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N SUMMARY: 1In this paper are discussed some general methods of metrizing prob-

ability spaces through the introduction of a quadratic differential metric
in the parameter manifold of a set of probability distributions. These methods extend
the investigation made in Rao (1945) where the Fisher information matrix was
; used to construct the metric, and the geodesic distance was suggested as a mea-
; sure of dissimilarity between probability distributions.
- The basic approach in-ehofz;a;ent’paper is first to construct a divergence
or a dissimilarity measure between any two probability distributions, and use it
to derive a differential metric by considering two distributions whose characterizing

parameters are close to each other. One measure of divergence considered is the

f‘\
Jensen difference based on an entrc;y functional as defined in Rao (1982a).
. PR - _@

——

Another is the f-divergence measure studied by Csiszfr (1967). The latter
- class leads to the differential metric based on the Fisher information matrix.
The geodesic distances based on this metric computed by various authors are

listed. /;f/”A [

" KEY WORDS: cross entropy,- f-divergence, geodesic distance, information @g;;ixi::]

- Jensen difference,”quadratic entropy. — - Acggzéion For
TNTIS  GRAXI g
DTIC TA3
Unannounced [j
Justificotion —— "o

e et =

; - ~ —
: D@Stributﬁon/ .
Nimepes,

Avallatility Codes
"Avl; ané/or
Specinl
!

; |

Y ‘LL:;.A}:‘AL.O_‘..\..'!.;.;.\'.'

.. ) Dist

..................................
..................................

.....
.............
- B




LR Y T T T T T

1, INTRODUCTION

In an early paper (Rao, 1945), the author introduced a Riemannian (quadra-
tic differential) metric over the space of a parametric family of probability
distributions and proposed the geodesic distance induced by the metric as a
measure of dissimilarity between probability distributions. The metric was
based on the Fisher information matrix and it arose in a natural way through the
concepts of statistical discrimination (Rao, 1949, 1954, 1973 pp. 329-332, 198Ia).
Such a choice of the quadratic differential metric, which we will refer to as
the information metric, has indeed some attractive properties such as invar-
iance for transformation of the variables as well as the parameters. It also
seems to provide an appropriate (informative) geometry on the probability space
for studying large sample properties of estimators of parameters in terms of
simple loss functions as demonstrated by Amari (1982, 1983), éencov (1982),
Efron (1975, 1982), Eguchi (1983, 1984) and others.

The geodesic distances based on the infeormation metric have been computed
for a number of parametric family of distributions in recent papers by Atkinson
and Mitchell (1981), Burbea (1984), Mitchell and Krzanowski (1985), and Oller
and Cuadras (1985).

In two papers, Burbea and Rao (1982a, 1982b) gave some general methods for
constructing quadratic differential metrics on probability spaces, of which the
Fisher information metric belonged to a special class. In view of the rich
%E variety of possible metrics, it would be useful to lay down some criteria for
the choice of an appropriate metric for a given problem. Amari has -stated

that a metric should reflect the stochastic and statistical properties of the

.
!!: . family of probability distributions. In particular he emphasized the invariance
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of the metric under transformations of the variables as well as the parameters.
Cencov (1972) shows that the Fisher information metric is unique under some con-
ditions including invariance. Burbea and Rao (1982a) showed that the Fisher infor-

mation metric is the only metric associated with fnvariant divergence measures of
the type introduced by Ciszir (1967). However, there exist other types of
invariant metrics as shown in Sectien 3 of this paper.

The choice of a metric naturally depends on a particular problem under
investigation, and invariance may or may not be relevant. For instance, consider
the space of multinomial distributions, A = {(pl,...,pn): pi'>0, Zpi=-l}, which
is a submanifold of the positive orthant, X = {(xl,...,xn): xi>'0} of the Euclidean
space Rn. A Riemannian metric on X automatically provides a metric on the sub-

manifold A. In a study of linkage and selection of gametes in a biological

population, Shahshahani (1979) considered the metric

. n Ix
(1.1) ds? = ] —L ax?
1% i

which induces the information metric on 4. This metric provided a convenient
framewdrk for a discussion of certain biological problems. However, Nei (1978)

considered a distance measure associated with the Euclidean metric
(1.2) dsz- dei

which he found to be more appropriate for evolutionary studies in biology. The
metric induced on A by (1.2) is not the Fisher information metric, Rao (1982a,

1922b) has shown that a more general type of metric

(1.3) ZZaijdpidpj

on A, called the quadratic entropy is more meaningful in certain sociometric and
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biometric studies.

The object of the present paper is to provide some general methods of
constructing Riemanni;n metrics on probability spaces, and discuss in particular
the metric generated by the quadratic entropy which is an ideal measure of
diversity (see Lau, 1985 and Rao, 1982b), and has properties similar to the
information metric, like invariance. We also give a 1list of geodesic distances
based on the information metric computed by various authors (Atkinson and Mitchell,
1981; Burbea, 1984; Mitchell and Krzanowski,1985; Oller and Cuadras, 1985 and
Rao, 1945).

The basic approach adopted in the paper is first to define a measure of
divergence or dissimilarity between two probability measures, and use it to derive a,
metric on M, the manifold of parameters, by considering two distributions defined
by two contiguous points in M. We thus provide a wider basis for the construction
of an appropfiate geometry or geometries on the parameter space for discussion of
practical problems. “Some divergence measures may be mere appropriate for discuss-
ing properties of estimators using simple loss functions while others may be
appropriate in the study of population dynamics in biology. It is not unusual
in practice to stﬁdy a problem under different models for observed datg to exa-
mine consistency and robustness of results. The variety of metrics reported in

the paper would be of some use in this direction.

2. JENSEN DIFFERENCE AND ENTROPY DIFFERENTIAL METRIC
Let v be a o-finite additive measure defined on a o-algebra of subsets of a

measurable space X, and P be the usual Lebesgue space of v measurable density

functions,
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(2.1) P={p(x): p(x)>0, xeX, Lp(x)dv(x)-l}.

We call H: P-+R an entropy (functional) on P if

(1) H(p) =0 when p is degenerate,

(11) H(p) is concave on P.

In such a case, with A>0, u>0, A+u=1, Rao (1982a) defined the Jensen difference

between p and q ¢ P as

(2.2) J(A\,u3 p,q) =H(Ap +uq) - AH(p) ~ vH(q).

The function J: P xP-+R is non-negative and vanighes if p=q (iff p ~q when
H is strictly concave). If the entropy function H is regarded as a measure of
diversity within a population, then the Jensen difference J can be interpreted
as a measure of diversity (or dissimilarity) between two populations. For
the use of Jensen difference in the measurement, apportionment and analysis of
diversity between populations, the reader is referred to Rao (1982a, 1982b).
Let us now consider a subset of probability densities chliaracterized by a

vector parameter 6
Pe = {p(x,8): p(x,8)eP, 6 €¢M, a manifold in ™}

and assume that p(x,0) is a smooth function admitting derivatives of a certain
order with respect to 6 and differention under the integral sign. For conven-

ience of notation, we write

p(+,8) =p,, H(8) =H(p,), H(8,4) -H(Ape+up¢)

(2.3) ' J(6,6) =H(8,4) - AH(8) - uH($)
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where 06,60 € M, Putting ¢ = 6+d6 and denoting the i-th component of a vector with
a subscript i, we consider the formal expansion of J(6,6+dS),

nn .2 nnn .3

1 3°J(9,9=6) 1 3°J(0,9=8) _
2.4) =7} de de, + = VIV de_ de de_+...
21 1] 39,90, 1737 31 3§ 36,36.38, LYk
1 H 1 H
= 57 UL g;;(8)d0,do, + < IIT ¢y, (6)do, do do ...

In (2.4), the coefficients of the first order differentials vanish since
J(9,¢) has a minimum at ¢};9, and tﬁe notation such as 82J(9,¢ =e)/a¢ia¢j is used
for replacing ¢ by © after carrying out the indicated differentiations.

From the definition of the J function, it follows that the (g?j) is a
non-negative definite matrix and obeys the tensorial law under transformation

of parameters. We define the matrix and the associated metric

H H
(2.5) (gij) and II gijdeidej

as the H-entropy information matrix and H-entropy differential metric respec-
tively. We prove the following theorem which provides an alternative computa-
tion of the H-information matrix directly from a given entropy H.

Theorem 2,1

2
3"H(Ap, +up, )
(2.6) g (8) = - 8 ¢ .
i3 aeia¢j om0
Proof: By definition
H () = ange,g-e)
84 3, 3,
2.7 L 2% 0m0) _ | a%m(ome)
(2.7 3,96, o 26,96, °

Since J(9,4) attains a minimum at ¢=8
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BH(8,¢=0) _  3H(6)

(2.8) u .
) 36
i 3
Differentiating both sides of (2.8) with respect to 6i we have
3H(0,¢=0) , D2H(B,¢=0) 2%u(e)
(2.9) -+ =
3613¢j a¢ia¢j aeiaej

which gives (2.6), and the desired result is proved.

Let us consider a general entropy function of the type

Y. -

(2.10) H(pg) = -f h(pg)dv (x)

where h" is a non-negative function. Then using (2.6)

BZHSB.Q-GQ

3918¢j

i (6) = s;'j

gij (e) = -

(2.11)

[ *.'-". v,

f azh<xp9+up9)
3913¢j

f ap, 9p
h 1
(2.12) 8yy = 8y (®) = J ga—j-%-;,-dv(x)

-

become the elements of Fisher's information matrix. If h(x) = (a-l)-l(xa-x),

a¥1l, we have the a~order entropy of Havrda and Charvat and

h f
(2.13) 8y = 813(0) =oxu | o7 HiRER LI0BR au(x)
1 3

which provide the elements of a-order entropy information matrix, and the corres-

ponding differential metric given in Burbea and Rao (1982a, 1982b).




We prove Theorem 2.2 which gives alternative expressions for the coeffi-

cients of the third order differentials in the expansion of J(8,4).

Theorem 2,2

B 20(0,0m0) | 2°H(0,0m0) , 37H(8,4m0)

(2.14) ¢ -
ijk 3613613¢k 8913¢j3¢k 39j3¢13¢k

1.

Proof: By definition

3
H 9~ J(b.¢=06)
(2.15) c,.,.(8) =
1jk a¢ia¢ja¢k
_2He,9m0) | 2’u(e)
4 a¢ia¢ja¢k aeiaejaek
- From (2.9), writing i =j and j =k we have
- 2 2 2
; 3 H(6,9=6) 4 S H(O,$=0) _ u 3 H(B)
) 36j8¢k 3¢j3¢k aejaek
Differentiating with respect to ei
v 3 3 3 3 3
2 H(O,0=6) , 2 H(0,4=0) O H(6,¢=6) , B H(B,¢=B) . 3 H(6)
- 8913913¢k 8¢18613¢k 3613¢j8¢k 3¢i8¢j3¢k BBiBGjBBk
:ﬁ which gives (2.14) as equivalent to (2.15). This proves Theorem 2,2.

Let H be Shannon's entropy. Then, an easy computation gives

1) (1) 1)
= +(1- - + +(1-
(2.16)cijk Au{[rijk 1 A)Tijk]+[rjki+(1 u)Tijk] [Fikj (1 u)Tijk]}
where
32103p d logp dlogp, 3 logp, 9 logp
(2.17) rili = E( 3550 : 20 ), T = B30 : 26 : 28 %,
J 1°% k i 1 j K
Adopting the notation of Amari for a-connexion
(@) _ (1) , l-o
Pige ™ Tage ¥ 72 Tig
N D oy g Lo
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the expression (2.16) can be written

. (2r-1) | (2u-1) . .(2u-1)
(2.18) S e

When A = y =-%, (2.18) becomes

©) , 1 (0) , .(0);

(2.19) ¢ £ik ki ikj

1
1k "5 [T

Remark 1. In the definition of the Jensen difference (2.2), we used
apriori probabilities A and u for the two probability distributions p and q
which have some relevance in population studies. But in problems of statis-
tical inference, a symmetric version may be used by taking A=;1=%u

Remark 2. Throughout the discussion of this section, it was assumed that
the family of probability distributions admit densities. This was done to

make the computations simple. The problems ceuld, however, be discussed in

greater generality using distribution functions instead of densities.

3. THE QUADRATIC ENTROPY
The quadratic entropy was introduced in Rao (1982a) as a general measure
of diversity of a probability distribution over any measurable space. It is
defined as a function Q: P->R+
(3.1) Q(p) = f K(x,y)p(x)p(y)dv(x)dv(y)
XxX

where K(x,y) is symmetric, non-negative and conditionally negative definite,

i.e.,

nn .
E K(xi,xj)aiaj <0
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for any choice of (xl,...,xn) and of (al,...,an-) such that a

l+. . .'i'an =0, with
the further condition K(x,y) =0 if x=y. As shown in Rao (1982b) and Lau
(1985), the quadratic entropy is concave over P and its Jensen difference has
nice convexity properties which makes it an ideal measure of diversity. In
view of its usefulness in statistical applications, we give explicit expressions
for the quadratic differential metric and the connection coefficients asso-
ciated with the quadratic entropy, in the case of the parametric family Pe.

From Theorem 2.13 the (i,j)-th element of the Q-information matrix is

Q BZQ(Xpeﬂp )
(3.2) 8y5(8) =~ 36,0 ¢=0 °

Observing that
f
Q(xp, +up,) = J K(x,y) [Ap(x,0) +up(x,9) ] [Ap(y,0) +up(y,¢)ldv(x)dv(y),

we find the explicit expression for (3.2) as

(3.3 74 (9) = =2k fmx,y) (x.0) 220.0) 4y (x)av(y)

=-2 An E[K(x,y) 3103.8269:@1 3%1039( e)].
i b

Using the expression (2.14), we find on carrying out the necessary computations

Q =—2)\u(ri +T +T )

13k IR TR
where
3p(x,6) sz(y 8)
(3.4) r‘ijk = J K(x,y) ae; 5 ae’ dv (x)dv (y).
i ]

It is of interest to note that the expressions (3.3) and (3.4) are invariant for

transformations of both the parameters and variables.

-----------
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4. METRICS BASED ONI DIVERGENCE MEASURES

Burbea and Rao (1982a, 1982b), Burbea (1984) and Eguchi (1984) have consid-
ered metrics arising out of a variety of divergence measures between probability

distributions. A typical divergence measure is of the form

(4.1) Dplpgsp,) = J Flp(x,6),p(x,6)]1dv (x)
X

where F satisfies the following conditions:
1) F(+,*) is a C3-funct::ton on R+><R+,

(ii) F(x,*) 1s strictly convex on R+ for every xeR+,

(iii) F(x,x) = 0 for every xe R,,

(iv) aF(xay=x) = constant for every xeR,.

Let us consider the expansion

<L g F 1 F o
(4.2) Dp(PyrPg,40) =7 Zzéij(e)deidej-+3! cijk(a)deidejdek+...

and obtain explicit expressions for gzj and cfjk'

Theorem 4.1. Let

Fl(x,y) = é%lﬂ . Fz(x,y) - Mﬂ_).

oy
32F(x ) 32F§x,z! 32F(x . )
F,, ===3%9 p o , F, =223%y1
11 I 12 3xdy 22 2
X y
F - 33F X,¥)
222 3 .
y
Then
op, 9p
F = 8 8
1) gij(e) j Fzz[pe,pel aei aej dv (x)
3pe 8pe
= 'JFlzlpe’pe] 36, 38, dv(x).




ape ape ape

F
(1) ey gy J Fy221PgoPg 26, 98, 36, dv (x)

2. 2 2
3 Py 3P, 3Py 3y 3P, 3P
+ Jdv (x).

Fyolrgpellgsse, 30, * 56,96, 38 + 36 96, 26

i3 "k 3 j k1

The results are established by straight forward computations.
Let us consider the directed divergence measure of Csiszdr (1967), which

plays an important role in problems of statistical inference,

f
.3 | D@gipy) = | PCr0) ERE v

where f is a convex function. In this case

2
£ 3°D
(4.4) g, . (8) = ———

p 28, 29,

where gij are the elements of Fisher's information matirx. Thus a wide class

= f"(l)J 123 2p dv(x) = f"(.1)gij(e)

of invariant divergence measures provide the same informative geometry on the

parameter manifold. Further,

3
£ 3°D
0) =
¢4 51 330,30, | 4ug

" 1) ., .(1) "e "
= f (1)[rijk-+rikj-+rjki] + (£""(1) + 3f (1))Tijk

(1)
where rijk and Tijk are as defined in (2.17).

If f is a convex function, then

*
f (u) = uf(‘};)

' *
is also convex, and the measure (4.3) associated with f+f is

.............
.........




. .
(4.5) D (pe.p¢) -J[pef(ﬁe) + p¢f(p¢)]dv(x)

which is symmetric in 6 and ¢. However, we may define (4.5) as a symmetric

divergence measure without requiring f to be a convex function but satisfying

the condition that xf(x-l) +f(x) is non-negative on R+. In such a case

f "
85 (8) = 26" (L)gy, (0

W, W, @)

(&) = AT G + TS * Tk

f
+ "9y
cij ]+ f (l)Tijk
5. OTHER DIVERGENCE MEASURES
In the last section, we considered the f-divergence measure which led to

the Fisher information metric. A special case of this measure is the city block

distance, or the overlap distance (seé Rao, 1948, 1982a),
(5.1) Do(Pe.p¢) = I|p(x.9)-p(x.¢1|dv(x)

obtained by choosing f(x) = l-min(x,1), which admits a direct interpretation
in terms of errors of classification in discrimination problems. However, this
is not a smooth function and no formula of the type (4.7) is avialable to de-
termine the coefficients of the differential metric. But in some cases, it

may turn out that
Do(Pe 9P¢) = Do(e )¢)

is a smooth function of 8 and ¢ in which case

2
) no(e,¢-e)

8¢t3¢j

In the case when p(x,9) is a p-variate normal density with mean u and fixed

(5.2) 8y =

variance covariance matrix I, the coefficient (5.2) can be easily computed to be

proportional to aii, the (1,j)-th element of 2'1, wvhich is indeed the (1,j)-th
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element of the Fisher information matrix., It would be of interest to investigate
the nature of the metric induced by (5.1) in the general case.
Let p(x,0) be the density of a uniform distribution in the interval [0,0].

Then it is seen that

(5.3) Dy(6,4) = 21 - %) 1 0 <

-ZQ-%) if 8 > ¢,

Although this is not a differentiable function, it is seen that

2
2 . de
ds =4 3

0
is the metric associated with (5.2).

Another general divergence measure which has some practical applications is
D (p,,p,) = [[v(p ) -v(p )12av x)
1," Y e’ ¢ e ¢ (%

which is indeed a smooth function if y 1s so. In this case

Py P,

v [ 2 Pg Pg
83 (@) = 20 @)1 55 75 v

¥ g 3P, Py
= ] " nem——  m—
cijk(e) 6 Iw (Pe)w (pe)sgz'ae aek dv (x)
2 . 2 2

2
!
+2 f[w (py) ] (351393 3ek"‘ 20, 96, aej*’ aejaek’ 20,

dv (x)

Another measure of interest is the cross entropy introduced in Rao and

Nayak (1985). If H is any entropy function, then the cross entropy of p¢ with

respect to Py was defined as




H[p¢+k (pe-pd,)]-ﬂ(pq,)

(5.4) D(pysp,) = H(p¢)-H(pe)- ii: = |

Let
H(p) = —f h(p)dv(x)
as chosen in (2.10). Then (5.4) reduces to
D(Pe’%) = -Jh(%)dv(x) - fh'(p¢)(pe-p¢)dv(x)+ fh(pe)dv(x).

Then
p, I
h " -9 _8
By * fh (Pp) %, o, dv (x)

which is the same as the h-entropy information matrix derived in (2.10), apart

from a constant. Similarly

b (), ), (D)
ak " Tigk ¥ Ty ¥ yee T ek

where
2. 2
d logp, 9 logp
1) " 9 9
r = E{p_h"(p,) }
5]
1jk 8 6720, 30, 38,
‘ . 2 alogpe alogpe alogpe
Ty gk = EL[3pgh" (pg) +2pgh™ (py) ] 3%, 2%, %, r.

6. GEODESIC DISTANCES
In Rao (1945) it was suggested that the information metric could be used
to obtain the geodesic distances between probability distributions. Given any

quadratic differential metric

2
(6.1) ds® = I gij(e)deide

]
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where the matrix (gij) is positive definite, the geodesic curve 6 =06(t) can be

determined from the Euler-Lagrange equations

e

n nn
(6.2.) y g e +XZ F é e '0, k-l’qt- ’n
1 ik 1 11 ijk 1)
and from the boundary conditions
9&1)=6, 0&2)-¢.

In (6.2), the quantity

9

(6.3) T ™ BT - ]
13k - 2°90; By 30, Brt 36,

gij

and is known as the "Christoffel symbol of the f£irst kind".
By definition of the geodesic curve 6 =6(t), its tangent vector é-é(t) is
of constant length with respect to the metric dsz. Thus
nn . .
(6.4) §§ gijeiej = constant,
The constant may be chosen to be Of value 1 when the curve parameter t is the

arc length parameter s, Oisiso, with 6(0) = o, e(so) = ¢ and s, =g(8,¢) is the

0
geodesic distance between 6 and ¢.

Aitkinson and Mitchell (1981) describe two other methods of deriving geodesic
distances starting from a given differential metric. The distances obtained
by these authors in various cases are given below. In each case we give the

probability function p(x,8) and the associated geodesic distance of (8,4) based

on the Fisher information metric.

(1) Poisson distribution

p(x,0) = e o%/x!, x=0,1,...

8(0,6) = 2|78 - /5 |




2.0,0.% %

(2) Binomial distribution (n fixed)
P(x,0) = (0*(1-8)"", x=0,1,...,n

N
~ g(8,¢) = 2/1-1.|sin-lfe_ - sin-l/ﬂ
.
> « 2/a cos”L (/8% + /(1-0) (1=9) ).
(3) Exponential distribution
p(x,8) = ee-xe, x>0
" g(0,4) = Ilog e-log¢! .
X (4) Gamma distribution (n fixed)
- p(x,8) = 6" [r ()] " e, x>0
g(6,6) = /n|log 6 - log|
_ (5) Normal distribution
- 2 2
P(x,u,04) = N(u,0,3%), 0o fixed
gt suy) = |uy = l/oy
- (6) Normal distribution
2 2
. P(%,H4507) = N(uy,073x), 1y fixed
) 2 2
- 3(01,02) = /2 |log g,-log °2|
) (7) Normal distribution
p(x,u;oz) = N(u,cz;x). u and ¢ both variable.
5 The information metric in this case is
‘ 2 2
3 (6.5) dg? - G4 2d0
8 2 2
0 do o
. and the geodesic distance is
3 ) . 148 (1,2) '
(6.6) 8(“1’°1Du2902) 7/2-'103 1-5(1,2) l

= 2/7 tanh~26(1,2)
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where 612 is the positive square root of

2 2
(b;=1,)" +2(0,-0,)

2 2
(u;=uy) +2(0,%0,)
The explicit form (6.6 ) is given in Burbea and Rao (1982a). From (6. 6v)

2 2
g(u ,01;11.02) =J2— I log 61 - log °2|

which agrees with result (6). However, g(ul,cz;uz,cz) does not reduce to result (7)

since o = constant is not a geodesic curve with respect to the metric (6.5)

(8) ﬁultivariate normal distribution

Np (u,Z31x), I fixed

-1
= - ' -
which is Mahalanobis distance.

(9) Multivariate normal distribution

N(u,Z3;x), u fixed

-1 2
3(21.22) = 2 g (log Ai)

where 0 <>‘1.<_-°-i}~p are the roots of the determinantal equation IZZ-A£1| = 0.

The above explicit form is due to S.T. Jensen as mentioned in Atkinson and

Mitchell (1981).

(10) Negative binomial distribution

p(x,8) = [x!I‘(r)]-Jl‘(:&r)ex(l—e)r, r f£ixed

8(6’¢) - 2/; COSh-l _1._:-—@
v(1-6) (1-4)

- 2/t log 1-/5*""-- 6‘

7(1-8) (1-4)

« et
-, -

LI N LI TR ] o
PRSI 3 SR

-




This computation is due to Oller and Cuadras (1985),

(11) Multinomial distribution

n! "1 "k
P(nl,-..,nk l,ooo," ) b W ﬂl ...‘n’k M n fixedo

Let n (n 1""’"kl) and © Then

2 = ("12’.."ﬂk2).

g(w Ty ) = 2/n cos” (Z LR 12

The above computation was originally done by Rao (1945), but an easier method

of derivation is given by Atkinson and Mitchell (1981).
Recently Burbea (1984) obtained geodesic distances in the case of indepen-

dent Poisson and Normal distributions which are given below.

(12) Independent Poisson distributions X
n

i

i i
p(x ese X e XX 0 ) =1 e —-"
1°°°°7 g7 *"n 1 xi
. n
. . )2 1/2
! CICOPTRRL IS LIFRPRI I 2[§(/6 %)

(13) Independent Normal distributions

N(x,ul,o )eoN(x M )

g[(ull 11)’-0"(11 1’0‘11) (-ulzbolz)!l!np(unzto )]

n 1+§ (1:2)
-VZ L) 1ogz _k__lllz
kel 1-6k(1,2)

where Gk(l,Z) is the positive square root of

2 2
Qugey=bgep) ™ + 2003 40, )

2 2 *
Gy =ie2d” #2040, )
(14) Multivariate elliptic distributionms ’
p(x|u,2) = |£] T2 [ (i) 2 1 x-u01,
"""""" NN P SR e L o]
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for some function h, and I is fixed
- - \ -1 -
8(21’32) ch(‘f.l 52) z (El EZ)

where % is a constant, which is essentially Mahalanobis distance. This result

is due to Mitchell and Krzanowski (1985).
The use of the cijk coefficients defined in (2.4) and (4.2) in the discussion

of statistical problems will be considered in a future communication.
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