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by
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ABSTRACT
The concepts of hermitian preserving and nonnegativity preserving subspaces
of complex square matrices are introduced. Characterizations of such subspaces

are obtained and applications are discussed.

| pooneoion tor
PGS CRAS q
| N !
[ 1493 . '
U.oams G ok ! “
boocitoction '
Yy . e eeerramremetemenneenoea e
' { \OdthI
ooty Codes
: B v Alor
bt S

. .
On leave from the Indian Statistical Instutute. Research sponsored by the Air
Force Office of Scientific Research under Contract F49620-85-C-0008.




L4
L4
4
-
-

1. INTRODUCTION

We introduce the concepts of hermitian preserving and nonnegativity preserving
subspaces of complex square matrices. These are special cases of the concepts
of hermitian preserving and positive semidefinite preserving linear transformations
given in dePillis [S5] and later investigated by H111{6], Bose and Mitra (4],
Poluikis and Hill1[12] and Barker, Hill and Haertel [1]. 1In the next section, we
give several characterizations of hermitian preserving and noanegativity preserving
subspaces. In section 3, we use these results to investigate the existence and
characterization of hermitian and nonnegative definite solutions to linear equa-
tions. Some applications are discussed in section 4., An important application in
statistics, orginially investigated by Pukelsheim [13) and later by the author [9],
is also given.

The following notations are used in the paper: CnXm

and V0 respectively
denote the vector spaces of complex and real matrices of order nxm. For a complex
matrix A, A* denotes its complex conjugate transpose and A', its transpose.

The inner product of two complex matrices A and B of the same order is assumed to

be the trace inner product; i.e, <A,B> = tr B*A. The range of a linear transforma-
tion T is denoted as R(T). For a hermitian matrix A, A, and A_ denote the positive
and negative parts of A respectively. A+ is obtained from the spectral decomposition
of A by deleting the negative eigenvalues and the corresponding projectors. A_

is then defined as A+— A, If a square matrix A is hermitian nonnegative definite,

we denote A> 0.

2. HERMITIAN AND NONNEGATIVITY PRESERVING SUBSPACES

Let A be a subspace of ¢ and let P denote the orthogonal projector onto A

(where orthogonality is with respect to the trace inner product).




DEFINITION (1) A is said to be hermitian preserving if P(A) is hermitian for every

hermitian matrix A.

(2) A is said to be nonnegativity preserving if P(A) > 0 for every A> 0.

We notice that nonnegativity preserving subspaces are those which preserve the
Loevner ordering, i.e. if A and B are hermitian matrices, then A is nonnegativity.

preserving iff A-B> 0 implies P(A)- P(B) > 0.
THEOREM 1. A is hermitian preserving 1ff anyone of the following equivalent condition

holds: . ' o -
(1) A € A wvhenever Ac A

(ii) P(A*) = P(A)* for every Aec o

%
Proof: (i) Let A € A, for every Ac A. Let B be a hermitian matr:l.x and suppose

P(B) # m)*. Write P(B)=~®. ThenllB-PlIz - is - P-*—P:n +||P+1’ -p||2

tr (I”'P -G - -—) +er (B - ?-"2’-'-) (-—— - P). Using the fact that B is
hermitian, the last two terms simplify to %tr (B- )(P -P )+ tr (B-gﬂ-)(l’ -P),
which is zero. Thus we get the contradiction ||B~P || > ||B - g;'P—Hz Con-

* *
versely, let A be hemitian preserving and let Ac A. Suppose A ¢ A. Since A+A

is hermitian, P = P(M'A ) 1s also hermitian. ThenHA - A+A ||2 HA-PII

e - A+A ” +tr (A-P) (p - ) +tr (P - A-"A) (A-P). The last two terms are
*
zeros since A-Pe¢ A and P - A—;A——e Al (the orthogonal complement of A), Thus we
* *
get [|A - -'-‘%—“2 |[a-P “2’ which is a contradiction since A;A is the hermitian

matrix closest to A; see Marshall and Olkin ([8], p. 264).
(11) If P(A*) = P(A)* for every Ae cnxn’ it follows that P(A) is hermitian
whenever A is. To prove the converse, write A = 2 iM (1 = /=1).

* *
+A i(A~-A
AtA and ___LA;_{\_Z_ are hermitian matrices and since A - Az + i ¢ 5 )

Since

it follows that P(A ) = P(A) vhen A is hermitian preserving. [
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The 'if' part in part (ii) of Theorem 1 also follows from the lemma in Hill
([6], p. 260).
COROLLARY 1. A hermitian preserving subspace has a basis consisting of hermitian

matrices.

h
THEOREM 2. Let AjsAyseeesAl form an orthonormal basis for A. Let ajk

(jk)th element of Ah (h=1,2,,..,8; j,k = 1,2,...,n). Then A is hermitian preserving

denote the

iff anyone of the following equivalent conditions holds:

-h _ =h -h -h
(1) The matrices hzlajJAh z (akj*'ajk)Ah and hZl(i akj-i ajk)Ah are hermitian
for j,k=1,2,..,,n.

s
(i1) z A; ] Ah is hermitian,
h=1

Proof: It is easy to see that the set of hermitian matrices of order n can be ob-
tained by taking real linear combinations (linear combinations with real coefficients)

of the following n2 hermitian matrices: (a) the matrix Ejj having jth diagonal

element 1 and zeros elsewhere (§j=1,2,...,n) (b) the matrix Fﬁk having (jk)th

(kj)':h elements 1 and zeros elsewhere (j<k; j,k=1,2,...,n) and (c) the matrix
j having (jk)':h element i, (_kj)th element ~i and zeros elsewhere (j<k; j,k=1,2,...,n
We have P(B) = Z (er AhB)Ah In the place of B if we substitute the matrices E

h=1 i3’
and ij defined above, we get part (i) of the theorem. It can be shown that

jk
-h h ¥ h-h
part (1) of the theorem is equivalent to y akj av 2 ajkavu (j,k,u,v=1,2,,..,n),
h=1
which is equivalent to z Ah A being hermitian. g
Part (11) of the above theorem also follows from Proposition 1.2 in dePillis

[5] or Theorem 1 in Hill [6].

THEOREM 3. A 1s nonnegativity preserving iff (i) A is hermitian preserving and

(i1) A e A for every hermitian matrix Ae¢ A,




Proof: Suppose A 1s nonnegativity preserving. If B is hermitian, we can write
B=B _-B_and P(B)=P(B)-P(B). Since P(B,)>0 and P(B_)>0, P(B) is hermitian,
showing that A is hermitian preserving. Let Ae A be hermitian. Then we have
A -A_=A=P(A)=P(A)-P(a). Hence ||A+||2 + [la_ ||2 = |Pa)) Il2 + ||Pa)) II2 -
2er P(ADP(A) < [P(A)) I+ IZCND]Y | 2 (since P(A)>0 and P(A)>0). From this, it
follows that A= P(A+) or A e A. Conversely, suppose (i) and (ii) in the theorem
hold. Let B> 0. Then C = P(B) is hermitian and C_#0 if C is not nonnegative defi-
nite. Now, [B-C|® = ||1;-c+—c_l|2 - In-c+||2+ lic_1 2 2¢er (B-c)c_ > ||s-c+|I2(smce
C+C_-0 and tr BC+Z_0). This is a contradiction since C+ cannot be closer to B than
the projection C. [

The proof of the "1if" part is similar to the proof of Lemma 2 in Pukelsheim
[13] and the proof of the "only if" part is similar to the proof of Lemma 1 in Mathew
[9].
COROLLARY 2. A nonnegativity preserving subspace has a basis consisting of hermitian

nonnegative definite matrices.

. . s
*
THEOREM 4. Let Al’AZ""’As be an orthonormal basdis for A. If hZ].Ah ] Ahlo, then

A is nonnegativity preserving. This condition is also necessary if s= 2 or if
there exists a nonsingular matrix Q such that Q*AQ is diagonal for every hermitian
matrix Ae A.

Proof: Let A, (§=1,2,...,s) be as given in the theorem and let A> 0, Then P(A) =

3

3 * S xx

! (tr AhA)Ah and P(A)> 0 for every A>0 iff | (a Apa)A, > 0 for every vector a or
h=1 h=1

equivalently

8
(a" @ 1) XA:eAh)(an 1)>0 (1)
h=l

for every vector a. This proves the sufficiency of the condition as asserted in the

g =«

theorem. Conversely, suppose A is nonnegativity preserving. Then Z Ah ] Ah is
h=1

hermitian, in view of Theorem 3(i) and Theorem 2(ii). Since A now has a basis con-
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sisting of hermitian matrices (Corollary 1), if there exists a matrix Q as specified
1]

*
in the theorem, then Q AQ is diagonal for every Aec A. It now follows that (I) holds

8
for every a iff hzlAh ] Ahlo. When s= 2, in view of Corollary 2, let Allo, A2_>_0
be a basis for A. Then, using Theorem 6.2.3 in [15], we see that there exists a

‘-ncl.t,l-

* *
nonsingular matrix Q satisfying Q AIQ and Q AZQ are diagonal., Arguing as before,

the proof can be completed. [
8
%
We observe that the condition [ A, 8 Ahz_O is similar to the condiction given
h=1
in Corollary 2.2 in dePillis [5]. This condition is not in general necessary for A

to be nonnegativity preserving. For example, if A is the vector space of 2x2 complex

. 0 0
A2 -{00 , A -1 |01 and A, = .01 form an orthonormal basis for A and
o1 3 vZ{1 0 4 sml-10

*
do not satisfy the condition 2 A S A2 0.
h=1

matrices, then clearly, A is nonnegativity preserving. The matrices A1 = [1 0 s

REMARK 1. The existence of a nonsingular matrix Q satisfying the requirement in
Theorem 4 could be verified as follows: When A is nonnegativity preserving, let
81,32,...,88 be a basis for A satisfying sz_O (J=1,2,...,8). From Theorem 3(ii)
and the proof of Theorem 1(ii), it is easy to see that such a basis can be obtained.
Then there exists a nonsingular matrix Q satisfying Q*BjQ is diaéonal for j=1,2,...,8
. iff Bj aBk = BkB(;Bj for j,k=1,2,...,8. Here BO - jilnj and Ba denotes a generalized
= inverse of Bo. For a proof of the above assertion, we refer to Bhimasankaram
({3], Corollary 2) or Rao and Mitra ([15], Theorem 6.5.2).

Suppose A is a subspace of real square matrices of order n, i.e. Ac Ran. We
3 shall call A, a symmetry preserving subspace if P(A) is symmetric whenever A is
symmetric (the inner product under consideration is <A,B>= tr B'A for A,B real
matrices). 'Nonnegativity preserving” is defined similarly. We now give character-

izations of a symmetry preserving or nonnegativity preserving subspace A of Rﬁxn.

o
o
o

\ ‘('.r"a,".-‘.~"J,"4~".-,".,‘ ‘o "




b THEOREM 5. A subspace A of ) S is symmetry preserving iff anyone of the following

equivalent conditions holds:
b (1) A'c A whenever Ac A
(1i) P(A') = P(A)' for every Ac Sl
Proof: The proofs of (i) and the 'if' part of (ii) are similar to the correspond-
n ing proofs of (i) and (i1i) in Theorem 1. We shall now prove the 'only if' part

j; of (11). Suppose A is symmetry preserving and let Al' 2,...,As form an orthonormal
y basis for A. Then, for any Ae Rpxn’ P(a) = § (trAﬁA)Ah. In view of part (i)

of the theorem, it follows that the matricesh:i,...,A; also form an orthonormal

- basis for A. Hence P(A’) = ; (trAhA')A'h = P(a)'. O

THEOREM 6. Let A be a subspﬁZ: of Rpxn and let Al,l!z,...,é.s form an orthonormal

basis for A. Let a?k denote the (jk)th element of Ah (h=1,2,...,8; j,k=1,2,...,n).

Then A is symmetry preserving iff anyone of the following equivalent conditions

holds:

(1) th jces § aP 4§ @ +al) ric for j,k=1,2
the matrices a an a are symmetric for j,k=1,2,...,n
. T pey K3

(i1) A, 8 A+A'RA] 1s symmetrié.
Ly @ At a e

o

e
I ]

Proof: The matrices Ejj j=1,2,...,n and F&k J<k; j,k=1,2,,...,n defined in the
proof of Theorem 2 form a basis for the subspace of real symmetric matrices. The
proof of the theorem can now be completed along the lines of the proof of Theorem 2.
THEOREM 7. Let A be a subspace of RV, Then

(a) A is nonnegativity preserving iff (i) A is symmetry preserving and (ii) A A

for every symmetric matrix Aec A

It

s

|
(b) If Al,A.Z,...,As are as in Theorem 6 and 1if hzllAh ] Ah+-Ah 2 Ahlg_o, then A is
nonnegativity preserving.
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Proof: The rpoofs of (a) and (b) are similar to the proofs of Theorem 3 and the
first part of Theorem 4 respectively. [J

REMARK 2. When A is a subspace of Rg*n’ the conclusions in Corollary 1 and Corollary
2 are not true in general if we replace "hermitian" by "symmetric". This is easily
seen by taking A to be RY™® itself.

REMARK 3. When A is a subspace of real symmetric matrices, all the conclusions in
Corollary 1, Corollary 2, Theorem 4 and Remark 1 remain valid if we replace

"hermitian” by "symmetric" wherever applicable.

3. HERMITIAN AND NONNEGATIVE SOLVABILITY OF LINEAR EQUATIONS.

Let T be a linear transformation from Cnxn into chq. In this section, we are
interested in the existence and characterization of hermitian and hermitian nonnega-
tive definite (nnd) solutions to the linear equation TX= Q, where Qe R(T) (the
range of T). T* denotes the adjoint of T and T+ denotes the maximal generalized
inverse of T as defined in Ben Israel and Greville ([2], p. 318). T+ is also the
pseudoinverse of T as defined in Holmes ([7], pp., 216-226). Then R(T+)- R(T*) and
TV1 is the orthogonal projector onto R(T*) (see Theorem 2 on p. 320 in {2]). When
T is a matrix, T+ coincides ?ith the Moore Penrose inverse of T. We say that TX= Q
is hermitian solvable (nonnegatively solvable) if there exists a hermitian (respectively
hermitian nnd) matrix X satisfying TX= Q.

DEFINITION, We say that T+ characterizes the hermitian solvability (nonnegative
solvability) of TX= Q if the existence of a hermitian (hermitian nnd) solution to
TX= Q implies that T+Q is hermitian (respectively hermitian nnd).

Thus, if we know that T+ characterizes the hermitian solvability (nonnega-

tive solvability) of TX= Q, in order to examine if TX= Q has a hermitian (hermitian

nnd) solution, it 1s enough to check if T+Q is hermitian (respectively hermitian

nnd) .
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THEOREM 8. (i) For every Qe R(T), '1‘+ characterizes the hermitian solvability of

*
TX= Q iff R(T ) is hermitian preserving.

(11) For every Qe R(T), T+ characterizes the nonnegative solvability of TX=Q iff

*
R(T ) is nonnegativity preserving.

*
Proof: Suppose R(T ) is hermitian preserving. Then 'r""rx is hermitian whenever X

is hermitian. Thus when X is a hermitian solution to TX=Q, '1‘+'1'X- T+Q is also a
hermitian solution to TX= Q. Conversely let '1'+ characterize the hermitian solva-
bility of TX=Q for every Qe R(T). Let X, be any hermitian matrix and let X, = Qq-
Then T+Q0 is hermitian, But T+Q0- '1'+TX0 and X, is an arbitrary hermitian matrix.
Hence R(T*) is hermitian preserving. This proves (i). (ii) is proved similarly. [
REMARK 4. If T is a linear transformation from Rnxn into Rpxq, the conclusions in

Theorem 8 remain valid if we replace "hermitian" by "symmetric". (Symmetric solva-

bility of TX=Q is defined analogous to hermitian solvability.)

4, APPLICATIONS.

Pj"n pP.*P )

(a) Let A, e CJ  andB,ecd I for y=1,2,...,5. Let } p
3 *.‘l j=1 3

the system of equations A XA, = B, (j=1,2,...,8) (assumed to be consistent). Here

b N 3

* * *

TX. is a vector consisting of the s matrices (A1XA1,...,ASXAS) and R(T ) consists of
S & P4 *P

all complex .ucrices of the form Z A,Z,Z , where Z, ¢ C J j. From Theorem 1(1i),

37373 h|
* i=1
if follows that R(T ) is a hermitian preserving subspace. Hence the existence of

= p and consider

a common hermitian solution to the above equations can be verified by examining if
'1‘+B is hermitian, in which case T+B itself gives a hermitian solution (B denotes
(Bl,Bz,. . ’Bs))'

(b) Let Aj and B, be as defined in (a) and assume further that B, > 0 and R(B

5 5 )=R(A)).

] J

* K * .
Let A be a matrix satisfying R(A ) = R(,Alz AZ:... :As). Now consider the equations




AjA*XAA; = Bj’ j=1,2,...,8 and suppose we want to examine if the above equations
admit a common hermitian positive definite solution X. This problem arises in
connection with the identification problem for shorted matrices, see the proof of
Theorem 1 in Mathew and Mitra [10] (see also Mitra [11] for the details of this
problem). Let T denote the corresponding linear transformation (as in the case of
(a) above). We notice that if X is a hermitian nnd solution to the above equations,
then PAXPA+-(I-PA) is a hermitian positive definite solution, where PA denotes the
projection matrix A(A*A)-A*. Thus, it is enough to know if the above system of
equations admits a common hermitian nnd solution. In case R(T*) is nonnegativity

preserving, this can be verified by applying Theorem 8(ii).

(c) Nonnegative estimation of variance components.

Let Y be a random Rp-vector with mean vector of the form A8 and dispersion

k
matrix z GjV3. Here A is a known matrix, B is a vector of unknown parameters,
j=1
v, (j=1,2,...,k) are known real symmetric matrices and 6,6 (j=1,2,...,k) are unknown

3 3

parameters known as variance components, 68 = (61,62,...,ek) is such that

k

z ejij_O. We are interested in estimating the linear parametric function
3
q'e = q191+ "'+qkek° Let M= I—AA+ and let T be the linear transformation from

R:xn into Rk defined as TX = (trXMv M,...,trXMVkM)', for Xe R:xn. Here R:xn

1
denotes the space of real symmetric matrices of order n. Then it is known that

q'6 admits a translation invariant quadratic unbiased estimator iff TX=q has a
solution Xe R:xn, in which case Y'MXMY is an estimator with the desired properties
(see {14], pp. 302-305), When qe R(T), q'6 admits a nonnegative definite quadratic
unbiased estimator iff TX= q admits a solution X> 0. When R(T*) is nonnegativity
preserving, this can be verified by examining if T+q3_0. We notice that R(T*) is
the vector space spanned by the matrices MVIM,...,MVkM. Also, Y'(T+q)Y is the well
known minimum norm quadratic unbiased estimator (MINQUE) of q'6, introduced by

N
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C.R. Rao ({34}, pp. 302-305). Thus, when R(T*) is nonnegativity preserving, the
existence of an nnd quadratic unbiased estimator of q'6 is equivalent to the non-
negativity of its MINQUE. Further details regarding this observation are given
in [13] and [9].

(d) Nonnegativity preserving subspaces of "

Let S be a subspace of Rp and let P denote the orthogonal projector onto S.
(Here we assume that orthogonality is with respect to the inner product (x,y)=7y'x.
More general inmner product can be considered and the modifications in such a case
will be obvious). We say that S is nonnegativity preserving if Px has nonnegative
components whenever the vector x has nonnegative components. Clearly, S is nonnega-
tivity preserving iff the matrix P has nonnegative entries. Let A€ kan. Then,
for every be R(a), A" characterizes the nonnegative solvability of Ax=1b iff R(A')
is nonnegativity preserving. Thus, when R(A') is nonnegativity preserving, in order
to verify if Ax=b, be R(A), has a solution x with nonnegative components, it is

enough to examine if the vector A+b has nonnegative components, in which case

Xx= A+b is a desired solutionm.
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