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EFFECT OF SIMPLE STRSS ON THE

GLASS TRANSITION OF POLYMERS AT HIGH PRESSURES

Abstract

Experimental studies, which have been carried out in this laboratory, showed

the yield strength in tension, compression, and shear in the ruboery and the glassy

states increased with increaing hydrostatic pressure Moreover the Young s modulus

also increased with pressure and the amount of the increase across the glass

transition temperature(T) at a given pressure can be as large as three order of
g

magnitude in case of elastomers

An extension of Gibbs-Dimarzio theory is proposed to account for the

effect of applied stress on the glass transition temperature c' glass forming

polymers. When a simple stress, such as tensile, compressive or snear stress S

applied to a polymer, the T will decrease. compared to the powv-'e" , ap lea
g

stress. A glass forming polymer in the vicinity of the transituor . nave

differently than what is predicted by rubber elasticity The parteior , tavng

into account the effect of stress is suggested to be

r = ZW(f, n 0)exp[-O(PV+U-oVE)]

where the strain E = Z(f-f 0) in which f and f0 are the fraction of flexed bonds

with and without stress, respectively. Furthermore, by this model, the Youngs

modulus across the transition, EL and E , can be evaluated. The Young s modulus

increases with increasing pressure at lower and moderate pressure range but the

increase is rather small at very high pressure range,
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1. Introduction

Experimental studies have been carried out in this laboratory in last several

years on the effect of hydroststic pressure on tensile, compressive and shear

stress-strain behavior of polymers, including elastomers in the rubbery and the

glassy states (1-10)as shown in Fig. I. It was observed in all polymers tested that

yielding occured under all three stress conditions and the yielding strengths

increased with increasing pressure. It was also observed that the Young's modulus

and the shear modulus increased with icreasing pressure and underwent abrupt

changes across glass transition pressure (P . Specially the change is as much asg

three orders of magnitude in the case of elastomers. We adopt the hypothesis that

yielding occurs as the result of lowering of glass transition temperature (T due to

(7)the applied load . A similar concept is employed in free volume theories of
(11.12)

yielding That is, yielding occures if the fraction of free volume reaches a

certain value. Under a simple compressive stress, for instance, the fraction of free

volume increases as a result of decrease in the total volume under the compressive

stress.

In this study, the effect of tensile, compressive and shear stress on the

glass-transition behavior of glass forming-polymers and its related properties are

investigated on the basis of Gibbs-Dimarzio (G-D) theory which is based on the

statistical mechanics (1C, 13-1.) The G-D theory takes into account specific

configurations of polymers, making it possible to express the thermodynamic

quantities as a function of molecular parameters, such as flexed energy E, hole

energy E , coordination number z, degree of polymerization x, etc. In addition. it ish

also a function of an intensive parameter of the system, temperature T( 13,14) The

extension of the theory to incorporate the effect of pressure P was accomplished

by use of "isothermal-isobaric" partittion function of the system. The Gibbs free

energy can then be obtained in terms of the internal parametrs, f and n . and the

intensive parameters T and P , where f is the fraction of flexed bonds and n is
the number of unoccupied sites. According to the theory, the second order

transition temperature T2 corresponding to zero configurational entropy increases

• .• . . . . . . . . . . . . . . . . . . . . . . . . - . . .- - . o 2
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with incresing pressure but approaches a finite asympototic value at very high

pressures.

From thermodynamic considerations, it has been shown that for the iso-Z

plane (a "special glass" formed under pressure P) the transition line in the STP space

is given by17

dP dT dS = -------- =(1)
A C VTa (aLC p.-aGC PL)V

In G-D theory, both f and n are assumed frozen in when cooled down along a

(15)
isobar to glass state therefore aG = 0, C = 0 and we haveG PG

dT VTAa
(2)

dP AC
P

only when dS = 0. Owing to the argument that Eq. (2) holds for an iso-Z transition,

this result indicates that the iso-Z transition stems from a constant entropy process.

Moreover, allowing for a variation of the flex energy Le for glasses formed at

different pressures, a better agreement between the experimental data and
(10)theoretical pridiction has been achieved

The effect of tensile, compressive and shear stess superimposed on

hydrostatic pressure on the transition temperature will be determined by further

modifying the Gibbs-Dimarzio theory. The Young's modulus (E) can also be calculated

at various pressures and temperatures.

2. Theory

A Fundamental

In the G-D theory, a polymer chain is cut into segments, each of which

occupies one site of the lattice For the liquid state, the configurational entropy S (T)L

of a system of n polymer molecules with x segments and n empty sites related
o t0

to the number of possible configurations. Wff. no). may be witten as1)
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S -klnW (3)L

V0  z-2 0 x In([(z'2-1) x+1] [z- 7])
=kn x[--InS0 + (-) / --- +

V 2V S x x
x x 0

x-3 (z-2) (1-f)
+ (-) (fin[ ]-In[l-f])]

x f

In Eq.(3), k is Boltzman constant, T the absolute temperatue, V0 = n !(xn x+n , V

1-VO , So = Zn /([(z-2)x+2]n x+zn0), Sx = 1- S and f fraction of flexed bonds

with rotational isomerism (RI) approximation (1 3 )assumed.

The usual thermodynamic theories of simple liquid bodies specify their state

by the volume only; whereas in the case of a solid body besides the volume the

shape is also taken into account and specified by six components of strain tensor.

Inasmuch as no distinction of a qualitative character can be made between a solid

amorphous body, i.e. a supercooled liquid which is usually considered a meta-stable

state, and a liquid in a state of absolute thermodynamical equilibrium, it is clear that

dealing with such a liquid we are, on one hand, entitled to make statistical

thermodynamics calculations and, on the other, compelled to take into account not

only the volume variation but also the complete strain tensor associating the latter
(18)

with the corresponding elastic stress

The Euler's relation for a system of continuous medium is given by(19)

U-TS+uN+V T0 0 (4)
0 q 0

where V is the volume of the system in some fiducial state, T Piola-Kirchoff

stress tensor and E0  the Lagrangian strain tensor. Eq(4) may also be witten, by

transforming the deformation energy term to Eulerian representation 20)

U-TS+mN+Vt c (5)
I Ij

in which t and c represent respectively the Cauchy stress tensor and Eulerian
ij 1)

strain tensor. The strain energy term in Eq.(5) represents the energy produced by all

possible combinations of stresses.

When a tensile stress a (or a ), a compressive stress a or a shear stress
1* C

applied to the system, the term Vt e in Eq.(5) reduces, respectively, to
IJ IJ
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U=TS-PV+aVe+gN (6)
U =TS-PVC +a V e -N (7)

U =TS-PVs +rV f +N (8)

With regard to G-D theory under the RI approximation, the energy of a system
(15)

is

U=4'+n (x-3) [fe + (1-f) e 1 (9)x 2 1

where (D is the hole energy, e and E the higher and lower energy level,2

respectively, and f the fraction of segments at E

When a loading is applied to a glass forming polymer, either in tension,

compression or shear, a certain amount of work will be done on it. In the vicinity

of its transition, the polymer system may absorb this work to increase its energy.

This pridiction is unlike the situation of a polymer in highly rubber-elastic state that

it does not incur any energy change when stretched but behave as the so-called
(21)entropy spring As far as the RI approximation is concerned, ignoring the change

of the hole energy part (P on account of a negligible variation of volume, the

absorbed energy may increase the fraction of segments in higher energy level.

Representing these fractions with and without load by f and f 0 we have the energy

increase AU as

AJ-fe 2(1-f) • 1 -f0 E 2 -(-f 0) e 1 (10)

-(f-f ) ( 2-= 1)=AfAe

Eq.l10) gives a clue to express the tensile strain energy in Eq.(6) by ZoV(f-f I. In
0

other words,

ALE -Z (f-f ) 0 ( 01

As has been noted for Eqs.(6) and (9), the introductioin of the effect of

tensile stress into G-D theory can be achieved by means of a "isothermal-isobaric-

isotensile" partition function of the form

r = E.. W(f,n0) exp[-3 {PV+U (f,nO ) -0Ve}] (12)
f~n

.Wexp[-O {PCNo+U-oCNI0oZ (f-f) 1
(19)

Through the Lengendres transfomation , we obtained the Gibb's free energy

associated with r by
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G (T,P,o) =U[T,P,o] =N=U"-PV-oaVE-TS=-kT/nr (73)

The summation over f and n in Eq.(12) can be replaced by their maximum values0

without introducing detectable errors in the logarithm of r (22). The maximum terms

can be obtained by differentiating with respect to f and n as,
0

a/nW aU 0
--- +oCN Z (1--) =0 (14)

at at 0 f
alnW aU
- -P3- 13PC+OO-'-z (f -fo) =0 (15)

an n C
0 0

For solving Eq. (14), the successive approximation technique is employed. As
;t

0
the first approximation. assuming -- =0 in Eq. (14), we get an equation for f

at max
(later denoted by f)

f -(e -e )+oCN oZ/(x-3)n
max 2 1 0x

=(z-2) exp[ (16)
1-f kT

max

or
-A +oCN V(x-3)n

0x
(z-2) exp[ ]

kT AB
f= - (77)

-Ae +oCNoZ/ (x-3) n I+AB

1 +(z-2) exp[ ]
kr

where A=(z-2)exp(-AeIkT) and B=exp[oCN I/(x-3) n kT]. Neverthless. the f for

the fiducial state, when the tensile load is released, should be

(z-2) exp (-Ae /kT) A
f = =(18)

0 1+ (z-2)exp(-AeIkT) 1 +A

Combining Eqs. (17) and (18) and differentiatig, it can be shown that
af 0 1+AB 2 1

(79)
af 1+A B

af
0

Substituting Eq.(19) for - in Eq. 14) as the second approximation, we have
at

AB

fm AB(20)

1+ AB

where
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7CNo -AB 21
B =exp[ {7- (- ) }

1 kT (x-3) n 1+A P
x

Eq(15) yields an implicit equation for (n0 ) , i.e.,

E PCT aCT (f-fo)

z/2-1 z-2 E I 2 PCT T T (f-f0
In (V /S )--S -- + =0

o 0 kT x kT kT

E PC o C 1 (f-fo)

Z/2-1 z-2 h S 2 c C C C 0
In (v /S )-S --- +

kT x kT kT
E PCS rCS S(f-fo)

z/2-1 z-2 Eh 2 PCS -CS zS (ff0
In (V IS )--S -- =0 (21)

0 0 kT x kT kT
where C T C and C are the unit cell dimensions under tensile, compressive and

T C S

shear stresses, respectively Or, in a dimensionless form,
2

S P a

In(V z/2-1 /S z-2) (ff ) =0 (22)
o 0 TE T T

e e e e
where

act PC
a=o , - P (for tensile stress)

Ae e A 6 e

cCc c PC

-a - P (for compressive stress)
AE e e

rCs PC

-=a -=P (for shear stress)
e e

s n;
Ae L kT x
-=E I -=S, -T , -=n (23)
E e kN AE e n

h a 0

With the dimensionless groups introduced as in Eq.(23), Eqs.(3), (17), (18), (19), (20)

are also converted to dimensionless forms and a single plot of Eq.(22), as shown in

Figs 2 and 3, was made possible for each of three stress conditions because of

the dimensionless quantities a and P . From these dimenssionless equations, the T
e e e

vs P curves of the equilibrium transition lines under infinitely slow cooling rate (S =
e

0) are produced with o =0000001. 0 1, 0.2, 0.3, 0.4 and 0.5 and plotted in Fig 2
e

(for first approximation) and Fig 3 (for second approximation). Values of z, x and E
e

(11)
are taken respectively to be 4. 1640. 0.945 for polystyrene The discrepency

between the two approximations is not remarkable for low a values and with
e

• . .- , -. .-. _ . . . . .. . - . . .. . . - ,. . ,. , . . . . - ." " " "- - ,1



regard to the first approximation, the decrease of T is supposed to be iinea-ly
e

related to the increase of stress as T = 0.51-c ). T vs P curves with S not
e e e e

equal to zero can also be produced (10 , but. for non-equilibrium transition, the glass

formed will continuously relax toward the equilibrium state with a rate depending

UDon the relaxation time
(2 3)

The yield stress c in Eq.(22) assumes the same value given under the same
e

condition of T and P = 0 (atmospheric condition) and. therefore. we obta:r.
e e

oC T T C Z=rC sZ

2
2 a 2o C 1"

-C =--C- =-C
ET E C G S

C C C T 1/2
(24)o E T CC

T C
in which a linear elastic behavior with E =E =E is assumed. If the pressure-T C

Pa(31
dependent yield criterion proposed by Pae is adopted, we obtain

CT 
1

-- 2(1-p) (--a)
C -1

V'3

C 1/V 3 -a
C 1 2

C Sliv'3 -a

where C=C S (no volume change under shear loading) and a1 a material constant. If r

- 042 and a -0023 are used. CT = 1 024C, C C/C = 0.825, ZC /Z. = 1.08 and

T = 1.574 are obtained.

B. Evaluation of the Young s modulus

We have been carrying out experimental studies on the stress-strain behavior

of elastomers at high pressures for last several years(6 . 2 4 ) The elastomers studied
0include a polyurethane elastomer. Solithane 113 with T =-20 C. The stress-strain

g
measurements were made as a function of pressure, temperature and aging time

• .- " . .' .-.. i- .. .. . ." .-. '...'i-'],- ."...-.-....".-..-..,.....-..-......-..,-.-..,..,-..-....--.,... -.-.--.-.-
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Figure Caption

Fig. 1 Tensile stress vs stretch for solithane 113 at various pressures.

Fig.2 Theoretical curves of T vs P with S = 0 and a = 0.0001, 0.1, 0.2,
e e e

0.3, 0.4, 0.5 based on first approximation.

Fig.3 Theoretical curves of T vs P with S = 0 and a = 0.000001, 01.
e e e

0.2. 0.3. 0.4, 0.5 based on second approximation.

Fig.3a T vs P curves of Fig 2 with scale enlarged, a = 0.05, 0.075, 0 1.
e e e

Fig.4 Schematic iso-tensile stress surfaces in STP space.

Fig.5 Incipient Young's modulus of glass (E I and liquid (E L vs P with a =Ge Le e e

0.3

.Fig.6 E (E L vs P with a = 0.1.Ge Le • e

Fig.7 E (E ) vs P witha = 0.2.Ge Le • e

Fig.8 In 0 vs P
C

Fig.9 Young's modulus of glass (E' Ge) vs pressure (P),
Ge e

Fig. 10 Young's modulus of solithane 113 vs temperature at various

pressures.

o° . -. m °..- ', - - °'. '.'.°.e=o " 
°
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aT a Te T ae DV

aaSP aT 0 CMa C P~ aT @ T

T-E a~ "ii- )NC0
C [N0 Ct Tf0 )N0 CcL

P.0i The dimensionless parameters for a and C are
L P

a LA E C PaC .0(mole)

a ,C=

e ~ x k efk kNa
x
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7 2V
a

v (E S 2+PC) ct ( c -
0 h X kT k aT

T S z12-(U12-1) V -2ES 0S 2/kT

a(1-f
0

in which, - is evaluated by differentiating Eqs.117) and (1 8) as

aTa

2f(x-3) n L (x-3) n

xT 2

kT2

af
0 Ar

-f 0(7-f0 ) -
aT 0 kT 2

The configurational heat capacity of the liquid is

as
L

cPL= T P.O

a a (f 0
-nx {-[E5S +PC-aCZ(f-f ) - ]

n V 0 a 2T
X L

x-3 2e
-k (-) f (1-) (-)2I

x kT

Based on the -D theory, in the glassy state, f andnbegkptcsan0
with temperature, both C PGand a Gvanish. The variation of the transition temperature

T 9with tensile stress can be obtained by

aT as as
-- ] --- ] /-3
ao S. o aa T rOR

Considering a and Ve are mutually conjugated intensive and extensive quantities in

the term aVe of Eq.(1 3). we have

as a (Ve)

Thereby,
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•'(15.27)
induced glass transition '.Yielding under compressive and shear stresses are

natually pridiced by the modified G-D theory developed in this paper since the

strain energy increases, whatever the stress state is, tension, compression or shear

and consequently the glass transition temperature decreases.

In Fig. 2, where T vs P for various o are plotted, we consider• e e

schematically a polymer at certain temperature T and pressure P in glassy state

with the reference (transition) line a = 0. This point represents the state of glass

which was formed at pressure P without applied stress and is further cooled to T

in the glassy state. When a tensile, compressive or shear stress is aplied to this

glass, the reference line or the transition line (T vs P with a , 0 itself) will shift
e e e

downward. If the stress is increased and the stretch is carried on at an infinitely

slow rate (a quasi-static loading), the glass yields at a = a, which correspods to the

stress-induced transition. If the stress is increased at a rate higher than infinitely

slow rate, the glass will yield at a = a > a as shown in Figs. 2 and 1.
"-' y I

, As a result of the fact that all curves in Figs. 2 and 3 are produced with S

= 0 corresponding to a glass transition at T which is about 50 dgrees below
2

T , the dimensionless Young's modulus in Figs. 5, 6, 7, 9 is also produced on

this basis. However, configurational entropys will take on some value for most

experimental situations where cooling rate or the loading rate is greater than the

infinitely slow rate. Consequently, transition occurs with S not equal to zero. The

Young's modulus associated with S X 0 can be produced , adopting the same

calculation procedure.

Appendix

The thermal expansion coefficient above the transition T is given by
g

. - . .

.---,
. . . . . . . . . . . . ..-

a"* - '. _ . :- .. ........... * . . . . .. . . . ... . .. . . . .
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the same pressure P but with o approaching zero. in other words, f f. but f
G GO

for the glassy state with stress removed is different than f for the rubbery state

without stress which must be calculated by Eq.118). So that, the strain may decrease

from Z(f-f ) to (f-f) (f-f o-0 ) in the amount of several decades, whose ratio

f-f
0

f-f 0 o
is pressure dependent as shown by the curve Ino vs P in Fig. 8

e

The Young's modulus based on the strain of glassy state is defined by

a (f-f G)

-- =Z= (32)

af

in which, - adopts the same formula as Eq.(26) and
ao
af C N N

Go af 0
=f (1-f.)

.P,-O 0-0 0-0 kT (x-3) n
-.0 x

We denote this ultimate modulus of glass by E' and the dimensionless parameter
G

associated with it by E . As observed in Solithane 113, the Young's modulus_ Ge

(7)
increased with about three orders of magnitude across transition . From Figs 5, 6

and 7, we see the E and E are of the same magnitude. However, in Fig. 9. it
Ge Le

turns out that EGe is greater than ELe by such an amount of order of magnitude and

E, increases about three times with the pressure P increasing from 0 to 4. This
Ge e

result is comparable with experimental data on Solithane 113 in Fig. 10.

3. Glass Yielding

It is well known that the glass transition temperature is reduced under a
(25)

tensile stress a and experimentally the deformation of a glass formed without a

tensile stress at a temperature below T will be elastic at small strain, then followed
g

by a yield point and plastic deformation, which is similar to the deformation in the
(7)

rubbery state 7  The yield point under tension is essentially a strain or stress-

............................
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L L G G

-1] dT+- T dc=- dT+-]-.T do (29)
aT ao g 3T P.o ao g

Assuming the rate of variation of e with respect to T just across the transition
G

G
equal to zero because of the freezing in of internal parameters, i. e., -3- p=0 and

0.

defining

P.TE G a aG
through Eq.(25). one finds

a(f-f
dT 1 1 L 1 1 0---- ( -- ) = -- - -)/ (30)

do E E 8T E E aT
G L G L

act-f)
dT 0

Thermodynamic calculations of - and - are given in appendix. This enables us
do aT

to obtain E from E.
G L

Introducing more dimensionless groups as
1 Ac 1 Z e

, -i (31)
E 2 E 2

Le CE2E Ge CEL G
the above equations may be normalized and the curves of E vs P and E vs PLe e Ge e

are produced as shown by Figs. 5, 6 and 7.

However, the E so far obtained is the result of an "incipient transition" from
G

E, since, just across the secondary transition, e G is supposed to be equal to e.

e., EG=e L=(f-f ). This is because both eG and e are estimated on the basis of

liquid. In fact, below the secondary transition, the glass with the constant V and S

continues to undergo a change in eG until it reaches t(f -f o which is calculated on
G G GO

the basis of glass. The strain of a glass cG = (f G-f GO can be clearly illustrated using

Fig. 4, as

f -f [P,o,T=f[T (P,o),o,PJ
G G g

f fGO Tf [T (P,o) ,o,P] =f CT (P) ,PG•o.O g g

That is, fG is equal to the fraction of the flexed bonds at the transition temperature

T under pressure P and tensile strss a, whereas the f is the fraction at T under
9 GO g

b:: , " " " :. .. . i 
t  '  

," 'l - i " i " : ' i " :' "i " : . . . . . . l . .' . ' "' "'. .".. . . .
.~ ' '..o.' . .. ., '°- 1.... .o.. .....il 'bl'." ... o..,.'.'. . ."... .. '... -o-
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0

under a constant rate (.02 /mim.), as in Figs. 1 and 10. Some of these tests were

carried out under glassy state and some in the rubbery state, or a "solid-like liquid"

state or solid amorphous body whatever it is termed. From the stress-strain curves,

we were able to determine the Young's modulus. It is true that the material behaves

in a viscoelastic manner. Howevere, the solid amorphous bodies are distinguishable
(18)

from ordinary liquids by their relatively longer relaxation time E is measured for

given conditions of experiment, such as P, T, strain rate, and under proper

assumptions, such as ignoring time effect like creep and stress relaxation during the

short time period of the test.

The Young's modulus of the liquid is defined by

L=- P.T

1 a)E a*f-fo)

P T 
(25)

E ad a
L

in which, from Eqs.(17) and (18),
lav

CN0  o (-) N0 C
af 0Va 0
-- f(1-0+ ] (26)

ad kT(x-3)n kT(x-3)n
X X

af
o

-=o (27)

Furthermore, they are coupled with another derivative

a(f-fo0

1 av VoCz (f-f + ad-

-[ ] (28)
V ad kT 2EhSoSx2

z hzx Z
-S (-- 1) v
2 x k7 2 X

For evaluating Young's modulus of glass, we propose two stages of

calculation. Firstly, consider a second order transformation,
@)G a)G aG

V=1 -S=-3 -VE=M-apT aT P.0 ad PT

along the transition line, we have V = V G' S L=S G and (V) L=(V) (. therefore, L= G

or de =de This leads to
L G

e e . . . .. .... . ... . .. ...•.... ... . .
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