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Summarz:,\Two sets of modified kernel estimates of a
regression function are proposed: one when a bound on
the regression function is known and the other when
nothing of this sort is at hand. Explicit bounds on
the mean square errors of the estimators are obtained.
Pointwise as well as uniform consistency in mean square

and consistency in probability of the estimators are

proved. Speed of convergence in each case is investigated.
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\\\ 1. INTRODUCTION
N \

;)The theory of regression is concerned with the pre-
diction of the value of a variable, called the response
or dependent variable, at a given value of another
(correlated) variable, called the predictor or independent
variable. Prediction is needed in several practical
situations. For example, an agriculturist wants to know
the yield of wheat at an amount of a specified fertilizer,

a meteorologist wants to forecast weather several hours

ahead on the basis of previous atmospheric measurements
and a physician is interested in determining the weight
of a patient in terms of the number of weeks he or she
has been on a diet., — — - . P! f;uuff (f -A -
Let us denote the response variable by Y and the
predictor variable (also known as regressor variable) by
X. Then the regression of Y on X evaluated at X = x

is given by

r(x) = E(Y|X = x).

It is well known that the regression curve r(X) of Y

on X is the best predictor of Y in terms of X in the

sense that if t(X) 1is any other predictor of Y, then

the average squared error incurred due to predictor t(X)

is not smaller than that incurred due to predictor r(X).
If the joint distribution of the two variables X and

Y 1is known, then the prediction of Y can be made by




computing the conditional expectation of Y at the desired
value of X. Otherwise, the regression curve r(X) is not
directly available to us. In such situations, if observa-
tions (Xl,Yl),...,(Xn,Yn) on (X,Y) are at hand, then
sometimes the theory of least square methods or that of
maximum likelihood methods can be applied to estimation of
r(x), but this may be done only if the exact model (the

i functional form) of the regression curve is known, and,
further, for the use of m.£. methods, the distribution of

the errors

e5 = Y; - E(Y;(X)

must also be known.

However, the population of all suitable functional
forms (or of the distributions of errors) is quite often
unpractically large. Therefore, no matter how carefully
chosen a model is adopted, there is always a possibility
of misspecification. Moreover, even if the exact functional
form of the regression model involving unknown parameters
is known (which is extremely rare), the above methods of
least squares and/or of the maximum likelihood sometimes
do not work at all. This is especially the case when the
model is the mixture of polynomial, exponential, reciprocal,
logarithmic, trigonometric and/or likewise functions of the

regressor variables, each involving unknown parameters.
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The problems of estimation »f a regression curve r when
nothing is known about the functional form of r but the
conditional density of Y given X = x is known to belong
to certain class of densities have been treated by Kale
(1962), Nadaraya (1964, 1965), Singh and Tracy (1977) and
Singh (1980). Whereas in the first three of these papers,
the conditional density of Y given X = x 1is normal with
mean x and variance one, and the unconditional distribution
function of X possesses a density, in the third and fourth
papers the density of Y given X = x is of the form
C(y)u(x)e ¥* and C(y)u(x)e'y/x respectively and the
distribution of X need not possess a density. However,
the methods cited in these works are too restrictive and
may also lead to misspecification of the model, because the
conditional density of Y given X = x 1is rarely known or
may incorrectly be specified.

The only way of avoiding misspecification of the func-
tional form of the regression model or of the distributional
form of the errors is, in fact, to assume no specific para-
metric functional form of the model or of the distribution
of errors, that is to estimate the regression function completely
nonparametrically. Nadaraya (1964), Watson (1964), Rosenblatt
(1961), Noda (1976) and Collomb (1977, 1979) are among the

firsts to consider estimating regression function r by r, (defined belowﬁ
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.................
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nonparametrically using Rosenblatt (1956) - Parzen (1962)

type kernel estimates of a density function. Various
asymptotic properties of these estimates, known as kernel
estimates of a regression function, have been studied in

the literature by a number of authors including the above
authors as well as by Nadaraya (1974), Konakov (1977) and
Révész (1979). schuster (1972) proved the asymptotic

normality of these estimates whereas Noda (1976) proved the
pointwise strong consistency and Collomb (1979), Devroye (1979), Wandl
(1980) and Mack and Silverman (1982) proved uniform strong
consistency. Devroye and Wagner (1980)

and Spiegelman and Sacks (1980) proved LP convergence of

r, in the sense that iir E[Irn(x)-r(x)lpdu(x) « 0 where

p 1is a probability measure generated by the r.v.X. How-
ever, strong convergence (pointwise or uniform) and LP
convergence concepts differ from the pointwise and/or

uniform mean square consistency concept we shall deal with.
Moreover the kernel estimates L of a regression function based
on a sample {(Xl,Yl),...,(Xn,Yn)} on (X,Y) considered in

the above and other works are defined by L (hn/gn) where

haG) = ()71 T YK((X;-x)/8)) and
j=1 J J

n
g,(x) = (né)"1 '21 K((X;-x)/8), with K and & being
Jt

respectively the kernel and the windowwidth funetiens.




Hence with such an estimate, since the kernel function K
could assume a zero, negative or positive value, there is
always a chance of blowing up the estimate hn/gn itself
(or of excessively overestimating the regression) in
practice for any given set of data whenever 8, is near
zero. To avoid this problem, in this paper we consider a
modified kernel estimate which is a retraction of the
function hn/gn to an interval [-cn,cn] with c, con-
verging to infinity with certain rate.

In Section 2 we introduce our modified kernel estimate
of the regression function. In Section 3 we prove point-
wise mean square, consisteney and duduce from it the weak

consistency of our estimates. In each case the speed of

convergence is examined. An explicit bound for the mean
square error, lacking to date in the literature for the
kernel type regression estimates, is also obtained. 1In
Section 4 uniform mean square and uniform weak consistencies
are proved and their speeds of convergence are investigated.

In Section 5 remarks are made on the choice of windowwidth

function, kernel function and the sequence {cn}.

Throughout this paper convergence of a function de-
pending on n 1is w.r.t. n + o, The integrals without

showing the limits are over the whole real line.

2. ESTIMATORS OF REGRESSION CURVES

Let f be the joint density of the regressor variable

X and the response variable Y and, let

h(x) = [yf(x,y)dy




...........................

Then the regression curve of Y on X evaluated at

X = x is

=
s

(x

(2.1) r(x) = E(Y|X = x) = , provided g(x) # 0.

B

Our method of estimation of r involves estimation of h
and g on the basis of the random sample {(Xl,Yl),...,(Xn,Yn)}
on (X,Y).
Let s be a positive integer and KS be the class of
all real valued Borel measurable bounded functions K such

that

(2.2)  [K()dy =1, [yIK(y)dy =0  for j = 1,...,s-1,

[ly|®|K(y)|dy < = and |yK(y)| + 0 as |y| + =.

Kernels of the type (2.2) have been used in density estimates
by Johns and Van Ryzin (1972), and Singh (1977 and 1981),
among others. For any given s, the class Ks is quite
large. For example, for s =1 and 2,
-1/2

K(y) = (2m)" Y/
K(y) = (Za)'ll(-a <y <a) foran a > 0 belong to K,
-1/2 2

[2 exp(-y~/2)

exp(-y2/2)I(-= < y < =) or

For s =3 and 4, the functions K(y) = (27m)
- (1/2)exp(-y%/4)1I(-= <y < =) or
K(y) = (2m) 2 2(1/2) (3-y®)exp(-y2/2)I(-= < y < =) belong

to KS. For any given s, polynomials K(y) in y on a

finite interval (a,b) belonging to KS can be constructed

(e.g. see Singh (1981)).
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Let 6 = Gn and n = U be two positive sequences of numbers

based on the sample size n so that max{sn,nn} + 0 as

n +o, Let x be a point at which we wish to estimate

r(x). For & fixed s, let K be a fixed member of Ké. Let

~ -1 n X.-Xx
(2.3) h(x) = (ns) ) ij[_%r_]

- =1

- and

s a -1 n X.-:{\
3 (2.4) g(x) = () © ] K ‘lﬁ—J
g j=1

- Let

A

(2.5) 00 = 2E
g(x)

In the existing literature the kernel type estimates

of the regression curve (excluding those of the type con-

sidered in Priestley and Chao (1972), Bhattacharya (1976), Benedetti (1977),
E Stone (1977) and Wahba (1978)) are exactly of the type

? (2.5). However as noted earlier, g(x) could be zero
or near zero at a number of points x for any given set

& of data on (X,Y) with a number of symmetric kernels K.

In such situations it is hardly advisable to use r.oas
an estimate of r. To avoid such problems in this paper,
we propose a retraction of T and study pointwise as

well as uniform consistencies,
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For a position b, let {a}b stand for -b, a or b
according as a < -b, |a| s b or a >b. Let c, = c,(x) be a
?i positive function of n and x which for each x con-
éz verges to infinity as n -+ =, Our proposed estimator of
o r(x) is
_1 n rx.'X]W
s Y.K —%r-
~ J'__Z_l J \
(2.6) r(x) = { , b
.1 B X.-x
n Z K -
. n c .
: j=1 J ‘’n
However, if we have the knowledge of some function cu(x)

such that -co(x) s r(x) s co(x), our proposed estimator

of r(x) would be

( , )
.1 m X.—x]
8 ZY.K-JT—
" _ j=1 ]t
r*(x) = | » *
) n .-X
oy K—L—-]
1 LA

A discussion on the choice of o the bandwidth

functions 68 and n and the kernel function K 1is made

in Section 5.

3. POINTWISE CONSISTENCIES WITH AN UPPER

BOUND FOR MEAN SQUARE ERRORS

In this section we prove the pointwise mean square

consistency (and hence also the consistency in probability)




of our estimators T and r*, and obtain the speed of
convergence in each case. In the sequel we prove also the
mean square consistency of ﬁ and ﬁ as estimators of h
and g and establish the speed of convergence. An explicit
bound for the mean square errors of T and r* are also
obtained.

We denote g (x) = ff(s’o)(x,y)dy where
€50 (x,y) = 25£06,y)/0x%, h () = [ye(5: 0 (x,y)dy and
p(x) = fyzf(x,y)dy. Under certain regularity conditions
g and hs are the sth partial derivatives of g and h.
We however make no such regularity assumptions. Whenever
there is no ambiguity, we will not display the argument x
in r(x), T(x), T*(x), ¢ (x), h(x), g(x), hy(x), g4 (x) and

p(x) throughout this paper.

Theorem 3.1. Let hs’ g§; and p be continuous at x and
g(x) > 0. Then
- 2 2
(3.0) E(F(x)-1(x))% = 0(civ)
where
Y, © max{dzs,ﬂzs,(nﬁ)-l,(ﬂﬂ)-l}-

To prove the theorem we will need three lemmas, the first

of which i1s due to Singh (1977b).




Lemma 3.1. If g in the definition of r is not zero,

then for every L > 0,

~ ) “ 2 .
(3.1) E(R - £1a0)? s 8(e) " MEM-n 2 () 2 l0E -0 ).

g

Proof. The inequality is a special case of the lemma in
the Appendix of Singh (1977b) and hence it does not need a

separate proof.

In the next two lemmas we prove the mean square con-
sistencies of h as an estimator of h and of g as an
estimator of g respecitvely, and in each case we obtain

rates of convergence. With some choices of § and n

-Zs/(l+25))

these rates are of the order 0(n and hence

-1

can be made arbitrarily close to O(n °) by taking s

sufficiently large . (subject to (2.2)).

asymptotic behaviour of the mean square error of h at x

is given by

E(h(x)-h(x))?

(3.2) MSE(h(x))

?

S 9 -
(& h (0 [e5k(0))7 + (m8) Lpx) [KE).

Proof. We first obtain the asymptotic behaviors of Eh

and var(ﬁ). Then we combine these to obtain (3.2).

Lemma 3.2. Let hS and p be continuous at x. Then the

~ YT
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Since (xl’Yﬂ""’(Xn’Yn) are i.i.d. with joint

density £, from (2.3), we can write
(3.3) Eh(x) = [[yK(t)£(x+8t,y)dtdy.

Now expanding f(x+6t,y) at (x,y) 1in &t by Taylor
series expansion with the integral form of the remainder,

we write

s-1 Jj
feat,y) = 1L
J=

£0:9) (x,y)
x+dt
* 5T fx (x+st-w) 71050 (u y) u.

In view of this expansion and the orthogonality properties

(2.2) of K we get from (3.3),

(3.4) Eh(x) = [y£(x,y)dy
x+6t .
+ IIYK(t){TET%TT Jx (x+6t-u)b-1f(s’0)(u,y)du}dtdy
Thus,
(3.5) & SE(h(x)-h(x)) = 6 ° [ IyK(t) Jx+6t(x+6t-u)s-l
(s-1)1 x

-£05:0) (4 y)dudtdy.

But since x 1is a point qf continuity of hs(x) = [yf(s’o)(x,y)dy,
K is bounded with |yK(y)| + 0 as |y| - =, by arguments
used in Singh (1977a) or in Menon, Prasad and Singh (1981),

the rhs of (3.5) is, as n + =, asymptotically equivalent to




.
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X+t

=S
TEgTTT fy£C 0 (x,y) fr(t) [ (x+6t-u)* 1dudtdy

X

h
- 7 [t3k(t)dt,

and we conclude that, as n + =,
A . h_(x)
(3.6)  (Eh(x)-h(x)) ~ 8 (p— [t7K()).

Now we will evaluate the variance of h. By a change

of variable we see that

X,-x
(3.7) s BV, k()12 = kP (t)yPE(xest,y) dtdy.

Since p 1is continuous at x, by arguments similar to
those given in Lemma 1 of Parzen (1962), the r.h.s. of
(3.7) is asymptotically equivlaent to p(x)fKZ. Further,

since

-1 Xp-x 2 2 ~ o2
8T [EY,K(—5—) 1" = 8[J[yK(t)£(x+6t,y)dtdy]® = §(Eh(x))

-1 Xy-x 12
by (3.3), we have from (3.5), ¢ [EYlK(—1§-)] = o(l).
Thus since (xl,Yl),...,(Xn,Yn) are i.i.d., we conclude

that

(3.8) var(h(x)) ~ (n8) 1p(x) [KZ.

Now (3.6) and (3.8) give (3.2). This completes the

proof of Lemma (3.2).
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Lemma 3.3. If g, is continuous at x, then

] |
(3.9)  MSE(§(x)) ~ [(X g,(x)[t°k(r)) e(an) " Lg(x) fx?],

and if, instead, g(s), the sth order derivative of g

is continuous at x, then (3.9) holds with g replaced

by g'®).

Proof. Proof of (3.9) follows by arguments given for (3.2).

Remark 3.1. Taking 6 and n proportional to n-1/(2s+1)

we see from (3.2) and (3.9) that MSE(h) and MSE(g) are

both of the order o(n-Zs/(1+Zs)).

The value of & that
minimizes the rhs of (3.8) and that of n that minimizes

the rhs of (3.9), are, nevertheless, given by

- 1/(1+2s)
(3.10) &%= n" 7P (x) [K?
2s (hg (x) [t5K(t)/s1)*

and

1/(1+25)
(3.11) n*=[ n”tg(x) [K? ]
2

s (g4 (x) [t5K(t)/s1)*

respectively. Using these optimal values of & and n one
can easily obtain the asymptotic values of the mean square
errors of ﬁ and § which are minimum over the class of
all windowwidth functions 6 and n. However, since the
exact value of the ratio p(x)/hi(x) for é6* and of the

ratio g(x)/gg(x) for n* are not known, only approximate
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values of & and n* (by getting approximate values of
these ratios), can be used in practice. The expression for
n* is noted in Rosenblatt (1956) (for s = 2) and in

Singh (1979) for general s, among many others.

Proof of Theorem 3.1. Writing |%-r| = |(r-(x)_)+((r)_ -7)],
n n

we have with probability one,

|-r] sq% - x| A e Irlndlnl > o).
g

Hence by Lemma 3.1,

(3.12)  E(r-r)% s 16(g) l[E(R-h)?
+ 3 max{|r|?,c1ER-8) %)

+ 2lrl?1(ir] > ).

Now since C,* ™ as n -+ =, there exists an n, = no(x)
such that for all n 2 n;, c (x) 2 |r(x)| and the second
term on the rhs of (3.12) is equal to 2ero for all n 2 n,.
The rest of the proof is now an immediate consequence of

(3.2) and (3.9).

Remark 3.2. Notice that (3.12) gives an explicit bound for

each sample size for the mean square error of the estimator

of the regression curve in terms of MSE(ﬁ) and MSE(&).

N T
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Exact asymptotic expressions for these terms are in turn
presented in (3.2) and (3.9) respectively. Hence the
exact asymptotic value of the bound (3.12) for MSE(?)
is at hand. To the best of our knowledge an explicit
bound with an exact asymptotic value for the MSE of a
nonparametric regression curve estimate, of whatsoever
nature it may be, is lacking in the existing literature,

inspite of a large number of articles on the subject.

Remark 3.3. From Theorem 3.1 it follows that if & and

n are chosen in a way so that

(3.13) §~n = o(n 1(1*28)y

then Yo defined in Theorem 3.1 is of the order,

(3.14) v, = 0(n~25/(1+25))
and
(3.15) MSE(T(x)) = 0(n‘25’(1*25)cﬁ).

Remark 3.4. As pointed out earlier, if there is a known

cy(x) such that [r(x)| s cy(x), we would instead consider
estimating r by r* defined in Section 2. It follows

from the proof of Theorem 3.1 that

(3.16) E(r*(x)-1(x))% = 0(v,).

Thus r* achieves a MSE rate of convergence better than r,
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The following (3.17) and (3.18) are immediate con-
sequences of (3.15) and (3.16).

Corollary 3.1. (Weak consistency). Under the conditions - 1

of Theorem 3.1 and (3.13), for every sequence a * @

(3.17) IT(x)-r(x)| = o(n’sll*zscn(x)-an) in prob.

and

(3.18) [r*(x)-1(x)| = o(n'l/l+zsan) in prob.

Remark 3.5. It is clear from the results in (3.0), (3.14),

(3.17) and (3.18) that larger the s the better the rate
of convergence. However, choosing a larger value of s
means putting more restrictions on h and g. Further,
any choice of s more than 4 or 5 makes the computation
of h and § difficult. It is seen quite often in the
case of density estimates that the improvement in the rate
of convergence with an s being 5 or more is not signifi-
cant compared to the extra difficulty one incurs in the
computation of the estimates. The same is expected in the

case of regression estimates.

4, Uniform consistencies

In Section 3 we proved the mean square consistency and
deduced the consistency in probability of the estimators

A
r and r* at a point x, and in each case we investigated

the speed of convergence. In this section we plan to prove

- -
o »
LR,
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the uniform mean square consistency as well as the uniform
consistency of r and r*. The following Theorem follows

directly from the proof of Theorem 3.1.

Theorem 4.1. Let B be any subset of the real line such

that inf _.g(x) > 0 and supxeBIr(x)l < = (the bounds

in respective cases need not be known), and p, hs and

gg are uniformly continuous on B. Then

(4.1) supxeBE(;(x)-r(X))2 = O(Yn'C;Z)

= : . N
where ch supceBcn(x), and Y, is as defined in

Theorem 3.1. Also

(4.2) supxeBE(r*(x)-r(x))2 = 0(v,).

Thus if 8 and n are proportional to n-l/(1+25)’

then

(4.1)'  sup, gMSE(T(x)) = 0(n~2/8/(1+25) 2
and

(4.2)"  sup. MSE(r*(x)) = o(n 25/(1*2s)y

xeB

The result (4.1) or (4.2) does not however prove the
uniform weak consistency of r or r*. If the characteris-

tic function of K is absolutely integrable and EIYI2 < ®,

then it can be shown (e.g. see Singh and Ullah (1985)), that

(4.3) E{Supxlfl(x)-Eﬁ(x)l} = 0((!16)‘1/2).
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Hence it follows from Lemma 3.2 that if hs and p are

uniformly continuous on B, then

(4.4) E{sup_ g|h(x)-h(x)|} = 0(max{s5,(ns) /2 )
which in turn implies that
~ s -1/2 .
supxeBIh(x)-h(x)l = 0(max{8”,(ns) }) in prob.

Similarly, if the characteristic function of K is abso-

lutely integrable and 8 is uniformly continuous, then

(4.5) E{supxeBlg(x)-g(x)l} = O(max{ns,(nn)-l/z}

and

sup__5|28(x)-g(x)| = 0(maxi{n$(nn)"1/%}) in prov.

To deduce the uniform weak consistency of T and r*
from the above analysis, notice that as in the proof of
Theorem 3.1, |r-r] is bounded a.s. by I(ﬁ/ﬁ)-h/g)l A Co

IrjI(|r] > c,)» and the proof of the lemma in the

Appendix of Singh (1977b) gives
E Supxeg(l %l ac (x)) s 2(inf  pe(x)) -1
*{E sup, p|h(x)-h(x)|+(sup  g|r(x)|+cA)E sup _.|8(x)-g(x)|}.

Further, there exists an ng, such that for all n 2 Ny
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0 (this follows because

sup, gl T(X)I(Ir(x)]| > c (x))

sup Ir(x)| < =, though the upper bound need not be known,

xeB
and cn(x) + @ for each x in B). From these analyses

and (4.4) and (4.5) we conclude the following theorem.

Theorem 4.2. Let EIYI2 < =, and for a subset B of the

real line, the hypothesis of Theorem 4.1 hold. Then

(4.6) E{supxeBI;(x)-r(x)l} = O(Y;/Z-c;)
and
(4.7) E{supxeBlr*(x)-r(x)I} = O(Y;/z).

Thus from (4.6), supxeBI?(x)-r(x)l = O(Yi/zc;) in

probability, and from (4.7), supxéBlr*(x)-r(x)I = O(Yilz)

in probability. Taking § and n :-proportional to n~1/(1*2s)

Y, 1s of the order n-2/(1+2s).

S. SOME CONCLUDING REMARKS

The choice of <h in the definition of our estimator
T is completely arbitrary, and it is not possible to give
an explicit formula to determine a value of ch which may
fit well in all practical situations. If, however, in a
particular situation, we have some knowledge, say AO, of

the range of the possible values of the response variable




Y, we may choose cn(x) = Aoan where a, is a slowly

converging to infinity sequence of n, something like
log n or 1loglog n (depending on how good is our know-
ledge about the range of Y). In any case, <, must be

chosen so that n~s/(1+2s)

n " 0 as n +» =,

Examining the asymptotic expressions of MSE(ﬁ) and
MSE(g) obtained in Section 3, we remark that one should
choose K so that IftsK(t)dtI and sz(t)dt be as
small as possible. This is also the case even if one
uses the optimal &8 and n given in (3.10) and (3.11)

respectively, since with these choices of & and n,

mén(MSE(ﬁ(x))) ~ n'zs/(l*zs)wlcx) where

|h, (x) t3K(t)] 5 5)2/1+2s
wi(x) = (1+2s5){ = - [Eng K
and
min(MSE(§(x))) ~ n 28/ (1*28)y (x)
n
where /
|84 (x) [tK(t)] 5. 5)2/(1+2s)
wy(x) = (1+2s) S - [g(x)zs!(

Now examining the optimal values of & and n given

in (3.10) and (3.11), we remark that 6 and n should be

n-l/(1+Zs)

proportional to . (This has been pointed out

in a number of articles on density estimates dealing with

rates of convergence, e.g. Singh (1977, 1979).) Examining
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the estimates ﬁ, we see that var(ﬁ) will be large
whenever the var(K((Xj-x)/n)) is large, which in turn
will be inflated when var(Xj) = oi (say) is large. To

control this (and hence to control var(é)) to some

extent, we remark that n should also be proportional to

Oy» that is, if possible, n should be taken to be oon',
where % is a good guess of Oy and n' 1is proportional
to n 1/1*25  ye have the same view with & as well.
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