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Abstract

A model for the stochastic analysis of directed acyclic graphs is developed. These graphs represent
event-precedence networks where the distribution function associated with an event is assumed to be a
variant of the phase-type distribution. Events may occur sequentially, probabilistically, or concurrently.
The distribution function of the graph execution time is computed in a semi-symbolic form. Applications
of the model for the evaluation of concurrent program execution time and to the reliability analysis of
fault-tolerant systems are discussed.

1. INTRODUCTION

Many interesting problems in the design and analysis of multiple and distributed processing systems

need to be solved in order to provide their designers and users with insights and tools for system evalua-

tion. Most current work on performance and reliability analysis of parallel and distributed systems by

means of analytic models may be classified as either proervu-eeatered (transaction-centered) or reeurce-

centered analysis.

In resource-centered analysis, system resources are modeled in great detail while a relatively simple

model of transaction behavior is assumed. Markov and semi-Markov models have been wed for reliability

and availability analysis 11,2]. Product-form queueing networks have been used to analyse the perfor-

mance of computer systems 11,3], communication networks, and computer-communication networks 14].

The existence of a product-form solution implies a relatively efficient numerical procedure to obtain the

solution. However, real system behavior rarely satisfies the necessary assumptions of a product-form net-

work. For example, transactions with internal concurrency will violate product-form (5,6,7]. Many

authors have studied approximate and exact solution techniques for solving queueing models where pro-

grams are allowed to overlap their computation with their own input-output operations [6,7].

In program-centered analysis, a relatively simple model of system resources is assumed while the

- " characteristics of transactions are modeled in great detail. Behavior of program execution in the face of

system failure/repair [8] and software failure [91 has been modeled. If we consider performance analysis in

the absence of failures and assume that transactions possess internal concurrency, then transactions can be

represented by precedence graphs (22]. Deterministic analysis of task precedence graphs and the schedul-

ing of these graphs is known to be important [22]. Adding randomna to such graphs, we obtain stoha-

tic activity networks [10,111. At least three approaches to the analysis of such networks can be identified:
",r

"C.

, -,- -. -, , % %r % , % - . . % -*v,-. , "%. ' -'*.,' ..- ..- .. 'o% ,". .'. .' ,. . . .'. .'..' .- ' .".'



2

Markov chain techniques, stochastic Petri net techniques, and path analysis.

The first approach is to express the activity in the form of a continuous-time Markov chain 112,13].

This approach restricts the node times to be exponentially distributed, and also quickly leads to an explo.

sion in the state-space of the Markov chain.

The second approach uses Petri net models. Ramamoorthy and Ho use this approach in the ease

that node times are deterministic [141. Molloy considers exponentially distributed node times and con-

verts the Petri net into a Markov chain for analysis [15]. We have allowed the node times to be generally

distributed in our Extended Stochastic Petri Net (ESPN) Model [16]. Whenever possible, the ESPN is

automatically converted into a Markov chain or a semi-Markov process. If neither of these approaches

succeeds then the ESPN is evaluated using Monte-Carlo simulation. The first two approaches for the

* solution of an ESPN can lead to large state spaces, while the third approach can be time consuming due

to the inherent speed limitations of a simulation model.

The approach developed in this paper falls into the path analysis category. The path analysis tecb

nique first computes the distribution of the time to traverse each path. For complex graphs the number

of paths can be rather large, making the technique computationally expensive. In the general case, over-

lapping paths exist and hence one can only obtain an approximation (or bounds) for the overall execution

time Ill.

If the shape of the graph is restricted to series-parallel, the overall execution time can be obtained

exactly. This is the approach taken by Robinson [171 and Kleinoder [18] in using directed graphs for the

performance analysis of concurrent programs. We also do this, but our model allows for multiple paths to

be interpreted in a variety of manners, not just as concurrent program execution. Therefore, our graphs

- can be used to model reliability as well as program execution. Kleinoder's approach differs from ours in

* that he performs numerical convolutions and other such operations on empirical distributions. Thus his

approach avoids any distributional assumptions. However, our approach yields results in semi-symbolic

form and is faster.

In this paper we consider the analysis of node-activity networks that are series-parallel graphs.

With each node in the graph is asociated a distribution that has exponential polynomial form. This form

S * ! ,. • ..
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is quite general, and includes Neuts' phase-type distributions. The division of a graph into parallel sub-

graphs can be interpreted as either probabilistic or deterministic. In the deterministic case, the time

needed to traverse all of the subgraphs may be either the maximum or minimum of the time needed to

* "traverse the individual subgraphs. The distribution function of the total time to traverse the graph is Stu-

died. A program called SPADE (eru -PAsre//d irected acycic graph fivaustar) has been written to

compute this distribution. Applications of the use of our model include performance analysis of con-

current programs and reliability analysis of non-repairable fault-tolerant systems.

In section 2, we discuss the model. Section 3 describes the analysis of the model and the SPADE

program. In section 4 we give examples illustrating the use of our approach. The examples chosen are

very simple, for the purpose of exposition. More complex problems can be and have been solved by the

model.

2. THE SPADE MODEL

The SPADE model consists of a series-parallel acyclic directed graph with the nodes representing

events and the edges representing a precedence relation between the events. Such graphs are useful for

modeling many different kinds of activities. The two main applications are performance and reliability

analysis. In this section we describe the SPADE model. Fast we give a performance model example and

a reliability model example, to illustrate how directed graphs are used as models. Then we define series-

parallel graphs and describe how they are interpreted by SPADE.

2.1. Graph Model Examples

* As an example of a performance model, we consider the process communication graph from Kung's

*'- thesis 1131, shown in figure 1. There are four tasks to be executed. Tasks 1 and 2 are executed on one

processor and tasks 3 and 4 on another processor. Tasks 2 and 3 require results from task 1 and task 4

- requires results from tasks 2 and 3. Once task I has completed, tasks 2 and 3 maybe executed at the

same time. When they are both finished, task 4 may be executed. Because tasks I and 3 and tasks 2 and

4 are sained to different procesors, data must be communicated between processors. The communica-

tion time between tasks I and 3 and tasks 2 and 4 is modeled by the nodes S13 and Sgt. The execution

.'.4
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time for the a task is exponentially distributed with parameter X. The execution time for a data con-

munication node is also exponentially distributed with parameter s * X.

If the model is evaluated using the standard Markov approach, the corresponding Markov chain will

have ten states. Subsequently, the Markov chain would be solved by any number of known techniques.

SPADE avoids the state space expansion by analyzing the model directly. To further contrast the two

approaches, the SPADE approach allows a much more general distribution type than exponential, but

puts restrictions on types of graphs. Markov models allow cycles and general graphs but suffer from large

'. state spaces, particularly if we wish to model non-exponential behavior.

To see how a directed graph can be used to model reliability, consider the system of components

pictured in figure 2%a. The system consists of three parallel subsystems, and functions if any one of the

"" subsystems is working. Each subsystem is composed of a series of components, all of which must function

in order for the subsystem to work.

Previous approaches to solving such reliability problems include combinatorial analysis and Markov

- "chainsill. Combinatorial analysis works well for 'pure' series-parallel systems, but if we allow standby

redundancy as well the combinatorial approach quickly becomes intractable. The Markov chain approach

" suffers from the curse of dimensionality; for an n-component system, the Markov chain contains 2' states.

The Markov chain approach also makes restrictive assumptions on distributions. The SPADE approach

appears to overcome both of these problems. It should be mentioned, however, that the Markov chain

approach does not impose the structural restrictions and independence assumptions of our approach.

To analyse the model using SPADE, the model would be transformed to the graph shown in figure

2b, which represents the time to failure of the system. For a series of components, we must take the

minimum of the probability functions of the individual components (the series fails as soon as one corn-

ponent fails). For subsystems in parallel, we must take the maximum of the probability functions (the

system fails only when all parallel subsystems fail).

I
o



23. Serki,-Pawall Graphs

The graphs in the two examples in the previous section are simple examples of the clam of series-

parallel graphs. There are several nearly equivalent definitions for the term 'series-parallel [20][21][25];

we define the term as follows. A finite linear graph is defined to be a quadruple G -(N,E,$, T) where
,i.

o N is a finite set of elements called nodes

o E isasubeet of N x N, called the set of edges

o S is the subset of N containing those nodes that are not the second member of any edge in E

(these are the entrance nodes).

o T is the subset of N containing those nodes that are not the first member of any edge inE (these

are the exit nodes).

Suppose (J,-(N, El, SI, T) and Gg-(N3 , E2, S2, T 2) are nonintersecting graphs. A graph

* G-(N, E, S, T) is the series connecti o o and G if and only if

o At least one of T, and S2 contains exactly one node.

'S

o N-NjUN2

o E-E, U E2 U (TIx )
.

o S-S, T-T2

Agraph G is the parallel combination of G I and G 2 if and only if

o N-N, U N2

SoE-EjUE2

SoS-SuS, T-T U T2

d'

.- * .



The clam of seri-parallel graphs is the smallest clas of graphs containing the unit graphs (graphs

consisting of one node) and having the property that whenever G is the series or parallel connection of

two graphs in the clas, then G is in the clan. A series-parallel graph is by definition acyclic and contains

no redundant edges.

Figure 3 shows an example of a series-parallel graph and the sequence of series and parallel combina-

tions from which the graph can be built. Figure 4 shows two graphs which are not series-parallel.

2.2. Graph Interpretation

Each node in a graph represents an event whose length is specified by a cumulative distribution

Sfunction (CDF). Given a graph, SPADE will compute the distribution function for the time taken to

~ 'traverse" the entire graph. The definition of what it means to 'traverse' a graph G is recursive.

if G consists of a single node, the traversal time is given by the CDF associated with that node. If

*G 0was formed by combining the subgraphs G I and G , in series, then in order to traverse G, we must first

traverse G, and then traverse G2. if G is the parallel combination of G, and G2, we alow the parallel-

ism to be interpreted in one of three ways.

probde bitic

Only one of the subgraphs is actually traversed. Each subgraph has associated with it the proba-

bility that it is chosen for traversal. G has been traversed when one of the subgraphs has been

traversed.

. mazinwm

The two subgraphs are traversed concurrently. Traversal of 0 is complete when traversal of both

G0I and G 2 is complete.

The two subgraphs are traversed concurrently. Traversal of G is complete when traversal of the

first subgraph to to finish is complete.

Suppose we are modeling program execution. Graphs with only probabilistic parallelism will model

flowcharts of loop-free sequential program-t. If we only allow maximum concurrency then the graphs will

correspond to the task precedence graphs considered in [22]. Minimum concurrent subgraphs will model

.9.

."
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* the parallel execution of a non-deterministic algorithm [23] in which the verification of all guessed solu-

tions is attempted concurrently, and the first guess to be verified provides a solution to the whole prob-

lem.

The graphs can also be used to model the lifetime of closed (non-repairable) fault-tolerant systems

with permanent faults. Such systems are defined in [241, where they are analyzed by Markov chain tech-

niques. A system consisting of a series combination of components is modeled by parallel graph nodes

with type minimum; a parallel combination is modeled by parallel graph nodes with type maximum. We

should note that our graphs allow more general distributions of subsystem or component lifetimes than

* those allowed by the Markov chain techniques used in [24].

-" 3. GRAPH ANALYSIS

The analysis of a SPADE model hae two phases. First, the graph is decomposed into a binary tree.

Then the tree is used to obtain the CDF for the graph traversal time. In this section we describe the two

,- phases.

5.1. Tree D*ecomposition

Any series-parallel graph can be decomposed into a binary tree, where the internal nodes of the tree

are of type 'series" or *parallel", and the leaves of the tree are the nodes of the graph. Valdes, Tarjan

and Lawler [201 present an elegant algorithm for performing the decomposition; the algorithm presented

here is less elegant but simpler.

Suppose we have a graph G. Let S (z,z 2 , • • ,) } be the set of entrance nodes in G. For

any node z, define A () to be the set consisting of : itself and all descendant of z. Define B to be the

set f A (z). Thus B consists of those nodes in G which are commonly descended from every entrance

* node. We have the following lemma:

Lemma:

" Suppose 0 is the series combination of G and G., and GI is the parallel combination of two sub-

- graphs. Then the graph G2 must have a single entrance node, and that node is the first node in B.

,Proof.

* . . . .



By definition, since GI and O were combined in series, either 01 has a single exit node or G has a

single entrance node. 0 1 has multiple exit nodes, because it has parallel, hence disjoint subgraphs,

each of which has at least one exit node. Therefore 02 has a single entrance node 3.

When G, and G2 were combined, all of the exit nodes in G, were connected to 1. Every entrance

*node in 0 is either itself an exit node of 01, or has some exit node as its descendent. Therefore V

* is descended from every entrance node of G1, and hence I is in B. Furthermore, because GI has

disjoint subgraphs, no node in G is descended from every entrance node of G 1, hence no node in

G. is in B. Therefore V is the first node in B.

Armed with this lemma, we proceed to describe a recursive decomposition algorithm for series paral-

lel graphs. For any graph G, let To be the tree which represents the decomposition of C. There are

four cases.

case 1:0 -{z)

To consists of the single node z.

cse 2: G0 I > 1, S - (z)

To consists of a root node of type 'series' with left subtree the single node x and right sub-

tree the tree To_ {).

case 3: l0l >1, ISl >1,B= Q

Since G has more than one entrance node and the entrance nodes have no common descen-

dent, G can be divided into disjoint parallel subgraphs. Let G1 -G n A (a1) and

G =0 G -A(z 1 ). Note that A(z1) need not be a subset of 0, since 0 may be some sub-

graph which contains r, but not all of its descendents. For each of z 2 ,'',g,, if

G, n A (zi)*Qthen set G, - G, U A(zx) and G2 =0 G- A(z). Then To consists of a

root node of type 'parallel" with left subtree To, and right subtree To.

c ses 4: 0 I > 1, 1S I > 1,# Q

Since B is not empty, we cannot have a parallel decomposition, and hence must have a series

decomposition. Let GI and G be two series subgraphs of G such that GI is minimal. C0

cannot consist of a single node, since then we would have I S l 1. Therefore, G I must be

composed of subgraphs, and those subgraphs must be parallel, otherwise G would not be



minimal. Now we have the conditions of the lemma, and hence the smallest node in B is the

single entrance node of Gg. Let r be that node. Then G = G -A( ) and

G O2 G n A (I). To consists of a root node of type 'series" with left subtree ToI and right

subtree TG,.

Figure 5 illustrates the decomposition process by showing an example of cases 2, 3 and 4. Figure 6 shows

a series-parallel graph and the complete binary tree associated with it. Note that for SPADE the parallel

nodes are divided into three types: 'maximum', "minimum", and "probabilistic'.

The tree decomposition is not necessarily unique, but all possible decompositions of a graph are

equivalent in the sense that the probability distributions as computed by all of the possible binary trees

are the same. This is true because 'maximum" and 'minimum" are associative, and for the probabilistic

*nodes, multiplication is distributive over addition.

3.2. The CDF of a Tree

Given a series-parallel directed graph and a CDF for the traversal time of each node, one can calcu-

late the CDF of the traversal time for the entire graph by using the graph's decomposition tree. For a

tree node A , let FA be the CDF of the time needed to traverse the tree rooted at A. The calculation for

FA depends on the type of node A.

If A is a leaf, then A represents an event node in the series-parallel graph. FA is simply the CDF

specified for that node. Now suppose A is not a leaf, and that its two subtrees are B and C. If A is a

series node, then A represents the traversal of the subtree B followed by the subtree C. FA is given by

*1) FA ()fFB I (z )FC (f-z )dz
0

If A is a mazimum node, then A represents the maximum of the traversal times of subtrees B and C;

hence

2) FA(9 == F (t)Fc(f)
If A is a minimum node, then A represents the minimum of the execution times of subtrees B and C;

therefore



10

3) FAQr)-FR(I)+Fc(t)-FN(t)FC(t)

Finaly, if A is probabiistic, then only one subtree of A will be executed. Suppose the probability that

subtree B is executed is pp and the probability that subtree C is executed is pc. Then FA is given by

4) FA(I) = pFj(t) + PCFC(t)

It would be possible, given any series-parallel graph, to compute numerically the value of the CDF

of the entire associated tree given any value of S. If the type of the CDF's is restricted to be of exponen-

*. tial polynomial form and the parameters are given, then the overall CDF will also be an exponential poly-

nomial, and can be computed symbolically in terms of t. An exponential polynomial is defined to be an

expression of the form

4i tbe 6.1

Restricting distributions to this form is a rather weak restriction, since it includes exponential, hyperex-

' ponential, Erlang and mixtures of Erlang distributions, in addition to Neuts' phase-type distribution.

Exponential polynomials are closed under the operations of addition, subtraction, multiplication,

differentiation and integration. Because exponential polynomials are closed under these operations, a

,' series-parallel graph whose nodes have exponential polynomials for CDF's will have an overall CDF which

is also an exponential polynomial.

3.3. The SPADE Program

The process of finding the overall CDF of a series-parallel graph whose nodes have CDF's which are

" exponential polynomials can be automated. The program SPADE accepts a specification of such a graph

* and produces the overall CDF, mean and variance, and computes the overall CDF for a specified range of

*" values.

In order to specify a model for SPADE, a user must supply, either interactively or in a file, four

kinds of information: the graph edges, the parallelism types for parallel subgraphs, the distribution for

each graph node, and a set of intervals over which to evaluate the overall graph CDF.

- Because our definition of series-parallel requires subgraphs combined in series to begin or end with a

single node, every group of parallel subgraphs is preceded by some single node, except when the overall

.-
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graph has multiple entrance nodes. In that cue, SPADE supplies a dummy entrance node. Thus, to

specify the type of parallelism for parallel subgraphs, the user assigns an 'exit type' to each node that has

more than one immediate successor. The three choices for exit type are maximum, minimum or probs-

bilistic. If the exit type is probabilistic, the user must specify the probabilities.

Every node in the graph must be assigned a cumulative distribution function. Each CDF must have

exponential polynomial form. In general, for each CDF the user must provide the three parameters ., i

and bi for each term in the exponential polynomial. For the user's convenience, SPADE provides an

*. abbreviation for the exponential distribution, so that the user need only supply the parameter (inverse of

the mean) of the distribution.

SPADE also allows a node to have distribution 'zero', meaning that the traversal time for the node

is zero. These 'zero' nodes ae useful for representing synchronization, and to form graphs which would

otherwise not adhere to series-parallel form. The examples in section 4 include instances where sero nodes

are used.

Once all information about the graph has been obtained, the program forms a binary tree

corresponding to the series-parallel graph. The graph decomposition results in a preorder reiresentation

- of the tree. The program thert backs up the preorder representation (traversing the tree in 'reverse pre-

. order'), computing the CDF of each subtree. Once the overall CDF is known, SPADE evaluates the CDF

over intervals specified by the user.

4. APPLICATIONS

This section presents examples of applications of the task graphs defined in section 2. The applics-

tions are of two kinds: analysis of concurrent task execution and reliability analysis.

4.1. Coneurrent Program Execution Time

Easmp/e 1. Consider a sequential program which consists of two phases. The outcome of the first phase

determines which of two alternative tasks is executed as the second phase. Thus, the node representing

the first phase has a probabilistic exit. This program is illustrated in figure 7a.

Re.Re

%-
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', The execution time of task 1 -(the first phase) is exponentially distributed with parameter X, - 0.6.

The execution time of task 2 is 2-stage Erlang distributed with parameter X2 - I'(the CDF is -e.' -te 4 )

and the execution time of task 3 is exponentially distributed with parameter Xs - 0.8. The probability

that task 2 will be executed is p = 0.9 while the corresponding probability for task 3 is - p.

A specification of the model is shown in figure 7b. The edges of the graph are specified by the two

- node pairs (1,2) and (1,3). The exit type for node I is specified as probabilistic, meaning that the two

*- parallel subgraphs (2) and (3) are probabilistic. The distributions for nodes I and 3 are given as

* exponential, with appropriate parameters. The distribution for node 2 is given by specifying three

exponential polynomial terms. SPADE is asked to compute the overall CDF for values of t between 2

and 10, at intervals of 2.

* The results given by SPADE are shown in figure 7c.

* Ezample . Next we consider the producer-consumer problem. This problem is also explored in [19], in the

context of real-time execution analysis. The producer proces produces messages according to an exponen-

tial distribution with rate j. The consumer process consumes the messages according to an exponential

distribution with rate X. We are interested in how long it takes for a messages to be produced and con-

". sumed.

The process of the production and consumption of two messages is shown by the graph in figure 8a.

The nodes PI and P2 represent the production of the first and second messages; CI and C2 represent the

consumption of the messages. Obviously, each message cannot be consumed until it is produced, but it is

possible for message one to be consumed while message two is being produced.

With == .5 and A = .3, we have the input file and results in figures 8b and Sc, respectively.

Ezample . We evaluate one iteration of the program with CPU-i/0 overlap considered by Towsley,

* Chandy and Browne 171 and shown in figure 9a. In each iteration of the program, there are two stages.

The first stage is always a CPU burst. The second stage consists of either pure input/output, or

input/output that may be overlapped with a second CPU burst. The probability that the second stage

consists of CPU-I/O overlap is given by p. Note the use of a 'zero' node. This allows us to have one

branch of the CPUI node lead to a single node, while the other branch leads to a group of nodes to be

e-
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executed in parallel.

Assuming pls=0.125, pg-0.0376, X-0.0217, and p -0.6, the results from SPADE are given in figure

9b. Note that in SPADE the distributions could have been more general.

Example 4. In this example we consider the process communication graph 1131 discumed in section 2.1 and

pictured in figure 1. Assuming that X-0.125 and a -10, the distribution function and the mean and

*i variance of the overall execution time computed by SPADE are in figure 10.

. 4.2. Relhability Analysis

S"We now consider a sequence of examples of the use of SPADE for reliability analysis.

Exampie . Consider the series-parallel system discussed in section 2.1 and illustrated in fgure. 2a and

2b. The system can be specified for SPADE as in figure 11a. Note the use of 'sero nodes. The results

are given in figure 1ib.

• Example 6. We consider a triple modular redundant (TMR) system. Such a system consists of three cow-

ponents, any two of which must be functioning in order for the system to work. A task graph for the life-

time of this system can be derived based on example 3.24 of [1] and is shown in figure la. Nodes 2, 3,

- and 4 combined in 'minimum" parallelism represent the time to failure of the first component to fail.

Nodes 6 and 7 represent the time to failure of the second component to fail. In this case the distributions

* must be exponential, since we rely on the memoryless property of the exponential distribution when

.. modeling the system in this manner. The solution from SPADE is given in figure 12b.

It is possible to simplify the task graph for this example as shown in figure 12c (based on example

*3 3.26 of [1]). The results are, of course, the same.

" 5. CONCLUSION

A model for the performance and reliability analysis using directed acyclic graphs is discussed here.

The attractiveness of the model lies in an efficient procedure for its evaluation, potentially wide clan of

applications, and a powerful clas of allowed distributions. The restriction of the model involves struc-

tural restrictions on the kinds of models allowed. Structural restrictions include an inability to allow

-p
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cycles and the restriction to aeries-paael graphs. Work is currently under way to extend the model so as

to remove some of the restrictions.
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4.

r.

. Figure 7a. Program with Probabilistic Tasks

GRAPH CDF:
ARC 3 2 1.3500 t(1) exp( -J.000t)
ARC 1 3 + 1.0000 t( 0) exp( O.OMot)
."END + 4.0 0 t( 0) =p( .o.60t)

EX'T I PROD + 0.30o t( 0) exp( .o.sooot)
PROB 1 2 .9 + 4.7250 t(0) exp( -I.OOt)
DIST I EXP .
DIST 2 GEN mean: 3.5917

, EPO -1, 1, -1 variance: 4.7847
EXPO 1, 0, 0E(PO -1, 0, -1 t F(t)
ENDEN 2. 0.2507
DIST 3 EP .8 4.0 0.6511
END 6.0 0.8696
EVAL 2102 3.0 0.9561

10.0 0.9860

Figure 7b. Ibput for Example I Figure 7c. Results for Example I

.
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Figure Sn. Consumer-Producer Problem

COMM comsmer-producer problem CDF:
COMMQ with 2 mesages 4.7500 9( 1) exp( .0.3000t)

+, 0.710 1) exp( -. M)
GRAPH + 1.OOOt(O) exp( OGOGwt)
ARC PI P2 + -1.0000 t(0) exp( -0.3000t)
ARC PI C + -1.0000 t(0) exp( -0.500t)
ARC P2 C2 + -1.0000 1() exp( -o.SOo)
ARC C1 C2
END mean: 0.4167

variance: 25.5347
EMUT PI MAXDLST C1 EXP .3 F(t)
DIST C2 EXP .3 4.0 0.1067DIST PI EXP.5 9.0 0.5438

DIST P2 EXP .5 14.0 0.8362
END 19.0 0.9500

EVAL 4 20 5
END

Figure Sb. Input for Example 2 Figure SB. Results for Example 2

--

4o

.

ao

-S;/ .. ;..-2 .; ? . .. .. .: . .... .. .: .: .".: .- -: -. . ..7 -..... ; -- ..; -.-,''....-.



21

J-

CDF:(I)1.0000 t(0) exp( 0.0OOt)
+ -1.2101 4(0) exp( -0.0217t)

Md/ + -0.8581 t(0) exp( -0.0376t)
E W, + 1.1416 t4 0) erp( -0.0593t)

* ~ Aa~El)+ .0.07344g0) exp( .0.1250t)

I, mean: 59.9224
N variance: 2122.8968

Figure 9a. CPU-I/O Overlap Figure 9b. Results for Example 3
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CDF:
-0.0174 t4 2) exp( -0.1250t)

+ 0.0294 t4 1) exp( -0, 1250t)
+ 1.0000 t( 0) exp( 0.0OOt)
+ -2.2349 t( 0) exp( -0.1250t)
+ 1.2346 t( 0) exp( -0.2500c)
+ 0.0027 t( 0) exp( -1.2500t)
+ -0.00-25 4( 0) exp( .1.3750t)
+ 0.0000 t4 0) exp( -2.500(h)

mean: 28.8384
variance: 208.1388

t F(t)
10.0 0.0479
30.0 0.6014
50.0 0.9147
70.0 0.9865
90.0 0.9982

Figure 10. Results for Examnple 4
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COMM series-parallel system CDF:
1.0000 t( 0) exp( 0.0O0t)

GRAPH + -1.0000 t( 0) exp( -0.8000t)
ARC A 1 + -1.0000 t( 0) exp( -1.2000t)
ARC A 2 + -1.0000 t( 0) exp( -1.4000t)
ARC A 3 + 1.0000 t( 0) exp( -2.00O0t)
ARC 4 + 1.0000 t( 0) exp( -2.2000t)
ARC B 5 + 1.0000 t( 0) exp( -2.6000t)
ARC B 6 + -1.0000 t( 0) exp( -3.4000t)
END

mean: 1.7526
EXIT ENTRANCE MAX variance: 1.4267
EXITA MIN
EXIT B MIN t F(t)
DIST A ZERO 2.0 0.6816
DIST B ZERO 4.0 0.9478
DIST 1 EXP .4 6.0 0.9908
DIST 2 EXP .6 8.0 0.9983
DIST 3 EXP .4 10.0 0.9997
DIST 4 EXP .8
DIST 5 EXP .9
DIST 6 EXP .3
END

EVAL 2 10 2
END

Figure Ila. Input for Example 5 Figure lib. Results for Example 5

.

.

'p



24

is 1 CDF:
~~ LI EX tC'7A) + M 40 t(0) ccp( ..002)

" 20000 t( 0) ap( .0.0003t)

mean: 8333.3333
aE ko variance: 3111111.1111

t F(t)
9000.0 0.0867

7 x UPt;) 4000.0 0.2544
60000 0.4270

/ 000.0 0.5757
10000.0 0.6936

Figure I2a TMvU Syst Figure 12b. SPADE reults

Figure 1k. Equivalenat TM~R System

iK v a



26

REFERENCES

[1] Trivedi, K.S., Probability and Statitics with Relia6biity, Queucing and Computer Science Applicatione,

Prentice-Hall, Englewood Cliffs, N.J., 1982.

[2] Trivedi, K., Dugan Bechta J, Geist R., and Smotherman ,M., 'Modeling Imperfect Coverage in Faul-

* Tolerant Systems," Proc. of the Fourteenth Int. Conf. on Fault-Tolerant Computing (FTCS - 14),

Orlando, FL., June 1984,pp. 77-82.

131 Chandy, K.M., Howard, J.H., and Towsley, D.F., 'Product Form and Local Balance in Queueing Net-

-. works,' JACM, Vol. 24, pp. 250-263.

141 Kleinrock, L., Queueing Systems, Vol. If: Computer Applications, John Wiley & Sons, 1976.

[5 Heidelberger, P. and Trivedi, K.S., 'Queueing Network Models for Parallel Processing with Asynchro.

nous Tasks,' JEEE Tram.. an Computers, November 1982.

161 Heidelberger, P. and Trivedi, KS., 'Analytic Queueing Models for Program with Internal Con-

currency,' IEEE Tram. on Computers, January 1983.

[71 Towsley, D.F., Browne, J.C. and Chandy, K.M., 'Models for Parallel Processing within Programs,"

CACM, October 1978.

[8] Kulkarni, V., Nicola , V. and Trivedi, K., 'On Modeling the Performance and Reliability of Multi-

Mode Computer Systems,' Proc. Int. Workshop on Modeling and Performance Evaluation of Paral-

lel Systems, Grenoble , Dec. 1984, (to be published by North-Holland).

[9] Littlewood, B., 'A Semi-Markov Model for Software Reliability with Failure Costs", Proceedings of the

Symposium on Computer Software Engineering, New York, 1976, pp. 281-300.

[10] Fix, W. and Neumann, K., 'Project Scheduling by Special GERT Networks,' Computint 23 (1979),

pp. 299-308.

--. ~ ~ v ;*- " I I~- F .. z.< *%.*.PI



28

"'.: [11] Gaul, W., 'On Stochastic Analysis of Project Networks,* in M.A.H. Dempter et W1. (eds.), Deter-

ministic and Stochautic ScIeduling, D. Reidel Publishing Co., 1982.

:* [12] Kulkarni, V. and Adlakha, W., 'Markov and Markov-Regenerative PERT Networks", Tech. Report,

Operations Research and Systems Analysis, Univ. of North Carolina at Chapel Hill, 1984.

[13] Kung, K.C.-Y., 'Concurrency in Parallel Processing Systeme, Ph.D. Dissertation, UCLA Computer

Science Department, 1984.

114] Ramamoorthy, C.V., and Ho, G.S., 'Performance Analysis of Asynchronous Concurrent Systems

Using Petri Nets", 1EEE Traeactions on Software Enpineesrng, Vol. SE-6, No. 5, pp. 440-449, Sep-

• .tember 1980.

[15] Molloy, M., "On the Integration of Delay and Throughput Measures in Distributed Processing

Models", Ph.D. dissertation, Computer Science Department, UCLA, 1981 .

[16] Dugan, J.B., Trivedi, K.S., Geist, R.M. and Nicola, V.F., "Extended Stochastic Petri Nets: Analysis

and Applications', accepted, PERFORMANCE '84, Paris, December 1984.

[17] Robinson, J.T., 'Some Analysis Techniques for Asynchronous Multiprocessor. Algorithms,' IEEE

Treansctions oan Software Esgineering, Vol. SE-5, No. 1, January 1979.

[18] Kleinoder, W., 'Evaluation of Task Structures for a Hierarchical Multiprocessor System', Proc. lat.

Cof an Modeling TecAniques and Toole for Performance Analeie, Paris, France, May 1984.

[19] Hase, V. R., 'Real-Time Behavior of Programs", IEEE-TSE, September 1981

1201 Valdes, J., Tarjan, R.E., and Lawler, E.L., "The Recognition of Serieg-Parallel Digraphs', Siam J. of

Computing, Vol. 11 no 2 (1982) pp. 298-313.

121] Abdel-Walib, H.M. and Kameda, T., "Scheduling to Minimise Maximum Cumulative Cost Subject

-, to Series-Parallel Precedence Constraints", Operations Research Vol 26, No. 1 pp. 141-158.

.

o.t" * *~.~ . ... * . . . . . - ** . * .. .. *t *5 5* ***~.. - .,
** .4. %., .* .* . ,...2 .:.. .e 2 ".'. " * * ".2€"'''2'.%,,'2'"'. ",'2~4. .2'2 '',., 4 ~,v. Z '2.%." 5, .-. 4'_ ;'-ZZ'-_e



27

122] Coffman, E.G., Compster end Job/Shop Sckedulint, John Wiley & Sons, NY., 1976.

123] Sedgewick, R., Algoritme, Addison-Wesley, Reading, Mam., 1983.

[24] Ng, Y.-W. and Avisienis, A., 'A Model for Transient and Permanent Fault Recovery in Closed

* Fault-Tolerant Systems,' Proc. 1976 Jot. S mp. on Fault-Tolerent Computing, June 1976.

[251 Elgot, C.C. and Wright, J.B., "Series-Parallel Graphs and Lattices", Duke Mathematics Journl, vol.

26 (1959), pp. 325-338.

.r ,% \ 'V ~ . .: \. ... . -.,..-,....-,.. .-....-..::..-......-.-............. ~ . . , .,. : ,



118

DTIC

F ILMEDk -


