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Modified nonparametric kernel estimates of a regression

function and their consistencies with rates

by

Radhey S. Singh
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and

Manzoor Ahmad
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and
Center for Multivariate Analysis) -- 4\ University of Pittsburgh

Summary: A Two sets of modified kernel estimates of a
regression function are proposed: one when a bound on

the regression function is known and the other when

nothing of this sort is at hand. Explicit bounds on

the mean square errors of the estimators are obtained.

Pointwise as well as uniform consistency in mean square

and consistency in probability of the estimators are

proved. Speed of convergence in each case is investigated.
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1. INTRODUCTION

)The theory of regression is concerned with the pre-

diction of the value of a variable, called the response

or dependent variable, at a given value of another

(correlated) variable, called the predictor or independent

variable. Prediction is needed in several practical

situations. For example, an agriculturist wants to know

the yield of wheat at an amount of a specified fertilizer,

a meteorologist wants to forecast weather several hours

ahead on the basis of previous atmospheric measurements

and a physician is interested in determining the weight

of a patient in terms of the number of weeks he or she

has been on a diet. - -- - -Y - A -

Let us denote the response variable by Y and the

predictor variable (also known as regressor variable) by

X. Then the regression of Y on X evaluated at X - x

is given by

r('x) - ECYIX - x).

It is well known that the regression curve r(X) of Y

on X is the best predictor of Y in terms of X in the

sense that if t(X) is any other predictor of Y, then

the average squared error incurred due to predictor t(X)

is not smaller than that incurred due to predictor r(X).

If the joint distribution of the two variables X and

Y is known, then the prediction of Y can be made by



--

computing the conditional expectation of Y at the desired
value of X. Otherwise, the regression curve r(x) is not

directly available to us. In such situations, if observa-

tions (X 1 ,Y 1 ) , . . . (Xn , Yn) on (X,Y) are at hand, then

sometimes the theory of least square methods or that of

maximum likelihood methods can be applied to estimation of

r(x), but this may be done only if the exact model (the

functional form) of the regression curve is known, and,

further, for the use of m.t. methods, the distribution of

the errors

e. = Y. - E(Y.IX)

must also be known.

However, the population of all suitable functional

forms (or of the distributions of errors) is quite often

unpractically large. Therefore, no matter how carefully

chosen a model is adopted, there is always a possibility

of misspecification. Moreover, even if the exact functional

form of the regression model involving unknown parameters

is known (which is extremely rare), the above methods of

least squares and/or of the maximum likelihood sometimes

do not work at all. This is especially the case when the

model is the mixture of polynomial, exponential, reciprocal,

logarithmic, trigonometric and/or likewise functions of the

regressor variables, each involving unknown parameters.

,%6
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The problems of estimation ef a regression curve r when

nothing is known about the functional form of r but the

conditional density of Y given X - x is known to belong

to certain class of densities have been treated by Kale

(1962), Nadaraya (1964, 196S), Singh and Tracy (1977) and

Singh (1980). Whereas in the first three of these papers,

the conditional density of Y given X = x is normal with

mean x and variance one, and the unconditional distribution

function of X possesses a density, in the third and fourth

papers the density of Y given X = x is of the form

C(y)u(x)e yx and C(y)u(x)eyIx respectively and the

distribution of X need not possess a density. However,

the methods cited in these works are too restrictive and

may also lead to misspecification of the model, because the

conditional density of Y given X = x is rarely known or

may incorrectly be specified.

The only way of avoiding misspecification of the func-

tional form of the regression model or of the distributional

form of the errors is, in fact, to assume no specific para-

metric functional form of the model or of the distribution

of errors, that is to estimate the regression function completely

nonparametrically. Nadaraya (1964), Watson (1964), Rosenblatt

(1961), Noda (1976) and Collomb (1977, 1979) are among the

firsts to consider estimating regression function r by rn (defined below

! ' °. ° '" -. ° . ' ' '° ,. I° "m " . . " " - " ° . " ," -." " ." .'" - . . . . ." ° ° " " ° .. - °

• .-. '' v . ,.,..-...- -* *.".--"..--..." ',* .,.'..- ." .. ' *..:.- . '..- .,.... . . .'. ...- ,_-.-'- .:. 2,
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nonparametrically using Rosenblatt (1956) - Parzen (1962)

type kernel estimates of a density function. Various

asymptotic properties of these estimates, known as kernel

estimates of a regression function, have been studied in

the literature by a number of authors including the above

authors as well as by Nadaraya (1974), Konakov (1977) and

Rgv6sz (1979). Schuster (1972) proved the asymptotic

normality of these estimates whereas Noda (1976) proved the

pointwise strong consistency and Collomb (1979), Devroye (1979), Wandi

(1980) and Mack and Silverman (1982) proved uniform strong

consistency. Devroye and Wagner (1980)

and Spiegelman and Sacks (1980) proved LP  convergence of

rn in the sense that lim Efir (x)-r(x)IPdp(x) - 0 wheren nn

1u is a probability measure generated by the r.v.X. How-

ever, strong convergence(pointwise or uniform) and LP

convergence concepts differ from the pointwise and/or

uniform mean square consistency concept we shall deal with.

Moreover the kernel estimates rn of a regression function based

on a sample {(XlY 1)f...,(XnYn)) on (X,Y) considered in

the above and other works are defined by rn (h /gn) where
n/gn

h =x -n Y.K((XW-x)/6)) andhn (x n) jul j
:22 n

gn(X) = (nS "  I K((X.-x)/6), with K and 6 beingj-1

respectively the kernel and the windowwidth functions.

*- .--.-.. ** * . . . . . .

*. * S"- . ... . . * '.'. . . ' .
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Hence with such an estimate, since the kernel function K

could assume a zero, negative or positive value, there is

always a chance of blowing up the estimate hn gn  itself

(or of excessively overestimating the regression) in

practice for any given set of data whenever gn is near

zero. To avoid this problem, in this paper we consider a

modified kernel estimate which is a retraction of the

function hn/gn  to an interval [-cncn] with cn con-

verging to infinity with certain rate.

In Section 2 we introduce our modified kernel estimate

of the regression function. In Section 3 we prove point-

wise mean square, consistency and dolduce from it the weak

consistency of our estimates. In each case the speed of

convergence is examined. An explicit bound for the mean

square error, lacking to date in the literature for the

kernel type regression estimates, is also obtained. In

Section 4 uniform mean square and uniform weak consistencies

are proved and their speeds of convergence are investigated.

In Section 5 remarks are made on the choice of windowwidth

function, kernel function and the sequence {c n.n

Throughout this paper convergence of a function de-

pending on n is w.r.t. n -,-. The integrals without

showing the limits are over the whole real line.

2. ESTIMATORS OF REGRESSION CURVES

Let f be the joint density of the regressor variable

X and the response variable Y and, let

h(x) - fyf(x,y)dy and g(x) ff(x,y)dy.

tt° . a .. . .**~ . . . . ..•-,. . .. . . . . -. . .o . . °" .° . • , . - .° . .° o ., - -. o



-6-

Then the regression curve of Y on X evaluated at

X - x is

(2.1 r~x * EYIX ) -h(x)
(2.) ~x E(IX x) g-(x provided g(x) 0.

our method of estimation of r involves estimation of h

and g on the basis of the random sample {(Xi~Yi),..p(X n 'Y n))

on (X,Y).

Let s be a positive integer and Ks be the class of

all real valued Borel measurable bounded functions K such

that

(2.2) JK(y)dy - 1, fyjK(y)dy - 0 for j - ,..s1

f JyI 5IK(y) Idy < and jylC(y)I - 0 as Ily

Kernels of the type (2.2) have been used in density estimates

by Johns and Van Ryzin (1972), and Singh (1977 and 1981),

among others. For any given s, the class K sis quite

large. For example, for s =1 and 2,

..-1/2 2K(y) =(277) exp(-y /2)1(-- < y < ~) or

*K(y) - (2a) 1I(-a < y < a) for an a > 0 belong to K

For s = 3 and 4, the functions K(y) -12/) 2 ex(1/2)

-(l/2)exp(-y /4) JI(-- < y < ~)or

K(y) =(27r) 1 (/")(3-Y )exp(-y /2)1(--o < y< ~) belong

to K. For any given s, polynomials K(y) in y on a

finite interval (a,b) belonging to K5  can be constructed

(e.g. see Singh (1981)).
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Let 6 6n  and n = nn be two positive sequences of numbers

based on the sample size n so that max{6n,nn } * 0 as

n * -. Let x be a point at which we wish to estimate

r(x). For a fixed s, let K be a fixed member of Ks . Let

(2.3) h(x) (n6 )l Y K(..~?. j-1

and
(2 c .4) 9cx) (nn) 1  : ,,[X n.

j'1

Let

(2.5) rn(X) =
g(x)

In the existing literature the kernel type estimates

of the regression curve (excluding those of the type con-

sidered in Priestley and Chao (1972),Bhattacharya (1976), Benedetti (1977)

Stone (1977) and Wahba (1978)) are exactly of the type

(2.5). However as noted earlier, (x) could be zero

or near zero at a number of points x for any given set

of data on (X,Y) with a number of symmetric kernels K.

In such situations it is hardly advisable to use rn as

an estimate of r. To avoid such problems in this paper,

we propose a retraction of :r and study pointwise as
n

well as uniform consistencies.
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For a position b, let {a}b stand for -b, a or b

according as a < -b, lal s b or a > b. Let cn = c n (x) be a

positive function of n and x which for each x con-

verges to infinity as n ®. Our proposed estimator of

r(x) is

(2.6) r(x) = j=l
-in X. -x

n" Kjn Cn

However, if we have the knowledge of some function c0(x)

such that -c0(x) r(x) 5 c0 (x), our proposed estimator

of r(x) would be

*-i n (X.-x~6- 1 Y.K[
r*(x) =j

n KCO

A discussion on the choice of cn, the bandwidth

functions 6 and n and the kernel function K is made

in Section 5.

3. POINTWISE CONSISTENCIES WITH AN UPPER

BOUND FOR MEAN SQUARE ERRORS

In this section we prove the pointwise mean square

consistency (and hence also the consistency in probability)

* *.

i. . . . .... . . ... , .. .
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of our estimators r and r*, and obtain the speed of

convergence in each case. In the sequel we prove also the

mean square consistency of h and g as estimators of h

and g and establish the speed of convergence. An explicit

bound for the mean square errors of r and r* are also

obtained.

We denote gs(x) = ff(sO)(x,y)dy where

f sO(xRy) = aSf(x,y)/axS, hs(x) = fyf (s O ) (x,y)dy and

p(x) = fy2f(x,y)dy. Under certain regularity conditions

gs and hs  are the s th partial derivatives of g and h.

We however make no such regularity assumptions. Whenever

there is no ambiguity, we will not display the argument x

in r(x), r(x), r*(x), cn (x), h(x), g(x), hs(x), gs(x) and

p(x) throughout this paper.

Theorem 3.1. Let h5, gs and p be continuous at x and

g(x) > 0. Then

(3.0) E(r(x)-r(x))2 O(c.yn)

n n

where

Yn= max{62sIn2s (n6)- I(nn)- }

To prove the theorem we will needthree lemmas, the ff'rst

of which is due to Singh (1977b).

-=. A .° .j .
A .. °o"

! i -. i- '  2 i.?. ," . ..,, ."-"---i', '. -- ', i .- ,- --- ,i, '." , "-''", "-'. .- , - - -- -. -, - " " " - . . . . . .
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Lemma 3.1. If g in the definition of r is not zero,

then for every L > 0,

(3.1) E(h 2 8(g) 1 [E(h-)2+( 12+L 2

S 8(g)) Eh-h) I(r F *yEg -g)
g

Proof. The inequality is a special case of the lemma in

the Appendix of Singh (1977b) and hence it does not need a

separate proof.

In the next two lemmas we prove the mean square con-

sistencies of h as an estimator of h and of g as an

estimator of g respecitvely, and in each case we obtain

rates of convergence. With some choices of 6 and n

these rates are of the order 0(n'2S/(l 2s)), and hence

can be made arbitrarily close to 0(n 1 ) by taking s

sufficiently large.(subject to (2.2)).

Lemma 3.2. Let h. and p be continuous at x. Then the

asymptotic behaviour of the mean square error of h at x

is given by

(3.2) MSE(h(x)) = E(h(x)-h(x))2

[& hs(x) f tSK(t))" 2 (n6) lp(x) f K2l

Proof. We first obtain the asymptotic behaviors of Eli

and var(h). Then we combine these to obtain (3.2).



Since (XipY?)'***p(Xn1Yn) are i.i.d. with joint

density f, from (2.3), we can write

(3.3) Eh(x) - ffyK(t)f(x+St,y)dtdy.

Now expanding f(x+6t,y) at (x,y) in 6t by Taylor

series expansion with the integral form of the remainder,

we write

f(x+tSt,y) =sl £A.t2. f(jI,O) (X,y)

+ 1 IF (x+6t-u) s-i (s 0)

In view of this expansion and the orthogonality properties

(2.2) of K we get from (3.3),

(3.4) Eh(x) =fyf(x,y)dy

* f'yKt){ 5 ) J +tt -u) -1f' (so(uy)du dtdy.

Thus,

(3S -E(h(x)-h(x)) (si!ffyK(t) j(x+6t-u)

*f(S,O) (u,y)dudtdy.

But since x is a point of continuity of h (x) - fyf(SIO)(x,y)dy,

K is bounded with IyK(y)J -* 0 as Jyj w by arguments

used in Singh (1977a) or in Menon, Prasad and Singh (1981),

the rhs of (3.5) is, as n - ,asymptotically equivalent to
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(s-)T fyf(S 0) (x,y)fK(t) (x+6t-u)'dudtdy

"- h

-T ft K(t)dt,

and we conclude that, as n + o,

6 h5 (x)
(3.6) (Eh(x)-h(x)) s s  ftSK(t)).

Now we will evaluate the variance of h. By a change

of variable we see that

1l- 2 2(3.7) 6-1E [Y1 K (- - -ffK2(M) f(x+6t,y) dtdy.

Since p is continuous at x, by arguments similar to

those given in Lemma 1 of Parzen (1962), the r.h.s. of

(3.7) is asymptotically equivlaent to p(x)fK 2. Further,

since

[EY 1 K(6) ]- 6[ffyK(t)f(x+6t,y)dtdyJ 6(Eh(x))

by (3.3), we have from (3.5), 6"I[EY1 K(T)]2 = o(1).

Thus since (XI,YI),...,(XnYn) are i.i.d., we conclude

that

(3.8) var(h(x)) ~ (n)-ip(x)fK2 .

Now (3.6) and (3.8) give (3.2). This completes the

proof of Lemma (3.2).

............-



Lemma 3.3. If gsis continuous at x, then

and if, instead, g (S) the st order derivative of g

is continuous at x, then (3.9) holds with g5 replaced
Cs)

Proof. Proof of' (3.9) follows by arguments given for (3.2).

Remark 3.1. Taking 6 and n proportional ton-12sl

we see from (3.2) and (3.9) that MSE(h) and MSE(g) are

both of the order O(n 2 5(+S) The value of 6 that

minimizes the rhs of (3.8) and that of n that minimizes

the rhs of (3.9), are, nevertheless, given by

(3.10) 6* LS -h5 (x) K 2t / 1 /(1+2s)

and

respectively. Using these optimal values of 6 and rj one

can easily obtain the asymptotic values of the mean square

errors of h and g which are minimum over the class of

all windowwidth functions 6 and n. However, since the

exact value of the ratio p(x)/h5 2 x) for 6* and of the

2ratio g(x)/g 5 (x) for n* are not known, only approximate
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values of 6 and n* (by getting approximate values of

these ratios), can be used in practice. The expression for

n* is noted in Rosenblatt (1956) (for s - 2) and in

Singh (1979) for general s, among many others.

Proof of Theorem 3.1. Writing Jr-ri - i'7-(r) )+((r) -r)I,

c n c n

we have with probability one,

Ir-rI 5 (11 rl A Cn) IrII(IrI d n.

Hence by Lemma 3.1,

(3.12) E(r-r) 2 s 16(g)fl[E(h-h)
2

. max(Irl2 ,c2 E (-g)
7 ~n

+ 2lr12,(Irl > cn).

Now since c * as n , there exists an n = nO(x)

such that for all n z no, cn X) 2 jr(x)I and the second

term on the rhs of (3.12) is equal to zero for all n - no.

The rest of the proof is now an immediate consequence of

(3.2) and (3.9).

Remark 3.2. Notice that (3.12) gives an explicit bound for

each sample size for the mean square error of the estimator

of the regression curve in terms of MSE(h) and MSE(g).

S

.,. . . .
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Exact asymptotic expressions for these terms are in turn

presented in (3.2) and (3.9) respectively. Hence the

exact asymptotic value of the bound (3.12) for MSE(r)

is at hand. To the best of our knowledge an explicit

bound with an exact asymptotic value for the MSE of a

nonparametric regression curve estimate, of whatsoever

nature it may be, is lacking in the existing literature,

inspite of a large number of articles on the subject.

Remark 3.3. From Theorem 3.1 it follows that if 6 and

n are chosen in a way so that

(3.13) 6 -n - 0(n'i l+2s)),

then n defined in Theorem 3.1 is of the order,

(3.14) Yn 0(n2s/(1+2s)

and

(3.15) -2s/(l+2s) 2
MSE(r(x)) O(n Cn).

Remark 3.4. As pointed out earlier, if there is a known

c0 (x) such that Ir(x)I 5 c0(x), we would instead consider

estimating r by r* defined in Section 2. It follows

from the proof of Theorem 3.1 that

2(3.16) E(r*(x)-r(x)) -0(

Thus r* achieves a MSE rate of convergence better than r.

,A ,



- 16 -

The following (3.17) and (3.18) are immediate con-

sequences of (3.15) and (3.16).

Corollary 3.1. (Weak consistency). Under the conditions

of Theorem 3.1 and (3.13), for every sequence an

(3.17) 1r(x)-r(x)I - o(nS/ 1 +2Scn(x)"an) in prob.

and

(3.18) [r*(x)-r(x)l = o(n'I/l+2s ) in prob.

Remark 3.5. It is clear from the results in (3.0), (3.14),

(3.17) and (3.18) that larger the s the better the rate

of convergence. However, choosing a larger value of s

means putting more restrictions on h and g. Further,

any choice of s more than 4 or 5 makes the computation

of h and g difficult. It is seen quite often in the

case of density estimates that the improvement in the rate

of convergence with an s being 5 or more is not signifi-

cant compared to the extra difficulty one incurs in the

computation of the estimates. The same is expected in the

case of regression estimates.

4. Uniform consistencies

In Section 3 we proved the mean square consistency and

deduced the consistency in probability of the estimators
A

r and r* at a point x, and in each case we investigated

the speed of convergence. In this section we plan to prove
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the uniform mean square consistency as well as the uniform

consistency of r and r*. The following Theorem follows

directly from the proof of Theorem 3.1.

Theorem 4.1. Let B be any subset of the real line such

that infxBg(x) > 0 and suPxeB r(x)I < (the bounds

in respective cases need not be known), and p, hs  and

g. are uniformly continuous on B. Then

2 *2
(4.1) supxEBE(r(x)-r(x)) = 0 (yn-cn2)

where cn  supc (x), and y is as defined in
- n cBn n

Theorem 3.1. Also

(4.2) SupxBE(r*(x)-r(x)) 2

Thus if 6 and n are proportional to n 1/(1+2s)

then

(4.1)' SupxcBBMSE(r(x)) (n2/s/(l+2s) c n 2&n

and

(4.2)' supxBMSE(r*(x)) =O(n

The result (4.1) or (4.2) does not however prove the

uniform weak consistency of r" or r*. If the characteris-

tic function of K is absolutely integrable and EyI2 <

then it can be shown (e.g. see Singh and Ullah (1985)), that

(4.3) E{supxlh(x)-Eh(x)lJ 0((n) •

*.......". *.*-;;;" , -" :"-: .' ""i' .",-:.-:; ," : ; . :..* .: .:.:; ..:-:-'-.::: . :'.-.<.-.-.. .:..:-: ;:-:-.-.:"" .: , '.
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Hence it follows from Lemma 3.2 that if hs and p are

uniformly continuous on B, then

(4.4) E{supxEBIh(x)-h(x)Il} - O(max{6S,(n6) 1/2

which in turn implies that

SUPxeBIh(x)-h(x)I 0(max{6S,(n6)l/2) in prob.

Similarly, if the characteristic function of K is abso-

lutely integrable and gs is uniformly continuous, then

(4.5) E{suP cBIg(x)-g(x)Il - O(max{nS,(nn) "I/ 21

and

- -1/2suPx B lg(x)-g(x)l O(max{nS(nn)' 1) in prob.

To deduce the uniform weak consistency of r and r*

from the above analysis, notice that as in the proof of
Theorem 3.1, jr-rl is bounded a.s. by I(h/)-h/g)j ^

- IrlIiri > cn), and the proof of the lemma in the

Appendix of Singh (1977b) gives

'.uE SUpxB(l - A Cn(X)) s 2(infxc~g(x))-lBg(x)

{E SUPX(Blh(x)-h(x) (+sup x, lr(x)I+c.)E supx sICx)-g(x)I}.

Further, there exists an n0 such that for all n a no t
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supxEBIr(x)II(Ir(x)l > cn(x)) 0 (this follows because

supxcBIr(x)I < -, though the upper bound need not be known,

and c n(x) * for each x in B). From these analyses

and (4.4) and (4.5) we conclude the following theorem.

2Theorem 4.2. Let EIYI < -, and for a subset B of the

real line, the hypothesis of Theorem 4.1 hold. Then

(4.6) E{supxBlr(x)-r(x)ll 0(yn/ n)

and

(4.7) E{supxEBlr*(x)-r(x)l 1- O(y nl)

Thus from (4.6), SUPxyB /(x).r(x12c*) in

probability, and from (4.7), SupxBlr*(x)-r(x)l = Oy 1/2
n

in probability. Taking 6 and n '-proportional to n - I / ( l + 2 s )

Yn is of the order n-2/(I+2s)

5. SOME CONCLUDING REMARKS

The choice of cn in the definition of our estimator

r is completely arbitrary, and it is not possible to give

an explicit formula to determine a value of cn which may

fit well in all practical situations. If, however, in a

particular situation, we have some knowledge, say A0 , Of

the range of the possible values of the response variable
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Y, we may choose cn (x) A0an where an is a slowly

converging to infinity sequence of n, something like

log n or loglog n (depending on how good is our know-

ledge about the range of Y). In any case, c must be
nn"- -/(1+2s)

-'. chosen so that n cn  0 as n .

Examining the asymptotic expressions of MSE(h) and

MSE(g) obtained in Section 3, we remark that one should

choose K so that IftSK(t)dtl and fK2(t)dt be as

small as possible. This is also the case even if one

uses the optimal 6 and n given in (3.10) and (3.11)

respectively, since with these choices of 6 and n,

min(MSE(h(x))) - n ' 2 2w l (x) where

.. "s K  s12/I+2s-.. ~I WlW lsX t (t)j p K2

w 1(x) =(1+2s), {_ 2 ~()tK~)~~S }2

and

min(MSE(g(x))) - n w2(x ): n

where

w2 (x) - (l+2s) sI s

Now examining the optimal values of 6 and n given

in (3.10) and (3.11), we remark that 6 and n should be

proportional to n"I/ (l 2 s). (This has been pointed out

in a number of articles on density estimates dealing with

rates of convergence, e.g. Singh (1977, 1979).) Examining

.-. .
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A

the estimates g, we see that var(g) will be large

whenever the var(K((X j-x)/n)) is large, which in turn

2will be inflated when var(X.) - aX (say) is large. To

control this (and hence to control var(g)) to some

extent, we remark that n should also be proportional to

aXt that is, if possible, n should be taken to be a0n',

where a0  is a good guess of aX and n' is proportional

to n-I l 2 s  We have the same view with 6 as well.

..................
b..*b. .* *~c-&iK '*.~: *--*



REFERENCES

[1] Bhattacharya, P.K. (1976). An invariance principle
in regression analysis. Ann. Statist., 4, 621-624.

[2] Benedetti, J.K. (1977). On the nonparametric esti-
mation of regression functions. J. Roy. Statist.
Sogc..D., 39, 248-253.

[3] Collomb, G. (1977). Quelques propietes de la methode
du noyau pour l'estimation non-parametrique de la
regression en un point fixe. C.R. Acad. Sci. Paris,
285, A, 289-292.

[4] Collomb, G. (1979). Conditions n6cessaires et
suffisantes de convergence uniforme d'un estimateur
de la r~gression, estimation des ddriv6es de la
regression, C.R. Acad. Sci. Paris, 288, A, 161-164.

[5] Collomb, G. (1981). Estimation non param6trique de
la r~gression: revue bibliographique. ISR, 75-93.

[6] Devroye, L.P. (1979). The uniform convergence of the
Nadaraya-Watson regression function estimate. Can.
J. Statist., Vol. 6, n0 2, 179-191.

[7] Devroye, L.P. and Wagner, T. (1980). Distribution
free consistency results in nonparametric discrimination
and regression function estimations. Ann. of Statist.,
8, 231-239.

[8] Kale, B. (1962). A note on a problem in estimation.
Biometrika, 49, 553-556.

[9] Konakov, V.D. (1977). On a global measure of deviation
for an estimate of the regression line. Th. of Prob.
and Appln., 22, No.4, 858-868.

[10] Mack, Y.P. and Silverman, B. (1983). Weak and strong
uniform consistency of kernel regression estimates.
Department of Stat., Univ. of Rochester Tech. report.

[11] Menon, V.V., Prasad, B. and Singh, R.S. (1983).
Nonparametric recursive estimates of a probability
density function and its derivations. J. Statist.
Plan. Inf., 73-82.

- 22 -

*." % % . . . .. . . . . ..% % . . . .. . .. .* .'..



- 23-

[12] Nadaraya, E.A. (1964). Estimation of a convolution
component. Soobscenija Akad. Nauk. Gruzin. USSR,
xxxiv, , 19-Z4.

[13] Nadaraya, E.A. (1965). On nonparametric estimates
of density function and regression curves. Theor.
Prob. Appl., 10, 186-190.

[14] Nadaraya, E.A. (1964). On estimating regression.
Th. Prob. Appln. 9, No. 1, 141-142.

[15) Nadaraya, E.A. (1974). The limit distribution of the
quadratic deviation of nonparametric estimates of the
regression function. Soobshch. Akad. Nauk. Gruz. SSR,
74, No.1, 33-36. (In Russian).

[16] Noda, K. (1976). Estimation of a regression function
by the Parzen kernel-type density estimators. Ann.
[nst. Statist. Math., 28, No.2, 221-234.

[17] Parzen, E. (1962). On estimation of a probability
density function and mode. Ann. Math. Statist. 33,
106S-1076.

[18] Priestley, M.B. and Chao, M.T. (1972). Nonparametric
function fitting. J. Roy. Statist. Soc. B, 34, 385-392.

[19] Rvvsz, P. (1979). On the nonparametric estimation
of the regression function. Prob. Control. Inf. Th.,
Vol.8, n0 4, 297-302.

[20] Rosenblatt, M. (195) Remarks on some nonparametric estimators
of density function. Ann. Math. Statist., 27, 832-837.

[21] Rosenblatt, M. (1969). Conditional probability density
and regression estimates. In Multivariate Analysis II,
ed. Krishnaiah, 25-31.

[22] Schuster, E.F. (1972). Joint asymptotic distribution
of the estimated regression function at a finite
number of distinct points. Ann. Math. Statist. 43,
84-88.

[23] Schuster, E.F. and Yakowitz, S. (1979). Contributions
to the theory of nonparametric regression, with
application to system identification. Ann. Statist.
7, 139-149.

.. .- - - - - - - - - - :.
* ".



j a --. -

- 24 -

[24] Singh, R.S. (1977a). Improvement on some known non-
parametric uniformly consistent estimators of deriva-
tives of a density. Ann. Statist., 5, 394-399.

[25] Singh, R.S. (1977b). Applications of estimators of a
density and its derivatives to certain statistical
problems. J. Roy. Statist. Soc., 39, No.3, 357-363.

(26] Singh, R.S. and Tracy, D.S. (1977). Strongly con-
sistent estimators of kth order regression curves and
rates of convergence. Z. Wahrscheinlichkeits-theorie
und verw. Gebiete, 40, _939-348.

[27] Singh, R.S. (1979). Mean square errors of estimates
of a density and its derivatives. Biometrika 66,
(1979), 177-180.

(28] Singh, R.S. (1981). On the exact asymptotic behaviour
of estimators of a density and its derivatives. Ann.
Statist., 9, 453-456.

[29] Singh, R.S. (1980). Estimation of regression curver
when the conditional density of the predictor variable
is in scale exponential family. In Multivariate
Statistical Analysis. Ed. R.P. Gupta.

[30] Singh, R.S. (1981). Speed of convergence in non-
parametric estimation of a multivariate U-density and
its mixed partial derivatives. J. Statist. Plan. Inf.,
5, 287-298.

[31] Singh, R.S. and Ullah, Aman (1985). Nonparametric
lime series estimation of joint DGP, conditional DGP
and vector autoregression. (To appear in Econometric Th.)

[32] Spiegelman C. and Sacks, J. (1980). Consistent window
estimation in nonparametric regression. Ann. Statist.
33, 1065-1076.

[33] Stone, C.J. (1977). Consistent nonparametric regression.
Ann. Statist., 5, 595-620.

[34] Wahba, G. (1978). Improper priors, spline smoothing
and the problem of guarding against model errors in
regression. J. Roy. Statist. Soc. B, 40, 364-372.

[35] Wandl. H. (1980). On kernel estimation of regression
functions. Wiss. Sit. z. Stoch., WSS-03/80, 1-25.

[36] Watson, G.S. (1964). Smooth regression analysis.
Sankhy! Ser. A., 26, 359-372.

::i::~ ~ .XKd>y .n d dh ldJJ §j..\"'&K& -.........................



Unclassif ied --

secuN, ry CL AS41FI(:ATION OF Tn1S PAC.L (When. 1)... I,-teedjREDISUCON

REPORT DOCMENTATION PAGE BFRE CNSTRUTINORM

, - Ub 8 . GOVT ACCESSION NO. I. RIECIPIENT'S CATASLOG MUNGER

14. TITLE (and Su.btitle) YEo tor e;ocv~

Modified Nonparametric Kernel Estimates of A Technical -April, 1985
Regression Function and Their Consistencies ______________

with Rates a. PERFORMING ORG. REPORT I4UMUIER

____ ___ ___ ____ ___ ___ ____ ___ ___ ____ ___ ___ __ 5-12
7. AUTHOR(a) S. C0ONTRACT OR GRANT NUMSER(s)

Radhey S. Singh and Manzoor Abmad F49620-85-C-0008

9. PERFORM16016 ORGANIZATION MNAM AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMSERS

Center for Multivariate Analysis
515 Thftckeray Hall
University ofPittsburgh._Pgh._PA__15260______________

It. CONTROLLING OFFICE NAME AND ADDRESS ta. REPORT DATE

Air Force Offic4 of Scientific Research April. 1985
Deparmentof te Ai NeeIS- NUMIER OF PAGES

Deatmn o heAr oe20332 28
IS. ONI R1NACENY PANE& ORESS01 different from Conroalling Office) 16. SECURITY CLASS. (.1 this report)

Unclassified

CEDLE

IS. OI5TMiGUjTION STATEMENT (of Ohio Nepet)

Approved for Public Release; distribution unlimited

17. DISTRIUV4OTION STATEMENT (of th. obeftag* entered~f Noc ai. le* a aaian. h'e" Atelg)

IS. SUPPLEMENTARY NOTES

Is KEY WORDS (Continuan a..,..o Side i nosomp Sud Identity by block number)

20 ARSTRPACT (Coninue an reverse aide 11 noceear and identt by 68ocSt number)

Two sets of modif ted kernal estimates of a regression function are proposed:
one when a bound on the regression function is known and the other when nothing
of this sort is at hand. Explicit bounds on the mean square errors of thg
estimators are obtained. *Pointwise as well as unfirm consistency in mean
square and consistency in probability of the estimators are proved. Speed of
convergence in each case is investigated.

DO1A73 1413 TIMM' Aq-TT~fl

SECURITY CLASSIFICATION Of THIS PAGE (When 000 Enee4d)



*~A -,7 V**% ,

FILMED

11-85

DTIC


