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MACHINERY DYNAMICS

AN INTEGRATED GEAR SYSTEM DYNAMICS ANALYSIS

OVER A BROAD FREQUENCY RANGE

L. K. H. Lu, W, B. Rockwood, P. C. Warner
Westinghouse Electric Corporation
Sunnyvale, California

and
R. G. DeJong

Cambridge Collaborative, Incorporated
Boston, Massachusetts

An integrated analytical scheme for Marine Gear System Dynamics is presented
in this paper, The work can be divided into three parts: Gear excitation
source prediction, response calculation in the low frequency range, and
average response estimation in the high frequency range.

Various sources of gear mesh excitation are considered by M~.rk in his
excellent analysis (1), However, for modern precision ground gears, the
source of primary interest Is likely to be that portion of the static
transmission error whose frequency is the tooth meshing frequency.

This is the case treated herein. In this work, the steady component

of static transmission error and the first harmonic of mesh tone
component of static transmission error are calculated from a solution

of the mesh contact problem, A simplex aigorithm proposed by

Conry & Seireg (2) is used to solve the gear contact probiem.

Marine gear-turbine systems are comprised of individual components
connected by bearings, mounts and gear tooth contacts. Methods best
suited for response calculation of such a complex structure depend
on the frequency range of interest as well as the properties of the
methods. In the low frequency range, finite-element analysis,

FEA, may be used, For intermediate and high frequencies when many
modes participate in the response, our experience (3,4) indicates
that Statistical Energy Analysis (5), SEA, offers a preferred
solution. In order to demonstrate the feasibility and validity of
the above procedure, a simplified gear-turbine problem is analyzed.
The results are presented and discussed,
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INTRODUCTION

Assoc lated with the operation of most
machines are variable forces which cause
vibration. These vibrations are generally
transmitted to the surfaces of the machines
from which they radiate sound as illustrated
in Figure 1.

The principal source of vibratory
excitation of many accurate gears is the
unsteady component of the relative angular
motion of pairs of meshing gears. A pair
of meshing gears with rigid, perfect,
uniformly spaced involute teeth would
transmit exactly uniform angular motion.
However, the teeth of real gears contain
machining errors, elastic deformation,
tooth wear, profile modifications and other
nonidealities. Such effects give rise to
fluctuations in the angular motion.

The dynamic properties of a structure
can influence noise generation, noise
transmission, and noise radiation. The
input forces may have their effect amplified
by structural resonance. Structural charac-
teristics and isolation design also determine
the amount of vibrational energy which flows
from one element to another in a structure,

If the dynamics of a structure are
understood, structural modifications or
damping treatments can often be made to reduce
the nojse transmission or radiation. Tradi-
tionally, the techniques used to solve
dynamics problems in complex mechanical
equipment include finite-element analysis,
and lumped-mass methods. At low frequencies,
where the modes are well spaced, both the
lumped-mass and the finite~element (FEA)
methods can work well,

Because of the complexity of many
practical structures, however, the use of a
sufficiently detailed FEA model of the
structure, for use over an appreciable
frequency range, can become cumbersome and
expensive,

As the frequency of interest increases,
more local modes appear, and the mesh size
must decrease to maintain accuracy. As a
consequence, conventional FEA methods often
are very expensive to use, or fail to provide
a satisfactory solution,

An alternative to conventional methods
for frequency ranges with high modal
density is Statistical Energy Analysis
(SEA) (5). SEA calculates the average and

standard deviation of RMS response of
structural subsystems in a frequency band.
Because it does not seek to calculate discrete-
point response, SEA is not succeptable to
degration of accuracy at high frequencies,

e sy i iy T IACr AN AR g P 1ol A - - -

In fact, the accuracy increases with modal
density. In addition, the detailed peaks and
toughs of high modal density frequency
response functions are typically variant from
one unit to the next, which makes a statisti-
cal description of the vibration more meaning-
ful, as well as easier to interpret (Figure 2)

A gear system analysis scheme has been
deve loped which utilizes the relative merits
of both the FEA and SEA technigues. The
stretegy involves calculating mesh tone
excitation by a quasi-static simplex solution
to the nonlinear gear contact problem. Subse-
quently, this excitation is applied to a
NASTRAN FEA model of the system, employing
substructural modal synthesis at low
frequencies, and an SEA model at intermediate
and high frequencies, The scheme is illustra-
ted in Figure 3. In this way, gear system
dynamics may be analyzed across a broad
frequency range.

The excellent analysis of transmission
error by Mark (1) is extremely useful,
particularly for identification of source for
the varlous components of excitation, To
actually perform the complete analysis implied,
however, requires a comprehensive, detailed
description of tooth surface geometry under
load, and the actual thermal and centrifugal
environment. To acquire these data is an
onerous experimental and analytical task.
Fortunately, for a modern precision ground
gear, the noise signature is dominated by
vibration due to a small number of sources.
The principal source is usually that causing
mesh tone vibration and its harmonics.
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analyzing each separately, The procedures
follow closely those used by Seireg and
Conry (2,7). They are also similar to
those in Refs. (8-11) for helical gears and
Ref. (12) for spur gears. These works are
extended by applying finite-elements to
evaluate major components of the compliance
matrix.,

Because the areas of contact are unknown
before the problem is solved, discretization
at the contact points involve more unknowns
than simultaneous equations. A simplex-type
algorithm was devised by Conry and Seireg to
handle this problem, and was found to be very
effective.

Q0 T Jaleimd\g 1 Jasenmng 1 3 aseImO 2 »uuuw)
FREQ.

The method is described briefly in the
following.

EXCITATION

Figure 2: Analysis Method Applicable
Frequency Range 1

SOURCE PREDICTION

In modern gears, manufacturing
accuracy has improved to the point where,
with proper control of manufacturing errors,
gear mesh tone is the dominant component
of gear noise, l

s . TRANSMISSION
Gear mesh load distribution is ERRDR, ¢
obviously a dominating factor in gear design. 1

it is the basis of accurate stress calcula-~
tion, and hence, is required to insure
failure prevention. It is also required for
precise noise estimation, and is the basis
for prediction of the amount of profile
modification and end relief necessary to
obtain optimum performance on both counts.

For a gear mesh load distribution
analysis to be used as a design tool, the
calculation procedure must not only be
sufficiently accurate, but must also be
affordable, since design iterations are

often needed before a gear Is finalized. L Y J
Due to the complexity in geometry RESPONSE =~
(tooth, root, helical angle, etc.) and the PREDICTION s
requirement for small element sizes in 1 -3
soiving Hertzian contact stresses, a full 5
three-dimensional finite-element analysis " N
can be costly, time consuming, and will not j -
necessarily suit the purpose. . ‘4
[ ]
In this study, an influence coeffi- i -
cient approach is used to solve the helical § o
gear tooth deflection and load distribution -
problem, The required '‘compliance matrix', - i s ~
deflections due to unit load in a discre- HZ bl N
tized tooth contact zone, is obtained by . o
separating the effects of tooth, gear rim, Figure 3: integrated Gear System Dynamics i
pinion, and local contact deflections, and Analysis ‘
. 3
4,
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EQUILIBRIUM EQUATIONS

When two gears asre in mesh, the
following conditions exist:

1. Geometrical compatibility at each contact
point; l.e., Initial separation + elastic
deformation - rigid body spproach = final
separation.

2. Load compatibility, i.e. Summation of
contact forces = applled load,

3. When there Is separation at a point,
there is no load.

The above conditions can be expressed
mathemat ically Iin the following manner:

= [k1if} ¢ {e}a » {11ty « {3
feliFl « w

Either F; = O or Y;s0

and F;20, Y20, A20

where: [K] is the total iInfluence
coefficient matrix.
fe} is a column matrix of
elements unity.
LIJ is an identity matrix.
{8} is the initial separation

vector,
is the mesh transmission
error.

{v} is a vector of "slack"

variables.
{F} is a vector of forces.
W is the total applied load.

Equation (1) is written for N dis-
cretized contact points in the contact zone
as shown in Figure &4,

Figure 4: Tooth Contact Zone

INFLUENCE COEFFICIENTS

Equation (1) is solved by a modified
simplex algorithm, The general method may be
found in the literature (2). The most
difficult part of gear mesh excitation pre-
diction is the calculation of the influence
coefficients, When two gears are in contact,
the deformation of the teeth due to loads can
be summarized by four influence coefficients.

They are Ky = Tooth deflection relative to the
rim.
Kq = Gear rim deflection
Ky = Pinion deflection
Ky = Hertzian deformation at the load
point,

Each is illustrated in Figure §,
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Figure 5: Influence Coefficient Components
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Due to the complexity of the geometry,
three-dimensional finite-element analysis is
employed to determine accurately the required
influence coefficients (Figures 6 and 7).
Other effects such as thermal distortion, gear
rim centrifugal "fiyout', and tooth modifica-
tions may be estimated separately and input as
separations between the teeth (Figure 8).

uYour
THERAAL
DIETOIT N

T

Figure 6: Tooth Compliance FEA Model

Figure 8: Initial Separations

STATIC TRANSMISSION ERROR

A computer program, WEDGAP (Westinghouse
Electric Dynamic Gear Analysis Program), has
been developed to solve equation (1) at several
increments of gear rotation anqle. Load dis-
tribution and mesh transmission error in the
contact zone are obtained at zach increment
(Figure 9a,b). The load distribution is
desirable for fatigue, pitting, and scuffing
calculations,

If the ''roll-angle' sequence of mesh
transmission error is Fourier-transformed into
the frequency domain, average (DC), as well as
tooth mesh-harmonic (AC) components of the mesh
transmission error are obtained, This quasi-
static estimation of dynamic response yields
vibratory excitation levels of the gear mesh
at the tooth mesh harmonics.

Figure 7: Gear Rim Compliance FEA Model
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SYSTEM RESPONSE IN THE LOW FREQUENCY RANGE
BY FEA

For marine structures, FEA models on the
order of thousands of degrees-of-freedom are
not unusual. However, in rotating machinery,
due to the characteristics of the bearings,
isolators, and damping treatments, we encounter
nonproportional damping. That is, the modes
are complex quantities, For a large model, the
cost of solving such a large eigenvalue
problem is prohibitive, if not impossible. In
addition, since effects such as static trans-
mission error, rotation unbalance, and shaft
out-of=-round can best be expressed in terms

of rotational frequency, the solution becomes

a complex frequency response probliem. In order
to reduce the cost of computation, substruce
tural modal synthesis appears appropriate.

The mathematical background of modal
synthesis can be found in the literature (13),
hence is not repeated here. Essentially, a
complex structure is divided into a convenient
number of substructures, For each component,
the undamped free vibration modes are calcula-
ted. |In gear rotating machinery, the true
displacements of the components often resemble
those in free vibration, Therefore, fre
constraint modes of the component are usually
sought. As each component is simpler than the
total structure, the risk and cost of modelling
error are minimized. The component modes of
each substructure are then combined via their
boundary compatability conditions to obtain
the total system response. A major advantage
of the method is its ability to employ a
limited number of modes to mode! a substructure
possessing many degrees of freedom, thus
reducing the computational cost.

Substructural modal synthesis lends
itself well to the design of vibration
reduction treatments. The effects of
constrained=-layer or free-layer damping
treatments may be estimated by the modal
strain energy method (14), and incorporated
as modal damping of individual components.
Isolators may also be conveniently applied
between subsystems. The effectiveness of
vibration isolation is not only influenced

by the stiffness of the isolator, but also

by the dynamical characteristics of the
structures they connect {(5). The isolator
can be selected while the structure is

being designed, However, very often isolators
are chosen after the main components are
determined, To achieve the best vibration
attenuation, the dynamical characteristics of
all the major parts of the structure must be
carefully considered. Usually, the design
procedure is iterative., Therefore, the
method used to design the isolator must
include an efficient evaluation of the tota)l
system, Substructural modal synthesis offers
an ldeal solution to this problem, Physica)
properties of the isolator and bearings are
inserted between each component, along with
the component modes, The forced vibration
response thereby employs an accurate model of
each influence,

SYSTEM RESPONSE IN THE HIGH FREQUENCY RANGE
BY SEA

Why SEA?

When the frequency of interest increases,
the number of modes which contribute to the
response increases. Eventually, local modes
begin to participate, and the number of modes
can increase sharply., This is especially true
for a complex structure such as a gearcase.

In these circumstances, a coarse-mesh finite-
element model can be too stiff to represent
the true structural behavior, The mesh size
must be reduced to the order of a quarter-
wavelength, Therefore, at high frequencies,
it becomes increasingly difficult to dis-
cretize a structural model sufficiently., A
further difficulty is that the detail of the
structure is undetermined in the initial design
stages. A problem inherent in a discrete
response calculation, such as FEA, is that it
can be unreliable when oversimpiifications are
made in modelling complex structures, At
frequencies where the modal density is high,
the simple model can only account tor the
activity of a small number of global modes.
Thus, in basing a conceptual design on a dis~
crete response model, errors may be made,

The designer needs a method for estimating
intermediate to high frequency response before
the design is solidified,
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The SEA procedure involves modelling
groups of similar modes as individual
“subsystems'' in a given structure. Power
balance equations are then developed for
the entire system., The sample case of two-
subsystem interaction is illustrated in
Figure 10. Power in input to subsystem 1,
and is output either as dissipation, or to
subsystem 2, where it must be dissipated,

TRANSFER
wmeor ——o 1 2
) )
DISS\PAWD DISSILATED

Figure 10: SEA Power Transfer

The parameters controlling the balance
are '"dissipation" and '‘coupling' loss
factors, which indicate the strength of each
power flow path, The equations may be
expressed in the following matrix form for
the general case:

N ' J
" ’.E’ T —ny ves -ty E; Tin /
j=
s 1
-ty u + 2},“, oo —fyy Ey T in Iu
ot
N=1]
w . < woe El’"‘ | |*h/e
Where

MNi = The loss factor of the subsystem i
Mii = Coupling loss factor

€: = Energy stored In the subsystem
i
"~
W = Radian frequency

= [(nput power
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Given the resultant internal energy
associated with each subsystem, time-average
response is obtained for 2 desired frequency
band.

SEA BENCHMARKS

Because the application of SEA to marine
structures is relatively recent, an effort
to benchmark SEA against test data and other
analytical techniques is ongoing. Although a
compilation of all such projects is outside
the scope of this report, two examples serve
to illustrate the results of the study.

As marine structures are largely groups
of connected flat plates, it was felt that a
compar ison of SEA with the closed form plate
solution would provide a reasonable result.
The thin-plate, simply supported form was
chosen to obtain a classical calculation of
the special and frequency average response
which SEA seeks to estimate. A rectangular
plate of typical dimensions was divided into
nine segments, and the center of a corner
segment was driven, For each segment, the
classical point vibration levels were spatially
averaged for the low, center, and upper fre-
quencies of a third octave band. These results
were compared with SEA for several frequency
bands and levels of damping (Figure 11). They
show that SEA yields a good average response
estimate, differences being on the order of a
few dB,

A benchmark of SEA against test data for
a mar ine structure was established for a
reduction gearcase. Vibration levels from an
actual unit are compared with those given by
SEA and a quarter-scale model in Figure 12.
The results show SEA closely following the full-
scale data, which are also accurately modeled
by the precision quarter-scale model,

These and other efforts (Figure 13) to
benchmark SEA show it to be a powerful tool
for intermediate and high frequency calcula-
tions, At low frequencies, SEA generally
gives a good estimate of the average response.
However , when the modes are well spaced, the
average response is dominated by the peaks.
There, the discrete-frequency response is
often needed.
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DES!IGN EXAMPLE

The concept of integrated gear system
dynamics snalysis is spplied to a marine
propulsion unit. The system under investi-
gation consists of a double reduction gear
train (Figure 14) driven by two turbines, and
the supporting subbase. Twenty-two bearings
serve to mount the gears and turbines to the
subbase structure, which itself is spring-
mounted to the ship's foundation structure.

A simplified finite-element model is
shown in Figure 15. The gearcase and bull
gear are modelled by plate elements, while
the first reduction gears and shafts appear as
concentrated masses on beams. The subbase
is modelled by plates and beams, and the
turbine shafts are represented by beams. The
138 plate, 110 beam, and 40 elastic elements
are believed to adequately account for the
essential dynamical features of a typical
propulsion unit,

The FEA is carried out in two steps.
First, the natural frequencies and mode
shapes of the bull gear, turbines, and sub-
base are extracted., The resulting 72
eigenvalues and eigenvectors, plus each of
the bearing and support stiffnesses and
damping, are recombined via modal synthesis.
The low speed gear static transmission error,
£ (w), calculated by WEDGAP, is input as
relative displacement excitation at eight
tooth mesh locations. The problem is solved
by the complex direct frequency response
method of NASTRAN SOL 71 (6).

The SEA model is comprised of 79 sub-
systems and 148 junctions, schematically
represented in Figure 16, §(w) is again
input at the second reduction mesh. The SEA
code SEAM* js used to compute the response at
the subbase mounting points,

Typical FEA and SEA responses are
compared in Figure 17. They show agreement
to within 10 dB from 80 to 500 HZ. In this
range, the FEA and SEA results can be used as
cross~checks of both models. At low frequen-
cies, before the structure 'breaks up" into
a large number of modes, the SEA model over-
predicts the response., Above 500 Hz, the
FEA response drops dramatically, indicative
of saturation,

* Copyright Cambridge Collaborative, inc.

CONCLUS ION

The integrated gear analysis procedure
has been shown to provide complex turbine-
gear system response over & broad frequency
range. Intermediate frequencies serve to
confirm consistency between FEA and SEA models,
while low and high frequency calculations
utilize the strengths of each, The procedure
permits maximum flexibility in designing
vibration isolation and damping treatments,
so that optimization can be more readily
achieved,
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COUPLED TORSIONAL-FLEXURAL VIBRATION OF A GEARED SHAFT

SYSTEM USING FINITE ELEMENT ANALYSIS

S.V. Neriya, R.B. Bhat, T.S. Sankar
Department of Mechanical Engineering

Concordia University

Montreal, Quebec H3G IM8 Canada

The coupled torsional-flexural vibration
due to unbalance and geometrical eccentricity
in the gears is studied. The coupling action
{s identified through the analysis of the
gear motion and this effect is included in
the finite element model of the system. The
free vibration problem i{s solved to obtain
the natural frequencies and mode shapes.
Normal mode analysis is employed to obtain
the dynamic response of the system to excita-
tions arising from the mass wunbalance and
geometrical eccentricity in the gears. The
response exhibits peaks not only at the sys-
tem natural frequencies, but also at those
frequencies which are related to the system
natural frequencies through the gear ratfio.
The response spectra for various parametric
combinations are presented and discussed,
The finite element formulation in which the
effect of torsional-flexural coupling due to
gear pairs are included is found to be a very
convenient method to study complex geared
shaft systems.

NOMENCLATURE

Et average flexural damping of
the gear tooth

{c] generalized global damping
matrix

Cn lumped torslional damping at
the motor

Cq lumped torsional damping at
the dynamo

d diameter of the beam element

E modulus of elasticity of the
beam element

F transmitted force

{r} generalised force vector

G modulus of rigidity of the

beam element

13

NOMENCLATURE (cont'd)

I

m2

M1

M2

[M)

lps}k'{pc}k

{a}

moment of inertia of the
driving gear

moment of inertia of the driven
gear

moment of inertia of the motor

moment of inertia of the
dynamo

average flexural stiffness of
the gear tooth

stiffness of the rolling
contact bearing 1In the
y-direction
stiffness of the rolling
contact bearing {n the
z-direction

generalised global stiffness
matrix

length of the beam element
mass of the driving gear
mass of the driven gear

mass of the driving gear
tooth

mass of the driven gear tooth

generalised global mass
matrix

mass per unit length of the
beam element

principal coordipates
corresponding to the k sine
and cosine excitations

generalised displacement
vector
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NOMENCLATURE cont'd.

ry base circle radius of the driv-
ing gear

r, base circle of the driven gear

Uy mass unbalance in the driving
gear

U2 mass unbalance in the driven
gear

[Y] diagonal damping matrix

€4 geometrical eccentricity in the
driving gear

€5 geometrical eccentricity in the

driven gear

0p9 angle between the directions
of the eccentricity and unbal-
ance for the driving gear

Ops angle between the directions
of the eccentricity and unbal-
ance for the driven gear

[x] diagonal stiffness matrix
Ag ith eigenvalue

[u] diagonal mass matrix

{o,} ith eigenvector
INTRODUCTION

Noise and vibration are serious problems
in the operation of a geared shaft system.
The problem is complicated by the fact that
the torsional and flexural vibrations are
coupled which makes the analysis more dif-
ficult, The system is excited during the
operation by the forces originating from
incorrect mounting, unbalance in the gears
and profile errors. Mahalingam and Bishop
[1] determined the dynamic load due to exci-
tation from a static transmission error which
encompassed all forms of error in the geared
system.

Mahalingam and Bishop [1] determined the
dynamic load due to excitation from a static
transmission error which encompassed all
forms of error in the geared system. Lund [2]
considered coupling in the torsional-flexural
vibrations in a geared system of rotors. He
analysed a system with high damping and ob-
tained the asystem dynamic response in terms
of the complex eigenvalues and eigenvectors.
He also studied the stability of the rotor
system. Iida et al [3] studied a geared
shaft system 1including the effects of
torsional-flexural coupling. The geared
shaft aystem was described as a 4 DOF lumped
mass model where the driven shart is
considered flexible in bending and the driv-

LA LA IR CLOG Ol D SN DGR A CI RO

ing shaft s considered rigid. He obtained
the response due to mass unbalance and geo-
metrical eccentricity. Neriya et al [4]
extended this study considering both the
driving and driven shafts flexible in bend-
ing. The flexibility of the mating teeth was
considered in the analysis, The frequency
response and subsequently the dynamic tooth
load were obtained by normal mode analysis.

In this paper, the geared shaft system
is modelled by using the finite element meth-
od. The effect of coupling between torsional
and flexural motions is identified by analy-
sing the gear mction and is included in the
finite element formulation. The flexibility
of the bearings supporting the shafts |is
considered in this {investigation and the
frequency response i{s then obtained using the
normal mode analysis, The finite element
method offers significant advantages in ex-
tending the simple geared system considered
into a train of geared rotors as well as the
case of {introducing flexibility and damping
in the bearing supports.

ANALYSIS

A schematic representation of a simple
geared shaft system is shown :n Fig. 1. A
sectional view at the gear pair location [see
Fig. 1] is shown in Fig. 2 and it shows the
relative positions of the driving and driven
gears, 0. There exists a "force" coupling
between the translational motion of the gear
center y, z; and the rotational motion of the
gear. At the gear location they correspond
to the flexural motion of the shaft carrying
the gear and its torsional motion. Fig. 3(a)
shows the spring mass representation for the
driving gear. The mass of the driving gear
my i3 denoted by the mass of the gear mg,
tooth in contact. The coordinate Z¢
describes the gear tooth motion and is in a
direction parallel to the line of action of
the gears. The time average stiffness and
damp&ng of the gear tooth are denoted by Et
and Cy respectively. The tooth stiffnesses
are very high compared to the shaft stiffness
and their variation with time does not
significantly affect the natural frequencies
of the rotor system. kpjand cpq denote the
stiffness and damping of the shaft carrying
the driving gear. The driven gear s
similarly modelled and is shown 1in Fig.
3(b). Tooth separation is not considered in
this analysis and this is incorporated
through the constraint equation Zpq = Zyeo-
The motion of the pair of gears described
above is analysed and it reveals the terms
coupling the torsional and flexural
displacements at the gear locations and the
forces occuring at the gear pair. [Refer' the
Appendix.] The contact ratio for the gear
pair is assumed to be unity.

The finite element discretisation of the
geared shaft system under study is shown in
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Fig. 4. The driving and driven shafts are - .

both divided into beam elements 1 to 6 as L) {qa}k + [e] {qs}k + [K] {qslk = {r,}
shown. The eight nodes of the system k
denoted by a to h, each have 5 degrees of .

freedom after excluding motion in the axial [M] {ac} + [c] {a.} < (k] {ag} = {F,
direction. As seen above, the contact point k k K 'k
of the mating gear teeth has one DOF in the z

5 direction, which accounts for the tooth flex- P k=1,2 (%)
! ibility. The system thus has 41 degrees of Expressi the
freedom, The generalised displacement P ne response IQ} in terms of the

modal coordinate
vector for the beam element described in Fig. s {p} as

5 is given by

{qs}k = [v] {ps}k
iy -21-°x1'°y1-°z1sz~zz'°xz'°y2-°z2}T 5)
lagl, = [¥] (pe), s k=12

The element mass and stiffness matrices
obtained from the consistent formulation are

where [0] is the modal matrix formed by usin
then assembled to form the global mass and the eigenvector |y, }, and {p_} and |p.} ]
» stiffness matrices. The concentrated masses 1 s el ¢
N and inertia (including transverse moment of are the principal coordinate vectors corre-
. inertia) due to the motor, dynamo gears and sponding to the sine and cosine components.
3 gear teeth are {ntroduced into the appropri- Vaing Eqs. 5 in Eqs. ¥ and premultiplying by
- ate locations in the global mass matrix. The [¥]" results in uncoupled equations in the
.t stiffnesses of the rolling contact bearings modal coordinates of the form,
~ are Iincluded in the analysis. The terms .
» arising from the coupling between the tor- U (Poy) + Y, (Poe) + k(P -
. sional and flexural motions [Ref(4)] are now 10el%y 181’y 7 51 31)k (USI)k
.; introduced into the appropriate locations in (6)
. the global stiffness matrix. The global . - .
i~ force vector is also formulated on the basis wi P ) *+ Y, (P.,) +x;(P..) = (0..)
. of [4]. These are given in the Appendix 1Pethy ~ M et?y 7 Bt eidy e’y
% along with the notations used for the cor- h 1
- responding degrees of freedom as illustrated where '1‘ o 2
. in Fig. 4. =2 ..
o where u; and k; are the elements of diagonal
- The equations of motion of the 41 DOF i 1 80
- geared shaft system can now be written as matrices [u] and [«] given by
: 3} . eIl
g [W){a} + [cHal + [kMab = {F} (0 (] = [o)" (] [v]
- . [g]T
d The homogenous part of Eq. 1 neglecting damp- [‘] [*] [K] “’]
| ing 1s given by and v, is the equivalent damping coefficient
A - in each mode.
N (MH{a} + (] {a} =0 ° (ogg) and (g,;) are the
X elements of the generalised force vectors
xy and is solved to obtain the eilgenvalues )y {03"( and [oc} » given by
e and the eigenvectors {y;} of the system. K
- T
. [ = F
it The force vector {F] in Eq. 1 has the { s}k (o] { slk
i excitation consisting of frequencies w, and
. w, as: ! {Oc}k = [T {Fclk; k =1, 2,
- {Fl={Fg} 8in wyt+{Fy}osin wyt+[F,} cos wyt The solution of Eq. (6) ylelds
.: + [Foly cos wpt (2)
- (og,)
- where 8,4, 850, 8¢y and Op, have been assumed (poy) = oshs
~ to be zero. The corresponding response also si K (- 2 . )+
4 can be expressed in a form involving the two we Mgt Ky I uy)
. frequencies as ("ei)
fal-1 | | (Peg), - — ™
’ al=laglysin wyt+{ag}8in wyt+{a,} cos wyt K (- ugs kg) * 30
~ + {q.}, cos wot 3)
'S { cl2 2 Kat, 2
Using Egs. 2 and 3, Eq. 1 can be written as =12 ... 0
d four separate equations.
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Using Eqs. (7), (5) and (3) we obtain the
system dynamic response |qj. Since the
response involves two frequencies wy and Wy
the total response has the form

y = qqysinfugt « ¥1g)+qpy8inluytevyy)
= q1JsinA1+q2J sin 12

A-d,
2
A

Aq=A
Yeos (—1—2)
2

- (Q1J‘q2J Ysin(

+) Ag+h
2>sm(—’2——2) (8)

+ (Q1J - QZJ)OOS( 2

Hence, the response is an amplitude modulated
harmonic phenomenon. If wy and w, are close
to each other, this will result in beats.

NUMERICAL RESULTS

The details of the geared shaft system
used the stiffnesses are to obtain the numer-~
ical results are given in Table. 1. The
pedestals are assumed to be flexible in both
y and z directions and the stiffnesses are
denoted by k v and k z respectively. The
details of tr¥e beam eiements comprising the
finite element model are given in Table 2.
The system natural frequencies and their gear
ratio multiples in the range 0-80 Hz are
given in Table 3. The zero natural frequency
corresponds to a torsional rigid body mode.

The time domain response at two individ-
ual frequencies are plotted in Fig. 6 and
Fig. 7. Fig. 6(a) shows the time domain
response at the driven gear location at a
frequency of 37 Hz which is very close to a
system natural frequency. Fig. 6(b) shows
the same at the driving gear 1location.
Fig. T(a) shows the time domain response at
the driven gear location at a frequency of 50
Hz which is away from a system natural fre-
quency. Fig. 7(b) shows the same at the
driving gear location.

The frequency domain response is plotted
for the flexural responses at the gear loca-
tions. Fig. 8 shows the response in the z
direction at the driven gear location. The
system shows peak responses at the system
natural frequencies corresponding to modes 2,
4, 6 and 8, and also at the frequencies re-
lated to the modes 2, 4 and 6 by the gear
ratio (Table 3). The natural frequency of
mode 8 when multiplied by the gear ratio is
found to be outside the frequency range of
interest. Three cases corresponding to vary-
ing unbalance and eccentricity are plotted.

The response in the 2z direction at the
driving gear location is shown in Fig. 9.
The system shows peak responses at the system
natural frequencies corresponding to modes 2,
4, 6 and 8, and also at frequencies related
to the modes 2, U, and 6 by the gear ratio
(Table 3). The natural frequency of mode 8
when multiplied by the gear ratio is found to
be outside the frequency range of interest.

16

Three cases corresponding to varying unbal-
ance and eccentricity are plotted.
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u,mf cos (uwqt + 8,45 + 6p¢)

=y e w008 (wpt* 850) - keeosinlust + 8,55) *

sumwd sin (upt + By + Bpy)

“2“5 cos (wyt * 80 * 0g2)

¢y lesuycos(wyt + 8,0) + €qwycos{ugt + 81q)

+ky [eosintuyt + 850) + eqsin(ugt + 8,9}

-Etr1e1w1cos(e1o + wyt) - Foeqco8(8,9 + wt)

-itr1e1sin(61o + wt)

-Etrzezmzcos(ezo * wpt) + Foe,c08(6y9 *+ wot)
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» TABLE 2 A
, ¢
Y Element No. Length £ Diameter d Mass per unit 'E
. mm om length ‘
m kg/mm .
.’ N:
‘ 1 300 15 1.41 E-3 It
i
. 2 300 20 2.15 E-3 L
‘n
N 3 600 20 2.51 E-3 -
4 600 30 5.655 E-~3 -
. 5 300 30 5.655 E-3 '
i e
i 6 300 25 3.93 E-3 NS
-: ..
3y
f TABLE 3 +
: System Natural Frequencies and their Gear Ratio Multiples in the Range N
s ‘o
0 - 80 Hz >
> )
" Mode No. System Natural System Natural 3
X Frequency Frequency Gear !
- Ratio .
y .
1 zero zero
: 2 7.78 15.56
! 21.27 42,54 .
Y 4 22.96 45.92 :
= 5 29.22 58,44
¥ 6 35,46 70.92 :
:j 7 36.57 73.14 N
> 8 44,09 - g
) 9 71.39 -
- 10 71.57 - -
. 1 72.24 -- -
,. :
: -
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INFLUENCE OF AN AXIAL TORQUE ON THE DYNAMIC BEHAVIOR

OF ROTORS IN BENDING

R. Dufour, J. Der Hagopian, M. Lalanne
I.N.S.A.
Laboratoire de Mécanique des Structures
U.A. C.N.R.S. 862
20, avenue Albert Einstein
69621 Villeurbanne - France

Today it is necessary to predict with great accuracy the dynamic
behavior of rotating machinery components at the design stage.
This paper focuses on the secondary effect on the dynamic charac-
teristics of rotors in bending, introduced by axial torque. The
influence of a constant and an harmonic exciting torque has
been studied both experimentally and theoretically in this work.

INTRODUCTION

The dynamic characteristics of rotating ma-
chinery must at this time be predicted quite
accurately. The main effects of rotor dynamics
are now well known and taken into account in the
equations and the corresponding computer programs.
This paper considers the secondary effect of an
axial torque in view of including its influence
systematically in the analysis of a rotor.

tested an original apparatus. They have shown
the difficulties in obtaining a pure axial tor-
que and have observed, with a pulsating harmonic
torque, zones with instabilities.

Unger and Brull |6} have obtained theoreti-
cal results, using a quasi-snalytical Galerkin
type method. They consider both a constant axial
torque and an harwonic pulsating torque at the
same time. As did Msu |7| they prove the exis-
tence of three kinds of instabilities for coupled
Mathieu's equations. In the type P the system
vibrates with period P. In the type 2P the system
vibrates with period P, the excitation period
belng 2P. The last kind of instability is

wetw.)/k with i,j,k = 1,2,... vhere the system

gra fes at frequency wj or wj for the excita-
txon (witwj)/k. The work presented in what
follows is mostly devoted to an experimental set
up in which the influences of a constant axial
torque and of a pulsating torque can be simul-
teanously observed. Solutions of equations have
also been presented. A matrix for a constant
axial torque has been included in a finite ele-
ment computer program |8].

Eshleman and Eubanks |1]| have presented the
equations of motion for rotors in bending sub-
jected to several szecondary effects such as
constant axial torque. The solution of the equa-
tions shows that the stiffness of the shafts
decreases as the axial torque increases. This
effect is predominant over the other secondary
effects if the slenderness ratio r = R/2L is
< 0.0025. Zorzi and Nelson |2| have calculated
the virtual work of the components of the axial
torque and deduced a matrix to be used in a
finite element formulation. This matrix is non-
symmetric and must be added to the stiffness
matrix. They have applied that formulation to
simple examples : i.e. a simple beam with boun-
dary conditions either simply-supported or
clamped at both ends. Ziegler |3| has dealt with
nonconservative systems and given for different
boundary conditions the values of critical tor-
ques leading to buckling. Willems and Holzer |4|
have published results on the critical speeds of
a rotating shaft subjected to a constant torque
and & constant axial force.

Eshleman and Eubanks |5] have built and

EQUATIONS

The dynamic behavior of a constant circular
cross-section Euler-Bernoulli beam, Figure 1,
subjected to an axial torque T is defined in
absence of other external forces by the two fol-
lowing equations presented in |1, [4] :
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BRI N N W o

3w
a2
32y
at2

pS + Bl ——

cross section area

diametral area moment of inertia of the
cross section

Young's modulus

mass per unit volume

displacement components of the center of
inertia of the beam cross section.

Fig.l! - Beam reference axis

The two equations can be written more com-
pactly. Introducing the new variable :

z = w+ iu ; G = /=D (2)

it comes

Y2 .
+ EI — - iT
at? vt ay3

P4

32z 33z

oS = 0 (3)

For convenience equation (3) has been writ-
ten in a non dimensionnal form :

2 4
p2 £ 2f
at g ag3

3
-y 2F . %)

with
-y . -2 . N T
E=¢ s f=7 i Hegr 5 9 & LG

The non dimensionnal torque H will be :
H = Hy + H) Cos nt (6)

where Hy and H) Cos nt are respectively the cons~
tant and the harmonic pulsating torque.

EXPERIMENTAL SET-UP

The set up has been designed for the dyna-
mic study without inclusion of the rotation
effect in order to have well known boundary con-
ditions, (see Figures 2-5). The experiments have
been performed with a beam clamped at both ends
(C-C) to have a better control of the axial tor-
que. With those boundary counditions the torque

remains axial during the experiments.

Constant torque experiment (H = Hj)

The torque effect corresponds to the last
term of equation (4). The larger Hythe higher is
the influence of Ty, Equation (5) shows that for
a given T,it is necessary to have a long beam
(L) with a small cross section (I). A high stress
steel is thus used, whose characteristics in SI
are :

E = 2.06 N/m?

p = 7850 kg/m?

The dimensions of the beam experimented are
L, length = 1.845 m
D, diameter = 3.10-3 m.

The maximum torque imposed islqmax = 2,68 N.m

andﬂqnax = 6.

In order to avoid the influence of gravity
the experimental set-up presented in Figure 2 is
vertical. A force gage (D is fixed at the upper
end of the beam, Figure 3. That gage allows the
measure of any axial force which can thus be eli-
minated. At the lower end, Figure 4, the beam is
fixed in a parallelepipedic steel support
whose only motion is axial, (to avoid axial for-
ce and keep the beam clamped). The axial torque
is obtained by rotating . The resonant fre-
quencies of the system are then obtained by a
conventional way, magnetic excitation and detec-
tion by proximity probes, for Hyvarying from O
to 6.

Constant torque and harmonic axial torque
(H = Hy + H; Cos nt).

An electrodynamic shaker, Figure 5, is used
to impose the harmonic torque. Needle bearings
are used, see part (:), the beam is thus clamped
at L; = 1.435 m from the upper part (:). The am-
plitude of this torque is such that H, g 0.02.
The instability zones are obtained by a point by
point frequency sweep between 0 to 60 Hz.

SOLUTION OF THE EQUATIONS (H = Hy)

Equation (4) has previously been solved |1|
by the method of separation of variables. The
frequencies are then obtained from the zero va-
lues of the determinant associated with the boun-
dary conditions. This paper presents a simple
method which makes the phenomena i.e. frequencies
and mode shapes, easier to understand. The method
is a Galerkin type method and is used for two
kinds of boundaries.

Simply supported beam (SS).

The solution is sought using the hypothesis
of separation of variables :
L on(c).wn(:) €)]
with, n being an integer
iHgE/k.
¢,(¢) = Sin nng.e (8)

Sin nng is the well known mode shape for SS beams.
Here eiH0&/k takes into account the rotation due
to the torque. The coefficient k is obtained by
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the application of the boundary conditions : ben-
ding moments and displacements equal to zero for
E=0, £ = 1. The conditions on the displacements
are directly included in equation (8). The ben-
ding moments are :

3%u aw
m, = El1Z=-7T, 2 )
z 3y2 ay
e _gpd%w__ 3u
m EI "> To 3y (10)
Equations (9) and (10) can be combined into :
m o= -m +im (11)
This gives : )
Lkt QU -g-é- -0 (12)
ag?

Equation (12) must be valid for £ = 0 and £ = 1|,
the only solution is k = 2, Thus equation (7)
becomes : iHgE/2

fn = Sin nnE e wn(t) (13)
The solution to equation (13) is introduced in
the equations of the motion (4) and the factors
of the sine and cosine functions are set equal to
zero. This leads to :

2,400 bl _ -
| A (n*r ) ¥ 0 (14)

ﬂoz
oy (—— - n?x2) ¥y = 0 (15)

From (14) one has :

wn = a Sin mnt + bn Cos mnt (16)
with the frequency
Ho“
w, = % ot - o an
Due to (5), (17) is :
Hy
1 EI
= bl oo ==
wy n“x ; 2 55 (18)
X 2
n I
- —_— == 19
Wy 2 o8 9)
With
2 4ol Ho
xn - nw’ - IT_ (20)
Hp"
SRR

The frequencies w_ are zero for Hy = * 2unm,
which are the exact values of the buckling tor-
que. Equation (I5) shows that solution (i3) is
the exact solution for : Hy = 0 and Hy = * 2nw.

Clamped-clamped beam (CC)

The CC beam is more difficult to compute
than the SS beam, as it is not easy to suggest
a very convenient hypothesis for the displace-
ment. For a CC beam with Hy = 0 it can be obser-
ved that :

¢n(5) = Sin wf.Sin nng 21)

gives a convenient value for the first frequen-
cies. The X, values, see (19), are showmn Table 1.

Hy = 0 EXACT VALUE  |APPROXIMATE VALUE
X2 22,37 22.79
X,2 61.67 63.2
X32 120.9 115.1
X2 199.8 185.4

Table 1 : - C-C beam -~ Exact and approximate
values of beam coefficients.

As a consequence of these results the following
displacement function is defined :

¢,(6) = Sinrng.Sin nwg.eiuog/k

where eIHOEIk takes into account the rotation
due to the torque.

(22)

The calculations are performed on a sligh-
tly different way from the SS case. Equation
(22) is used with equation (4). This gives a
second order differential equation in time. The
Galerkin procedure is then used. The equation
is multiplied by Sinnf.Sin nnf df and integra-
ted between 0 and 1. In order to avoid lengthy
developpment only the results are given :

The frequencies obtained are :

~

72 /[2,200-k,) + 43y (2-k;) + 16/3] /ET
L2 EE

wy =

X,2 I
w; = — o5

12

(23)

wz/[lnz (1-k 432 (0241) (2-k ) +(n“+6n2+1 )]ﬁ

o =
n L2
(24)
2
N 1
n Lz OS
with
Ho? 43
N = y k) = T
Kq2n2
1 (25)
Hp? y 2
A, - , kow SnrlZottl .
k272 n n2(4n2+3)

The axial torque is non conservative |3|
and its introduction in the finite element me-
thod is obtained from the virtual work of the
torque. It is easy to introduce the correspon-
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, whose expression
is given in |2|, in a finite element computer
program.

ding nonsymmetric matrix T.

SOLUTION OF THE EQUATIONS (H = Hy + H; Cos nt)

As in the case where H = Hy, a simple method
limited to the types P and 2P is proposed to ob-
tain instabilities. The calculations based on
Galerkin's method are presented only for SS beams.
For a CC beam the conclusions are identical and
the developments are not presented. It is suppo-
sed that the mode shapes are not significantly
modified by the pulsating torque, then equation
(13) is used and equation (4) becomes :

2,00 bl 4 3 g 2,22 Ho®
pw“(t)+[(nn +—2-Hon1r +T6_)
(26)
Ho Hg?
~ (Hg+H; Cos nt) 5~ (3n?n2 + —=)]y (£) = 0
Let
T = nt @27
2
W
§ = 28)
n nz
HoH, Ho2
€. = - (3n2n2 + - (29)

" 2p2y?
then (26) may be written :

Woon(T) + (Gn + ¢ Cos 1) wn(T) = 0 (30)

Equation (30) is a Mathieu's equation. Strutt's
diagram shows the instability zones correspon-
ding to equation (30) with the most dangerous
zones identified for § = 1/4 and 6§ = 1, i.e.

n n
n=2 andn = Wy I3l, {9].

APPLICATIONS
Constant axial torque Hg

The results presented are either analytical
{4}, 6| or experimental. They include also the
formulas proposed here : equations (18) for the
SS beam and equations (23), (24) for the CC beam,
(Tables 2-3). The mode shapes depicted are from
(13) and (22) and given for three values of Hj.
They are presented in a plane perpendicular to
the Oy axis, (Figures 6-7). The finite element
results obtained with 9 elements are in satis-
factory agreement with the frequencies and mode
shapes and are thus not given. It has been ob-
served that the agreement between experimental
and analytical results is satisfactory for the
frequencies, Figure 8. Mode shapes have been
computed, they have been experimentally observed
but not measured.

Table 2 : - S-S5 Beam - anln2 versus torque

Hy= 0 1 2 3 3.5 4 5 6

. X;2 l6] 1 - 0.98 --- 0.94 -— 0.87 0.79
- 22.37 (22) 1.02 1.01 1 0.98 — 0.94 0.89  0.82
. %22 |6] 2.76 -— 2.73 -— 2.68 - 2.59 2.51
22.37 (22) 2.83 2.82  2.81 2.79 — 2,77 2.73  2.69

X32 6] 5.40 -— 5.38  --- 5.32 -— 5.23  5.15

22.37 (22) 5.15 5.14  5.14  5.13 -— 5.11  5.09  5.06

Table 3 : - C-C Beam - xn2/22.37 versus torque




<A’ U T

(N i A

1

Mode

v r £ /.«

2

Mode 2

St

Mode 3

Mode 3

]
L]
=3
«
£
w
o
o
£
|
d
]
.-}
w
\
w

Fig. 6

Mode 2

3

Mode

Mode 3

RPN

C-C Beam - Mode shapes

7

Fig.

n



: . R e A R A N T N W W Vv W \"f.*.—;:_‘

3 L

3 i

B Ny

| s
t — :Unger & Brull |6}

‘ N » «:Experiment Ny

A
R

s S0

] Fig.9 : 2P instability (n = 2uw,))

A\Y

ke \ O o4

<
Fig.10 : Combined resonances instability
".-'-H n=wp +wy
[} 1 4; ;7 : ; [ For instabilities of type P, n = w_ the
beam vibrates at the same frequency as Phe exci-
Fig.8 : C-C Beam coefficients tation. For 1n§t?bi1§ty ?f type 2P, n = 2uw_, the
zone of instability is wide (Fig.9). The modes
Constant axial torque Ho and pulsating are noted v1§ually. For combined instabilities
torque H, Cos nt two frequencies are observed for n = (w +wy)/2
q 1 nt- the beam vibrates with frequencies w; and wpyand
The experiment has been performed with for n = w+w; the beam vibrates with frequencies .
Hy = 3.75 and H; = 0.02. The experimental natu- wy and ws, (Fig.10), The instability zones of R
ral frequencies in rd/s are : this type are also wide.
wy = 37.7 5 wp = 110.6 ; w3 = 216.1 ; w, = 364.4 No other instabilities have been seen in ~

the range considered. The instabilities of type

The beam was excited by a torque whose frequen- P and 2P have been simply explained by the cal-

cy in rd/s is n, as shown in {5| the beam vibra-

tes with the Erequency n culations prosentsd; The fombined resonances \;
. are predicted 1n ‘6. and |7], they could also R

On the other hand during the frequency certainly be predicted by the method given here. 9
sweep between 0 and 60 Hz zones of instabilities Te 1-*ieve this, equation (13) would be a sum of v 4
were observed. The results of this experiment exprescions corresponding to n = 1,2,3. When -
are presented in Table 4. The instabilities are Hoo- the instability of tvpe 2P is neither pre- B
detected by a two channel oscilloscope, where . 4 fev oang mot observed. Y
and r, could be easily compared. In addition a ~
spectral analysis of a signal piven by a non d
contact probe is performed, this analysis is :4
very useful to detect the nature of the instabi- e

lity.
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TORQUE FREQUENCY n BEAM FREQUENCY INSTABILITY
) rd/s ZONE rd/s CONCLUSTON TYPE
¢
n = 37.7 narrow W] n = w P
X
wy n = 2w 2P and
N 73. s n g 81.7 wide or or or
- w; and wy n = (wj+wy)/2 | combined resonances
) n = 110.6 narrow wg n=w P
n = 216 narrow w3 n = w3 P o
N
.
'; 221. g n s 228 wide wy n= 2w 2P "
2 254. s n g 270. wide wy and w3 n = wytw; combined resonances >,
S o
, n = 364 narrow Wy n = wy P ,
” Table 4 : - C-C Beam - Pulsating torque influence
3 CONCLUSIONS |4] - N. Willems, S.M. Holzer, "Critical speeds
N The influence of a constant axial torque o.f rotating shaf_t sub]ec?ed"to axial loa-
- . . sgs ding and tangential torsion", A.S.M.E. J.
< on the dynamic of rotors can be significant and Eng. Ind 259-264, (1967)
is easily included in any computer program. g -» PP ’ )
- "
b3 The harmonic exciting torque, which can |5/ = R.L. Eshleman, R.A. Eubanks, "Effects of
. . : . axial torque on rotor response : an expe-
also be important in turbomachinery and recipro~ . : . P
. . rimental investigation', A.S.M.E. Paper
. cating compressors can be very dangerous. The
- . P ry : No.70-WA/DE l4.
v instability zones seem at present impossible to
., predict for a real rotor because the stiffness [6] - A. Unger, M.A. Brull, "Parametric instabi-
-, matrix would have to include periodic coeffi- lity of a rotating shaft due to pulsating
; cients. torque", A.S.M.E. J. Applied Mech., pp.948-
; 958, (1981).
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DISCUSSION

Mr. Rieger (Stress Technology, Inc.): Has any
regearch been done on those instability bounds
to deternine the critical value of the damping
which is likely to suppress the bound
altogether?

Mr. Eshleman: No. There has not been. Some
analytical work was done by Ziegler, in
Switzerland, on the effect of daaping to show
how the bounds decrease. But, as far as
experimental work is concerned, I did some
experimental work on those bounds, and I showed
some of the bounds in it., However, I am afraid
the damping wasn’t quantified to determine what
they were.

-
2 >

®p " v NN

Mr. Rieger: It would seem that the post-
buckling behavior would be quite promising
because a shaft would deform, and 1f 1t
continued to rotate, it then would begin to
develop quite substantial damping because you
have a torque effect. The shaft, which 1s bowed
out and rotating, would have a very substantial
vector., Has anybody done any work in the post-
buckling region?

Mr. Eshleman: No. They have not.

Mr. Rieger: That is something new to think
about.,
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SENSITIVITY ANALYSIS OF THE LOCATIONS OF THE BALANCING PLANES OF AN

UNBALANCED ROTOR~BEARING SYSTEM USING DYNAMIC CONDENSATION TECHNIQUE

S. Ahuja, A. M. Sharan
Faculty of Engineering, Memorial University
St. John's, Newfoundland, Canada, AlB 3X5

An analytical procedure for the dynamic balancing of multi-rotor
systeas supported on fluid-film bearings is presented. The model 1is
developed based on the finite element method which includes the effects
of translational, and rotational inertia, and gyroscopic moments, using
the consistent matrix approach in conjunction with the dynamic astrix
reduction technique, the modal analysis, and the least-square balancing
technique. The use of the matrix reduction technique for determining
an equivalent reduced system for balancing, provides subsequent saving
of both, the computational time and space, on the digital computer.
Three distinct practical conditions are investigated in the present

work which are:

(1) The balancing of rotor disks at and below the critical speeds.
(2) The effect of the location of the balancing planes on the rotor

response.

(3) The effect of the number of balancing planes on the rotor

response.

The balancing method is found to be quite effective, permitting safe
rotor operation over the speed range covering the three critical

bending speeds.

1. INTRODUCTION

There has always been a demand for
greater power output per unit-weight in the
design of turbomachinery. This requires
higher operating speeds. The key factor in
achieving this objective is the control of
vibrations of the rotor as it goes through the
critical speeds.

The turbomachianery can be modelled as
several rotor-disks mounted on hydrodynamic
bearings. The stiffness and damping
coefficients of such bearings are speed
dependent, hence the dynaamic analysis is more
involved as compared to the systeas which are
supported on ball bearings, where these
coefficients can be considered as isotropic.
The precision modes, {n case of isotroplc
bearings, are circular, whereas, for the fluid
film bearings, it is elliptical [1].

There have been various techaniques used
in the dynamic analysis of the rotor-bearing
systems such as (a) the lumped parameter
method, (b) the transfer matrix method, and
(c) the finite element method. Ruhl (2]
analysed the rotor vibrations using the finite
element method and concluded that the results

»

are more accurate than those obtained using
the transfer matrix method. Nelson and
McVaugh (3] studied the dynamics of a
rotor-disk supported on isotropic and
orthotropic bearings using the finite element
analysis. The damping in the bearings was not
included in the results.

In rotor-balancing through the criticals,
one has to have a reasonable number of
balancing runs around each critical speed,
which is costly and time consuming. It would
be ideal if the balancing can be done at the
critical speeds only.

In the present work, a mathematical model
to control the vibration of several disks
supported on fluid-film bearings including
damping, has been developed. The response at
the various locatione on the rotor, 1is
obtained using the finite element analysis in
conjunction with the modal analysis [4]. The
size of the system matrices is reduced using
the dynamic reduction technique {5]. This
reduction technique yields sufficient accuracy
due to the lower vibrational modes. The
balancing weights are obtained using the least
square analysis (6-8]. The system in the
present work is balanced exactly at the

SR A

[AARARNE

L e S

v e v e 00




Pyl
-l a v v

"

RN s

(A
PR TN

O NEMD
%%y

. '.‘

P T

oy
D A

e

critical speed, whereas, in other balancing
techniques, runs at several speeds have to be
carried out. Further, by varying the number
and location of the balancing planes, better
balancing conditions are achieved.

2. THE SYSTEM CONFIGURATION
AND THE COORDINATES

In modelling a rotor bearing system,
important consideration must be given to the
set of refereance axes utilized to describe its
motioa. A typical rotor-bearing systea is
illustrated in Fig. 1. The motion studied can
be in a rotating or a fixed frame of
reference. The rotating frame is particularly
useful, when analyzing systems with 1isotropic
bearings. 1In this case the motion in two
normal planes can be treated separately. The
fixed frame provides the generality of
handling problems with nonsymmetric bearing
stiffness, and damping effects. The only
disadvantage of the fixed frame finite element
formulation is that the order of the systea
matrices is large. This disadvantage can be
overcome by using the dynamic matrix reduction
technique.

A cross section of a rotor in its
deformed state as defined in the fixed frame
of reference system (XYZ:R), 1s shown in Fig.
1, and a typical finite rotor element is showmn
in Fig. 2. The various stiffness and the
damping coefficients of the fluid film
bearings are shown in Fig. 3. The triad is
fixed with the x axis coinciding with X. The
cross—-section of the element, located at a
distance (s) from the left end point,
translates and rotates during the general
motion of the element. The translations
V(x,t) and W(s,t) fa the Y and Z directions
respectively locate the elastic centerline,
and small angle rotations B(s,t) and I'(s,t)
respectively, represents the orientation of
the cross—sectional plane. The cross-section
also spins at a constant speed w about the X
axis defined by (x,y,z: T) triad.

3. MATHEMATICAL MODEL

3.1 The System Equation

The finite element modelled equation of
motion of a rotor-disk system can be written
as [3)

MI{a(e)} - wie] {q(e)} + (€] {aCt)} +
(k) {qa(e)} = {a(O)} )

The equation is obtained by considering
the kinetic and potentfal energles of each of
the components of this system. The details of
the derivation are given in the Appendix A.
The number of degrees of freedom in Eqn. (1)
can be quite large. In order to carry out the
modal analysis, any transformation matrix

which can be used for the matrix reduction,
must vetain the lower wodes for controlling
the vibrations through the critical speeds.

3.2 The Dynamic Matrix Reduction Technique

The reduction process is wost simply
described as a transformation, relating
coadensed degrees of freedom in terms of
retained ones. The computation of the
transformation matrix, can proceed by a number
of approaches; the most straight forward
approach is to minimize the potential energy
of the deformed structure, ignoring inertial
effects and forces on the condensed degrees of
freedom, thereby retaining the lower wmodes,
for controlling the vibrations through the
critical speeds. This is done by defining a
transformation matrix [T], and writing the
relation [5]

() qat - [};‘ﬂ]m - Tlogn (el
(2)
vhere,
(= b= -z m g
[Kqgl (Kps]
3)
The submatrices [Kss] and [Kus] are

obtained by partitioning the stiffness matrix
(K] in Eqn. (1) which can be writtea as

L i (Kygl
[Klpxn = i I el
[Kyg)™ | [Kgq)

4)
In Equs. (2) to (4) 'm' refers to the number
of master degrees of freedom, and 's' to the
slaves. The master degrees of freedom are
retained, whereas the slaves are removed.

Using this transformation matrix, the
condenged wmatrix equation can be written as

tmm{;_m} - 6[65) mrnl 9t ax1

+ (Colaxa {im(t)}uxl + (Knl-xm{qm(t)}nxl
= {Q(®) g1 (5)

wvhere, the condensed matrices are given by

Myl = [T1T (M) eq [T1,

(Kalnxa = [T1T (K] gnlT1, Q)
(Cnlaxm = [T)T16] pn (], (®)
(Calumn = [T1TIC] 1xn!TI, 9
and {0t by = [T1Qlggy + (10
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The eigenvalues of the condensed systea
as represented by Eqn. (5) are higher than
that of the original system because of the
imposed constraints. The selectiom of the
master and slave degrees of freedom is
automated so as to ensure that the lower modes
are vetained as the masters. The diagional
coefficients of [K] and [M) are scanned, and
the degree of freedom 1 for which Ktil My, 1s

the smallest, 1s selected as the first master,
and the rows and columns of the system
matrices are rearranged accordingly. This is
repeated, till the system matrices are
arranged in an ascending manner, based on the
Kyy/Myy ratio of the diagfonal elements.

3.3 The Modal Response Analysis

The modal analysis [4]) of the condensed
system can then be carried out, after
rearranging Eqn. (5), into a systea of first
order differential equatfion of the foram

M (x(0)} + (X1 [x(0)} = [F},

(1)
where,
i ' (]
. [ at '(-«T»IE.J‘WC'!Y] a
()

w - - @

{¥} = [}gi} (14)

X {aa(t) a [{q )H
{x(e)} [{q_<c)ﬂ , and {X(t)} = [ (O

(15)

The damped natural frequencles of the systea
are then obtained, by finding the eigenvalues
of the dynamical matrix [D] which is given by

(o} = 7! ) (16)

The transformation of Eqn. (11) is carried
out by using the relation

[x(t)} = (0] {n(D)} arn

where [¢] contains the eigenvectors of the
reduced systea represented by Eqn. (11).
Introducing Eqn. (17) iato Eqn. (11) and

premultiplying the result by [¢")T, which is
the transpose of the eigeanvectors of the
transposed system, leads to the following:

39

(' 1T} + (0*1TIRICo1 ()}~
1e*17(r} (18)

representing the dynamics of the systea in the
normal coordinstes. Because of nonsymmetric
nature of the stiffness and damping matrices,
a conventional normal mode analysis is not
possible, where [¢]T 1s used instead of [¢*]T.
Eqn. (18) can be rewritten as

(u*] {n(e)} + (x*] {n(O)} = {o} a9

vwhere [u.] and [x'] are diagional matrices
respectively. The steady state solutioa for
Eqn. (19) can be written as (4]

n,(£) = N exp(jut) + N, exp(-fut) (20)

and

ui(t) - !1 exp(jut) + !t exp(~jot)

11,2, 0000, 2u (21)

Substitution of Eqn. (20) and (21) ifato Eqn.
(19) leads to

(-<1 + Juui) N1 exp(jut)
+ (ri-anzﬁi exp(-juwt)
- Bi exp(jut) + ii exp{-jut) (22)

Equating coefficients of exp(jut) and
exp(-juwt) respectively, one can write

B‘ nd ;
R T T .(___zx{__y
1 ‘1 mul i Kl Wy

i

(23)

where !‘ and E,; represent the forces due to
mass unbalance in the normal coordinates.

Eqn. (19) can be solved on a mode-by-mode
basis and Eqn. (17) can be used to obtatn {X}.
The nodal displacements, which represent the
elements of the vector lq }, are obtained
using Eqn. (15) by taklng the real part of the
lower submatrix of the vector {X]. The
displacement vector {q} s obtained uping
Bqn. (2).

3.4 The Least-Square Balancing

The magnitude of the elements of the
vector thus obtained, is reduced using the
least square method {6-8]. As the first step,
the rotor is run at its first critical speed
without making any changes to it. Next, a
known trial weight is placed in each of the
balancing planes, and the resulting vibration
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calculated at each of the msasuring planes.
By subtracting from these results, the
corresponding results for the uncorrected
rotor, and dividing the difference by the
value of the trial weight, a series of
influence coefficients are obtained one for
each measuring plane. This is mathematically
writen as

R, - R

3

where a is the complex influence coefficient,
T the trial weight, "13 and Ry, the elements

of the response vector {R}, and 1, j represent
the measuring and balancing plane numbers
respectively. Once all the influence
coefficients are evaluated, the correction
weights required to minimize the unbalance
vibrations of the rotor can be computed by
using the relation [6]

{R Jgx1 = [Algep {Uhpmy (25)

where [A] is the influence matrix coefficieat
vhoge elements are Qg {u} 1s & complex

vector defining the correction weights and the
subgcripts q and p represent the available
nunber of measuring and balancing planes
respectively.

In exact point method (7], the number of
balancing planes are equal to the number of
measuring planes i.e. p=q. The least-square
method although based on the same principles,
permits the condition where the number of
measuring planes can exceed the number of
balancing planes. This allows an increase in
the input data (more measuring planes than
balancing planes), whereby the consequence of
a single error in the data tend to decrease.
The analytical procedure for the least-square
method is given in [8].

In general case, where the number of
measuring planes exceed the nuaber of
balancing planes, the unbalance is reduced by
minimizing the square of the residual
smplitudes. The expression for the correction
weights vector {U] in this case, can be
written as

{v} = -7 (AD7Y L AIT . {Rg)  (26)

The final equation yields that particular
combination of correction weights which
ainiaizes the residual vibrations of the rotor
in the least-square sense.

3.5 The Sensitivity Analysis

To provide further flexibility im rotor
balancing, the effect of varying the location
of the balancing planes within an element, 1is
incorporated in the system. For a typical
unifora element shown in Fig. 4, the variable
balance plane is located at distance (a) along
the axis of the element, the end planes of the

element are shown as b; and b, respectively.
The displacement shape functions are given by

vwe1-3Pp? 2Pl (27)
v =t - 2P + P, (28)
vy = 3pl-2p3,  am (29)
v = t-p% + P1, (30)

The forces due to the addition of the trial
weight in a plane are given by

2

P~ (apu’ sin 6)cos wt + (-apu’ cos 6)
sin ot (31)
F,~ (apw? cos 6) cos wt
+ (mpw? sin 8) sin wt (32)

Referring to Fig. 2, the forces at a joint of
a given element, due to a trial weight located
at a distance (&) can be obtained by combining
EBqns. (31) and (32). The expression for these
(joint) forces can be written as

| 3
L - f [(lcmz sin @) §(s-a) ¥ cos wt
°

+ (lpm2 cos 0) &(s-a) ¥y sin wt]ds
i=1,2,3,4 (33)

These forces at the joints of the elements are
asgembled into the global force vector for the
dynaaic respongse calculations.

4. THE NUMERICAL EXAMPLE

To demonstrate the application of the
finite element model, a typical rotor bearing
system with six elements as illustrated in
Fig. 5, is analyzed. The details of the
rotor are provided in Table 1. It coasists of
a shaft, with a untfora diameter of 0.050 m,
and an overall length of 0.76 m. The rotor is
symmetrical with most of its mass concentrated
in the two disks. A density of 7806 kg/au3 and
elastic modulus of 2.078 x 10! N/a? are used
to model the rotor shaft. The two disks, with
a mass of 20.45 kg, polar moment of inertia of
0.0020 kg-u? and diametrial inertia of 0.0010
kg-m? are located 0.254 m in from the ends.
The rotor was supported on plain cylindrical
fluid-film bearing with a L/D ratio of 1 and a
bearing clearance of 0.000635 m. The
unbalance condition was represented by the two
disks with an in-line, in-phase mass centre
ecceatricity of 0.000635 m. This
configuration is common to impellers keyed to
the shaft with the same key. The stiffness
and the damping coefficlents of the bearings,
which are speed dependent, were obtained from
[1] where these values are given in a
graphical form.
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5. THE RESULTS AND DISCUSSIONS

5.1 The Dynamic Matrix Reduction Technique

In the dynamic reduction technique, the
original system matrices were reduced to
smaller sizes by using a transformation matrix
obtained by using Eqn. (3). 1In this reduction
process, care was taken that the properties of
the original systea, such as the natural
frequencies, did not alter significantly. The
greater is the degree of reduction, more is
the deviation of properties such aa the
natural frequencies.

For the present system, the number of
degrees of freedom were 28. This had to be
reduced as much as possible. Trial runs on the
computer for the calculatioan of the natural
frequencies using Eqn. (16), were made by
varying the degrees of freedom between 12 to
25. Sowe of the results obtained are shown in
Table 2. In this table, the first five
natural frequencies were computed by varying
the number of master degrees of freedom. As
the number of master degrees were increased,
the natural frequencies decreased. However,
this rate of decrease in the frequency value
with respect to the increase in the degree of
freedom, became very small when the degrees of
freedom were 16. Therefore, the reduced
system, for further analysis, was chosen to
have 16 degrees of freedom, which represents
42 percent reduction in the each of the system
matrix sizes.

5.2 The Variations of the Natural Frequencies

of the System with the Operating Speed

The first three damped natural
frequencies of the systeam are given in Pig. 6.
The critical speeds are frequencies when the
systea natural frequencies are equal to the
operating speed. The abrupt changes in the
frequency map are because of the speed
dependent fluid-film bearing coefficients.

The rotor, light in weight, has a Sommerfeld
number ranging betwwen 1.0 to 10.0, within the
operating speed range. The response at the
first three critical speeds for the original
and reduced system are shown in Table 3. The
location of the measuring planes are shown in
Fig. 7. A maximum deviation of 1.05 percent
as given in this table indicates the
effectiveness of the matrix reduction
technique.

5.3 The Effect of Gyroscopic Moment on the
Rotor Response

To study the effect of gyroscopic moments
on the rotor-bearing response, the unbalance
damped response values for the three critical
speeds were calculated. The response values
obtained are shown in Table 4. As can be seen
from this table, the gyroscopic moments have
very little effect on the overall response of
the system. This {s due to the damping in the
systen, which tends to mask the gyroscopic

EL Bo-f N A A SO/ S S Sy i P,

effects of the shaft and the two disks.
Although the gyroscopic effects were small for
this system, they were {ncluded f{n the oversll
systean analysis.

5.4 The Dynamic Response as s Function of
Rotor Speed

The unbalance response at the middle of
the rotor, for various operating speeds, is
shown in Pig. 8. The three critical speeds
are clearly indicated by the peaks in the
curve. The response is very high at the first
critical whereas it is almost equal at the
second and the third critical speeds.

It is obvious from this study that the
vibration levels at the criticals must be
controlled. The maximum whirl amplitude at
the measuring planes, at various criticals,
are shown in Table 3. 1t can be clearly seen
that 16 master degrees of freedom are
sufficlent for the dynamic response study
because the deviations from the original
systes are very small. In addition, the
deflections are symmetrical along the rotor as
shown in Fig. 9. This is because the
measuriag planq, {refer to Pig. 7) have been
located in a symmetrical manner, and the
deflection of the corresponding points on
either ends, ave equal. For example, the
measuring plane numbers 2, and 6 are
equi-distant from the ends and their
respective response values are equal.

5.5 The Dynamic Balancing of the
Rotor~Bearing System

The dynamic balancing can be carried out
by selecting equal number of measuring and
balancing planes. For rotors, which are
symmetrically located, it often leads to large
correction weights at the middle {6]. On the
other hand, one can use the least-square
method, where the rotor amplitude response,
can be minimized without adding excessive
weights, and where the number of measuring
planes can be greater than the number of
balancing planes. Another advantage of this
method 1s that there can be several measuring
planes and even if there is some error in the
measurement in one or wore than one plane,
still the computed values yleld very good
results. In other words, by increasing
the number of the measuring planes, the
influence of a meagsurement ervor in any one of
these planes, is diminished. The greater the
number of balancing planes, the better will be
the balancing of the system. Unfortunately,
due to the limitations of the accessibility
and other constraints, the balancing planes
can not be fncreased beyond certain number,
for a given system. However, in these
situations, the best one can do is to ifacrease
the nuaber of measuring planes and carry out
the balancing using the least-square
analysis.

The rotor was then balanced at the first
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.eritical speed using three fixed balancing

planes as shown in Fig. 10. In order to
present a meaningful coamparison of the balance
improvement as & result of balancing at the
critical speeds, two balancing methods were
considered.

Method 1 1involves a commercially used
balancing technique [6]). Im it, the rotor is
first balanced at little above half its first
critical speed to stabilize the higher modes,
and then balanced at 1190 rpm., a speed close
to the first critical without actually
balancing the rotor at its critical speed.

Method 2 involves balancing the rotor at
its critical speed only. The results for the
two methods, are presented in Table 5. 1In
method 1, the unbalance response at various
measuring planes was calculated using Eqn. (5)
and is shown in coluan 3. The response at
various speeds after balancing at 760 rpm, is
shown in column 4. Similarly, the respoase at
various speeds after balancing at 1190 rpm, is
shown in column 6. The percentage
improvements, due to the first and the second
balancing are shown in columns 5 and 7
respectively. Referring to this table, it can
be easily seen that the major reduction in the
response is carrled out by the first balanciang
at 760 rpm. The second balancing is more
effective at higher speeds such as 1190 or
1253 rpan (percentage reduction in response is
higher).

In method 2, the balancing is done
only at the critical speed and the results
after this balancing, are shown in coluan 8.
The percentage reduction due to this balancing
is the percent difference of the results given
in columns 3 and 8 respectively.

The results obtained either by
method 1 or 2 are quite good, but method 2
yields better results. The balance results,
along the length of the rotor, are shown in
Pig. 11. As stated earlier, the deflections
are symametrical. The curve obtained using
method 2, shows a slight dip at the middle of
the rotor. This is due to the presence of the
balancing plane at this location.

After balancing the rotor for the
first critical speed, method 2 was selected
for further balancing. The rotor response at
the second and third critical speeds were
obtained and the corresponding correction
weights were calculated. The gystem unbalance
and balance response values at the three
criticals are given in Table 6. The magnitude
of the correction weights and their phase
angles at these criticals, are given in
Table 7.

The maximum reduction in the unbalaace
response is attained under the first balance
run. The effect of the second critical
balance results in an increase in the overall
balance condition. The increase is probably
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because the balance plane locations are
not properly spaced. Similar results are
reported by Tessarzik [6].

Next, the rotor response at the third
critical speed with the first set of
correction weights, was calculated and the
corresponding correction weights at this
critical speed, were determined. The response
values, with the first and the third sets of
correction weights, are shown in column 8.
The results in column 9, indicate that the
response, after the first and the third
critical balancing, decreases at most of the
locations except at and near the bearings.
This is possibly due to the balancing planes
locations which are away from the bearings.
The dynamic respouse along the length of the
rotor due to these balancing are shown in Fig.
9 to 11. Referring to Fig. 9, there 1is quite
significant reduction in the unbalance
responge due to the correction weights. The
deflection curve along the rotor, is
symmetrical even after the balancing, in all
of these three figures. This is because the
balancing planes have been symmetrically
located along the length of the rotor.
However, the percentage decrease in the rotor
response, after the balancing at the second
and the third critical, f{s much less than that
at the first criti{cal. For example, at a
distance of 0.15 m along the rotor, the
difference in the unbalance and balance
response in Fig. 12, is much more than a
similar difference in Figs. 13 and 14.

Referring to the Table 7, the angular
location of the correction weights 1is
approximately opposite to the disk mass centre
eccentricity, which 1s 45°.

It must be added here that the overall
saving of CPU time for a balancing run was 38
percent.

5.6 The Effect of the Location of the
Balancing Planes on the Rotor Response

In the previous section, three balancing
planes were used; one located at the middle
and the other two symmetrically located away
from the first one. Since the rotor disks are
symmetrically located on the rotor shaft, it
appears logical to place these two balancing
planes also symmetrically. Therefore, in
order to study the effect of the location of
these planes on the response of the systenm,
the locations of the two outer planes and the
location of the third plane, have been chosen
as variables for the paraametric study.

The effect of balancing plane location,
for reducing the system response, is studied
using three balancing planes, as shown in Fig.
15, where a; and a, represent the location of
the two outer and inner planes, respectively.

At first, 8, wvas varied with a, fixed
corresponding to the middle of the rotor. The
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resulting response values are shown in Table 7
and correction weights in Table 8. It is
evident from Table 9 that as the balancing
planes are moved towards the disks, the
residual response value decrease. This is
because of the flexibility in the rotor shaft,
the greater is the spacing between the
unbalance forces at the disk and the
correcting forces in the balancing planes, the
less is the effectiveness of the correcting
forces in reducing the response. Table 9
shows that as these measuring planes are moved
in towards the disk, the magnitude of the
correction weights in these planes alao
increage. When these two planes are located
close to the disks, most of the correction
weights are needed in these variable balancing
planes; the weight in the fixed balancing
plane 13 negligibly swall.

Tables 10 and 11 show the effect of
varying the center balancing plane while
keeping the other two fixed. It can be seen
in these tables, that as the center balancing
plane is moved, both the response as well as
the magnitude of the correction weights,
increase. In addition, the maximum deflection
curve along the length of the rotor, is no
longer symmetrical. The best balance
condition, using the locations of the
measuring planes (a,, a,) as the variable
parameters, is achieved when a; = 0.228 n and
a, = 0.381 m. Fig. 13 shows the unbalance
R regponse along the rotor; the balance response

with a; = 0.127 m, a, = 0.381 m; the best
balance response after the paraametric
varfation, with a; = 0.228 m, and a, = 0.381
' m. It clearly shows that significant benefits
! can be realized by this parametric variation
study as shown in Fig. 16.

aura oy s a4

s 5.7 The Effect of the Number of Balancing
Planes on the Rotor Response

In carrying out balancing using the
least-square method, an important
consideration is the ratio of the nuaber of
measuring planes to the balancing planes. In
the previous section this ratfo used was 7 to
. 3. The effect of the variation of this ratio
- on the response, has been studied in this
section. The number of the balancing planes
have been varied between 3 and 7 while keeping
the number of the measuring planes equal to 7.
The various plane configurations are shown in
Fig. 17. The rotor response, as a regult of
these variations, are shown in Table 12 and
the corresponding correction weights in Table

13.
¢
& Fig. 17 shows that when the total number
. of balancing planes are 5, or 7, there is a
" balancing plane on the either side of a disk
- at equal distance besides a plane at the
. middle. The results f{n Table 12 ghow that the
odd number of balancing planes yield better
- results than the even number of these planes.
" Among the odd numdber of planes, the best
} results are obtained when the number of
o
S
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balancing planes are equal to 5. The results
shown in Table 13 indicate that for odd number
of balancing planes, the correction weight in
the middle balancing plane, is very small.
This indicates that the forces generated due
to the correction weights located near the
disks, are mainly responsible for the balance
condition. It was also reported by Tessarzik
(6] that increasing the number of balancing
planes does not necessarily lead to better
balance results.

CONCLUSIONS

The finite elewent approach provides a
convenient and accurate means of balancing a
multi-rotor system, supported on fluid-film
bearings. The use of matrix reduction
technique in calculation of the reduced set of
system matrices, enabled subsequent saving in
computational memory storage of 42 percent,
and that of computational time for a balancing
run of almost 38 percent. Besides, in the
reduction process, the retained degrees were
the translational degree of freedom, therefore
one could work with the reduced system only.
There was no necessity of recovering all the
degrees of freedom where the rotational
degrees were also included. The modal
analysis gives an effective means of
determining the unbalance force response, and
the relevant mode informatfon. The use of
least-square method, for the case
investigated, provided good results, whereby
balancing at the first critical speed was
sufficient to bring the rotor amplitude down
over the other critical speeds also. Further,
by varying the number and location of
balancing planes, better balance conditions
were achieved. The results revealed that when
using the least-square method, the odd number
of balancing planes yield better results than
even number of balancing planes.
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APPENDIX A

The Component Equations of a Rotor-Bearing
System

The rotor bearing system is comprised of
a set of interconnecting components,
consisting of uniform rotor segments with
rigid disks, and fluid film bearings.

The shaft portion of the rotor is
modelled as beam elements, by specifying
spatial shape functions, and then treating the
rotor element as an integration of a infinfite
set of differential disks. A typical rotor
element 1s shown in Fig. 2. The
cross-sectional displacements within the
element are defined relative to a fixed frame
of reference I, by translations V(s,t) and
W(s,t) and rotations B(s,t) and I'(s,t). The
finite rotor element coordinates are indicated
by eight degrees of freedom (qle, qze,....,
ag®), four at each end, with two for
translation, and two for rotatfon.

The rigid disks representing the
impellers, coupling, flywheels, are
convieniently described by a single plane,
with only four degrees of freedom, two for the
translation and two for the rotation.

The equation of motion for the elements
are derived, by writing the expressions for
the kinetic and the potential energies, of the
components. The kinetic energy consists of
both translational and rotational modes. The
rotation terms also include gyroscopic effects

agsociated with the spining of the shaft. The
potential energy consists of the elastic
bending effects of the shaft. The formulation
{s based on the Timoshenko beam theory [9].
The expressions for the matrix equation of
motion using the Lagrange's foramulation for
the rotors as well as the disks are [3]:

Finite Rotor Element Equations

(M1 + M%) {a®) - i8] {a®) + [%g®)
{a°} = {e®} (A.1)
Rigid Disk Equation

(g3 + 0D {a%) - 0 16%) {q9} =
{4}, (A.2)
Bearing Equation

The dynamic equation of wotion of the
bearings, in the fixed frame coordinates as
shown in Fig. 3, can be written as

1c®) {q®} + [kP) {q®} = {Q®} (A.3)
in fixed frame coordinates, where

(" = [¥].
b b
b Kyyv' Kyw
(x°] = b NE
Yev  Kw
b
b, [Cw Cw
[C°] = b ol
Cwv  Cww
In Eqa. (A.3), {Qb} repregents the
external force vector applied on the bearings.
The elements of the stiffness and the damping
coefficient matrix are coansidered to be
nonlinear. These matrices contain
cross—coupling terms representing a
nonisotropic bearing with the principle

coupled axes oriented at (45°, -45°) to the
normal z-axis.

aatrix

differentiation with respect to
position

differentiation with respect of time
fixed reference frame (XYZ)

rotating reference frame (xyz)

snall angle rotations about (Y, Z)

trial weight addition angle
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{x]
vl

[e]

w

ndp cd

n(s) z(s)

L
{a}
{acHagl

(¢l
(1

J-th complex eigenvector of the
original systea

j-th complex ei

J-th modal displacement
generalized force vector
generalized mass matrix
generalized stiffness matrix
matrix of translation displacement
functions;

’1('); 1=1,2,3,4

matrix of rotation displacement
function:

v le), 1=1,2,3,4,
speed of rotation of shaft

location of disk mass centre
relative to T

distributed location of element
cross section mass centre
relative to T

complex influence coefficient
element mass per unit length
element length

displacement vector relative to M

unbalance response assoclated with
cos Qit, sin Qtl

axial position along an element
time

matrix of complex influence
coefficient

conjugate of the complex tnfluence
coefficient matrix

system damping matrix
dynamical matrix

forward component of the j-th modal
force

backward component of the j-th modal
vector

overall exciting force vector
system gyroscopic matrix

i{dentify matrix

-

Ip, I elemental diametral and polar
p inertia per unit length

{K] system stiffness matrix

[M] system mass matrix

P potential eanergy!

{Qc}'{qs} unbalance force assocfated with
cos firt, 8

R, Ry major and minor diameters of the
elliptical response orbital

S, Sommerfeld nuaber

T trial weight

T kinetic energy!

[T) reduction transformation matrix

{v} a complex vector defining the
correction weights

U a_complex conjugate of the
elements of vector u.

(v, W) translations ia (Y,2)

{x} overall displacement vector

My» ID, Ip disk mass, diametral inertia,

and polar fertia

), 164

disk mass, gyroscopic, matricesl

[He].[Ge],[Kel elemental mass, gyroscopic,
stiffaess matricesl.
[Cb], [Kb] bearing damping and stiffness

aatrices
vab, Cv"b, C“vb, cHHb elements of [cP]
vab. Kv"b. ngb. K“"b elements of [Kb]

TABLE 1 