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Abstract

In a logistic regression model when covariates are subject to measurement

error the naive estimator, obtained by regressing on the observed covariates, is

* asymptotically biased. We introduce a bias-adjusted estimator and two esti-

mators appropriate for normally distributed measurement errors; a functional

maximum likelihood estimator and an estimator which exploits the consequences

of sufficiency. The four proposals are studied asymptotically under conditions

* which are appropriate when the measurement error is small. A small Monte-Carlo

study illustrates the superiority of the measurement-error estimators in

* certain situations.

ANS 1970 subject classifications. Primary 62J05; secondary 62H25.

Key vords and Phrases. Errors-in-variables, functional maximum likelihood,

logistic regression, measurement error, sufficiency.

-II

AY

.'' ....-..

C



1. Introduction and Motivation.

Logistic regression is the most used form of binary regression (see Berkson,

1951; Cox, 1970; Efron, 1975; Pregibon, 1981). Independent observations (yi.xi)

are observed where (x I) are fixed p-vector predictors and (y ) are Bernoulli

variates with
T tiT )-1

PrlyI - lJxi) - (xB) (1 + exp(-x T o ) . ().1)

Subject to regularity conditions, the large sample distribution of the maximum

likelihood estimator of B is approximately normal with mean zero and covarianceo

matrix (1/n)S-l (B ), where S ( -) is defined for y 6 RP as
n 0n

-) n (1) T T
"()- n IF (xi7)xixi (1.2)

Motivation for our paper comes from the Framingham Heart Study (Gordon and

Kannel (1968)), a prospective study of the development of cardiovascular din-

ease. This ongoing investigation has had an important impact on the epidemiology

of heart disease. Much of the analysis is based on the logistic regression

model with y an indicator of heart disease and x a vector of baseline risk

factors such as systolic blood pressure, serum cholesterol, smoking, etc. It is

well-known that many of these baseline predictors are measured with substantial

error, e.g. systolic blood pressure. When a person's "true" blood pressure is

defined as a long-term average then individual readings are subject to temporal

as well as reader-machine variability. In one group of 45-54 year old Framing-

ham males it was estimated that one fourth of the observed variability in blood

pressure readings was due to within subject variability. The second author was

asked by some Framingham investigators to assess the impact of such substantial

measurement error and to suggest alternatives to usual logistic regression which

account for this error. The present study is an out growth of these questions.

2i• o-. °o - o . ° . - ..' . . .
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When covarlates are measured with error the usual logistic regression esti-

mator of a is asymptotically biased; see Clark (1982) and Hichalik and

Tripathi (1980). As a consequence of bias there in generally a tendency to

underestimate the disease probability for high risk cases and overestimate for

o* low risk; it will be said that measurement error attenuates predicted prob-

abilities. Also, bias creates a problem with hypothesis testing; in Section 2

* it is shown that the usual asymptotic tests for individual regression components

can have level higher than expected. An example of this occurs in an unbalanced

two-group analysis of covariance where interest lies in testing for treatment

effect but the covariable is measured with error.

The severity of these problems depends, of course, on the magnitude of the

measurement error. In some situations ordinary logistic regression might per-

"* form satisfactorily. However, when measurement error is substantial, alter-

* native procedures are necessary. In addition, the availability of techniques

which correct for measurement error can make clear the need for better measure-

ment, e.g., more blood pressure readings over a period of days.

In Section 2 our measurement error model is defined and the asymptotic bias

in the usual logistic regression estimator is studied. Section 3 presents some

alternative estimators; results of a Monte Carlo study are outlined in Section

4; proofs of the asymptotic results are given in Section 5.

Until recently the study of measurement error models has focused primarily

on linear models; see the reiew article by Madansky (1959) and the papers by

Fuller (1980) and Gleser (1981). Interest in nonlinear models is increasing

with recent contributions by Prentice, 1982; Wolter and Fuller, 1982a and 1982b;

Carroll, Spiegelman, Lan, Bailey, and Abbott, 1984; Armstrong, 1984; Amemiya,

1982; and Clark, 1982. Of these articles Clark (1982) and Carroll et. al.

(1984) focus specifically on logistic regression. The asymptotic methods

employed in this paper are similar to those used by Wolter and Fuller (1982a)
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and Ameujys (1982) in their studies of nonlinear functional relationships.

2. A Measurement Error Model for Logistic Regression.

2.1. The Model.

Our measurement error model starts with (1.1), but rather than observing

the p-vector xi we observe

X, W xi + ovt, where v, = E+1i " (2.1)

' In (2.1) 11 is the square root of a symetric semi-positive definite matrix I

scaled so that III - I and (c I) are independent and Identically distributed ran-

dou vectors with zero mean and identity covariance; also c is independent of

* Yi" -l,-,n. The scale factor a dictates the magnitude of the measurement

error, e.g. if XI is a mean of m independent replicate measurements of xi then

a m- . The asymptotic theory presented in this paper requires that a 40 as

n 4 , i.e. large sample, small-measurement-error asymptotics. The asymptotics

are relevant for two situations: (i) X is an average of m independent measure-

ments of xiv in which case the Central Limit Theorem suggests that (e ) should

be viewed,'as normal random variates and (ii) when measurement error is small but

nonnegligible. In the latter case the moments of order greater than two of ( I)

generally differ from those of a normal variate.

Our methods of correcting for bias require knowledge of the error covari-

ance matrix V 02o. Since this information is seldom available all asym-

ptotic results are derived for the case in which V is replaced by an estimator

V satisfying

n+ (V - V) - 0 (a2 ) . (2.2)
P

Condition (2.2) is satisfied, for example, when V is estimated by replication.

It is convenient to write V 82f where 82 - |Vf and 2 - VIlV|; note

that (2.2) then implies n(1 - 82 /0 2 ) - 0 (1).
p
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2.2 The Effects of Measurement Error.

Our investigation starts with a study of the estimator obtained by regres-

sing y on the observed Xi . This estimator, to be called , maximizes

(y) n-n ylgFcT 7)+( ltF(-c T )~ (2.3): - and satisfies 1 logFi°$li~
n

n l ))ct
(y'- F(c - 0 c(2.4)

"" when ci = X* , il, . ,n. Our interest lies in the behavior of P as

max(o,n - ) 0 0. In addition to assumptions on the errors y some design con-

ditions are necessary to insure weak consistency of 0. We shall work with the

following assumptions:

(CI) G (y) converges pointwise to a function G(r) possessing a unique
n

maximum at B where G (-) is defined as
0 n

n1 n T T TG n(7) n -1 F(xio 0)log FT T (XIa0)o (x17

'* n
(C2) (Ix I)' - o(n2);

(C3) E (Ie1) CD

(CI) is an assumption of convenience since for each n, G n() is concave with a

maximum at B . Weaker conditions could thus be employed by studying subse-

quences of G (-); see Theorem 10.9, Rockafellar (1970).n

Consistency of 0 is proved in Theorem 5.1 ; this result is necessary to

establish the following asymptotic expansion which is crucial to our investi-

gation. Theorem I gives conditions such that with N(o,n) - max(02 ,n-),

SBo + n-S-(0o)Z + 02S-lBo)(Jn, J 2 )0o + O(N(On)), (2.5)

n

I T
where Zn n (Yi - F( 0 ))xt ;

n

J -~(20_1 F( 2 ) (XT. )x OTr
n,1 1 i o

' ';',"/ "' "4 -'' ,'.: €:: .' , .... . . , €. ',." ' '- .--, . , .'.',.- -; ..- '- '.,. ., .. . . ... .,- ,... N



n -1 F0l)(x T o)1
' 3n, 2 " _n -

Theorem I. (Asymptotic expansion of B). Assume that 6 is a consistent esti-

" mator of B0 satisfying (2.4). Also assume:

(Al) There exist a positive definite matrix H, 6 ) 0, and N ( *, such* a

that S (y) Z M whenever n k N and ly - B | S 6;

(A2) n Ix 3 x ' (, max nlx i 0(0-

(A3) E(c1) - 0, E(c II) I, E(|¢l1 2+a B for some a ) 0, B ( .

Then 0 has the expansion given in (2.5).

Note that assumptions (Al) and (A2) are sufficient to insure asymptotic

normality for Z by an appeal to the Lindeberg Central Limit Theorem. Thusn

Theorem I indicates that with X - nIV2 we can expect n(B - B ) to be approxi-
0

mately normally distributed with mean XS_ o )(J0 + J )0 and covari-n 0 nI n,2 o

-1ance S (B0 ) , when n is large and a is small. When Xi is a mean of m rep-n,: -1
- licates, 02 a m and X describes the relationship between the sample size and

the rate of replication. The asymptotic bias obviously decreases with in-

p. creasing replication.

We can use expansion (2.5) to construct a corrected estimator, Oct which

has smaller asymptotic bias. Before doing so we comment on the problems with -

alluded to in the introduction.

.. ... . . .
•

• • , .•°o , o . . . . o.. 
. . . . ..



Bias and attenuation. Consider simple logistic regression through the origin

with fi ) 0. One expects to see attenuation, i.e., a negative first order bias

term. For most designs this is true. Somewhat surprisingly and completely at

odds with the linear regression case, S (o)( + n )B can be posi-
n 0 no n,2 -

tive. One design in which this occurs arises when most cases have very high or

very low risk, i.e. IxI Bo01is large for most i.

T
Hypothesis Testing. Consider a two-group analysis of covariance, xi

(1, (-1) d ) B° - (O O  a 2 )  The covariable di is measured with error

variance oz . Often interest lies in testing hypotheses about the treatment

K- effect B1. A standard method to test B1 - 0 is to compute its logistic regres-

sion estimate compared to the usual estimate of its asymptotic standard error.

When the asymptotics of Theorem 1 are relevent and nio2 - X ) O,this test ap-

proaches its nominal level only if the second component of

. (B )(J + n 2 ) B approaches zero. Letting a2 denote the second row of

n 0 n,1 a,

S- ( ) this is achieved only if
n 0

-n a XF ((2 ) To )2 0l2 4 0.n Is 2xiF O.~ouP
1

This will not hold in the common epidemiologic situation in which the true co-

variables are not balanced across the two treatments. Thus, when substantial

measurement error occurs in a nonrandomized study, there will be bias in the

asymptotic levels of the usual tests.

3. Accounting for Measurement Error.

In this section three alternative approaches to estimation are studied. The

first is based on expansion (2.5) and is distribution-free in the sense that

only moment assumptions are made about the measurement errors. The second two

methods are based on an assumption of normally distributed errors; their asym-

ptotic properties are then studied under more general conditions.
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3.1 Adjusting for Bias in B.-1
Write b Sn1 (0 )(J + J,)B andG 9-1(j)(3 + 3 )

n ii 0 n.1 nm2 0 n n n.1 n,2

where

-1 (1

n) n (x I 7)x T X ; (3.1)

n
--. - (2n) F(2)(X )Xf; T;

i F|.:J - - n -  F( 1)(xTB) ;

n,2 1

- depends only on the observed date and, under the conditions of Theorem 1 and"" n

" (2.2), approximates b in the sense that n - b - o (1) as min(n, a- ) 4.

This result suggests that the bias-corrected estimator B c - 82Sc n

should have smaller asymptotic bias for large n and small a. We state these

results as a theorem.

Theorem 2. Assume the conditions of Theorem I and (2.2). Then

Oc 0 n (0 o)Zn + op(N(e,n)).

Remarks. In Section 5, Theorem 2 is proved using the following characterization
of Note that 0- ( - B ) where n 1(j)(3 +  n

c c n n n n,1 n,2

Since XB -_ XT(I _82fi) - 1 i it follows that B maximizes (2.3) when

c i x tc" defined as
Si, c " x -.

1- * n( n ni*(32

In this sense 0 is a type of two-stage estimator obtained by doing logistic

regression with i ic replacing Xi.

The estimator i is not unbiased, just less biased. The Monte Carlo study
c

of Section 4 shows that in some realistic sampling situations the reduction in

bias is substantial.

%''*)n * * *,. * *

. - . , . .. . , i ; - ", "" , * *" * ' "" . . '.. , .',-,- - . .-.*".%
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unlike linear regression in which the errors-in-variables functional maximum

likelihood estimator is consistent when V is known.

Our final estimator starts with an assumption of normal errors and exploits

the consequences of sufficiency. Given ol and S a sufficient statistic for

estimating xi is c ( 0 ) XI + 02(yi - I)EBo; it follows that the distribution

of Yi given ci(B ) does not depend on xi. The reason for using this parti-

cular sufficient statistic is that

tyi  11C (0o)} F(c (o )ao) (3.4)
1 ~ ~ 0 1 0

and hence the score equation

n -T
(y- F(c I( )))c (B) = 0 (3.5)

1 i

is unbiased for B Equation (3.5) can have multiple solutions not all which
0

produce a consistent sequence of estimators. Since c.B) also depends on the1

unknown matrix all we propose the following modification: Let

= x + 8 2 (y -j)f (3.6)
i's ii

and define 0,, the sufficiency estimator, as the maximizer of (2.3) when ci is

replaced by i This estimator is consistent under (CI) - (C3) and (2.2) and

has the expansion given in the next theorem.

Theorem 4. Assume the conditions of Theorem 1 and (2.2). Then

= 0 + n- S- (0 )Z + o (M(,n)).
a 0 n o n p

Remarks. I. Theorem 4 does not require the assumption of normal measurement

error. Also, B can be replaced by any consistent estimator in the definition of

The effects of nonnormal measurement error and our particular choice of
i's*

x is become apparent only when 0s is expanded- through terms of order N'(o,n).

This analysis is lengthy and is not presented here.



3.2 Normal Measurement Error.

When measurement error is present there is an added source of variation

which is not accounted for by model (1.1). We now expand this model by assuming

that (Ei) are normally distributed, an assumption which is not unreasonable in

some situations. The functional log-likelihood for estimating B xi, n

is then

n

y {ylog(F(x 0))+(l-y )log(F(-,JB))-(2oz) 1(X- x I ~(x -x). (3.3)

The vectors BfV Z maximizing (3.3) satisfy

n" T

"i (Y- F( f))0 2E% i 1

There are two problems with this estimator; it depends on the unknown matrix o2 E

and solving for B and (E ) is difficult. For these reasons we suggest a
f i

modified version of . Noting the form of E we let/i

XXf -X + (Y F(X T a 2 (3.4)

and define Bf as the estimator obtained by maximizing (2.3) with ci ,f;

f is consistent under (Cl) - (C3) and (2.2) and has an asymptotic expansion

given in the next theorem.

Theorem 3. Assume the conditions of Theorem 1 and (2.2). Then
-+ -1 s-(

0 -8+ n- sn (0)Z + 02s (0 )J B + o (N(o,n)).f Bo n o n n o n,1 a p

Remarks. The functional maximum likelihood estimator, like , has a first

order bias. The bias term is not due to our one-step modification nor to V;

this fact is evident from the proof of Theorem 5.2. Logistic regression is thus

o -o .~ - '- p - , . - , - - , , -
•

- , . - - . . . . ...
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2. It is possible to define a sufficiency estimator for a large class of

"* measurement error models. In particular we have in mind the generalized linear

models with canonical link functions (McCullagh and Nelder, 1983). A complete

exposition of this theory will appear elsewhere.

In the next section results from a small Monte Carlo study are presented.

4. Monte Carlo

We conducted a small simulation experiment to determine the relative merits

of the four estimators 0, 0, f, and 8Ca

The model for the study was

Pr{yi - aldi) - + Bdi , i-l,...,n. (4.1)

We considered these sampling situations where X2 denotes a chi-squared random

.- variable with one degree of freedom:

(I) (a,B) - (-1.4,1.4), (di) - Normal (0,o = .10), n - 300, 600;

(II)(czB) - (-1.4,1.4), (di) od(X2 - 1)/.2 v2 - .10, n - 300, 600;

For'both cases, the measurement error variance 12 was one third the vari-

ance of the true predictors (T2 - o23). For each case, we considered two

" sampling distributions for the measurement errors (Ei): (a) Normal(O,c2 ) and

(b) a contaminated normal distribution, which is Normal(O,r') with probability

0.90 and Normal(0,25T2 ) with probability 0.10.

We believe these two sampling situations are realistic, but their represen-

tativeness is limited by the size of the study. The sample sizes n - 300, 600

may seem large, but our primary interest is in larger epidemiologic studies

where such sample sizes are common. For example, Clark (1982) was motivated by

a study with n - 2580, Hauck (1983) quotes a partially completed study with

n 2 340, and we have analyzed Framingham data .for males aged 45-54 with n = 589.

p .. ,a, , ,., .,w ,, . ,.: ..... ,. , .... ;
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Furthermore, the results of the study suggest that correcting for measurement

error in most small sample situations Is unwarrented.

The values of the predictor variance a2 and the measurement error varl-
d

ance 't are similar to those found in the Framingham cohort mentioned in the

previous paragraph when the predictor was log e(systolic blood pressure-75)/31,
e

a standard transformation. The ratio il/O2 - 1/3 is not uncommon; Clark
d

finds a similar ratio in her study of triglyceride. The choice of (u,B) comes

from Framingham data as well. All experiments were repeated 100 times.

In each experiment, we sampled two independent measurements (Dii. Di,2) of

each di; the observed covariate was X, - (1, D )T , where Di (D +

D )2. The matrix 02E has only one non-zero entry which was estimated by the
1,2

sample variance of (Di I - D 1,2)M.

In addition to the four estimators presented in this paper we included in

the study a proposal due to Clark (1982). She suggests the estimator 0 ob-

tained by maximizing (2.3) hen cI is replaced by i,N - X - 82fx X- )

where and f are the sample mean and covariance of the observed data. Hoti-

!

vation for this estimator derives from an assumption of normal errors and normal

covariates. In this case E(xIX) X - OL2EE1 (X - p) and hence i is
I X Ii,n

a natural estimator of xi. Theorems 5.1 and 5.2 can be used to prove consis-

tency and derive an asymptotic expansion for this estimator. Like i and Oft

N has a non-zero first order bias although it is too lengthy to present here.

Sweeping conclusions cannot be made from such a small study. However, we

" can make the following qualitative suggestions. First 0 is less variable but

more biased than the others; sample sizes such as n - 600 as in the study or

Clark's n - 2580 are such that bias dominates and hence are candidates for using

corrected estimators; an opposite conclusion holds for small sample sizes where
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variance dominates. A second suggestion from the tables is that when R loses

efficiency (Case I(b), I(b) and when n - 600), the corrected estimators perform

quite veil.

Both aand if were defined via an assumption of normal errors yet they

also performed well when the errors were contaminated normal, (Cases I(b),

11(b)). Clark's estimator proved to be sensitive to the assumption of normal

* covariates; 0 performed very well in our study when the predictors were

- normally distributed, but it did have a noticeable drop in efficiency when the

* predictors were highly skewed (Case II). Finally, the corrected estimator ic

.- which was derived with no distributional assumptions for either the predictors

or errors, performed well throughout the study.

In summary, the Monte Carlo results suggest that the estimators Oc' Oft

0 and Clark's iN are useful alternatives to i when covariates are measured

with error. The pressing practical problem now appears to be to delineate those

situations in which ordinary logistic regression should be corrected for its

" bias. Studies of inference and more detailed comparisons of alternative esti-

mators will be enhanced by the identification of those problems where measure-

* merit error severely affects the usual estimation and inference.

5. Proos of Theorems

Consider the estimator B obtained by maxiaizing (2.3) when ci is replaced

with I where

x, xi + 0V + agi (5.1)

In Theorem 5.1 we prove weak consistency of j under conditions (Cl), (C2), (C3)

and

n
(PI) gn - 0 (n)

1 p

In Theorem 5.2 an asymptotic expansion for 0 is given. The consistency and

,.'~> ~.. *. ' V- .* *..... . . . .. *.f. '. , .. *... . ., . ... * , , .... ., .- . . • , .., . .. . . ." .'?.'..,. /.,' . ... .. , ... . .-.. . * ,. -,. .. '-,.4
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asymptotic expansions of B, Bc Oft and Ba follow from theme general results

by noting that X1 6 X if' and £ all have the representaton given

in (5.1). We remind the reader that all the asymptotic expressions hold as

max(i,n-1 ) 4 0.

Theorem 5.1 (Consistency). Assume (CI), (C2), (C3), and (PI); then i -B - o (1).o p

Proof. Define L n(7) to be the function obtained by taking c -R in (2.3).

The identity log(F(t)I(I-F(t))) - t is used to show L (y) -Gn(7) - R + RS n n,1 Rn,2

where

I nT T

n (Yl - F(Xiso))Xiv ;Rn'l " 1

1

R n'n ny(xT - xi) + log F(-! T) - log F(-xTy)

Under (C2), R has mean zero and asymptotically negligible variance;

n ,I

also by (C3) and (PI),

n
|IRn,2 I 2ain Ivi + oginI - o p(1)

1 p

Consequently (CI) implies that L n(-) converges pointwise in probability to

G(-). An appeal to Theorem 11.1 of Anderson and Gill (1982) concludes the proof.

The consistency results follow by applying Theorem 5.1 first to B,

(gin - 0) and then to Oct oft and Os. Next we derive the asymptotic expansions for

these estimators.

Theorem 5.2 (Asymptotic expansion). Assume (P1) and the conditions of Theorem

1; then

-i*- -1
0B+ n S(B )Z +02S (0 +~ b3 )b + 0 * (N(on)).
o n o n n o)Jn,ln Jn,2 ) o n,3 n,41 p

where b 3  n 1

' -. %* .. - • ' '*.' . , , ,*.'•.. . .. . . ..
'. .*.*. . .. . .. .

n, i. * 0 in'-.- -
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1 (1) T T

b n,- -n (x0 o)xigin o ,

S () is given in (1.2), and Zn 0 and J are defined in (2.5).
n nJn,l' n,2

Theorem 5.2 is proved with a series of lemmas. First we sbow how Theorems

1-4 follow as corollaries. Theorem 1 is immediate since g a 0 for For

O(c/t')(I - aBT)-BTX where B t S(B)(3 + J,) "

gnn n i n n n,l n,2

Assumptions (A2), (A3), Lesma 5.1, and (2.2) imply b 3n o (1) and

b n- n F (1) MT )xxT (I a2 )l
n, o n n 0

- S (o)i B + o (1)
n o n o p

(Jn.1 + Jn,2)B + op(1),

thus proving Theorem 2.

For , V (&= /2)(Yl - F(XTI)) and (A2), (A3), Le a 5.1, and

(2.2) imply b 4 - Op(l) and

1nT

- - Jn, 2 B4 0 (1)

Theorem 3 follows. Finally for B , gin (82 /01)(Y- f)f. (A2), (A3),

Lemma 5.1 and (2.2) imply

b3 n-I F(x ))(-y j)E + o (1)
n.3 1 0 1 0

S n,2o p(1);

-1n (1) T) T
b - I (x0)( - 0 t +0(1)

- n F (xiBo)(F(xiB) - D)xiB EB ° + o (1)I 1

• = • Oo • • % o . * o o
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n,lo p

In the last step we use the identity F(2)(t) - F 1 )(t)(l - 2F(t)). This proves

Theorem 4. Notice that in deriving these results we used only the fact that

- - o (1) thus the conclusions of Theorems 3 and 4 remain unchanged 
if

is replaced by any other consistent estimator in the definitions of ii,f and

i .D In particular this implies that the fully iterated versions of the

functional and sufficiency estimators (provided consistent versions are chosen)

also satisfy Theorems 3 and 4 respectively.

The proof of Theorem 5.2 starts with the following weak law.

Lemma 5.1. Let u1 , u2, .. be independent random vectors such that E(u1) - 0
1 *o n

and E(3ul3+) S B for some a > 0 and B ( *. If I I O(n) andnI

max (jal1/n) - o(l) then n "  a i - o
l Si:Sn p

Proof. The proof of the lemma entails a routine verification of the assumptions

of Theorem 5.23, Chung, (1974) and is not given here.

Lemma 5.2. Under the conditions of Theorem 1,

.1 io inn ,o p
T

nn

Proof. n-1  (Y~ - FXT )X -T + T where
1 i o I n,1 n,2

-1 n T
T ~ -n B(Y~ F(X 0 )

1 0o

Tn,2 -on- (y~ M T( B ))V

A Taylor series expansion of F(-) shows that

T n-iz + 021 n-iQn + 01(D +
Tn,i n n,1 a+ nQ n,1  n 1)

.I .- ..-°- . - - -.-. .. ...-.. ,.,. .. . . . . .. ... . .•. . . .. . .. ., .. .
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:: _a-+ (1), T. T_

where Q Fo ix Lol

-(2n) (2)

(2 (xiB0)((viB0) BS )~

(2n 1 so) l

W-1 (2) -T F(2) T T 2
-(2n) I (F (Xo00 ) F (XB 0))(vto x 

and i is on the line segment joining x t has mean zero and

* asymptotically negligible variance thus n-fQn-lo a Op(n-1). Assumptions (A2)

and (A3) and Lemma 5.1 are used to show D n,1 Op(1). Also note that

1 n TT
IRn ,I I (2n) -  I Ix 1 (v 1o )2min(l1aIv io 1) S AnBn1

n

where An - (n-1 n | 2(Vr o)2)1

B -(n 1 i vl o)'l'1'v~t

n 0
1 n(i T T f

Assumptions (A2) and (A3) and Lema 5.1 imply AU - 0 (1) while (A3) and the fact

that max(n 1, ) -4+0 imply B w (1). It follows that o2 (D + R a (62).
n- p n,1 n, p

. Combining these results we get

T, n 1 - n- Z n+ 61n,1 0+ o (N(Vn)). (5.2)

Another Taylor series expansion of F(.) shows that

T 02.J 0+ n-1 + *(D +R
n,2 n,2o +  n2,o n,2  n,2

where Qn,2,o - an (yi - T(xT'o>)Vi;

_n- n F(1)(x T 0 T

(1) 1 1 0Dn, -n I x S~)(VlV "-E)B
1 a i
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- n-I n (F() (B o) ( T(1) ( )

and :t lies on the line segment joining x to Xt . Qn , Dn, and R are
i i £ n.2,o' n,2' n.2

all o (1); the proofs are analogous to those for Qn,,,, Dn and R respec-

tively. Consequently

T - ozjn,2 ° + p (N(u,n)). (5.3)

Combining (5.2) and (5.3) completes the proof of the lemma.

Lemma 5.3. Assume the conditions of Theorem 1 and (P1) and define

.i (y) - n- - then

n n(0o )  n- n- n + 02((Jn,1 + Jn,2)o + b 
bn,4  + o (N(a,n)).

n o n ,2 n,3 n,4

- n

where n n (yt F(X 0)) ;n,l F(XiR0))X

nT
V 2  an Z(F(X T) 7(M T)) (v asi)

n, 1 010 1 i

n
0n 2n (y F FX B ))g

n 3 0 in

n1

- 1  TW - I(F(X )-F(ITp))x
n 4 0 1o o i

Note that in light of (A2) and (P1) TW n,2or I pn s 1 in o ( .vi ain ) -

Inn 1 in i
o p(02). Also, 3W .3 - 02b n31 I 02n- J F(xiB0) - (X 1 0 )jlgin I

3 
1

1 0 IQ n IV 1v1Sg I 1I10 43(n- IV IviI)1(n Ifg o2) (- )
o 1 n 1 p

using (A) and (P1). One term in a Taylor uqries expansion of F(-) and Lemma

5.1, (A2), and (PI) show that

....

I.. ° " " " ' .''' '' ' '' 0 ,_ , • . . • , • . . . , . , , . ,- -. , ,- -
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W nn 4 -albn,41 S 02100 n-  (oIvil + 02Z1inli)xillZin

s 0'lBl an Ilv illxlllginl , - lin l I }1 1

n n

q
2 ( max Ix I)n Igin12

l~i~n 1

- op(62).
p W

An expansion for W is given in Lemma 5.2. Combining the above results proves

the Lemma.

Lemma 5.4. Assume P1 and the conditions of Theorem 1, then

o p (N(an)).

Proof. Let i (•) be the function defined in Lemma 5.3. Consider then

real-valued function of y defined as - T(Y)(0 - Bo)• The Nean Valuenn

Theorem proves the existence of some B on the line segment joining I to B0

such that

n( )(a 0) - (i - S)T(T )( - ),

-i (1) T __T
here 9 (7) n F (It i xx

It follows that 1 we min(A) -minimum

etgen value of A. Under (A2), (A3), and (P1), S(B) - Sn(B) - ap(1) hence

by ~ m (A(l)) PJ :S 1(M)l 4 1; thus 3i - B1 and 1& (0 )1

have the same order vhich, from Lemma 5.3, is 0 (N(o,n)).
P
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We are now in a position to pruve Theorem 6.2.
n

Proof of Theorem 6.2. By definition n- (y1  F(I )i 0; ex-
i I

panding F(-) in a Taylor series shows that ( - Bo) - n (P ) where
n

n-I" (1) t- S-n (x 1 Bl)::i~
I1

and for each i, Bi - B0o 
< IS - BSo. (A2), (A3), (P1), and the conclusion

of Lemma 5.4 are used to show S - S (B) - o (1). The Theorem follows from
no p

Lemma 5.4.
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TABLES

These are the results of the Monte-Carlo study. "Effici-

ency" refers to mean squared error efficiency with respect

to ordinary logistic regression.
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CASE I(a)

(a, 3) " (-1.4, 1.4), (d ) - N(0,Ou " .1), ( ) - N(0,o2  .
id *d

* c 0f N0a

n - 300 Bias -0.21 -0.04 -0.05 -0.02 -0.06

Std. Dev. 0.52 0.61 0.61 0.61 0.60

Efficiency 100% 85% 85% 84% 88%

n - 600 Bias -0.22 -0.05 -0.05 -0.02 -0.06

Std. Dev. 0.33 0.38 0.38 0.38 0.38

Efficiency 100% 108% 106% 107% 108%

CASE I(b)

Same as Case Z(a) but measurement errors

have the contaminated normal distribution.

n - 300 Bias -0.49 -0.16 -0.19 0.02 -0.20

Std. Dev. 0.34 0.48 0.48 0.54 0.46

Efficiency 100% 143% 139* 121% 143%

n - 600 Bias -0.53 -0.20 -0.21 -0.03 -0.22

Std. Dev. 0.24 0.33 0.34 0.38 0.33

Efficiency 100% 223% 215% 234% 216%

* By definition.
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CASE 11(a)

(a, 0) "(-1.4, 1.4), (d) a d(X-l)/,i2 o - 0.1, (Et) - N(0,o' - o3).

i df I dNic if i

n - 300 Bias -0.28 -0.05" -0.07 0.10 -0.08

Std. Dev. 0.47 0.58 0.57 0.66 0.56

Efficiency 100%* 90% 91% 69% 93%

n = 600 Bias -0.27 -0.03 -0.04 0.11 -0.05

Std. Dev. 0.33 0.41 0.41 0.45 0.40

Efficiency 100%* 111% 110% 85% 112%

CASE II(b)

Same as Case IT(a) but measurement errors
have the contaminated normal distribution.

n - 300 Bias -0.43 -0.13 -0.15 0.12 -0.17

Std. Dev. 0.33 0.44 0.45 0.53 0.43

Efficiency 100% 141% 134% 103% 141%

n 6 0 0 Bias -0.46 -0.15 -0.16 0.10 -0.18

Std. Dev. 0.25 0.33 0.34 0.40 0.33

Efficiency 100%* 201% 190% 159% 194%

* k By definition.

.:
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