AD-A160 289 SPRDE (SER!ES PﬁRﬁLLEL DIRECTED ACYCLIC GRAPH
EVALUATORY: A TOOL FOR PERF.. (U) DUKE UNIV DURHANM NC
DEPT OF COMPUTER SCIENCE R A SAHNER ET AL. JUL 83

UNCLASSIFIED CS-1984-15 AFOSR-TR-85-97435 AFOSR-84-0132 F/G 9/2

-

EAD

.

el L o R SO

e

¢
p
3
2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

A4

TIRRRIARAS 7 RSN 1\.\1

- .a

REPORT DOCUMENTATION PAGE J
]

1o RESTRICTIVE MARKINGS
, 2 DISTRIBUT:ON. AVA LAaBIL-TY OF REPCRAT
AD_A 160 289 ApDrt ois s omlrlc relemcz; dizoriol . ot
£ LnLATiTs .
4 PEAECAMING ORGANIZATION AEPOAT NUMBERIS) 5 MONITORING DRGANIZATION REPORT NUMBER:S,
AFOSR-TR- 85.07495
38 VAME OF PERECAMING ORGANI2ZAT ON bz OFFICE SYMBOGL 7a NAME OF MCNITORING ORGANIZATION
1 appi:cabie , - N . ~ -
Dux2 university
6c. ACDRESS Citv diaic ana 1P Coae: 78 ADORESS (Cit. State ana ZIP Coae
202 Nortn 3ui 1ding :--.-_*-::'.:ra—.-i x::a:-:a_ ;;‘:*: RS
Durham, NC 27706 Sciznces, Lil_.ng AT 2O 0332
8s NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBE R
ORGANIZATION (1f appiicedie)
LTQ3P NM AFQSR-84-0132
8c. ADDRESS (City, State and 2P Code) 10 SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK | womrk unIT
Bolling AFB DC 20332 ELEMENT NO. NO. NO. i NO.
11 TITLE ‘Inciude Security Classificsnomy) SPADE: A Tool For l
Performance and Reliability Evaluation €1:02F 2304 X3 !
12. PERSONAL AUTHORIS)
Robin A. Sahner and Kishor S. Trivedi
13a TYPE OF REPOAT 130. TIME COVERED 16 DATE OF REPCAT :yr. Mo.. Doy’ 15. PAGE COUNT
rint FROM 7o July 1985 29
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS rContinuc on reve-se i/ necessarv and identi/s oy block numbers
ceoc ' croue | sug 3R directed acyclic graphs, semi-symbolic form
XEXXXXXXXNXX
19 ABSTRACT Continue on recprse .1 necessary ana .aenii’y 9> block numoer

N

"/ A model for the stochastic analysis of directed acyclic graphs is developed. Th resen
event-precedence networks .whgn fhe distribution function associated with ;’:’ evem.?: mdn& be :
vasiant of thg phase-type distribution. Events may occur sequentially, probabilistically, or concurrently
onb:h dp:;:u;.u;n f:x:cuo:l of t:be ‘:‘nph execution time is computed in a semi-symbolic form. ApplicnionQ

e el for the evaluation of concurrent am i i iabili i
lt et e e Tralustion of 7,//(/2.,’.?3 D execution time and to the reliability analysis of

"[';.',t o

/"—/‘[fr ""‘"'r , /;’.!7:/"” l P) /’:j*,.:. jj‘ ."'"'7-":" D ! ‘C .
WATEI AR o S , A

—
R .

‘mc FiLE N‘COP_Y » . | OCT 15 &3

20 OISTAIBUTION ava.oagiLiTY QF aBSTRACT

2). ABSTRACT 3EC.R.TY ZLASSH ION

UNCLASSIF ED .. A.TED o SAME AS APT _ DTIC LSERS — Biten Sl

— cete et m = e

220 NAME OF RESPONSIBLE 'WNDIVIDUAL 22b TELEPWCNE NUMBER 7zzc. QFFICE SYyMBOL
N tinclude Arca Codé)
Brian W. Woodruff, Maj, USAF

t202. TCT=5027

Y

X

LR L S h o wd e IR A i " s, e a :
sl o N U I CR . TR T T N L e v W 9 S g N e g P a U e pd s o awcy i b - - v B s aw At

KFOSR-TR. 23.0745

CS-1984-15
Revised Version

: SPADE: A Tool For Performance and
) Reliability Evaluation

Robin A. Sahner and Kishor S. Trivedi

-’ Department of Computer Science
Duke University

»)
- g Tl I T R N P

P S ——

[}
1
{

" T i (et s
r y.hu'._/ L, 7%
5

R {0
iAol and) or

NTSIRY

e —

St
Approved for pudlie retease;
ﬁ/\ aistrjdutien pll imited,

o 8510 11 151

‘{ \'-‘ iy

»
p—— = =

B S A S LR LA TSI I S L N S R T .~ e o oe, . et et Ntetetatataes

~° * ‘-‘-'\‘-'..-'.;.'.‘-'\. RN X \- Y

SPADE: A Tool For Performance and Reliability Evaluation

Robin A. Sahner and Kishor S. Trivedi

Department of Computer Science
Duke University
Durham, N. C. 27706

p=.
.

.
-

_,

...

-
o
.
o<
o',
Y,

!
- .A.IR FORCR ope A N7 Qo
- ' RAPTC e 0 T T N Y e L
B . Yot oes A~y
! .
.

.

NATR

- Chief. Taa

Al

~~7ilion

This work was supported in part by the Air Force Office of Scientific Research under grant AFOSR-84-0132, by the Army
Research Office under contract DAAG29-84-0045 and by the Nationsl Science Foundstion under grant MCS-830200.

R e B s B IR A D i it S B 2 i " ey ek P ey i e e ¥

[
¥

3
;,] b -
. 1
¥
B! Abstract

. A model for the stochastic analysis of directed acyclic graphs is developed. These graphs represent
b event-precedence networks where the distribution function associated with an event is assumed to be a

y variant of the phase-type distribution. Events may occur sequentially, probabilistically, or concurrently.

X The distribution function of the graph execution time is computed in a semi-symbolic form. Applications

' of the model for the evaluation of concurrent program execution time and to the reliability analysis of

1 fault-tolerant systems are discussed.

2,

v 1. INTRODUCTION
’-

;: Many interesting problems in the design and analysis of multiple and distributed processing systems
” need to be solved in order to provide their designers and users with insights and tools for system evalua-
:_- tion. Most current work on performance and reliability analysis of parallel and distributed systems by
S means of analytic models may be classified as either program-centered (transaction-centered) or resource-
¥ centered analysis.

-, In resource-centered analysis, system resources are modeled in great detail while a relatively simple
o,

o model of transaction behavior is assumed. Markov and semi-Markov models have been used for reliability
- snd availability analysis [1,2]. Product-form queueing networks have been used to analyze the perfor-
. mance of computer systems {1,3], communication networks, and computer-communication networks [4].
:' The existence of a product-form solution implies a relatively efficient numerical procedure to obtain the

f.

N solution. However, real system behavior rarely satisfies the necessary assumptions of a product-form net-
> work. For example, transactions with internal concurrency will violate product-form (5,6,7]. Many
authors have studied approximate and exact solution techniques for solving queueing models where pro-
N grams are allowed to overlap their computation with their own input-output operations [6,7].

::' In program-centered analysis, a relatively simple model of system resources is assumed while the
\ characteristics of transactions are modeled in great detail. Behavior of program execution in the face of
5 system failure/repair (8] and software failure [9] has been modeled. If we consider performance analysis in

‘S the absence of failures and assume that transactions possess internal concurrency, then transactions can be

N
;-\ represented by precedence graphs [22]. Deterministic analysis of task precedence graphs and the schedul
:’.‘: ing of these graphs is known to be important {22]. Adding randomness to such graphs, we obtain stochas-
- tic activity networks [10,11]. At least three approaches to the analysis of such networks can be identified:
-

'n'

P

- :":'- I.'\-r'vr’vr‘lr"'.' r'!;’l' 'v LA A SR .l;.$- '?‘ L

L VL S Wt gl e DR R R S S U S Ry PSR S AL e SRV ._~...' T ._'..'
e . N SN AN

.
o™ e ta
- R .« s
-

et s 0 s 8P)

N T T AP Py W W e YT Wty e T (Pian Yingy v iy W wrw At AR 4 R F i

Markov chain techniques, stochastic Petri net techniques, and path analysis.

The first approach is to express the activity in the form of a continuous-time Markov chain [12,13].
This approach restricts the node times to be exponentially distributed, and also quickly leads to an explo-
sion in the state-space of the Markov chain.

The second approach uses Petri net models. Ramamoorthy and Ho use this approach in the ease
that node times are deterministic [14]. Molloy considers exponentially distributed node times and con-
verts the Petri pet into a Markov chain for analysis [15]. We have allowed the node times to be generally
distributed in our Extended Stochastic Petri Net (ESPN) Model [16]. Whenever passible, the ESPN is
automatically converted into a Markov chain or a semi-Markov process. If neither of these approaches
succeeds then the ESPN is evaluated using Monte-Carlo simulation. The first two approaches for the
solution of an ESPN can lead to large state spaces, while the third approach can be time consuming due

to the inherent speed limitations of a simulation model.

The approach developed in tlm paper falls into the path analysis category. The path analysis tech-
nique first computes the distribution of the time to traverse each path. For complex graphs the aumber
of paths can be rather w, making the technique computationally expensive. In the general case, over
lapping paths exist and hence one can only obtain an approximation (or bounds) for the overall execution
time [11].

If the shape of the graph is restricted to series-parallel, the overall execution time can be obtained
exactly. This is the approach taken by Robinson [17] and Kleinoder [18] in using directed graphs for the
performance analysis of concurrent programs. We also do this, but our model allows for multiple paths to
be interpreted in a variety of manners, not just as concurrent program execution. Therefore, our graphs
can be used to model reliability as well as program execution. Kleinoder’s approach differs from ours in
that he performs numerical convolutions and other such operations on empirical distributions. Thus his
approach avoids any distributional assumptions. However, our approach yields results in semi-symbolic

form and is faster.

In this paper we consider the analysis of node-activity networks that are series-parallel graphs.

With each node in the graph is associated a distribution that has exponential polynomial form. This form

5"*,-‘M'P~¢-)"s' PRI E TR RE. o Pk ind RSB R WA SR A WY by Wi * A Dg” BB ® FE B WP g N Gy & o 8- o n . - .

-.1“ -

s A,

o..?,

whA A"..

! FAIN T

s

L ¢

A L 8
bt s,

» 8,
'u'-'.*-'u [

14

is quite general, and includes Neuts’ phase-type distributions. The division of a graph into parallel sub-
graphs can be interpreted as either probabilistic or deterministic. In the detérministic case, the time
needed to traverse all of the subgraphs may be either the maximum or minimum of the time needed to
traverse the individual subgraphs. The distribution function of the total time to traverse the graph is stu-
died. A program called SPADE (Series -PAsarsllel Directed acyclic graph Evalustor) has been written to
compute this distribution. Applications of the use of our model include performance analysis of con-

current programs and reliability analysis of non-repairable fault-tolerant systems.

In section 2, we discuss the model. Section 3 describes the analysis of the model and the SPADE
program. In section 4 we give examples illustrating the use of our approach. The examples chosen are

very simple, for the purpose of exposition. More complex problems can be and have been solved by the
model.

2. THE SPADE MODEL

The SPADE model consists of a series-parallel acyclic directed graph with the nodes representing
events and the edges representing a precedence relation between the events. Such graphs are useful for
modeling many different kinds of activities. The two main applications are performance an;l reliability
analysis. In this section we describe the SPADE model. First we give a performance model example and
a reliability model example, to illustrate how directed graphs are used as models. Then we define series-

parallel graphs and describe how they are interpreted by SPADE.

2.1. Graph Model Examples

As an example of a performance model, we consider the process communication graph from Kung’s
thesis [13], shown in figure 1. There are four tasks to be executed. Tasks 1 and 2 are executed on one
processor and tasks 3 and 4 on another processor. Tasks 2 and 3 require results from task 1 and task 4
requires results from tasks 2 and 3. Once task 1 has completed, tasks 2 and 3 may be executed at the
same time. When they are both finished, task 4 may be executed. Because tasks 1 and 3 and tasks 2 and

4 are assigned to different processors, data must be communicated between processors. The communica-

tion time between tasks 1 and 3 and tasks 2 and 4 is modeled by the nodes S, and S,. The execution

e 8 &7 8. 4 &

.

-
-
LY
-
-
-

N

*-a:',

oy Yy Sty 8 s

X o™ n’ sq*..--..r i
LN 3

time for the a task is exponentially distributed with parameter A. The execution time for a data com-
munication node is also exponentially distributed with parameter ¢ *).

I the model is evaluated using the standard Markov approach, the corresponding Markov chain will
have ten states. Subsequently, the Markov chain would be solved by any number of known techniques.
SPADE avoids the state space expansion by analyzing the model directly. To further contrast the two
approaches, the SPADE approach allows a much more general distribution type than exponential, but
puts restrictions on types of graphs. Markov models allow cycles and general graphs but suffer from large
state spaces, particularly if we wish to model non-exponential behavior.

To see how a directed graph can be used to model reliability, consider the system of components
pictured in figure 2a. The system consists of three parallel subsystems, and functions if any one of the
subsystems is working. Each subsystem is composed of a series of components, all of which must function
in order for the subsystem to work.

Previous approaches to aolvi;:g such reliability problems include combinatorial analysis and Markov

" ehains(l]. Combinatorial analysis works well for *pure” series-parallel systems, but if we allow standby

redundancy as well the combinatorial approach quickly becomes intractable. The Markov chain approach
suffers from the curse of dimensionality; for an n-component system, the Markov chain contains 2* states.
The Markov chain approach also makes restrictive assumptions on distributions. The SPADE approach
appears to overcome both of these problems. It should be mentioned, however, that the Markov chain

approach does not impose the structural restrictions and independence assumptions of our approach.

To analyse the model using SPADE, the model would be transformed to the graph shown in figure
2b, which represents the time to failure of the system. For a series of components, we must take the
minimum of the probability functions of the individual components (the series fails as soon as one com-
ponent fails). For subsystems in parallel, we must take the maximum of the probability functions (the
system fails only when all paraliel subsystems fail).

'Y \\{5’-".~..\-\..‘J.'...\'. | .;J‘ “ AI,;-' . .',--‘. - -..- .-; N ‘_: .q .'_' PR .-'_: '_:-.‘_: ~ '!‘ '.'_ """ ..

......
. . N

L YA AT, CA

BGYsH s00

v'("'.~.'bllﬁ~..‘

T KW T A 8 A ; N % Sy of W 0 @ MM A - 628 S AL RS0 e e St 2 b £ P M St el gt g U ol vt v B i B i g i Y e - TTTTETVS

2.2. Series-Parallel Graphs

The graphs in the two examples in the previous section are simple exa.m;;lea of the class of series-
paralle] graphs. There are several nearly equivalent definitions for the term "series-parallel” [20][21}[25);
we define the term as follows. A finite linear graph is defined to be a quadruple G =(N ,E ,S,T) where

o N is a finite set of elements called nodes
o E isasubset of N x N, called the set of edges

o S is the subset of N containing those nodes that are not the second member of any edge in E
(these are the entrance nodes).

o T is the subset of N containing those nodes that are not the first member of any edge in E (these

are the exit nodes).

Suppose G=(Ny, E,, S,, T,) and Gay=(N,, E3, S3, T3) are nonintersecting graphs. A graph
G=(N,E, S, T)is the series connection of G, and G if and only if

o At least one of T; and S, contains exactly one node.
o N-~1UN3
o E-E|UEQU(T1153)

0 S=S5, T=T,
A graph G is the parallel combination of G, and G, if and only if
o N-NIUNQ

[+] E—E,UE,

o S-S, 8 Sg, T-T] U Tz

T T—_—_—he N A D Y

» v;c _»r,;. fi

ALY

The class of series-parallel graphs is the smallest class of graphs containing the unit graphs (graphs
consisting of one node) and having the property that whenever G is the series or parallel connection of
two graphs in the class, then G is in the class. A series-parallel graph is by definition acyclic and contains

no redundant edges.

Figure 3 shows an example of a series-parallel graph and the sequence of series and parallel combina-

tions from which the graph can be built. Figure 4 shows two graphs which are not series-parallel.

. ll’}o’.ﬂ,

2.3. Graph Interpretation

Each node in a graph represents an event whose length is specified by a cumulative distribution
function (CDF). Given a graph, SPADE will compute the distribution function for the time taken to

"traverse” the entire graph. The definition of what it means to "traverse” a graph G is recursive.

If G consists of a single node, the traversal time is given by the CDF associated with that node. If

G was formed by combining the subgraphs G, and G, in series, then in order to traverse G, we must first

. bt
a v 8 a8,

traverse G, and then traverse G,. If G is the paralle] combinstion of G, and G4, we allow the paralle}-

- ism to be interpreted in one of three ways.

‘A

probabiliatic

Only one of the subgraphs is actually traversed. Each subgraph has associated with it the proba-

bility that it is chosen for traversal. G has been traversed when one of the subgraphs has been
traversed.
mezimum

The two subgraphs are traversed concurrently. Traversal of G is complete when traversal of both

G, and G, is complete.

msnimem
The two subgraphs are traversed concurrently. Traversal of G is complete when traversal of the

first subgraph to to finish is complete.

Suppose we are modeling program execution. Graphs with only probabilistic parallelism will model
“ flowcharts of loop-free sequential programs. If we only allow maximum concurrency then the graphs will

correspond to the task precedence graphs considered in [22]. Minimum concurrent subgraphs will model

R SR I . I I T S '. - - a " »
N L T N

o™ ..

BRI AR RIS T IR L IO RS ' O S AR PR TP e NP N0 N S i Vi PO
\.:\-._'- \-.\.‘w“'\-.\' ‘.u.\- o .-. "). DA ACS * ASATSAT A S RCR I W

» PROAIRER

et

P RS

AN

l‘n‘ ¢

o
o
o
>
-
]
o«
o

the paralle]l execution of a non-deterministic algorithm |23} in which the verification of all guessed solu-
tions is attempted concurrently, and the first guess to be verified provides a solution to the whole prob-

lem.

The graphs can also be used to model the lifetime of closed (non-repairable) fault-tolerant systems
with permanent faults. Such systems are defined in [24], where they are analyzed by Markov chain tech-
niques. A system consisting of a series combination of components is modeled by parallel graph nodes
with type minimum; a parallel combination is modeled by parallel graph nodes with type maximum. We
should note that our graphs allow more general distributions of subsystem or component lifetimes than

those allowed by the Markov chain techniques used in {24].

3. GRAPH ANALYSIS

The analysis of a SPADE model has two phases. First, the greph is decomposed into a binary tree.
Then the tree is used to obtain the CDF for the graph traversal time. In this section we describe the two

phases.

3.1, Tree Deeompociﬁion

Any series-parallel graph can be decomposed into a binary tree, where the internal nodes of the tree
are of type “series” or "parallel”, and the leaves of the tree are the nodes of the graph. Valdes, Tarjan
snd Lawier [20] present an elegant algorithm for performing the decomposition; the algorithm presented

bere is less elegant but simpler.

Suppose we have a graph G. Let § = {z,,z,, - - - ,z, } be the set of entrance nodes in G. For
any node z, define A (z) to be the set consisting of z itself and all descendants of z. Define B to be the

set QSA (z). Thus B consists of those nodes in G which are commonly descended from every entrance
t 4

node. We have the following lemma:
Lemma:
Suppose G is the series combination of G, and G, and G, is the parallel combination of two sub-
graphs. Then the graph G, must have a single entrance node, and that node is the first node in B.
Proof:

4 —
Tty i By & S

.
Q
.
. ®
.
.
..
-,
.

b > Tl bo=_3 =
1S P S A S LR I DALY S A B B4 Tha 2 T A P P A SR k 2 . by - -~ ot fat, o .4,7‘,r.ﬂwr.,-vl.'xsrT

By definition, since G, and G5 were combined in series, either G, has a single exit node or G5 has a
single entrance node. G, has multiple exit nodes, because it has parallel, hence disjoint subgraphs,
each of which has at least one exit node. Therefore G'; has a single entrance node y.

When G, and G were combined, all of the exit nodes in G; were connected to y. Every entrance
node in G, is either itself an exit node of G5, or has some exit node as its descendent. Therefore y
is descended from every entrance node of Gy, and hence y is in B. Furthermore, because G, has
disjoint subgraphs, no node in G, is descended from every entrance node of G, hence no node in

G,isin B. Therefore y is the first node in B.

Armed with this lemma, we proceed to describe a recursive decomposition algorithm for series paral-
lel graphs. For any graph G, let Tg be the tree which represents the decomposition of G. There are
four cases.
case 1: G = {z}
Tg consists of the single node r.

case 2: |G| > 1,5 = (z}
To consists of a root node of type *series” with left subtree the single node 2 angl right sub-
tree the tree T _ ().

case 3: |G| >1,|S| >1,B=0Q
Since G has more than one entrance node and the entrance nodes have no common descen-
dent, G can be divided into disjoint parallel subgraphs. Let G, = G N A(z,) and
Gy =G - A(z,). Note that A (z,) need not be a subset of G, since G may be some sub-
graph which contains z, but not all of its descendents. For each of zgy ---,2,, if
GiNA(z;)¥@thenset G, = G, UA(s;) and Gy = G5~ A(z;). Then Tg consists of a
root node of type "parallel” with left subtree T, . and right subtree Toa.

cose 4: |G| >1,]S} >1,B#Q
Since B is not empty, we cannot have a parallel decomposition, and hence must have a series
decomposition. Let G, and G, be two series subgraphs of G such that G, is minimal. G,
cannot consist of a single node, since then we would have | S | == 1. Therefore, G, must be

composed of subgraphs, and those subgraphs must be parallel, otherwise G, would not be

minimal. Now we have the conditions of the lemma, and hence the smallest node in B is the

single entrance node of G, Let y be that node. Then: G, =G -A(y) and

G3;=G NA(y) Tg consists of a root node of type "series” with left subtree T and right

subtree Tg. .

Figure 5 illustrates the decomposition process by showing an example of cases 2, 3 and 4. Figure 8 shows

a series-paralle] graph and the complete binary tree associated with it. Note that for SPADE the parallel
nodes are divided into three types: "maximum”, "minimum”, and ”probabilistic”.

The tree decomposition is not necessarily unique, but all possible decompositions of a graph are
equivalent in the sense that the probability distributions as computed by all of the possible binary trees
are the same. This is true because *maximum”® and *minimum” are associative, and for the probabilistic

nodes, multiplication is distributive over addition.

$.2. The CDF of a Tree

Given a series-paralle] directed graph and a CDF for the traversal time of each node, one can calcu-
late the CDF of the traversal time for the entire graph by using the graph’s decomposition tree. For a
tree node A, let F, be the CDF of the time needed to traverse the tree rooted at A. The cﬂculation for

F, depends on the type of node A .

If A is a leafl, then A represents an event node in the series-parallel graph. F, is simply the CDF
specified for that node. Now suppose A is not a leaf, and that its two subtrees are B and C. lf A is a

serics node, then A represents the traversal of the subtree B followed by the subtree C. F, is given by

t
1) Fo(t) = [Fp' (z)Fc(t-z)dz
)
If A is a marimum node, then A represents the maximum of the traversal times of subtrees B and C;

hence

2) Fa(t) = Fp(t)Fc(t)

If A is a minimem node, then A represents the minimum of the execution times of subtrees B and C;

therefore

FLPUA AL

o v 0 0,4,

PA XA

a
L8,

“ s b
[N R U

A

By e e Y S K v PR i

10

3) Fp(t)==Fp(t)+ Fc(t)~ Fp(t)Fc(t)
Finally, if A is probabilistic, then only one subtree of A will be executed. Suppoee the probability that

subtree B is executed is pp and the probability that subtree C is executed is pc. Then F, is given by
4) Fo(t) = pp Fp(t) + pcFe(t)

It would be possible, given any series-parallel graph, to compute numerically the value of the CDF
of the entire associated tree given any value of ¢. If the type of the CDF’s is restricted to be of exponen-
tial polynomial form and the parameters are given, then the overall CDF will also be an exponential poly-
nomial, and can be computed symbolically in terms of ¢. An exponential polynomial is defined to be an

expression of the form

2 the

Restricting distributions to this form is a rather weak restriction, since it includes exponential, hyperex-

ponential, Erlang and mixtures of Erlang distributions, in addition to Neuts’ phase-type distribution.
Exponential polynomials are closed under the operations of addition, subtraction, multiplication,

differentiation and integration. Because exponential polynomisls are closed under these operations, a

series-parallel graph whose nodes have exponential polynomials for CDF's will have an ovenllACDF which

is also an exponential polynomial.

3.3. The SPADE Program

The process of finding the overall CDF of a series-parallel graph whose nodes have CDF's which are
exponential polynomials can be automated. The program SPADE accepts a specification of such a graph
and produces the overall CDF, mean and variance, and computes the overall CDF for a specified range of

values.

In order to specify a model for SPADE, a user must supply, either interactively or in a file, four
kinds of information: the graph edges, the parallelism types for parallel subgraphs, the distribution for

each graph node, and a set of intervals over which to evaluate the overall graph CDF.

Because our definition of series-paralle] requires subgraphs combined in series to begin or end with a

single node, every group of parallel subgraphs is preceded by some single node, except when the overall

graph has multiple entrance nodes. In that case, SPADE supplies » dummy entrance node. Thus, to

specify the type of parallelism for parallel subgraphs, the user assigns an ”exit type® to each node that has
more than one immediate successor. The three choices for exit type are maximum, minimum or proba-

bilistic. If the exit type is probabilistic, the user must specify the probabilities.

Every node in the graph must be assigned a cumulative distribution function. Each CDF must have
exponential polynomial form. In general, for each CDF the user must provide the three parameters «;, &;
and §; for each term in the exponential polynomial. For the user's convenience, SPADE provides an
abbreviation for the exponential distribution, so that the user need only supply the parameter (inverse of
the mean) of the distribution.

SPADE also allows a node to have distribution "zero”, meaning that the traversal time for the node
is sero. These "zero” nodes are useful for representing synchronization, and to form graphs which would
otherwise not adhere to series-paralle] form. The examples in section 4 include instances where zero nodes
are used.

Once all information about the graph has been obtained, the program forms a binary tree
corresponding to the uﬁe&puﬂlel graph. The graph decomposition results in a preorder representation
of the tree. The program then backs up the preorder representation (traversing the tree in "reverse pre-
order”), computing the CDF of each subtree. Once the overall CDF is known, SPADE evaluates the CDF

over intervals specified by the user.

4. APPLICATIONS

This section presents examples of applications of the task graphs defined in section 2. The applica-

tions are of two kinds: analysis of concurrent task execution and reliability analysis.
4.1. Concurrent Program Execution Time

Ezemple 1. Consider a sequential program which consists of two phases. The outcome of the first phase

determines which of two alternative tasks is executed as the second phase. Thus, the node representing

the first phase has a probabilistic exit. This program is illustrated in figure 7a.

4
"
L]
y -

i 2 ')

Fof ol f el kLN

A A e a0

» .:".-- 'a.’;-‘-)

The execution time of task 1-(the first phase) is exponentially distributed with parameter), = 0.6.
The execution time of task 2 is 2-stage Erlang distributed with parameter A, = 1 (the CDF is 1-¢~* -te™*)
and the execution time of task 3 is exponentially distributed with parameter Ay = 0.8. The probability

that task 2 will be executed is p == 0.9 while the corresponding probability for task 3is1 - p.

A specification of the mode] is shown in figure 7b. The edges of the graph are specified by the two
node pairs (1,2) and (1,3). The exit type for node 1 is specified as probabilistic, meaning that the two
parallel subgraphs {2} and {3} are probabilistic. The distributions for nodes 1 and 3 are given as
exponential, with appropriate parameters. The distribution for node 2 is given by specifying three
exponential polynomial terms. SPADE is asked to compute the overall CDF for values of ¢ between 2

and 10, at intervals of 2.

The results given by SPADE are shown in figure 7¢.
Ezample 2. Next we consider the producer-consumer problem. This problem is also explored in [19], in the
context of real-time execution maiysis. The producer process produces messages according to an exponen-
tial distribution with rate y. The consumer process consumes the messages according to an exponential

distribution with rate A. We are interested in how long it takes for n messages to be produced and con-

sumed.

The process of the production and consumption of two messages is shown by the graph in figure 8a.
The nodes P1 and P2 represent the production of the first and second messages; C1 and C2 represent the
consumption of the messages. Obviously, each message cannot be consumed until it is produced, but it is

possible for message one to be consumed while message two is being produced.

With 4 = .5 and A = .3, we have the input file and results in figures 8b and 8c, respectively.
Ezample 8. We evaluate one iteration of the program with CPU-I/0 overlap considered by Towsley,
Chandy and Browne [7] and shown in figure 9a. In each iteration of the program, there are two stages.
The first stage is always a CPU burst. The second stage consists of either pure input/output, or
input/output that may be overlapped with a second CPU burst. The probability that the second stage
consists of CPU-1/0 overlap is given by p. Note the use of a "zero” node. This allows us to have one

branch of the CPU1 node lead to a single node, while the other branch leads to a group of nodes to be

e S T

e B B W e e T N NI A

* .

St R P
AR ‘ g ot o< '-.\{.-(.

N

'.-l.-ll‘

CATMELEAENCAE)

OArYNAD)
U A RS

executed in parallel.

Assuming p,=0.125, y;==0.0376, A\==0.0217, and p ==0.6, the results from SPADE are given in figure
8b. Note that in SPADE the distributions could have been more general.

Ezample 4. In this example we consider the process communication graph {13] discussed in section 2.1 and
pictured in figure 1. Assuming that 2\=0.125 and ¢ =10, the distribution function and the mean and

variance of the overall execution time computed by SPADE are in figure 10.
4.2. Reliability Analysis
We now consider a sequence of examples of the use of SPADE for reliability analysis.

Ezample 5. Consider the series-parallel system discussed in section 2.1 and illustrated in figures 2a and
2b. The system can be specified for SPADE as in figure 11a. Note the use of "sero” nodes. The results
are given in figure 11b.

Ezemple 6. We consider a triple modular redundant (TMR) system. Such a system consists of three com-
ponents, any two of which must be functioning in order for the system to work. A task graph for the life-
time of this system can be derived bn;ed on example 8.2¢ of 1] and is shown in figure 12a. Nodes 2, 8,
and 4 combined in "minimum” parallelism represent the time to failure of the first component to fail.
Nodes 6 and 7 represent the time to failure of the second component to fail. In this case the distributions
must be exponential, since we rely on the memoryless property of the exponential distribution when

modeling the system in this manner. The solution from SPADE is given in figure 12b.

It is possible to simplify the task graph for this example as shown in figure 12¢ (based on example

3.26 of [1]). The results are, of course, the same.

§. CONCLUSION

A model for the performance and reliability analysis using directed acyeclic graphs is discussed here.
The attractiveness of the model lies in an efficient procedure for its evaluation, potentially wide class of

applications, and s powerful class of allowed distributions. The restriction of the model involves struc-

tural restrictions on the kinds of models allowed. Structural restrictions include an inability to allow

3 ¢cycles and the restriction to series-parallel graphs. Work is currently under way to extend the model so as

Aot s P IR . g

to remove some of the restrictions.

ATECERO A

.

. "I ."_ g o« & ¢ a8

."‘-l

R
Pt -

! ENCNLEJ RO

. _n"l o et &

a
.

LGSR LRLR o

5
L] »

L2
.

alwlata”

A)

-

SN AT \.-\.-. \.:__-:

14

EXP(2)

ma?

ExPla)
EXP(’A)]-
Q 3/) ExP(%)
Exp(e. 2 XS24

¥) exp(r)

Figure 1. Process Communication Graph

Figure 2. Series-Panallel Components Figure 2b. Graph Representation
NS A W AT IO RS TR R XA TR WA N P T P T PR R L
e e DV A S

.

o "’".u'.-~.. R RNR
SEOASAIUNONLY:

X KA

W PP ML AN

'.'_') ‘D' »

‘e
O o eg e,

series

" Figure 3. A Series-Parallel Graph

Figure 4. Two Graphs that are not Series-Parallel

TN T A e T AT T N et e T e et at e
-f,'c'.'.'v’ .c.. s "°:-1'\-" N e e e e e,

. ALY TN I S S R R T IR PSSP
.- ‘-'. S -'.'v..‘.".~*_--'.'-, AT -":-

-.\-‘j
ANANLRLN, £

—IAI j

LN

L] P .‘A A

W,

YR

BV 4 WM

PP

Case 2

Case 3

Case 4

Figuare 5. Decomposition Algorithm

N

17

LIPS I ~

T A A e e A R ‘
L S S S A G £ o R R S LIS LN L AN (VLS

Figure 8. Binary Tree Decomposition

o

e
St

SO
& n‘.\ [¢

. ._‘.‘ -

N

o

ExpP(’/\D

Erln; (22) 9 ExpP(7‘3)

Figure 7a. Program with Probabilistic Tasks

GRAPH CDF:

ARC 1 2 1.3500 t{ 1) exp(-1.0000t)
ARC 1 s + 1.0000 ¢ 0) exp(0.0000t)
END + 80250 ¢{ 0) exp(-0.8000r)
EXIT 1 PROB + 0.3000 4 0) exp(-0.8000t)
PROB 1 2.9 + 47250 ¢ 0) exp(-1.0000x)
DIST 1 EXP 8
DIST 2 GEN mean: 3.5917
EXPO 4, 1, variance: 4.7847
EXPO 1, 0, 0
EXPO 1, 0, -1 t F(t)
ENDGEN 20 0.2507
DIST 3 EXP s 40 06511
END 60 0.8896
EVAL 2102 80 0.9561

100 09860

Figure 7b. Input for Example 1 Figure 7c. Results for Example l

oy R W e Pac B e b Qg e f e LW Lo N O St By Y lagy - HiCkug ki i i - ed RV - i Sl Sl i A Sl S A cnah it it Mt i Raatl deadh Jn C"J»T

b2 O
o
D
<
™
3
)
o/

8
s" s B

Figure 8a. Consumer-Producer Problem

COMM consumer-producer problem CDF:

~ COMM with 2 messages <0.7500 ¢{ 1) exp(-0.3000t)

N + 0.7500 ¢ 1) exp(-0.5000t)
- GRAPH + 10000 ¢(0) exp{ 0.0000t)
: ARC P1 P2 + -1.0000 ¢{ 0) exp{ -0.3000t)

ARCP1 C1 .. + -1.0000 ¢ 0) exp{ -0.5000t)

. ARC P2 C2 + 1.0000 ¢{ 0) exp(-0.8000t)
- ARC C]1 C2

" END mean: 9.4167

: variance: 25.5347

. EXIT P1 MAX

- DIST C1 EXP .3 t F(t)

s DISTC2EXP .3 40 0.1067

- DISTPIEXP 5 8.0 0.5438

e DISTP2EXP 5 140 0.8362

END 190 0.9500

¢ EVAL4205

. END

- Figure 8b. Input for Example 2 Figure 8c. Results for Example 2
¥

s

‘(

D)

P
Fp

BERO @ ExP(2)
ExP(uN @
\

Figure §a. CPU-1/0 Overlap

LU A

1.0000 ¢(0) exp(0.0000x)
-1.2101 ¢ 0) exp(-0.02171)
-0.8581 +(0) exp(-0.0376t)
11416 4 0) exp{ -0.0593t)
<0.0734 4 0) exp{ -0.1250x)

mean: 50.9224
variance: 2122.8968

+4+ 44

Figure 8b. Results for Example 3

TELENE TR VR £F A 4ot S A 2 SR Sa AR gis oo e R MR S RS AN A i e et St St Shh A S S AL A SR SA A i e R M TR e e at S ot

W

; 22
O
y
N
.
~
\
~
“
~
E CDF:
-0.0174 t(2) exp(-0.1250t)

+ 00294 ¢t(1)exp(-0.1250t)
- + 10000 t(0) exp(0.0000t)
o + -2.2349 t(0) exp(-0.1250t)
- + 12346 t(0) exp(-0.2500t)
" + 0.0027 ¢(0) exp(-1.2500t)
+ -0.0025 ¢(0) exp(~1.3750t)
¥ + 0.0000 t(0) exp(-2.5000t)

. mean: 28.8364 -
variance:; 208.1388

% t F(¢)
10.0 0.0479
30.0 0.6014
50.0 0.9147
70.0 0.9865
90.0 0.9982

- Figure 10. Results for Example 4

A “- '- '- "\'.‘

-..
»*,
Te
4
.

....... RN AN

AN

-

ST RN .(.(-_.-,~..:]
J‘ LR PPN S ,L_‘_",'!i‘g:.ﬁi".:!‘._‘_i';\:c

ST AP R B A B PP AL AT A AR DA I S M M A e AL el SN T R N ARG TR TN TR TR I TN

5 COMM series-parallel system CDF:
1.0000 t{ 0) exp(0.0000t)
- GRAPH + -1.0000 t{ 0) exp(-0.8000t)
- ARCA1 + -1.0000 ¢ 0) exp(-1.2000t)
- ARC A2 + -1.0000 t{ 0) exp(-1.4000t)
- ARCA3 + 1.0000 t{ 0) exp(-2.0000t)
. ARC 4 + 1.0000 t(0) exp{ -2.2000t)
ARCBS5 + 1.0000 t{ 0) exp(-2.6000t)
. ARCB6 + -1.0000 ¢(0) exp(-3.4000t)
N END
A) mean: 1.7526
X EXIT ENTRANCE MAX variance: 1.4267
- EXIT A MIN
EXITB MIN t F(t)
DIST A ZERO 20 0.6816
- DISTB ZERO 4.0 0.8478
< DIST 1 EXP 4 60 0.9908
- DIST 2 EXP 6 8.0 0.9983
\ DIST 3 EXP 4 100 0.9997
DIST 4 EXP 8
: DIST 5 EXP 9
- DIST 6 EXP 3
5 END
- EVAL 2 10 2
- END
Figure 11a. Input for Example 5 Figure 11b. Results for Example 5

W

AN A NS N]

R S N N T Lo e e e i Ay Pl 4 - o e e~ g oy

Tt w®

:‘x .
A\
N
: CDF:
1.0000 ¢ 0) exp(0.0000t)
i + -3.0000 t{ 0) exp(-0.0002t)
. + 2.0000 4 0) exp{ -0.0003t)
5 mean: 8333.3333
. variance: 36111111.1111
Y t F(t)
~ 2000.0 0.0867
. 40000 0.2544
s, 6000.0 0.4270
: 80000 0.5757
- 100000 0.6936
s
s
Figure 12a. TMR System Figure 12b. SPADE results
. A) EXP(32)
A
EXP(52)
- Figure 12¢. Equivalent TMR System
»
Al
LN -
s
b
b - o * o L] I S IR RTINS SRS Tt T Tt ST RS ST S S L AP TN ST T AT ST A T St ST S BN UL PO S S I AT T RS SN IS
B G A T N A i i L S K N A G R A G GG (L LGt OO, (4 A R A AT A R O

)
-
.
)
2
.

e,

el
alr e

s

'y 4 #
¢ -
\ g I. 4

- a 8 v -
OO,

PO

e T M S s

REFERENCES

{1] Trivedi, K.S., Probabslity and Statistics with Reliability, Quencing and Computer Science Applications,
Prentice-Hall, Englewood Cliffs, N.J., 1982,

[2] Trivedi, K., Dugan Bechta J, Geist R., and Smotherman ,M., "Modeling Imperfect Coverage in Faul-

Tolerant Systems,” Proc. of the Fourteenth Int. Conf. on Fault-Tolerant Computing (FTCS - 14),
Orlando, FL., June 1984,pp. 77-82.

(3] Chandy, K.M., Howard, J.H., and Towsley, D.F., "Product Form and Local Balance in Queueing Net-
works,” JACM, Vol. 24, pp. 250-263.

[4] Kleinrock, L., Quencing Systems, Vol. II: Compsuter Applications, John Wiley & Sons, 1976.

(5] Heidelberger, P. and Trivedi, K.S., *Queueing Network Models for Parallel Processing with Asynchro-
nous Tasks,” IEEE Trens. on Computers, November 1982,

{6] Heidelberger, P. and Trivedi, KS., Analytic Queueing Models for Programs with Internal Con-

currency,” JEEE Trans. on Computers, January 1983.

[7} Towsley, D.F., Browne, J.C. and Chandy, K.M., "Models for Paralle] Processing within Programs,”
CACM, October 1978.

(8] Kulkarni, V., Nicola , V. and Trivedi, K., *On Modeling the Performance and Reliability of Multi-
Mode Computer Systems,” Proc. Int. Workshop on Modeling and Performance Evaluation of Paral-
Jel Systems, Grenoble , Dec. 1984, (to be published by North-Holland).

[9] Littlewood, B., A Semi-Markov Model for Software Reliability with Failure Costs”, Proceedings of the

Symposium on Computer Software Engineering, New York, 1976, pp. 281-300.

[10] Fix, W. and Neumann, K., "Project Scheduling by Special GERT Networks,” Compsuting 23 (1979),
PP. 299-308.

RN RN ' SRR,

R
A WA

\'.' * -

Tttt S AL

LA AR

AT -

3

14

[N J'J LA

é o v b

(4

el s e

iv e 8

o o T B a0d o G YL gt gt N el g i gl g yu A . (g~ g - g - -y e gt

[y}

2]

13)

[14]

(18]

16}

(17]

(18]

18}

Gaul, W., "On Stochastic Analysis of Project Networks,” in M.A.H. Dempter et al. (eds.), Deter-
ministic end Stochastic Scheduling, D. Reidel Publishing Co., 1982. '

Kulkarni, V. and Adlakha, W., "Markov and Markov-Regenerative PERT Networks”, Tech. Report,

Operations Research and Systems Analysis, Univ. of North Carolina at Chapel Hill, 1984.

Kung, K.C-Y., "Concurrency in Parallel Processing Systems”, Ph.D. Dissertatior, UCLA Computer

Science Department, 1984.

Rﬁmwﬂhy, C.V,, and Ho, G.S., *Performance Analysis of Asynchronous Concurrent Systems
Using Petri Nets”, JEEE Transactions on Software Engincering, Vol. SE-6, No. 5, pp. 440-449, Sep-
tember 1980.

Molloy, M., *On the Integration of Delay and Throughput Measures in Distributed Processing
Models”, Ph.D. dissertation, Computer Science Department, UCLA, 1981 .

Dugan, J.B., Trivedi, K.S., Geist, RM. and Nicola, VF., "Extended Stochastic Petri Nets: Analysis
and Applications”, sccepted, PERFORMANCE '84, Paris, December 1984.

Robinson, J.T., "Some Analysis Techniques for Asynchronous Multiprocessor Algorithms,” IEEE

Trenaactions on Softwere Engineering, Vol. SE-5, No. 1, January 1979.

Kleinoder, W., "Evaluation of Task Structures for a Hierarchical Multiprocessor System”, Proc. Int.

Conf. on Modeling Technigues end Tools for Performance Analysis, Paris, France, May 1984.

Haase, V. R., "Real-Time Behavior of Programs”, [EEE-TSE, September 1981

[20] Valdes, J., Tarjan, R.E., and Lawler, E.L., "The Recognition of Series-Parallel Digraphs”, Siam J. of

Computing, Vol. 11 no 2 (1982) pp. 298-313.

[21] Abdel-Wahsb, HM. and Kameds, T., "Scheduling to Minimize Maximum Cumulstive Cost Subject

to Series-Parallel Precedence Constraints”, Operations Research Vol 26, No. 1 pp. 141-158.

 t AT e TRt aTm e R . R T S o T L N
P e wi-. : X IR TRCY X s 'V\d‘.'n\-'*- el o, vn’ 5 J'\- A G

I LN P
1 ‘q'-‘ B, e vl P,

SR g

NN Vo MR AN Y RS RIS) N AR AR A AT N, P PR IR NT ALY LS AP IN . _ TV

Aard

t

27

iTalald. o

[22] Cofiman, E.G., Compster end Job/Shop Scheduling, John Wiley & Sons, NY., 1976.
[23] Sedgewick, R., Algorithms, Addison-Wesley, Reading, Mass., 1983.

[24] Ng, Y-W. and Avisienis, A., "A Model for Transient and Permanent Fault Recovery in Closed

I ESL

Fault-Tolerant Systems,” Proc. 1976 Int. Symp. on Feult-Tolerant Computing, June 1976.

o L

[25] Elgot, C.C. and Wright, J.B., "Series-Parallel Graphs and Lattices”, Duke Mathematics Josrnal, vol.
26 (1959), pp. 325-338.

DR AVDCHR

F al i)

-
.l
.i
i
’
0.,

f‘- -

G R S N L Rl il 82l B SN, 2 PSP il B

T BB At Gt A I N g S e B B fouis * ot Bt 0 St SN O

St A

.

gy

.

=,

e et Tar . ard
.

-y "

