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DIFFERENTIAL METRICS IN PROBABILITY
SPACES BASED ON ENTROPY AND DIVERGENCE

MEASURES

C. Radhakrishna Rao

SUMMARY: In this paper are discussed some general methods of metrizing prob-

" ability spaces through the introduction of a quadratic differential metric

in the parameter manifold of a set of probability distributions. These methods extend

*! the investigation made in Rao (1945) where the Fisher information matrix was

r. used to construct the metric, and the geodesic distance was suggested as a mea-

sure of dissimilarity between probability distributions.

The basic approach in t- he-p.eTw paper is first to construct a divergence

or a dissimilarity measure between any two probability distributions, and use it

to derive a differential metric by considering two distributions whose characterizing

parameters are close to each other. One measure of divergence considered is the

Jensen difference based on an entrcy functional as defined in Rao (19820).

Another is the f-divergence measure studied by Cs1sztr (1967). The latter

class leads to the differential metric based on the Fisher information matrix.

The geodesic distances based on this metric computed by various authors are

listed. .. .

KEY WORDS: cross entropy.-f-divergence, geodesic distance, information mat
Jensen differencequadratic entropy. 
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1. INTRODUCTION

In an early paper (Rao, 1945), the author introduced a Riemannian (quadra-

tic differential) metric over the space of a parametric family of probability

distributions and proposed the geodesic distance induced by the metric as a

measure of dissimilarity between probability distributions. The metric was

based on the Fisher information matrix and it arose in a natural way through the

concepts of statistical discrimination (Rao, 1949, 1954, 1973 pp. 329-332, 1982a).

Such a choice of the quadratic differential metric, which we will refer to as

the information metric, has indeed some attractive properties such as invar-

iance for transformation of the variables as well as the parameters. It also

*[ seems to provide an appropriate (informative) geometry on the probability space

for studying large sample properties of estimators of parameters in terms of

v

simple loss functions as demonstrated by Anari (1982, 1983), Cencov (1982),

Efron (1975, 1982), Eguchi (1983, 1984) and others.

The geodesic distances based on the information metric have been computed

for a number of parametric family of distributions in recent papers by Atkinson

and Mitchell (1981), Burbea (1984), Mitchell and Krzanowski (19851, and Oller

and Cuadras (1985).

In two papers, Burbea and Rao (1982a, 1982b) gave some general methods for

*constructing quadratic differential metrics on probability spaces, of which the

Fisher information metric belonged to a special class. In view of the rich

variety of possible metrics, it would be useful to lay down some criteria for

the choice of an appropriate metric for a given problem. Amar has stated

that a metric should reflect the stochastic and statistical properties of the

family of probability distributions. In particular he emphasized the invariance

'- '- '.-'.-'. .-..- .' .-..-- . .* - *. .-.-.. . -- . - -* - - ..V . -.o. - .-.V .' . ..... *. ...* - .'- *"i .i. - ----. " . -- .< .- -
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of the metric under transformations of the variables as well as the parameters.

V
Cencov (1972) shows that the Fisher information metric is unique under some con-

ditions including invariance. Burbea and Rao (1982a) showed that the Fisher infor-

mation metric is the only metric associated with invariant divergence measures of

the type introduced by Ciszhr (19-67). However, there exist other types of

invariant metrics as shown in Section 3 of thiv paper.

The choice of a metric naturally depends on a particular problem under

investigation, and invariance may or may not be relevant. For instance, consider

the space of multinomial distributions, A - {(pI"... Pn): P i > 0 , pi =1i}, which

is a submanifold of the positive orthant, X - {(xl,...,xn): Xi > 0 of the Euclidean

space Rn . A Riemannian metric on X automatically provides a metric on the sub-

manifold A. In a study of linkage and selection of gametes in a biological

population, Shahshahani (1979) considered the metric

* (1.1) ds2  dx

lX i

i which induces the information metric on A. This metric provided a convenient

framew6rk for a discussion of certain biological problems. However, Nei (1978)

considereda distance measure associated with the Euclidean metric

(1.2) ds 2 - dx

. which he found to be more appropriate for evolutionary studies in biology. The

metric induced on A by (1.2) is not the Fisher information metric. Rao (1982a,

19?2b) has shown that a more general type of metric

(1.3) ZEaijdPidpj

-. on A, called the quadratic entropy is more meaningful in certain sociometric and

.. -" .. ".," .".."-.".."... .. " - . ... "" .. .... . -. . " ....-.- . . .. .. .......
.. ** *** .. .. . . . . . . . .
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biometric studies.

The object of the present paper is to provide some general methods of

constructing Riemannian metrics on probability spaces, and discuss in particular

the metric generated by the quadratic entropy which is an ideal measure of

diversity (see Lau, 1985 and Rao, 1982b), and has properties similar to the

information metric, like invariance. We also give a list of geodesic distances

based on the information metric computed by various authors (Atkinson and Mitchell,

1981; Burbea, 1984; Mitchell and Krzanowsk.1 9 85; Oiler and Cuadras, 1985 and

Rao, 1945).

The basic approach adopted in the paper is first to define a measure of

divergence or dissimilarity between two probability measures, and use it to derive a.

metric on M, the manifold of parameters, by considering two distributions defined

by two contiguous points in M. We thus provide a wider basis for the construction

of an appropriate geometry or geometries on the parameter space for discussion of

practical problems. *Some divergence measures may be more appropriate for discuss-

ing properties of estimators using simple loss functions while others may be

appropriate in the study of population dynamics in biology. It is not unusual

in practice to study a problem under different models for observed data to exa-

mine consistency and robustness of results. The variety of metrics reported in

the paper would be of some use in this direction.

2. JENSEN DIFFERENCE AND ENTROPY DIFFERENTIAL METRIC

Let v be a a-finite additive measure defined on a a-algebra of subsets of a

measurable space X, and P be the usual Lebesgue space of v measurable density

functions,

* .
. ....
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(2.1) P-{p(x): p(x)>_0, xX'X, p(x)dv (x)l1).

We call H: P -R an entropy (functional) on P if

(i) H(p) -0 when p is degenerate,

(ii) H(p) is concave on P.

In such a case, with X >0, u> 0, )+ =-1, Rao (1982a) defined the Jensen difference

between p and q E P as

(2.2) J(X,p.* p~q) =H ( p + uq ) - XH ( p ) - u R( q ) .

The function J: P xP+R is non-negative and vanishes if p-q (iff p-q when

H is strictly concave). If the entropy function H is regarded as a measure of

diversity within a population, then the Jensen difference J can be interpreted

as a measure of diversity (or dissimilarity) between two populations. For

the use of Jensen difference in the measurement, apportionment and analysis of

diversity between populations, the reader is referred to Rao (1982a, 1982b).

Let us now consider a subset of probability densities characterized by a

vector parameter 8

Pe = {p(x,e): p(x,O) e P, eEM, a manifold inRnl

and assume that p(x,O) is a smooth function admitting derivatives of a certain

order with respect to e and differention under the integral sign. For conven-

*ience of notation, we write

p( ,e) -pop H(O) -H(p8 ), H(e,$) -H(Xp + ip )

-(2.3) a(J-).H,)- ( . -(. . .- () H(*)
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where 6,O E M. Putting = e+dB and denoting the i-th component of a vector with

a subscript i-, we consider the formal expansion of J(e,6+dO),

nn 2 nnn a3J(6,0-)(2. 4) -- '~--do do + -.L 71de de de I...2! i k

1 Z- gz Hi (e) + _ rZ cde do +...

In (2.4), the coefficients of the first order differentials vanish since

2J(e, ) has a minimum at O=t3, and the notation such as 3 J(8, -)/oi~ is used

for replacing 0 by e after carrying out the indicated differentiations.

From the definition of the J function, it follows that the (gij) is a

non-negative definite matrix and obeys the tensorial law under transformation

of parameters. We define the matrix and the associated metric

(2.5) (gHj) and ZE g jdo doHi j

as the H-entropy information matrix and H-entropy differential metric respec-

tively. We prove the following theorem which provides an alternative computa-

tion of the H-information matrix directly from a given entropy H.

Theorem 2.1
H a 2 H(X (3Po

(2.6) gij (6) = - pei=

• .Proof: By definition

H a j(e. --e)

2 a2
(2.7) = a -

Since J(e,O) attains a minimum at q-

o.. . . . .

* * . . . . . *.. 5 5 . . . .-. . -

'" - 3,-, . ''>;-i X,'..-. ".-' '.." S4 *,. ' .- i. .- -..- -.. , ..* :. * .S . ... .-.-...--.-. .. .-..
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(2.8) aH(e)
2 .3 6 •

Differentiating both sides of (2.8) with respect to ei we have

(2.9) 2H(e,-e) a H(e.0-e) a 2H(O)
Oe aD j -u e Di j

which gives (2.6), and the desired result is proved.

Let us consider a general entropy function of the type

(2.10) H(Pe) - -J h (pe)dv(x)

where h" is a non-negative function. Then using (2.6)

(2.11) gHj(8) _ h 2 __i,__ _

a2h ( p +pp )" -aei , a¢.dv(x)

MI- Jh"(p8 ) ape ape dv(x)
fii

If [-h(x)] -xlogx, leading to Shannon's entropy, then

h i ap p
(2.12) g h g (e) - X1 I '0 dv(x)

ii ii j 30 ae ae~

become the elements of Fisher's information matrix. If h(x) (a-l)l (xa-x),

a 01, we have the a-order entropy of Havrda and Charvht and

(2.13) h a la(0 )  r aa alogp dv(x)

-j ij(e-c~ J ae 1  ae i

which provide the elements of a-order entropy information matrix, and the corres-

ponding differential metric given in Burbea and Rao (1982a, 1982b).

.,;. ...-'.. .. '. ." -. '. ..'.... .o -,.' . - ' .,....- ..... .... . . .* . -., ,. .. ,,, .. ' S .** .
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We prove Theorem 2.2 which gives alternative expressions for the coeffi-

cients of the third order differentials in the expansion of J(e,).

Theorem 2.2

( a3 -H(e) a3H(e0.-e) +a(2.14) Cijk - +Sae e k aeia j aik a oa~ia~k

Proof: By definition

(2.15) CiHk(e) a jce.t-e)

- a H(e.,-e) a3 H(e)
i 4jak aei k

From (2.9), writing i-j and j -k we have

32H(e .,e) + a 2 He. -e) a 2I(e)
ae ak + .jak - aje k

Differentiating with respect to i

aH(e,0-e) + a3 H(e.,-e) + a3H(ej-e) + 3H(O.-O) a 3H(O)
36~ ae0 ak 30ae aok ae a B a aae 555oeSa ij 3 k  aio k  k  ¢ij k  oiaju k

which gives (2.14) as equivalent to (2.15). This proves Theorem 2.2.

Let H be Shannon's entropy. Then, an easy computation gives

:(1)+ (i)+ (i)+
S(2.16)c ijX{[ F  +(l-X)T i+[rk +(l--p)T i ] [rk +(l-P)T 1k]

ijk ijk ujk jki ijk ikj ' ijk

where

(1 a2 1 o g p  3lgpalg e a lo a a log p

(2.17) = E( Tlo("log P , lo_ P log Paijk a@ ae 36 ijk 3e ae a
i k i jk

Adopting the notation of Amari for e-connexion

(-) = (1)
ijk ijk 2 ijk

-- -.-:~~~~~~~~~~~~~~~~~~..-..-i.J .. -. "..-.-.-.. •,- -........ ."-"."- ". .. *", -" -- -" --. "".'--_ ". '.-' % .. ' ' 'I. .-
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the expression (2.16) can be written

.9. (2.18) c ir (2k-) + r (2 -1) + r(4-1)
Cijk jki ikj

When X = 2' (2.18) becomes

(2.19) cijk [j k  jki +ikj

Remark 1. In the definition of the Jensen difference (2.2), we used

apriori probabilities X and p for the two probability distributions p and q

which have some relevance in population studies. But in problems of statis-

1
tical inference, a symmetric version may be used by taking A ==

2

Remark 2. Throughout the discussion of this section, it was assmyed that

the family of probability distributions admit densities. This was done to

make the computations simple. The problems could, however, be discussed in

greater generality using distribution functions instead of densities.

3. THE QUADRATIC ENTROPY

The quadratic entropy was introduced in Rao (1982a) as a general measure

of diversity of a probability distribution over any measurable space. It is

defined as a function Q: P-R+

(3.1) Q(P) f J K(x,y)p(x)p(y)d(x)dv(y)
JXX

where K(x,y) is symmetric, non-negative and conditionally negative definite,

:':: i.e.,

1"nn:': IK(x x )aiaj <0
" 11j
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" for any choice of (xl,...,x n) and of (a,,...,an ) such that al+...+a =0, with

the further condition K(x,y) =0 if x =y. As shown in Rao (1982b) and Lau

(1985), the quadratic entropy is concave over P and its Jensen difference has

nice convexity properties which makes it an ideal measure of diversity. In

view of its usefulness in statistical applications, we give explicit expressions

. for the quadratic differential metric and the connection coefficients asso-

ciated with the quadratic entropy, in the case of the parametric family P0.

From Theorem 2.1, the (ij)-th element of the Q-information matrix is

a 2Q(XPe +)1P )b

* (3.2) g Q (p) 38i

Observing that

°r

Q(Xpe+lip) - j K(x,y)[Xp(x,0) +up(x,4)][Xp(y,)+up(yA)ldv(x)dv(y),

we find the explicit expression for (3.2) as

(3.3) g Q (6) -- 2Xp K(x,y) Dp8i6 ap(,6 dv(x)3,(y)

i ei ae

".ay logp(Xiq13 logp(y,8)-- -2 Xjj E[K(x,y) aea .

Using the expression (2.14), we find on carrying out the necessary computations

cijk =- 2A (ijk +ikj +rjk i)

where

(.3.4) rij k  f K(x,y) p(xe) 1 p6 1 dv(x)dv(y).ffi Bk i j d (d y.

It is of interest to note that the expressions (3.3) and (3.4) are invariant for

*" transformations of both the parameters and variables.

.... ... " . .... ..... "........".."."."..".".."........."."'."-."..'."...-.,-..."."...-"."...-".
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4. METRICS BASED ON DIVERGENCE MEASURES

Burbea and Rao (1982a, 1982b), Burbea (1984) and Eguchi (1984) have consid-

ered metrics arising out of a variety of divergence measures between probability

distributions. A typical divergence measure is of the form

(4.1) DF(PeP) =f FIp(x,},p(,x,4)Idv(x)
X

where F satisfies the following conditions:

F is a C -function on R+x

(ii) F(x,') is strictly convex on R+ for every xER+,

(iii) F(x,x) = 0 for every xE R+,

iv) aF(xy- x) = constant for every xE R+.ay

Let us consider the expansion

!F 1 F()dOide
(4.2) D F(P 'Po+de) =1 Z*gFj (O)ded j + c ij ijk

i F P,
and obtain explicit expressions for g F and c ik

Theorem 4.1. Let

F (xy) 3F(x,y) , F2 (x,yl 3F(xy)
21 x 2 y

F 2F (x,y) F 2F Cxy) F 2 F(x,y)
11 ax 2  12 axay ,F 2 2  ay2

F =a 3F(x,Y)
222 3ay

Then

F r aP0  aP0
g F(6) f F2p e-pe dv(x)ij J 22[ip6iP) a38 a36

- FIPe'Pe] 
iape ape dv(x).

F"121polp e " 36 ae-".;,.
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cF F [pe9p] 8 pe pe dv(x)

( i) jj f j 222  ~e i Be -dvexk

2' 2 2_.____ 
p ?9 P___e aPe 3 P0  P0 ,

+ F Ap 3 a e aep ae 3 e ae ap a e Idv(x).
22ele e o B k -T?-ik B Be jk

The results are established by straight forward computations.

Let us consider the directed divergence measure of Csiszgr (1967), which

* plays an important role in problems of statistical inference,

* (4.3) .D(pPe ~, = r(x e) f(R8 xs)Ndv(x)
,o.o)-

where f is a convex function. In this case

2
Sf a2D

(4 .4) g j (D) - i- j I .e

= f"(1)P 1 2v-2P = f (1)g 1 (e)

where g1 j are the elements of Fisher's information matirx. Thus a wide class

of invariant divergence measures provide the same informative geometry on the

parameter manifold. Further,

f 3DCljk 3030-. i Jk lo-e

ft (1)(1) + r(1) +,r(1) + (f""(1) + 3f"(1))Tjk
=jk ikj jkiJ

where r and T are as defined in (2.17).. were ijk  Tijk

If f is a convex function, then

f (u) - uf(-I
u

is also convex, and the measure (4.3) associated with f+f is

1*:2:, .;:2:;2.2i '''':;"" ' '.''"" " ";.:"' ::.2:"-'''"'--.-. :2::2"- .;:: . .;.": . : : i .. : ...- .. :..: -.- :-
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(4.5) D (pp) [pf () + p f dv (x)
p e 8  0

which is symmetric in 8 and *. However, we may define (4.5) as a symmetric

divergence measure without requiring f to be a convex function but satisfying

the condition that xf(x-1) +f(x) is non-negative on R+. In such a case

g (0) - 2f"(1)g[j (e)

cijk + "(lTjc fjk 8  f" (1) [r (1) +r" (ll)~ +rk +(1). + f" (1) Ti

5. OTHER DIVERGENCE MEASURES

In the last section, we considered the f-divergence measure which led to

" the Fisher information metric. A special case of this measure is the city block

distance, or the overlap distance (see Rao, 1948, 1982a),

(5.1) D0 (POSD) - I p(x,8e-P(x,*Idv(cxj

obtained by choosing f(x) - i--in(x,l), which admits a direct interpretation

...  in terms of errors of classification in discrimination problems. However, this

is not a smooth function and no formula of the type (4.7) is avialable to de-

- termine the coefficients of the differential metric. But in some cases, it

* may turn out that

D0 (Pep,) D0 (e,)

is a smooth function of 8 and O in which case

. 2 (e ,s=e

(5.2) i =0

In the case when p(x,6) is a p-variate normal density with mean u and fixed

variance covariance matrix E, the coefficient (5.2) can be easily computed to be

proportional to aiJ the (1,j)-th element of Z" which is indeed the (ij)-th

S. ~ ~ *--.-**-...~* *~,~.** .* .. A
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element of the Fisher information matrix. It would be of interest to investigate

the nature of the metric induced by (5.1) in the general case.

Let p(x,O) be the density of a uniform distribution in the interval [0,8].

Then it is seen that

e(5.3) D 0 (8,0) - 2C1 .- )if <~

- 2(l- if o> .

Although this is not a differentiable function, it is seen that

2 0d2

dsX

" is the metric associated with (5.3).

Another general divergence measure which has some practical applications is

D 1(p 9 0  (P) ] 2dv(x)

* which is indeed a smooth function if p is so. In this case

r ~2 ap8 6 p
. (e) = 2JL['(pe)] -- dv(x)

C Cjk() 6 *V'(P(p )IP)ae ape ae dv(x)

2 a 2 2
~8 ap8  a pe ap 6 a p ap 6+ 2 Wae a] a2 ae ae +* + dv(x)

e i 1j k ei Mk e ik i5-

Another measure of interest is the cross entropy introduced in Rao and

_ Nayak (1985). If H is any entropy function, then the cross entropy of p with

respect 'to p8 was defined as

..-......- , %-. ,. .- .- . . . . . . . . . . . . -

.. ~ ~ .- , . . ,.' ...... . .,. '... -.,.'.,.'..,. *.. * ' "
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' " " H[p +X (pe-p )]-H(p)

(5.4) D(pe,) H(pQ )H(p)- lim

Let
'a

H (p) h(p)dv (x)

as chosen in (2.10). Then (5.4) reduces to

D(pe~P) -Jh (p, )dv (x) -fh (p ) pe-p dvx+ fh (Pe)dv(x).

Then

ap a

gJj "(P)  j dvx)
j j 3

- which is the same as the h-entropy information matrix derived in (2.10), apart

- from a constant. Similarly

h r(1) +(1)+ (l1)+
jk 

= ijk +ikJ jki ijk

• where

(1)p2 2lo
21°lgp o gpo

r(1) = E{p h,,(p )ae 1  6 e

{-2 , logpo a logpe alogpe

"T E{[3poh"(p )+2poh"t (Po) I I .
ijk 381 a k

6. GEODESIC DISTANCES

In Rao (1945) it was suggested that the information metric could be used

" to obtain the geodesic distances between probability distributions. Given any

quadratic differential metric
.

(6.1) ds2  £Z gi(e)did6j
°j . .

0- J1
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where the matrix (gij) is positive definite, the geodesic curve 0 -e(t) can be

determined from the Euler-Lagrange equations

n nn

(6.2.) gi %' + Y rijk~f% M0, k-l',...,ni Iij

and from the boundary conditions

act 1I) = e, e(t 2) = ,.

In (6.2), the quantity

(6.3) r ijk -2[jei-, gjk+ 6 gki - gij ]

and is known as the "Christoffel symbol of the first kind".

By definition of the geodesic curve 6-e(t), its tangent vector --e(t) is

2of constant length with respect to the metric ds2 . Thus

"' nn(6.4) = constant.
11

The constant may be chosen to be of value I when the curve parameter t is the

• arc length parameter s, O<s <s , with 8(0) = 0, 8(sO) = 0 and sofg(8, ) is the
°--

* oi[:geodesic distance between 0 and *.

Aitkinson and Mitchell (1981) describe two other methods of deriving geodesic

'. distances starting from a given differential metric. The distances obtained

*by these authors in various cases are given below. In each case we give the

probability function p(x,O) and the associated geodesic distance of (0,0) based

" on the Fisher information metric.

(1) Poisson distribution
* -e Ox

p(x,e) - e 0 /x!, x nO,l,...

g(0,0) - 21,B- r I

J 
e
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(2) Binomial distribution (n fixed)

p(x,e) - (n) x( 1 -) n-x xO,l,..o,n

g(8,0) - 2nlsin-1 /- -sin- 1  1
- 2n cosl[A + V(1-0)(1- .

(3) Exponential distribution

p(x,e) - ,exe x>O

g(e,O) - Ilog e-log!.

(4) Gamma distribution (n fixed)

p(x,e) = en[r(n)]- 1 xn-ie - x e, x>O

g(e, ) - rnI log e - log

" (5) Normal distribution

P(x,,a 0) - N(,a2o;x), a fixed

, -u 1 - 211/O

* (6) Normal distribution

P(X,Uo,2) - N(uo0 ,a 2;x), p0 fixed

g(a1,2) 2 I log of-log a21

(7) Normal distribution

2 2p(x,;o2 ) - N(p,a ;x), u and a both variable.

*i The information metric in this case is

* (6.5) ds. dV + 2dao
* do2  a2

and the geodesic distance is

(6.61 g(la;ii 2 ,a2 ) - log (1,2)

- 2V tanh1 6(1,2)



17

where 612 is the positive square root of

2 2

2+2(a1+ 2)

The explicit form (6. 6 ) is given in Burbea and Rao (1982a). From (6. 6 )

g( 2 2 , =F2 I l o g a 1 -log a21

which agrees with result (6). However, g(pia 2;Pa2,a ) does not reduce to result (7)

since a = constant is not a geodesic curve with respect to the metric (6.5)

(8) Multivariate normal distribution

N (pE;x), Z fixed
pg(-lI 2 P- 1 -P

which is Mahalanobis distance.

(9) Multivariate normal distribution

N(pE;x), j fixed

g (E1,E2 )  2-1 (log Xi ) 2
2. 1

where 0 X <...<X are the roots of the determinantal equation IZ2-XE1 1 0.-- p

The above explicit form is due to S.T. Jensen as mentioned in Atkinson and

Mitchell (1981).

(10) Negative binomial distribution

p(x,e) - [xr(r)] -r(x+r)X (1-) r, r fixed

•(e,) - 2/r cosh-1  L2- .

a 2,rr log +  - I

. -. .. -

" *- i- )( - )
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This computation is due to Oiler and Cuadras (1985).

(11) Multinomial distribution

.*" l....'nk; i1n""k W n 1 "" k n n fixed.n 1. nl ! I!

Let wr( ill . kl) and r2 = (i1 2 " k2). Then

- ~ ~~g(ir ,rt) = - cs-(
'"21 i i2

The above computation was originally done by Rao (1945), but an easier method

of derivation is given by Atkinson and Mitchell (1981).

Recently Burbea (1984) obtained geodesic distances in the case of indepen-

dent PoissOn and Normal distributions which are given below.

(12) Independent Poisson distributions:"n -8i  6-1

P(X...,X ;0 ,...,en) = TI e -i

1i
n 21/2g(6l,...,en;,z,.., n)  2 [Z( - 7 21
1

(13) Independent Normal distributions

2 2
" g[(x~ a N) "' (x n; 'j'nl)"  .,

22 2 2g"" 011 a 11) . ( ' )u12"'512) ""V(Pn2' a 2) ]

n 2 1+6k (1,2) 1/2
= [ log 2

k-l 1-6k(1,21

where 6k(1,2) is the positive square root of

2 2'(Uk k2) + 2Cakl-ak)

22
-(kl_'k22 + 2 (akl+ k2)

(14) Multivariate elliptic distributions

P(xlp, r-) = x-'zlxu]

'-: .--- ,%1 /. c *-.' ..". . • S.-.- . - *' . ' ..... " ..'. S. *.. ,.. .'-. .' . ...-. - . .
... . - . .. .. ." s- -. t,.."/. ...s,..st~ms.il~ ,I. . . : ,.. , " S. ., * , . 5, " ... "" 5 t
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for some function h, and E is fixed

g01 ,2' - ch(!l-! 2 ) ' E ( - )

where ch is a constant, which is essentially Mahalanobis distance. This result

is due to Mitchell and Krzanowski (1985).

The use of the c coefficients defined in (2.4) and (4.2) in the discussion
ijk

of statistical problems will be considered in a future communication.
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