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HERMITIAN AND NONNEGATIVITY PRESERVING SUBSPACES

by

Thomas Mathew*

Department of Mathematics and Statistics
University of Pittsburgh

Pittsburgh, PA 15260

ABSTRACT

The concepts of hermitian preserving and nonnegativity preserving subspaces

of complex square matrices are introduced. Characterizations of such subspaces

are obtained and applications are discussed.
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* 1. INTRODUCTION

We introduce the concepts of hermitian preservingand nonnegativity preserving

-subspaces of complex square matrices. These are special cases of the concepts

of hermitian preserving and positive semidefinite preserving linear transformations

given in dePillis [5] and later investigated by Hill[6], Bose and Mitra [4],

Poluikis and Hill[12] and Barker, Hill and Haertel (1]. In the next section, we

give several characterizations of hermitian preserving and nonnegativity preserving

subspaces. In section 3, we use these results to investigate the existence and

characterization of hermitian and nonnegative definite solutions to linear equa-

tions. Some applications are discussed in section 4. An important application in

statistics, orginially investigated by Pukelsheim [13] and later by the author [9],

is also given.

• The following notations are used in the paper: Cnxm and en Xm respectively

*denote the vector spaces of complex and real matrices of order nxm. For a complex

* matrix A, A denotes its complex conjugate transpose and A', its transpose.

The inner product of two complex matrices A and B of the same order is assumed to

* be the trace inner product; i.e. <A,B> - tr B A. The range of a linear transforma-

" tion T is denoted as R (T). For a hermitian matrix A, A+ and A denote the positive

' and negative parts of A respectively. A+ is obtained from the spectral decomposition

* of A by deleting the negative eigenvalues and the corresponding projectors. A-

'' is then defined as A -A. If a square matrix A is hermitian nonnegative definite,

we denote A> 0.

a2. HERMITIAN AND NONNEGATIVITY PRESERVING SUBSPACES

nxn
Let A be a subspace of C and let P denote the orthogonal projector onto A

.- (where orthogonality is with respect to the trace inner product).

.
p
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.*• • DETINITION (1) A is said to be hermitian preserving if P(A) is hermitian for every

hermitian matrix A.

(2) A is said to be nonnegativity preserving if P(A)> 0 for every A> 0.

We notice that nonnegativity preserving subspaces are those which preserve the

Loevner ordering, i.e. if A and B are hermitian matrices, then A is nonnegativity

preserving iff A-B> 0 implies P(A)- P(B)> 0.

STHEOREM 1. A is hermitian preserving iff anyone of the following equivalent condition

holds:

(M) A eA whenever Ac A

(ii) P(A*) - P(A)* for every Ac C%**

' Proof: (i) Let A e A, for every Ae A. Let B be a hermitian matrix and suppose

*I _ 12 _ 11+_ 2
* P(B)#P(B) . Write P(B)- P. Then liB _2 + 1- _ p Ii +

":'. r -P )¢ - -- P+P P+P
* 2 + r (B P ). Using the fact that B is

1 P+P * 1 P+P
hermitian, the last two terms simplify to 1 tr (B- 2--)(P-P )+ tr (B-- - )(P -P),

which is zero. Thus we get the contradiction ,JBrjI2 > JIB --- I 2 . Con-

versely, let A be hermitian preserving and let AE A. Suppose A i A. Since A+A

is hermitian, P - P( A ) is also hermitian. Then hA - A 1 2 _ IIA-II2 +

-A+A * 12 A (AF *(- A + (P - A A -P The last two terms are2 P + t r P - P.

zeros since A-Pe A and P - A+A- A (the orthogonal complement of A). Thus we
-2

get II A- i 1 II II2 which is a contradiction since is the hermitian

matrix closestto A; see Marshall and 01kin ([8], p. 264).

* * nxn
(ii) If P(A ) = P(A) for every A C , it follows that P(A) is hermitian

whenever A is. To prove the converse, write A a A+A ___- - = -

A+A i(-)* A+A i(A-A)
Since and 2 are heruitian matrices and since A =2 + i 2 ,

2 22

it follows that P(A*) a P(A) when A is hermitian preserving. 0

/.S."f
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The 'if' part in part (ii) of Theorem 1 also follows from the lemma in Hill

([6], p. 260).

COROLLARY 1. A hermitian preserving subspace has a basis consisting of hermitian

matrices.
h

THEOREM 2. Let A1 ,A29 ...,A form an orthonormal basis for A. Let a denote the
2 8 jk

(Jk)th element of A h (h= 1,2,,..,s; J,k = 1,2,...,n). Then A is hermitian preserving

iff anyone of the following equivalent conditions holds:

() The matrices haA (h, jak)Ah and a (i -h are hermitian
'. hJlJ h=1

for J,k- 1,2,..,,n.

(ii) h Ah Q Ah is hermitian.
h-l

Proof: It is easy to see that the set of hermitian matrices of order n can be ob-

tained by taking real linear combinations (linear combinations with real coefficients)

of the following n2 hermitian matrices: (a) the matrix E i having jthof te flloing hemitan mtries: (a) he atrx E avig j diagonal

-. th
- element I and zeros elsewhere (J- 1,2,...,n) (b) the matrix F k having (jk) and

" th
(kj) elements 1 and zeros elsewhere (j< k; J,k- 1,2,...,n) and Cc) the matrix

G Gk having Qk)th element i, (kj) th element -i and zeros elsewhere (J< k; J,k= 1,2,...,n• jkA s heof w

We have P(B) a (tr A*B)Ah" In the place of B if we substitute the matrices E,
.! h-1

Fjk and Gik defined above, we get part (i) of the theorem. It can be shown that' h ah -h
part (i) of the theorem is equivalent to h - h - ka u (J,k,u,v= 1,2,...,n),

which is equivalent to A h A being herh-tian i C
h~l

Part (ii) of the above theorem also follows from Proposition 1.2 in dePillis

[5] or Theorem 1 in Hill [6].

THEOREM 3. A is nonnegativity preserving iff (i) A is hermitian preserving and

(ii) A+ E A for every hermitian matrix Ae A.

-. . . . . . .. *.* .. *- . , * S.



-' Proof: Suppose A is nonnegativity preserving. If B is hermitian, we can write

B- B+-B_ and P(B)= P(B+)- P(B_). Since P(B +)> 0 and P(B_)>O, P(B) is hermitian,

showing that A is heriitian preserving. Let Ac A be hermitian. Then we have

A- A_- A- P(A)- P(A+) - P(A). Hence ++)1I + IP(_)112 -

2 t r P( (A_) _ P(A+) 112 + lIP(A_) 1 (since P(A+)> 0 and P(A_)> 0). From this, it

follows that A+- P(A+) or AS+ A. Conversely, suppose (i) and (ii) in the theorem

' hold. Let B> 0. Then C - P(B) is hermitian and C 0 0 if C is not nonnegative defi-

nite. Now, IImCi2 - IIB-C+-C._ 12  IB-C+1I2+ IIc_2I - 2 tr (B-C+)C_ > IIB-C+J 2(since

C+C_-0 and tr BC+> 0). This is a contradiction since C+ cannot be closer to B than

the projection C. I

The proof of the "if" part is similar to the proof of Lemma 2 in Pukelsheim

-. [13] and the proof of the "only if" part is similar to the proof of Lemma 1 in Mathew

". [91.

COROLLARY 2. A nonnegativity preserving subspace has a basis consisting of hermitian

nonnegative definite matrices.
8

THEOREM 4. Let AV,A2 ,...,A, be an orthonormal basis for A. If hAh 4 Ah>O, then

A is nonnegativity preserving. This condition is also necessary if s- 2 or if

there exists a nonsingular matrix Q such that Q AQ is diagonal for every hermitian

- matrix Ae A.

Proof: Let A (j- 1,2,...,s) be as given in the theorem and let A> 0. Then P(A) =

. (tr AhA).n and P(A)> 0 for every A> 0 iff (a Aha)Ah>0 for every vector a or
h-l h-l
equivalently

..... (a*, z) h h ) ( IS )> 0(
h 1

for every vector a. This proves the sufficiency of the condition as asserted in the

*-- theorem. Conversely, suppose A is nonnegativity preserving. Then A Q Ais
".'. h h

hermitian, in view of Theorem 3(i) and Theorem 2(11). Since A now has a basis con-

.4 .. *. . *.. *.. . . .. . - *. -... .. -... **.. . " .*- .* -o- . . . '.*. - .. .. •.,..-...... . . . . . .-.. - ,"% '-" '
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*" sisting of hermitian matrices (Corollary 1), if there exists a matrix Q as specified

in the theorem, then Q AQ is diagonal for every Ae A. It now follows that (I) holds
for~~ evr* ff•We

for every a if I Ah> 0. When a- 2, in view of Corollary 2, let A1 >0, A 0
h-l 2

be a basis for A. Then, using Theorem 6.2.3 in [151, we see that there exists a

nonsingular matrix Q satisfying Q A1Q and Q A2Q are diagonal. Arguing as before,

the proof can be completed. 0

We observe that the condition A 2 A > 0 is similar to the condition given
h=l

in Corollary 2.2 in dePillis [5]. This condition is not in general necessary for A

to be nonnegativity preserving. For example, if A is the vector space of 2x2 complex

matrices, then clearly, A is nonnegativity preserving. The matrices A ( 0),

A2-(O 0). A3  [0 l) and A4  -L( 1 1) form an orthonormal basis for A and

5 *
do not satisfy the condition I A1 BA 0

h-l

REMARK 1. The existence of a nonsingular matrix Q satisfying the requirement in

Theorem 4 could be verified as follows: When A is nonnegativity preserving, let

B19B29...,B8 be a basis for A satisfying Bj>O (J-l,2,...,s). From Theorem 3(11)

and the proof of Theorem l(ii), it is easy to see that such a basis can be obtained.

Then there exists a nonsingular matrix Q satisfying Q B Q is diagonal for J- 1,2,...,s
5

iff BjBOB - BRB BJ for J,k- 1,2,...,s. Here B - J B and B0 denotes a generalizedinvs o B F o

inverse of BO * For a proof of the above assertion, we refer to Bhimasankaram

(3], Corollary 2) or Rao and Mitra ((15], Theorem 6.5.2).

Suppose A is a subspace of real square matrices of order n, i.e. Ac Rnxn . We

shall call A, a symmetry preserving subspace if P(A) is symmetric whenever A is

symmetric (the inner product under consideration is <A,B>- tr B'A for A,B real

matrices). "Nonnegativity preserving" is defined similarly. We now give character-

izations of a synmetry preserving or nonnegativity preserving subspace A of 1 xn .

% ' %
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THEOREM 5. A subspace A of Rn xn is symmetry preserving iff anyone of the following

equivalent conditions holds:

(i) A' A whenever AE A

(ii) P(A') - P(A)' for every Ae Rnxn

Proof: The proofs of Ci) and the 'if' part of (ii) are similar to the correspond-

" ing proofs of (i) and (ii) in Theorem 1. We shall now prove the 'only if' part

. of (ii). Suppose A is symmetry preserving and let A1 ,A29 ...,As form an orthonormal

basis for A. Then, for any Ae R n n , P(A) - (trA'A)Ah. In view of part (i)

of the theorem, it follows that the matricesA', ...,A' also form an orthonormal

basis for A. Hence P(A') - (trAhA')A'h- P(A)'. 0
h-l Rnxn .. , oma rhnra

THEOREM 6. Let A be a subspace of and let AIA 2 .. ,A form an orthonormal

h thbasis for A. Let ajk denote the (jk) element of Ah (h- 1,2...9s; Jk- 12,...,n).

*Then A is symmetry preserving iff anyone of the following equivalent conditions

holds:

*.-:"... (i) the matrices hajjm and X(akj+a Ah are symetric for J,k l,2,...,n
h:-. hjh I

(ii) L [ Ah + A 1 .] is symmetric.

h-i

Proof: The matrices E i J- 1,2,...,n and Fik J< k; J,k- 1,2,,..,n defined in the

' proof of Theorem 2 form a basis for the subspace of real symmetric matrices. The

*. proof of the theorem can now be completed along the lines of the proof of Theorem 2.

THEOREM 7. Let A be a subspace of Rnxn* Then

*'. (a) A is nonnegativity preserving iff (i) A is symmetry preserving and (ii) A+c A

for every symmetric matrix AE A

(b) If AA2...,A are as in Theorem 6 and if I [Ah 2 Ah+Al 2 Ahl> then A is
1 2 s h-l

4. nonnegativity preserving.

LL L

", " "::" "" '-"/ " """.'" T "=: " " '"" " ,'v -. ,' '> " ', "".-. .""..c.-: . .. ,'*.*' -'-' *'...-.-,_ - ..,
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* Proof: The rpoofs of (a) and (b) are similar to the proofs of Theorem 3 and the

first part of Theorem 4 respectively. 0

REMARK 2. When A is a subspace of Rn x n , the conclusions in Corollary 1 and Corollary

2 are not true in general if we replace "hermitian" by "symmetric". This is easily

seen by taking A to be inXn itself.

REMARK 3. When A is a subspace of real symmetric matrices, all the conclusions in

-.Corollary 1, Corollary 2, Theorem 4 and Remark 1 remain valid if we replace

"hermitian" by "symmetric" wherever applicable.

*" 3. HERMITIAN AND NONNEGATIVE SOLVABILITY OF LINEAR EQUATIONS.

Let T be a linear transformation from Cnxn into Cpxq . In this section, we are

interested in the existence and characterization of hermitian and hermitian nonnega-

"" tive definite (nnd) solutions to the linear equation TX- Q, where Qe R(T) (the

range of T). T denotes the adjoint of T and T+ denotes the maximal generalized

... inverse of T as defined in Ben Israel and Greville ((2], p. 318). T+ is also the

"' pseudoinverse of T as defined in Holmes ([7], pp. 216-226). Then R(T+) -R(T*) and

T +T is the orthogonal projector onto RCT*) (see Theorem 2 on p. 320 in [2]). When

T is a matrix, T+ coincides with the Moore Penrose inverse of T. We say that TX- Q

is hermitian solvable (nonnegatively solvable) if there exists a hermitian (respectively

hermitian nnd) matrix X satisfying TX- Q.

"- DEFINITION, We say that T+ characterizes the hermitian solvability (nonnegative

* solvability) of TX- Q if the existence of a hermitian (hermitian nnd) solution to

TX- Q implies that T +Q is hermitian (respectively hermitian nnd).

Thus, if we know that T+ characterizes the hermitian solvability (nonnega-

tive solvability)of TX- Q, in order to examine if TX- Q has a hermitian (hermitian

. nnd) solution, it is enough to check if T +Q is hermitian (respectively hermitian

" nnd).

'5
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THEOREM 8. (1) For every Qe R(T), T+ characterizes the hermitian solvability of

TX- Q iff R(T*) is hermitian preserving.

: (ii) For every Qe R(T), T+ characterizes the nonnegative solvability of TX- Q iff

R(T*) is nonnegativity preserving.

Proof: Suppose R(T*) is hermitian preserving. Then T TX is hermitian whenever X

is hermitian. Thus when X is a hermitian solution to TX- Q, T+TX- T+Q is also a

hermitian solution to TX- Q. Conversely let T characterize the hermitian solva-

bility of TX= Q for every Qe R(T). Let X0 be any hermltian matrix and let TX0 - QO"

Then T+ % is hermitian. But T +Q0m T+TX0 and X0 is an arbitrary hermitian matrix.

Hence R(T ) is hermitian preserving. This proves (i). (ii) is proved similarly. 0

nxnREMARK 4. If T is a linear transformation from R n  into pxq, the conclusions in

Theorem 8 remain valid if we replace "hermitian" by "symmetric". (Symmetric solva-

bility of TX-Q is defined analogous to hermitian solvability.)

4. APPLICATIONS.
px n px p s

(a) Let A e CJ and Bjc C J for J- 1,2,...,s. Let ps- p and consider
, Jl

the system of equations A XA - B (J - 1,2,...,s) (assumed to be consistent). Here

TX is a vector consisting of the s matrices (AXA,...,A XA ) and R(T ) consists of
s ,p Xp

all complex .6.crices of the form A Z Z , where Z e C . From Theorem l(i),

if follows that R(T*) is a hermitian preserving subspace. Hence the existence of

a common hermitian solution to the above equations can be verified by examining if

T B is hermitian, in which case T+B itself gives a hermitian solution (B denotes

(Sl'S 29" "" ,s)).

(b) Let Aj and Bj be as defined in (a) and assume further that BJO and R(Bj)-R(A

Let A be a matrix satisfying R(A ) (A- : A 2:' :As). Now consider the equations

.%
."
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A A XAA Bj, j- 1,2,...,s and suppose we want to examine if the above equations

admit a common hermitian positive definite solution X. This problem arises in

connection with the identification problem for shorted matrices, see the proof of

Theorem 1 in Mathew and Mitra [10] (see also Mitra [11] for the details of this

problem). Let T denote the corresponding linear transformation (as in the case of

(a) above). We notice that if X is a hermitian nnd solution to the above equations,

then PAXPA+ (I-PA) is a hermitian positive definite solution, where PA denotes the

projection matrix A(A A)-A*. Thus, it is enough to know if the above system of

equations admits a common hermitian nnd solution. In case R(T*) is nonnegativity

preserving, this can be verified by applying Theorem 8(11).

(c) Nonnegative estimation of variance components.

Let Y be a random Rn-vector with mean vector of the form 8 and dispersion
k

matrix 1 6 V . Here A is a known matrix, B is a vector of unknown parameters,
j.l J•

V (j- 1,2,...,k) are known real symmetric matrices and e (Q- 1,2,...,k) are unknown

parameters known as variance components. e - (ele 2,...,ek) is such that
k
8 0 V > 0. We are interested in estimating the linear parametric function

q'6 - ql@l+ .. +qkek . Let M I-AA+ and let T be the linear transformation from

Rnxn into Rk defined as TX = (trXMVlM,,..,trXMVkM)', for XE Rnxn. Here Rnxn
S 1 S

denotes the space of real symmetric matrices of order n. Then it is known that

q'e admits a translation invariant quadratic unbiased estimator iff TX= q has a

solution XE R n xn , in which case Y'MMY is an estimator with the desired propertiess

*i (see (141, pp. 302-305). When qE R(T), q' admits a nonnegative definite quadratic

unbiased estimator iff TX- q admits a solution X> 0. When R(T*) is nonnegativity

" preserving, this can be verified by examining if T+q> 0. We notice that R(T) is

the vector space spanned by the matrices MV1M,...,MVkM. Also, Y'(T +q)Y is the well

*known minimum norm quadratic unbiased estimator (MINQUE) of q'O, introduced by
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-* C.E.. Rao ([14], pp. 302-305). Thus, when R(T*) is nonnegativity preserving, the

existence of an nnd quadratic unbiased estimator of q'6 is equivalent to the non-

negativity of its MINQUE. Further details regarding this observation are given

S, in [13] and [9].

(d) Nonnegativity preserving subspaces of R

Let S be a subspace of Rn and let P denote the orthogonal projector onto S.

(Here we assume that orthogonality is with respect to the inner product (x,y)-y'x.

More general inner product can be considered and the modifications in such a case

will be obvious). We say that S is nonnegativity preserving if Px has nonnegative

components whenever the vector x has nonnegative components. Clearly, S is nonnega-

kxn
* tivity preserving iff the matrix P has nonnegative entries. Let AE R n . Then,

for every bc R(A), A b characterizes the nonnegativesolvability of Ax-b if f R(A')

is nonnegativity preserving. Thus, when R(A') is nonnegativity preserving, in order

to verify if Ax-b, bc R(A), has a solution x with nonnegative components, it is

enough to examine if the vector A b has nonnegative components, in which case

* x= A b is a desired solution.
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