]. In this
algorithm the weights of the tapped delay line are updated

by the relation

W(n+1) = W(n) + u e(n) F(n)

where W(n) is the vector of weights, u is the convergence
parameter, F(n) is the input signal vector, and e(n) is the
error at step n. The LMS algorithm is one of the slower
converging adaptive algorithms. This is not a problem in
this application since complete convergence is neither
required nor wanted for proper pitch estimation. It has
been found that the weights jn the LMS algorithm can more
quickly track a varying pitch period if the algorithm is
prevented from converging completely. This is done by
adding a relaxation parameter to the weight update equation

[19]. The modified update equation is

W(n+1) = vW{n) + ue{n) F(n)




)

)
o
*

where v is the relaxation parameter. Suitable values of v
were found to be in the range of .90 to .99. Other adaptive
algorithms may be suitable for this application. This study

in concerned with the LMS algorithm.

Visible Detail

Since the TDLADF generates an estimate of the pitch at
each incoming data sample, it can reveal subtle variations
in the pitch period that would go unnoticed with other pitch
estimation schemes. Both the autocorrelation and harmonic
analysis techniques must work with data windows that are
several pitch periods wide to get good results. Subtle
variations in the pitch are averaged out in the process.

Figure 11 shows an expanded plot of the start of the
word "they" from the example in PFigure 10. The time plot of
the actual signal is included with the TDLADF weight plot.
Small changes in the pitch period from one pitch period to
the next are evident in the weight plot. Note the jump in
the pitch period associated with the change in voicing.
Even more subtle features of the pitch period variations may
be observed if an adaptive algorithm with faster convergence
characteristic is used. Figure 12 shows the same example
signal of Figure 11 processed by a sequential regression
(SER) adaptive algorithm [20]. The SER algorithm is
computationally intensive but does converge quickly and,

therefore, more detail can be seen in the weight plot.
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Pitch Period Resolution

Normally, the time resolution of the pitch period esti-
X mate would be limited to the data sampling interval. The
estimate can be improved by using a parabolic interpolation

over several weight values in the vicinity of the peak

weight.

Noise Tolerance

The original motiviation for using an adaptive filter
1 for pitch detection occurred while studying the effect of
: background noise on low bit rate speech coding systems. The
adaptive technique was found to be very robust in the
presence of various kinds of noise. Rigorous comparisons
with other methods have yet to be made. Figure 13 gives the
i results of several tests that calculated the average pitch
estimate error for various input signal to noise ratios. It
has been found that the slow convergence rate of the LMS
adaptive algorithm automatically provides much of the

smoothing needed by other methods in the presence of noise

[21].

Computational Considerations

From a computational standpoint, the TDLADF for pitch
detection is very costly. The LMS algorithm requires
approximately 200 multiplies per data sample. Since most of
the pitch information is contained in the lower 1000 Hz of

the spe=ch signal, the data can be lowpass filtered and then

--------------
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- down sampled. The number of computations is cut by about
the down sampling rate. Down sampling for pitch detection
is also common among autocorrelation methods.
2 One side effect of the down sampling is reduced pitch
period resolution. Interpolation will help, but the TDLADF
technique offers another alternative. Figure 14 shows a
block diagram for a two stage adaptive pitch estimator. The
"course" stage uses the lowpass filtered, down sampled
version of the signal to obtain an approximate value of the
pitch period. This estimate is then used to adjust the
delay on the second "fine" stage. The second stage TDLADPF,
though not down sampled, need only be wide enough to accom-
modate the expected error in the first estimate. Processing
the weights in the "fine" stage gives the same resolution as
the original sampled case but at lower computational cost.
{; Initial test with this structure showed that the compu-
tational savings were bought at the cost of slightly lower

noise tolerance.

Possible Applications

Most interest in pitch estimation techniques centers
around the real time encoding of speech data. The TDLADF
- does not seem to be well suited to this application due to

the computational requirements. Recent development of VLSI

R
s e,

circuits to implement the adaptive <filter algorithms

- directly in hardware may eventually do away with that limi-

tation.
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Other applications for pitch estimation are in disease
diagnosis. Detailed study of the speech waveforms of some
patients can aid in the detection of certain disorders of
the vocal tract and nervous system [22]. The ability of the
TDLADF to display subtle features in the pitch period may
prove useful for such diagnosis. The computational 1load
snould not present a problem in this application since the

analysis need not be done in real time.
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Chapter IV

NOISE SUPPRESSION METHODS
FOR SPEECH APPLICATIONS

Use of linear predictive coding and other speech encod-
ing techniques in military environments has revealed some
disappointing limitations in the narrowband digital encoding
of speech. Moderate acoustic background noise can severely
degrade the overall system performance [2]. This Chapter
investigates both frequency and time domain noise suppres-
sion techniques that appear to be effective on background

noise with non-stationary narrowband characteristics.

Methods Investigated

Subtraction of an estimated noise spectrum in the
frequency domain has been shown to be very effective on
narrowband interference signals [23,24]. Two modifications
to the original technique were investigated as a part of
this study. PFirst, placing zeros in suspected large inter-
ference bands was found to improve the subjective quietness
of the speech. Secondly, it was also found that a dual time
constant spectral averager allows for better noise spectrum
estimation.

Time domain filters, designed to track and reject sus-

pected narrowband noise signals, have the potential of being




more computationally efficient +than frequency transform
methods. Four wmethods for designing time domain filters
were investigated. First, a time domain filter may be
formed from the proper inverse transform of the inverse of
the estimated noise spectrum [25]. Another technique
searches the noise spectrum for the largest suspected inter-
ference signal and then designs a time domain notch filter
with appropriate center frequency and bandwidth. The third
technique is an adaptive predictor [18] which adaptively
designs a time domain noise suppression filter based on a
sample input of the background noise. The fourth is a mod-
ification of the adaptive predictor to allow for flatter

passbands.

General Spectral Subtraction

The spectral subtraction noise reduction method is the
process of subtracting an estimate of the noise power spec-
tral density (PDS) from the corrupted input signal's PSD in
an attempt to improve the signal-to-noise ratio (SNR). This
subtraction is adaptive in that the estimate of the noise
PDS is updated during the absence of speech. The algorithm
involves: 1) bvreaking the input signal into frames and
estimating the PSD of each frame by an FFT, 2) updating the
estimate of the noise PSD if no speech is present, 3) sub-
tracting the current noise PSD from the signal PSD and 4)
transforming the frequency domain result back into the time

domain using the input signal's original phase information.
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The Noise PSD Estimate

The performance of the spectral subtraction technique
depends a great deal on the accuracy of the estimation of
the noise PSD. Errors in the noise PSD estimate usually
show up as tone burst or spectral artifacts in the output
signal. If the noise signal is assumed to be stationary on
a short time basis, then some form of smoothing of the frame
to frame variations will improve the noise PDS estimation.
A first order recursive smoother was used to average each
descrete frequency power estimate over several frames. The
recursive smoother computes the running average of each
discrete frequency by

Ep(k) = Py(k) + c(Ey_1(k) - B (k))
where E, is the recrusive estimate of the PSD based upon P,
the noise PSD in the nth frame, ¢ is a constant which sets
the effective time constant for the average, and k is the
decrete frequency index. No smoothing was done between
adjacent discrete frequencies. The appropriate time con-
stant for the smoother depends on the frame to frame varia-
bility of the noise. A fixed time constant of about 5
frames worked reasonably well. However, a dual time con-
stant scheme based upon adjacent power estimates proved
better. If the new power estimate of a particular deicrete
frequency is greater than the last estimate then a shorter
time constant (1-2 frames) is used. If the new estimate is
less than the current estimate then a long time constant (4-

5 frames) is applied. This "fast attack -~ slow decay"
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scheme reduced the number oOf spectral artifacts due to ran-

Lottt 3,

v dom variations in the noise.

Frequency Domain Notch Filter

The difficulty with very high intensity narrowband
; noise is that the spectral artifacts due to the noise PSD
| estimation errors can be very large in the vicinity of the
noise concentration. Smoothing is impractical to suppress
these large artifacts. It was found, however, that total el-
imination of the speech PSD in the area of the large narrow-
band noise reduced the number of large artifacts without
greatly distorting the speech signal.

After the noise PSD estimate is subtracted from the
input signal PSD, zeros are placed in the resulting PSD at
R discrete frequency 1locations that have abnormally large
. noise power estimates. This eliminates any 1large noise

artifacts that might remain due to error in the noise PSD
estimate. Emperical experiments showed that any discrete
frequency in the noise estimate that has a power level over
four times the average over all frequencies was a good can-

didate for a frequency domain zero.

Filter Design by Inverse Transform

Once the noise PSD has been estimated, a suppression
filter for the noise is easily designed by taking the
inverse DFT of the inverse of the PSD [25]. The resulting

impulse response forms the weights of a transversal
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E filter. Linear phase response may also be obtained by
proper choice of phase.
To keep the computational load reasonable, the trans-

versal filter must be 1limited to between 10 and 20

Y e a'n § a4 W

weights. This requires sampling the noise PSD at only 10 to
20 equally spaced frequencies. The resulting poor frquency
resolution allows very narrowband noise to be ignored if it
N ‘ falls between frequency samples. PFor this reason, no per-

formance comparisons were made for this filter technique.

Filter Design by Notch Placement

Since many of the background noises encountered contain

one predominant narrowband component, it is unnecessary to

o5 N e

use a filter with as many coefficients as is generally
required by the inverse +transform method. A wmuch more
heuristic, yet very practical approach, is to direct the
noise filter design process directly toward the major spec-
. tral component of the noise.

The method considered here first analizes the estimated
power spectrum of the noise to identify the maximum. This
maximum is then the primary target of the noise filter.
Using the amplitude and bandwidth of the local maximum found
in the noise spectrum, a recursgive notch filter is
designed. The notch filter used in this research was a

bilinear transformation of the transfer function,

H{s) : —————




where w, is the frequency of infinite attenuation and wy is

&8 the -3dB bandwidth centered about wj. This filter was

chosen because its gain at the high and 1low frequency

L) E
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extremes approach unity resulting in minimal amplitude dis-

. tortion for portions of the spectrum that are not near the

center frequency.

The values of w, and wy are obtained by analizing that
estimated noise PSD in the following manner. First, the -
current estimate of the noise PSD is searched for the larg-
est peak that is above a set threshold value. The notch
filter center frequency is then set to the frequency of this
peak. The bandwidth of the notch filter is set equal to the
width of the peak that extends above the threshold value.

The threshold value was chosen to be four times the average

value of the current noise PSD. The factor four was chosen

after many experiments with various noise sources.

The advantages of this recursive notch filter method
center around the speed with which such a filter may be
implemented. The recursive filter requires very few opera-

- tions per data sample and the filter parameters need to be
calculated only once per franme. S9till, the most time con-
suming operation is the calculations of the noise PSD esti-
mate. Hardware FFT processors should make this practical.

Some Dbackground noise sources, such as helicopter

- noise, contain more than one narrowband noise component.

The above method can be extended by cascading several notch




filters. ZEach filter would adapt and track each narrowband

noise.

Filter Design by Adaptive Filter

Design of noise suppression filters by linear predic-
tion has been shown effective for narrowband noise [25].
Figure 15 shows the block diagram of an adaptive predictor
for noise suppression in speech. When a noise signal is
applied, the adaptive algorithm adjusts the weights of the
transversal filter to minimize the error signal. As the
algorithm converges, the transfer function of the system
approximates the inverse filter that would be required to
suppress the input noise signal. When speech is detected,
the adaptive algorithm is turned off and the filter weights
are held constant at their current values. Adaptation
resumes when speech is no 1longer indicated. For this
research, the least mean square (LMS) algorithm [18] was

used for the automatic adjustment of the weights.
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Figure 15. Adaptive Predictor for Speech
Filtering
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In these experiments, white psuedo-random noise is used
for the bias noise source. The flattness of the passbands
and the depth of the stopbands are controlled by the bias
noise to input noise ratio. The power of the noise bias was
set based on experimental results to be one-fourth the ex-
pected average power of the input speech signal. Flatter
passbands and deeper notches could also be achieved by using

{ more weights in the filter.

Comparison of Filter Methods

A series of tests were conducted to evaluate each of
the filter methods previously described except the inverse
t transform method. The noise used for these experiments was
a sample of noise recorded in a RH-53 helicopter. All the

tests were run at a simulated sample rate of 8000 Hz. The

} four techniques evaluated were: a) Spectral subtraction
: (SSB) with noise PSD smoothing the frequency domain notch
j; placement, b) Adaptive notch placement {ANF) using two

.. second order notch filters, c¢) Adaptive predictor filter
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(APF) using a 15 weight filter, d) Adaptive transfer filter
(ATF) using a 15 weight filter. The performance of each
filter was compared using a signal-to-noise ratio calcula-
tion based on the average spectral error in the corrupted
signal before and after filtering. The spectral error was
averaged over the speech portions of the input signal
only. Also, performance was compared by computing the av-
erage log area ratio (LAR) error for a 10th order 1linear

predictor [26].

Jbjective Comparisons

Figure 17 shows the input and output signal-to-noise
ratios for various 1levels of input noise. Figure 18 shows
the LAR error for various levels of input noise. Note that
only the SSB and ATF methods consistantly improve SNR and
LAR error. Note also that the ATPF scored best in SNR im-
provement but the SSB proved better in LAR error reduc-
tion. The deep narrow notches formed by zero placement in
the SSB filter cause much spectral error but are easily
smoothed over by the relatively 1low order linear predic-
tor. The APF performed poorly due to its tendency to dis-
tort the spectrum in the passbands of the filter. The ANF
successfully suppressed the large narrowband noise compon-
ents but did not filter the subtiler narrowband noise that

was below its threshold.
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Subjective Comparisons

Informal listening tests indicated that all the methuods
evaluated reduced the perceived level of background noise.
Casual listening greatly favored the SSB technique. The SSB
metnod was the only one to remove entirely the large narrow-~
band components of the test helicopter noise. All the other

methods had audible residuals of the major  noise
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......



TR —m—"

...........................

:Q components. The ATF method had the least d'stortion, while

the APF tended to emphasize the higher frequencies.

.2 Conclusions

O0f the four filter methods evaluated, none ofie a .
complete cure for background noise in speech. Spectral

subtraction with 2zero placement and the adaptive transfer
filter were the most effective. The spectral subtraction
technigque may have an advantage in applications with linear
predictive coding since it performed best in the log area
ratio error evaluation. PFormal subjective tests need to be
done to determine the effect these filters have on the in-
telligibility of noisy speech. The adaptive notch placement
scheme and the adaptive predictor were not very effective on

the test signals used but might be useful in other applica-

tions.




CHAPTER V
ENHANCEMENT OF SPEECH SIGNALS
BY TWO DIMENSIONAL SIGNAL PROCESSING

Recently there has ©been considerable interest in
investigating new avenues for removing high ambient noise in
speech [1, 2, 27-31]. Chapter IV presented a discussion and
evaluation of several filtering techniques for suppressing
background noise in speech signals. Spectral subtraction is
an effective method for removing narrowband noise from
speech signals. However, there are difficulties with the
technique when the noise is wideband or random in nature.
For example, consider the white noise case. The average
value of the noise spectrum can be easily subtracted from
the corrupted signal but the frame to frame variations of
the noise will still appear in the output signal as chirps
or musical noise. Over estimating the average noise level
is helpful in removing this residual noise but only at the
cost of removing more speech signal.

The random nature of the chirp noise suggests that some
kind of spectral smoothing might be useful to suppress the
residual random variations that remain after subtraction of
the average noise level. Smoothing of noisy spectral data

to minimize the effects of residual artifacts in spectral
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subtraction has been shown to be useful for image resto-
ration applications [27]. The power spectrum of each frame
of data can be smoothed using any one of several techniques.
The 1linear predictive coding process itself offers some
smoothing since only a limited number of poles are available
for modeling the signal. In channel vocoder systems, some
spectral smoothing can be added by slight overlap of the
analysis channels [28]. Frame to frame correlation of
speech frequency data has also been used in channel vocoders
for noise suppression [29]. In such a system, the output of
each frequency channel 1is lowpass filtered to remove any
rapid variations. Logarithmic filtering of the envelope of
individual frequency channels haé been shown to be useful
for enhancing speech corrupted by white noise [30]. Some
frame to frame smoothing is introduced in spectral sub-
traction if the frame size and overlap are made relatively
large [31].

The acoustic tube model for speech production implies
that the power spectrum of any one frame of data will be
fairly continuous as a function of frequency. Also, sgince
the speech parameters do not change rapidly, the frame to
frame variations of amplitude of any one frequency will also
be continuous. This dual continuity of speech spectral data
in both time and frequency suggests that some type of two
dimensional filtering might be applicable.

When the speech power spectrum data is displayed as a

spectrogram, an image is formed with dimensions of time and

by
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frequency. The spectrogram makes visible both the time and
frequency correlation of the speech spectrum. This image
can then be processed using two dimensional techniques to
smooth, improve contrast, or otherwise enhance the spectral
features. The resulting processed spectrum can then be
combined with the original phase data and inverse +trans-
formed to recover the speech signal. This procedure has
been investigated for detecting single tones in white noise
[(32]. This chapter presents some interesting results on
applying two dimensional processing techniques to achieve

gspeech enhancement.

Two Dimensional Representation

The speech signal is first converted to the short-time
Fourier transform (STFT) domain by suitable sampling, win-
dowing and discrete Fourier transformation. The transform
results in a complex two-dimensional function, which can be
represented in the form M(k,n)/ P(k,n), where M(k,n)
corresponds to the magnitude and P(k,n) corresponds to the
phase with k and n respectively representing the frequency
and the time indices. The plot of M(k,n) is usually called
spectrogram. Since M(k, n) is an image, all the image
processing techniques are available to ‘'clean' the image.
Pigure 19 shows a simplified block diagram of a two-
dimensional filter approach. The two blocks in the middle
simply identify that the magnitude and the phase functions

are modified using two separate two-dimensional filters.
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P(k,n) > PHASE

FILTER
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OUTPUT

IDFT [t
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o DFT
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=N TWO-D o
MAGNITUDE

M(k,n). FILTER

Figure 19, Block diagram for a two-dimensional
speech filter.
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The resulting modified magnitude and phase functions are
then recombined using an appropriate inverse transform and

synthesis method (6] to forw the time domain signal.

e Filtering in the Double Transformed Domain

To introduce this approach, consider the spectrogram
M(k, n) displayed in Figure 20a for the uncorrupted speech
. "Don't gift wrap the tall glass. They snook hands
for good luck."
Now consider the two-dimensional discrete Fourier transform

of M(k, n),

+(M(k, n)] = PM(k, n) /FP(k, n) (5.1)

The function FM(k, n), corresponding to the spectrogram in
Figure 20a, is displayed in Figure 20b. It is clear that
the two dimensional transform of M(k, n) does not have the
usual connotation, as M(k, n) is a function of time and
frequency. However, the function in (5.1) exhibits some
interesting properties that are amenable for  noise
filtering. TFigure 21a displays the spectrogram for the two
sentences given earlier when the speecn is corrupted by
white noise to a SNR of about O dB. Figure 21b displays the
function PM(k, n) in (5.1) for the spectrogram in Figure
21a. It is clear from Figures 20a and 21a that there is
hardly any resemblance between these spectrograms even

though the speech content is the same. However, the story
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a. CLEAN SPEECH SPECTROGRAM
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Figure 20. Clean speech spectrogram and two-dimensional transform.
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Figure 21. Noisy speech spectrogram and two~dimensional transform.
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is different for FM(k, n). Figures 20b and 21b clearly show
high energy concentrations near the origin. This
observation is used in the following.

An example of how a speech signal may be filtered by a
two-dimensional modification of the spectrogram is shown in
Figure 22. The first three parts of the figure, Figures
22a, b, and c, show the original speech spectrogram, the
noisy speech spectrogram, and the two dimensional Fourier
transform of the noisy speech spectrogram. Figure 224 is
obtained from Figure 22c¢ by using a two-dimensional filter.
This simply corresponds to passing the noisy spectrogranm
through a band pass filter. Removing the high frequencies
smooths the spectrogram while removing the low frequencies
enhances the contrast between the background and the speech
signal. Figure 22e corresponds to the filtered speech
spectrogram, which is obtained from Figure 224 by inverse
transforming. It is clear from Figures 22a and 22e that the
filtered spectrogram shows a great deal more features of the
original speech signal than the original noisy speech
spectrogram. The results presented in Figure 22 are for
magnitude filtering only. The original noisy phase can be
used for reconstructing the time domain signal.

The results presented in this chapter are still at a
preliminary stage. However, the results indicate that there
is a significant potential in studying these concepts. 1In
informal listening evaluation, the two-dimensional processed

gspeech 8sounds quieter with some added clarity. Formal
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a. CLEAN SPEECH SPECTROGRAM

€. RESULTING FILTERED SPEECH SPECTROGRAM

Figure 22, Results at each step of a two-dimensional filter process.
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N listening tests need to be conducted to justify the results.
Other aspects that need to be investigated are in the area
of improving the phase estimate and making use of the im-
proved noisy phase in reconstructing the phase. The work
done by Oppenheim et al [33] should be helpful in this en-
deavor. At the same time, the study done by Wang and Lim
[34] that the phase is unimportant in speech enhancement
. should put a different light on the phase in the recon-

gtruction of speech.

Conclusion

. v a s
PR A

This chapter presented some preliminary results on
using image processing techniques for speech enhancement.
The basic idea is that the two dimensional Fourier trans-
forms of clean and noisy speech spectrograms have most of
the speech energy concentrated near the origin and the spec-
trogram constructed from this high energy area obtained from
the noisy spectrogram has more features of the original
speech signal than the original noisy speech spectrogram.
From the informal listening tests, the two dimensinal pro-
cessed speech sounds quieter with some added clarity.

Further work is necessary in this area.
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CHAPTER VI
DISCRETE TIME ESTIMATION

The basic problem of prediction is important in many
areas, such as speech processing [6], seismic signal proces-
sing [35], control theory [36] and many others [37]. The
problem is usually reduced to finding the inverse of the
data covariance matrix. Considerable deal of work has been
done for the case of stationary process wherein the
covariance matrix results in a Toeplitz-type matrix. The
special structure of the Toeplitz matrix of order M allows
for an inversion in O(M2) operations (multiplications and
additions) compared to O(M?) operations required for the
inversion of an arbitrary matrix [38]. In this chapter, a
prediction method is presented for the case of non-Toeplitz
covariance matrices. A brief review of the problem is
presented below. Given the data y;, O < i £ N~1, find the

coefficients aj,

~ M

Yp © -z:]ai Yooi 0 <p<N-I (6.1)
]:

1 i <M, in an Mth order predictor

such that the mean squared error

Error = 2:(yp_ y )2 (6.2)
p P
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is minimized. In matrix form, the least squares problem can

be formulated by starting with

d0 ' Fyo . . .. 0
d] Yi Yo - - 0

Yo

-1 IN-TIN2 0 N
If 4 = Yyeir K2 1, then we identify the prediction as the
k step prediction using an mth order predictor. In symbolic

matrix form, (6.3) can be written as

where the bars below d and a denote that they are vectors.
It is well known that the least squares solution of

(6.4) is given by

ay = (Yy 5™ vy dy (6.5)

The recursive solutions for (6.5) have been developed by
Lee, Morf, Kailath, Friedlander and others [39-46]. The
method presented here is based purely on matrix algebra and
can be related to the earlier work. The number of oper-
ations required by this method is O(Mz)c, where ¢ is a con-

gtant.
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Set up of Recursion Equations

The solution in (6.5) will be computed in the following
manner. Let

where ’
e; = dy_q-j (6.7)
Let
E, = B (6.8)
3 Tp Y
where
T (6.9)
% ° [“p(°) . u(p-l)]
p-1
[—0 0 y ]
(0
T
B = .
P
Yo (6.10)
yo N
Pk T p)
To relate (6.8) to (6.3), we need to define K = N-M in
(6.10).
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The least squares solution of (6.8) can be obtained

from

T =
(8, B)) u, B &

and is
-1

T
by = (B, B)) By E)

and the solution in (6.5) is given by

T
By = [u(H1) uy(n-2) ... w(0)

(6.11)

(6.12)

(6.13)

The vector Ep in (6.9), derived in (6.12), will be computed

recursively and the derivation for this is discussed in the

next two sections.

Structure of B, 33

& &

The matrix B

Y
First,
5 - 0 Bp_\
p xT
.YO —-p..]
where

X 1 =[y] yZ"'yK+p-1]'
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in (6.10) can be expresseed in two forms.

(6.14)

(6.15)
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. Second,

- by XK
Bp-l gp-l
where .
1 (6.17)
A =[o 0...0 yo...yK_]]
and
T
o1 = [’m e 'yl(+p—]]' (6.18)
From (6.14), we can write
T
B
g ¥ - P']BP-] Bp-1 Zp-l
PP |1 71 2 .7 ' (6.19)
~-1"p-1 0 7 Zp-1 Zp-1
ﬁ From (6.16), we can write
T 2 T T T
A A +
. -1 -1 Ap-1 81 * Yk Gy
- B Bp = T (6-20)
A B A .+ T
1315 %k B B t S Sy .

Equations (6.19) and (6.20) will be used in the fol-

lowing for the proposed recursive algorithm.

Special Structure of Equation (6.11)

For ease of notation, let us define

Iv-]’ (6021)
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R (6.22)

gp-‘ yK = g_p-]’ (6-23)

- . 6.24

Bp-1 -Ev-1 By ( )
Bl - i .2

B Bp_] Rp_] (6.25)

Equation (6.11) can now be expressed for stages (p-1) and p

respectively by

R = (6-26)
p-1 Yp1 T B,
R L (1) H
p-1  "p-1 ¥ p-1
(6.27)
LT r w @ fyae., +X L E
p-1 p p 0 “ptk  ~p-1 p-1
where we have used (6.19) for Rp and
L2 T (6.28)
=Y %o L
Recursive solutions for (6.27) - (6.28) require the
knowledge of the solution of the following equations
Rp-] L Ip-]’ (6.29)
= (6'30)
Rp-1 Spa bpa1
= (6.31)
fp-1 Tp1 G-
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N
?} This requires a few intermediate steps, and are discussed
below.
%, Intermediate Steps
Consider the equations .
R + C T a' = 7T (6.32)
[ p-1 -p-1 -—p-’l] “p-1 -1 .
: R, +C 0] 6, =L (6.33)
K p-1 -1 “p-1| -p-1 “p-1 .
T (6.34)
® [Ro-r * Sp1 Sp1] %1 = S
?' It is well known that [47]
R -1 -1 -1 -1
o T ] T
: R.,+C . C ] = R - — R . C c .
[Fo1 * 1 &5 -1 7 5y "1 St St R (6235
with
= T -1
b SV Eoy ROy o (6.36)

Using the solutions for (6.29) - (6.31), we can write

) - 1 T 6.
%1 7! *(T) B Yp-1 (6-37)
K
2p-1 7 Sp-) -(-L Z)Ip-l (&1 2-1) (6-38)
Ap-'lyK
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] T
6' = 6 - —— 8 (G $ ) (6'59)
-1 —p-1 ( 2)—p-] -1 =p-1

Boo1 Yk
] = ___L (GT ) (6‘40)
Yoo 7 Xpa1 A 2 Jp-1 Vpoy L) -

y

p-17K

Now, we can consider the solutions of (6.29) - (6.31) for

the p-th stage. For the p-th stage, (6.29) - (6.31) can be

- expressed in the form

;
Ri-1 Lo o, (1) p-1 (6.41)
T 1A, A
r 7+ gt s ()] [al, x , +y,
0 -p-1  —p-] p -p-1 =p-1 K “ptK (6.42)
T =
+
Tt & Roop H 500 S d 1589 [Lo-1 * Sp-1 York
R -1 L 1 (1) ’—G
p —p~ xp _p-] .
T ] (2 = (6.43)
=p-1 p w2 [k Yo

Note that in (6.42), equation (6.20) is used for Rp, where

= av 2

= A 6.44

Y‘o _p_] Ap-'l + yK . ( )
The solutions for equations (6.41) - (6.43) are given

below. PFirst

T
(X A
QJ2)= “p-l p-

—
e

-5 Lhg (6.45a)




prol -1 (6.45Db)

Second,

T
AL X i+ ]- )T
5 (1) =[-—:Q-] Xp-1 * W Yok - fopy * ) Ly * Coq Ypud

p _ . . 1 (6-46&)
ro = legy +xpq) (T + 6 )
5 - . ' ' ) ' Y
p(2) 5p(]) (gp_] + lp-]) + §p-1 +_‘Lp_] ;.%tls . (6.46D)
Third,
Y, ¥ - GT 1]
. Ik Tprk — Zp-1 Cp-l
Yp(z) o Al § (6.47a)
p -1 =p-1
(6.47b)

1p(1) R P T Yp(2) Y1

The proof for these is rather straight forward, and is

;1lustrated below for (6.41). Premultiplying both sides of

(6.41) by
T (6.48)
[’ tp-1 fp-1 ]]

and using (6.30) and simplilfying, we have (6.45a). Con-

sidering the first set of equations in (6.41), we have

Ro-1 %-1 Ep-] “p(z) = 19_1 (6.49)

By using (6.29) and (6.30) in (6.48), we have




and (6.45b) follows. In a similar manner, the others can be

shown.

Final Solution

Using the analysis discussed above, we can obtain the

solution of (6.27), and is

T T
y e .. +X E - 8 H
up(2) = (Yo ®pek '%'] 3p-1) © %1 B (6.502)
r -8 L
p -p-1 -p-1

by () =y - w(2) 8y (6.500)

It is clear that the solutions for equations (6.26),
(6.29) - (6.31) are assumed to be known for stage (p-1).
The solutions for stage p are given in (6.45) - (6.47) and
(6.50). It is interesting to point out that we have used
four sets of equations to solve the generalized prediction
problem as compared to one set of Teoplitz-type normal
equations for the stationary process. Parallels can be seen
between the above solution for one set of equations and the

classical solutions of Toeplitz-type normal equations [48].
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- CHAPTER VII

DESIGN OF PFAST RECURSIVE ESTIMATORS -

In many signal processing applications, computational -
speed is of considerable importance. It is often desired to
have an excellent estimate available, and generated rapidly

from a large amount of data. This means that only a limited

£ IR

number of multiplications are allowed in obtaining the esti-
mate. It is therefore important that the multiplications be
selected so that they are maximally effective in generating
a good estimate. The coefficient involved in the multipli-
cation should be optimal, and the data multiplied should be
optimally selected with regard to some performance measure.
- It is reasonable, if much data is to be processed, to spend
o a great deal of design effort in solving the optimization
problem. Of course this design effort, if it is very in-
volved, must be done before the data becomes available, i.e.
it must not require the data but only a statistical .
knowledge of the data.

In this Chapter we propose a recursive digital filter
with a fixed number of multiplications as our estimating
- structure. In certain cases [49], primarily when state
models are available, recursive estimators have proved to be

; a computationally efficient means of 8olving the normal
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equations and generating the best linear estimate. of
course the Kalman filter [50] is the best known of such
results. The filter structure we propose is not in general
optimal. It is in part dictated by the allowable number of
multiplications. The coefficients are optimized, and the
structure is optimized to the extent that the best measure-
ments are selected. Optimal measurement strategies have
previously been considered in control and estimation appli-
cations with state models and white noise [51-54]. [n this
Chapter however, we only assume the availability of a stu-
tistical knowledge of the observation set and its relation
to the signal to be estimated. At each stage, a subset of
the data is to be summed and multiplied by the best coef-
ficient, and combined with a linear combination of previous
estimates to provide the new estimate. The parameter opti-
mization component of the design is relatively simplified,
with no difficult matrix inversions required to obtain the
best set of coefficients. The choosing of the best data
selection vector 1is shown to be related tc a classical
family of integer programming problems which have received
much attention [12, 13, 55], and include the famous
"Traveling Salesman Problem." For a good review of the
integer programming problem imbedded in this study the
reader is referred to [12]. The mcost computationally ef-
ficient means of solving the problem available at this time

may be found in [13].
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Problem Statement

Consider the situation in which a large volume of data
is available. This data is collected in one large vector,
y, having elements y;. A recursive estimator is to be de-

signed, of the form

a T M Py
=q,e,y + L X = MH1,MH2,...
Xy TS T E Yea¥ye 3T
(7.1)
where a; and Yji @are scalars to be 8selected in order ¢to

minimize the performance measure

3, = Blxx)%)
(7.2)
The parameter x is the unknown signal to be estimated by
processing the data according to (7.1). The vector, €4, is
a selection vector whose elements are only O or 1. Thus the
estimator has its complexity restricted to M+l multipli-
cations per iteration. The problem is to select the coef-
ficients, a; and Yjis and the selection vector, €5s in order

to obtain the best possible performance. The only as-

sumption required for the design is that

. T
Py Elyy"} (7.3)

Pyx = E{yx} (7.4)

are known quantities. The design is to be carried off line,

so that the only significant calculations which must be done

......
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in real time are the M+l multiplications. For 2<j<M, the

gstructure of the filter is

-~ T j“l a
i R i AR ST T
(7.5)
while x; is of the form
) - T
x, o€,y
(7.6)

Since these initial estimates require fewer multiplications,
they could be generated more quickly than the later esti-
nrates provided by (7.1). Thus a different and variable
period between estimates could be used during start up.

The problem will be solved by using the fact that

O I o L'
(7.7)

Thus the problem is solved by considering a standard L-Q

parameter optimization problem, and then optimizing with

respect to the selection vector, €

Parameter Optimization

The estimate obtained from (7.5) may be written as

.
-~ T T
J=M+1,M+2,... (7.8)
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where g is calculated recursively according

rithm

M
T T T
By = %y Y I VadPes

z = H”'l,mz,...

For 2=<j=<M, the estimate is calculated as

- T j-1
xg = a?cj y + i—l 73133-1’

and the vectors, p , are calculated as

-1

T T T
By =% * I VeiPes
z-z,...,u

The initial condition for (7.10) is

- T

b T 1 BB 4

and for (7.11),
T

B 9%

For notational convenience, we designate

The performance measure may be written as

J, = E{(x-a,c,Ty - ? 8T )2}
3 N IR T T i

§=M+1, M2, ...

to the -1go-

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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Optimization at each stage requires that

3 aJ
_3__1. 03 —8—1 =0; i=1,...,M

(7.16)
as necessary conditions for an optimum. This leads to the

set of linear equations

Pv, =d
h
) 33 (7.17)
where
-Faj'
vj = le
Y .
¥ (7.18)

Pj is an (M+1) x (M+l) symmetric matrix partitioned as
) Pee l l’ezsll '

r, o 7, [PBBJ
b

(7.19)
and dj is partitioned as
de
d, = |+
3 d,
3
(7.20)
The submatrix, Pﬁﬁ, has as its ikth element
T
P =8 P B8
i k
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The term P¢¢ is a scalar defined as

(7.22)
while P‘B is an M dimensional row vector whose kth element
is

T

P =8 . P ¢
EBk jk yyJ (7.23)

it is assumed that € # O. The term d¢ is a scaler

T
d=¢, P
€ 3 (7.24)

kth

?: and dp is an M dimensioned column vector with element

(7.25)
Equations such as (7.17) occuring in linear estimation

theory are generally referred to as normal equations. When

Pj is nonsingular, the optimal set of coefficients is ob-
&l tained by solving for v; as
-1
v, =P d
h | J 3 (7.26)

During the start up period (2<j<M), the preceding equations
(7.15 - 7.26) are applicable with M replaced by j-1. When

the set of coefficients obtained from (7.26) is used we get

Tp=1,

min {legiven € 5 Py 4y

} =P -4
h xX
ﬂj’(yj)

...............................
...................................................
..............................................
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According to (7.7), we want to minimize (7.27) with

respect to € where the elements of €5 can be only 1 or O.

Clearly this is equivalent to maximizing the expression.

(7.28)

Optimizing the selection Vector

It will be shown that the maximization of J is related
to a classic problem [12, 13, 55] generally referred to as
the quadratic assignment problem. Maximization of J* is
equivalent to maximizing a ratio of quadratic forms in €5
Although this is an easy problem, with an elegant solution
when ¢; may be freely chosen [56], it is a difficult problenm
when each element of € is either a zero or a one. There-
fore in most applications one would probably have to
restrict the selection of € to a search for the best out of
a reasonable number Of candidate vectors. The candidate
vectors would be hueristically selected, with some guiding

principles which will be discussed.

It is known [57] that pjl can be written as

-1 T Al B
"3 [BT c

. where

Yy (7.29)

. - =]
c=- [PBB-PBEPEB?ES 1 (7.30)
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= - P c
€ eb (7.31)
-1 -2
A=P -
€e Pec Pescpsc (7.32)
The performance measure may be written as
J% = d_Tad +2d "Bd +d,cd | -
€ € € g8 8 8 (7.33)

where we have left off the subscript j for convenience.
Using the matrix inversion lemma [58], we see that (7.30)

can be expressed as

-1, - -1 a1,
C=Pgg ~[Pgg lpaepeapss 1/ [2 gpgg P Pe]
(7.34)
We may write
=T
da =8 Pyx
T (7.35)
P, =8P
ge ” & Py (7.36)
if Bj is defined according to
I'B T 1
ET = jl1
3 .
T
®ype (7.37)

Substitution from (7.22) and (7.34 - 7.37) in the last term
of (7.3%) gives

T

€Q..¢€

B B eTRe

(7.38)

where R is defined as
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-1.T

. R=P P _-P
' e e (7.39)
and Q,, as
T T
Q E(AP_)R=-P AX'P
2 7 o (7.40)
: where
. -1.T
v A = 8P 8P
s o (7.41)
Similarly, the second term in (7.33) is of the form
T
2€°Q. ¢
. € B TR&:
» € (7.42)
: where
T,
Q.. =P AP
12 yy (7.43)
;; The first term is of the form
T
£ 0Q.,¢
R dTAd --—_1.'-];—.
- € € TR
O € Re (7.44)
' with Q; defined as
T
=-P P
17 e (7.45)
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Thus the expression for J* may be written as

. T

. e [0, + 29, +q,,k

A T

2 € Re (7.46)

This is more conveniently written as

T T
e [Q);40),4Q;, +Q),]e
T .
€ Re (7.47)

After substituting in (7.47) for the terms Q; 5, we get

Jhk =

T = T =aT
2 J* = P Tﬁy - e [1 g!yH]Pyx?!x[I-fxyHJ €
X ?! yx eTRe
~ (7.48)
where i
N % o ap 1T
3 M~ 8P, 8 (7.49)

The first term is a scalar, unaffected by the choice of .
The second term is a ratio of two quadratic forms in e.

Thus (7.48) may be written as

T~
Jk = P__"MP 4+ Jhk
yx

é (7.50)
where
ec’r__PT Ge
k- — yx yx
€ GPyye , €40 (7.51)
D and
: (7.52)
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The goal of selecting ¢; is to maximize the ratio expressed

J
in (7.51). The symmetric weighting matrices in the quad-
ratic forms in the numerator and denominator are positive
semi-definite, and positive definite respectively. We
remark that the maximization of (7.51) must be done at each
stage, and so it is a significant task. (We have left off
the index J indicating the jth stage.)

Although problems related to the performance indicator
(7.51) have been treated in the 1literature [53-55], the
difficulty of the quadratic assignment problem should not be
underestimated. As an example, for even a modest amount of
data, say y is of length 26, it would take over a minute to
calculate (7.51) for each possibility, assuming the calcu-
lation could be done in a microsecond. If the length of the
data vector were 100, the time required to check all pos-
sibilities would be measured in centuries.

Instead of checking all possibilities, we can restrict
ourselves to the most likely candidates, and we can elimi-
nate those selection vectors which have previously been

used, or which can be formed by summing those selection

vectors already used. Knowledge of the truly optimal linear

estimate,
- -1 N
=P P =3
o txyyy YT M1

(7.53)

can be used to find the likely candidates. As a simple

example, if
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X, = l.lyl + .9y2 + 1.0y3

& + .llyl. + .09}'5

::E_ (7.54)
then one would probably guess that e$ = [11100], fg = )
% [00011] would be excellent choices for selection vectors.

Furthermore one would expect performance to be good with
only two multiplications allowed. We believe, however, that
even with problems as simple as this, intuition is subject
to error when choosing selection vectors. Naturally when y
). is a very long vector some computational assistance will be
required %o select the candidate vectors. It should be

remembered that this is a part of the design, and that the

purpose of going to this design effort is to restrict our-
seleves to an algorithm with few multiplications required so
that the filtering algorithm generates estimates quickly.
We are willing to spend considerable extra design effort to

get a fast processor.

The Design Algorithm

& To start the algorithm, we must select oy, and ¢ to

minimize J1 where

3, - z{(x-§1)2)
(7.55)

2 T




This gives for ay,

.. T T
a € Pyxlel Pyye

1 1

(7.56)

Since when this @y is used,

T T ;T
3 P;‘ € Pyxpyx € /¢ Pyyel

) | (7.57)

ve select ¢y to maximize the quality

T T
'.cliP P cl
51

A cl Pyycl

\7.58)
Thus aq and ¢ are obtained, and 61 is found as
T T
By =
(7.59)
The next step is to form the ternm
- - T 'r
(7.60)
and evaluate
T = - =
¢, =[1 Pwuzl
(7.61)

T .
The terms G2Pyy and GSPyx are calculated. The expression
indicated by (7.51)
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J** . €, G, g§xfix62e2
2 T.T

ez G2 PyyCZ

(7.62)

is maximized with respect to €5

The coefficients, a, and Yo1 are found according to

(7.26), i.e. )

. -1
P P d
€€ 52811 €y
a
2
Y ) P 4 d
2 L ac2| Bf) | B (7.63)
where

=P ¢ P ~ g Tp
©22. 2yv 2 e "B P8
-g I T
B € P B d - g P d - T
(7.64)
Then 32 is found as
T T T
32 = a,€, + 12181
(7.65)
Using the notation indicated by (7.14)
T T T
Byy " 833" 8
T T T
By B3 8 (7.66)




and according to (7.14)

T; T
—T {831 L)

b =lﬂ32TJ " 81T (7.67)

The matrix M3 is formed as

-1, T

- = =T
(7.68)

Equations (7.61) and (7.62) are applicable with the sub-

script "2" replaced by "3" and € is selected accordingly.

The new coefficients are obtained by solving (7.26)

-1
a P P d
: .[ €33 ' ‘3“; ‘3
P P d
'3 l83e3 | 838y By
=y (7'69)
[*31
where Yo ™ and
3
Y32)
T =T, - : (7.70)
P =¢c, P _¢ P =g p
€33 3 w3 B8, ~ "3 TyyPs
¢ T - T — T
€, P_B .| =g, P -
€363 3 yy3 o N ™
(7.71)

These steps can be generalized. Let us assume that we

are in the start up period (j<M+l), and have Bj» ay» and Y

where
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We then solve for pj according to (7.11)
o
i~ 31
i 8 Teael+1 inBT
] 33 g Ay, (7.73)
and form
N r .
- 8
SRR
By41 jir
3 (7.74) )
Next, the matrix Mj+1 is calculated:
- - - - -1~
M = BnalBin®yfinl By
(7.75)
and Gj+1 is evaluated as
T -
(:J_._1 [I-P”Hj_u]
(7.76)
The vector ‘j+l which maximizes
£ 13 T T T T T,
N Tinn ™ S5a1C41fylyx  Cs41%541/%541  Cge1 ByySyma
- (7.77)
is selected.
We then solve for the coefficients
.r£ . P P -1 d ]
- 91'+1 = _finc5n ejME‘Hl 141
# Y| |Ps Pp, .18 %,
3+ j+1‘j+1| 4417541 j41] (7.78)
78
e T T T T T a’nfxixjxfxixix*xﬁxjuiufnixini=iainininixixi\i.i~1-L\;~;-I.;»I~Z-I-lx2.




where

» T
P =, . P € P =8..% 8
tj+18j+1 J+1 “yy j+1 Bj+lBj+1 B:]'l-l Py'yB_*H-l
P " me, TP B..T a €, .T B T
- P -
Sy T I TP e T G T "sjﬂ Byl Pyx (7.79)

The algorithm is then repeated as given until it is desired
to limit the number of multiplications to M+l as we have
indicated in this paper. Assuming that we have pj, ajs

and Yj for j>M+1, where

T
r [F51 4,1
B, =|: Y, =
j 'T j :
Bj-H Yj,H

(7.80)
we solve for ﬁj according to (7.9). Then (7.75) through
(7.78) are applied and (7.77) is maximized. Equation (7.78)
; is used to select the new coefficients. The algorithm is
3 thus established for all j.

The reader may be troubled at this point because it
appears that an ever larger matrix needs to be inverted at
each stage, during the start up period and that a large
matrix (if M is large) needs to be inverted thereafter. We
shall show that there are computationally efficient re-

cursive means of carrying out the required matrix inversion.

Efficient Matrix Inversion

: The Start Up Period:

It is necessary at each stage to calculate two matrix

inverses Ppp.'l and Pj‘l. In this section we indicate how
J
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to calculate these terms at stage j+1 given these terms are

available at stage j. Thus a recursive procedure is es-

- tablished. During the start up period we note that
- T T, -

P -Erp B .BjPYYB.‘L‘ BiPY!BJJ
B%"'l J+l yy i+ 3 TP 8 P
3y B8 (7.81)
55 The Matrix inverse [57], can be written as
- .
o a Py | %2
rgg 17 =7
: 3+ %12 I %22
- (7.82)
:: where
a - T T -
2 - o1 twhf Pyhy T
. I w3l
-
-8 TP E “22
o . = A Yy ies
.'_'. 12 B TP B
N 1 yy 3 (7.84)
N and 1, is

T, = - T
ay, = 'rl + B,Lryzajuzzag Povbs
P
Bj yyBj (8J Pyysj)
(7.85)

Using the matrix inversion lemma [58], we see that (7.83)
: may be written as
=
: 1 1T 1T T 1.,
X -p 1 _p~ ~ri-gp B ) TP

%22 Pssj T8, r ["ssj BPyyBsl " Fagy (7.86)
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where

3yl (7.87)
Equation (7.86) requires only the inversion of a scalar, and

. since q&% j is known, we see that we have an efficient way

‘oA =1 s -1 -1
of finding PBBJ+1 given Pﬁpa . Once %353+l

) is not a difficult matter to calculate Pj+Il using equations

is known it

(7.29 -~ 7.32) and (7.34). In this case also, only a scalar
needs to be inverted. During the start up period then,
matrix inversion does not present a problem. This is also

g the case during the remaining period with j2M+l.
After Start Up:

In the previous section a method was developed for

inverting a matrix of increasing dimension, using the result
from the previous stage. In this section we are inverting a
different matrix of +the same dimension at each stage.
Because the matrix at one stage is very closely related to
the matrix at the previous stage, it is possible to obtain
the new inverse from the 0ld, with surprisingly small amount
of calculation.

It is known that the lower right hand purtion of %Bpj+l
is the same as the upper left hand portion of P « Ope-

: BBj
5 cifically,
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B.YP 8. | BP p*

P -
88 % T I *T, §*
BBy | By Pyyfy

(7.88)
and .
*T, * *T
P = % Pw®y , B PovBin _ 1% | %2 )
8 o2 8| 8% 2 8 | lc.Tlc
3 Psafyyfy | B3fyyPiw] |12 22|
(7.89)
where
T 3
3 .
81'
=My (7.90)
Suppose that Pppfl is known and partioned as
J
p 1. [bll' P12
88 T
[blz b22
(7.91)

where by is an (M-1) x (M-1) matrix and by> is a scalar.

We know from [57], that this matrix inverse can also be

written as

-1 -1 T "1 l - -1c D]
a1 | St a6, | i
Pes, ~ Te-1 D
3 ¢y l

(7.92)




where

-1
p = [c ]

: z 1 2

: 22~ ‘12 %y (7.95)

N Comparing (7.91) and (7.92) it is clear that we can solve

for Clil in terms of known quantities.

- -1 T .
c = b, . [1-c,,b,,])
11 11 127 12 (7.94)

From the matrix inversion lemma, the above may be evaluated

. as
.t. -1
. C =P T
- 1 " by (8,010, T 0 (7.95)
Therefore when %3571 is known we may evaluate Clil with only
J
a scalar inversion. As will be seen, knowledge of Clil will

allow us to easily evaluate P -1,

As in the obtaining of
BBj+1 &

(7.92), we can derive an expression for P -1,
BBj+1
: i [ SR SRR L _:‘21’1
- il 2 712
o8 1 - d11 d112 1 11
+1 - T F
: Fdiy
d
1 J (7.96)
where F is defined as,
T
4.0,
r-[cn---—-l:‘; 12 11
11 (7.97)
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but may be more conveniently obtained, again wusing the

matrix inversion lemma:

1 -1 7
11 92 [ep50, 7, " Tt (7.98)

Only a scalar need be inverted.

F=C),

Therefore we have established a convenient mechanism of

generating Pﬁﬁj+zl' First obtain C;;”! using (7.95). Then

obtain F using (7.98) and substitute the results in (7.96).
Pﬂﬁj+zl’ it is easy to calculate Pj+il using
equations (7.29 - 7.32) and (7.34). For both start up and

After obtaining

afterwords, we have thus established a methodology for re-
cursively calculating matrix inverses. This, in effect,
frees up more time for the quadratic assignment problem
which is now clearly seen to be the only real difficulty in
the design procedure. We will not consider matrix inversion
during the transition between start up and fixed length

operation here.

An Examgle

In this section, we shall illustrate the design of the
filtering algorithm with an academic example. It is assumed
that 4 measurements are available

yk-x+v,k-1

k seees b (7.99)

and that x and Vg are uncorrelated. The noise, vy, is zero

mean with Known statistics




...........

E(v, %=1

2
E{V3 }=11 E{vivk}=0;1#k

2
E{v,“}= 2 g{v42}.12 (7.100)

and the desired signal, x, is known to have zero mean and
variance of unity. The optimal linear estimate is easily

found to be

" _1
%o ™ PryPyy 7 ™ .374y, + .187y, + .034y, + .03ly,, (7.101)

and the minimum mean square error is
-
° (7.102)
In applying our algorithm we first want the best estii-

mate which involves a single multiplication

~n

T
X, o6y (7.103)

We evaluate the choice of €, which maximizes (7.58),
limiting ourselves to three candidates which appear to be

possibilities,

€ = 1000} .
1100
1111 (7.104)

It turns out that the middle choice is the one which maxi-

mizes (7.58), so evaluating a) gives for the first estimate

x) = 286(y;1y,) (7.105)




and results in a performance,

~ .2
3 - E{ (x-x,) } = .429 (7.106)

For the next stage one could argue that the best thing to do
is to make a distinction between the two terms in (7.101)
with the larger coefficients, or to give some weighting to
the smaller terms. Thus we select ¢ from among the candi-

dates

€, = { {1000]
[01003

[o011 (7.107)
As it turns out, the last choice is the best, resulting in
the largest value of (7.62). Thus the best estimate at

stage 2 is

~

= .035(y3+y4) + .930x1

Xy (7.108)
Substitution from (7.105) gives

and this seems reasonable in view of (7.105). The per-

formance measure is

42
As an observation, the other two candidates would result in

equivalent performance with each other, a fact which could

easily be reasoned to. The reader is encouraged to work

through this example to notice that there is not enough

TYYT YTw T YT v
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difference in the choice of € to make one confident that

the "intuited" solution is always going to be the correct
solution vector even in an academic problem. This points
out the need for a mathematical approach such as developed

here.

Discussion

We have presented a method for designing a recursive
linear filter with a fixed number of multiplications allowed
for each interaction. This is ideal for the situation when
estimates are going to be required rapidly, and there will
be a large amount of data available all at once. The
problem has had +two aspects, parameter optimization, and
selection vector optimization. The parameter optimization
has been shown to have a solution which may be obtained in a
computationally efficient manner. The selection vector
optimization problem is difficult. We have related it to a
classic problem in operations research, referred to as the
quadratic assignment problem. The difficulty may be limited
by limiting the candidate vectors to a few reasonable
choices.

In this Chapter we have considered only stagewise opti-
mization rather than optimization over the entire sequence
of estimates generated. Since even the simpler problem
considered here has an open research area imbedded in it
(the quadratic assignment problem), it may be premature to

consider solving the more general dynamic optimization
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problen. The solution of such a problem is ultimately de-
sirable and could be pursued within the context of modern
control theory. It is also desirable to solve a problem

similar to that posed here, but in a more general vector

D

format. The formal mathematics of parameter optimization is
not a difficulty in pursuing the vector problem. Indeed it
is again the integer programming that presents a compu-
tational 1limitation. While we acknowledge that one may be’
reasonable speed hours of computational effort in the design
of a rapid algorithm, it is clearly not reasonable to spend
. centuries at such design.

- It is the Dbelief of the authors that the design pre-
sented herein, coupled with some heuristic appraoches toward
limiting the number of selection vector candidates, repre-
sents a reasonable approach to the design of a rapid

recursive algorithm for a certain class of important esti-

mation problems.
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2 CHAPTER VIII
CONCLUSIONS

The goal of this research was to investigate the pos-
8ibility of combining an adaptive filter with a linear pre-
dictive coding algorithm to form a robust and efficient
; system for narrowband encoding of speech signals corrupted
by noise. Various prefiltering techniques for improving
linear coding systems were evaluated. Primary techniques of
: interest were the pitch tracking adaptive filter and the
i? spectral subtraction filter. The pitch tracking adaptive

filter proved successful in suppressing white noise in

v
PO B ]

voiced speech sounds but did not work well when the noise
was narrowband such as a single sine wave. It was found
that interaction between the pitch period and the narrowband
i noise produces a bias error in the adaptation of the filter.
; Failure of the pitch tracking adaptive filters to sup-
press narrowband noise prompted the investigation of several
other prefiltering methods. The most successful of the
filters evaluated was the spectral subtraction technique.
Two modifications to the original method proved very useful
for improving noisy speech. First a dual time constant

- noise spectrum estimate improved white noise suppression and
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secondly a spectral notch feature greatly improved narrow-
band noise quieting. Also, very successful was a new filter
method based on adaptive filtering.

Work with the spectral subtraction filter method sug-

gested a more general approach to speech filtering. Short
time Fourier analysis of speech produces a two dimensional
:; representation of a speech signal which may be processed
ﬁl much like image data. The investigation found that some
types of speech and noise signals may be separated using two

dimensional filtering on the short time Fourier transform

representation of a noisy speech signal.

The performance of the pitch tracking adaptive filter
depends on the quality of the pitch period estimate used to
set the input delay. ZEarly attempts to implement the filter
were frustrated by the degradation of currently available
pitch algorithms in the presence of noise. It was found
that the adaptive filter itself could be modified to provide
a robust pitch estimate. This technique was used ex-
tensively throughout the research to provide pitch estimates
for various processing algorithms.

To complement the filtering algorithms, fast algorithms
have been derived for -efficient solution of the linear
estimation problem. These include a fast algorithm for the
solution of the general discrete time linear estimation
problem and a new recursive linear estimator suitable for
rapid estimation of a signal in noise. The approach is

related to the classical integer programming problem.
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Suggestions for Further Study

The results presented here suggest several avenues one

could take in the areas discussed. These are presented
below.
° Considering that the adaptive algorithms are compu-

tationally complex, fast algorithm development in this
area is important.

The results presented on the enhancement of speech
signals by two dimensional signal processing are still
at a preliminary stage. This approach may be
considered as a special case of the problem of
estimating time varying process parameters in the
presence of stationary noise. This area is wide open
a8 all the image processing techniques are available
for noise suppression, coding, data compression, etc.
Most of the estimation algorithms are based upon the
least squares analysis (12 analysis). It is worthwhile
to investigate the possibilities of using ¢, (or in
general Ip, 1 < p £ 2) analysis for signal estimation
when the signal is burried noise. Again, this area has
wide implication in speech processing.

In the results presented on the design of fast re-
cursive estimators, we have considered only stage wise
optimization rather than optimization over the entire

sequence of estimates. The more general dynamic opti-

mization problem may be a difficult problem to tackle.
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However, it is desirable to solve this problem and
could be pursued within the context of modern control

theory.
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CHAPTER 1

INTRODUCTION .
Cﬁ Nearly all sciences are concerned with the analysis of
'l measurement data. The following chapters will present a new -
; tool for the analysis of time series measurements; in par-

ticular, a new method of spectral estimation is presented.
Many spectral estimation methods already exist and, in-
creasingly, new methods continue to be developed; therefore,
it is appropriate to reflect, briefly, upon the reasons for
such continued activity in an area already so well re-
searched.

A synergism exists between advances in computer tech-
nology and advances in practical methods of time series
analysis. As more effective (and complex) methods of time
series analysis are developed, the demands for smaller,
cheaper, and faster digital circuitry (capable of imple-
menting these methods within the size/cost/power constraints
1 of various applications) are increased. As smaller,
‘ cheaper, faster and more reliable digital circuitry becomes
available, more complex (and effective) methods of time
series analysis become practical. Fundamentally, however,
it is the demand for improved solutions to engineering prob-

lems that motivates the desire for more effective methods of

2 time series analysis.
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Motivation

Most information we have about the world around us is

received indirectly through time series measurements. In
the case of vision, one determines the shape (and other
characteristics) of an object by reception (measurement) of
light waves scattered by the object. In the case of speech,
one determines the intended message of the speaker by re-
Pros-

ception (measurement) of acoustic pressure waves.

pecting, manufacturing, astronomy, medicine, and economics
are but a few of the areas that can benefit from improved
methods of time series analysis.

Spectral estimation is one of the most important areas
of time series analysis.

In many cases, knowledge of the

time series spectrum is adequate to answer all important
questions regarding the system producing the time series; in
the case of a stable time-invariant linear input-output
system, knowledge of the output process spectrum (together
with the statistics of the stationary input process) will
completely characterize the system.

Noise corruption is among the fundamental problems of
time series analysis. All useful analysis techniques for
measurement data are at least mildly tolerant of noise since
there always exists a small probability of measurement
error; some techniques are specifically designed to account
for knowledge of the noise statistics in the analysis of
noise~corrupted measurement data. Regardless of the analy-

sis technique, the fundamental performance limits are always
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reduced by the presence of noise.'

Consequently, it is
always advisable to minimize noise corruption as much as is
practical; still, practical constraints imposed by some
situations do not permit the reduction of noise corruption
to insignificant levels so that sophisticated analysis tech-
niques are required to achieve the best possible per-
formance.

Spectral estimation is of fundamental importance to the
various applications of speech analysis aﬁd practical con-
straints imposed by many of these applications do not permit
the reduction of noise corruption to insignificant levels.
Examples of such applications include 1low data rate
digital voice communications systems and speech
recognition/understanding systems among others; often the
cost and/or inconvenience of shielding from environmental
noise makes significant acoustic noise corruption inevi-
table.

Autoregressive (AR) spectral models have been suc-
cessful for various systems involving speech analysis; more-
over, numerous speech synthesis systems based upon the AR
model have become commercially available in recent years.

Because the currently available practical methods for AR

purameter estimation yield poor results in common noise

'In some specialiged circumstances the performance
limits are unchanged by the presence of noise. Even when
this is the case, the complexity of the analysis methods
required to achieve these limits is usually increased by the
noise presence.




environments but are effective in sufficiently quiet en-
vironments, it is reasonable to retain the AR model for the
speech process while attempting to develop improved methods
for estimating the AR parameters.

The fundamental limit to the performance of any esti-
mation procedure depends upon the available information. In
theory, even the most obscure (but not unrelated) additional
information may be used to improve a parameter estimate; of
course, one should rely first upon information that is both
easily available and expected to provide substantial im-
provement.

Most recent efforts to overcome the poor performance of
classical AR estimators in noise, including the present one,
have attempted to employ information regarding the noise
statistics in addition to the noise corrupted time series
observations. This information is often provided simply by
deploying additional sensors intended to measure the noise
directly; other speech analysis systems employ prior seg-
ments of the primary observation signal that are thought to
be free from speech activity to predict the current relevant
noise statistics.

The present work does not address the problem of ob-
taining accurate noise statistics. Assuming appropriate
noise statistics to be available, the following chapters
develop a new and improved method of estimating the AR
signal parameters from noise corrupted time series obser-

vations.




As might be expected, the method entails increased
computational cost over 1less effective techniques; it is
expected that performance requirements of speech analysis
(and other) applications - as well as cost reductions that
are continually provided by advances in computer technology-
shall, in many cases, make the advantages of this method

appear relatively inexpensive.
Overview

Chapter II provides a general discussion of the various
issues and techniques of spectral estimation; particular
attention is given to the problems of AR spectral esti-
mation. In addition, this discussion introduces basic
formulae and provides an historical perspective for the
subsequent chapters.

Chapter 1II presents the theoretical foundations of the
new (weighted information) estimation procedure. After some
additional motivational discussion, the method is formulated
as an approximation to an ideal (but intractable) formu-
lation and a generalization of a commonly employed (noise
filtering) estimation procedure. In addition to the general
formulation, significant contributions of this chapter
include the analogy leading to equation (3.20) and the
properties developed in the fifth section.

- Chapter IV discusses a variety of computational methods

relevant to AR estimation based upon the weighted infor-

mation formulation. It is considered that the area of

.......................................
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computational procedures as requiring the greatest attention
for further extension and refinement of this work. Only the
formulae for vector quantization, in particular Fauations
(4.58a) and (4.81), appear ready for detailed
cost/performance analyses.

Chapter V demonstrates clearly that the weighted infor-
mation formulation leads to reduced estimation error as
compared to the more common noise filte:ing formulation.
Examples from both simulated and real speech are provided.
The demonstration relies upon the reader's visual assessment
of scatter plots; thus it is somewhat qualitative. A more
quantitative assessment (e.g. a comperison of empirical
variance to theoretical performance bounds) would be inter-
esting; however, one would still have difficulty evaluating
the significance of a reduction in empirical variance to the
performance of a particular system. Without a full imple-
mentation one must rely upon experience and judgement as
well as the available experimental evidence.

Finally, Chapter VI summarizes the results of this
effort and provides suggestions as to how this work may be

effectively extended and refined.
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CHAPTER I1I
GENERAL DISCUSSION

Spectral estimation is a problem of statistical infer-
ence with a long history due to its pervasive importance in
scientific applications [1]. Modern eméirical spectral
analysis began to take shape as an organized discipline with
the introduction in 1893 of the periodogram by Schuster [2].

Given N observations ({x,; n=0,1,...,N-1} of a time
series at unit time intervals the periodogram, f(e), is

defined as

£(e) = Xy(ei®) Xy(e~i®)/N (2.1)
where
N-1
Xy(z) = Z Xn z™h ; z = el® (2.2)
n=0

Still in use today, the periodogram was practically the sole
computational tool of empirical spectral analysis until Yule
introduced in 1927 his method of autoregressive (AR) spec-
tral analysis [3].

An AR(P), or pth order autoregressive, model spectrum,

g(e8), is characterized by a model gain, ¢, and a monic pth
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order polynomial, zPAP(z), and is defined by them as
g(8) = ¢2/|ap(el®)]2 (2.3)

The polynomial may be characterized by a variety of parame-
ter sets. One parameter set, known as predictor coef-
ficients {an; n=1,2,...,P}, defines the polynomial according

to

P
Ap(z) = Z an Z-n » 85 = 1 (2.4)
n=0

In contrast to Schuster's nonparametric method of spectral
analysis, Yule's parametric method first introduces the
above mathematical model, justified by physical arguments,
and then uses the available data to estimate the model pa-
rameters. These estimates are provided by the solution to

the Yule-Walker [4] equations

P
:E: ﬁn-mlam = 72 6, 3 n=0,1,...,P (2.5)
m=0
where
N-n-1
rp = :Z: Xy Xpen/N 5 n=0,1,...,P (2.6)
m=0

are the biased sample autocorrelation lag estimates.
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Model Selection

A variety of other parametric spectral models have been
introduced and studied during the past half century; several
of them are worth noting. The moving-average (MA) model,
like the AR model, is characterized by a polynomial but

differs in that the polynomial appears in the numerator; the

Ty
a )

Schuster periodogram may be viewed as an MA model spec-
.= trum.! Similarly, ARMA models are described by both numer-
ator and denominator polynomials; these‘ spectra are of

. particular importance in engineering applications since they
‘i characterize all stable linear systems with a finite dimen-
sional state vector. The Blackman-Tukey [5) model spectrum
consists of a finite sum of cosine terms; it is obtained by
ti Fourier [6] transformation of the product of the autocorre-

lation sequence and a finite support window. The Pisarenko

[7] model consists of a constant plus a finite number of
delta functions. Various combinations of these models are
also occasionally employed.

Most often a new model is introduced (together with a
procedure for estimating its parameters) simply because it
Seems reasonable relative to the phenomenon being studied

and due to deficiencies in the currently popular

1Facts such as these tend to blur the distinction
between parametric and nonparametric methods. Since any
estimate can be described as a member of some parametric
family once it has been derived, the distinction may be seen
as one of spirit rather than substance.
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models.z' 5 More recently the various results of this "un-
scientific" approach have been "justified" theoretically;
this justification wusually takes the form of a principle
that should be employed as a guide when the requirement of
consistency with the available information leaves several
alternatives. The principle is usually embodied in the form
of a functional whose extreme value is to be found while the
information is provided in the form of constraint equations
(or inequalities) for this variational problem.

Much of the current literature is devoted to the "prin-
ciple of maximum entropy" which was enunciated by Jaynes
(8, 9]. If the process is zero-mean stationary and Gaus-

sian? it is completely characterized by its power spectral

density function, g(e), (or "spectrum" for short) and the

process entropy is expressed in terms of it by

m

Q = in g(e) de/2w (2.7)

°We shall adopt this pragmatic view later when modeling
speech in an acoustically noisy environment.

3Sometimes a model is used in spite of its 1less
reagsonable form simply because the available parameter
estimation methods yield more successful overall results.
Thus AR models are employed (instead of the Pisarenko model)
to estimate the frequencies of pure sinusocids in white noise
from short data records.

4The Gaussian assumption may be avoided in the case of
correlation constraints. Working directly with probability
densities the Gaussian form may be derived as that which
maximizes the entropy [10, p. 944].
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As demonstrated by Burg [11], if the entropy is subsequently

maximized subject to correlation constraints5
“ I3
r, = g(e) ein® q¢/2« ; n=0,1,...,P (2.8)
-

one may derive the AR(P) form for g(6) as given by Equation
(2.3). The AR(P) form together with the constraint Equa-
tions (2.8) are then sufficient to yield the Yule-Walker
Equations (2.5) from which the model parameters may be de-
termined. If cepstral constraints® are employed in place of
correlation constraints the spectrum maximizing Equation
(2.7) has an MA form while both correlation and cepstral
constraints lead to an ARMA model. The Pisarenko model is
"justified" by deriving it‘as the minimum energy solution
under correlation constraints7, excepting the energy ‘a = 0)
constraint [12].

Another principle discussed in the recent literature is
the "principle of minimum cross-entropy" [13]. Introduced

by Kullback (under the name "directed divergence") as an

- 'e
CON) . . AR
RO, S A R " ‘o ta lp

>The values on the left-hand side are given in terms of
the data; for example, by Equation (2.6).

6These pPlace constraints directly on the "cepstrum" (or
log power spectrum) and are expressed by Equations (2.8) if
g(8) is replaced by its logarithm while the left-hand side
values are expressed in terms of the data.

T1 may also be related to the maximum entropy prin-
ciple by noting that the AR(P) model approaches the
Pisarenko model as ro is decreased to the point where the
correlation matrix becomes singular [7, p. 355].
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information measure [14], it has a number of interesting
properties neatly collected in [15]. In terms of proba-

bility densities the cross-entropy is given by

S(q,p) = [ q(X) 1n[q(Xx)/p(%x)] ax (2.9)

and measures the expected information for discrimina ion8
per observation from q(X) (14]. A symmetric version of this
measure, S(q,p) + S(p,q), was introduced earlier by Jeffreys
[16] who emphasized the invariance of this measure with
respect to coordinate transformations; unlike entropy,
cross-entropy shares this important property.

As an inference procedure, minimum crcss-entropy analy-
sis requires a prior estimate of the density, »(Z), as well
as new information in the form of constraints and derives a
new posterior estimate of the density, q(X), by minimizing
S(q,p) subject to the constraints [17]. In the case that
the prior density is uniform the procedure is equivalent to
maximum entropy; with correlation constraints the posterior
density is found to be Gaussian AR(P) with parameters satis-
fying the Yule-Walker Equations (2.5).

8Fully, S(q,p) is said to measure the expected informa-
tion for discrimination in favor of the (correct) hypothesis
that the density is q(X) and against the (competing thoth-
esis that the density is p(X) per observation from q(X).
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Parameter Estimation

The foregoing discussion leaves the impression that the

correct path to formation of a spectral estimate is clear:
8imply select a guiding principle (undoubtedly related to
! the notion of entropy), gather the available information,
L

and solve the well defined mathematical problem that re-

sults. Seldom is the practical situation so simple.
Typically the numerical constraints are not given con-
veniently, say, in terms of exact knowledge of the autocor-
relation function at equally spaced lags. More often, only
a few irregularly spaced noise corrupted samples of the time
gseries are available; from this data the numerical con-
straints must be estimated. Even when permitted the luxury
of bountiful regularly spac~d and noise-free data, numerous
difficulties remain. Assuming a maximum entropy principle,
should estimates of the autocorrelation, cepstral, or some
other numerical constraints be formed? How should these
estimates be formed and how many9 of them should be formed?
The Yule AR(P) estimation procedure outlined at the
beginning of this chapter provides one solution: having
selected the model as AR and its order as P, form the biased

autocorrelation lag estimates, Equation (2.6), and use these

9This is the problem of order determination. Various
estimators of the order parameter, based upon notions of
information theory, have been proposed and discussed by
Akaike [18].and Parzen [19, 20] among others. Often the
order parameter is selected simply upon the basis of experi-
ence with the phenomenon under study.
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as if they were the true values. These autocorrelation lags
then uniquely determine the AR(P) model parameters (and
vice versa) via the Yule-Walker Equations (2.5). ©This de-
scription is explicit but fails to provide significant in-
sight as to why it might be good. The formulation may be
derived from a variety of viewpoints, each with its own
merit and yielding greater understanding of the procedure.

Linear Prediction (LP) theory leads to one derivation

of this formulation [21]. In this derivation the AR model
; is viewed as a predictor and the model parameters are deter-

mined to minimize the prediction error

P
m=1

in a mean-square 8sense. Depending upon the details of
treatment of the ends of the data record one may derive the
Yule-Walker procedure (also known as the "autocorrelation LP
method") or a variant known as the "covariance LP method".
Both of these methods have their proponents. The Linear
Prediction theory is very similar to Yule's original consid-
erations in which the e, are viewed as random driving dis-
turbances to the Pth order inhomogeneous difference Equation
(2.10).

Other variants of the autocorrelation LP method are
based upon a recursive lattice structure or the prediction
filter [22]. In addition to the "forward" predictor Ap(z),

these variants consider a "backward" predictor, Bp(z); both
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predictors are characterized by the set of reflection coef-

ficients [k,; n=1,2,...,P} according to

An(2z)

|
-

Ap_1(2) + ky 27 VB, _1(2) ; Ao(2z) = (2.11a)

I
—

(2.11b)

Bo(2z) = 27'By_1(2) + k, An_q(2) ; Bo(z) =
The sz-transform of the forward prediction error process
after n filtering stages is simply A,(2) X(z); similarly the
z-transform of the backward prediction error process is
Bn(z) X(z). Mean-square criteria are applied to the forward
and backward error processes to obtain a variety of
estimators for the reflection <coefficients; one of
particular importance, due to Burg [23], determines k, to
minimize the sum of the variances of the forward and
backward error processes after n filtering stages. For
truely ergotic processes, all these AR estimation procedures
are asymptotically equivalent to the autocorrelation LP
method for 1large values of N; as parameter estimation
procedures these methods are most important for problems
involving mildly nonstationary data of limited quantity.

In addition to these various "minimum mean square pre-
diction error" formulations, another important derivation of
the Yule procedure is due to Itakura and Saito [24]. As-
suming an AR(P) model for the zero-mean stationary Gaussian

process, they employ the maximum likelihood method and show
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that the solution is obtained, asymptotically for 1large N,

by minimizing a "spectral matching criterion”
I(f,8) =J(-i[f(9)/g(e)] - 1n[f(e)/g(e8)] - 1} do/2~ (2.12)

where f(0) is the Schuster periodogram given by Eauation
(2.1).

It is readily verified, by differentiating I(f,g) with
respect to the parameters of g(®), that the minimum is ob-

tained when the correlation matching property

w "
[1’(9) eln® 49/2+ = [g(e) eln® gg/2+ (2.13)

- -

is satisfied for n=0,1,...P. By recognizing the left-hand

side as the lag product autocorrelation estimates

v

r, = f £(e) oin® do/2w (2.14)
-w

the correlation matching property leads easily to the Yule-

Walker Equations (2.5); see [25, pp. 445-6]. Recently Kay

[26] has developed another variant by similarly applying the

maximum likelihood method to zero-mean stationary Gaussian

AR(P) processes but eliminating the large N approximation;

again this variant treats the problem of limited data.
The functional (2.12), although it is usually attrib-
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uted to Itakura and Saito in the current speech literature,

was apparently first developed by Pinsker [27]. Assuming
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only that the two processes are 3zero-mean and Gaussian,
d10

.l . s 8 _* "
s'eala oAy

Pinsker showe

l.' “ 0

v
4

v S(p,)/N = I(p,a)/2 (2.15)

o
.'.’C'

This theorem provides an information theoretic interpreta-
tion of the Itakura-Saito spectral matching criterion.
Moreover, from a functional inference point of view, one .
might derive the Yule-Walker procedure by replacing q by an
assumed AR(P) spectral model, g(@), replacing p by a rough
spectral estimate provided by f(©), and then minimizing
I(f,g)-

The last derivation should be contrasted with the mini-
mum cross-entropy development discussed earlier. In that
formulation the AR(P) form was derived from given correla-
tion constraints while this formulation derives the cor-
relation constraints from the given AR(P) form. Both
developments employ (different) prior estimates and minimize
a measure of information divergence between the prior and
posterior estimates; however, the information divergence is
not a symmetric measure and the unknown (posterior) estimate

appears as the second argument in the current formulation -

1OThe notation is somewhat abused here. On the 1left
p and q represent the joint probability densities of N con-
secutive random variables; on the right p and q are power
spectral density functions.




while it appears as the first argument in the minimum cross-
entropy development. Nonetheless, the resultant procedures
are both the same as the Yule procedure. in the next chap-

ter a variant of this last derivation will be considered.

Noise Corruption

The problem of noise corruption to the onbservations
pervades estimation problems. Generally all useful estima-
tors are at least mildly tolerant of noise corruption while
their performance degrades if the corruption becomes par-
ticularly severe. The most common problem considered is
that of an additive independent noise process; this problem
is of considerable importance in practical applications.

Upon initial reflection, the problem of estimating the
parameters of both the noise and signal processes from time
series observations alone may seem impossible. Indeed, the
problem of determining the individual variances of two inde-
pendent additive zero-mean stationary white Gaussian proces-
ses is completely confounded regardless of the quantity of
data available. However, if one process is non-Gaussian,
estimates of third and higher order statistics can be useful
in estimating these lower order statistics. Parzen discus-
ses the use of the "bispectrum" to estimate the spectrum of
a non-Gaussian process in additive independent white Gaus-
sian noise [28].

When both processes are Gaussian the problem is not

always confounded. Since the sum of two additive
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independent ARMA processes is also an ARMA process one might
hope to find estimators for the parameters of the two addi-
tive processes when the number of parameters for the com-
bined process is not exceeded by the total number of
parameters of the two processes. For example, Pagano [29]
discusses the problem of estimating the P + 2 parameters of
additive AR(P) and white processes by first estimating the
2P + 1 parameters of a single equivalent ARMA(P,P) process
and then using these 2P + | estimates to initialize a pro-
cedure for estimating the originally sought P + 2 parame-
ters; it seems critical however that the order of the AR
process does not degenerate (i.e. is actually nonzero)-.

This latter problem is fairly close in spirit to the

problem considered in the following chapters. There the
signal and noise processes are additive, independent, and
zero-mean Gaussian; moreover, the signal process is AR(P).
The problem may seem more complex because the noise process
need not be white; however, a considerable simplification is
achieved because the noise process spectral density (hence,
all its statistics) is assumed to be known in addition to
the time series observations. 1In practice the noise statis-
tics are estimates provided by other observations but the
large amount of data available for these estimates makes

them quite reliable.
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Noise Filtering

Wiener [30] considered the intimately related problem
of extrapolating a time series from noise corrupted obser-
vations. When the zero-mean signal and noise processes are
additive and independent with known power spectral density

functions (g(®) and p(e) respectively) then the minimum

variance linear extrapolating filter is the Wiener filter

whose frequency response characteristic is

H(e) = g(e8)/[g(8) + n(e)] (2.16)

This is sometimes referred to as the unrealizable Wiener
filter since it is noncausal; the corresponding impulse
response function extends both backward and forward in time
to infinity. It is easy to show that the variance of the
extrapolation can only be reduced to zero if the support of
the signal spectrum has a null (or zero-measure) inter-
section with the support of the noise spectrum; in this case
the frequency response, H(®), will be unity on the support
of g(®) and zero elsewhere. Others, most notably Kalman
[31], have since extended and refined Wiener's pioneering
work.

A common procedure for dealing with additive noise is
to first form a realizable estimate of the Wiener filter (or
some other "optimal" filter), ﬁ(e), and apply it to the
noise corrupted observations. The resulting data are then

treated as noise-free observations of the signal process and

123

..................




Standard estimation procedures are employed to obtain an
estimate of the signal spectrum. When the noise spectrum,
pu(®), is known this procedure involves some mildly circular

reasoning since Equation (2.16) indicates that knowledge of

H(®) is equivalent to knowledge of g(e).11 Nonetheless, this
= process has been demonstrated to be advantageous in speech
i analysis and other applications; a survey of these methods
ig may be found in [32]. -
E' Much recent effort [33-39] has concentrated upon imple-
mentation structures and estimation procedures for H(e);
ii typically these procedures employ side information in ad-
} dition t~ the noise corrupted time series observations.
Often the methods are nonlinear and time-varying with both
theoretical and heuristic foundations. Regardless of the
technique, one may always subsequently define a short-time-
invariant linear equivalent frequency response character-
istic in terms of the short-time input and output signal

z-transforms, X(z) and Y(z), by

H(e) = Y(el®)/x(el®) (2.17)

""Hence we would have g = pH/(1-H). The conceptual
difficulties may be circumvented by considering the overall
noise cancelling filter/spectral estimation scheme as a
single estimation procedure; especially since the procedure
usually does not employ (2.16) to form the final estimate of
the signal spectrum.
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One convenient categorization distinguishes frequency
domain methods [33-36] from time domain methods [37-39].
Among the frequency domain methods, the noise cancelling
filter frequency response characteristic usually appears
explicitly; the simpler (and less heuristic) methods present

H(®) as a function of the short-time signal to noise spec-

tral density ratio estimate!?
SNR(e;e) = {[£(8)1% = [k(8)1%}/[n(e)]” (2.18)

Two important classes of filter response characteristics are

the subtraction class given by13

f,(e;,8) = {SNR(8;a)/[1 + SNR(e;a)]}P (2.19)

and the soft suppression class given by

2 Hy(0;a,8) = {[1 + Hy(0;e,1/2)]1/2} {0(0;2,B)/[1 + ®(0;a,p8)])
- (2.20a)

12gquation (2.18) employs the monus function, defined
by x+y = (x-y + |x-y|)/2, to insure a nonnegative result.

15Various special frequency response characteristics
are worth separate mentjion here. The Wiener filter [30]
frequency response is 31(9;1,1). The power Subtraction
filter and the magnitude subtraction filter ([35] have fre-
quency response characteristics Hy(8;1,1/2) and 31(0;1/2,1)
regpectively. Finally, the soft suppression class due to
McAulay and Malpass [36] has the frequency response
32(6;1 vB)O
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®(0;e,8) = exp[-p) Lo[2 \ B[1 + SNR(e;e;] ] (2.20b)

and I,[-] denotes the zeroth order modified Bessel function
of the first kind. These "suppression rules" are plotted
for selected values of « and p as a function of SNR(6) in

Figure 1.

Effect on Resolution

In speech applications, vocal tract resonances are not
extremely sharp and are moderately well separated in fre-
quency; consequently one 1is generally concerned with ac-
curate estimation of the spectral shape and high resolution
estimation is not a priority.14 In other applications (such
as sonar, radar, and medicine) accurate frequency estimation
and resolution of discrete ("line") and narrowband spectra
are 1issues of fundamental importance. Periodogram and
Blackman-Tukey spectral estimates have a fundamental fre-
quency resolution 1limit determined by the length of +the
observation interval; AR eatimators have become quite popu-

lar due, in part, to their greatly improved resolving power.

14Hence, even very low resolution methods that divide
the ( 4 kHz) voice bandwidth into fewer than two dogen
"channels" can be quite effective.
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E: Still, the resolution (as well as other performance indi-
cators) varies among the different AR estimators and, for
each, is influenced by a variety of factors.

Noise corruption is one of +the important factors

limiting the resolving power of AR estimators. Several

> authors have considered the problem of estimating the pa-
rameters of a fixed number of sinusoids from discrete-time
observations corrupted by zero-mean additive white Gaussian
noise of unknown variance. For this specialized problem the

Cramér—Rao performance bounds15 may be computed [40]. As is

well known, the complicated nonlinear maximum likelihood
estimation procedure will achieve these bounds; Tufts and
Kumaresan [41], using AR estimation procedures, have de-

veloped computationally simpler high resolution frequency

estimators that nearly achieve these bounds while Cadzow,
;:. et. al. [42] claim still better performance using a singular
- value decomposition (SVD) approach. In many practical cir-

. cumstances additional information may be available so that

'
151n general, the Cramer-Rao bounds indicate the mini-
mum variance a parameter estimate can achieve [43]. An
estimate achieving the minimum variance is an "efficient"
estimate. In [40] the bounds upon an unbiased frequency -
estimate are considered (they depend upon the assumed
distribution as well as the number of data points) and are
resented as a function of the signal to noise ratio. 1In
f44j, the efficiency loss of any method based upon the use
of correlation estimates instead of the original data is
studied.
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these bounds may be axveeded;‘6 for example, Quirk and
Liu [45] describe a simp.e filtering and decimation scheme
(which employs knowledge of the frequency bands in which the
sinusoids are located) that improves the resolution of (any)
subsequent AR estimator. In a similar vein, adaptive pre-
filters (that employ a reference process correlated with
either the signal or noise portion of the objective process,
but not both) have been devised to "enhance" narrowband

signals in noise [46].

Quantization and Computation

While spectral estimation, per se, is not concerned
with the problems of quantization and computation, the ulti-
mate utility of an estimation procedure can depend strongly
upon these (and other) issues. If the procedure explicitly
recognizes that only one of a finite predefined set of
conclusions can be reached, the situation is sometimes dis-
tinguished by referring to the "detection" (instead of the
"egtimation") problem.

In many digital speech recognition and communication
systems the goal of spectral analysis is to solve a detec-
tion problem; in addition, the system designer must solve

the problem of selecting the best finite set of models to

16More precisely, the true bounds are reduced by the
availability of additional information. Consequently new
egtimators that account for this additional information can
be devised that outperform (in terms of variance) any esti-
mator that does not account for the additional information.
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employ. Until recently, these systems would find the solu-
tion to an estimation problem and then employ a (somewhat ad
hoc) quantization procedure to select a model from among the
finite set. If the number of models in the finite set was
sufficiently large, this procedure could be quite effective;
however, one measure of goodness for the finite set of
models is often how few models are in the set.

In the past decade technological advances have permit-
ted the use of increasingly complex computational procedures
while still meeting size/cost/power constraints imposed by
the application. Consequently more sophisticated and ef-
fective (but previously unmanagable) techniques for esti-
mation/detection and quantization of spectral models have
been studied in earnest. The numerous variants of a class
of techniques generally referred to as "vector quantization"
[47-53] have recently achieved considerable succeas by re-
ducing the finite number of models by about 9 orders of
magnitude with only slight degradation in other measures of
gystem performance.

Many of these vector quantization techniques are
founded upon minimization of <the asymptotic information
divergence I(f,g). Of considerable interest in the use of "
this measure is the triangle equality property; if g(e)
minimizes I(f,g) over the set of all stable AR(P) models and
h(e) is any other model in a (possibly finite) subset then

I(£,h) = 1(£,8) + I(g,h) (2.21)
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As a consequence of this property one may solve the detec-
tion problem, which minimizes I(f,h), by first solving the
estimation problem, which minimizes I(f,g), and then solving

the quantization problem which minimizes I(g,h).
Remarks

The general problem of spectral estimation has been
discussed; this discussion has emphasized issues and methods
associated with autoregressive estimation. Autoregressive
spectral models are important in numerous practical applica-
tions; consequently they have received considerable at-
tention in the literature. The AR form may be derived from
either the maximum entropy or the minimum cross-entropy

principle when correlation constraints are considered; al-

ternatively the AR form may be assumed and correlation con-
straints derived using a linear prediction formulation. The
: correlation constraints, together with the AR form, are
! sufficient to derive the Yule-Walker equations which relate

. the model parameters to the prescribed correlation values.

The asymptotic maximum 1likelihood formulation of
Itakura and Saito assumes an AR form and derives the corre-
lation constraints; in the course of this development a
"spectral matching criterion" is minimized. The earlier
derivation by Pinsker of this spectral matching criterion
from an asymptotic information divergence formulation makes

clear that, while the AR form is necessary to derive the
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Yule-Walker equations, the spectral matching criterion is

applicable independant of the spectral model form.

Noise corruption pervades estimation problems and use-
ful estimators are generally at least mildly tolerant of
additive noise. Often additional data is available to help
characterize or distinguish the noise and signal processes;

many estimation problems are concerned with the development

of effective and computationally feasible methods for in-
corporating this additional information. A common pro-
cedure, employed when an accurate noise spectrum estimate is
ii known, first applies an estimated noise cancelling filter to
o the corrupted data and then uses the output as "noise-free"

- data from which to estimate the signal spectrum. Ultimately

performance possible with any spectral estimator.

In the following chapters a new spectral estimator is

ii the effect of noise corruption will be to decrease the best
4
Y
1

developed. As is common, the fundamental observations are
- assumed to be equally spaced samples of a zero-mean station-
ary Gaussian time series corrupted by additive independent
zero-mean stationary Gaussian noise of known power spectral
density, u(6). This problem occurs in many applications
involving speech analysis (as well as others) wherein the
noise spectrum is estimated from data taken during speech
inactivity.

The amount of data available to estimate the signal
spectrum is usually limited by the nonstationary character

of speech; the speech statistics are usually stationary only




over very short time intervals varying in duration. Une
study [%54] has observed speech waveforms and subjectively
judged that the duration for which a segment may be con-
sidered stationary varies from about 4 ms. to over 360 ms.
with most of the distribution contained in the range of 12
ms. to 174 ms.; most speech analysis systems employ a fixed
analysis interval approximately 20 to 25 ms. in duration.
The use of a fixed analysis interval (with no particular
attempt at optimum time alignment of end points) is simply a
practical method of limiting the computational burden; while

suboptimal spectral estimates are thereby achieved for long

acoustic events, perhaps the most severe deleterious effect
is the slurring of very short events and transitions.
In order to employ at a later time a noise estimate

obtained during speech inactivity, the noise statistics are

"7"""“".'."
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assumed to remain stationary over much longer time inter-

vals; since one of the primary noise sources is ambient

-
""' ‘

environmental noise acoustically coupled to the speech, the

validity of this assumption must be checked in each situ-

ation. In many practical circumstances the noise is
stationary over long intervals; for example, in aircraft,
the noise statistics typically vary only with the flight
condition. On the other hand, if the corrupting noise is
another speech signal the assumption of long term noise

stationarity is certainly invalid.




CHAPTER II1

THEORETICAL FORMULATION

In this chapter several related procedures for esti-
mating AR(P) process parameters from noise corrupted time
series observations are developed. In the first gsection the
problem is motivated as one arising in speech applica-
tions. In the next section an ideal formulation is discus-
sed; unfortunately the resulting nonlinear system of
equations is sufficiently complicated to make analytical
solution intractable.! In the third section a first ap-
proximation to the ideal formulation is developed and shown
to be essentially equivalent to the noise filtering pro-
cedures discussed in Chapter II. In the fourth section a
second, improved, approximate formulation employing a

weighted information measure is developed;2 some important

' Numerical solution may be feasible in some cases but
this is not investigated in the present work.

2This weighted information formulation assumes a cen-
tral role in this work. In fact, this was the original
foundation and was developed heuristically following the
work of Chu and Messerschmitt [55, 56]. The theoretical
foundation (as an approximation to the "ideal" formulation)
was subsequently developed because the heuristic development
could only specify the weight function qualitatively and a
more quantitative characterization was required.




properties of the weighted information measure are derived
in the fifth section. Finally, the last section reflects
upon these formulations, their relationship to other estima-
tion procedures, and problems of spectral estimation and

speech analysis to which they may be applied.

Application to Speech Analysis

Acoustic events in speech are often modeled as a white
zero-mean Gaussian stationary excitation of a linear systenm.
The linear system response is usually identified with the
vocal cavity response which depends upon the position of
speech articulators (tongue, lips, teeth, etc.); the exci-
tation is usually assumed to be physically localized al-
though its position may vary with different speech events.

The linear system model may be criticized in various
ways; s8till it has had considerable success in practical
situations. The particular case of an AR (or all-pole
linear) system model can be justified on the basis of a
lossless acoustic tube of varying cross-sectional area. The
analogy of an acoustic tube with the oral or nasal cavity
alone is clear; however, some speech sounds reflect the
combined response characteristics of the oral and nasal
cavities indicating that a full ARMA model would be more
appropriate. A more complete discussion of acoustic tube
modeling of the vocal tract may be found in [21].

Based upon the considerable success of AR models in

speech applications, as well as the physical analogies that
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may be drawn between AR models and the vocal +tract via
acoustic tube modeling, the AR speech model is adopted here.
In most applications the deleterious effects of the pressure
transducer, analog amplifier, anti-aliasing prefilter, and
the digitizer have been carefully minimized and may be ig-
nored. Some applications permit the system designer +to
ensure that the pressure transducer response reflect only
the speech of the intended speaker; more often, conflicting
goals deny the designer this flexibility so that the micro-
phone transduces other ambient environmental acoustic events
that appear as unwanted "noise"™ in the observed signal.
Consequently, while the AR model is adopted for the speech
spectrum, it is inadequate as a model for the observed sig-
nal spectrum.

Some ambient noise is a direct environmental response
to the speech itself (e.g. echoes) or is short, transient,
and generally unpredictable by nature (e.g. a gunshot,
dropped book, engine backfire, cough, etc). Other ambient
noise is repetitive (e.g. machine-gun fire) or steady by
nature (e.g. drone of engines, rushing air, running water,
whine of a turbine). This last (steady) type of noise is
the primary focus of many speech analysis systems; typically
these systems exploit the steady nature of the noise +to
determine noise statistics during speech activity from sig-
nal observations made during speech inactivity. With multi-

ple transducers (or other clever system design techniques)

the statistics of a much broader class of noises may be
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known during speech activity. In the following it is only
assumed that, during each analysis interval, the noise in
the primary (objective) observation signal be zero-mean
Gaussian stationary additive and independent of the speech;
the noise is, therefore, completely characterized by a spec-
tral density function, p(®), which is assumed to be known.
The goals of speech analysis are many and varied. 1In
communications the goal is often to achieve a minimal data
rate subject to a quality or communicability constraint. In
artificial intelligence the goal is usually to "understand"
the speech with phonetic or written transcription often
arising as an intermediate step. Some other goals include
the identification of the speaker, the identification of the
language, translation of the voice of one speaker to that of
another in the same or a different 1language, and +the
screening/diagnosis of disease (e.g. 1laryngeal cancer).
Spectral estimation is at the foundation of speech analysis
for all these goals and accurate AR model estimation in
noise is fundamental to the estimation of speech spectra in

practical environments.

Ideal Formulation

Let

h(e) = g(e) + wu(e) (3.1)
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be the observed process power spectral density model where
u(@) is the known additive noise process spectrum and g(e)
is the unknown AR(P) power spectral density model character-
izing the signal process; see RZquation (2.3). Let f(e) be
the Schuster periodogram defined for the N time series ob-
servations by Equation (2.1). If the signal and noise pro-
cegsses are independent zero-mean real stationary Gaussian
processes then the maximum 1likelihood method 1is asymp-
totically equivalent, for iarge N, to minimizing I(f,h) with
respect to the AR(P) process parameters. Any parameter set
minimizing I(f,h) and corresponding to a stable AR(P) pro-

cess shall be considered here to be an ideal solution to the

estimation problem.

This formulation of the estimation problem as a minimi-
zation problem may also be derived from an information theo-
retic viewpoint. Let fle) be the true observed process
power spectral density so that I(f,h) represents the asymp-
totic information divergence between the true spectrum and
an arbitrary model spectrum. Clearly it is desirable to
find the model h(6) minimizing I(f,h); if the minimum value
is zero then h(@) = f(e) almost everywhere. Since f(@) is
unavailable, replace it by a rough estimate, f(®), and find
h(e) to minimize I(f,h).

Minimization of I(f,h) is subject to several inter-
esting interpretations; the maximum likelihood and minimum

information divergence interpretations have been given
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above, a third noise filtering interpretation is now pro-
vided. Notice that I(f,h) = [(Hf,g) where H(®) is the fre-
quency response of the Wiener filter given in kauations
(2.16). The quantity H(e)f(®) may be interpreted as a rough

estimate of the spectrum of a process obtained by passing

the observed process through a filter whose power3 spectral
response characteristic is H(@); minimization of I(f,h) =

I(Hf,g) may then be understood as a standard LP (or maximum

entropy, etc.) fit to the noise filtered process. of
course, H(®) is not known but is a function of the unknown

parameters of g(@); one must simply imagine finding a pa-

T

rameter set defining H(®) that also corresponds to the best
LP fit, g(®), to the output process.

The functional I[(f,h) is minimized by computing its
derivative with respect to each parameter of g(6) and set-
ting the result to zero. For an arbitrary parameter, £,

this is

.r1rﬁ'rrvvw T
Pt i o .
e R .

f{[ﬂ(e) g(e) - H2(e) £(0)]/a%(8)} (ag(0)/8t) de/2w = O
- (3.2)

3This is not to say that the observed process is passed
through a Wiener filter whose frequency response is H(e).
Recall that the Wiener filter Is gesigned to minimize the
mean-square prediction error; the output process doing this
does not have the signal process spectrum, g(6), but instead
the spectrum H(e)gf;). Alternatively, H(e)f(e) may be
interpreted as a rough estimate of the cross-spectrum
between the input and output processes of the Wiener filter.
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Using Eauaions (2.3) and (2.4), the partial derivatives of

&(8) are

58(0)/362 = g(8)/c? (3.3a)

and, for t=1,2,...,P

M-

8g(8)/9a, = -g2(e) 2ay cos[(1-m)8]/e? (3.3b)
m=Q

Defining4

v, = [{32(0) £(8) - H(®) g(o)} ein® gg/2n (3.4)

and substituting Equation (3.3) in Equation (3.2) yields

P P
> (a/e?) D" (ag/e?) ¥y g = 0 (3.5a)
m=0 £=0

and, for t=1,2,...,P

P
Z (ap/e2) V, p = 0 (3.5b)
m=0

while a little further manipulation of Equations (3.5)

4It is worth noting that the quantities, V,, defined by

n
Equations (3.4) are the components of the gradient vector of
I(Hf,g) where differentiation is defined with regpect to the

%nver§e correlation parametrigation of g(®); see Equation
3.22).
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yields, for 2=0,1,...,P

fing
1] o]
(o]

am Vl_m = O (job)

i The symmetry of the functions f(e), g(®), and H(6) may be
used to demonstrate that V_, = V, while it is easy to see
that Equations (3.6) are satisfied if

Vy = 0 ; n=0,1,...,P | (3.7)

To show that Equations (3.7) must be satisfied if a
stable filter is to be obtained, rewrite the system of

Equaticns (3.6) in matrix form as

" - - - - - -
1 a3 +*+ ap_1 ap 0 O oo 0o O VO 0
aq as eee ap 0 0 1 «ee 0 O Vi 0
: A HE S L ER Y P N R
' aP_1 ap e 0 0 0 ap_p **° 1 0 VP_1 0
{: aP 0 eee O 0 0 ap_q *°°* 24 1 ) LVP LO i
" L - - -
:'.'_ L o (3.8)

The coefficients of a stable P-18% order predictor {&,; n =
1,2,...,P-1} are given recursively in terms of a stable pth

order predictor according to

(] ]
a 3
(I +kp J]°! E = E (3.9)
ap-1 ap-
%P °
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where 1 is the identity matrix, J is the reversal matrix

[0 0 =+ 0 1]
0 0 1 0
Jd = : E : (3.10)
o 1 0 0
1 0 «- 0 O]
kp = ap is a reflection coefficient” and
(I +kp g}t = [I-kpdl/(1 - kp?) (3.11)

Applying the nonsingular transformation® [I + kp J1-! o

Equation (3.8) does not change the solution and yields

1 &y e d8p_q O 0 0 «+ 0 0 vo 1 [o]
ay a5 - 0 0 0O 1 <+ 0 O vy 0
i S I EO R L E A
ap_1 o - 0 0 0 ap_zo--1 0 Vp_1 0
Lo o - o 0] 0 8p_geedy 1) vp | |o]
P

5These are the same reflection coefficients used in the
forward-backward recursion; see Equation (2.11).

6Bounded input, bounded output (BIBO) stability re-~

?uires and is guaranteed by the condition [kl < 1 for n =

v2,..+,P which also guarantees <that the indicated
transformation is nonsingular.
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The last equation shows Vp to be a linear combination of

VosVis:e.,Vp_q and the reduced system

is of the same form as

Equation (3.8).

(
1 a4 ap_y 0 0 Vo 0
a a 0 o 1 v 0
ik 2 ; - \ AN :
ap_1 0 e 0O 0 ap_1 Vp_j 0
. (3.13)

Consequently, sta-

bility requires that each V, be a linear combination of the
previous V‘, t=0,1,...,n-1, while the final reduced systen
is simply V, = 0. Hence, if only stable minima of I(f,h)
are sought these minima must satisfy Equations (3.7) which

may be rewritten, for n=0,1,...,P, as

fﬂ(e) H(e) f(e) ein® go/2r =

-w

[H(e) g(e) ein® ge/2¢ (3.14)

-

This is a highly complicated nonlinear system of equa-
tions that appears to be very difficult to solve analyti-
cally. Note that, in the absence of noise, u(@) = O and
H(®) = 1 so that the system reduces to Equations (2.13) as
expected; in this case it is well known that the system
always possesses a unique stable solution.

In general no admissable solution exists; the following

example will serve to illustrate. Consider an AR(O) process

corrupted by white noise of known variance p. The system of
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equations reduces to

Ty = ff(o) d8/2v = ¢ + p (3.15)

-

If ro 2 » the system is solved by o2 ro -k which yields
the minimum value I(f,h) = I(f,r,) = O. If ro <1 the
system does not possess a real solution; however, I(f,h) is

alwvays minimized by selecting el = Ty = H.

Noise Filtering Formulation

Since Equations (3.14) appear so difficult to solve, it
is natural to consider alternate formulations. From the
observation that I1(f,h) = I(Hf,g) and the interpretation of
H(®) as the power spectral response of a noise filter a
simple and reasonable procedure is to replace H(e), which
depends upon unknowns, by an estimate ﬁ(e). Several classes
of estimates have been presented in Equations (2.19) and
(2.20).

Once the data has been processed by the filter with

power response ﬁ(o) a "noise-free" rough estimate is avail-

able
f(e) = H(e) £(0) (3.16)
- ) )
*: Then, minimization of I(f,g) = I(Hf,g) ie achieved by the
-
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solution tc the equations

n ”

fﬁ(o) f(e) eln® gg/2¢ = | g(o) eln® gg/2n

N “"for n=0,1,...,P (5.17)

This, of course, leads easily to the Yule-Walker equations
with the difference that the estimated correlation values
- are now given by the left-hand side of Ecuation (3.17); the
reader is urged to compare this equatioﬂ with Equations

(3.14) and (2.13).

Weighted Information Formulation

The previous approximate formulation encompasses a wide

variety of estimation procedures that have been studied in

Mt SRR IR Eeeagr

recent years. If f(e), given by Equation (3.16), is a good

Ty
PhEOAEN

rough estimate of the noise-free power spectral density the

resultant model parameters can be expected to be accurate.
Consequently, considerable effort has been expended trying
to find the best form of ﬁ(e) and, ultimately, the best
means of computing the correlation values on the left hand
side of Equation (3.17).

Generally speaking, any estimate can be expected to be
more accurate if there is less corrupting noise; in particu-
lar, f(e) can be expected to be more accurate in those spec-
tral regions where the signal to noise density ratio is
large. Since the reliability of the rough estimate f(e)

varies with frequency, the criteria for fitting a model to
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f(e) should reflect this variation in reliability. The

frequency weighted spectral distance measure introduced by

a
Ty

J,I'
8 7

Chu and Messerschmitt [55, 56) provides precisely the re-

i i

quired flexibility for such a criteria. The criteria is
2 derived from the asymptotic information divergence, I(f,g), .
by noting that the integrand in Equation (2.17) is a non-
negative error measure; the frequency weighted variant is
obtained by introducing a multiplicative nonnegative weight
function to the integrand of I(f,g) to yield

w
- Iy(f,g) = | w(e){[£(e)/g(e)] - 1n[£(6)/g(e)] - 1} d8/2nw
-w (3.18)

If W(e) is constant, minimization of Iy(f,g) = Iy(Bf,g)
is equivalent to minimization of I(f,g) = I(8f,g). To re-
flect the greater reliability of ?(e) in some spectral re-
gions, W(®) should be selected to be large where the signal
to noise density ratio is large. To remain consistent with
AR estimation procedures that work well in the absence of
noise, H(®) should approach unity and W(®) should approach a
constant as u(6) approaches zero. Specific procedures for
VE selecting H(®) have been studied in the past [32-39] and
: important examples are given in Equations (2.19) and (2.20);

the above considerations provide a qualitative understanding

of an appropriate selection for W(®) but a more specific,

quantitative understanding is required.

146




To minimize Iw(ﬁf,g) Equation (3.18) is differentiated
with respect to the parameters of g(6) and the results are
gset to zero. The procedure is the same, mutatis mutandis,
as that followed for wminimizing I(Hf,g) and yields the

system of equations

w T
IW(e) H(e) £(e) ein® go/on = [w(e) g(e) eln® gg/on (3.19)
n -

Comparison of Equations (3.19) to Equations (3.14), which
result from the ideal formulation, immediately suggests the
required quantitative criteria for selecting W(®). Specifi-
cally, W(®e) should be selected so that, at least approxi-
mately,

w(e) = H(e) (3.20)

and ﬁ(e) should estimate H(®). This selection is supported
by the previous heuristic considerations which indicated
that W(e) should be large where the signal to noise density

ratio is large.

Properties of the Weighted Information

In this section three important results concerning the
weighted information measure, Iw(f,g). are developed. These
results also apply to the asymptotic information divergence,
I(f,g), as a special case where W(6) = 1. The first result

generalizes the triangle equality property for I1(f,g), see
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Equation (2.21); that this property generalizes appro-
priately is of interest to +the wuse of the weighted
information measure in place of the (unweighted) asymptotic
information divergence for vector quantization.

The Kullback information number and the asymptotic
information divergence are well known to be convex with
respect to general classes of probability and spectral den-
sities. With the appropriate definition for convex super-
position of AR(P) spectra, the second impbrtant result is

that the class of stable AR(P) spectra is convex and the

weighted information measure is strictly convex with respect
to this class.7 As a consequence, Iw(ﬁf,g) can have at most

one local minimum with respect to this class; moreover, if

such a minimum exists it is also a global minimum.

Finally, the third result shows that the second mixed
partial derivative of Iw(ﬁf,g) defines a positive definite
quadratic form. This shows that any stable solution to
Equation (3.19) is a local minimum of Iw(ﬁf,g); this could

3N N M o e
(O] DA R »
ettt .'."-'.‘ e

also have been demonstrated using the strict convexity.

Combined with the previous result this shows that Equation

7A set, &, is convex if it always contains the convex
superposition of two elements in the set. A convex super-
% position is a map xz = CS(xy,x;Y) defined for 0 < Y < 1 and
- all xy,xp ¢ such that x3 = xy if v=1 and x; = X
- if vy=0; if x4 = x then x3 = x3 = x4 for all Y. A func-
tion f(x) defined on a convéx set & is said to be convex if
YE(x:) + (1-Y) £(xp) > f(x3) and strictly convex if equality
1mp11es Xy = X3. -
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(3.19) can have at most one stable solution (although un-

stable solutions can, and often do, exist); moreover, if
such a solution exists, it is the global minimum among
stable AR(P) spectral models.

The question of existence is not addressed in this set
of results. The existence of a stable solution to Eauations
(3.19) is assumed but remains an open question in general;
existence can be demonstrated in special cases, e.g. W(0) =
1, while experimental results are discussed in Chapter V.
Because the proofs are nonconstructive, they do not assist
with the question of existence nor do they provide algo-
rithms for computation of a solution; computational pro-
cedures are discussed in Chapter IV. It is worth noting
that if no solution to Equations (3.19) exists then, since
Iw(ﬁf,g) must possess a minimum in the closure of the set of
stable AR(P) spectra, the minimum occurs as a limit point of
the set.

To simplify the following discussion the set of stable
AR(P) spectra shall be denoted ®p. Each element of the set
may be characterized by a P+1-tuple of real parameter values
satisfying appropriate (stability) criteria. Four charac-

terizations of &, are presented below:

Predictor Coefficients. Let Ap(z) be given by Equation

(2.4) with all roots of Ap(z) inside the unit circle. Then
(¢yay,a82,...,8p) denotes an arbitrary element of &p |if

c> Q.
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Reflection Coefficients. Let Ap(z) be given by

Kquation (2.11) with |k, ¢ 1 for n=1,2,...,P. Then
(o,kq,kp,...,kp) denotes an arbitrary element of & if

o> 0.

Autocorrelation Coefficients. Let the real symmetric

Toeplitz quadratic form given by

P
(%) = Zr'm_m Xm Xn | (3.21)

m,n=0

be positive definite. Then (rg,ry,...,rp) denotes an arbi-

trary element of Rp.

Inverse Correlation Coefficients. Let

P
1/g(8) = Zum‘ ein® (3.22)

n=-pP

be a positive tunction of € in [-w,w). Then (uy,uy,...,up)

denotes an arbitrary element of &p.
These represent only a few of the infinitely many ways
-~ of characterizing &. The first three parametrizations are

well known with the corresponding terminology well estab-

L2 v

v L o 2
., ° ',"'- N N
'Lt A L L
e L i

lished in the 1literature. Each set of predictor coeffi-
cients is related to a unique set of reflection coefficients

by a continuous bijection defined by the Levinson-Durbin

L g a0 o
AL
v e
ety

é recuraion. Each set of autocorrelation coefficients defines
a unique set of predictor coefficients according to the

Yule-Walker equations while the autocorrelation coefficients
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may be retrieved from the predictor coefficients using Fjun-
tions (2.3) and (2.8).

The last parametrization is less common than the other
three; these parameters have been denoted "inverse cor-
relation coefficients" since they are the autocorrelation
coefficients of a moving-average process whose spectral
density function is inverse to that of the defined AR(P)
spectrum. Each set of predictor coefficients uniquely de-
fines the inverse correlation coefficients éccording to

P-n

u, = Z apg 8pen/9% ; 8 = 1 3 n=0,1,...,P (3.23)
m=0

That the predictor coefficients may be retrieved in a unique
fashion from the inverse correlation coefficients is more
difficult to establish. Positivity of Equation (3.22) gen-
erally establishes only the possibility of several appro-
priate predictor coefficient sequences; closer inspection
reveals that only one of these sequences satisfies the sta-
bility requirements. The question is taken up in somewhat
greater detail by Blackman and Tukey [5, pp. 126-7].

The first result follows easily using the inverse cor-
relation coefficient parametrization of the AR(P) spectral
density, Equation (3.22), together with Equations (3.19) and
(3.18).
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Theorem 3-1. (Triangle Equality). Let gy(8) be an

AR(P) spectral density satisfying Equation (3.19) and let

g>(8) be any other AR(P) spectral density. Then

lw(ﬁf,gz) = Iw(ﬁf,g1) + Iw(g1.82) (3.24)

The inverse correlation coefficient parametrization of
AR(P) models in &p is used here to define the convex super-
position of two models according to

3 = CS (Wq,Up;Y¥) = YUy + (1-v) Ty (3.25)

for 0 < Y < 1. Since (3.22) remains a strictly positive
function for Uz when Uy and U, define strictly positive
functions, this shows & to be a convex set and leads to the

second result.

Lemma 3-1. (Strict Convexity). Let g3(8) be a stable
AR(P) spectrum defined by the convex superposition of the
two stable AR(P) spectra g;(6) and g>(@). Then

Iy(f,g3) < YIy(f,81) + (1-Y) Iy(f,gp) (3.26)

R OO

for 0 < Y < 1 with equality only if g4(8) = g>(0).

Proof. Using the inverse correlation coefficient pa-

RS altK

rametrization and the definition of convex superposition for

N
B

AR(P) spectra it is easy to show that
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g3(0) = 1/{[v/g1(8)] + [(1-Y)/ga(06)]} (3.27)

Together with Equations (3.18) this yields

Yig(f,g1) + (1-Y) Iy(£f,83) - Iy(f,g3)

2 J/QW(G) ln![s1(e)]Y [82(9)]1-Y/g3(9)} de/2n  (3.28)

-

From the theorem on geometric and harmonic means the argu-
ment of the logarithm in Equation (3.28) is not less than
one and equals one only if g,;(8) = g>(8). The lemma follows

easily.

Theorem 3-2. (Uniqueness). Iy(f,g) can have at most

one local minimum in'a§; if such a minimum exists it is also

a global minimum.

Proof. Let g(0) and g>(8) be two distinct local mini-
ma and form their convex superposition gz(6). Without loss

of generality assume Iy(f,gy) > Iy(f,g5). With Y# 1 the

previous lemma gives

IW(f’83) < YIW(fog1) + (1"Y) Iw(f182) < IW(fv81) (3.29)

But g3(e) is arbitrarily closed® to g,(e) for Y arbitrarily

8The Euclidean metric applied to the inverse corre-
lation coefficients shall suffice to define closenesas here.
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close to one, so that this 1inequality contradicts the
assumption that g,(e) is a local minimum. The second part
of the theorem follows by assuming 81(8) is a local minimum
while gp(8) is any distinct element of ®p such that
Iy(f,g) < Iy(f,gy) and then repeating the above argument.
In order to establish the final theorem of this section
the second mixed partial derivative of Iw(ﬁf,g) is shown to

define a positive definite quadratic form. The variables

vy = (3.30)
2u, for n#0

are defined for n=0,1,...,P so that the first partial deriv-

atives are

<$>

3 Iy(8f,g)/ avp

[w(e)iﬁ(e) £(e) - g(8)} cos(ne) de/2w (3.31)

-

and the second mixed partial derivatives are

an = 8Vn/ v

er(e)[g(e)]2 cos(n®) cos(m6) dae/2n (3.32)

-

Clearly, the quadratic form
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P " t
Z Xn Xp Lpp = j\w(e)[g(e)]2 an cos(ne).‘ de/2n
m,n=0 I n=0

(3.33)

is positive definite. This proves the following

Theorem 3-3. (Absence of False Solutions). Any stable

e~

.w,—rrr r«rr"-.-‘ " -~
. . . . . AR

AR(P) solution to Equations (3.19) is a local minimum.

Note that this does not eliminate the possibility of
unstable solutions to Equations (3.19), nor does it estab-
lish the existence of a stable solution. Since the previous
theorem has established the uniqueness of a minimum this

theorem establishes the

——y
« 0

Corrollary 3-1. Equations (3.19) can have at most one

stable AR(P) solution. If such a solution exists it is the

unique absolute minimum of Iw(ﬁf,g) over Rp.

Remarks

Three general formulations for estimating the parame-
g ters of an AR(P) process in noise have been discussed. The
% first "ideal" formulation has theoretical foundations
b; resting upon principles of information theory as well as the

maximum likelihood method. The second two formulations are

developed as approximations to the first.
The need for approximate formulations arises due to the
difficulty posed by the nonlinear equations resulting from

the ideal formulation. The first approximate formulation
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leads to the Yule-Walker equations but with modified corre-
lation values; algorithms for solving the Yule-Walker equa-
tions are computationally simple and well understood while
methods for evaluating the modified correlation values have
been carefully studied in recent years.

While this first, noise filtering, approach has led to
demonstrable performance improvements in noise environments
over the standard noise free formulation (and reduces to the
noise free formulation in noise free environments), still
better performance is desired. Rather than attempt direct
solution of the ideal formulation the second approximate
formulation is developed. Evidence that this weighted in-
formation formulation leads to improved performance over the
noigse filtering formulation is presented in Chapter V;
neither approximate formulation is expected to perform as
well as the "ideal" formulation.

The weighted information formulation 1is related to
other techniques that have appeared in the 1literature.
Consider the situation wherein the desired signal spectrum
is essentially zero outside the region oc[-n/D, n/D) while
the noise spectrum is essentially zero inside this region.
The foregoing theory indicates that an appropriate selection

for the weight function is

. 1 0c[~-n/®, w/D)
w(e) = H(8) = (3.34)
0 otherwise




go that the weighted information is

. "/
Iy(Hf,g) = [ {(f(e)/g(e)] ~ 1n[f(e)/g(8)] - 1} d8/2n (3.35)

-"/m

With the change of variable 8/ =@ this may be rewritten

1,(8¢,8) = (1/9) | {(£(8/D)/&(8/D)] -

In[f(8/D)/g(&/D)] - 1} d8/2n (3.36)

Clearly the indication here is to low pass filter and deci-
mate the observed signal before fitting the AR(P) model to
the resulting data. This is precisely the technique enm-
ployed by Quirk and Liu [45] to improve the resolution of
AR(P) estimation in noise; they considered the use of AR(P)
estimators to determine the frequencies of sinusoids 1in

noise and demonstrated that the filtering/decimation scheme

is clearly advantageous when the sinusoids are a priori
known to lie in some fixed frequency range.

.. The problem which motivates the present work concerns
. signal and noise spectra that are both generally nunonzero
throughout the entire frequency range, [-w,v); hence the

ey luxury of simple filtering/decimation schemes is not permit-

ted. On the other hand, the difficulties aasociated with
very limited quantities of data are not the primary focus of

this work so that the asymptotic formulation is considered

adequate.
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Computational issues for the weighted information for-

mulation are discussed in Chapter IV. Equations (3.19) are
cast in algebraic form and their (exact) analytical solution
is discussed. Approximate (numerical) solution methods
might be developed based wupon the resulting analytical
system of equations or directly wupon minimization of
Iw(ﬁf,g); the latter approach is adopted to develop a simple
iterative procedure based upon the notion of a contraction
mapping. In addition, computational proce&ures appropriate
to the use of the weighted information for vector quantiza-
tion are discussed. Since in many applications the "vector
quantization codebook"™ may be designed "off-line" using
noise free speech data, questions associated with the code-
book design problem are not discussed; instead, computa-
tional procedures for the "on-line" minimization of Iw(ﬁf,g)

over the finite codebook are developed.
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CHAPTER IV
COMPUTATI[ONAL FORMULATION

In this chapter computational procedures for the
solution of Equations (3.19) are discussed. In the first
section the system is reduced to an algeﬁraic form by as-
suming the weight function to take the form of an AR(M)
povwer spectral density; once cast as a nonlinear algebraic
system of equations, analytic procedures for solving the
system are discussed. In the second section, techniques for
evaluating the coefficients of the system are discussed.

Analytic solution of the nonlinear algebraic system
becomes increasingly difficult as the order of the weight
function, M, is increased. While numerical polynomial root
solving procedures could be systematically applied, the
third section develops instead an iterative procedure based
upon the idea of a contraction mapping. Together with
sampled frequency domain processing techniques, these iter-
ative procedures do not restrict the weight function to an
all-pole form. The fourth section develops computational
formulae required for the use of the weighted information in
vector quantization; an extension of Jensen's theorem is
developed to permit closed form evaluation of the ap-

propriate integrals when the weight function assumes an
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AR(M) form. Finally, the last section concludes this chap-
ter with some final remarks concerning these computational

methods.

Reduction to Algebraic Form

Let

b, = fw(e) H(e) £(e) eln® 4g/2x

-w

(4.1)
n=0,1,...,P

denote the coefficients appearing on the left hand side of
Equations (3.19). Let
w

B, = fw(e) g(e) eln® gg/2x (4.2)

-

n = 0’1,000'P+M

denote the quantities appearing on the right hand side of
Equations (3.19). Observe that the index of ﬁ1is permitted
to range beyond P to P+M. If W(e) is an AR(M) spectrum
given by

2 W(e) = o8/[By(el®) By(e~10)] (4.3a)
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where

M
By(z) = ) by 270 by = (4.73b)
n=0

and if g(e) is an AR(P) spectrum given by Equaticns (2.3)

and (2.4) then their product is an AR(P+M) spectrum given by

W(e) g(o) = o 92/[Cpy(e®) Cp y(e™18)] (4.4a)
where
P+M
Cpem(z) = Ap(z) By(z) = Zcmz"‘; Co = 1 (4.4v)
m=0

The quantities defined by Equation (4.2) are related to
the polynomial coefficients in Equation (4.4b) by the Yule- h

Walker equations

L A A g B B i
- %o P o Ry | 1]
‘ 1 Po RETEN YN B L 0
é@ . . . . . | o8 (4.5)
.. . . . . .
N
' Pe+M PPeM-1 oo Po ] [CPeM | 0

Equations (3.19) assign numerical values to some of the

entries in the coefficient matrix according to

pn = Pn ’ n=o'1’oooP (4’6)
161
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while the remaining entries are to be considered as un-
knowns. The elements of the column vector are defined as a
linear combination of the coefficients of the unknown poly-
nomial, Ap(z), by Equation(4.4b) which may be rewritten in

matrix form as

I EE o ... ol )
= |. . . . (4.7)
LCP"'MJ -O 0 se e bM LaP-

Equations (4.5), (4.6), and (4.7) define a nonlinear

ﬁi system of P+M+1 multivariate polynomials in the P+M+1 un-
knowns o, ay, 8p, +.., 8p, 6P+1' 8P+2' ceey BP+M' Each
;; polynomial is a first order function of each unknown while
hi each term in these polynomials may involve up to two dis-

tinct unknowns. The properties of the weighted information
developed in Chapter III indicate that +this system of
é_ equations can have at most one stable solution; if a stable
solution exists it is the solution sought.

Assuming the AR(M) weight function to be stable the
P product polynomial, Cp,y(2), also has all its roots inside

the unit circle and may be expressed recursively in terms of

a set of reflection coefficients according to

Calz) = Cpoq(2z) + ky 278 Cy_y(271); Cylz) = 1 (4.8)




1

|

for n = 1,2,...,P+M. If the coefficient matrix in Equation
(4.5) were entirely known then the Levinson-Durbin re-

curaion1

could be applied to yield CP+M(Z). Since some of
the entries in the coefficient matrix are unknown, the
Levinson-Durbin recursion cannot proceed beyond the determi-
nation of CP(z); the remaining reflection coefficients

{Mpi1s Kpyoseees kp,m! are unspecified (beyond the stability

requirement that |k | < 1) by Equations (4.5) and may be

- considered as new unknowns replacing { 6P+1 , 6P+2' ceey 8P+M} .

These remaining reflection coefficients should be se-
i lected so that Cp,u(2z) = O modulo By(z). Once these have
X been determined the solution may be obtained by simple poly-

nomial division from

Ap(z) = Cp,yu(2z)/By(z) (4.9)

together with
P+M
o2 = (p/of) JT (12 (4.10)
= of W n *
n=1

To determine the remaining reflection coefficients it

is generally simpler to consider the polynomials

1This well-known algorithm may be found in many fairly
recent publications; for example, see [21, p. 55ff]. An
exposition by the authors is contained in [57] and [58].
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Cpam(2) = 2~ (BM) cp y(at) (4.11)
By(z) = 2™ B, (z~") (4.12)
M M *

so that the condition to be satisfied is

EP+M(Z) = 0 modulo ﬁﬁ(z) (4.13)

Modulo reduction is then accomplished more simply by re-

peated use of the substitution

M-1
2= - D oy, 2! (4.14)
£=0

in EP+M(Z) until all powers of 2z larger than M-1 have been
eliminated. The reduction process is facilitated by using

the recursion (4.8) to express E§+M(z) as
EP'FM(Z) = ‘EP(Z) ‘Em(Z) + Z—P EP(Z-1) FM(Z) (4.15)
where

Eh(z):z'1 ﬁh_1(z) + Kp,n z~(n-1) ?h_1(z‘1); ﬁb(z)=1 (4.16a)

Fo(2)=z"! F_ (2) + kp,q 271 B _ (s71); F (2)=0 (4.16D)
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Cp(z) = Z—P Cp(z_1) (4.17)

With these formulae the reduction is accomplished in part by

determining
3ﬁ_1(z) = E}(z) mod ﬁﬁ(z) (4.18a)
and

Dy_1(z) = Cp(z) mod ﬁh(z) =z~ F 5@(2'1) mod ﬁk(z) (4.18b)

The condition to be satisfied is then
3“-1 (Z) EM(Z) + DM_1(Z) ‘f"M(Z) = 0 mod 'EM(Z) (4.19)

Modulo reduction of the left-hand side of Equation
(4.19) leads to an M-15Y order polynomial whose M coef-
ficients must be equated to zero; this yields a system of M
nonlinear polynomial equations in the M unknowns {kp+,,
Kpyos +++» Kp,q}. While these equations are nonlinear some
reflection will reveal that each polynomial equation is
linear (i.e., of first degree) in each of the unknowns; the
nonlinearity enters by way of terms involving products of

different unknowns.
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Because of this structure, systematic algebraic elimi-

2 will yield an M¥D order polynomial in a single un-

nation
known; each acceptable root of this polynomial will yield an
M-1SY Srder polynomial in a second unknown. Continuing in
this fashion one successively solves Mth, M-ISt, «+. order
polynomial equations possibly generating M factorial po-
tential solutions of which at most one satisfies the sta-
bility criteria. This method is feasible for small values
of M (e.g. M < 4) but for larger values of M one must gener-
ally resort +to numerical polynomial root solving pro-

cedures.3

For the case M=2, let

1]
[« VR

D, (z) (4.20a)

1]
(=1

Dy (z) (4.20D)

2Several methods (such as those due to Euler, Bezout,
or Sylvester) are available; one should take care not to
introduce extraneous roots. For a general discussion see
[59, Vol. 1I, p. 70ff]) or [60, p. 277ff].

3Phe recommendation that M not exceed four is made
based upon the fact that general polynomial equations of
degree five and higher cannot be solved algebraically [59,
Vol. II, p. 286]. Of course this does not eliminate the
possibility of transcendental solutions [59, Vol. I, p. 274]
or the possibility that gsome special structure, may be
discovered [or imposed) to aid in the solution.
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and let
- - - 3
G4(z) = Dy(z) Ey(z) + Dy(z) Fp(z) = :z: gy 2" (4.21)
m=0

denote the 1left hand side of Equation (4.19). Using

Equations (4.16) these coefficients are

8o = dp Kpyp (4.22a)
81 = 4y kpyy Kpyp + dg kpyy + &y kpyo (4.22v)
82 = do + Iy kpyy kpyp + 4y kpyy (4.22¢)
g3 = 4 (4.22d)

while modulo reduction yields
& -~ b2 &2 + b1 b2 g3 =0 (4-23&)
8 - by & + (b$-b2) 8z = 0 (4.230b)

Expanding Equations (4.23) yields

Po kpyp + Py = Kpyy(ag kpyp + qy) (4.24a)

kpyq1 (3o kpyp + §y) (4.240)

o Po kpy2 + By
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- where
Py = 44 (4.25a)

d, by (4.25b)

o = d (4.25¢) ‘
.; Py = dy(v5-by) - q, by (4.254)
j 3o = dy by (4.25e)
; qy = 44 by (4.25¢)
f
2 q, = 4y by - d, (4.25g)
Q) = dq by - d, (4.25h)

So that the solutions are given, upon elimination, by

—— . o P
'_Y."Vv"yr','. —— 7'vvr - 'v'v'.v,'.—"'rllv.
e . B . RN e .

kpyy = (Po kpy2 + P1)/(q0 kpyp + Qy) (4.26)
and

-
kpyo = [ -8y + \l312 - 48, s, ] /285 (4.27)
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where

S = P1 91 - P71 Q4 (4.28a)
Sy = Py do = Py Qo * Po Ay - By 4y (4.28b)
Sp = Py dp - Po 4o (4.28¢c)

BEvaluation of Coefficients

There are numerous methods of coefficient evaluation
that may be considered consistent with the foregoing formu-
lation. Generally this section will present a few of the
possibilities for evaluating the coefficients defined by
Equation (4.1). In addition, some discussion will be de-
voted to characterizing the weight function according to
Equations (4.3). While performance of the estimation pro-
cedure will undoubtedly depend upon the specific method of
coefficient evaluation, no one method can be strongly advo-
cated (i.e. to the total exclusion of other methods) at this
time; in addition, final selection of a method may be in-
fluenced by other ancillary requirements of the specific
application. Because no single explicit procedure is to be
recommended here the discussion stresses concepts rather
than detailed mathematical formulae.

Time domain noise filtering methods usually determine
(adaptively) the coefficients of a finite impulse response

(FIR) linear filter whose power spectral response is H(®@).
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By simply cascading two of these filters a new filter is

created whose power spectral response is H(6) H(e). The
coefficients in Equation (4.1) may then be computed in the
usual manner (lag products of the windowed data) from the
output of the cascaded filter structure. This scheme, de-
picted in Figure 2, assumes the relationship expressed by
Equation (3.20) although this relationship may generally be
avoided by replacing one of the filters in the cascade by a
filter with W(e) as its power spectral response. For each
data window, a "snapshot" of the impulse response of the FIR
filter could be used to estimate the parameters of W(@).
Since the response of the FIR filter may differ slightly
from the response of the weight function a somewhat more
consistent procedure would use the weight function pa-
rameters to implement an infinite impulse response (IIR)
filter as the second filter in the cascade.

Frequency domain noise filtering wmethods generally
provide greater flexibility in response function selection
than is available with time domain methods. These methods
involve an explicit transformation to the frequency domain,
often by using the discrete Fourier transform (DFT), a d
determine the multiplicative response function, ﬁ(e), in
sampled form using a formula such as Equation (_..19) or
(2.20). The sampled form of ﬁ(e) may be used to estimate
the parameters of W(@). If the noise filtered signal is not
required, frequency samples of the weight function may be

used multiplicatively before evaluating the coefficients;
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alternatively, one may avoid re-evaluating the weight func-
tion and simply apply ﬁ(e) twice. This latter alternative
is depicted in Figure 3.

A mixed time-frequency domain method 1is employed to
obtain some of the results presented in Chapter V. In this
method a Hamming window is applied to the observed data

which is then zero-extended before computing the DFT. A

sampled ncise spectrum estimate is used together with these
transform values to compute a noise filter spectral re-

sponse, ﬁ(e), according to Equations (2.19) or (2.20).4

L L
RN . .
Nt - EETR Y

This frequency sampled noise filter response is applied
multiplicatively to the transform values and an inverse DFT
of these modified +transform values (with their original
phase values) is computed. A random phase characteristic is
computed and introduced to the frequency sampled noise
filter spectral response which is inverse transformed to

obtain an impulse response characteristic. Standard (auto-

P AT 2 R e AL B MM T
R RUBRASAAE AT

Y P L YR
LU L e e

correlation method) LP analysis is applied to this impulse
response characteristic to determine the parameters of the

weight function. These parameters are used to implement a

QU E AN
e T " . 0 O .
Ty . » 1 *

41¢ is generally found to be useful to modify the fre-
quency response characteristic slightly by smoothing the
response obtained from (2.19) or (2.20) across frequency.
The smoother should eliminate features narrower than those
expected in the final signal spectrum while retaining
broader features; a recursive median filter with a total
length of about 2.5% of the single-sided bandwidth is a
current favorite of this author. End conditions (near the
DC and Nyquist frequencies) can be properly handled using
the known periodic nature of the frequency response.
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(lattice structure) filter; beginning in the all-zero state
the noise filtered (inverse transformed) data values are
passed through this filter which is then permitted to "ring"
awhile.? Lag products computed from this output then pro-
vide the required coefficient estimates; the overall pro-
cedure is depicted in Fimure 4.

Finally, it is worth mentioning that each of these
methods has recommended computing the final coefficient
estimates as lagged products. The reason for this is that
various quantization effects may occur up to the point of
obtaining the modified data samples; however, if full pre-
cision is maintained in the final lag product computations,
the resulting coefficient estimates will define a positive
definite symmetric Toeplitz quadratic form in all but a very
few highly exceptional cases (such as all modified data

samples being identically zero).

Iterative Techniques

Equations (3.19) may be solved when the weight function
has an AR(M) form by using the algebraic procedures de-
scribed in the first section of this chapter; this method is
appropriate if M < 4. Unfortunately, it is expected that
accurate estimation of speech spectra will require weight

functions with greater variation than is possible with an

That is to say that a zero input is applied to the
filter after all the noise filtered data values have been
applied as input.
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AR(4) form. The procedures of the first section might be

extended by applying numerical polynomial roct solving pro-
cedures when M becomes large but at present such an approach

6 In this section alternate

appears somewhat cumbersome.
numerical formulations are discussed that do not make spe-
cific (parametric) assumptions as to the form of the weight
function; these techniques are iterative and based upon the
notion of a contraction mapping. A good general reference
for this section is Collatz [61].

Most (single-step) iterative procedures can be ex-

pressed in the form7

g(n+t) - 55(n)) (4.29)

‘l '.l ”l d

)
¢/
. a

6For the reader wishing to pursue this approach it is
worth noting that one stumbling block is that the previous
uniqueness theorem has not eliminated the possibility of an
unstable {(or imaginary) solution to Equations (4.5), (4.6),
and (4.8) for which some (but not all) of the reflection
coefficients are real and in the interval (-1, 1). If one
could devise a method which guarantees that only the
solution sought has real parameters isolated in (-1, 1), or
some other known interval, the development of a numerical
algorithm would be greatly facilitated. The reader is re-
ferred to [60, p. 99ff] or any similar discussion of nu-
merical methods for determining real roots of polynomials.

Tparenthesized superscripts shall denote instances of
the parameter vector while subscripts shall denote com-
ponents of the parameter vector.
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where ¥(N) is the n

iterate of the parameter vector V.
The solution sought is a fixed point of the map @. If ¢

satisfies a Lipschitz condition®

le(vlt)) - 5wy < 2 - (@) (4.30)

for some O < £ < 1 then ¥ is said to be a contraction map.
Contraction maps are often used to prove existence theorems
because the sequence of iterates generated by (4.29) is
Cauchy.

The problem of designing an iterative procedure for
solving a system of equations can be viewed as the problem
of finding a contraction map whose fixed points coincide
with the solutions sought. One usually begins with a map
having the appropriate fixed points and then tries to show
it satisfies a Lipschitz condition; often one employs the
meaa value theorem which states that if ¢, is a continuously

differentiable function of the parameter vector ¥ then9

8rhe map @ is assumed to have its domain in a Banach
space with norm |-] and its range contained by the domain.

9Two notational conventions are introduced here. First
¢nA’ denotes a¢n/av, and second the Einstein summation con-
vention (with respect to repeated subscripts) is employed.
The summation range is 0,1,...,P 80 that the Einstein con-
vention implies summation with respect to the
subscript £ (only) over this range on the right hand side of
(4.31). These conventions are used in this section only.
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- ¢h(v(1)) - ¢h(V(2)) = %/t (vol1) 4 [1-y) v(2)) {v}1) - V}Z)‘
‘ (.31

for some O < vy ¢ 1. 1f one can determine a constant £< 1

majorizing the norm of the matrix with components %n/q then

SN ARl

? has been demonstrated to satisfy a Lipschitz condition.

Using Equations (3.22), (3.30), (3.31), (3.32) and

. (4.1) the system of Equations (3.19) may be expressed as
L Vo =03 n=0,1,...,P (4.32)
F."
- where
# Gn = Pn = Lpp Vp (4.33)
.‘ Defining
L';: o
N Lymg = W(e)[g(e)]3 cos(n®) cos(me) cos(108) de/2« (4.34)
-n
and
0 n£n
8p = (4.35)
1 n=m
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the following relations may be easily verified

Lom/e = =2 Llnmg (4.36)
Gn/l = = Lomft Vo ~ Lnm Va/

=2 Lypy Vo = Lnn Sng

=2 Ly, - Ly, = Ly, (4.37)

Consider the map ¢ with componern:s10

m = Vn ~ A[L31]nm Gm (4.38)

where A is a nonzero scalar constant. Use of this map for
an iterative procedure is essentially a wmodified Newton
method. First observe that ¢ has a fixed point if and only
if the second term on the right hand side of (4.38)
vanishes. This term vanishes if and only if Equations
(4.32) are satisfied since, as shown in Chapter III, L (and

so also L~! and L3') is positive definite.

1011’ L denotes the matrix with ?ntries L,p 2and L'}
the inverse of this matrix then(OB;g shall 1J‘enote L=
evaluated at the initial iterate V¥ and [Lg' ], its
entries.

TN
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Next, using (4.37), consider

-1 A
“n/t = Yn/t ~ AL I Vin/i

Gnl - A[Lg1]nm Lng (4.39)

which, if evaluated at ¥ = v\9), is

A9 = (1-1) &y, (4.40)

Clearly, (4.40) 1is majorized by £= |1-A| so that
A should be selected in the range O < A< 2 if the Lipschitz
condition is to be satisfied. More generally, since the
last term in (4.39) is positive definite, A should be se-

lected in the range O < A < 2/Ap,, where

s -1
Apax 2 uPp qn[Lo ]nm Loy (4.41)

laf =1

bounds the matrix norm. With this selection

inf 1

"q" =] dn 'Pn/l Q = "q" 1 ql’l[L ]nm m¢ q,

D 1=AAgay > - (4.42)

and the matrix norm of ¢,/ is bounded by one.

Apparently the choice A= 1/A would lead to the most

max

rapid convergence while smaller values would lead to slower
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convergence and guarantee that “n/t is positive definite.
Unfortunately, the right hand side of inequality (4.41) is a
function of the parameter vector v and cannot be bounded by

a constant, A for all V in &p; consequently the Lip-

max?’

schitz condition cannot be satisfied everywhere in a@.

If a solution, g«(8), exists in&Rp it is possible to

EQ find a constant G, ,, sufficiently large such that

for all O¢[-m,m). PFor such a constant the solution will be

contained in that portion of &p for which

(IDS SR et b 4 A
T T T M .
[T I '

8(8) < Gpay (4.44)

for all 6¢[-m,w). Then from

":;21 qn[L;1]nm Loy 24
AS ":Ezl U Lpg /S
< Wy, G2 /6 (4.45)
where
W(e) < Wpay (4.46)
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for all @¢ -w,w) and

&= o1 an 42’ 9 > 0 (4.47)

it is clear that any choice

2
Amax Z.wmax Gmax/6 (4‘48)

will suffice to satisfy the Lipschitz condition for that
portion onP.

To recapitulate, the map @, defined by (4.38), has
fixed points coinciding with the solutions to (4.32). More-
over, if there exists a solution in '%P and the domain of
# is suitably restricted to a subset of & containing this
solution then there exists A> O sufficiently small such
that » satisfies a Lipschitz condition on this subset and
(4.39) is positive definite. This implies that application
of the map % to any element of the subset will generate a
new parameter vector closer (in norm) to the solution.
Hopefully, repeated application of @& will generate a se-
quence of parameter vectors approaching the solution; this
will be the case if each new parameter vector is also in the
restricted domain of @.

Providing a guarantee that each new parameter vector
will be within the restricted domain of @ is not a simple
task. Without such a guarantee it is possible to devise a

computational test to check for this condition; then, if the
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test is violated, some method must be devised to restart the
iterations. In practice the situation is not expected to be
quite sc pathological; if A I3 selected to be conservatively
small (smaller if the solution is expected tc be a sharply
peaked spectrum) and a reasonably good initial estimate is
provided, one does not expect to encounter convergence dif-
ficulties. This more optimistic approach shall be taken in
the following.

To implement the iterative procedure assume W(®) is
th

available in sampled form. The components of the n iter-
ate parameter vector may be used to evaluate

P
gn(8) = 1/{ :E:vf“) cos(18)} (4.49)

£=0

in sampled form. If the sample mesh is equally spaced at
ekzﬂk/N ; kz—N,--o,O,1,--ﬁ’N-1 (4-50)

then the components Qén) may be computed from

N-1
ng) = Py - EE: W(Ok) gn(8y) cos(mek)/ZN (4.51)
k=-N

and the components of the next iterate are provided by

vl(n+1) - Vl(n) _ A[LS1]lm Qén) (4.52)
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A crude test that the nth iterate is insip is provided in

the course of these computations by verifying that the de-
nominator of (4.49) is positive on the sample mesh.

The procedure can be initialized by the solution to the
Yule-Walker equations where the elements of the coefficient
matrix are given by @y Equations (3.23) and (3.30) may
then be used to evaluate Y}o) while the elements [L;1]nm may

be obtained by inverting the real symmetric matrix with

entries
N-1

[Lodpn = D W(8) [8o(8)]2 cos(ney) cos(mey)/2N  (4.53)
k=—N

The coefficients py may be evaluated from

N-1
= D, W(ey) fi(e) £(8,) cos(mey)/2N (4.54)
k==N
Alternatively, the computational methods described in the
previous section may be employed to evaluate the @, as
lagged products of modified data values.

A simple test for iteration completion is to simply

check that
P ~

= D (T2 (4.55)
m=0

is less than some small preselected value. Finally, to

obtain filter coefficients as are required by many

184

CL . . -
---------




applicatinons, it 1is perhaps simplest +tc first compute

correlation values from

N-1
fn = D &n(8) cos(my) (4.56)
k=~N
and then solve the Yule-Walker equations.
If at some step prior to iteration completion an iter-
ate falls outside QP, one may attempt to reinitialize the

procedure using one of the last few iterates inside<ﬂ§.

Formulae for Vector Quantization

In this section formulae relevant to the problem of
minimizing Iw(ﬁf,g) over a specified finite collection of
AR(P) model spectra are developed. Consider first that
according to Equation (3.24) this problem is equivalent to
minimizing Iy(g;,g) where g4(6) is an AR(P) model spectrum
satisfying Equation (3.19). Next, observe that minimizing

Iy(gy,8) is equivalent to minimizing
Jy(8,8) = f[w(e) gy(8)/g(e) + W(e) 1n g(e)] de/2w (4.57)

Since g(®6) is an AR(P) model given by Equation (3.22) the

first term in Equation (4.57) may be rewritten as

" P
f W(e) g (0)/g(0) do/2x = D uin A (4.58a)
-n n=-~p




where the fact that 31(9) satisfies Equation (3.19) has been
used together with Equation (4.1). Similarly, the second

term in Eguation (4.57) may be rewritten as

jw(e) 1n g(e) de/2w = 1n(s?) IW(O) de/2n

- -

w
- fw(e) 1n[Ap(el®) Ap(e=1€)] qo/2n (4.58b) .
—w

In general Jy(gy,g8) will be minimized over the finite
collection of AR(P) spectra by evaluating this quantity for
each model spectrum in the collection. For any given model
spectrum the first term may be easily evaluated using
(4.58a); the coefficients @, may be determined from the data
using one of the methods outlined in the second section of
this chapter. The second term presents somewhat greater
difficulty; when W(e) = 1 the last term in (4.58b) may be
shown to vanish as a consequence of Jensen's theorem but, in
g&eneral, this term will not vanish.

When W(6) has an AR(M) form an extension of Jensen's
theorem, which shall be developed presently, permits the
evaluation of this term from a simple formula. In order to
establish the general theorem it shall be necessary to first

establish the following lemma.

Lemma 4-1. Let

P
aptzh) = T (0 - mg 2) (4.59)
m=1
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have no roots inside the unit circle, I. If T, and T, are

also within the unit circle then
Tox = ¢ {1ln AP(z'1)}/{(z—1'k)(1- T2)} dz/2wi
T

{in Ap(rg') /(-7 7, ) (4.60)

Proof. The method of proof is essentially the same as
that used for Jensen's theorem by Hille [62, pp. 256-T7].
Assume without loss of generality that a narrow strip from
T, to v = T/ |7%| is free of the m, and consider the inte-

gral

Bk = ¢ {In((z-7) /(1= 1, 2) ]} d[1ln Ap(z~') /271 (4.61)
€

around the contour, € , depicted in Figure 5. The loga-
rithm, determined so that 1ln(-1) = mi, is analytic within
€ and Ap(z'1) has neither poles nor gzeros within € so
Ze = 0. As the radius of the circular portion of the
contour, €, surrounding the singularity T, tends to zero it
offers no contribution to this integral. As the distance
between the two straight sections of the contour tends to

zero they provide the contribution
<k 1 1 1
R, f (ap(z=) 1" alAp(z=)]
z=v,
= 1n Ap(7g') - 1n ap(vg!) (4.62)
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Figure 5. The Contour € in the Complex Z-Plane
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For the remaining portion of the contour, integration by

parts yields

where the integrated part is

A -1 ) = s 4
r= {1n Ap(27") 1n[(z-7.)/(1-72) ]} 2 = v
= 1n AP(VE1){2ﬂi + ln[Vk-Tk)/(1- T}Vk)]l
~1n Ap(vg!) (1n[(me-7)/(1- 7, %) ]
= 2wi 1n Ap(¥g') (4.64)

Substitution of (4.62) and (4.64) along with &, = O into
Equation (4.63) completes the proof.
A simple variable substitution may be used to obtain

the related formula

¢ {in Ap(z)}/{(z-7m) (1~ 7p2)} dz/2wi
r

{in Ap(TgM) 1/ (1= meT ) (4.65)

which together with (4.60) establishes the
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Corollary 4-1.

Tek + Ty = gﬁ fin Ap(z) Ap(z™!)}/{(z=-7)(1- 7142)} dz/2ni
r

tin Ap(rg!) Ap(ryD/ (=% 7, ) (4.66)

Finally, sufficient background has now been presented

to establish the

Theorem 4-1. Let W(6) have an AR(M) form given by

W(e) = |a(el®)|2 (4.67)

where Q(z) has the partial fraction expansion

M=

a(z) = w /(1= 1,271) = oy/By(z) (4.68)

£1=1

with |%)< 1. Then with g(e) given by equation (2.3) the

second term in (4.57) is

f W(e) 1n g(e) de/2v = 1n o2 f w(e) de/2«# - T (4.69)

- -

where

-
H
(¥
M=

o, 2(71g') 1n Ap(gh) (4.70)




Proof. Using (2.3), (4.67), and (4.68)

n
T = f IQ(eie)l2 lnIAP(eie)I2 de/2n
-7
M
= Z W W, ¢lln Ap(z) Ap(z'1)}/j(z—rk)(1-1'lz)} dz/2wi
K11 T (4.71)
i Together with the above corollary this yields
M
T D {wewy /(1-1e7y )} 1n Ap(rg!) Ap(T!) (4.72)
k,2=1

and (upon splitting the 1logarithm and collecting terms)
Equation (4.70).

With W(e) = 1 this theorem yields

w
f 1ln g(e) de/2w = 1n a2 (4.73)

-
which is a special case of Jensen's theorem [62, Theorem
9.2.5]. The first term in Equation (4.69) is easy to com-
pute while the second term, T, given by Eq:.ation (4.70) may
offer the reader some difficulty. First observe that (4.70)
requires knowledge of the parameters of the partial fraction

expansion (4.68). These are fairly easy to determine once
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the roots T, of BM(z) are known by recognizing that

equals11

(z-7,) 27 Q(z) = oy(z-7.)/{2F By(2)} (4.74)

evaluated at z = 7). Hence, the basic difficulty is that of
i; determing the roots, 7.

Since extracting the roots of By(z) can be a difficult
problem for large values of M it is advantageous if BM(z) is

already known as a product of low order factors. To ac-

. RS )
.y A .
. T e e e

complish this, recall that By(z) is determined so that w(e)

approximates H(e). If w(e) is a product of known AR(2)

v'
MM
'
.

e Low
"'Tﬁ". M ’
L St

models

W(e) = Wy(8) Wp(e) ... Wy/p(e) (4.75)

then BM(z) is easily known as a product of second order
factors. In order to determine W(®) in this manner one may
first determine W,(8) to approximate ﬁ(e), then Wy(8) to
approximate ﬁ(e)/w,(e), then W3(6) to approximate
ﬁ(e)/[w1(e) W-(8)] and so on. To obtain the best overall
approximation it is probably advantageous to develop some

simple ad hoc method to force the approximation at each

"this assumes the roots, Tx, are distinct. The

formulae become mildly more complicated when this is not the
case.
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stage to fit no more than one strong resonance in tne

function being approximated.

Remarks

This chapter has explored computational procedures
related to the weighted information estimation formulation
developed in Chapter III; it is worth noting that none of
these methods is entirely satisfactory for all applications.

The first section employed an assumed AR(M) form for
the weight function which enabled the problem to be cast in
the form of a nonlinear system of polynomial equations.
Solution of the system was found to be a relatively simple
task for small values of M but one that becomes rapidly more
complex as M is increased beyond four. As a general ap-
proach, the assumption of a parametric form for the weight
function has considerable promise for the development of
efficient computational methods; the basic difficulty is
that of finding a clever parametrization which provides
sufficient flexibility in the form of the weight function
(for the given application) while leading to a simple and
efficient computational algorithm.

The second section discussed the computation of various
coefficients that arise within the computational formulae.
Choice of a specific procedure will ultimately be influenced

by the demands of the specific application; interdepeniant
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factors to be considered include the quantity of data avail-
able, rounding/truncation effects, fixed/floating point rep-
resentation format, algorithm structure, memory require-
ments, and computational speed. The coefficient evaluation
procedures discussed are variants of methods proposed and
sometimes implemented) for real time speech analysis appli-
cations.

The third section discussed single-step iterative
methods within the general framework provided by the nction
of a contraction mapping. Multi-step methods were not dis-
cussed; in general, convergence characteristics are more
difficult to prove for multi-step methods in spite of the
fact that they tend to converge faster in practice.12 These
iterative methods offer significantly more flexibility in
the form of the weight function!? at the expense of a
greater computational cost. The notion of a contraction
map, sometimes employed for nonconstructive existence

proofs, provides a useful general framework within which a

12paster convergence, in terms of a reduced number of
iterations, should not be confused with reduced computa-
tional cost. Each iteration of a multi-step method gener-
ally is more expensive computationally than a comparable
single-step method so that a detailed analysis is wusually
required to compare costs.

130hat is, compared to +the parametric approach to
weight function selection discussed in the first section.
In this sense one might describe these methods with a
seemingly contradictory phrase such as '"nonparametric
autoregressive estimation".
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variety of iterative methods may be discussed; the specific
method presented is a modified Newtonian iteration chosen
as a tradeoff between simplicity and effectiveness. A pos-
sibly more effective iterative procedure would be a steepest
descent method; generally such a procedure attempts to mini-
mize a scalar function U = U(V) by using a map with com-
ponents

Y, =V

n = Vp - A3U/dvy (4.76)

where the scalar function A = A(V) is chosen to minimize
U(®?) at each iteration.

The fourth section considers the problem of minimizing
Iw(ﬁf,g) over a given finite collection of AR(P) models.
The procedure involves the computation of a cost function
for each model in the collection. The cost function in-
volves two terms; the first term is evaluated quite simply
(regardless of the form of the weight function) using
formula (4.58a) which 1is identical to one arising in
"standard" (unweighted) vector quantization. The second
term is usually quite simple in "standard" vector quanti-
zation, see Equation (4.73), but becomes far more complex
when the weighted information formulation is employed.

An extension of Jensen's theorem provides a formula
which may be employed to evaluate this term when W(@) has an

AR(M) form; however, the reader is admonished to bear in
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mind that it is probably far simpler to discretize this

integral and evaluate it numerically as a sum of products

from
n N-1
fW(e) 1n g(e) de/2n = Z wie,) @, (4.77)
e k=-N
where
%, = [1n g(8y)]/(2N) (4.78)

This has the additional advantage of not imposing an AR(M)
form upon the weight function. More generally, W(6) might
be expressed as a sum of perhaps only a dozen nonnegative

"shape functions" by

We) = D b (o) (4.79)
k

so that, if the quantities

F = fwk(e) 1n g(e) de/2w (4.80)

are precomputed for each AR model in the finite collection,

the second term may be easily evaluated from

IW(O) 1n g(e) de/2w = Z te Fx (4.81)
-n k
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CHAPTER V

RESULTS

In this chapter the weighted information estimation
formulation is demonstrated to provide improved performance
relative to the noise filtering formulation. It is worth
noting that, although existence has not been proven in pre-
vious chapters, several thousand data frames have been ana-
lyzed using the weighted information formulation and not one

counterexample has been encountered.

Gaussian Signals

In order to study the performance of the weighted in-
formation formulation pseudorandom sequences were gener-
ated. A zero-mean white Gaussian process was simulated
using a congruential multiplicative random number generator;
the resulting sequence of independent uniformly distributed
samples was transformed to Gaussian form using the Box-
Miller +transformation followed Dby Central-Limit aver-

1

aging. Zero-mean AR(P) Gaussian processes were simulated

VIn theory, the Box-Miiller transformation is adequate.
However, if the input deviates from a uniform distribution
the output will, correspondingly, deviate from a Gaussian
distribution; Central-Limit averaging will tend to reduce
any such deviations from a Gaussian form.
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by applying the simulated white Gaussian process to an all-
pole (lattice structure) digital filter; the first few
thousand output values from the filter were consistently
ignored in order toc avoid the transient response of the

filter.

By adding two independent zero-mean uaussian AR pro-
cesses at a specified signal to noise ratio appropriate test
!! data was produced. For many of the examples the "signal"
b

process had an AR(2) spectrum defined by the reflection

ié coefficient values
k1 = "08 and k2 = —09 (5-1)

This signal process spectrum, evaluated from these parameter

values, is displayed in Figure 6a. While some examples
employ a white Gaussian corrupting noise process, others
employ an AR(2) process defined by the reflection coef-

ficient values

k1 = +.8 and k2 = --9 (5.2)

This "colored" noise process spectrum is displayed in Fieure
bb.

As a basis for comparison, the standard autocorrelation
analysis method was applied to 100 different 400 sample
Hamming windowed frames of data from the uncorrupted signal

process. Each resulting estimate is characterized by a pair
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Figure 6a. True Spectrum; Test Signal Process
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Figure 6b. True Spectrum; Test Noise Process

Figure 6. Test Signal Spectra
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o of reflection coefficients which define a single dot in
' a%t
!D Figure 7. For this "scatter plet" {(and all subsequent
;f. scatter plots) the ordinate and the abcissa correspond to
F‘\:
E% the first and second reflection coefficients, respectively;
for convenience, cross-hairs indicate the location of the
S
true parameter values.
- Figures 8 and 9 each present various estimates of a -
'! single 200 sample Hamming windowed frame of data. In both

cases the frame of data consists of the signal and colored

noise processes summed at a 10 dB signal to noise ratio.

The periodogram estimates in Figures 8a and 9a clearly dis-
play the signal resonance (near the fractional frequency
value of .8) and the noise resonance (near the fractional
frequency value of .2).

Figures 8b and 9b display power spectrum estimates
obtained using the noise filtering formulation. The esti-
mate presented in Figure 8b is a result of using the noise
filter response displayed in Figure 8c which was determined

2

by using the power subtraction rule;“ similarly, Figure 9b ’

results from the use of the noise filter response displayed

in Figure 9¢ which was determined by using the magnitude

subtraction rule.

s indicated in the caption, the noise filter response
was smoothed across frequencies before being applied. Al-
though many smoothing algorithms are possible, only a re-
cursive median smoother (with a length about 2.5% of the
displayed bandwidth) was ever employed to obtain results
presented in this chapter.
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Figures 8d and 9d display power spectrum estimates
obtained using the weighted information fermulaticen. The
algebraic solution method, which requires an AR{(M) form for
the weight function, was used in bnth cases; cocefficient
evaluation was performed using the mixed time-frequency
domain method presented in igure4. The same noise filter
response functions were employed and the weight functions,
displayed in Figures 8e and 9e, were determined as an AR(2)
fit to their respective noise filter response functions.

By comparing Figures 8 and 9 to the true signal spec-

trum shown in Figure 6a the deficiencies of these typical
estimates becomes apparent. In rigure B8b the noise
filtering formulation leads to an estimate which is overly
flat; the weighted information formulation ( Figure 8d) has
improved the estimate by raising the peak and lowering the
valleys. In Figure 9b the noise filtering formulation leads
to an estimate which is overly sharp; the weighted infor-
mation formulation ( Figure 9d) has improved the estimate by
lowering the peak and raising the valleys. Since the weight
functions are similar in both figures it is apparent that
frequency weighting cannot ©be simply interpreted as
increasing or decreasing the sharpness of a spectral esti-
mate; rather, the weight function reduces distortions in the
estimate by requiring a more accurate fit to the data in
those spectral regions where the weight function is large.
Figures 10 and 11 present the result of analyzing 100

different 400 sample Hamming windowed frames of data using
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various different methods. Figure 10 preserts the resuits
obtained using the noise filtering formulation; the smccthed
noise filter response was determined using different rules
ranging (roughly) from the least severe rule in “i.-~ur 10a
to the most severe in Fizure10e. The results presented in
Figure 11 represent an analysis of the same 100 data frames
and the same noise filter response functions but the ana-
lysis uses the weighted information formulation with an
AR(2) weight function fit to the noise filter response
function.

It is clear that in each case (a through e) the esti-
mation error is reduced by the weighted information formu-
lation. The best results in both figures are obtained by
the most severe rules. Figure 10, while exhibiting less
variance, shows an increased deviation (bias) of the main

cluster from the true values for the more severe rules;

apparently, variance error of the noise filtering formu-
lation may be reduced at the expense of increased bias error

by using the more severe rules. Comparing, for example,

N Figures 10e and 11e it is apparent that the weighted infor-
EQZ mation formulation achieves still greater variance reduction
i: while correcting the bias error. Comparison of Figures 1ie
{f and 7 1indicate that one has 1little, 1if any, hope of
; achieving significantly better performance than that pro-
;;i vided by the weighted information formulation in this case.
e Figures 12 and 13 show similar results for the same 100
;; frames of data; the analysis methods used to produce these
R 205
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figures differ from the method used to produce 'i-uprc: 10
and 11 only in that no smoothing algorithm was applied to
the noise filter response. All the same trends are apparent
in figures 12 and 13 as were apparent in *“ipures 10 and 11;
somewhat greater variance 1is exhibited in these figures
indicating that smoothing produces a generally beneficial
effect in this case.

Figures 14, 15, 16, and 17 display similar results for
the case of white corrupting noise at a 10 4B signal to
noise ratio. Again, each plot represents analysis of the
same 100 different 400 sample Hamming windowed frames of
data. For each method of determining noise filter response,
the weighted information formulation leads to less variance
and bias error than the comparable (unweighted) noise
filtering formulation. As may be expected,3 all these esti-
mators yield poorer performance in this white noise case
than in the previous colored noise case.

Figures 18, 19, 20, and 21 again present similar re-
sults; while the corrupting noise is still white the signal
to noise ratio is now zero dB. One small difference is
worth noting: in Figures 10 through 17 the parts b, ¢, and

d employed a soft suppression rule with suppression faciors

3The reader will recall that if the signal and noise
processes are completely separated in frequency (i.e., do
not have overlapping spectra), the Wiener filter can com-
pletely eliminate the noise. Since the colored noise case
exhibits greater spectral separation from this signal pro-
cegss than the white noise case, an estimate can be expected
to provide superior performance.
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nf 4, 6, and 8 respectively; in Figures 18 through 21 the

parts b, c, and d again employ a soft suppression rule but
with increased suppression factors of 6, 8, and 10 re-

3pectively.

Speech and Speech-Like Signals

Many speech waveforms exhibit a nonrandom periodic
character; their spectra display a fine harmonic structure
(with peaks separated by integral multiples of the pitch
frequency) with a roughly AR modulation. The harmonic
structure is generally attributed to the periodic glottal
pulses while the AR modulation is generally attributed to
the response characteristics of the vocal tract.

To simulate such waveforms the all pole filter with
frequency response displayed in f.  gure 6a was excited with a
periodic stream of impulses (with a period of 79 samples).
No figure comparable to Figure7 is included here since, in
the absence of noise, the analysis of 100 different 400
sample Hamming windowed frames of data (with a random dis-
tribution of phase displacement) presents no apparent esti-

4

mation error. Consequently, while part of the apparent
estimation error in the scatter plots of Figures 10 through

21 must be attributed to the random character of the signal

4that is, on the scale used for these scatter plots.
On a greatly enlarged scale, a small amount of bias and
variance error may be observed.
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itself, all of the apparent estimation error in the fol-

lowing scatter plots (F:gures 24 through 55 may be attri-
buted to the presence of noise.

“ieures 22 and 23 each present various estimates of a
single 200 sample Hamming windowed frame of data. ln both
cases the frame of data consists of the aforementicned peri-
odic signal process and a colored Gaussian ncise process
summed at a 10 dB signal to noise ratio. The periodogram
estimates in Figures 22a and 23a clearly display the fine
harmonic structure of the signal spectrum near the filter
resonance (fractional frequency of .8) while this structure
breaks down near the noise resonance (fractional frequency
of .2).

Figures 22b and 23b display estimates obtained using
the noise filtering formulation; Figures 22c and 23c¢ display
the noise filter response characteristics that produced
these estimates. Clearly the estimate appearing in Figure
22b is overly flat while the estimate appearing in Figure
23b is overly sharp. Figures 22d and 23d display the
estimates obtained using the weighted information
formulation; comparison with Figure 6a reveals that both
these estimates are improved relative to their counterparts
in Figures 22b and 23b. Finally the AR(2) weight functions
approximating the noise filter response functions are
presented in Flgures 22e and 23e.

Figures 24, 25, 26, and 27 display a variety of scatter

plots; each scatter plot presents the result of analyzing
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100 different 400 sample Hamming windowed frames of data;
the same 100 data frames were employed for each plot. As
mentioned above, because the signal process is periodic and
not random in character all of the apparent estimation error
can be attributed to tne added colored Gaussian noise
3 (SNR = 10 dB).
Figures 24 and 25 employ smoothed noise filter response
’ - characteristics while Flpures 26 and 27 employ the un-
smoothed characteristics.5 Figures 24 and 26 display the
results obtained with the noise filtering formulation while
‘ Figures 25 and 27 display the results obtained with the
AR(2) weighted information formulation. Once again, th-
weighted information formulation leads to 1less estimation

error than the comparable noise filtering formulation; in

TR YIY.

Figures 254 and 25e the estimation error is so small as to
be almost imperceptible on the scale employed for these
plots. Smoothing still appears to display a generally
beneficial effect.

Figures 28, 29, 30, and 31 present similar results for
the case of white Gaussian noise corruption to the periodic

signal processes (SNR = 10 dB). As with the Gaussian signal

AN SLEA S ( MSLALALALAA ARG et

Some caution is advised regarding the use of smoothers
here. The dimensions of the lobes within the fine harmonic
structure are controlled by the length and shape of the data
window so that a smoother that works well with one frame

length may not work well with longer frames or a differently
shaped window.
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process, 4ll the estimates present degraded performance in
this white noise case as compared to the colcred noise case.

Te complete these simulations, Firures 32, 33, 44, and
35 present analysis results for the case of white Gaussian
noise corruption to the periodic signal process at a zerc dB
signal to necise ratiio. As with the Gaussian signal pro-
cess, parts b, c, and 4 of these figures employ soft sup-
pression rules with increased suppression factors of 6,
8,and 10 respectively.

The following summarizes the description of these scat-
ter plots. Figures 10-13 and 24-27 correspond to colored
noise corruption at a 10 dB signal to noise ratio; Figures
14-17 and 28-31 correspond to white noise corruption at a 10
dB signal to noise ratio; Figures 18-21 and 32-35 correspond

to white noise corruption at a O dB signal to noise ratio.

Figures 10-21 correspond to a Gaussian random signal;
Figures 24-35 correspond to a periodic (period = 79 samples)
signal. Figures 10, 11, 14, 15, 18, 19, 24, 25, 28, 29, 32,
and 33 employ a smoothed noise filter response while the
remainder employ an unsmoothed response; parts a and e of
each of these figures determine the noise filter response
using the power and magnitude subtraction rules respectively
while parts b, c, and 4 employ the soft suppression rules.
In Fisures 10-17 and 24-31 the suppression factors for parts
b, ¢, and d are 4, 6, and 8 respectively; in Figures 18-21
and 32-35 the suppression factors and 6, 8, and 10 re-

apectively. Finally, Figures 10, 12, 14, 16, 18, 20, 24,
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26, 28, 30, 32 and 34 display the results of the (un-
weighted) noise filtering analysis while Fieurcs 11, 13, 15,
17, 19, 21, 25, 27, 29, 31, 33, and 35 display the results
of the AR(2) weighted information analysis.

Before concluding this chapter, several examples re-
sulting from the analysis of a real speech segment are pro-
vided. Figure 36a shows a periodogram estimate obtuined
from a Hamming windowed 400 sample segment taken from the
vowel portion of the word "wrap";6 from the fine harmenic
structure it is apparent that the pitch of this segment is

about 135 Hz (about 59 samples). Figure 36b shows a tenth

S order AR estimate of the spectrum obtained as the result cof
- an autocorrelation method analysis of the same Hamming

windowed segment; four vocal tract resonances are clearly

visible. '

Figures 37a and 37b show periodogram and tenth order AR

estimates obtained from this same vowel segment after adding
white noise at a 10 dB signal to noise ratib. Clearly, the
fine harmonic structure of the periodogram estimate has been
partially obscured and, while four resonances are still

visible, the AR estimate is severely distorted.

6The word, spoken in c.ntext by an adult male in a
quiet environment, was taken from the sentence "Don't gift
wrap the tall glass." and was appropriately filtered before
sampling at 8 kHz.

TLower and higher order analyses were applied to this
segment and it was judged from plots such as these that a
tenth order model is appropriate.
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(a) Log Power Spectrum (dB vs Fractional Frequency); Periodogram
Estimate of Vowel Spectrum; Noise Free

+10

4 3 .5 7 9

(b) Log Power Spectrum (dB vs Fractional Frequency); AR(10) Esti-
mate Using Autocorrelation Method; Noise Free

Figure 36. Vowel Spectrum in Quiet Environment
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(a) Log Power Spectrum (dB vs Fractional Frequency); Periodogram
Estimate of Vowel + White Noise Spectrum; SNR = 10 dB

+10

.4 .3 .3 7 9

Log Power Spectrum (dB vs Fractional Frequency); AR(10) Esti-
mate Using Autocorrelation Method; SNR = 10 dB

Vowel Spectrum in White Noise

(b)

Figure 37.
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Figures 38 and 39 display the result of applying vari-

ous other estimators to the same white noise corrupted data
frame. Figure 38 shows results obtained with the smoothed
power subtraction rule and figure 39 shows results obtained
with the smoothed magnitude subtraction rule. Part a of
each figure shows the result obtained with the noise fil-
tering formulation; the noise filter response functions are
displayed in part b. The weighted information estimates,

displayed in part c, were obtained using the modified Newton

-'i""‘ 'n""' ———
. b e S S TR e
o L PRI

iteration described in Chapter IV; the weight functions,
displayed in part d, were selected as an AR(6) fit to the
noise filter response functions displayed in part b.8
Comparison of figures 38a and 39a to figure 36b reveals
the deficiencies of these noise filtered estimates; in par-
ticular, the reader should note the amplitude of the third
and fourth (highest frequency) resonance peaks as well as
the depth of the valleys near the fractional frequency
values of zero and one. These features are partially cor-
racted in figures 38c and 39c by the weighted information
formulation; most notable is the correction of the valley
depth near the fractional frequency value of zero. Also
worth noting is the improved valley depth near the frac-
tional frequency of one in figure 38c and the improved

amplitude of the fourth resonance peak in figure 39c.

80he weight functions need not be selected to have an
AR form; however, with this iterative method, convergence is

%ore difficult to achieve with more complex weight function
orms.
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CHAPTER VI
CONCLUSION .

A new method of spectral estimation has been presented.
The method addresses the problem of noise corruption to the
time series measurements and assumes knowledge of the noise

1 The method has been demonstrated

power gspectral density.
to yield superior performance, in terms of reduced esti-
mation error, and has been suggested for use in speech

analysis applications.

Although the Gaussian assumption is invoked for the
theoretical development of the method, examples have been
- provided that show the method yields superior performance
for other signals as well. Similarly, the method is
considered to be fairly robust with respect to the other

assumptions.2

It is worth noting that while the AR signal
model has been assumed throughout, this assumption is by no

means necessary to the theoretical development so that

1Actually, only knowledge of the frequency response of
a filter designed to eliminate the noise is assumed. Know-
ledge of the noise power spectral density merely leads to
one common method of designing such a filter.

- 25 possible exception is the assumption of independence
between the signal and noise processes for it is this as-
sumption that 1leads to the model of additive signal and
o noise power spectral densities.
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other {(e.g. ARMA, Pisarenko, etc.) models may alsc be con-
sidered.’

Computaticnal procedures relevant tc the problem of AR
model estimation (using the weighted information formu-
lation) have been explored. An algebraic methcd, applicable
when the weight function assumes an AR(M) form, has been
discussed; when M < 4, this method will obtain the solution

using an algorithm of reasonable complexity for many appli-

b cations. Iterative techniques have been discussed that
obtain the solution while permitting an extremely flexible
ﬁ class of weight functions; the price of this greater flexi-
bility is a considerable increase in complexity as well as

the need for much user interaction. Several methods of

coefficient evaluation were presented; one was implemented
and used to obtain the simulation results.
The problem of AR model detection (vector quantization)

requires the evaluation of two integrals for each model in

the finite collection. Evaluation of the first integral is
- accomplished by Equation (4.58a); this equation requires the
same number of additions, multiplications, and (read-only)

storage locations as is required by the usual (unweighted)

3';‘he new formulation would still require minimization
of Iy(Hf,g) and the analogy leading to Equation (3.20) still
applies. The only difference is in the selection of a para-
metric signal model and the system of equations that fol-

lows. Uniqueness questions would need to be addressed
separately but one may hope to find that similar convexity
arguments would apply. Of course, the computational pro-

cedures discussed earlier may no longer be appropriate.
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metneds of vector quantization. The second integral is
evaluated as a constant (independent of the data but de-
pending upon the model) by the usual (unweighted) methods of
vector gquantization; Equatior (4.81) is advocated for evalu-
atiecn «f the second integral with the weighted information
formulation. With about a dozen terms, as suggested for
speech analysis applications, evaluation of the second inte-
gral using Eoauation (4.81) is about equivalent in complexity

to evaluation of the first integral.

Suggestions for Future Research

There are numerous ways to extend and refine the ideas
and methods presented here. The following suggestions,
offered in no particular order, are thought to be worth-

while.

® Extension to other spectral models. As mentioned
earlier, the AR model form is not necessary; moreover,

for some applications it may not even be appropriate.

e Assuming an AR model, determine the conditions for (and
a proof of) existence. Empirical evidence for ex-
istence is strong; it is thought that the conditions
are quite mild from a practical viewpoint (e.g. that
the weight function is bounded). While the question of
existence is mostly of theoretical interest by itself;

the methods used to prove existence (and the precise
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conditions for existence) should have practical value.
Fcr example, a proof bpased upon a contraction map is
likely to yield a highly effective iterative solution

procedure as well.

® Further investigation of methods of coefficient evalu-
ation. These should be studied in close relation to

the specific application in order to select a design

offering a reasonable tradeoff between computaticnal

effort and performance.

Eﬁ ® Investigation of numerical methods for solution of the
ideal formulation. It is thought that the ideal formu-
ii lation should yield still better performance, particu-

larly at very 1low signal to noise ratios; it is

expected that these methods will be very compu-

tationally expensive.

® Development of related formulations assuming a cor-
related noise model. The cross-spectrum (between the
signal and noise processes) may be known, say, as a
function of the unknown signal model spectrum and the
known noise spectrum in gsome applications; +this may
occur, for example, if additive independent signal and
noise processes were passed through a known nonlinear

system prior to observation.
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® Further investigation of computational methods ap-

propriate for the AR weight function model; investi-
gation of computational methods appropriate for otner
parametric weight function models. While the unigue-
ness result guarantees that only one product model,
Cpym(z), satisfying equations (4.13) and (4.15) has all
its "additional" reflection coefficients {kp,y, Xp,o,
..y kp,y} inside the interval (-1,1) it is not known
if the other product models satisfying these equations
have all their "additional" reflection coefficients
outside this interval (of course, they must have at
least some of their "additional" reflection
coefficients outside this interval); if this were true,
the development of an efficient algorithm for higher
order AR weight function models would be greatly
facilitated. In general, it is considered that
parametric weight function models provide the greatest
hope for procedures yielding a flexible choice of
weight function together with an efficient solution

algorithm.

® Investigation of the appropriate selection of "shape

functions" in connection with use of the weighted in-
formation formulation for vector quantization, see
equations (4.79), (4.80), and (4.81). For speech

analysis applications, it is expected that each shape
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function as the power spectral response function of a
bandpass filter with response characteristics similar

»c¢ those filters found in "channel vocoder" systems.

Performance evaluation in specific {speech analysis and
rther) applications using (global) wmeasures appropriate
te the particular application. In a voice communi-
cations system an appropriate measure may be the result
of some formal subjective listening test. 1In a recog-
nition system the recognition error rate may be an
appropriate measure. Systems that predict stock market

activity might measure overall investment performance.

o Extension of the formulation to problems of multi-

dimensional spectral estimation.

® se of the basic concepts/ideas of the weighted infor-

mation formulation to develop a procedure treating the
issues of limited data and noise corruption simultane-
ously, perhaps in combination with notions of Kalman

filtering and the Burg algorithm.
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PUBLICATION ACTIVITIES

In this part, a 1list of papers that are published
and/or to be published is given along with a brief summary

for each paper.

List of papers and their Summaries

1. L. D. Hoy, D. L. Soldan, and R. Yarlagadda, "An Adaptive
Approach to Narrowband Linear Predictive Coding of
Speech", proc. of the TFifteenth  Annual Asilomar
Conference on Circuits, Systems and Computers, Pacific

Grove CA, pp. 331-334, 1931.

Summary

Linear predictive coding is an efficient
narrowband coding technique for speech signals but
degrades significantly in the presence of noise. This
paper examines a prefilter consisting of an adaptive
digital predictor with pitch period delay. Preliminary
results indicating the performance of ¢two adaptive
algorithms are presented. It is shown that the ADP can
improve speech signal quality, as measured by signal-
to-noise ratios, when the speech is corrupted by
wideband noise. The performance sensitivity to pitch

period errors is alsc examined.
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2. D. L. Soldan and L. D. Hoy, "Pitch Extraction with an
Adaptive Filter", MIDCON/82, Professional Program Session
Record 3/2, Dallas, Texas, 1982.

Summarz b

This paper presents a technique Oof estimating the
fundamental frequency or "pitch" of a voiced speech
signal that is based on a tapped delay line adaptive
digital filter (TDLADF). This method allows better

resolution of the pitch frequency than +traditional

s techniques such as autocorrelation and harmonic
;- analysis. It also appears to have better noise
Ei tolerance than these techniques. Advances in VL3I

design should allow real-time processing using the

- TDLADF in the future.

L. Hoy, B. Burns, D. Soldan and R. Yarlagadda, "Noise

Suppression Methods for Speech Applications", Proc. of

4

the 1935 Int. Conf. on Acoustics, Speech and Signal

Processing, pp. 113%-1136, Boston, Mass., 1983.

fom

Summar[

This paper presents a discussion and evaluation of
several filtering techniques for suppressing narrowband
background noise 1in speech signals. The methods

discussed are a modified spectral subtraction
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technique, an inverse transform filter, an adaptive
notch placement technique, an adaptive predictor, and a
modificaticn of tne adaptive predictor. Performance of
the filter methods are compared using a spectral error
measurement and an area ratio parameter error
measurement. Although the modified adaptive predictor
provided the ©best improvement in spectral error,
results indicate the modified spectral subtractioun
method to be the most suitable for use with linear

predictive coding systems.

4. R. D. Preuss and R. Yarlagadda, "Autoregressive Spectral
Estimation in Noise in the Context of Speech Analysis",
to be presented at the Second ASSP Workshop on Spectral

Estimation, Tampa, Florida, 1983.

Summarz

< An improved method of spectral estimation is
described. The method treats the problem of estimating

autoregressive (AR) process parameters from sequential

discrete time observations corrupted by additive
;; independent noise witn known power spectral density.
3 The method has a thecoretical foundation relating it %o
t principles of information theory as well as the linear
; predictive (LP) procedures popularly employed for
5 speech analysis. Simulation results are wused to

support the theoretical development and demonstrate the




.....

-

b'

- __.'v_-‘;l - )"

L R L A S T B L R R i MR, g

advantages of the method as compared ¢to currently
popular methods of estimating speech spectra from noise

corrupted observations.

5. C. S. Sims and R. Yarlagadda, "Design of Fast Recursive

Estimators™, to be published as a full paper in the IEEZ

Trans. on Acoustics, Speech and Signal Processing.

Summary

A recursive linear estimatcr is proposed for rapid
estimation of a signal in noise. Efficient methods are
developed for optimization of the filter
coefficients. Optimal selection of data to Dbe
processed is shown to be related to a classic integer

programming problem.

R. Yarlagadda and C. S. Sims, "A WHote on the General

Discrete-Time Linear Estimation", submitted for

publication.

Summary

This paper presents a simple and an efficient
algoritnm for +the solution of a generalized 1least
squares prediction problem. The derivaticons are

presented in terms of matrix point of view.
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RADC plans and executes reseanch, development, test and
selected acquisition programs in suppont o4 Command, Contrcl
Communications and Intelfligence (C3T) activities. Technical
and engineering suppornt within areas 04§ technical competence
A8 provided to ESU Program Uffices (PUs| and other ESD
elements. The principal technical mission areas are
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d0lid state sciences, electromagnetics and electronic
reliability, maintainability ana compatibility.
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