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. ’ Abstract

In a logistic regression model when covariates are subject to measurement
error the naive estimator, obtained by regressing on the observed covariates, is
asymptotically biased. We introduce a bias-adjusted estimator and two esti-
matora appropriate for normally distributed measurement errors; & functional
maximum likelihood estimator and an estimator which exploits the consequences
of sufficiency. The four proposals are studied asywptotically under conditions
which are appropriate when the measurement error is small. A small Monte-Carlo
study illustrates the superiority of the measurement-error estimators in
certain situations.

i
ANS 1970 subject classifications. Primary 62J05; secondary 62H2S.

Key words and Phrases. Errors-in-variables, functional maximum likelihood,

logistic regression, measurement error, sufficiency.
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1. Introduction and Motivation.

Logistic regression is the most used form of binary regression (see Berkson,
1951; Cox, 1970; Efron, 1975; Pregibon, 1981). Independent observations (yi.xi)
are observed where (xi) are fixed p-vector predictors and (yi) are Bermoulli

variates with

Pr{y1 - llxi} - F(xiao) 4 (1 + exp(---xlfso))“1 . (1.1)

Subject to regularity conditions, the large sample distribution of the maximum
likelihood estimator of Bo is approximately normal with mean zero and covariance

matrix (lln)S;l(Bo), vhere Sn(-) is defined for y € RP as
12 _(,.T T
Sn(7) = % F (xir)xixi (1.2)

Motivation for our paper comes from the Framingham Heart Study (Gordon and
Kannel (1968)), a prospective study of the development of cardiovascular dis-
easge. Th;s ongoing investigatioﬁ has had an important impact on the epidemiology
of heatﬁldisease. Much of the analysis is based on the logistic regression
wmodel with y an indicator of heart disease and x a vector of baseline risk
factors such as systolic blood pressure, serum cholesterol, swoking, etc. It is
vell-known that many of these baseline predictors are measured with subatantial
error, e.g. systolic blood pressure. When a person'e "true™ blood pressure is .
defined as a long-term average then individual readings are subject to temporal
as well as reader-machine variability. In one group of 45-54 year old Framing-
ham males it was estimated that one fourth of the observed variability in blood
pressure readings was due to within subject variability. The second author was
asked by some Framingham investigators to assess the impact of such substantial

measurement error and to suggest alternatives to usual logistic regression which

account for this error. The present study is an out growth of these questions.
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When covariates are measured with error the usual logistic regression esti-
mator of Bo is asywptotically biased; see Clark (1982) and Michalik and
Tripathi (1980). As a consequence of bias there is generally a tendency to
underestimate the disease probability for high risk cases and overestimate for
low risk; it will be said that measurement error attenuates predicted prob-
abilities. Also, bias creates a problem with hypothesis testing; in Section 2
it is shown that the usual ssymptotic tests for individual regression compon;ntc
can have level higher than expected. An example of this occurs in an unbalanced
two-group analysis of covariance where interest lies in testing for treatment
effect but the covariable is measured with error.

The severity of these problems depends, of course, on the magnitude of the
measurement error. In some situations ordinary logistic regression might per-
form satisfactorily. However, when measurement error is substantial, alter-
native procedures are necessary. In addition, the availability of techniques

which correct for measurement error can make clear the need for better measure-

"

ment, e{F., more blood pressure readings over a period of days.

InISection 2 our measurement error model is defined and the asymptotic bias
in the usual logistic regression estimator is studied. Section 3 presents sowme
alternative estimators; results of a Monte Carlo study are outlined in Section
4; proofs of the asymptotic results are given in Section 5.

Until recently the study of measurement error models has focused primarily
on linear models; see the review article by Madansky (1959) and the papers by

Fuller (1980) and Gleser (1981). Interest in nonlinear models is increasing

-
L
-
P..:
-

with recent contributions by Prentice, 1982; Wolter and Fuller, 1982a and 1982b;

A

Carroll, Spiegelman, Lan, Bailey, and Abbott, 1984; Armstrong, 1984; Amemiya,

§ 1982; and Clark, 1982. Of these articles Clark (1982) and Carroll et. al.

% (1984) focus specifically on logistic regresgion. The asymptotic methods

; employed in this paper are similar to those used by Wolter and Fuller (i982a)

:

.
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and Amemiya (1982) in their studies of nonlinear functional relationships.

2. A Measurement Error Model for Logistic Regression.

2.1. The Model.
Our measurement error model starts with (1.1), but rather than observing

the p-vector x, we observe

X1 - x, + oV, vhere v, " !*ci . (2.1)

In (2.1) E* is the square root of a symmetric semi-positive definite matrix [
scaled so that JEf = 1 and (ci) are independent and identically distributed ran-
dom vectors with zero mean and identity covariance; also € is independent of
yi. i=],++-,n. The scale factor o dictates the magnitude of the measurewment

error, e.g. if X, 18 a mean of m independent replicate measurements of x, then

i i
ﬂ c < n-}. The asymptotic theory presented in this paper requires that o 9 0 as
.
'i n 2o, {.e. large sample, small-measurement-error asymptotics. The asymptotics
ki are relevant for two situations: (i) Xi is an average of m independent measure-
5 ments of Xy in which case the Central Limit Theorem suggests that (ci) should
? be viewedjas normal random variates and (ii) when measurement error is small but

nonnegligible. In the latter case the moments of order greater than two of (:1)
generally differ from those of a normal variate.

Our methods of correcting for bias require knowledge of the error covari-
ance matrix V 4 02L. Since this information is seldom available all asym-

ptotic results are derived for the case in which V is replaced by an estimator

% satisfying
n @V . op(cr) . (2.2)
Condition (2.2) is satisfied, for example, when V is estimated by replication.

It is convenient to write V = 32§ where §? = I?l and £ = V/1V); note

that (2.2) then implies ni(l - 082/02) = Op(l).
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2.2 The Effects of Measurement Error.

Our investigation starts with a study of the estimator obtained by regres-

sing yy on the observed Xi. This estimator, to be called §, maximizes

A -10 T T
Ln(r) = n % { yilog F(cir) + (I-yi)log F(-cir)} (2.3)

and satisfies

n T‘
)3 (yi - F(ciﬂ))ci =0, (2.4)
1

when ¢, = X i=]1,...,n. Our interest lies in the behavior of g as

i i’
max(a,n-l) 2 0. In addition to assumptions on the errors € » some design con-
ditions are necessary to insure weak consistency of f. We shall work with the
following assumptions:

(c1) Gn(7) converges pointwise to a function G(y) possessing a unique

maximum at Bo where Gn(-) is defined as

n
6 (n & ot ) { P(x(8 )10 Fp) + F-xip )10 FE-xpn s

g n
(c2) ) (Bx 0)? = o(n?);
1

(c3) E (lelﬂ) (o,

(Cl) 18 an assumption of convenience since for each n, Gn(-) is concave with a

B o Ol oael

;_ maximum at Bo. Weaker conditiors could thus be employed by studying subse-
Fi quences of Gn(-); see Theorem 10.9, Rockafellar (1970).

;: Consistency of 8 is proved in Theorem 5.1 ; this result is necessary to
E establish the following asymptotic expansion which is crucial to our investi-
:} gation. Theorem 1 gives conditions such that with N(o,n) = nax(u’,n-i),

& B =B + n'Qs'l(s )Z o+ c’s-l(e Y +J )8 + o (N(o,n)) (2.5)
- o n o 'n n o '“n,l n,2" 0 p ’ '

3 .

v where z - n-* E (y, - F(x'8 Nx,

. n 1 i i'o i’

<,

.,p

? 13 p(2). T T

. J = ~(2n)" F H

) - (2n) % (x.8 )x 8 I

N N e e T e e e T T N N




S T R R S T e TR e e P T e VN

- W RN 0 U S P i Y Puis Yote Wuion * oy CIN AP S tputc vp B gl il i) T Al RS vl o
fay ~ —a LR MRS g B L

-5-

-1 @ (1), T
Jn.Z = -n % F (xiso)t .

Theorem 1. (Asymptotic expansion of ). Assume that § is a consistent esti-
mator of Bo satisfying (2.4). Also assume:
(Al) There exist a positive definite matrix M, § > O, and No ¢ ®, such

that Sn(y) 2 M whenever n 2 No and Jy - Bol < &

2

n
(A2) n ) 3 lxil’ — x? (o, max Ux | = o )

i 1€1<n

24a

(A3) E(cl) = 0, E(clci)- I, E(|€1| ) SB for some a > 0, B ( ®,

Then 8 has the expansion given in (2.5).

Note that assumptions (Al) and (A2) are sufficient to insure asymptotic
normality for Zn by an appeal to the Lindeberg Central Limit Theorem. Thus
Theorem 1 indicates that with A = n&a' we can expect n*(ﬁ - Bo) to be approxi-

. -1
mately normally distributed with mean \S_ (Bo)(Jn ; * Jn,Z)Bo and covari-

L]

ance S;l(ao), when n is large and ¢ is small. When Xi is a mean of m rep-
]

licstea,'oz « m-l and A describes the relationship between the sample size and

the rate of replication. The asymptotic bias obviously decreases with in-

z

E: creasing replication.

;: We can use expansion (2.5) to construct a corrected estimator, ﬁc. which
- has smaller asymptotic bias. Before doing so we comment on the problems with
i- slluded to in the introduction.

)
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Bias and attenuation. Consider simple logistic regression through the origin

with Bo > 0. One expects to see attenuation, i.e., a8 negative first order bias

term. For most designs this is true. Somewhat surprisingly and completely at
-1

odds with the linear regression case, Sn (Bo)(Jn,l + Jn,Z)Bo can be posi-

tive. One deaign in which this occurs arises when most cases have very high or

very low risk, i.e. Ix:Bol is large for most 1.

Hypothesis Testing. Consider a two~group analysis of covariance, x =

' 1
(1, (-1)7, di)' Bo (Bo, Bl, 82). The covariable di is measured with error
variance 02. Often interest lies in testing hypotheses about the treatment
effect 81. A standard method to test 81 = 0 is to compute its logistic regres-
sion estimate compared to the usual estimate of its asymptotic standard error.

When the asymptotics of Theorem 1 are relevent and n}oz 9 1> 0,this test ap-

B vy v
PPN A v
LR S S

proaches its nominal level only if the second component of

ot ot o
“ " *

S—I(B )(J +J _)8 approaches zero. Letting s, denote the second row of
n,l n,2" o 2

S;I(Bo) this is achieved only if

v -
g
.

)
‘“’ .

Tt ot
PR

£
. . N
LI .

j -1 T (), T, s
' n % s,x,F (xiﬁo)u 85 2 0.

This will not hold in the common epidemiologic situation in which the true co-

; variables are not balanced across the two treatments. Thus, when substantial

E measurement error occurs in a nonrandomized study, there will be bias in the

? asymptotic levels of the usual tests.

¥ 3. Accounting for Measurement Error.

% In this section three alternative approaches to estimation are studied. The
i first is based on expanesion (2.5) and is distribution-free in the sense that

E only moment assumptions are made about the measurement errors. The second two

i methods are based on an assumption of normallx distributed errors; their asym-

. ptotic properties are then studied under more general conditions.

)
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3.1 Adjusting for Bias in 8.

Write b = S (ao)(.rm1 + Jn'z)a° and sn -5 (B)(Jn.l + Jn'z)B

wvhere
R -1 2 ,.T T
Sn(7) - n % F (x17)x1x1‘ (3.1)
" “1 2 (2),.T~.L AT
Joq = - (2n) ; F o)X 8 £;
- -1 2 (1), T-
Jpg =-m ? F (xis)iz

Sn depends only on the observed date and, under the conditions of Theorem 1 and
(2.2), approximates bn in the serse that ﬁn - bn - op(l) aa min(n, a-l) 2 o,
This result suggests that the bias-corrected estimator §C & g - a=8n

should have smalier asymptotic bias for large n and small . We state these
results as a theorem.

Theorem 2. Assume the conditions of Theorem 1 and (2.2). Then

§c - Bo + n’}s;l(so)zn + op(N(d,n)).

Remarks. In Section 5, Theorem 2 is proved using the following characterizstion

e - a a - am] AL a -

of 8 : Note that 8 = (I - 82B )8 where B = § "(B)(J + J ).

;{ c c n n n n,l n,2
Since xiﬁ = Xi(l -azﬁn)'lﬁc it follows that B_ maximizes (2.3) when

2 - %

o ci xi,c' defined as

- AT ~1aT

.- £ = 2 - a?

& xi,c Xi + 83 (1 8 Bn) ani . (3.2)

% In this sense §c is a type of two-stage estimator obtained by doing logistic

-

E‘ regression with ii c replacing Xi.

2 The estimator §c is not unbiased, just less biased. The Monte Carlo study

Al

% of Section 4 shows that in some realistic sampling situations the reduction in

- bias is substantial.

b

5 ,
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unlike linear regression in which the errors-in-variables functional maximum
likelihood estimator is consistent when V is known.
Our final estimator starts with an assumption of normal errors and exploits
the consequences of sufficiency. Given 0?I and Bo' a sufficient atatistic for

estimating x is Ei(Bo) = X1 + az(y1 - {)280; it follows that the distribution

of Yy given ;i(Bo) does not depend on x The reason for using this parti-

i

cular sufficient statistic is that

- -T
P(yi - llci(Bo)} - F(ci(Bo)Bo) (3.4)

and hence the score equation

n
ki 3 Gy, - F(EI(B)G))Ei(B) -0 (3.5)
1

{8 unbiased for Bo' Equation (3.5) can have multiple solutions not all which

produce a consistent sequence of estimators. Since Ei(B) also depends on the

unknown matrix 0?I we propose the following modification: Let

i 21’8 - X, + 3y, - H s (3.6)

and define ﬁs. the sufficiency estimator, as the maximizer of (2.3) when <4 is

. This estimator is consistent under (Cl) - (C3) and (2.2) and

'{' replaced by xi,s

- has the expansion given in the next theorem.

LN

Theorem 4. Assuwe the conditions of Theorem 1 and (2.2). Then
; ; ~3g-1
- g =8 +n ‘S (B)Z + o (N(o,n)).
. s o n o' n P
t Remarks. 1. Theorem 4 does not require the assumption of normal measurement
: error. Also, 8 can be replaced by any consistent estimator in the definition of
% ii s" The effects of nonnormal measurement error and our particular choice of
- ’
) -
- ii s become apparent only when 8s is expanded: through terms of order N?(o,n).

This analysis is lengthy and is not presented here.
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3.2 Normal Measurement Error.

When measurement error is present there is an added source of variation
which is not accounted for by model (1.1). We now expand this model by assuming
that (ti) are normally distributed, an assumption which is not unreasonable in
some situations. The functional log—likelihood for estimating Bo and XyreeosX

is then

{yilog(F(x:B))ﬂl-yi)log(}‘( -x;{B) )-(2q? )'l(xi- xi)TZ-l(Xi-xi)}. (3.3)

[l o B-)

The vectors B_, ¢, maximizing (3.3) satisfy

f i
n T-
? (yi - F(EiBf)c1 =0 ;
g, =X, + (y, - F(215,))0?Lf 1=1 n
i i i i f f e

There are two problems with this estimator; it depends on the unknown matrix o02f

and solving for B, and (Ei) is difficult. For these reasons we suggest a

f

modified version of ﬁf. Noting the form of €, ve let

- . _ Ta\\azea
% ¢ xi"(yi P(xis))a £8 (3.4)

and define Ef as the estimator obtained by maximizing (2.3) with ;- ii £
*

Ef is consistent under (Cl) - (C3) and (2.2) and has an asymptotic expansion

given in the next theorem.

Theorem 3. Assume the conditions of Theorem 1 and (2.2). Then

- £ = -3.-1 271
ne Be = B, +n 'S (802 + o?s J(BI B+ op(N(o.n)).

) n,l

.

®

i Remarks. The functional maximum likelihood estimator, like f, has a first

- order bias. The bias term is not due to our one-step modification nor to V;

w this fact is evident from the proof of Theorem 5.2. Logistic regression is thus

,;1-

- |
4

......................
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2. It is possible to define a sufficiency estimator for s large class of
measurement error models. In particular we have in mind the generalized linear
models with canonical link functions (McCullagh and Nelder, 1983). A complete

exposition of this theory will appear elsevhere.

In the next section results from & small Monte Carlo study are presented.
4. Monte Carlo
We conducted a small simulation experiment to determine the relative merits
of the four estimators 8, 8 , B., and B .
c 3 8
The model for the study was

Priy, = 1ld;} = e« + Bd;, i=1,...,n. (4.1)

We considered these sampling situations where xi denotes a chi-squared random

variable with one degree of freedom:

(1) («,B) = (-1.4,1.4), (di) ~ Normal (0,0; = ,10), n = 300, 600;

(11)(a,B) = (-1.4,1.4), (di) ~ cd(le -1IV2, c:! = .10, n = 300, 600;

For/both cases, the measurement error variance t? was one third the vari-
ance of the true predictors (tZ = 0313). For each case, we considered two
sampling distributions for the measurement errors (ei): (a) Norwal(0,t?) and
(b) a contaminated normal distribution, which is Normal(0,t?) with probability
0.90 and Normal(0,25t%?) with probability 0.10.

We believe théae two sampling situations are realistic, but their represen-

tativeness is limited by the size of the study. The sample sizes n = 300, 600

DA R

may seem large, but our primary interest is in larger epidemiologic studies

where such sample sizes are common. For example, Clark (1982) was motivated by

q;.;, o}

R

a study with n = 2580, Hauck (1983) quotes a partially completed study with

n 2 34C, and we have analyzed Framingham data .for males aged 45-5% with n = 589.

DR EXNARL 4 R

D
i
l...
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Furthermore, the results of the study suggest that correcting for measurement
error in most small sample situations is unwarrented.

The values of the predictor variance c; and the measurement error vari-

ance t? are similar to those found in the Framingham cohort mentioned in the
previous paragraph when the predictor v?s loge{(aystolic blood pressure-75)/3},
a standard transformation. The ratio 1’/03 = 1/3 is not uncommon; Clark

finds a similar ratio in her study of triglyceride. The choice of (a,B) cowes
from Framingham data as well. All experiments were repeated 100 times.

In each experiment, we sampled two independent measurements (D ) of

1,1° 04,2
= (

each di; the observed covariate was Xi = (1, ﬁi)r, where D +

1 = Dy 4

Di 2)IZ. The matrix 02L has only one non-zero entry which was estimated by the

sample variance of (D )/2.

1,1 ~ Py1,2
In addition to the four estimators presented in this paper we included in

the study a proposal due to Clark (1982). She suggests the estimator ER ob-

tained by maximizing (2.3) vhen c, 1s replaced by X X1 - a’tt;}xi- #)

1 i,N

vhere {i and fx are the sample mean and covariance of the observed data. Moti-
!

vation for this estimator derives from an assumption of normal errors and normal

-1 ~
- - 2 -
covariates. In this case E(xl'xl) XI g ::X (XI ],l) Bnd hence xl’ is

a natural estimator of X, . Theorems 5.1.-and 5.2 can be used to prove consis-

tency and derive an asymptotic expansion for this estimator. Like g and Ef,

§H has a non-zero first order bias although it is too lengthy to present here.
Sweeping conclusions cannot be made from such a small study. However, we

can make the following qualitative suggestions. First f is less variable but

more bilased than the others; sample sizes such as n = 600 as in the study or

Clark’'s n = 2580 are such that bias dominates and hence are candidates for uasing

corrected estimators; an opposite conclusion holds for small sample sizes where

e T e L% Ce t, e o, my m, w m el n e m s w e e m oa s
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variance dominates. A second suggestion from the tables is that whon.E loses
efficiency (Case I(b), II(b) and when n = 600), the corrected estimators perform
quite wvell.

Both i.and ﬁf wvere defined via an aseumption of normal errors yet they
also performed well when the errors were contaminated normal, (Cases I(b),
II(b)). Clark's estimator proved to be sensitive to the assumption of normal
covariates; EN performed very well in our study when the predictors were
normally distributed, but it did have a noticeable drop in efficiency when the
predictors were highly skewed (Case II). Finally, the corrected estimator ac'
which vas derived with no distributional assumptions for either the predictors
or errors, performed well throughout the study.

In summary, the Monte Carlo results suggest that the estimators Ec’ Ef'
§‘ and Clark's EN are useful alternatives to § when covariastes are measured
with error. The pressing practical probles nowv appears to be to delineate those
situations in which ordinary logistic regression should be corrected for its
bias. S}udiea of inference and more detailed comparisons of alternative esti-
mators ;111 be enhanced by the identification of those problems where measure-

ment error severely affects the usual estimation and inference.

S. Proo’s of Theorems

Consider the estimator § obtained by maximizing (2.3) when c, is replaced

i

with ii where

- - 2
X, =% +ov, +ofg . (5.1)

In Theorem 5.1 we prove weak consistency of B under conditions (Cl), (C2), (c3)

e and

e

5 >

& 2 -

bf (P1) % 'gin' Op(n) .

[

;_ .

:: In Theorem 5.2 an asymptotic expansion for f is given. The consistency and

“
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asymptotic expansions of B, Bc, 6f. and S. follow from these general results

all have the representaton given

by noting that X X, » and X
i,f

1° *1,¢’ 1,8
in (5.1). We remind the reader that all the asymptotic expressions hold as
nax(d.n-l) + 0.

Theorem 5.1 (Consistency). Assume (Cl), (C2), (C3), and (P1); then 8 -Bo - oP(l).

1 L ii 1“ (2#3).

The identity log(F(tr)/(1-F(t))) = t is used to show in(y) -Gn(y) - Rh,l + Rn,z

Proof. Define in(7) to be the function obtained by taking c

wvhere
n
-1 T T .
Rn,l = n '11: (y1 - F(xiso))xiv H
-1 0 T T T T
Rn.z = n % {yi(x17 - xi7) + log F(-xiy) - log F(-xir)} .

Under (C2), Rn 1 has mean zero and asymptotically negligible variance;
L 4

also by (C3) and (P1),

\
.

n
-1
th,Z' < 20lyin § Ivi + aginl op(l) .
]
Consequently (Cl) implies that in(-) converges pointvise in probability to
G(+). An appeal to Theorem II.1 of Anderson and Gill (1982) concludes the proof.
The conaistency results follow by applying Theores 5.1 first to 8,
(g1n = 0) and then to Ec' ﬁf, and §‘. Next we derive the asymptotic expansions for

these estimators.

Theorem 5.2 (Asymptotic expansion). Assume (Pl) and the conditions of Theoream

) 1; then

by

l.J

:j =8 + nts iz e orsie s v 3 B eb L +b + o (N(o,n))

" o n o n n o n,1° "n,2""0 'n,3 n,4 P Peaae

X -1 2 T

%' wvhere b“'3 = n % (y1 - F(xiso))zin. .

b

- ,
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T

b 184n"0"*

-1 % (1), T
n.4 = =n % 4 (xiso)x

Sn(-) is given in (1.2), and Zn. Jn.l' and Jn.Z are defined in (2.5).
Theorem 5.2 is proved with a series of lemmas. First we show how Theorems

1-4 follow as corollaries. Theorem 1 is immediate since g, " O for 8. For

- AT -l “T -~ A-l -~ - -

- 2 2 - g1
B.» g, (82/02)(1 - @ Bn) ani vhere B =S (B)(J“’1 + Jn,Z)'
Assumptions (A2), (A3), Lemma 5.1, and (2.2) imply bn 3 " op(l) and

-1
_bn,é = n

(1)

T T“ - 2 & -l
F (xiso)xixihn(l ] Bn) B,

lad o R

= Sn(ﬂo)ano + op(l)

- (J + Jn'z)a° + op(l).

n,l

thus proving Theorem 2.

For B - (3/0?)(y, - r(x}ﬁ))tﬁ and (A2), (A3), Lemma 5.1, and

£ 84n

(2.2) 1n?ly bn - op(l) and

Lo
)
~1 n T
- - 2
b“'3 n % (yi F(xiﬁo)) EBO + op(l)

- - Jn.ZBo + op(l) H

; Theorem 3 follows. Finally for §s' 8ip ~ (azlcz)(yi - His. (a2), (A3),
f Lemma 5.1 and (2.2) imply

: -1 1 T

: bn'3 - n % (y:l - F(xiso))(yi- })EBO + OP(I)

4

'; - - Jn.ZBo + op(l);

: -1 ¢ (1), T T

; bn’“ - -n % F (xieo)(y1 - i)xiaotao + OP(I)

\ n

. e Sle (1), T T, \ _ T

: n % F (xiao)(F(xiﬁo) })xisotso + op(l)
: .

\IsJ
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- - Jn.lso + op(l).

In the last step we use the identity P(Z)(t) - F(l)(t)(l - 2F(t)). This proves
Theorem 4. Notice that in deriving these results we used only the fact that

g - Bo = op(l) thus the conclusions of Theorems 3 and 4 remain unchanged if 8
is replaced by any other consistent estimator in the definitions of ii.f and
ii,a' In particular this implies that the fully iterated versions of the
functional and sufficiency estimators (provided consistent versions are chosen)
also satisfy Theorems 3 and 4 respectively.

The proof of Theorem 5.2 starts with the following weak law.

Lemma 5.1. Let Uy Uy, e be independent random vectors such that Z(ul) -0

n

and E(lulll*a) € B for some @ > O and B ¢ ®, If ¥ Iail = 0(n) and
n 1

max (Iailln) = 0(1) then n 1 b3 su, =o (1).

1S1<n 1 L4

Proof. The proof of the lemma entails s routine verification of the assumptions
of Theorem 5.23, Chung, (1974) and 1s not given here.

/
Lemma 5.2. Under the conditions of Theorem 1,

+ Jn,Z)ao + op(N(u,n)).

-1 9 . | .-t \
n % (yi F(xiso))xi n Zn + 0 (Jn,l

n
Proof. n 2 (yy - F(X:Bo)xi =T + T, vhere
1

n,l n,
. n
-1 T

T = n ?(yi - F(X;B )=,

n,l

T -1 % T
n,2 = on % (yi F(Xieo))vi.

A Taylor series expansion of F(-) shows that

.\' v
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where Q

n,1,0

n
- | T
® ~gn t § F( )(xIBO)viaox1 :

<1 w o (2),. T T T .
n“'l = =(2n) ? {r (‘i°o)(('1’o" - 30:80’*1)'

12 (2,57, - (2), T T .
nn'l = ~(2n) § (r (xiso) -F (xiﬂo))(viso)’xi H

and ii is on the line segment joining xi to X,. has mean zero and

i Qn.l,c
asymptotically negligible variance thus n-}Q =0 (n-&). Assumptions (A2)
n,1,0 P

and (A3) and Lemma 5.1 are used to show Dn 1 " op(l). Also note that

-13 T, \s T
an,ll £ (2n) % Ixil(viso) lin(l.clvisol) SAB

n
vhere An - (n-l % lxilz(VIBo)’)}:

n

- -1 T 2 2 T *

B (n % (viso) min (1.c|v18°|)) .
i

Assumptions (A2) and (A3) and Lemma 5.1 imply A " Op(l) while (A3) and the fact

-1
—_ - 2 - 2
that max(n ",0) 0 imply Bn op(l). It follows that o (l’)ﬂ'1 + Rh l) op(d ).

Combining these results we get

- ot 2
Tn.l n‘ Zn +4 0 Jn'lso + op(N(c,n)). (5.2)

Another Taylor series expansion of F(:) shows that

- -4
T, =0, g8 P Q5 o+ 0Dy, t R D)
-} o T
vhere Qn,z,a = on % (yi - F(xibo))vi:
-1 9 (1),.T T o
l)“’2 = -n JIF (xiao)(viv1 - D8 s

1
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n,2

n
a - )3 (r(l)(ﬂzso) - F(l)(xIBO))vivis :
1

o
and ﬁi lies on the line segment joining x1 to Xi. Qn.z,o’ Dn.Z’ and Rn.2 are
all op(l): the proofs are analogous to those for Qn.l.c' Dn,l' and Rn,l respec-
tively. Consequently
- gl
Tn,z ¢ Jn.ZBo + op(N(u,n)). (5.3)
Combining (5.2) and (5.3) completes the proof of the lemma.

Lemma 5.3. Assume the conditions of Theorem 1 and (P1) and define

-1% T
ﬁn(7) - %(y1 - P(iir))ii; then

- - .4}
Hn(Bo) n Zn + o’((Jn 1 + Jn,Z)Bo + bn

3t bn") + op(N(O.n))-

Proof. Hn(Bo) = wn.l + wn'z + Hh'3 + Wn,a
-1 3 T
vhere | “n.l = n ; (Yi - F(Xibo))x1 H
j
' -1 2 T T
Hn’z = on ? (F(xiso) - l“(iiso))(v:l + °‘in)'
5 -1 2 T
L = g2 - .
E -1 % T T
- LA I (F(X;B)) - F(X8 ))x, .

1

'n:_‘v"'. " L

.

n
-1
3 -
Note that in light of (A2) and (Pl) |wn.2| € o’n % Iginl(lvi| + ol;inl)

ool

-1 b T T
2 - a2 2 -
op(c ). Also, IH’n’3 ° bn,3' S o2n " 3 IF(xiso) F(liao)llginl s

L.

rr‘ T

sl A

KA A

-1 2 -1 3 3, -1 3 3
I8 _lo’n % Iv Mg, N < I8 "o*(n % v, 8)%(n % g, 197 = op(c’).

using (A3) and (P1). One term in a Taylor series expansion of F(:) and Lemma

5.1, (A2), and (P1) show that
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n
_1
- o? H 2 2
—” ] bn,b' So lBol n ¥ (clvil 40 Izinl)lxillzinl

-1 n ‘l n
2 2 4 2
S otis i {en ; v, 1ix, Mg, 1 + oln ? Ix i, | }

n n
s otpp f {atn” : tv 11 1x 19 ‘% 1g, 19}

o2 ( max Ix, Pn 2 lzinlz}
151i8n

- op(c’) .

An expansion for W is given in Lemma 5.2. Combining the above results proves

n,l1
the Lemma.
Lemma 5.4. Assume Pl and the conditions of Theorem 1, then

g - B, = ) (N(o,n)).
Proof. Let ll (+) be the function defined in Lemma 5.3. Consider the
real-valued function of y defined as jn(7) - Bn(Y)(B - 8)). The Mean Value

Theorem ﬁroves the existence of some B on the line segment joining B to Bo

such that
2 A58 )(E-86) = (B -8 )5 (B)E -B)
L_ n o o o n o’*
:: where S (y) = n-l ; F(l)(ir'r)i %7
if n 1 i R B
o x i 1 -
,~ It follows that §8 - sol < lﬂn(Bo)I Xmin(sn(s)) vhere A . _(A) = minimum
?2 eigen value of A. Under (A2), (A3), and (P1), 5 (B) - 5 (B) = o (1) hence
» -1 .z = -1 i . o
- by (A1), P{A_, (5 (B)) s (™M} 215 thus 18 - 8 1 and 1d (8 )1
:f have the same order which, from Lemma 5.3, is OP(N(o,n)).
..
b
=
.
~
~
L
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We are nov in s position to prove Theorem 6.2.

n
Proof of Theorem 6.2. By definition n 1 3 (y1 -P(i}i))i1 e 0; ex~
1

panding F(-) in a Taylor series shows that $(§ - Bo) - ﬁn(ao) vhere

n
S = n-lz F(l)(xr-
1

and for each 1, Iai - Bol S I8 - Bol- (A2), (A3), (Pl), and the conclusion
of Lemma 5.4 are used to show § - Sn(Bo) - op(l). The Theorem follows from

Lemma 5.4.
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These are the results of the Monte-Carlo study. "Effici-
ency” refers to mean squared error efficiency with respect

to ordinary logistic regression.
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CASE I(a)

(a, B) = (-1.4, 1.4), (d)) ~ N(O,0% = .1), (e)) ~ N(0,0? =.0%/3).

B B, B By 8,

n = 300 Bias -0.21 -0.04 -0.05 -0.02 -0.06
std. Dev. 0.52 0.61 0.61 0.61 0.60 |
Efficiency 100%* 85% 85% 84% 88%

n = 600 Bias -0.22 -0.05 -0.05 -0.02 ~0.06
Std. Dev, 0.33 0.38 0.38 0.38 0.38
Efficiency 100%" 108% 106% 107% 108%

CASE I(b)
Same as Case I(a) but measurement errors
have the contaminated normal distribution.
)

n = 300 Bias -0.49 -0.16 ~0.19 0.02 ~0.20
Std. Dev. 0.34 0.48 0.48 0.54 0.46
Efficiency 100%" 143% 139% 121% 143%

n = 600 Bias -0.53 -0.20 -0.21 -0.03 =-0.22
Std. Dev. 0.24 0.33 0.34 0.38 0.33
Efficiency 100%* 223% 215% 234% 216%

* By definition.

NS BEADAAAA A

P S T R - et
R I R S A T A - T et e e T T e
AEIE 2P I APIENEDC NS CA I NEATIE N J AT AT AL ‘.-“_-"i")\);."_.'-_.'-'.\._‘-'-‘ IO S IO SO WAL S AT 1*



B A

"! . L

s Y T W w
A AN

,,1
LR A

.

(op B) - (-lol" l‘b)p (di)

.................

CASE II(a)

~ Ud(xi-l)/lz, oé « 0.1, (ci) ~ N(O,0? = 03/3).

B Bc Bf BH B’
n = 300 Bias -0.28 -0.05 -0.07 0.10 -0.08
Std. Dev. 0.47 0.58 0.57 0.66 0.56
%*
Efficiency 100% 90% 91% 69% 93%
n = 600 Bias -0.27 -0.03 -0.04 0.11 -0.05
Std. Dev. 0.33 0.41 0.41 0.45 0.40
*
Efficiency 100% 111% 110% 85% 112%
CASE I1(b)
Same as Case II(a) but measurement errors
B have the contaminated normal distribution.
]
n = 300 Bias -0.43 -0.13 -0.15 0.12 ~0.17
Std. Dev. 0.33 0.44 0.45 0.53 0.43
*
Efficiency 100% 141% 134% 103% 141%
n = 600 Bias -0.46 -0.15 -0.16 0.10 ~0.18
Std. Dev. 0.25 0.33 0.34 0.40 0.33
*
Efficiency 100% 201% 190% 159% 194%
* By definition. :
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