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MACH4NERY DYNAMICS

AN INTEGRATED GEAR SYSTEM DYNAMICS ANALYSIS

OVER A BROAD FREQUENCY RANGE

L. K. H. Lu, W. B. Rockwood, P. C. Warner
Westinghouse Electric Corporation

Sunnyvale, California

and

R. G. DeJong
Cambridge Collaborative, Incorporated

Boston, Massachusetts

An integrated analytical scheme for Marine Gear System Dynamics is presented -

in this paper. The work can be divided into three parts: Gear excitation
source prediction, response calculation in the low frequency range, and
average response estimation In the high frequency range.

Various sources of gear mesh excitation are considered by M.-.rk in his
excellent analysis (1). However, for modern precision ground gears, the
source of primary interest is likely to be that portion of the static
transmission error whose frequency is the tooth meshing frequency.
This is the case treated herein. In this work, the steady component
of static transmission error and the first harmonic of mesh tone
component of static transmission error are calculated from a solution
of the mesh contact problem. A simplex algorithm proposed by
Conry & Seireg (2) is used to solve the gear contact problem.

Marine gear-turbine systems are comprised of individual components
connected by bearings, mounts and gear tooth contacts. Methods best
suited for response calculation of such a complex structure depend
on the frequency range of interest as well as the properties of the
methods. In the low frequency range, finite-element analysis,
FEA, may be used. For intermediate and high frequencies when many
modes participate in the response, our experience (3,4) indicates
that Statistical Energy Analysis (5), SEA, offers a preferred
solution. In order to demonstrate the feasibility and validity of
the above procedure, a simplified gear-turbine problem is analyzed.
The results are presented and discussed.
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INTRODUCTION

Associated with the operation of most In fact, the accuracy increases with modal
machines are variable forces which cause density. In addition, the detailed peaks and
vibration. These vibrations are generally toughs of high modal density frequency
transmitted to the surfaces of the machines response functions are typically variant from
from which they radiate sound as illustrated one unit to the next, which makes a statisti-
in Figure 1. cal description of the vibration more meaning-

ful, as well as easier to interpret (Figure 2
The principal source of vibratory

excitation of many accurate gears is the A gear system analysis scheme has been
unsteady component of the relative angular developed which utilizes the relative merits
motion of pairs of meshing gears. A pair of both the FEA and SEA techniques. The
of meshing gears with rigid, perfect, stretegy involves calculating mesh tone
uniformly spaced involute teeth would excitation by a quasi-static simplex solution

. transmit exactly uniform angular motion, to the nonlinear gear contact problem. Subse-
However, the teeth of real gears contain quently, this excitation is applied to a
machining errors, elastic deformation, NASTRAN FEA model of the system, employing
tooth wear, profile modifications and other substructural modal synthesis at low

* nonidealities. Such effects give rise to frequencies, and an SEA model at intermediate
fluctuations in the angular motion, and high frequencies. The scheme is illustra-

ted in Figure 3. In this way, gear system
The dynamic properties of a structure dynamics may be analyzed across a broad

can influence noise generation, noise frequency range.
transmission, and noise radiation. The
input forces may have their effect amplified The excellent analysis of transmission
by structural resonance. Structural charac- error by Mark (1) is extremely useful,
teristics and isolation design also determine particularly for identification of source for
the amount of vibrational energy which flows the various components of excitation. To
from one element to another in a structure actually p'erform the complete analysis implied,

however, requires a comprehensive, detailed
If the dynamics of a structure are description of tooth surface geometry under

understood, structural modifications or load, and the actual thermal and centrifugal
damping treatments can often be made to reduce environment. To acquire these data is an
the noise transmission or radiation. Tradi- onerous experimental and analytical task.

* tionally, the techniques used to solve Fortunately, for a modern precision ground
dynamics problems in complex mechanical gear, the noise signature is dominated by

" equipment include finite-element analysis, vibration due to a small number of sources.
and lumped-mass methods. At low frequencies, The principal source is usually that causing
where the modes are well spaced, both the mesh tone vibration and its harmonics.
lumped-mass and the finite-element (FEA)
methods can work well. F

Because of the complexity of many _11

practical structures, however, the use of a 0 £ tie.n
sufficiently detailed FEA model of the
structure, for use over an appreciable
frequency range, can become cumbersome and u
expensive. H, _

As the frequency 
of interest increases,

more local modes appear, and the mesh size ,sot.,,
must decrease to maintain accuracy. As a
consequence, conventional FEA methods often
are very expensive to use, or fail to provide
a satisfactory solution. PA/M,

An alternative to conventional methods
for frequency ranges with high modal -

* density Is Statistical Energy Analysis
(SEA) (5). SEA calculates the average and -

standard deviation of RMS response of - -
-e structural subsystems in a frequency band. Fe.- Figure 1: Structureborne and Airborne
* Because it does not seek to calculate discrete- Noise Generation

point response, SEA is not succeptable to
degration of accuracy at high frequencies.

'p 2
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A

SEA analyzing each separately. The procedures
follow closely those used by Seireg and

FFA ' '" g .- Jes Conry (2,7). They are also similar to
.r those in Refs. (8-11) for helical gears and

Ref. (12) for spur gears. These works are
extended by applying finite-elements to
evaluate major components of the compliance

-z matrix.

-* Because the areas of contact are unknown
before the problem is solved, discretization

~ra at the contact points involve more unknowns
than simultaneous equations. A simplex-type
algorithm was devised by Conry and Seireg to
handle this problem, and was found to be very

•; . a heffective.

The method is described briefly in the
fol lowing.

Figure 2: Analysis Method Applicable
Frequency Range

SOURCE PREDICTION

In modern gears, manufacturing
accuracy has improved to the point where,
with proper control of manufacturing errors,
gear mesh tone is the dominant component
of gear noise.

STRANSMISSION "

Gear mesh load distribution is
obviously a dominating factor in gear design.
It is the basis of accurate stress calcula-
tion, and hence, is required to insure NASTRAN

failure prevention. It Is also required for ORMODALTEST
precise noise estimation, and is the basis
for prediction of the amount of profile
modification and end relief necessary to 1

obtain optimum performance on both counts. £w
2
.t -

For a gear mesh load distribution [E-R
analysis to be used as a design tool, the
calculation procedure must not only be
sufficiently accurate, but must also be
affordable, since design iterations are ,__
often needed before a gear Is finalized. Jr

Due to the complexity in geometry PREDICTION
(tooth, root, helical angle, etc.) and the PREDICTION
requirement for small element sizes in

solving Hertzian contact stresses, a full
three-dimensional finite-element analysis
can be costly, time consuming, and will not ..,
necessarily suit the purpose.

In this study, an Influence coeffl- .

cent approach is used to solve the helical
gear tooth deflection and load distribution =7
problem. The required "compliance matrix", - -

deflections due to unit load in a discre- NK,

tized tooth contact zone, Is obtained by
- separating the effects of tooth, gear rim, Figure 3: Integrated Gear System Dynamics

pinion, and local contact deflections, and Analysis

3

- .
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EQUILIBRIUM EQUATIONS INFLUENCE COEFFICIENTS

When two gears are in mesh, the Equation (I) Is solved by a modified
following conditions exist: simplex algorithm. The general method may be

found in the literature (2). The most
1. Geometrical compatibility at each contact difficult part of gear mesh excitation pre-

point; I.e. initial separation + elastic diction Is the calculation of the Influence
deformation - rigid body approach - final coefficients. When two gears are In contact,
separation, the deformation of the teeth due to loads can

be summarized by four influence coefficients.
2. Load compatibility, i.e. Summation of

contact forces - applied load. They are K. - Tooth deflection relative to the
rim.

3. When there is separation at a point, Ka - Gear rim deflection
there is no load. Ke - Pinion deflection

Kj K- Hertzian deformation at the load
The above conditions can be expressed point.
mathematically in the following manner:

Each is illustrated in Figure 5.

" E 1 [ -tY) • [- TOOTH FLEXIBILITY F

Either Fj - 0 or- Y, 0

and Fj ?. 0 , y _ 0 A ._ RIM DEFLECTION

where: Ki] is the total Influence
coefficient matrix.

lei is a column matrix of
elements unity.

EII is an Identity matrix.
(5) is the initial separation

vector. PINION DEFLECTION
is the mesh transmission
error.

{Y) is a vector of "slack"
variables.

(F) is a vector of forces.
W Is the total applied load.

Equation (1) is written for N dis- HERTZIAN DEFORMATION
cretized contact points in the contact zone
as shown in Figure 4. F

Figure 5: influence Coefficient Components

Figure 4: Tooth Contact Zone

% %r%
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Due to the complexity of the geometry,
three-dimensional finite-element analysis is -.

employed to determine accurately the required
influence coefficients (Figures 6 and 7).
Other effects such as thermal distortion, gear
rim centrifugal "flyout", and tooth modifica-
tions may be estimated separately and input as
separations between the teeth (Figure 8).

Figure 6: Tooth Compliance FEA Model MW"

Figure 8: Initial Separations

STATIC TRANSMISSION ERROR

A computer program, WEDGAP (Westinghouse
Electric Dynamic Gear Analysis Program), has
been developed to solve equation (1) at several
increments of gear rotation annie. Load dis-
tribution and mesh transmissio, error in the
contact zone are obtained at .ach Increment
(Figure 9a,b). The load dibtribution is
desirable for fatigue, pitting, and scuffing
calculations.

If the "roll-angle" sequence of mesh
transmission error is Fourier-transformed into
the frequency domain, average (OC), as well as
tooth mesh-harmonic (AC) components of the mesh
transmission error are obtained. This quasi-
static estimation of dynamic response yields
vibratory excitation levels of the gear mesh
at the tooth mesh harmonics.

Figure 7: Gear Rim Compliance FEA Model

e
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Substructural modal synthesis lends
Itself well to the design of vibration
reduct ion treatments. The effects of
constrained-layer or free-layer damping
treatments may be estimated by the modal
strain energy method (14), ind incorporated
as modal damping of individual components.
Isolators may also be conveniently applied
between subsystems. The effectiveness of
vibration isolation is not only influenced

Figure 9a: Mesh Force Distribution by the stiffness of the isolator, but also
by the dynamical characteristics of the
structures they connect (5). The isolator
can be selected while the structure Is
being designed. However, very often isolators

.. are chosen after the main components are
3 *determined. To achieve the best vibration

I I U Iattenuation, the dynamical characteristics of
I *all the major parts of the structure must be

carefully considered. Usually, the design
'________ _ procedure is iterative. Therefore, the

S a 3 method used to design the isolator must
include an efficient evaluation of the total
system. Substructural modal synthesis offers

Figure 9b: Toothmesh Harmonics an Ideal solution to this problem. Physical
properties of the isolator and bearings are
inserted between each component, along with
the component modes. The forced vibration

SYSTEM RESPONSE IN THE LOW FREQUENCY RANGE response thereby employs an accurate model of

BY FEA each influence.

For marine structures, FEA models on the
order of thousands of degrees-of-freedom are SYSTEM RESPONSE IN THE HIGH FREQUENCY RANGE
not unusual. However, In rotating machinery, BY SEA
due to the characteristics of the bearings,
isolators, and damping treatments, we encounter
nonproportional damping. That is, the modes Why SEA?

are complex quantities. For a large model, the
cost of solving such a large eigenvalue When the frequency of interest Increases,
problem is prohibitive, If not Impossible. In the number of modes which contribute to the
addition, since effects such as static trans- response Increases. Eventually, local modes
mission error, rotation unbalance, and shaft begin to participate, and the number of modes

out-of-round can best be expressed in terms can Increase sharply. This is especially true

of rotational frequency, the solution becomes for a complex structure such as a gearcase.
a complex frequency response problem. In order
to reduce the cost of computation, substruc- In these circumstances, a coarse-mesh finite-
tural modal synthesis appears appropriate. element model can be too stiff to representt lapthe true structural behavior. The mesh size

must be reduced to the order of a quarter-

The atheatial bckgrundof mdalavelength. Therefore, at high frequencies,
synthesis can be found in the literature (13), w
hence is not repeated here. Essentially, a It becomes Increasingly difficult to dis-
complex structure is divided into a convenient cretize a structural model sufficiently. A
number of substructures. For each component, further difficulty is that the detail of the
the undamped free vibration modes are calcula- structure is undetermined in the initial design

ted. In gear rotating machinery, the true stages. A problem Inherent in a discrete
0 01 displacements of the components often resemble response calculation, such as FEA, is that it
V" those in free vibration. Therefore, fre can be unreliable when oversimplifications are
' constraint modes of the component are usually made in modelling complex structures. At

sought. As each component is simpler than the frequencies where the modal density is high,
total structure, the risk and cost of modelling the simple model can only account tor the

error are minimized. The component modes of activity of a small number of global modes.
each substructure are then combined via their Thus, in basing a conceptual design on a dis-
boundary compatability conditions to obtain crete response model, errors may be made.the total system response. A major advantage The designer needs a method for estimating
othe tot s s taresponse. A mo a intermediate to high frequency response before." of the method is its ability to employ a

limited number of modes to model a substructure the design Is solidified.

possessing many degrees of freedom, thus
reducing the computational cost.
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The SEA procedure involves modelling Given the resultant internal energy
groups of similar modes as individual associated with each subsystem, time-average
"subsystems" in a given structure. Power response is obtained for o desired frequency
balance equations are then developed for band.
the entire system. The sample case of two-
subsystem Interaction is illustrated in
Figure 10. Power in input to subsystem 1,
and is output either as dissipation, or to SEA BENCHMARKS
subsystem 2, where it must be dissipated.

Because the application of SEA to marine
TrANSFER, structures is relatively recent, an effort

*to benchmark SEA against test data and other
P"Owe analytical techniques Is ongoing. Although a
04PUT compilation of all such projects is outside

the scope of this report, two examples serve
to illustrate the results of the study.

As marine structures are largely groups
Figure 10: SEA Power Transfer of connected flat plates, it was felt that a

comparison of SEA with the closed form plate
solution would provide a reasonable result.
The thin-plate, simply supported form was

The parameters controlling the balance chosen to obtain a classical calculation of
are "dissipation" and "coupl-ing" loss the special and frequency average response
factors, which indicate the strength of each which SEA seeks to estimate. A rectangular
power flow path. The equations may be plate of typical dimensions was divided into
expressed in the following matrix form for nine segments, and the center of a corner
the general case: segment was driven. For each segment, the

classical point vibration levels were spatially
- averaged for the low, center, and upper fre-

quencies of a third octave band. These results
were compared with SEA for several frequency
bands and levels of damping (Figure 11). They

N show that SEA yields a good average response
1.;: - ... .E 1 " - estimate, differences being on the order of a

1.2 few dB.

-41 2 + E ... -E , 1,_ A benchmark of SEA against test data for
j.2 a marine structure was established for a

- reduction gearcase. Vibration levels from an
actual unit are compared with those given by
SEA and a quarter-scale model in Figure 12.
The results show SEA closely following the full-

N-I scale data, which are also accurately modeled
-- ' by the precision quarter-scale model.% is

% 'These and other efforts (Figure 13) to
benchmark SEA show it to be a powerful tool
for intermediate and high frequency calcula-
tions. At low frequencies, SEA generally
gives a good estimate of the average response.
However, when the modes are well spaced, the

Where average response is dominated by the peaks.
There, the discrete-frequency response is

ILL The loss factor of the subsystem L often needed.

- Coupling loss factor

- Energy stored In the subsystem

7r,', - Input power

- Radian frequency

. %
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DESIGN EXAMPLE CONCLUS ION

The concept of Integrated gear system The integrated gear analysis procedure
dynamics analysis is applied to a marine has been shown to provide complex turbine-
propulsion unit. The system under investi- gear system response over -broad frequency
gation consists of a double reduction gear range. Intermediate frequencies serve to
train (Figure 14) driven by two turbines, and confirm consistency between FEA and SEA models,
the supporting subbase. Twenty-two bearings while low and high frequency calculations
serve to mount the gears and turbines to the utilize the strengths of each. The procedure
subbase structure, which itself is spring- permits maximum flexibility in designing
mounted to the ship's foundation structure, vibration Isolation and damping treatments.

so that optimization can be more readily
A simplified finite-element model is achieved.

shown in Figure 15. The gearcase and bull
gear are modelled by plate elements, while
the first reduction gears and shafts appear as
concentrated masses on beams. The subbase ACKNOWLEDGEMENT
is modelled by plates and beams, and the
turbine shafts are represented by beams. The The authors wish to acknowledge the
138 plate, 110 beam, and 40 elastic elements contributions of Dr. D. H. Keefe, of Cambridge
are believed to adequately account for the Collaborative, to the mesh transmission error
essential dynamical features of a typical calculation, and those of Dr. W. C. Gibson.
propulsion unit. of CSA Engineering, to the finite-element

analysis.
The FEA is carried out in two steps.

First, the natural frequencies and mode
shapes of the bull gear, turbines, and sub-
base are extracted. The resulting 72
eigenvalues and elgenvectors, plus each of
the bearing and support stiffnesses and
damping, are recombined via modal synthesis.
The low speed gear static transmission error,

* &(w), calculated by WEOGAP, is input as
relative displacement excitation at eight
tooth mesh locations. The problem is solved

4 by the complex direct frequency response
method of NASTRAN SOL 71 (6).

The SEA model is comprised of 79 sub-
systems and 148 junctions, schematically
represented in Figure 16. &() is again -
input at the second reduction mesh. The SEA
code SEAM* is used to compute the response at
the subbase mounting points.

Typical FEA and SEA responses are
• "compared in Figure 17. They show agreement

to within 10 dB from 80 to 500 HZ. In this
range, the FEA and SEA results can be used as
cross-checks of both models. At low frequen-
cies, before the structure "breaks up" into
a large number of modes, the SEA model over-

*" predicts the response. Above 500 Hz, the
FEA response drops dramatically, indicative
of saturation.

* Copyright Cambridge Collaborative, Inc.
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COUPLED TORSIONAL-FLEXURAL VIBRATION OF A GEARED SHAFT

SYSTEM USING FINITE ELEMENT ANALYSIS

S.V. Neriya, R.B. Bhat, T.S. Sankar

Department of Mechanical Engineering
Concordia University

Montreal, Quebec H3G 1M8 Canada

NOMENCLATURE (cont' d)

The coupled torsional-flexural vibration

due to unbalance and geometrical eccentricity moment of inertia of the
in the gears is studied. The coupling action driving gear
Is Identified through the analysis of the

- gear motion and this effect is included in i2 moment of inertia of the driven
the finite element model of the system. The 2eno

* free vibration problem is solved to obtain gear
the natural frequencies and mode shapes. moment of inertia of the motor
Normal mode analysis is employed to obtain
the dynamic response of the system to excita- J2 moment of inertia of the
tions arising from the mass unbalance and dynamo
geometrical eccentricity in the gears. The d o

response exhibits peaks not only at the sys- k average flexural stiffness of
tem natural frequencies, but also at those vthe gear tooth s

-* frequencies which are related to the system
natural frequencies through the gear ratio. stiffness of the rolling
The response spectra for various parametric yy contact bearing In the
combinations are presented and discussed. y-direction
The finite element formulation in which the
effect of torsional-flexural coupling due to Kzz stiffness of the rolling
gear pairs are included is found to be a very contact bearing In the
convenient method to study complex geared z-direction
shaft systems.
NOMENCLATURE 

[K] generalised global stiffness
matri x

ct average flexural damping of length of the beam element
the gear tooth

1C] generalized global damping a1  mass of the driving gear
matrix m2  mass of the driven gear

cm lumped torsional damping at mass of the driving gear

the motor mti tooth
,'" cd lumped trinldmiga

torsional damping at mt 2  mass of the driven gear tooth
the dynamo

[d] generallsed global mass
d diameter of the beam element matrix

- modulus of elasticity of the mass per unit length of the
beam element beam element

transmitted force ps.' principal coordinates
corresponding to the k sine

fIF} generalised force vector and cosine excitations

G modulus of rigidity of the {qj generalised displacement
beam element vector
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NOMENCLATURE cont'd. Ing shaft is considered rigid. He obtained

the response due to mass unbalance and geo-
r !  base circle radius of the driv- metrical eccentricity. Neriya et al [4]

Ing gear extended this study considering both the
driving and driven shafts flexible in bend-

. r2  base circle of the driven gear Ing. The flexibility of the mating teeth was
o considered in the analysis. The frequency

U 1  mass unbalance In the driving response and subsequently the dynamic tooth
gear load were obtained by normal mode analysis.

U2  mass unbalance in the driven In this paper, the geared shaft system
gear is modelled by using the finite element meth-

od. The effect of coupling between torsional
[y] diagonal damping matrix and flexural motions is Identified by analy-

sing the gear mction and is included in the
C1 geometrical eccentricity In the finite element formulation. The flexibility

driving gear of the bearings supporting the shafts Is
considered in this investigation and the

C2 geometrical eccentricity In the frequency response is then obtained using the
driven gear normal mode analysis. The finite element

-e method offers significant advantages in ex-
" . angle between the directions tending the simple geared system considered

of the eccentricity and unbal- into a train of geared rotors as well as the
ance for the driving gear case of Introducing flexibility and damping

in the bearing supports.

"f2 angle between the directions
of the eccentricity and unbal- ANALYSIS
ance for the driven gear

A schematic representation of a simple
[,] diagonal stiffness matrix geared shaft system is shown in Fig. 1. A

sectional view at the gear pair location [see
ii 1th eigenvalue Fig. 1] is shown in Fig. 2 and it shows the

relative positions of the driving and driven
h[] diagonal mass matrix gears, e. There exists a "force" coupling

between the translational motion of the gear
/"iI ith elgenvector center y, Z; and the rotational motion of the

gear. At the gear location they correspond
INTRODUCTION to the flexural motion of the shaft carrying

Noise and vibration are serious problem the gear and its torsional motion. Fig. 3(a)
In the operation of a geared shaft system. shows the spring mass representation for the

The problem is complicated by the fact that driving gear. The mass of the driving gear
the torsional and flexural vibrations are mi is denoted by the mass of the gear ati
coupled which makes the analysis more dif- tooth in contact. The coordinate Ztl
ficult. The system is excited during the describes the gear tooth motion and is in a

operation by the forces originating from direction parallel to the line of action of

incorrect mounting, unbalance in the gears the gears. The time average stiffness and
and profile errors. Mahalingand nd Bishop damping of the gear tooth are denoted by kt

[1] determined the dynamic load due to exci- and t respectively. The tooth stiffnesses
tation from a static transmission error which are very high compared to the shaft stiffness

encompassed all forms of error in the geared and their variation with time does not
system. significantly affect the natural frequencies

of the rotor system. kbland cbl denote the

.ahalingam and Bishop [1] determined the stiffness and damping of the shaft carrying

dynamic load due to excitation from a static the driving gear. The driven gear is

transmission error which encompassed all similarly modelled and Is shown In Fig.

forms of error In the geared system. Lund [21 3(b). Tooth separation is not considered in
considered coupling in the torsional-flexural this analysis and this is incorporated
vibrations in a geared system of rotors. He through the constraint equation z - zt2 .
analysed a system with high damping and ob- The motion of the pair of gears aescribed

tained the system dynamic response In terms above is analysed and it reveals the terms
of the complex eigenvalue8 and eigenvectors. coupling the torsional and flexural
He also studied the stability of the rotor displacements at the gear locations and the
system. lida et al [3] studied a geared forces occuring at the gear pair. [Refer the

shaft system Including the effects of Appendix.] The contact ratio for the gear
torsional-flexural coupling. The geared pair is assumed to be unity.

shaft system was described as a 4 DOF lumpedmass mdlwhere the driven shaft is
masmodel weetedie shf IsThe finite element disoretisation of the

considered flexible In bending and the driv- geared shaft system under study is shown in

14
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Fig. 4. The driving and driven shafts are
both divided into beam elements 1 to 6 as [M] 1;3k + [c] k + [K] q5 Ik k

shown. The eight nodes of the system

denoted by a to h, each have 5 degrees of

freedom after excluding motion in the axial [M] 1 I + [c] l + [K] 1qj - lFcI
direction. As seen above, the contact point k k k k

of the mating gear teeth has one DOF in the z k 1, 2 (4)

direction, which accounts for the tooth flex-

ibility. The system thus has 41 degrees of Expressing the resonse fqj In terms of the

freedom. The generalised displacement modal coordinates Ipi as

vector for the beam element described in Fig.

5 is given by fq . [*1, f

1Ylj'Zlex 'e l IT',e yek(5)
e Y1.8zlY2.z2.Sx2y2z2 T k - [*] 1p'Pk ; k - 1, 2

The element mass and stiffness matrices k k

obtained from the consistent formulation are where [*] is the modal matrix formed by using

then assembled to form the global mass and the eigenvector 1I}1 , and 1p.1 and IpC}r

stiffness matrices. The concentrated masses k
and inertia (including transverse moment of are the principal coordinate vectors corre-

inertia) due to the motor, dynamo gears and sponding to the sine and cosine components.

. gear teeth are introduced into the appropri- Us;Ig Eqs. 5 in Eqs. 4 and premultiplying by
ate locations in the global mass matrix. The [1 ]results in uncoupled equations in the

stiffneases of the rolling contact bearings modal coordinates of the form,

* are included in the analysis. The terms

arising from the coupling between the tor- i('Ps)k ( ) (P 030

sional and flexural motions [Ref(4)] are now k i k isi k k

* introduced into the appropriate locations in (6)

the global stiffness matrix. The global 
)

force vector is also formulated on the basis Il(Pci) + i(PC,) + Pcici) k
. of [4]. These are given in the Appendix k k k ik

along with the notations used for the cor-

responding degrees of freedom as illustrated where k - 1, 2
In Fig. 4. 1 =1, 2, ...41

41 DOF where vi and Ki are the elements of diagonal
The equations of motion of the 41DFmatrices [i'] and [.c] given by

geared shaft system can now 
be written as

[M]141 + [C]141 + [K]{qI - {FI (1) [,] . [,]Z [M] [.1

The homogenous part of Eq. 1 neglecting damp- [] - [,]T [K] [*1

ing is given by and Y is the equivalent damping coefficient

in each mode. (Oee) and (aci) are the
". ([M~fqjI [K] fq} - 0 kk

elements of the generalised force vectors

and is solved to obtain the elgenvalues Ai {031 k and {0O1k, given by

and the eigenvectors 1*11 of the system. 11 I
{~01 . [.i]T }

The force vector JFI in Eq. I has the k k

excitation consisting of frequencies w, and la} . [] {Fol; k 1, 2,
w 2 as: 10Ik-[] FC ,2

* IF}-(Fsll1sn w1t fF.}2sin w2 t*fFClcos wit The solution of Eq. (6) yields

+ (Fc2 cos w2 t (2)

where 810, 920, of, and ef2 have been assumed (Psi)

to be zero. The corresponding response also k 2
can be expressed in a form involving the two IC P K + +

frequencies as (act)
""(Pci) - (7)

"qI-q 5sjlin wlt+Iqs} 2sin w2t+lqclcos Wit k 2 (aci) 7)
(-w Mi+ Ki + J"YiwC)

+ 1qc1 2 Cos w2t (3) k 1, 2

Using Eqs. 2 and 3, Eq. I can be written as i 1, 2, ...141

four separate equations.
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Using Eqs. (7), (5) and (3) we obtain the Three cases corresponding to varying unbal-
system dynamic response jqj. Since the ance and eccentricity are plotted.
response involves two frequencies w, and w2 ,
the total response has the form ACKNOWLEDGEMENTS

qj - qlJsin(wl t + *1J)+q 2Jsin(w2t
+$
2 j) The work reported was partially support-

- s qsin 2 ed by grants A1375 and A7104 from Natural
qsin1+q 2  sinA2Sciences and Engineering Research Council of

i -A2  -A Canada.
-(qlj+q 2j)sin( y 2 )cos( 2 2)
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NUMERICAL RESULTS Journal of Mechanical Design, Vol. 100,

pp. 535-539, July 1978.
The details of the geared shaft system

used the stiffnesses are to obtain the numer- 3. lida, H., Tamura, A., Kikuch, K. and
ical results are given in Table. 1. The Agata, H., "Coupled Torsional-Flexural
pedestals are assumed to be flexible in both Vibration of a Shaft in a Geared System
y and z directions and the stiffnesses are of Rotors", Bulletin of the JSME, Vol.
denoted by k and kz respectively. The 23, No. 186, pp. 2111-2117, December
details of tey beam elements comprising the 1980.
finite element model are given in Table 2.
The system natural frequencies and their gear 4. Neriya, S.V., Bhat, R.B. and Sankar,
ratio multiples In the range 0-80 Hz are T.S., "Effect of Coupled Torsional-
given in Table 3. The zero natural frequency Flexural Vibration of a Geared Shaft
corresponds to a torsional rigid body mode. System on the Dynamic Tooth Load", 54th
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The time domain response at two Individ-

ual frequencies are plotted in Fig. 6 and
Fig. 7. Fig. 6(a) shows the time domain

4. response at the driven gear location at a
frequency of 37 Hz which is very close to a
system natural frequency. Fig. 6(b) shows
the same at the driving gear location.
Fig. 7(a) shows the time domain response at
the driven gear location at a frequency of 50
Hz which is away from a system natural fre-
quency. Fig. 7(b) shows the same at the
driving gear location.

The frequency domain response is plotted
for the flexural responses at the gear loca-
tions. Fig. 8 shows the response in the z
direction at the driven gear location. The
system shows peak responses at the system
natural frequencies corresponding to modes 2,
4, 6 and 8, and also at the frequencies re-
lated to the modes 2, 4 and 6 by the gear
ratio (Table 3). The natural frequency of
mode 8 when multiplied by the gear ratio is
found to be outside the frequency range of
interest. Three cases corresponding to vary-
Ing unbalance and eccentricity are plotted.

The response in the z direction at the
driving gear location is shown in Fig. 9.
The system shows peak responses at the system
natural frequencies corresponding to modes 2,
4, 6 and 8, and also at frequencies related
to the modes 2, 4, and 6 by the gear ratio
(Table 3). The natural frequency of mode 8
when multiplied by the gear ratio is found to
be outside the frequency range of interest.
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*9 APPENDIX

a. STIFFNESS MATRIX

q27  k t 0 t i 0

ql0 Rt t 0 ktr

22

29ktri 0 -k tri ktri 0

q 0 R t 2 -Rtr 2  0 Y2r

b. FORCE VECTOR

F28  -ZtciWlCOS(Wlt4 e10) -tli~l el0) +

+I2

F2  Ul2 COS 4Wt+ 1 + o,

F12  t2 w2 cs(w2t+ 620) - RtE2 sin(w2 t 020) +

u2 w~2 Cs(w 2t +80+O2

21 5tft 2w2cos~w2t +4020) + C(O8(GJt + 10)

4t{c2 sin (w2t 0 820) +clsin(wlt + eo)l

F29  -ctrieiwicos(eo+ wlt) - F0ceCos(ol10  wlt)

F 13  Ztr2 E2w2c0s(e 20 + w2t) + FE 2cos(6 20 +w 20

-ktr2c:2 sln(820 +*~t
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TABLE 1

11 2
E 1.96 x 10 N/M

16 2
G 7.84 x 10 N/m

-2 2
I 3.0 x 10 kgm

1

I 6.28 x 10 kgM
2

-1 2
J 4.59 x 10 kgm

-1 2
.3 5.49 x 10 kgm

2

9
k 2.45 x 10 N/m

t

8
k 8.83 x 10 N/m
yy

8
k 8.83 x 10 N/m
zz

m 16.96 kg

m 5.65 kg

-3
mt ,mrt 4.9 x 10 kg

1 2

r 0.1m

r 0.05 m
2

c 120 im (variable)
1 2

-4

u ,U 2.8 x 10 kgm (variable)
1 2

P

%
S. 

•  
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TABLE 2

Element No. Length I Diameter d Mass per unit
Un " length

m kg/mm

1 300 i5 1.41 E-3

2 300 20 2.15 E-3

3 600 20 2.51 E-3

600 30 5.655 E-3

5 300 30 5.655 E-3

6 300 25 3.93 E-3

TABLE 3 P

System Natural Frequencies and their Gear Ratio Multiples in the Range

0 - 80 Hz

Mode No. System Natural System Natural
Frequency Frequency Gear

*- Ratio

I zero zero

2 7.78 15.56

3 21.27 42.54e

4 22.96 45.92

5 29.22 58.111

6 35.416 70.92

a 7 36.57 73.1"4

8 44.09 --

9 71.39 --

10 71.57 --

*. 11 72.24 --
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,
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ifGEMOTOR

SHAFT 1 / 1,.01 Lo"

X / FLEXIBLE COUPLING

Fig. 1 Simple Geared Shaft System

12 01 geometric center of the driving gear

Driving' Gear 01' geometric center of the driven gear

02 center of the driving shaft when
it is rotating

r2  IS0 2  center of the driven shaft when2 it is rotating

03 center of the driving shaft when
,0" Z 3 it is stationary

03' center of the driven shaft when
it is stationary

Driven Gear

0yI

Fig. 2 Sectional view at the gear location
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Fig. 4 Geared shaft system and its finite element
discretisation
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Fig. 5 Typical beam element
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Fig. 3 Frequency Domain Response in the z Direction
at the driven gear location (DOF #12)

) C', = 120 Pro, E. = 20 u mn , u , - 2.8x1 0 _4 kgm, u , = 2.8x1 0 _kgm "
b) c, = 120 urn, cz - 120Pro, u, - 2 .8X10_4 kgm, u2 = 0.78xlO-_4kgm

c) c, = 120 Prn, c, - 120urn, u, - 2.8xi0- kgm, U2 = 2.8xI0 -  kgm

U,6
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IL.
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FREQUEWCT, H-j-
FFg. 9 Frequency D omai n Response in the z Directon at
the Driveng Gear Location (OF #28)

a) , = 120 urn, C2 2 20 urn, u, 2.8x10" kgm, u, = 2.8xlO-4kgm

b) E, - 120 m, c, 120urn, u, 2.8x10" kgm, u2 = 0.78x0 "kg.

c) c, = 120 urn, c, - 120um, u, 2.8x0- kgm, u, = 2.8xi0" kgm

24 "i

wo
% %

% 9'

, %.%* %%•%% "% % %.' % .. ,, ,.'

WaP e
•a-- .. , .. , . , , . ,. .,,,-,. . ... ,, .. ... _.. .. . ,.., . . . .. . ., ,_ -. ,: . ., .. :,.,:: , :, ... _. _ _ . . . .
-. - -,,% ,, ,r e, ..... ,' 'l].' " ,. " - . ._ . . .. ,- e',..'. ".',.--

W 9lill l " I i Ii ; - . . -' i I F. . • . . F ' I



iI*

DISCUSSION

Mr. tieger (Stress Technology, Inc.): What kind
of bearings were you talking about? Were they
rolling element bearings with low damping?

Hr. erija: That is correct.
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INFLUENCE OF AN AXIAL TORQUE ON THE DYNAMIC BEHAVIOR

4 OF ROTORS IN BENDING

R. Dufour, J. Der Hagopian, M. Lalanne
I.N.S.A.

Laboratoire de MNcanique des Structures

U.A. C.N.R.S. 862 %
20, avenue Albert Einstein

69621 Villeurbanne - France

Today it is necessary to predict with great accuracy the dynamic

behavior of rotating machinery components at the design stage.
This paper focuses on the secondary effect on the dynamic charac-

[teristics of rotors in bending, introduced by axial torque. The
influence of a constant and an harmonic exciting torque has
been studied both experimentally and theoretically in this work.

!b

INTRODUCTION tested an original apparatus. They have shown

The dynamic characteristics of rotating ma- the difficulties in obtaining a pure axial tor-

chinery must at this time be predicted quite que and have observed, with a pulsating harmonic
accurately. The main effects of rotor dynamics torque, zones with instabilities.

are now well known and taken into account in the Unger and Brull 161 have obtained theoreti-

equations and the corresponding computer program. cal results, using a quasi-analytical Galerkin
This paper considers the secondary effect of an type method. They consider both a constant axial

• axial torque in view of including its influence torque and an harmonic pulsating torque at the
systematically in the analysis of a rotor, same time. As did Hsu 171 they prove the exis-

Eshlmanand ubaks 11 hve resetedthe tence of three kinds of instabilities for coupledequations of motion for rotors in bending sub- Mathieu's equations. In the type P the system
vibrates with period P. In the type 2P the system

jected to several secondary effects such as
constant axial torque. The solution of the equa- vibrates with period P, the excitation period
tions shows that the stiffness of the shafts being 2P. The last kind of instability is

decreases as the axial torque increases. This (w +w.)/k with i,j,k - 1,2,... where the system:. dcreses s te aial orqe xcreaes hisvitraies at frequency wi or wj for the excite-

4 effect is predominant over the other secondary ao
effects if the slenderness ratio r - R/2L is tion (wi+wj)/k. The work presented in what

< 0.0025. Zorzi and Nelson 121 have calculated follows is mostly devoted to an experimental set

the virtual work of the components of the axial up in which the influences of a constant axial

torque and deduced a matrix to be used in a torque and of a pulsating torque can be simul-

. finite element formulation. This matrix is non- teanously observed. Solutions of equations have

symmetric and must be added to the stiffness also been presented. A matrix for a constant

matrix. They have applied that formulation to axial torque has been included in a finite ele-

simple examples : i.e. a simple beam with boun- ment computer program 181.

dary conditions either simply-supported or
clamped at both ends. Ziegler 131 has dealt with EQUATIONS
nonconservative systems and given for different The dynamic behavior of a constant circular

* boundary conditions the values of critical tor- cross-section Euler-Bernoulli beam, Figure 1,

ques leading to buckling. Willems and Holer 141 subjected to an axial torque T is defined in
have published results on the critical speeds of absence of other external forces by the two fol-
a rotating shaft subjected to a constant torque lowing equations presented in 111, 141
and a constant axial force.

Eshleman and Eubanks 151 have built and
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* remains axial during the experiments.

,S a2w 91-w 3S 2
+EI -+T- = 0 Constant torque experiment (H = H0 )

The torque effect corresponds to the last

pS 
2

u + Ea u -T 
3w 0 term of equation (4). The larger H0 the higher is

3t2 3-4 I - T- 0the influence of T. Equation (5) shows that for
at 2  3Y4  Y a given lO it is necessary to have a long beam

with (L) with a small cross section (I). A high stress
S, cross section area steel is thus used, whose characteristics in SI
I, diametral area moment of inertia of the are :

cross section E - 2.06 N/m2

E, Young's modulus P - 7850 kg/m3

p, mass per unit volume The dimensions of the beam experimented are
u,w, displacement components of the center of L, lenh o th4 b

inertia of the beam cross section. L, length - 1.845 m .
D, diameter - 3.10-3 m.

The maximum torque imposed is T0ax = 2.68 N.m
andH%=x = 6.

In order to avoid the influence of gravity
the experimental set-up presented in Figure 2 is
vertical. A force gage ( is fixed at the upper
end of the beam, Figure 3. That gage allows the
measure of any axial force which can thus be eli-
minated. At the lower end, Figure 4, the beam is
fixed in a parallelepipedic steel support (1)
whose only motion is axial, (to avoid axial for-

T T ce and keep the beam clamped). The axial torque

-is obtained by rotating (2. The resonant fre-
quencies of tbe system are then obtained by a
conventional way, magnetic excitation and detec-
tion by proximity probes, for Hovarying from 0

X to 6.
Fig.! - Beam reference axis Constant torque and harmonic axial torque

(H - H0 + H1 Cos nt).
The two equations can be written more com-

pactly. Introducing the new variable An electrodynamic shaker, Figure 5, is used
to impose the harmonic torque. Needle bearings

z - w + iu ; (i /--) (2) are used, see part @, the beam is thus clamped

it comes at L1 - 1.435 m from the upper part (2). The am-
aZ a4Z 3Z plitude of this torque is such that H, 4 0.02.

PS - + El - iT 0 (3) The instability zones are obtained by a point by
at2  ay4 ay3  point frequency sweep between 0 to 60 Hz.

For convenience equation (3) has been writ- SOLUTION OF THE EQUATIONS (H = H0 )
ten in a non dimensionnal form

Equation (4) has previously been solved III
2 2 f - i 3 = by the method of separation of variables. The

at a frequencies are then obtained from the zero va-lues of the determinant associated with the boun-with dary conditions. This paper presents a simple
L- ; TL p2 S L4 method which makes the phenomena i.e. frequencies

L L E El and mode shapes, easier to understand. The method
The non dimensionnal torque H will be :is a Galerkin type method and is used for twokinds of boundaries.

H - H0 + Hl Cos nt (6) Simply supported beam (SS). • "

where H0 and H, Cos nt are respectively the cons- The solution is sought using the hypothesis
tant and the harmonic pulsating torque. of separation of variables :

EXPERIMENTAL SET-UP f = *n(&)'n (t) (7)

The set up has been designed for the dyna- with, n being an integer
mic study without inclusion of the rotation iH0 &/k.
effect in order to have well known boundary con- *n( ) - Sin nnr.e (8)
ditions, (see Figures 2-5). The experiments have n
been performed with a beam clamped at both ends Sin nw; is the well known mode shape for SS beams.
(C-C) to have a better control of the axial tor- Here etHo/k takes into account the rotation due
qu. With those boundary counditions the torque to the torque. The coefficient k is obtained by F.

28
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a A:- - ' -7 . ~ h***~* .

Fig. 3 Upper support

011

Fig. 4 Constant axial
torque system

Fig. 2 Experimental set up

Fig. 5 Harmonic excitation
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the application of the boundary conditions ben- Clamped-clamped beam (CC)
ding moments and displacements equal to zero for
& - 0, & = 1. The conditions on the displacements The CC beam is more difficult to compute
are directly included in equation (8). The ben- than the SS beam, as it is not easy to suggest
ding moments are : a very convenient hypothesis for the displace-

ment. For a CC beam with H0 - 0 it can be obser-2u _ wved that:
mz  El TO  (9) ve tn () - Sin wr.Sin nwt (21)y

2
=

M2- - T u (10) gives a convenient value for the first frequen-
x  -E -- TO ay cies. The Xn values, see (19), are shown Table 1.ay2  3yl

Equations (9) and (10) can be combined into

+ im (11) H0 - 0 EXACT VALUE APPROXIMATE VALUEi - m (I)____ _-____ ______

This gives X12 22.37 22.79
2- i 0  0 (12) 2 61.67 63.2

K3
2  120.9 115.1

Equation (12) must be valid for = 0 and & - 1, 2
the only solution is k - 2. Thus equation (7) X4 199.8 185.4
becomes : I -/ 0-- -,- I

becones " Sin nC e i n) (3) Table I - C-C beam - Exact and approximate
n n values of beam coefficients.

The solution to equation (13) is introduced in As a consequence of these results the following
the equations of the motion (4) and the factors displacement function is defined
of the sine and cosine functions are set equal to( - SinnC.SinI nie IH0/k
zero. This leads to On

2g0 
4
, - H 4 where e iH0 /k takes into account the rotation

p 2 n +  (n on - 0 (14) due to the torque.

H0
2  The calculations are performed on a sligh-

DYH 0 (- - n2 2) vn - 0 (15) tly different way from the SS case. Equation
4 (22) is used with equation (4). This gives a

From (14) one has second order differential equation in time. The
Galerkin procedure is then used. The equation

p - a Sin w t + b Cos w t (16) is multiplied by SinrC.Sin nwr dE and integra-
n n n n n ted between 0 and 1. In order to avoid lengthy

with the frequency developpment only the results are given

. n44  (17)The frequencies obtained are:

Wn p n - 1-(17) 2 4A 1 2(lkl) + 4 1(2-kj) + 16/3]

Due to (5), (17) is :-L 2

K 1

2  '(23)
n-,

n 6 " (18) PS
=16 L2 SL 2  

'-.e

X,n2A 2(1-k n +3xnn+I)(2-kn)+(n4+6n2+1/I n2 u 2- n..
n 2  (19) n L2 ,

(24)

With X 2-2 n4 H o4  
Wn PS '-x 2 I-.4, (20) L2

H0  with

H0 4

T6_'-) 43",kl" -
(12"7T"~k - Ty~-H ~ k

The frequencies w are zero for H0  ± 2nT, K1
2 2  

(25)
which are the exact values of the buckling tor- H0

2
2

que. Equation (15) shows that solution (13) is 2 8nn+12n2+.X - - , kn " n =2,3,...."
the exact solution for: H0 - 0 and H0 - 2ni. n k 2,2 n2(4n2+3 )

n n n
The axial torque is non conservative 131 ft

and its introduction in the finite element me- IN
thod is obtained from the virtual work of the
torque. It is easy to introduce the correspon-
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ding nonsymmetric matrix T.K., whose expression Equation (30) is a Mathieu's equation. Strutt's
is given in 121, in a finite element computer diagram shows the instability zones correspon-
program. ding to equation (30) with the most dangerous

zonesidentified for 6 - 1/4 and 6 - I, i.e.
SOLUTION OF THE EQUATIONS (H - H0 + H, Cos nt) n - 2 w and n - w n 31 191.

As in the case where H - H0 , a simple method A TI
limited to the types P and 2P is proposed to ob- APPLICATIONS

tain instabilities. The calculations based on Constant axial torque Ho
Galerkin's method are presented only for SS beams. Ter
For a CC beam the conclusions are identical and ,er

the developments are not presented. It is suppo- 141, 161 or experimental. They include also the
mode shapes are not significantly formulas proposed here : equations (18) for the

sed that the oSS beam and equations (23), (24) for the CC beam,
modified by the pulsating torque, then equation (Tables 2-3). The mode shapes depicted are from
(13) is used and equation (4) becomes :",H0) (13) and (22) and given for three values of H0 .

23 + [(n'W4 +2 H{2n2 2 + They are presented in a plane perpendicular to
P2 ° nt 2 T 6) the Oy axis, (Figures 6-7). The finite element

H0  H0
2  (26) results obtained with 9 elements are in satis-

- (H0+H1 Cos nt) - (3n2w2 +--) n(t) - 0 factory agreement with the frequencies and mode
shapes and are thus not given. It has been ob-

Let served that the agreement between experimental
T nt (27) and analytical results is satisfactory for the P-

2  frequencies, Figure 8. Mode shapes have been
S - 2 computed, they have been experimentally observed

n 2 but not measured.

H0 HI 102 HEn-(3n2,
2 

+ -4- (29)
2p

2 2  
9 2

then (26) may be written

u(n ) + (6n + n Cos T) n(T) - 0 (30)

H0 = 0 1 2 3 4 5 6

X1
2  

161 1 0.99 0.96 0.90 -- 0.65 0.33
- 141 1 0.99 0.96 0.90 0.81 0.66 0.36
f2 (13) i 3 0.99 0.97 0.91 0.77 0.41

X262 16 4 3.98 3.94 3.86 -- 3.59 3.39
- 41 4 3.99 3.95 3.88 3.78 3.67 3.53
T2 (13) 4 4 4 3.99 3.98 3.95 3.89

X3 161 9 8.98 8.93 8.85 -- 8.58 8.38

2 (13) 9 9 9 9 8.99 8.98 8.95

Table 2 - S-S Beam - X 2 /n2 versus torque
n

H0= 0 1 2 3 3.5 4 5 6 Er

X12 161 1 --- 0.98 --- 0.94 --- 0.87 0.79

22.37 (22) 1.02 1.01 1 0.98 --- 0.94 0.89 0.82

x22 161 2.76 --- 2.73 --- 2.68 --- 2.59 2.51

22.37 (22) 2.83 2.82 2.81 2.79 --- 2.77 2.73 2.69

X32 161 5.40 --- 5.38 --- 5.32 --- 5.23 5.15
22.37 (22) 5.15 5.14 5.14 5.13 --- 5.11 5.09 5.06

Table 3 - C-C Beam - X n2/22.37 versus torque
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0 0

z#

Mode I Mode I Mode I

xo 0"*

Mode 2
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x
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Mode 3 Mode 3 Mode 3

X,.. 

0

Fig. 6 S-S Beam - Mode shapes

Ho=I HO =3 H =5

Mode I Mode 1 Mode I ''--

z M

z

Mode 3 Mode 3 Mode 3

x

Fig. 7 C-C Beam -Mode shapes
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n

Cd CX

5 
.4.

- :Unger & Brun161-

.* :Experiment

Fig.9 2P instability (n = 
2
wj)

• k 01 wc3

Fig. 10 Combined resonances instability
H HI L  

n = W 1 + I

" 1 2I 3 41For instabilities of type P, n = w the
beam vibrates at the same frequency as he exci-

Fig.8 : C-C Beam coefficients tation. For instability of type 2P, n = 
2
w , the

zone of instability is wide (Fig.9). The modes

Constant taxial torque H0 and pulsating are noted visually. For combined instabilitiesConsantaxil toqueHO nd plsaingtwo frequencies are observed for n 
= 

(w1+w2)/2
torque Ill Cos nt. the beam vibrates with frequencies w, and W2 and

The experiment has been performed with for n - wj+w the beam vibrates with frequencies
H0 - 3.75 and HI - 0.02. The experimental natu- w} and .-, (Fig. 10). The instability zones of
ral frequencies in rd/s are : this type are also wide.

w, = 37.7 ; w2 - 110.6 ; w3 - 216.1 ; w, - 364.4 No other instabilities have been seen in
Shithe range considered. The instabilities of type

The beam was excited by a torque whose frequen- P and 2P have been simply explained by the cal-
cy in rd/s is n, as shown in 151 the beam vibra- culations presented. The combined resonances
tes with the frequency n. are predi, ted in '6' and 71 they could also

On the other hand during the frequency ertainlv 1, " predicted by the method given here.
sweep between 0 and 60 Hz zones of instabilities T, i lieve this, equation (13) would be a sum of

were observed. The results of this experiment ex;,re-i,-ns orrespondinp to n = 1,2,3. When
are presented in Table 4. The instabilities are H ti iti-rjbilitv of type 21' is neither pre-
detected by a two channel oscilloscope, where i. t-, ino nt , rvcd.
and r could be easily compared. In addition a

spectral analysis of a signal given by a non
contact probe is performed, this analysis is
very useful to detect the nature of the instah i
lity.
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I'.

TORQUE FREQUENCY n ZONE BEAM FREQUENCY CONCLUSION INSTABILITY
rd/s rd/s TYPENUSO

n 37.7 narrow W1  n-Wi P

W1 n
=
2w, 2P and ,

73..< n s 81.7 wide or or or P-
W1 and w2  n = (W1+W2 )/2 combined resonances

110.6 narrow w2  W = "2  P

216 narrow w3  n1= w3  P k

221. < n < 228 wide w2  n - 2W2  2P

254. q 270. wide W1 and W3  n -tw+w 3  combined resonances

nl364 narrow W4  n
=
w 4  P

Table 4 - C-C Beam - Pulsating torque influence
or

• CONCLUSIONS 141 - N. Willems, S.M. Holzer, "Critical speeds
of rotating shaft subjected to axial loa-

The influence of a constant axial torque ding and tangential torsion", A.S.M.E. J.
on the dynamic of rotors can be significant and Eng. Id., pp.259-264, (1967).

-, is easily included in any computer program.

The harmonic exciting torque, which can 151 R.L. Eshleman, LA. Eubanks, "Effects of

also be important in turbomachinery and recipro- axial torque on rotor response : an expe-

cating compressors can be very dangerous. The rimental investigation", A.S.M.E. Paper
", instability zones seem at present impossible to No.70-WA/DE 14.

predict for a real rotor because the stiffness 161 - A. Unger, M.A. Brull, "Parametric instabi-
matrix would have to include periodic coeffi- lity of a rotating shaft due to pulsating
cients. torque", A.S.M.E. J. Applied Mech., pp.948-

958, (1981).
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DISCUSSION

Hr. Rlieger (Stress Technology, Inc.): Has any
research been done on those instability bounds
to determine the critical value of the damping
which is likely to suppress the bound
altogether?

Mr. Eshleman: No. There has not been. Some
analytical work was done by Ziegler, in
Switzerland, on the effect of dAmping to show
how the bounds decrease. But, as far as
experimental work is concerned, I did some
experimental work on those bounds, and I shoved
some of the bounds in it. Nowever, I am afraid r
the damping wasn't quantified to determine what
they were.

r. Rieger: It would seem that the post-
buckling behavior would be quite promising
because a shaft would deform, and if It
continued to rotate, it then would begin to
develop quite substantial damping because you
have a torque effect. The shaft, which is bowed
out and rotating, would have a very substantial
vector. Has anybody done any work in the post- "
buckling region?

"* Mr. Eshleman: No. They have not.

Hr. lisper: That is something new to think
about.
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SENSITIVITY ANALYSIS OF THE LOCATIONS OF THE BALANCING PLANES OF AN

UNBALANCED ROTOR-BEARING SYSTD USING DYNA4IC CONDENSATION TECHNIQUE

S. Ahuja, A. N. Sharan
Faculty of Engineering, Memorial University
St. John's, Newfoundland, Canada, AlS 3X5

An analytical procedure for the dynamic balancing of multi-rotor
systems supported on fluid-film bearings is presented. The model is

developed based on the finite element method which includes the effects
of translational, and rotational inertia, and gyroscopic moments, using
the consistent matrix approach in conjunction with the dynamic matrix

*' reduction technique, the modal analysis, and the least-square balancing
technique. The use of the matrix reduction technique for determining
an equivalent reduced system for balancing, provides subsequent saving
of both, the computational time and space, on the digital computer.
Three distinct practical conditions are investigated 'in the present
work which are:
(1) The balancing of rotor disks at and below the critical speeds.
(2) The effect of the location of the balancing planes on the rotor

response.
(3) The effect of the number of balancing planes on the rotor

response.
The balancing method is found to be quite effective, permitting safe
rotor operation over the speed range covering the three critical

bending speeds.

.1 1. INTRODUCTION I.1. Iare more accurate than those obtained using

There has always been a demand for the transfer matrix method. Nelson and

greater power output per unit-weight in the XcVugh (31 studied the dynamics of a

design of turbomachinery. This requires rotor-disk supported on isotropic and

higher operating speeds. The key factor in orthotropic bearings using the finite element
% achieving this objective is the control of analysis. The damping in the bearings vas not

vibrations of the rotor as it goes through the included in the results.

critical speeds.
In rotor-balancing through the criticals,

SThe turbomchinery can be modelled as one has to have a reasonable number of

several rotor-disks mounted on hydrodynamic balancing runs around each critical speed,
bearings. The stiffness and damping which is costly and time consuming. It would
coefficients of such bearings are speed be ideal if the balancing can be done at the

dependent, hence the dynamic analysis is more critical speeds only.

involved as compared to the systems which are
_supported on ball bearings, where these In the present work, a mathematical modelupcoefficients can be considered as isotropic to control the vibration of several disksThe precision odas, in caser of isotropic supported on fluid-film bearings including

bearings, are circular, whereas, for the fluid damping, has been developed. The response at
film bearings, it is elliptical [1. the various locations on the rotor, is

obtained using the finite element analysis in

There have been various techniques used conjunction with the modal analysis [4). The

in the dynamic analysis of the rotor-bearing size of the system matrices is reduced using

systems such as (a) the lumped parameter the dynamic reduction technique [5). This

method, (b) the transfer matrix method, and reduction technique yield. sufficient accuracy

(c) the finite element method. Ruhl [21 due to the lower vibrational modes. The

analysed the rotor vibrations using the finite balancing weights are obtained using the least

element method and concluded that the results square analysis (6-91. The system in the
present work is balanced exactly at the
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critical speed, whereas, in other balancing which can be used for the matrix reduction,
techniques, runs at several speeds have to be must retain the lover modes for controlling
carried out. Further, by varying the number the vibrations through the critical speeds.
and location of the balancing planes, better
balancing conditions are achieved. 3.2 The Dynamic Matrix Reduction Technique

The reduction process is most simply
2. THE SYSTEM CONFIGURATION described as a transformation, relating

AND THE COORDINATES condensed degrees of freedom in terms of
retained ones. The computation of the

In modelling a rotor bearing system, transformation matrix, can proceed by a number
important consideration must be given to the of approaches; the most straight forward
set of reference axes utilized to describe its approach is to minimize the potential energy

" motion. A typical rotor-bearing system is of the deformed structure, ignoring inertial
illustrated in Fig. 1. The motion studied can effects and forces on the condensed degrees of
be in a rotating or a fixed frame of freedom, thereby retaining the lower modes,
reference. The rotating frame is particularly for controlling the vibrations through the

' useful, when analyzing systems with isotropic critical speeds. This is done by defining a
bearings. In this case the motion in two transformation matrix [T], and writing the
normal planes can be treated separately. The relation [51
fixed frame provides the generality of r ]
handling problems with nonsyinmetric bearing l~
stiffness, and damping effects. The only 1q " | }nxl " [Tin15 {qamlmxlp
disadvantage of the fixed frame finite elementL -
formulation is that the order of the system (2)
matrices is large. This disadvantage can be
overcome by using the dynamic matrix reduction where, r
technique.I

-* A cross section of a rotor in its T]=
deformed state as defined in the fixed frame i Ks-- - 1" - ]
of reference system (XYZ:I), ts shown in Fig.
1, and a typical finite rotor element is shown (3)
in Fig. 2. The various stiffness and the

- damping coefficients of the fluid film The subeatrices (K..] and (K.) are
bearings are shown in Fig. 3. The triad is obtained by partitioning the stiffness matrix
fixed with the x axis coinciding with X. The obt in yn. (i) which can he written as ti
cross-section of the element, located at a
distance (a) from the left end point, 1K] [K.11

,- translates and rotates during the general [Kinxn - , -[K15 ""
motion of the element. The translations Fs. I :1
V(x,t) and W(s,t) in the Y and Z directions 1J
respectively locate the elastic centerline, (4)and small angle rotations B(s,t) and r(st)

respectively, represents the orientation of In Eqns. (2) to (4) 'in' refers to the number
the cross-sectional plane. The cross-section of master degrees of freedom, and 's' to the
also spins at a constant speed w about the X slaves. The master degrees of freedom are
axis defined by (x,y,z: T) triad, retained, whereas the slaves are removed.

Using this transformation matrix, the
condensed matrix equation can be written as*, 3. MATHEMATICAL MODEL

3.1 The System Equation [lm i t)l " w[Gmlm1q3(t) 1

The finite element modelled equation of + [Cm Pi=(t)Imxl + (Kajmfq(t)sxl
motion of a rotor-disk system can be written
as[3] - {Q(t)})l (5)

[M]q(t)} - .[Gi (q(t)I + (C] {q(t)j + where, the condensed matrices are given by

.K) q(t)I - IQ(t)j i1) [Mmiam - [TIT (Minxn [TI,

The equation is obtained by considering [Ksm - [TiiKI .(Tj. (7)

the kinetic and potential energies of each of T
the components of this system. The details of [Guim - [Ti [0In[ T ], (8)
the derivation are given in the Appendix A. T
The number of degrees of freedom in Eqn. (1) [Calzm - (T] TCjnxn[T], (9)
can be quite large. In order to carry out the
modal analysis, any transformation matrix and IQ(t)lmxi - [T)TIQ1nXl • (10)
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The elgenvalues of the condensed system
as represented by Eqn. (5) are higher than (,*IT(Ml[,Il(t)- + (.*'(RJ(*Iln(t"
that of the original system because of the
imposed constraints. The selection of the [.e]Tj(1_)
master and slave degrees of freedom is

automated so as to ensure that the lower modes representing the dynamics of the system in the
are retained as the moters. The diagional normal coordinates. Because of nosymmetric
coefficients of [IK) and IN) are scanned, and nature of the stiffness and damping matrices,
the degree of freedom I for which Kill NIL is a conventional normal mode analysis is not

the smallest, is selected as the first master, possible, where [#IT is used instead of [#e] T .

and the rows and columns of the system Eqn. (18) can be rewritten as
matrices are rearranged accordingly. This Is
repeated, till the system matrices are
arranged in an ascending manner, based on the IV*]J {n(t)j + ('K*J lu(t)l - Iui (19
KILN, ratio of the diagional elements, where I[*) and [Ke* are diagional matrices

respectively. The steady state solution for
3.3 The Nodal Response Analysis Xqn. (19) can be written as (4)

The modal analysis (4) of the condensed n I(t) - Ni exp(jwt) + N exp(-Jwt) (20)

system can then be carried out, after
rearranging Eqn. (5), into a system of first and
order differential equation of the form

a (t) - R~ exp(jot) + z exp(-Jwt)

[) Ix;(t)} + (xl fx(t)} - IF).,o.

1-1,2, ..... 2m (21)

Substitution of Eqn. (20) and (21) into Eqn.
where, (19) leads to

[O(01 ' [N5] (i + Joss) N exp(Jwt)
[ " ( .( ¢ [( + fC; + (¢ _.WP Ni ep(-Jtt) a.

-] [_-_ (011 ( >.-
(RI - s-- ~(13)

LOl [,1 1J - R1 emp(jot) + Ki exp(-Jwt) (22)

IF1- If (14) Equating coefficients of exp(jt) and
LIQ exp(-Jwt) respectively, one can write

riN) I I1  an
,t, [1q-(t;j 1 'and "X(t)j -N(i" "

(15) (23)

The damped natural frequencies of the system where 91 and 91 represent the forces due to
are then obtained, by finding the eigenvalues

* of the dynamical matrix [DI which is given by mass unbalance in the normal coordinates.

[DJ - (NFL (16) Eqn. (19) can he solved on a mode-by-mode
[. - Z [K] 6basis and Eqn. (17) can be used to obtain (XI.

The tThe nodal displacements which represent the
The transformation of Kqn. (II) is carried elements of the vector q'are obtaned

' out by using the relation using Rqn. (15) by taking the real part of the

lower ,ubmatrix of the vector lXi. The
displacement vector {qj is obtained uoing

{x(t)} - (1 iT(t)} (17) Eqn. (2).

where (fl contains the eigenvector of the
reduced system represented by Eqn. (11). 3.4 The Least-Square Blancing

,* Introducing Zqn. (17) into Zqn. (11) and 3
premultLplying the result by (#eIT, which is The magnitude of the elements of the

the transpose of the eLgeovectors of the vector thus obtained, is reduced using the
transposed system, leads to the following: least square method (6-81. As the first step,

the rotor Is run at its first critical speed
without making any changes to it. Next, a
known trial weight is placed in each of the
balancing planes, and the resulting vibration
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calculated at each of the measuring planes. element are shown as b i and b2 respectively.
By subtracting from these results, the The displacement shape functions are given by
corresponding results for the uncorrected
rotor, and dividing the difference by the #1 - I - 3(1)2 + 2(1)3, (27)
value of the trial wight, a series of 2
influence coefficients are obtained one for #2 - Il1 - 2(1) + (1)2} (28)
each measuring plane. This is mthematically 2.
writen as #3 - 3(t)2 - 2(t)3, and (29)

-R -,*-4, [() + ( 3,(30)
-ij Y (24) 4 (1*2 +(pj(

The forces due to the addition of the trial
where a is the complex influence coefficient, weight in a plane are given by
T the trial weight, Rj and Rio the elements 2 2
of the response vector fi, and i, j represent Fy- (mpt 2 sin 6)co ut + (-mpu con 6)
the measuring and balancing plane numbers
respectively. Once all the influence sin ut (31)
coefficients are evaluated, the correction 2

" weights required to minimize the unbalance Fe (pu 2 coo e) cos Wt
vibrations of the rotor can be computed by s
using the relation [6)+ EWsn)siwt(2

JR } " [A]qzp U)pl (25) Referring to ig. 2, the forces at a joint ofq'-"Xa given element, due to a trial weight located
where [A] is the influence matrix coefficient at a distance (a) can be obtained by combining

whose elements are uij, Jul is a complex Xqns. (31) and (32). The expression for these

vector defining the correction weights and the (joint) forces can be written as

subscripts q and p represent the available I[(m2 sin 0)(-) *icos ut

number of measuring and balancing planes 1 0
"S.. respectively.

+ (WPW2 coo 6) 6(s-a) #i sin ut]ds
In exact point method [7], the number of

balancing planes are equal to the number of 1-1,2,3,4 (33)
measuring planes i.e. p-q. The least-square
method although based on the same principles, These forces at the joints of the elements are
permits the condition where the number of assembled into the global force vector for the
measuring planes can exceed the number of dynamic response calculations.

*. balancing planes. This allows an increase in
the input data (more measuring planes then
balancing planes), whereby the consequence of 4. TE NUWMRICAL !XANPLI
a single error in the data tend to decrease.
The analytical procedure for the least-square To demonstrate the application of the
method is given in [8]. finite element model, a typical rotor bearing

system with six elements as illustrated in
In general case, where the number of Fig. 5, is analyzed. The details of the

measuring planes exceed the number of rotor are provided in Table I. It consists of
' balancing planes, the unbalance is reduced by a shaft, with a uniform diameter of 0.050 a,

minimizing the square of the residual and an overall length of 0.76 a. The rotor is
" amplitudes. The expression for the correction symmetrical with most of its sas concentrated

weights vector Jul in this case, can be in the two disks. A density of 7806 kg/23 and
written an elastic modulus of 2.078 x lo11 N/a2 are used

to model the rotor shaft. The two disks, withJul - _[[-IT [A]]-' AT . JR) (26) a mess of 20.45 kg, polar moment of Inertia of
A " " 0.0020 kg-n2 and diametrial inertia of 0.0010

The final equation yields that particular kg-m2 are located 0.254 u in from the ends.
' combination of correction weights which The rotor was supported on plain cylindrical

minimis the residual vibrations of the rotor fluid-film bearing with a LID ratio of 1 and ain the least-square sense bearing clearance of 0.000635 m. Theunbalance condition was represented by the two
3.5 The Sensitivity Analysis disks with an in-line, in-phase mass centre

eccentricity of 0.000635 m. This

To provide further flexibility in rotor configuration is common to impellers keyed to
balancing, the effect of varying the location the shaft with the sae hey. The stiffness
of the balancing planes within an element, is and the damping coefficients of the bearings,
incorporated in the system. For a typical which are speed dependent, were obtained from
uniform element shown in fig. 4, the variable Ill where these values are given in a
balance plane is located at distance (a) along graphical form.
the axis of the element, the end planes of the
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5. THE RESULTS AND DISCUSSIONS effects of the shaft and the two disks.
* Although the gyroscopic effects were small for

5.1 The Dynamic Matrix Reduction Technique this system, they were included in the overall
system analysis.

In the dynamic reduction technique, the
original system matrices were reduced to 5.4 The Dynamic Response as a Function of
smaller sizes by using a transformation matrix Rotor Speed
obtained by using Eqn. (3). In this reduction
process, care was taken that the properties of The unbalance response at the middle of
the original system, such as the natural the rotor, for various operating speeds, is
frequencies, did not alter significantly. The shown in ?Ig. 8. The three critical speeds
greater is the degree of reduction, more is are clearly indicated by the peaks in the
the deviation of properties such as the curve. The response is very high at the first
natural frequencies. critical whereas it is almost equal at the

second and the third critical speeds.
For the present system, the number of

degrees of freedom were 28. This had to be It is obvious from this study that the
reduced as much as possible. Trial runs on the vibration levels at the criticals must be
computer for the calculation of the natural controlled. The maximum whirl amplitude at
frequencies using Eqn. (16), were made by the measuring planes, at various criticals,
varying the degrees of freedom between 12 to are shown in Table 3. It can be clearly seen
25. Some of the results obtained are shown in that 16 master degrees of freedom are
Table 2. In this table, the first five sufficient for the dynamic response study
natural frequencies were computed by varying because the deviations from the original

. the number of master degrees of freedom. As system are very small. In addition, the
the number of master degrees were increased, deflections are symetrical along the rotor as
the natural frequencies decreased. However, shown in Fig. 9. This is because the
this rate of decrease in the frequency value measuring plan%* (refer to Fig. 7) have been
with respect to the increase in the degree of located in a symmetrical manner, and the
freedom, became very small when the degrees of deflection of the corresponding points on
freedom were 16. Therefore, the reduced either ends, are equal. For example, the
system, for further analysis, was chosen to measuring plane numbers 2, and 6 are
have 16 degrees of freedom, which represents equi-distant from the ends and their
42 percent reduction in the each of the system respective response values are equal.
matrix sizes. 'mari s5.5 

The Dynamic Balancing of the
5.2 The Variations of the Natural Frequencies Rotor-Beariag System

of the System with the Operating Speed
The dynamic balancing can be carried out

The first three damped natural by selecting equal number of measuring and
frequencies of the system are given in Fig. 6. balancing planes. For rotors, which are

*The critical speeds are frequencies when the symmetrically located, it often leads to large
system natural frequencies are equal to the correction weights at the middle [6]. On the
operating speed. The abrupt changes in the other hand, one can use the least-square

4 frequency map are because of the speed method, where the rotor amplitude response,
dependent fluid-film bearing coefficients. can be minimized without adding excessive

- The rotor, light In weight, has a Soemerfeld weights, and where the number of measuring
number ranging between 1.0 to 10.0, within the planes can be greater than the number of
operating speed range. The response at the balancing planes. Another advantage of this
first three critical speeds for the original method is that there can be several measuring
and reduced system are shown in Table 3. The planes and even if there is some error in the
location of the measuring planes are shown in measurement in one or more than one plane,

* Fig. 7. A maximum deviation of 1.05 percent still the computed values yield very good
a as given in this table indicates the results. In other words, by increasing

* effectiveness of the matrix reduction the number of the measuring planes, the
technique. influence of a measurement error in any one of

these planes, is diminished. The greater the
5.3 The Effect of Cyroscopic Moment on the number of balancing planes, the better will be

Rotor Response the balancing of the system. Unfortunately,
due to the limitations of the accessibility

To study the effect of gyroscopic moments and other constraints, the balancing planes
on the rotor-bearing response, the unbalance can not be increased beyond certain number,
damped response values for the three critical for a given system. However, in these
speeds were calculated. The response values situations, the best one can do is to increase
obtained are shown in Table 4. As can be seen the number of measuring planes and carry out
from this table, the gyroscopic moments have the balancing using the least-square
very little effect on the overall response of analysis.
the system. This is due to the damping in the
system, which tends to mask the gyroscopic The rotor was then balanced at the first
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critical speed using three fixed balancing because the balance plane locations are
planes as shown in Fig. 10. In order to not properly spaced. Similar results are
present a meaningful comparison of the balance reported by Tessarzik [61.
improvement as a result of balancing at the
critical speeds, two balancing methods were Next, the rotor response at the third
considered. critical speed with the first set of

correction weights, was calculated and the
Method I involves a commercially used corresponding correction weights at this

balancing technique [6]. In it, the rotor is critical speed, were determined. The response
first balanced at little above half its first values, with the first and the third sets of
critical speed to stabilize the higher modes, correction weights, are shown in column 8.
and then balanced at 1190 rpm., a speed close The results in column 9, indicate that the
to the first critical without actually response, after the first and the third
balancing the rotor at its critical speed. critical balancing, decreases at most of the

locations except at and near the bearings.
Method 2 involves balancing the rotor at This is possibly due to the balancing planes

its critical speed only. The results for the locations which are away from the bearings.
two methods, are presented in Table 5. In The dynamic response along the length of the
method 1, the unbalance response at various rotor due to these balancing are shown in Fig.
measuring planes was calculated using Eqn. (5) 9 to 11. Referring to Fig. 9, there is quite
and is shown in column 3. The response at significant reduction in the unbalance
various speeds after balancing at 760 rpm, is response due to the correction weights. The
shown in column 4. Similarly; the response at deflection curve along the rotor, is
various speeds after balancing at 1190 rpm, is symmetrical even after the balancing, in all
shown in column 6. The percentage of these three figures. This is because the
improvements, due to the first and the second balancing planes have been symmetrically

* balancing are shown in columns 5 and 7 located along the length of the rotor.
respectively. Referring to this table, it can However, the percentage decrease in the rotor
be easily seen that the major reduction in the response, after the balancing at the second
response is carried out by the first balancing and the third critical, is much less than that
at 760 rpm. The second balancing is more at the first critical. For example, at a
effective at higher speeds such as 1190 or distance of 0.15 a along the rotor, the
1253 rpm (percentage reduction In response is difference in the unbalance and balance
higher). response in Fig. 12, is much more than a

n msimilar difference in Figs. 13 and 14.
In method 2, the balancing is done

only at the critical speed and the results Referring to the Table 7, the angular
" after this balancing, are shown in column 8. location of the correction weights is

The percentage reduction due to this balancing approximately opposite to the disk mass centre
is the percent difference of the results given eccentricity, which is 45o%
in columns 3 and 8 respectively.

It must be added here that the overall
The results obtained either by saving of CPU time for a balancing run was 38

method I or 2 are quite good, but method 2 percent.
yields better results. The balance results,
along the length of the rotor, are shown in 5.6 The Effect of the Location of the
Fig. 11. As stated earlier, the deflections Balancing Planes on the Rotor Response
are symmetrical. The curve obtained using
method 2, shows a slight dip at the middle of In the previous section, three balancing
the rotor. This is due to the presence of the planes were used; one located at the middle -
balancing plane at this location, and the other two symmetrically located away

from the first one. Since the rotor disks are
After balancing the rotor for the symmetrically located on the rotor shaft, it

first critical speed, method 2 was selected appears logical to place these two balancing
for further balancing. The rotor response at planes also symmetrically. Therefore, in
the second and third critical speeds were order to study the effect of the location of
obtained and the corresponding correction these planes on the response of the system,
weights were calculated. The system unbalance the locations of the two outer planes and the

. and balance response values at the three location of the third plane, have been chosenr
criticals are given in Table 6. The magnitude as variables for the parametric study.
of the correction weights and their phase
angles at these criticals, are given in The effect of balancing plane location,
Table 7. for reducing the system response, is studied

using three balancing planes, as shown in Fig.
The maximum reduction in the unbalance 15, where aI and a2 represent the location of

response is attained under the first balance the two outer and inner planes, respectively. ,4
run. The effect of the second critical s

balance results in an increase in the overall At first, a, was varied with a2 fixed
balance condition. The increase is probably corresponding to the middle of the rotor. The
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resulting response values are shown in Table 7 balancing planes are equal to 5. The results
and correction weights in Table 8. It is shown in Table 13 indicate that for odd number
evident from Table 9 that as the balancing of balancing planes, the correction weight in
planes are moved towards the disks, the the middle balancing plane, is very small.
residual response value decrease. This is This indicates that the forces generated due
because of the flexibility in the rotor shaft, to the correction weights located near the
the greater ie the spacing between the disks, are mainly responsible for the balance
unbalance forces at the disk and the condition. It was also reported by Tessarzik
correcting forces In the balancing planes, the (61 that increasing the number of balancing
less is the effectiveness of the correcting planes does not necessarily lead to better
forces in reducing the response. Table 9 balance results.
shows that as these measuring planes are moved
in towards the disk, the magnitude of the
correction weights in these planes also CONCLUSIONS
increase. When these two planes are located
close to the disks, most of the correction The finite element approach provides a
weights are needed in these variable balancing convenient and accurate means of balancing a
planes; the weight in the fixed balancing multi-rotor system, supported on fluid-film
plane is negligibly small, bearings. The use of matrix reduction

technique in calculation of the reduced set of
Tables 10 and 11 show the effect of system matrices, enabled subsequent saving in

varying the center balancing plane while computational mmory storage of 42 percent,
keeping the other two fixed. It can be seen and that of computational time for a balancing
in these tables, that as the center balancing run of almost 38 percent. Besides, in the
plane is moved, both the response as well as reduction process, the retained degrees were
the magnitude of the correction weights, the translational degree of freedom, therefore
increase. In addition, the maximum deflection one could work with the reduced system only.
curve along the length of the rotor, is no There was no necessity of recovering all the
longer symsetrical. The best balance degrees of freedom where the rotational
condition, using the locations of the degrees were also included. The modal
measuring planes (a ,, a2 ) as the variable analysis gives an effective means of
parameters, is achieved when &I - 0.228 a and determining the unbalance force response, and
a2 - 0.381 m. Fig. 13 shows the unbalance the relevant mode information. The use of
response along the rotor; the balance response least-square method, for the case
with a, - 0.127 m, a2 - 0.381 m; the best investigated, provided good results, whereby
balance response after the parametric balancing at the first critical speed was
variation, with a, - 0.228 %s, and a2 - 0.381 sufficient to bring the rotor amplitude down
a. It clearly shows that significant benefits over the other critical speeds also. Further,
can be realized by this parametric variation by varying the number and location of
study as shown in Fig. 16. balancing planes, better balance conditions

were achieved. The results revealed that when .
5.7 The Effect of the Number of Balancing using the least-square method, the odd number

Planes on the Rotor Response of balancing planes yield better results than
even number of balancing planes.

In carrying out balancing using the
least-square method, an important
consideration Is the ratio of the number of REFERENCES
measuring planes to the balancing planes. In
the previous section this ratio used was 7 to 1. Rao, J. S., "Rotor Dynamics", Wiley
3. The effect of the variation of this ratio Eastern, New Delhi, India, 1983,
on the response, has been studied in this Chapter 6.
section. The number of the balancing planes
have been varied between 3 and 7 while keeping 2. Ruhl, R., "Dynamics of Distributed
the number of the measuring planes equal to 7. Parameter Rotor Systems: Transfer Matrix
The various plane configurations are shown in and Finite Element Techniques", Ph. D.
Fig. 17. The rotor response, as a result of Thesis, Cornell University, 1970.
these variations, are shown in Table 12 and
the corresponding correction weights in Table 3. Nelson, H. 1). and NcVaugh, J. N., "The
13. Dynamics of Rotor Bearing System Using

Finite Elements", Journal of Engineering
Fig. 17 shows that when the total number for Industry, Vol. 98, 1976,

of balancing planes are 5, or 7, there is a pp. 593-602.
balancing plane on the either side of a disk
at equal distance besides a plane at the 4. Shat, R. I., Subbiah, R., Sankar, T. S.,
middle. The results in Table 12 show that the "Dynamic Behaviour of a Simple Rotor with
odd number of balancing planes yield better Dissimilar Rydro-Dynamic Bearings by
results than the even number of these planes. Modal Analysis", Paper No. 83-Det-75,
Among the odd number of planes, the best ASME.
results are obtained when the number of
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Anderson, W. J., "Flexible Rotor ([Tej + [Me]) (qej - w[et 1qej + IKBe]
Balancing by Exact Point-Speed Influence Rq
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Feb. 1972, p. 148. Rigid Disk Equation

8. Tessarzik, J. H., Badgley, R. H., d [d d d) Id

"Experimental Evaluation of the Exact ([KT + [M R G] qd} -

Point-Speed and Least Square Proceduresd (A.2)
for Flexible Rotor Balancing by Influence QI(A2
Coefficient Method", Journal of
Engineering for Industry, May 1974, pp. Bearing Equation

633-643.
The dynamic equation of motion of the

9. Timonshenko, S., "Vibration Problems in bearings, in the fixed frame coordinates as

Engineering", 3rd ed., in shown in Fig. 3, can be written as

collaboration with D. H. Young, D. Van
Nostrand Company, Inc., Princeton, N. J., [C

b j {( b1 + [Kb] jqbj - 1Qb} (A.3)

1955.

in fixed frame coordinates, where

APPENDIX A {qb " [I' (A.4)
b b*

The Component Equations of a Rotor-Bearing [b] rWb K

System (K b  b(.5)

The rotor bearing system is comprised of
a set of interconnecting components,b rC.v Cb
consisting of uniform rotor segments with [Cb] b hi (A.6)

rigid disks, and fluid film bearings. [ Cwb

The shaft portion of the rotor is In Eqn. (A.3), {Qb} represents the
modelled as beam elements, by specifying external force vector applied on the bearings.
spatial shape functions, and then treating the The elements of the stiffness and the damping
rotor element as an integration of a infinite coefficient matrix are considered to be

set of differential disks. A typical rotor nonlinear. These matrices contain

element is shown in Fig. 2. The cross-coupling terms representing a

cross-sectional displacements within the nonisotropic bearing with the principle
element are defined relative to a fixed frame coupled axes oriented at (45", -450) to the

of reference 1, by translations V(s,t) and normal z-axis.
W(s,t) and rotations B(s,t) and r(st). The ""

finite rotor element coordinates are indicated

by eight degrees of freedom (qle, q2
e 
.... NOMENCLATURE .

q8e), four at each end, with two for
translation, and two for rotation. m(1 [ matrix

The rigid disk representing the
impellers, coupling, flywheels, are differentiation with respect to
convieniently described by a single plane, position
with only four degrees of freedom, two for the
translation and two for the rotation. differentiation with respect of time

The equation of motion for the elements I fixed reference frame (XYZ)
are derived, by writing the expressions for

the kinetic and the potential energies, of the T rotating reference frame (xyz)

components. The kinetic energy consists of
both translational and rotational modes. The (B, r) small angle rotations about (Y, Z)
rotation terms also include gyroscopic effects

0 trial weight addition angle
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#j j-th complex eigenvec tor of the- -

original Iytm D elemental diametral and polar
original~ sseDop Inertia per unit length

#j -tb complex ci MK system stiffness matrix

Ii J-th moal [ipacmntH) system mass matrix

(a) generalized force vector

MIi generalized maca matrix P oenilenry

[~J enealied tifnessmatix QJqBJunbalance force associated with

I) matrix of translation displacement Rl R major and minor diameters of the .4functions;elitclrsos obta
*i(s), 1-1.2,3,4elitclrsoeobta

10J matrix of rotation displacement S1  Sommerfeld number

funtin:T trial veight

*i s),i-l2,34,T kinetic energy1

Wspeed of rotation of shaft
[T) reduction transformation matrix

ndo r-d location of disk mass Centre
relative to T ful a complex vector defining the

correction weights
n(s) 4(s) distributed location of element

cross section mass Centre U a cofmplex conjugate of the
relative to T elements of vector u.

a complex influence coefficient U., W) translations in (YZ)

*element mass per unit length IK) overall displacement vector

£element length Md. ID' I~ disk mass, diametral inertia,p and polar iertia

I displacement vector relative to Il [Md1], [Gd] disk mass, gyroscopic, matrices1

lqJ~qs) unbalance response associated with [1 e, ,~s lmna as yocpcos 91t, sin Ott  Tl G Is lmna as ocpc
stiffness matrices.Yl

a axal osiionalon aneleent[C] [ Ib bearing damping and stiffness

ttime matrices

[A) matrix of complex influence CVb V ,CVb Wb eeet fIb

coefficient Kb' KVb KVb KW~ elements of [Kb

(A] conjugate of the complex influence
coefficient matrixTAIIRO 

DEIL

MC system damping matrix ___________

shaft Diamter 0.03
* [D dynmica matixTotal langth of shaft 0.76[D] ynaicalmatix odulam Of Elasticity of Shaft 2.07%1011 Pa.

shaft Density 7.6Sa104 helm'
* I~ forward component of the J-th modal aUiht0.3 .

force Typ of Bearing Plain Cylindrical
saring L/D RatioI
Viscosity of Oil 691~ sf1U

E backyard component of the J-th modal learit,.3u0 (K-aa4)
vector

IFj) overall exciting force vector

N[G) system gyroscopic matrix 1Where appropriate the superscripts d, e, b,
s refer to disk, element, and bearing

[II identify matrix respectively, and subscripts T, R, B refer
to translational, rotational, and bending
respectively.
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"
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DISCUSSION

Mr. Leon (Liberty Technology Center, Inc.): In
your studies, did you alter the unbalanced
distribution of the rotors and repeat your
study?

Mr. Sharan: No. I did not do that for that
type of distribution.
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SYSTEM IDENTIFICATION

STRUCTURAL DAMAGE DETECTION

BY THE SYSTEM IDENTIFICATION TECHNIQUE

J. C. S. Yang, T. Tsai, V. Pavlin, J. Chen, W. H. Tsai
University of Maryland
College Park, Maryland

Over an extended period of time, exposure to severe loading
very often results in fracture or crack damage of structures
which can ultimately lead to fatigue failure. The research
described in this paper, concerns the development of tech-
niques with the potential to detect and track progressive
fracture by observing changes in the identified system pa-
rameters: mass, stiffness and damping matrix elements.
The method, called the system identification technique, has
two steps: a process of retrieving the elgenvalues and eigen-
vectors during a dynamic response phase and the determination
of mass, stiffness and damping matrices from these values.
The proposed technique was verified on cantilever beam con-
tinuous structure systems through finite element simulation
and experimental studies. Results from both studies have
indicated the feasibility of damage detection by identifying
the structural system matrices. For a cantilever beam system,
the location of crack type damage seems to be best identified
by the flexibility matrix which is the inverse of the stiff-
Iness matrix.

1. INTRODUCTION of the real problem may prove to be a very pow-
erful tool for the analysis and design of com-

Many ships and offshore structures have a plex structural systems. The mathematical
predicted design life which is generally based model representation could, of course, be de-
on conservative design criteria to compensate vised from a theoretical understanding of the
for uncertainties in the load environment and system and its components, or from a finite
associated damage effects. Severe loading over element model in the case of purely structural
an extended period of time, may lead to fatigue systems. These techniques are inferior com-
failures of exposed structures. Initiation and pared to one which is based on an actual exper-

. propagation of cracks change the structural re- imental response approach. Furthermore, when

. sponse of the system which manifests in a the system becomes more complex and sophisti-
change in the dynamic equations of motion. cated, it becomes more difficult to understand

- Therefore, the System Identification Technique, its mechanisms, and, therefore, to develop an
from which the dynamic equations of motion may appropriate theoretical model, which will give
be deduced from experimental data, offers the a good prediction of its dynamical response.
potential of being able to detect cracks, flaws
and other features by observing changes of For these reasons, the objective of this
structural parameters such as mass, stiffness research is to develop a new and more accurate
and damping elements of matrices, dynamic system identification technique for de-

termination of dynamic equations of motion,
The identification and modeling of multi- from dynamic response data, of a system with

degree of freedom dynamic systems through the high modal density. This project seeks to dem-
use of experimental approaches, is a problem of onstrate that it is feasible to detect damage
considerable importance in the area of system in structures due to existing cracks or flaws S.
dynamics, automatic controls and structural by observing the changes of structural Param-
analysis. Indication of the wide range of ap- eters as elements of mass [M), stiffness 'KJ and

. plicability of this subject is shown in the damping C] matrices, and also to observe
literature related to system parameters iden- changes in the power spectral density and res-
tification efforts (Refs. 1-11). onant frequencies.

Purely mathematical model representation The ultimate objective of the subsequent
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research is to correlate the cracks, flaw sizes homogeneous equation (Ref. 12):
and their location with the obtained changes In
system parameters. [B (Pk)J Dk) " 0 (6)

When rN], [K], and [C] are symmetric, the fol-
2. MATHEMATICAL MODEL OF THE SYSTEM lowing expressions can be proved:

IDENTIFICATION TECHNIQUE[ T 1

Let us begin by considering a structural 1T 1 (7)
system which can generally be represented by an [E] - [Y-l.p] ( -YI_
N degree-of-freedom linear system. The dynam-
ics of the system are governed by its equation where
of motion:

[M] [i] + [C) [iX + [K] CX] - [f] (1)P
is an eigenvector matrix while the eigenvalues

where CXJ, [i], CX) are the displacement, ve- matrix is:

locity, and acceleration column vectors of de- r 1
gree N, respectively. Force If] is also an P1 0 o
N-column vector. The [M], (K], and (C) are N o P21 0x N mass, stiffness, and damping matrices, re- o o "

It can be shown that the system's transfer
The system identification technique in- function could be represented as a function of

volves the identification of CM], (K], and [C] eigenvalues and eigenvectors, that is:
matrices of the system, from the known re-
sponses EXI, [A], EX] and the known forcing
function If]. (H(s))= [YJ[s- 1 [y]T ly"y-_ yyky T  I

Adding to equation (1) a trivial differen- k-i a"lk

tial equation: (8)

[M [i] - [M(i [J = 0 (2) or K.
2n

a set of equations which describe the motion of (H(s)] = 2 [ak] (9)
the same structural system are obtained: k-l s-Pkwhere

rX [o] [Kfdrf P k = kth root of (det (B(s)) = 0"

(akJ= residue matrix for the kth root
or in the condensed form: k'=

In general, the ij-th element of the residue
[01 (] + (E] (q] = (Q] matrix (ak] is written as:

where the matrices are defined as: aij(k)fYikYjk (10)

101 FL0LLwhich provides the connection between residues

[DoJ= and eigenvectors.

[El -INL (4) The transfer function H(s) is experimentally{ TI[ measurable. Using various curve-fitting proce-
r1 lrq =[q ] r [i01 dures (Refs. 13-16), the elgenvalue and eigen-

LqJ f q [Q] = vectors can be retrieved from the transfer
LAJ, LAJ function as indicated by Equations (9) and (10).

After performing the Laplace transformation, we The proposed technique has been verified on a
obtain: two-degree of freedom system simulated by analog -

(B (s)] [q (s)] i (Q (s)3 (5) computer circuits (Ref. 17). The results indi-
cated that the system identification could ac-

where curately determine the mass, stiffness and
damping matrices of a lumped spring-mass-dashpot

(B (s)] = (D)s + [El1  system whose degree of freedom is low. The work
described below includes the continuing verifi-

is the system matrix. It can be proved that cation of the stated technique on continuous
[O] and [EJ, which untaln the system's (N], structural systems. The physical system con-
(C], [K] matrices, can be represented by the sidered was a cantilever beam. The verification
etgenvalues Pk, and etgenvectors YkO, produced was conducted in two ways: NASTRAl finite ele-
from the system matrix and determined by the ment simulation and experimental measurement.
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3. NUMERICAL APPROACH IN DETECTION OF DAMAGE [C], [K] matrices for the damaged structure.
OF A CANTILEVER BEAM

Two more stages of damage were introduced 9"
In the measurement of real structure re- and the same system identification procedure

sponse signals, error often exists. Such error was carried out for all the damage cases. In
can greatly affect the accuracy of the identi- the second damage stage, two grid points on
fled system matrices, especially when the the second rows from each side of the beam,
degree of freedom of the structural system is located 3 inches from the clamped edge, were
high. At the initial stage of development of released (Fig. 2c). In the third damage stage,
the system identification technique, it is two additional grid points on the third rows
desirable to generate structural signals as were released (Fig. 2d).
close to theoretical values as possible to be
used as verification of the technique. Numer- The severeness of the damage induced by
ical approach was adopted in which a cantilever splitting the grid points can be demonstrated
beam was modeled with the NASTRAN computer pro- by the resulting frequency changes which, as
gram to generate the numerical vibration sig- seen from Table 1, are very small. The mass
nals. matrices obtained for the four damage cases are

all close to diagonal with off-diagonal ele-
The mesh configuration of the finite ele- ments one or two order of magnitude smaller

ment model of the beam is shown in Fig. 1. The than the diagonal elements. The diagonal ele-
dimension of the beam is I" wide, 12" long, and ments of the mass matrices are listed in Table
1/8" thick. The model is composed of 200 2, which show very small changes (! I%) for the '

CQUAD4 bending elements of MSC/NASTRAN version damages produced by splitting the grid points. '

of the finite element method. The material of Because of the complex nature of the damping
the beam is mild steel whose properties are: mechanism, the obtained damping matrices will

x 2 not be correlated to their physical implica-
Young's Modulus E = 3.0 x 1 lb/in tions. For the obtained stiffness matrices,

Poisson Ratio v = 0.33 it was found that their inverses, the flexibil-
= 3 ity matrices, can provide better physical

Mass Density p = 7.557 x 10- slug/in correlation for a cantilever beam system. The
flexibility matrices are near diagonal, whose

Six stations were chosen from which the diagonal elements are listed in Table 3 for
frequency response functions were taken. These the four damage cases. It is found from these
are labeled stations 1 through 6, located along values that for response stationsbefore the
the beam center line and separated 2 inches damage location the flexibility does not change
apart (Fig. 1). Dynamic forces were applied at significantly, while for response stations
station 2. Transfer functions at the six sta- after the damage locationthe flexihilities
tions, which are defined as the ratio of the change progressively according to the severe-
Fourier Transform of the dynamic responses at ness of damage and the distances from the dam-
the six stations to that of the input force at age location. This trend is illustrated by
station 2, were obtained using NASTRAN modal the graphical depiction of Fig. 3.
analysis method. Dampings were introduced into
the system by adding artificial modal damping To investigate the correlation between the
coefficient to each mode. The attained trans- location of damage and the changes in the ele-
fer functions containing no noise except the ments of the flexibility matrix, theoretical
numerical inaccuracies were used as input data derivation can be conducted to obtain the ana-
for theoretical verification of the identifica- lytical expression of the flexibility matrix.

* tion technique. The expressions of the diagonal elements of
the flexibility matrix of a cantilever beam are

, tudeThe frequencies, dampings and the ampli- listed in the Appendix for the six response
tudes of vibration at the six stations were stations. As can be seen from the Appendix,
obtained using a frequency domain curve fitting the elements of the flexibility matrix are
routine. This constituted the first phase of algebraic sums of terms inversely proportional
the signal processing which retrieved elgen- to the local stiffness, Ei Ii. The progressive
values and eigenvectors from the system's changes in the matrix elements due to the
dynamic responses. The second phase of the change in local stiffness at a particular sta-
signal processing is to construct the [M], [C), tion are clearly displayed in the analytical '1
[K) matrices from the eigenvalues and elgen- expressions.
vectors.

To demonstrate the capability of damage
detection of the proposed technique, two grid
points on each side of the beam, located 3
inches away from the clamped edge, were
released by splitting each grid point into two
(Fig. 2b). The splitting of the two grid
points induced first stage damage to the struc-
ture. Again the computer programs were run to
obtain the frequencies, dampings and the [M],
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TABLE 1

Natural Frequencies in Hz for the NASTRAN Simulated Responses
of the Cantilever Beam with Four Damage Cases

Modes No Damage 1st Stage Damage 2nd Stage Damage 3rd Stage Damage

1 24.991 24.970 24.828 24.499

2 157.67 157.66 157.62 157.53

3 443.82 443.53 441.70 437.55

4 873.60 872.83 868.36 858.68

5 1446.93 1446.46 1444.18 1439.11

6 2136.62 2135.90 2132.73 2125.30

TABLE 2

Diagonal Elements of the Mass Matrices (10-3 slugs)

Stations No Damage Ist Stage Damage 2nd Stage Damage 3rd Stage Damage

1 0.1314 0.1313 0.1318 0.1312

2 0.1979 0.1987 0.1995 0.1989

3 0.2038 0.2028 0.2040 0.2041

4 0.2008 0.2004 0.2008 0.2010

5 0.2011 0.2017 0.2021 0.2035

6 0.1923 0.1927 0.1931 0.1943

TABLE 3

Diagonal Elements of the Flexibility Matrices (10-  in/lb)

Stations No Damage Ist Stage Damage 2nd Stage Damage 3rd Stage Damage

1 0.5033 0.5016 0.5031 0.5021

2 3.9860 3.9756 3.9976 4.0220

3 14.343 14.391 14.430 14.901

4 31.540 31.940 31.803 33.063

5 62.948 62.425 62.389 64.624

6 101.66 101.81 102.40 105.34

4. EXPERIMENTS WITH A CANTILEVER BEAM excite the aluminum cantilever beam with tran-
sient or random impact at station 5, as shown

In addition to the numerical verification in Fig. 5a. The transfer functions from the
of the system identification technique de- impact station to any accelerometer station
scribed in section 2 as applied to a continuous were obtained by feeding the output accelera-
structural system, an experimental verification tion signal and input forcing function into a
was also conducted. A cantilever beam having spectrum analyzer: the Nicolet 660B dual
dimensions 19-1/2 inches long, 1 inch wide, and channel FFT analyzer supported by a Data Gen-
1/4 inch thick was used in the experiment. The eral MP/200 computer (see Fig. Sb). In the
beam was made of aluminum, with Young's modulus analyzer, the input and output signals were
1.03 x 10' Ib/in 2 , Poisson's ratio v ' 0.33 and digitized and the Fast Fourier Transform of the
mass density p = 2.485 x 10"4 slug/in . Six signal was performed. The instantaneous trans-
accelerometers were attached to the beam at fer functions were obtained by dividing the two
six stations (Fig. 4). A hammer was set up to spectra. The final transfer function was ob-
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taned by averaging a series of instantaneous The saw cut on the cantilever beam, intro-
transfer functions. duced between stations 2 and 3, represents the

damanes of the structure in the experiment
The obtained transfer functions were (Fig. 4). The frequencies and damping values

processed further, according to the mathemati- of the lowest vibration modes were obtained
cal procedure suggested by the proposed struc- from the transfer functions for no cut case and
ture identification technique. The final re- the cut case (Table 4). Significant changes
sults are represented in the form. of structural due to cut exist in the experimentally deter-
matrices [M], (C], and [K. It should be em- mined frequencies. Table 5 and 6 list the
phasized that the phase 1 (transfer function) diagonal elements of the mass and flexibility
was experimentally accomplished, in contrast to matrices for the no cut and cut cases. It is
the finite element analysis described pre- also found that the damage introduced by the
viously. As such, this is a totally experimen- saw cut results with significant changes in the
tal approach which will be an effective and flexibility elements.
useful technical approach for damage detection.

TABLE 4

Experimental Values of Frequencies and Damping Ratios of the Aluminum Cantilever Beam

Modes NO CUT CUT CASE

tatural Damp. Natural Damp.
Freq. (Hz) Ratio (%) Freq. (Hz) Ratio (%)

1 19.53 0.360 19.00 0.247

2 122.05 0.241 115.85 0.183

3 339.26 0.125 332.36 0.0788

4 661.73 0.0946 646.91 0.0805

5 1085.22 0.120 1037.46 0.0979

6 1594.59 0.0974 1591.36 0.0973

TABLE 5

Diagonal Elements of the Mass Matrices (10-6 slugs)

Stations No Cut Cut

• 2.9460 2.8029

2 6.7463 6.0645

3 6.9833 7.8842

4 7.0791 8.3550

5 7.2694 7.9536

6 6.4664 6.5813

TABLE 6

Diagonal Elements of the Flexibility Matrices (in/lb)

Stations No Cut Cut

1 0.3257 0.2526

2 1.8184 1.4985

3 7.5954 7.8514
4 18.594 21 .003
5 33.817 51.553

6 66.075 87.246
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Theoretical study, as illustrated by the New mathematical approaches to convert the
results of NASTRAN simulation, indicates that eigenvalues and eigenvectors to the [MI, [C),

* the diagonal elements of the flexibility matrix and [K) matrices can be pursued to provide
EF" should deviate In an orderly fashion with better accuracy. For example, one can use only
respect to the location of the damage. Com- matrices of dimension N x N for an N-degree of
paring the flexibility matrices of the cases freedom system in the computation algorithms.
cut and no cut (Fig. 6), this orderly deviation As compared to the system matrices of dimension
does exist in the diagonal elements and allows 2N x 2N, used in the present research, such
one to identify the location of the cut. approach contains four times less the number of

unknown variables. It is expected that accura-
cy will be improved by the reduction of matrix

5. CONCLUSIONS AND DISCUSSIONS dimensions in the numerical array operations.

The feasibility of using the system iden- For a continuous structural system, the
tification technique for a continuous structur- number of degrees of freedom is infinity. If
al system, such as a cantilever beam, has been it is to be modeled with an N degree-of-freedom
demonstrated. Both the numerical simulation [M, [C, and [K] matrices, then the conditions
and experimental verification indicate that the under which the system identification procedure
technique is capable of identifying structural is proper should also be verified for practical
damages. Furthermore, for a cantilever beam, application.
the location of the damage can be identified
by observing the changes in the diagonal ele-
ments of the flexibility matrix. APPENDIX: Diagonal Elements of the Flexibility

Matrix of a Cantilever Beam
However, to obtain useful results for more

practical purposes, a number of improvements to = 2G -L
the technique will be necessary. In the exper- 

,"

iment conducted, the cut made to the cantilever 2 L+ 2 2
beam was considered a very severe structural f22 = 2G 1(L1 2  + L 2 L2 + 2 )+ 2G2 2
damage, thus resulting in significant changes 22
of the system's matrices and made the system f 3  2G 2S(L + 11312 + L2 ) + 2G (L2
'f33 1 32 +13L23 + 2322)3

identification possible. For real applications 1 3 + 13 2 + 2G3L3 2
damages of a precatastrophy type are usually 3 23 3 3 3
very small. If the error during the signal 2-2,2
processing is large enough to suppress the 144 = 2G1 (L14  + L1 4L24 + L24 + 2G2 (L24  +
deviations in [M], [CI, K] matrices due to LL + 2+ 2GL 2 + L L + 12
damages, then it is impossible to detect 24L34 2 34' 334 34L4 4
structural damages by observing changes in the + 2G4L4.
identified [M, [C, [K) matrices. Therefore, -
the requirement of high accuracy signal f Gl(Ll2 11 + 2) 22L2
processing is essential for practical purposes. 55 15 525 + 2 225L L53 + L3 ) + 2G3(L 2 + L35L4 + L45)"

For the present system identification + 2G(L45 2 + L45L5 + L5 "L 1
technique, the accuracy can be controlled in 4 (+ 2G 5 5
three steps: (1) the signal acquisition in
vibration measurements; (2) retrieval of the 66 2GI(L16 + LJ6L26 + L 26 + 2G2(L 26 +
system's eigenvalues and eigenvectors; and 2
(3) conversion of eigenvalues and eigenvectors L26L36 + L36 

) + 2G3 (L36  + L36L46 +

to the [M), [C], and [K) matrices. The first 2 2 2
* step requires careful calibration of the mea- 146 + 2G4 (L46  + 146156 + 156 + 2G5

surement transducers. The second step in- (L562 + L56L6 + L62 + 2G6L62

volves the accuracy of the analog to digital
signal conversion and numerical accuracy in the G L

- proper eigenvalue retrieval algorithm. The = Li = Li + + I
third step is purely numerical and consists 6ElIa i"

* only of a series of matrix operations.
where Li is the distance between response

In our present research, an aluminum stations
cantilever beam of sufficient length system has
been used. This retained the system in lower Ii the moment of inertia of the beam
vibration frequencies so that the lowest six cross section

* ,modes were well within the accelerometer re-
sponse characteristics. Attention has also Ei the local Young's Modulus
been given to the structural symmetry so that 1

unwanted vibrations, such as torsional modes,
were eliminated. Efforts were directed to im-
prove the measurement accuracy.
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Crack
Location

Fig. 1 Mesh Configuration, Location of Forcing, Crack and Stations
of NASTRAN Simulated Steel Cantilever Beam

(a) No Damage (b) 1st Stage Damage

(c) 2nd Stage Damage (d) 3rd Stage Damage

Fig. 2 NASTRAN Grid Points Arrangements for Simulated
Damages
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No Damage
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Element Mo.

Fig. 3 Diagonal Elements of the Flexibility Matrix of the
NASTRAN Simulated Steel Cantilever Beam
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Fig. 4 Geometry, Location of Stations and Cut

of the Aluminum Cantilever Beam
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a. Set-up of cantilever beam with mechanism b. NICOLET 6608, dual channel FFT analyzer,
*for application of excitation force supported by Data General MP/200 computer

Fig. 5 Set-Up of Cantilever Beam
Experiment

100-

80-

60 CUT CASE

LOCATION OF CRACK

40

20
N CUT CASE

0-
(1,1) (),2) (31,3) (4,4)' (5 5) (6,6)

El ement No.

Fig. 6 Diagonal Elements of the Flexibility Matrix of the
Aluminum Cantilever Beam
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TIME DOMAIN MODAL ANALYSIS OF A SLOTTED
CYLINDRICAL SHELL U.

W. Q. Feng1 , F. Q. Zhang 2
, and T. C. Huang

Department. of Engineering Mechanics b
University of Wisconsin-Madison
Madison, Wisconsin 53706 USA

The modal parameters will change if a structure changes from
being perfect to being defective. This paper investigates a
cylindrical shell with a longitudinal slot by the time domain
method. The 11 sets of mode vectors, all of them nearly real
modes, are investigated and the modal shapes are platted.
When the slotted shell is compared with the original perfect
shell, it is found that several new mode vectors are created at

for the slotted shell, and the characteristics of the kept
modes, the mode shapes of the perfect shell which remain for
the slotted shell, will change also.

which is a circular plate inside the lower end
INTRODUCTION of the shell. The shell model is shown in Fig.

1. The experimental set-up for the time domain
For many engineering problems, engineers analysis is shown schematically in Fig. 2.

must know what kind of physical phenomena
change when a structure changes. One such Points 1 to 25 were used as response
problem occurs when a structure cracks; two measurement points and an appropriately chosen
aspects of this problem are when the structure point R was used as the reference point (Fig.
changes from being perfect to being defective 1). When an impluse acted upon the surface of
and when the crack propagates. In order to the shell, the free vibration response signals
study these problems, it is necessary to have were taken and digitized through our Nicolet
fundamental knowledge of the changes of the Digital Scope, Model 260A. The cutoff fre-
dynamic properties of a structure. quency was 1600 Hz and the sampling interval

was 0.0001 second. The effect of noise and
Reference (1J investigated the change in error in measurement was reduced by averaging

the modal parameters of a perfect cylindrical 10 sets of the system matrix using a totalwhen it becomes a shell with a slot which is record length corresponding to 400 samples or
lengthened incrementally. The modal parameters 0.04 second. The oversized mathematical model
were determined for each length of the slot, with 50 degrees of freedom is used in the
both experimentally and analytically. The con- system matrix.
clusion of Reference 11) is that the presence
of the slot will not only reduce the magnitude The time response signals are recorded and -.
of the damped natural frequencies of the shell, digitized by a dual channel digital scope.
but will also increase the number of the There is a total of 26 measurement stations
natural frequencies. including the reference station R (Fig. 1). A

total of 25 sets of response signals at two
In this paper, the time domain method of stations, one of which is the reference station

analysis was used to investigate the same R, was recorded, digitized and computed sepa- .problem. In addition, the mode vectors are rately. There was a maximum of only 2% differ-studied in detail. ence between each damped natural frequency,

computed by our program for the time domain
modal analysis, and the mean value of the 25

EXPERIMENTAL NODAL ANALYSIS damped natural frequencies. The whole set of
tests was repeated several times to test the

The test object is an aluminum cylindrical consistency of modal vectors. The modal
shell having a mean diameter of 

2
6
4
.
3
mm, a vectors obtained from these sets of tests show

length of 263.Omm and a thickness of 4.3mm, nearly identical results.
with a longitudinal edge slot 1mm wide and
152.

4
mm long. The upper end of the shell is There is only a 15 Hz difference between

free and the lower end of the shell is assumed the first mode of damped natural frequency of
to be simply-supported, but the shell itself is 155.1 Hz, and the second mode of 171.8 Hz. In
more constrained due to the actual fixture, this situation, where the modes are closely

spaced, it is easy to identify the closely1 On leave from Wuhan Institute of Water Trans- spaced damped natural frequencies in one com-
portation and Engineering, Wuhan, China puter run, but difficult to obtain their2 On leave from Chinese University of Science stable and nearly real modal vectors. We
and Technology, Hefei, Anhui, China developed the skill of producing each close
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node separately and obtain very stable and retained modes, Lhe perfect shell modes that
nearly real modes for each of these two closely are retained by the slotted shell. First of
spaced modes, all, these retained modes have only one

symmetrical axis, which goes through the center
It is very difficult for the modes having of the circle and the middle of the slot.

damped natural frequencies of 513.8 Hz, 1280 Secondly, the local modes in the slot region
* Hz, and 1519.6 Hz to be excited producing the have an even number of modal nodes along the

modal nodes at the edges of the slot. The edges of the slot. All the new modes are anti-
problem was solved by choosing the appropriate symmetrical as defined above. Their local modes
excitation position by trial and error and along the edges of the slot have an odd number
developing our skill for exciting either of nodes. The comparison of the number of nodes
symmetical or anti-symmetrical modes, on the perfect and on the slotted shell is

shown in Table 2.

RESULTS AND DISCUSSION In order to determine the mode shape
between points 5 and 6, as well as points 9 and

The time domain modal analysis was done by 10, we measured several extra points on each
our program for the time domain modal analysis. circular arc ab and cd, and determined the
A total of 11 modes was obtained. The results mode shape for 513.8 Hz as shown in Fig. 6a.
of the 25 points for the damped natural fre- We guessed that the mode shape is degenerated
quencies, damping factors and modal vectors from the shape shown in Fig. 6b because of the
are shown in Table 1. The mode shapes and large deflection at the points 7 and 8 caused
phase angles for all 11 modes are plotted in by the existence of the long slot.
Fig. 3.

Table 1 and Fig. 3 show that the phase CONCLUSION
angles are in general within ten degrees of
either zero or 180 degrees. We therefore con- According to the results presented above,
clude that almost all 11 modes are nearly real it may be concluded that the time domain method
ones. If we draw a line through the middle is a very powerful tool in modal analysis. The
point of the slot and the center of the circle, two effects of the slot on the cylindrical
the mode number 2, 4, 5, 7, 10 and 11 are shell, in addition to its well known effect on
nearly syvmetrical to the line. In Fig. 4, A* the damped natural frequencies are that the

* is defined as the anti-symmetrical point of A, characteristics of the retained modes change
if A* is obtained through the following two and that the new anti-symmetrical modes are
steps () by obtaining the symmetrical point created.
A1  of point A to the line ab, (2) by

" obtaining the symmetrical point A* of point
A1 to the circular arc. The mode number 1, 3, REFERENCES
6, 8 and 9 shown in Fig. 3 is very good anti-
symmetrical, according to the above definition. 1. Tang, Z. Q. and Huang, T. C., "Modal

Analysis of a Cylindrical Shell with a
A perfect cylindrical shell has mode Longitudinal Crack," Modal Testing and

shapes, as shown in Fig. 5a, b, c and d for Modal Refinement, AND-Vol. 59, ASME, 1983.
the cases of m = 0 and n - 2, 3, 4 and 5, pp. 77-84.
respectively, where m is the number of modal
nodes along the longitudinal direction and n is 2. Ibrahim, S. R. and Mikalcik, E. C., "A
the circumferential half wave number 13J. The Method for the Direct Identification of
mode shapes have 2, 3, 2 and 5 symmetrical Vibration Parameters from Time Response,"
axes for n - 2, 3, 4 and 5, respectively. The Shock and Vibration Bulletin, No. 47,
shell with a longitudinal slot not only September 1977, pp. 183-198.

* exhibits the mode shapes which the perfect
. shell has, but creates one, two or more new 3. Leissa, Arthur W., Vibration of Shells,

mode shapes. There are two effects on the NASA, SP-288, 1973.
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Table I Results of Time Domain Analysis for the Shell vith a Slot
(Frequency in Hz, Phase Angle in Degree)

Mode No. 1 2 3 4 5 6

Damped
Natural 155.1 171.8 344.3 438.4 513.8 642.0
Frequency

Damping 0.006732 0.008288 0.003399 0.000562 0.02158 0.000386
Factor

Response Mode Amplitude and Phase Angle
Point Ampl./Phase Ampl./Phase Ampl./Phase Ampl./Phase Ampl./Phase Ampl./Phase

1 0.017/193.0 1.000/ 0.0 0.150/189.3 2.509/ 0.4 1.207/184.4 0.123/182.9
2 1.539/180.2 0.415/ 30.0 5.190/ 5.1 0.579/181.4 0.430/ 5.2 2.056/ 1.5
3 1.362/189.9 0.882/205.0 0.074/208.1 2.697/181.2 1.515/ 2.6 2.676/181.1 0.*

4 0.223/181.3 1.0281184.7 3.717/185.4 0.657/180.5 1.574/ 0.2 2.644/181.2
5 0.770/ 8.1 1.243/196.1 5.027/184.6 1.931/ 0.7 0.415/ 20.0 0.122/ 2.3
6 2.052/ 0.9 0.201/249.3 1.907/ 0.7 2.3901 0.9 3.685/ 3.2 2.065/ 1.6
7 2.504/ 7.1 0.545/ 15.2 15.773/ 2.4 2.891/182.5 11.782/ 1.5 4.960/182.4
8 2.457/182.5 1.302/ 7.9 17.010/180.4 3.409/180.6 12.383/ 2.1 5.139/ 2.3
9 2.4061195.6 0.581/ 59.0 1.782(182.2 2.396/ 1.2 3.9331 0.9 2.0941181.0
10 0.603/186.1 0.923/181.0 4.6941 4.5 1.794/ 0.9 0.606/ 7.8 0.020/183.3
11 0.573/ 5.9 1.064/182.2 3.488/ 3.2 0.757/180.3 1.318/ 6.7 2.721/ 0.5
12 1.717/ 2.2 0.827/190.5 0.071/ 58.9 2.645/180.9 1.866/ 6.5 2.585/ 1.4
13 1.491/ 2.7 0.317/ 44.8 5.363/186.2 0.475/180.3 0.657/ 14.9 2.7291180.1
14 1.486/ 0.4 0.637/ 25.5 10.4261 1.4 2.883/181.3 7.051/ 1.0 3.839/180.0
15 1.798/182.3 2.006/ 16.0 10.7131181.0 2.6531181.3 6.773/ 1.4 3.9121 0.8
16 0.795/ 1.7 0.565/ 10.9 5.364/ 0.4 2.416/184.2 1.332/ 4.6 2.069/182.6
17 0.959/180.6 1.191/ 9.1 5.454/180.8 2.5741183.1 1.1961 6.2 2.100/ 2.9
18 0.0891181.5 0.508/ 0.1 0.140/211.3 1.692/180.8 3.200/181.8 0.0421 65.6
19 0.045/244.9 0.253/ 4.6 0.027/ 87.0 0.884/181.0 1.563/184.3 0.018/ 83.4
20 0.081/189.6 0.645/ 0.7 0.0491257.6 1.8451 0.1 0.661/194.7 0.0101198.8
21 0.045/238.1 0.193/ 1.4 0.025/ 89.5 0.590/ 0.2 0.408/226.9 0.003/ 2.8
22 0.250192.9 0.647/181.0 2.223(185.8 0.433/180.8 0.553/ 0.8 1.556/180.9
23 0.030/ 63.5 0.168/187.1 0.718/189.0 0.140/181.1 0.138/ 35.6 0.492/181.1
24 0.310/ 15.2 0.8291183.6 2.155/ 5.7 0.415/180.4 0.734/ 1.7 1.531/ 1.0
25 0.086/ 16.1 0.289/186.6 0.6811 6.4 0.127/181.5 0.178/ 33.9 0.478/ 1.4
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Table 1 Results of Time Domain Analysis for the Shell with a Slot
(Cont.) (Frequency in Hr, Phase Angle in Degree)

Mode No. 7 8 9 10 11

Damped
Natural 842.1 1075.8 1282.1 1366.2 1519.6
Frequency

Damping 0.000253 0.000624 0.006663 0.000439 0.003608
Factor

Response Mode Amplitude and Phase Angle
Point Ampl./Phase Ampl.IPhase Ampl./Phase Aispl./Phase Aapl./Phase

1 1.970/181.8 0.100/ 1.4 0.079/210.1 2.393/ 2.0 0.461/ 2.4
2 1.731 2.0 0.915/181.7 0.514/ 3.9 2.855/181.5 0.522/181.8
3 0.183/182.5 1.533/ 2.1 2.056/183.5 2.790/ 1.7 0.167/ 5.1
4 2.329/182.1 0.884/182.7 1.399/ 3.0 1.038/ 1.1 2.602/ 0.0
5 1.481/181.9 1.907/182.4 3.024/ 4.1 2.778/181.6 0.078/ 63.5
6 2.204/ 2.1 1.657/ 2.1 3.337/190.7 2.433/ 1.9 */ *
7 2.491/183.3 4.151/187.7 18.887/187.7 4.921/187.7 8.578/ 9.5
8 2.675/181.7 4.313/ 5.0 20.499/ 7.9 5.789/183.6 8.725/ 7.4
9 2.173/ 1.8 1.631/182.0 3.485/ 3.6 2.2791 1.8 3.707/180.2

10 1.5441181.7 1.884/ 2.5 2.706/187.4 2.605/182.6 0.082/ 52.6
11 2.220/181.0 0.780/ 1.6 1.349/185.7 1.1281 1.6 2.029/ 8.6
12 0.205/182.4 1.484/182.5 1.907/ 3.4 3.038/ 2.2 0.238/ 4.9
13 1.715/ 0.9 1.069/ 1.2 0.760/180.1 3.044/181.3 0.412/185.9
14 2.415/182.9 2.116/185.5 3.429/ 6.8 3.171/187.5 2.737/185.3
15 2.381/183.1 2.089/ 5.6 3.360/188.6 3.273/188.2 2.911/183.9
16 1.979/182.4 0.349/182.5 13.973/ 6.5 4.481/190.8 */*
17 1.952/183.4 0.358/ 2.1 13.342/187.2 4.116/188.7 */
18 0.751/182.0 0.001/ 74.2 0.074/132.5 0.716/187.4 2.443/184.5 e.
19 0.353/187.0 0.011/202.6 0.030/186.0 0.211/181.8 0.678/182.2
20 1.379181.7 0.010/ 10.8 0.043/208.4 1.575/ 1.5 0.796/181.4
21 0.439/181.5 0.002/220.0 0.027/264.1 0.473/ 2.2 0.779/185.9
22 1.340/181.7 0.456/183.0 0.777/ 2.3 0.570/ 1.2 1.204/180.0
23 0.429/181.8 0.143/184.8 0.122/ 0.8 0.196/ 2.6 1.085/181.3
24 1.306/181.8 0.448/ 2.8 0.731/180.0 0.556/ 0.7 1.290/182.2
25 0.419/182.0 0.144/ 3.6 0.135/194.5 0.189/ 2.7 1.122/190.9

* ndicates missing data.
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Table 2 Comparison of the Number of Modal Node of the Perfect and Slotted Shells
(Damped Natural Frequency in Hz)

Perfect Shell Slotted Shell

m Damped No. of Damped No. of Damped No. of Damped No. of
and Natural Modal Natural Modal Natural Modal Natural Modal
n Frequency Node Frequency Node Frequency Node Frequency Node

m-0, n-2 190.0 4 155.1 3+1 171.8 4+0 - -

m-0, n-3 510.0 6 344.3 5+1 438.4 6+0 515.8 6+2

m-0, n-4 945.0 8 642.0 7+1 842.1 8+0 1282.1 7+3

m-0, n-5 - 10 1075.8 9+1 1366.2 10+0 - -

-1, n-4 - - 1519.6 8+2 - - - -

Notes for Table 2:

1. m indicates the number of modal node along the logitudinal
wave and n the circumferential half wave number.

2. The results of frequency for perfect shell are quaoted from
Reference 1.

3. In the columns of number of modal node for the slotted shell,
the first number indicates the number of modal node along the
upper circumference and the second one, the number of modal
node along the two edges of the slot.

4. The number of modal node for the case m-0, n-3 and damped
natural frequency 513.8 Hz will be discussed in the section of
"Results and Discussion".
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APPLICATION OF THE ITD ALGORITHM TO
LANDSAT TRANSIENT RESPONSES

S.
°

R. R. KAUFFMAN
GENERAL ELECTRIC COMPANY, SPACE SYSTEMS DIVISION

PHILADELPHIA, PENNSYLVANIA

Frequency, damping, and three degree-of-freedom mode shapes were estimat-
ed from data transmitted from the orbitting Landsat-4 and Landat-5 earth ob-
servation spacecraft. The data was comprised of three channels of time
history data corresponding to orthogonal rotations of the spacecraft. The data
was processes using the Ibrihim Time Domain Technique. It was found that
multiple modes could he characterized per channel of data. Damping estimates
are on the order of 0.2% for low frequency (< 3 Hz) modes and on the order of
0.5% for high frequency modes.

" INTRODUCTION K-IANDANTENNA

The purpose of this paper is to present results
from the application of the Ibrahim Time Domain (lTD)
algorithm to estimate the dynamic characteristics of ANTENNA NAST
orbital spacecraft. The spacecraft considered are the
Landsat-4 and Landsat-5 earth resources satellites. SOLAR ARRAY

* This study was undertaken to validate analytical pre-
dictions of the spacecrafts' response to Thematic
Mapper (TM) and Multi-Spectral Scanner (MSS) peri-
odic excitation, and to determine spacecraft modal
damping values.

The orbital configuration of these spacecraft is THEMATIC MAPPER
shown In Fig. i. The two primary sensors are the IDrIVES AT 7.21 . .... HEl MULTISPECTRAL IICANNER
TM and the MSS. Both instruments incorporate IDRIVES AT 13.52.4 0.1. 41.1.. Ka)
scanning mirrors which alternately impact rubber Fig. 1 - Landsat-4 vehicle
bumpers at either end of their travel. The TM is
much larger than the MSS and provides much higher
resolution. The high resolution of the Landsat TM as the mirror impacts resilient stops at either end of

" makes it susceptible to self-induced vibration, or its travel. The Fourier components of the resulting

jitter, and requires the ground correction of the pulse train are rich in the odd harmonics of the scan-

images. The TM provides an order of magnitude ning frequency (7.053 Hz for the TM and 13.656 Hz

improvement in resolution over the MSS. for the SS). The spacecraft dynamic response to the
scanning forces is dependent on the structural dynam-

- Because initial analyses indicated that the jitter ic characteristics as the Attitude Control System (ACS)
resulting from the mirror impacts would cause un- does not operate at 7 Hz and above. Since analytic
acceptable distortion of the TM images an Angular predictions of jitter are highly dependent on the modal

Displacement Sensor (ADS) was attached to the TM characteristics of the structure, it is vital that these

- base. Payload Correction Data (PCD) which is com- characteristics be accurately determined. To define

* prised of Gyro data (< 2.0 Hz) and ADS data (2.0 Hz the spacecraft dynamics, a modal math model of the

* through 125.0 Hz) is transmitted from orbit. This spacecraft was synthesized from existing finite ele-

data corresponds to three orthogonal angular dis- rnent models of the spacecrafts main body and append-

placements of the TM. This allows the measured ages. The resulting spacecraft model shows large

motion of the TM to be transmitted to the ground for amplifications of the excitation forces at the numerous
correction of the jitter induced distortion. The mag- structural resonances which begin with a solar array

nitude of jitter must remain below set limits for the resonance at 0.4 Hz. The model has 70 modes below

sensors to obtain accurate images. 50 Hz. Very large jitter responses occur with the
scanning frequency or one of its odd harmonics coin-

The periodic excitation from the scanning mir- cide with a structural resonant frequency. Although
rors is caused by force pulses in alternate directions pre-flight modal tests were used to partially validate
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the dynamic model, a range of values were used in was applied to the model and the time history re-
the pre-flight analysis. A modal damping variation sponses developed are input to lTD. This model
from 0.05 to 1.0 percent was used because it could gives an indication of how well the algorithm will
not be reliably measured on the ground. Therefore, work under ideal conditions (very low noise levels,
the objective of this study was to analyze the PCD to linear system, actual free decay data, etc.). This
determine the modal frequencies and damping coef- sets an upper bound on the performance expected in
ficients and compare these with analytic values. Also the final portion of the study.
of interest is how consistent the modal frequencies
are between spacecraft. The final portion of the study involves Landsat-4

and Landsat-5 time history data measured in orbit.
The Landsat data is relatively unique. The data The modal parameters generated from the data are

covers a much broader frequency range than is nor- compared with both the original analytic model and
mally available from orbital vehicles. Orbital data with modal parameters generated via ITD from ana-
is normally limited to frequencies below that of the lytic time history data.
structural modes and is used for control system
evaluation. The Landsat data covers a frequency THEORY
range of more than two orders of magnitude above the
fundamental structural frequency of 0.4 Hz. In the The ITD method uses free decay transient re-
past modal parameters have rarely been measured in sponses or random excitation responses to identify
orbit and with limited results. Ref. [ 6 1 documents the natural frequencies, complex mode shapes, and
an example where orbital measurements on the 080- critical damping ratios of a structure. In this study,
8 were transmitted to earth. From this data, the only free decay transient responses are considered.
damping of one mode was successfully determined. The ITD method reduces these transient decays into

their complex exponential forms.

A relatively new Ibrahim Time Domain (ITD) ti

analysis technique was selected to process the PCD. Invoking the assumption that any structure may
This technique can use either random vibration or be represented by an equivalent finite lumped mass
free decay data to estimate the resonant frequencies, system results in:
modal damping coefficients, and mode shapes. It re- 2
quires no knowledge of the applied force. It is ex- (A' IM] + A ICJ + IKJ) I = 0. (1)
tremely powerful in that many modes can be obtained
from the analysis of a limited number of channels of The goal of modal vibration testing is to determine
data. The coding of the method was obtained from the values of X (eigenvalues) and P (mode shapes) that
NASA Langely Research Center and was a revision to satisfy the above equation. It should be noted that
the original Ibrahim code made by R. sPappa. for underdamped modes, X and P occur as complex

conjugate pairs and the following relationshps are
This study uses the ITD method to evaluate the valid.

modal analysis and is comprised of three main
activities: investigation of the ITD algorithm's char- A = a + ib, (2)
acteristics using a simple Five Degree-of-Freedom
(DOF) system, application of the algorithm to a W d = b, (3)
finite element model of Landsat-4, and application of d
the algorithm to data transmitted from the orbiting W = 42+. b , (4).

spacecraft. n

In the first part of the study, a simple five DOF p = aVa + band (5)

system is used to investigate the characteristics of Wd = W (6)
the ITD algorithm. This algorithm characterizes a = n .P
structure using time history data. The data may be
of two forms: free decay or random vibration. In where Wd and Wn are the damped and undamped
this study, only free decay data is considered. The natural frequencies and p is the damping ratio..., -
algorithm's sensitivity to noise in the data and to
several user input parameters is investigated. Also The free response of a linear multi-degree-of-
considered is the ability to characterize multiple freedom system at station i and time tj may be given
modes from a single channel of data. This ability is as:
required for the following parts of the study.

2m k
X(t~) L Pie;(7Next, a finite element model of the Landsat-4 i  = Pe (7)

spacecraft is used to simulate orbital conditions. A
forcing function representing an MSS shutdown event
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* where m Is the number of modes that are excited, the two modes (positive for in phase, negative for
Eq. (7) can be written in matrix form as: out of phase). The magnitude of the dot product in-

dicates the level of agreement between the shae of
[x - [PI [ Al. (8) the two modes. A magnitude ofone indicates perfect

agreement while a value of zero indicates no agree-
*Similar equations can be written at times t1 and ment. A dot product value of 0. 85 indicates good

At2 later. It can be shown that manipulation of these agreement.
equations results in

I 0When using the ITD algorithm, there are several
( 1 ]1 -[I] ) - 0 (9) guidelines for parameter selection that should be

followed. They are:
where :

SFNis- (15) Ix0 21• (f)1,1[

NDELTA < Ni, (16)

2t N2 Or 2*NDELTA, (17)

&2 >  ,and (18)

= N1 # N2. (19)

The variables in expressions (15) through (19)

" Eq. (9) is an eigenvalue problem which enables the are defined as follows:

* . computation of a system's modes, frequencies, and Nm
- damping using only measured free decay data at NI Number of time steps shifted

various locations. The following expressions relate from o to
the elgenvalues of Eq. (9) C) to those of Eq. (1) (x): N2 - Number of time steps shifted

within halves (for creation of
= p + iy (10) "transformed stations') of re-

sponse matrices "

a -b (II) NDELTA - Number of time steps shifted

between upper and lower halves
a -I n(1" (,2) of response matrces

ta'NCOL - Number of time steps used
""b =1t tan- (Y/0"(3

t (/13) SF - Sample frequency

The eigenvectors (modes) of Eq. (1) (P) are simply f - Maximum expected frequency

the first n elements of the elgenvectors of Eq. (9). content, and

"o fmin - Minimum expected frequency
The mode shapes are compared via the modal content.

_odUc. Tbe cosine of the angle between modes
IPjl and Pki may be defined as: For more information on the ITD method, see Ref.

11] throughl 5].
'°'- n

"" P ij Pk FIVE DEGREE-OF-FREEDOM MODEL

Co n .1/ Fn 21/2 (14) A five degree-of-freedom (DOF) model was de-
l I l (P) veloped to evaluate the ITD method and to determine

"-= J 1=1 J ITD input parameter sensitivity. The lumped mass
model that was used is shown in Fig. 2. The un-

"" where n is the mber of degrees of freedom in the damped natural frequencies of this system can be de-
- modes being compared. The value of the dot product termined by an exact analytical method.

can range from -1. 0 to 1.0. The sign of the dot
product merely indicates the phase relationship of The analytically determined modal parameters

8 3

.. .... , ,. . ... .*... ... . . . ...... .. .. ,.,....... . ".,.*. *,.;...'.-.. . . . . .... *... ' " " " . . . . . . . . .. . % . . . . %**, * . . . . . .~* *, *'.• %% .%,-%%,%.
%. 'A' m. lmmmbmlia m~dlndnd ulnl



.5w

ANALYTICAL ORBITAL MODEL ANALYSIS

A finite element model of the Landsat-4 space-

H M HM M craft in its orbital configuration was developed. This

P- model was synthesized from various substructure
models verified by preflight test data and combined

Fig. 2 - Sample five DOF model by a stiffness coupling routine. The total orbital
model is comprised of 257 nodes and 819 dynamic:"DOF's. k;

were compared to ITD results for a wide variety of
TD input parameters. Overall, the ITD algorithm There are two main sources of excitation that
showed good results. Fig. 3 shows the effect of a re re to a i hes e an thT
white noise in the data on ITD damping results. The are considered in this analysis. These are the TM
calculated frequency was virtually uneffected by noise. and the MSS. These systems are illustrated in Fig. 1.

calclate wa virualy unffeced y nose. The TM and MISS excite the structure through the
Fig. 4 plots NDOF against damping ratio for a signal Tio of an nin mi roThe e iro rs
distortion of 0.568%. As can he seen, the ITD Isolu- motion of large scannisn mirrors. These mirrors In

tion shows good agreement with the analytic data. impact resilient stops as they scan back and forth. In L
The reduced number of measurement stations had this analysis, it is assumed that when a sensor is

very little effect on the calculated frequencies, shutdown, its scanning mirror's motion stops instan-
taneously. Actually, the mirror will continue to scan
at a decreasing rate for several cycles while energy

"I s -is lost in various mechanical processes.

I Transient response time histories were generat-
.P~ *..ed for eight DOF Is in the model via the DYNAMO

.0 do transient response routine MERTA. In all cases, an10.//" .._ '-/ " """ ."infinitesimal amount of white noise (SNR = 10 6 ) was .
L, e ,added to the time history data. The DOF's chosen

5 .... " were the TM cg 8X, OY, and 6Z, and the MSS cg
. .... 9 X, the solar array drive 8 Y, and the K-band an-

tenna gimbal drive 6 X, O Y, and O Z directions. The
.three DOF's for the TM correspond to the meaaure-

Sn ment stations on the satellite while forcing functions
* .T , ~may be applied at the remaining DOF's. After the
0- 0 1 as 3 0 s so transient responses are run, Fast Fourier Trans- .

a forms (FFT) of them are generated. While the FFT
PERCENT SIGNAL DISTORTION is not part of the ITD algorithm, it compliments the

. 9 O0 PROBLEM FXACT - lTD results by giving the relative magnitude of the
0 lOOP- .. modal responses. it should he noted that for the

sampling frequency and sample size used in this anal-
Fig. 3 - Effects of white noise ysis, the FFT frequency resolution is limited to one

Hz. Also, for all FFT's plotted, the 0. Hz frequency

component is set to zero. Due to the relatively large
magnitude of the rigid body motion, dynamic re-
sponses tend to get swamped. .

" .. -.... The ITD algorithm was applied to simulated MSS

-- ...-- data. This data corresponds in format to PCD. The
S_ _& MSS excites the structure through the motion of a

scanning mirror. Data Is measured upon shutdown of
the MSS to achieve free decay data. A parametric

1 - -- .. study varying NDOF was performed. Fig. 5 presents
this study. Each curve on the plot represents the

....-......... frequency of a particular mode for various values of
........ . NDOF. The frequencies converge on the correct re-

1 asuto as NDOF Increase. As can be seen in Table 1,

2. 3 4 for the case with NDOF = 60, the analytical and ITD
frequencies agree quite well. Additionally, the

, OSdamping values show fairly good agreement for most
AM 8MLNAL DISTO TbON EXACT - of the modes. It should be noted that damping values* lOOP - Us fro ...

3 ITOcoverge more slowly than frequency values.

* Fig. 4 - Effects of reduced measuring stations
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TABLE 1
Comparison of Analytical and ITD Modal

Parameters
NDOF = 60 Case***MSS 6 - X Exitation

ANALYTIC ANALYTIC ANALYTIC ITD ITD) MODE 8APE
MODE FREQ. DAMPING PRIG. % a DAMPING A A DOT
NUMUER Mal M% C/C) ("a) _ % C/C I PROODUCTU

I1 1.615 1.0 1.226 .17.28 19.016 1601.60 _.;W2
12 2.145 1. 2.16 .,9 1.313 31.30 -. ,0
24 14.076 1.0 14.102 .U .60 -2.0 -. 918
27 16.771 1. 16.76 -. 08 .724 -27.60 1.000
20 20." 1.0 20.01 .07 1.10 103 1.000
39 28.861 1.0 26.6 2 .04 1.104 10640 .969
41 32.83 1.0 32AGO -. 07 .911 -1.0 -.666
45 36.112 1.0 3L063 -. 17 .641 -LO .M
49 31N 1.0 37.969 -.A9 L118 12280 .628
s0 11.238 1.0 26.214 -.06 .77 -22.10 .An6
so 42.144 1. .. . -. 7 -. ,

67 457, 1.0 . .01 1.11 1.10 -1.
92 66.967 1.0 0.949 -. 03 .M6 -14 -.87,

106 76.613 1. 74.407 -. 14 1.163 16. 1.0106

to the loss of high frequency data and aliasing. In-
creasing the amount of data used increases both the

50 run time and computer memory required. This can
lead to greatly increased computer costs. A possible
solution to this problem is the use of digital filters to

40 allow analysis of narrower bandwidths of data.
830 

e
Z It should be possible to determine which modes

20 will be excited by a particular forcing function by
looking at the mode shape. Thus, a Theta-X forcing
function should excite Solar Array bending modes,

10- Boom Y-bending modes and Gimbal Drive Assembly
[ l I i I bending modes. A Theta-Y forcing function should

10 20 30 40 50 60 70 80 excite Solar Array torsion modes, Boom X-bending
FREQUENCY (HZ) modes, and Aximuth Drive modes. A Theta-Z forcing

function should excite Elevation Drive and Solar Array
Fig. 5 - NDOF vs. frequency FEM data edgewise modes. Finally, various local modes are

not likely to be excited. It was found that there is
Several points can be made about this analysis of good correlation between expected and actual results.

the orbital model. First, it should be noted that one The method does have difficulty picking up higher
" of the guidelines mentioned in this Section was not met. order appendage modes. This is not surprising con-
" Rearranging Eq. (18) yields: sidering the extremely limited instrumentation being

simulated. These higher order modes are not likely
to be well coupled with the center body. Also, the

3 SF fundamental solar array modes were not excited.Fmin > NCOL (20) These modes have frequencies lower than the 3 Hz
minimum frequency allowed for in expression (20).
Therefore, it is not surprising that these fundamental

Since both SF and NCOL are equal to 500, expression modes are not recovered.
(20) implies that any results for modes with a fre-
quency less than 3 Hz will be questionable. Looking Twelve modes were extracted from the simulation
at Table 1 shows that damping values calculated for data. The frequencies of these modes fell between 14.
modes in this low frequency range are generally in- and 79. Hz. The calculated (via ITD) frequencies and

* accurate. However, all other modal parameters show mode shapes agree very well with the original ana- V
good agreement with the actual values. In order to lytical modal parameters. The calculated damping
decrease the value of fmin, it would be necessary to values showed good agreement with the original values.
decrease the sampling frequency or increase the These results verified the viability of using the lTD
amount of data used. Both of these actions have bad algorithm to analyze data in the format transmitted
effects. Decreasing the sampling frequency can lead from orbit.
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ORBITAL DATA ANALYSIS

and attitude control system activity. The extent of this
The data used in this analysis can be divided into contamination can not be accurately gauged. It should

two major subdivisions: Gyro data (< 2 Hz) and Pay- also be noted that when the Landaat-4 data was mea-
load Control Data (PCD) (0-125 Hz). While the Gyro sured, the TM had shut down shortly before the MSS
filter starts to roll off at 2 Hz, it is possible to mea- and may have Influenced the results.
sure responses to a somewhat higher frequency. Also.
the wide bandwidth of the PCD precluded its use for This data presents several challenges to the lTD
determining modal characteristics below 3 Hz. Thus, algorithm. First, with only three rotational channels
both types of data must be analyzed to investigate the of data, the instrumentation is very limited. The
entire frequency range from 0 through 125 Hz. data includes the effects of noise and structural non-

linearities. Also, as was mentioned in the proceed-
Both the PCD and Gyro data correspond to Theta- Ing paragraph, several onboard systems created an

X, Theta-Y, and Theta-Z angular displacements of undetermined amount of contamination in the data.
the TM. The Gyro data has a sampling rate of 15.635 This contamination will cause the data not to be a
samples/second and thirty seconds of data are re- true free decay, which is the form assumed by the
quired for the ITD analysis. The PCD has a sampling ITD algorithm.
rate of 500 samples/second and one second of data is
required for the ITD analysis. In spite of these difficulties, the method worked

quite well. For each flight event investigated, ap-
Three flight events are considered. These are a proximately twenty modes have been characterized.

Landsat-4 MSS shutdown, a Landsat-5 MSS shutdown The frequencies measured show good agreement with
and a Landsat-5 TM shutdown. In each of the events, analytical predictions, with 75% to 80% of the mea-
the appropriate instrument is shutdown. The PCD re- sured frequencies falling within 10% of the predicted
corded after the shutdown is theoretically a free de- frequencies. There is also good agreement with FFT
cay. In practice, the actual data is somewhat contam- results. The calculated modal parameters are shown
nated by solar array drive, Ku-band antenna drive, in Table 2.

TABLE 2
Results of ITD Analyses of Orbital Data

Loobud4 loadow"aht-
AnalI~t Moal0 ISO Mumm Mummain 1M Mumma

lq Freq A Ireq Damp Dot FRa &roq Dmp Dot lraq A 'r q Dotm la'+Made 0 Ha) (No (S (%CCq P.dw (at) / (%CLC€I prodact (MR) A5) am/cclC) P-06-

7 0.428 0.24 - 7.8 0.413 -0.?03 0.288 -:4 0.215 -0.931 01 -I.0 1.07 0.Ulf
II 0.702 0.033 12.7 1.001 0.35'4 0.736 2.7 -.8.1041 0.33I 0.7'1 2.,3 -4.818 -4.100

S .I1 .14 |II 0.II " 21 l 1.401 14.5 L.IN -0. MI

10 13.1 1.10 -10.7 0.018 0.888
11 1.618 1.10 .3 0.T 0.7 =$ 1.885 - 3.? 0.60 -0.40
1S .148 2.76 30.3 -0.004 0.848 2.754 28.4 4.0on -0.30 M .801 11.0 0.48 -1.00
1 4.10 4.130 - 0.1 0.203 -4.8 4.818 11.0 -067S 0.99 5.410 30.2 4.018 0.341
11 6.470 6.181 -4.0 3.440 -1.00 1%
1 1.918 5.84 -22.0 10.008 0.83
22 12.6on 11.29 -10.6 8.841 -0.11
24 14.07 13.044 - 7.2 2.64 -0.1

7 I.71T 15.104 - 9. 3.236 -4.12 11.in 2.1 1. 22 -0,466
28 1 8.,3 17.443 - 3.9 6.16 0.861 10.614 - .4 1.81 0.724 I8.188 - 8.3 0.T2 0.076
* 12.402 10.656 1.3 -0.389 0.30
10 10.06 20.82 4.3 1.30 0.$90 21.41 6.7 0.37 -0.8a
2. 8 23.8H6 21.121 -10.1 2.857 40.085

38 28.017 23. - 6 .0 .04
28 28.66 27.13 - 6.2 5,28 0.0411 28,00 - 2.0 1.400 -4.91
41 185 31.248 - 5.0 1.487 0.992
4a 21.22 27,021 - 2.2 1.00 0.991
8U U.811 38.00 -1.8 1.42 0.996

34..00 27.888 - 2.4 4.12 0.601
84 30.4 3o.486 -0.2 4.88 0. ie

40.236 3.So -8.8 1.104 0.18 41.141 1. L92 0.42.
17 41.30? 42.444 1.4 1.32 0.88
to 0.688 42.7"1 0.2 3.78 -0.840 4'.8T - 4.1 0.828 0.600
6? 44.58? 140.87 - 4.1 1.36 4.67 4644.#01 4.1 1.30 . 48.475 -0.2 -1.401 0.880
71 a.M86 80.571 0.01 0. No 40.92

* 73 1.0a 3.2I8 8.7 0.808 0.817
is 4.73 82.38? -. 4 1.58 0.800
6, 3,.30 88.204 0.8 1.48 9.863
88 68S 1 0.130 - 0.4 1.670 0.963 90.23 - 1.8 -4.30 4.n 5
.8 6."1 62.62? - 2. 1.111 -0.48 64.768 - 1.8 0.47- 4.83
98 6.,6 84.001 -.. 0 1.62 -0.815
94 67.140 87.143 0.004 .37 -. 941 C

1 0.823 6.491 -3.2 0.965 0.773 ".03 .88 .98
16 76.003 0.741 -12.0 0.AN 0.096
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One point of interest is that the fundamental value was found for both events is mode 28. The MSS
flexible mode (analytic mode 7), a solar arry flap- case damping Is roughly twice that of the TM. How-
ping mode, Is consistently found to be about 10% ever the YiSS data shows a relatively poor mode
lower In frequency that expected. This is likely to be shape match so the damping comparisons are ques-
due to various effects that were present during ground tionable.
based testing. Several effects that were present dur-
Ing testing may have caused this frequency shift. Also of interest is that the Landat-4 MSS shut- ".

down damping values are generally higher than the
The solar array was hung on a bungee suspension corresponding Landsat-5 values. This may be due to

system to simulate zero-g conditions. However, the fact that in the Landsat-4 data the TM had shut-
suspension effects were included analytically and do down shortly before the MSS shutdown event. The
not appear to account for the shift. effect of the TM may not have had time to die out.

This would lead to higher response levels which may
Virtual air mass is significant and was included explain higher damping values.

as a cylinder of air about the solar array chord. Tip
effects could reduce the virtual air mass which would Another major concern of this study was deter-
explain the higher orbital model frequency. mining how consistent the resonant frequencies werebetween the two spacecraft. It was found that 90g% of

Also, as the ground test was performed at much the modes occurring in the two MSS shutdown events
higher amplitudes than are seen in orbit, clamps were within 10% in frequency. Conversely, if Land-
were used to preload the hinge joints to prevent gap- sat-5 TM data is compared with either MSS case,
ping during the test. Therefore, structural nonlin- only about 55% of the excited frequencies are within
earities could be present which could explain the fre- 10%. Thus it appears that the resonant frequencies
quency shift. This data is a confirmation of the im- are more dependent on forcing function than space-
portance of such effects in the testing of large space craft and the two spacecraft are modally very simi-
structures. lar.

The use of gyro data to determine low frequencyOne of the primary goals of this analysis is to ata was very successful. Only one mode below 3 Hz
determine the structural damping In orbit. The was not excited in at least one of the events. Thatdamping values are critical in determining the mag- mode, number 13, is expected to occur at 2,869 Hznitude of jitter displayed by the spacecraft, with low- and is a Ku-band antenna elevation drive mode. Thus

er damping leading to high jitter. As a worst case it is both well above the roll-off frequency of the
analysis, prelsuanch Jitter predictions assumed a filter used on the data and is a mode shape unlikely
damping value of 0.05% for all modes, to be excited by the scanning mirrors' motion. Thus

STaall the modes expected from the low frequency dataThe smallest reasonable (i. e., non-negative)weecactred
damping value extracted from the orbital data was
found to be 0.215%. Additionally, as a general trend There was one anomalous result from the gyro
low frequency modes (below 3 Hz) tended to have
damping on the order of 0.5% while higher frequency data. A response of approximately 0.2 Hz wasfound. While this response may be due to some on-modes tended to have damping on the order of 1 . board activity, no definite relation was found to any
Thus it would appear that the prelaunch damping esti- major satellite system. A more likely explanation
mate was conservative by about an order of magni- is that this response represents a subharmonic of

".tude). This conclusion should be viewed with some ista"hsrspnerpeet a"bamncothe fundamental solar array bending mode at approi-
caution as damping is the modal parameter least ac-
curately characterized by the lTD algorithm. Ad- mately 0.39 Hz. The 0.2 Hz mode is similar inditionally, the ITD generated damping values tend to shape to the 0.39 Hz mode. Such responses some-betiase ig.Ay thes, aT geea pnrvaetied t times occur in non-linear structures, though gen-
be biased high. Allowing for this, a conservative erally at much lower amplitudes than the primary

* estimate for orbital damping values is on the order
response. The solar array may be considered non-~~~of 0. 2% for low frequency modes and 0. 5% for high rsos.Teslrarymyh osdrdnn '

fr0.2% fo low fe e moean 0 or hie linear due to non-linear effects in its hinges. The
afrequency modes. Thus, the prelaunch worst case lTD algorithm is more likely to pick up such har-

analysis was adequate. monics in narrow bandwidth data including few modes,
:. such as the gyro data.

It should also be noted here that there is some
evidence that the damping increases as response
levels increase. In comparing Landsat-5 MSS and CONCLUDING REMARKS
TM shutdown, both modes 7 and 11 show significantly
higher damping levels for the TM case. These modes It was found that analytic predictions and mea-
are the first and second solar array flapping modes. sured data showed good correlation. As orbital data
The only other mode for which a reasonable damping measurement was far from a controlled experiment
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the power of the ITD algorithm. With further de- Survey Testing Using the Ibrahim Time Domain
velopment, the ITD algorithm could become a very (ITD) Identification Technique," AIAA Paper No.
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DISCUSSION

Voice: Did they actually try to correct any of

the images?

Mr. Kauffman: They have to. That is standard

procedure for the Thermatic Napper because they
cannot tell without correction exactly where it
is pointed.

Voice: In what way would your analysis help
them in that?

Mr. Kauffman: The major thing we did was to
confirm that our pre-test analysis had been
adequate, and also that it had been
conservative. We assumed damping as low as .05%

in our analysis. The jitter of the spacecraft
is very sensitive to the damping. In this case

we determined the damping was higher than the
damping we assumed and that the analysis was

adequate. They had already been able to

-J determine that they were getting adequate
correction from the image processing.

Mr. Huang (University of Wisconsin): In your r
conclusion did you mention that the Ibrahim Time e

Domain has a noise problem?

Mr. Kauffman: What we are saying is, at least

from our analysis of the small model, if you
start running up to 20%, 30% or 40% signal

* distortion, 302 noise or very high noise levels,
* it breaks down. In general you don't see that

in our kind of application. So, it was not a
problem for us.

Mr. Huang: Although we do not use Ibrahim's L

program, we developed our own program, we
checked the simulation with a procedure similar

to Ibrahim's, and it is very good. The noise is
- eliminated by expanding the system matrix.

Mr. Kauffman: What noise level did you go to?

Mr. Huang: We tried several levels.

Mr. Kauffman: Did you go as high as 102?

Mr. Huang: We went higher than 10%. We tried

our own, so we just wondered. We thought
Ibrahim's method should be very good, too,

-'- because we were more or less Influenced by his

method.
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THE IDENTIFICATION MATRIX AND CONVERGENCE OF PARAMETERS IN "OFF-LINE" SYSTEM IDENTIFICATION

Ken Tomita and Darrell A. Frohrib

Mechanical Engineering Department, University of Minnesota
111 Church Street S.E., Minneapolis, Minnesota 55455

The identification matrix characterizes the mathematical properties of a system's model in
conjunction with an identification algorithm; uniqueness of obtained system parameters is
guaranteed. The identification matrix is the second partial derivative of an error

criterion with respect to system parameters. The matrix can be reformulated as part of
the identification algorithm based on the least square identification concept. The
identification matrix also relates least square identification to output distinction
identifiability. Numerical examples of these roles of the identification matrix are
presented.

NOMENCLATURE u input vector
v Lagrange multiplier or co-state vector

A(p) system matrix (function of parameters for parameters (p) in an adjoint
(p)) system

B(p) excitation matrix w Lagrange multiplier or co-state vector
C(p) measurement matrix for the state, x, in an adjoint system
H Hamiltonian x state vector of a mathematical model
Hrr second order partial derivative of x0  initial condition for x

Hamiltonian with respect to a vector y output vector of a mathematical model %
(r) z augmented perturbed error state vector

I unit matrix zx partitioned vector of z
J integrated square error or performance superscript T transpose

index superscript * true value
N N-th iteration stage partial derivative

Oxx observability Gramian (observability
matrix) or second order partial INTRODUCTION

derivative of the performance index
(J) with respect to a state vector (x) This paper discusses identifiability and
at the zero slope point convergence characteristics associated with a

O identifiability matrix or second order deterministic "off-line" identification method.
* partial derivative of the performance Deterministic "off-line" identification refers

index (3) with respect to parameters to systems which are governed by a first order.
(p) at the zero slope point linear, time invariant vector differential

0 weighting matrix in the performance equation without stochastic noise. The "off-
* index (P) (positive definite line" problem refers to treatment of data
. symmetric) previously acquired in system test. System

T transition matrix parameters are formulated as unknown but
Txx partitioned transition matrix constant; coefficients of the system's vector

" a known coefficient in an example system differential equation are a function of system
e error parameters. It is assumed that the system can
h first order partial derivative of be monitored during a time interval prior to

Hamiltonian identification; the identification problem
k known coefficient in an example system becomes that of seeking "best fit" parameters
p parameter vector from stored test data.
r augmented state vector
a known output from an actual system While identifiability generally establishes
t time uniqueness of identified parameters, there are
to initial time two different identifiability definitions
t final time associated with this formulation (4); one is
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least square ldentifiability (2), and another is BACKGROUND
output-distinction identifiability (3,4). In
least square identifiability, conceptually The identification algorithm derived from
depicted in Figure 1, an optimization concept is least square identifiability can be obtained by
involved to minimize square error between using the minimum principle (optimal control
measured data from the actual system and the minimization technique) and the
output of the corresponding system model. If quasilinearization technique (5,6,7). This '.
the error has a local minimum for a set of iterative algorithm contains a linear algebraic
identified parameters, the system is termed equation which determines uniqueness of the
"locally identifiable" in a least square sense, identified parameters. In this development (1),

Whereas least square identifiability involves the matrix of the linear algebraic equation
test data, output-distinction identifiability, relates model initial conditions, model

depicted in Figure 2, involves comparison of parameters, and adjoint system model response
outputs of mathematical models for various model error. The matrix can be separated into two
parameter settings. parts: a transition matrix and the so-called

observability Gramian (8,10). Observability
In the work reported here (1), the Gramian contains" an observability matrix and an

identification algorithm based on the least- identifiability matrix. Earlier work in
square identifiability concept (5,6,7) is identification algorithms (5,6,7) has studied
expressed in a new form, which is convenient for the parameter characterization (p) of linear
engineering use in both characterizing system time-invariant systems:
models from test data and validating the models
themselves.

Actual s(t) Criterion

Syste m +~~~ Mi.Ja+ ErroriMi Ja

fe2dt -il"I Best Fit il - e(t,p) Parameter  I -

Math. Model Paramete
with p x 0,p)

Figure 1: Least Square Identifiability

Class of Math.
Model

CriterionX (t, p*)
Param eter P -"--

Error For e 0
IParameterpe(t *,) l PP "".""-" .-'"

- e(tp0) p)[P"

Figure 2: Output Distinction Identifiability

%°%
%°.
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(t) A(p) x(t) + B(p) u(t) transition matrix, the final conditions can be
related to the initial conditions: that is, the

X(to) - x0  model's initial states and system's parameters.
Hence, our two-point boundary problem is

y(t) - C(p) x(t) (1) transformed into a conventional initial value
problem. Moreover, linearization errors at each

p(t) - 0 iteration are evaluated by means of simple
integration, and these errors are passed to the

p(t o) , p next iteration stage.

* The error difference in the time responses of an As Equations 3-1 through 3-4 are linearized

actual system and its model equations (1) is with respect to the vectors x, p, w, and v, and
called the performance index, J, and is first order variations on these vectors are
expressed: analyzed, it can be shown (7) that the

transition matrix, T(t,t0 ) and the error vector,
ti  z(t), are governed by the following equations:

3 = 1/2 / (s(t) - x(t))T

to T(t,t0 ) - Hrr(t) T(t,t0 ) (4)

Q (s(t) - x(t)) dt (2) z(t) = Hrr(t) z(t) + h(t)

In a least square sense, optimum parameters are - Hrr(t) r(t) (5)

those that produce a local minimum for J.
According to the minimum principle (8,9), the where

necessary conditions for the extremum provide -
""the following equations: Twx Twp 0 0

a w/aw A(p)x + B(p)u 0 I 0 0
T j

(H 1w) (3-1) Txx Txp Txw 0

.a 0 a/x ap Tpw I

pw
( lv) (3-2)

-alH/ ax = AT(p) A(p) Hwp 0 0
+ CTl(p) 9ls -YI) 1 -Hxl (3-3) 0 0 0 0

• Hr
v D -H/a p -cTQC -Hxp -AT (p) 0

(= -Hp) (3-4) -Hp -Hp.

= a (xTCT(p)Q(s - y))/ p

- a (xTA'r(p)w)/a p - a (uTBT(p)w)/a p
.sx IHw IZx

H = 1/2 (a - x) T Q(s - x)

+ wT (A(p)x + B(p)u) + vT (0) r= h Z=Lz"'"w I-Hx Zw

In Equations 3-1 through 3-4, vectors w and

v become state vectors of an adjoint system for v -Hp Zv
the model. Initial and final conditions on w
and v are zero, whereas the model's initial and
final conditions are unknown due to system test All initial conditions are zero except T(t 0 ,t0 ),
limitations, which is the identity matrix.

Because of the two-point boundary condition From the relation between the final
regarding w and v and nonlinearity of the conditions and the ini.ial conditions, the
system, it is impossible to obtain solutions by linear algebraic equations are obtained, which

, straightforward integration. One way to solve iteratively provide the model's initial states,

this problem is quasilinearization where x0 , and the system parameters, p:
solution vectors at the N+l-th iteration stage

are linearized around the 14-th solution curvesN
(7,S). These equations become time-varying 

[xx(tlt) Txp(tlxt

linear with regard to the N-th iteration so that I I )
their solution curves can be expressed in terms [ x(tl,tj ) 

Tpp tl,t0

of a transition matrix. By using this TP
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TIMM '!2 lIFW

iteration an indicated by the superscript NN
improved o and P for the N+l-th iteration are Transition Groian (7)

produced by solving Squation 6.
Matrix Oxx (tr te) is an indication of the

Based bn zero derivatives of the mathematical aquacy of a measurement system
performance index as depicted in igure 3, the used in test (,10). Ibis observability Grmian.

identifier (identification gorithm), Equations is the second order partial derivative of the
4, 5, and 6, e the best-fit parameter by performance index with respect to the state
iterMtively adjusting the system parameter. initial condition x , ( i):

However, the zero derivatives may occur at a me m
maximu m value, at s saddle point value, or a Oxx(to,t1) = (i J/aXo)/ ot

minimum value. As a result, the identifier may
not necessarily provide the beat fit parameter, at a J/ ax0  = 0
as shown in a numerical experiment later.

Matrix 0 (to , t1 ), can he regarded as the

From the standpoint of uniqueness of the identifiafflity matrix, which provides
* identified parameters, the algebraic equation, mathematical information about the uniqueness of

Equation 6, plays a crucial role: when the non- the identified parameter p, and also verifies a
zero vectors zw and v are given the necessary local minimum t):

and sufficient conditions for existence and
uniqueness of the identified parameters is non- Opp (t0,t1 ) = a (3 J/1p)/ apT > a
singularity of the square matrix of Equation 6.

at 3 J/a p - 0

NEW FORM OF IDENTIFIABILITY
This demonstrates that the response error of a

Based upon Equation 4, an analytical model in relationship to the actual system is
expression for the square matrix of Equation 6 minimized.
indicates that it can be separated into two
parts: the transition matrix and the Gramian To illustrate the role of matrix 0, the
(1) : following first order system is presenteR:

Newly added condition

Ia(dail p)ap Opp>0 I

Identifier
': + Error Ba e sed on ':

e -tp J = e- dt W O Z

" Moth. Model.-
I ,<~X(t,P) I"

,* Figure 3: Standard Identification Algorithm

94

-. ,

i: '...... . ,..",'. ,'," : "r'¢z ;¢..'.' ":.... ' '.' ' ..'-. '-...'-'-.'-."--' .' --.'.'-"
,~rr .. .. .%.. .. - . %,. _ - .. . . ,, ,,'. . : . . . . . .. . . . .., . . . . . . .. . . . , . .



st) - k p" (p- - a) 91t) Whereas the identification matrix, 0 , is

employed as a verification tool for valid tI of
and obtained solutions during identification

processes, there is another way of using O.;
x(t) = - k p (p - a) x(t) that is, verification of a mathematical model's

identifiability. This can be done with a slight
modification in Figure 1, such as replacement of

SO) so*. s(t) by the same mathematical model with
different parameters.

In this example, k and a are known coefficients:
k - -0.5 and a = 3. If, for example, the true Output distinction identifiability,
values of p* and so* are unity respectively, conceptually depicted in Figure 2, can be
minima of performance index J would occur at interpreted in terms of least square
p - 1.0 but also at 2.0 when x0 a 1.0 (Figure identifiability, Figure 1, as J = 0 because
5). It is possible that the identification x(t,p*) = x(t,p) when p = p*. Uniqueness of
algorithm (Equations 4 - 6) would provide a p = p* can also be interpreted as 3 J/ a

p - 0
solution (p - 1.5 and x0 = 1.058). There, the and its positive curvature indicator,
performance index is also a local maximum in a ( 3J/3p)/ 3p, since a value of J at p = p*
terms of p, and a local minimum with respect to need be a minimum. As illustrated in Figure 4,
x 0 (a saddle point), comparison of outputs of a model's various

parameters can be made. By utilizing the
At all of the above points, the first identification algorithm derived from the least-

" derivatives, aJ/a p, are zero; 0pp is positive square identifiability concept, verificiation of
. (indicating a minimum) at (p - 1.0, x 0 = 1.0) and a mathematical model's identifiability can be

(p a 2.0, x0 = 1.0). At the saddle point, performed numerically. For this purpose, a
(p a 1.5, x0 = 1.058), which is not a minimum, mathematical assumption is necessary; that is,
0 assumes a negative value, which indicates that the iterative algorithm, Equations 4. 5,
J ~t this point represents a minimum with and 6, gives converged solutions, and
respect to x0, but a maximum with respect to p. subsequently that w(t) and v(t) are zero

(precise arguments are presented in (1)).
The standard identification algorithm of

(Equation 4-6) provides three points which are For illustrative purposes, identifiability

potential solutions; the value of separating out of the previous mathematical model at the point
the identification matrix, 0 is that the (p - 1.5, x0 - 1.0) is examined. Evaluation of
correct solutions of this potental set of three 0 at (p - 1.5, x0 = 1.0) gives 0 

= 0;
points can be clarified (Figure 3). This is ctour levels of O,, that of the perfmance

true because Opp provides curvature information index, J, and aJ/ 3p re shown in Figures 6, 7,
identifying true minima (Figure 5). and 8, respectively. As seen in the figures,
Computational results are shown in Tables I J = 0 and 3j/ap - 0 at (p = 1.5, x 0 = 1.0).
through 3.

Criterion
Class of Math. r

Model J =
Pa*) i =F:etr .Error , -=

Erro j e2dt ap

Parameter p- eO,p*,p) ap a' Op i

(t,p) J-j e Opp

Figure 4s Combined Identifiability
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SHowve, because of 0 . 0, one of the
ietfabilt rqiree is violated. This

indicates that if the parameter of the actual

system happens to take p* = 1.5. by implementing
the mathematical model into the standard
identification algorithm a nontrival solution
during identification processes cannot be
obtained. A suggested alternative way is to
modify either the mathematical model or the
identification algorithm employing a second
variation effect, or both, if the actual
parameters occurs at p* a 1.5.

This new identifiability matrix is a
substantial asset in characterizing systems in

* relation to test and modeling strategies. Its
*- complete development is available in (1).
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STIUCTIAL ANALYSIS

MODEL EVALUATION OF SPINAL INJURY UKELIHOOD FOR VARIOUS

EJECTION SYSTEM PARAMETER VARIATIONS

Eberhardt Privitzer

Air Force Aerospace Medical Research Laboratory p.

Wright-Patterson Air Force Base, Ohio

The Air Force Aerospace Medical Research Laboratory's (AFAMRL) Head-
Spine Model (HSM), a discrete element model of the human head-spine

structure, is described. This model was developed to provide a mathe-
matical means for the investigation of three-dimensional head-spine
structure dynamic response and injury likelihood in impact environments
and to serve as a design tool for the evaluation of crewmember-ejection
system impact interactions. Results are presented r-om a study which
involved the use of the HSM to evaluate the effects of variations in
certain ejection system parameters on head-spine structure ejection
response and injury likelihood.

*INTRODUCTION Laboratory (AFAMRL) is currently developing
* six-degree-of-freedom acceleration tolerance

Human impact acceleration tolerance con- criteria which bound seat translational and
siderations used in current ejection system rotational acceleration levels [5]. These
design practices are limited primarily to criteria, which are based on data from ejection
system acceleration components paralleling the and impact test experience, are required for
spinal axis (i.e., +G, components). The the digital flight controller which will "fly"
Dynamic Response Index (DRI) Model [l, 2], the next generation ejection seat. This system
which is based on a single degree of freedom, is being developed by the Aerospace Medical
mass-sprlng-dashpot representation of the head, Division's Crew Escape Technology (CREST)
upper torso and lower spine, is the design Office also located at AFAMRL [6, 7]. These
guide currently used to evaluate ejection six-degree-of-freedom acceleration tolerance
system catapult accelerations for military criteria, although much needed, still do not
aircraft. It has been extensively correlated directly address other system variables affect-
with ejection injury data and thus provides a ing human acceleration tolerance such as
useful criterion for evaluating the lower spine restraint system configuration, cockpit/seat
injury probabilities which might be associated geometry and head/helmet encumbering devices
with proposed ejection system acceleration or protective clothing which may be associated
profiles. The one-dimensional nature of the with mission requirements. Some of these
DRI and similar models [3, 4], however, limits variables, particularly restraint system

their applicability to events in which the configurations, have been investigated
nonaxial components of the spinal response are experimentally using human volunteers. These
negligible, experimental studies, however, are restricted

to noninjurious acceleration exposures and
Increased performance capabilities and affect ejection system designs as, primarily,

operational requirements of recently developed retrofit concepts (e.g., [8)).
and proposed military aircraft have necessi-
tated considerable expansion of the safe The three-dimensional description of human
ejection envelope. The accomplishment of this acceleration tolerance referred to above, is
requires the development of a much more com- not attainable through any single avenue of
prehensive, three-dimensional, functional approach. Such a description, because of the
description of human ejection tolerance which complexity and severity of ejection-system-
can address not only ejection system perfor- crewmember interactions, must be implemented,
mance parameters (acceleration profile) but analytically and yet must evolve through exten-
additional system parameters governed by, e.g., sive experimental and ejection experience
restraint system configuration, cockpit/seat considerations. This paper discusses the use .%

geometry and mission requirements also. of a three-dimensional mathematical model of
the human head-spine structure to provide a

The Air Force Aerospace Medical Research description of the effects of variations in
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several ejection system parameters on head- secondary nodes, which serve as the "attachment
spine ejection-Induced dynamic response and points" of deformable elements and correspond
spinal injury likelihood. This study, which to the centroids of the attachments of the
was requested by the CREST Office, was connective tissues - the intervertebral discs,
specifically concerned with the effects of articular facets and the spinal ligaments.
varying the head-pad location relative to the Each vertebra is contained in a rigid body
plane of the seatback and the catapult representing the inertial characteristics of a
acceleration vector angle and magnitude. A segment or a portion of a segment of the torso.
general description will first be provided for A segment of the torso, corresponding to a

*the AFANRL Head-Spine Model (HSM) followed by specific vertebral level, is defined as the
the specific approach and results for this material bounded by parallel planes, perpen-
study. dicular to the vertical (Z or X3) axis and

passing through the centers of the inferior and
DESCRIPTION OF THE MATHEMATICAL MODEL superior intervertebral discs, and by the torso

wall.
The HSM is a three-dimensional mathematical

model describing the mechanical behavior, in The initial overall static spinal configur-
terms of system kinematics and internal loads, ation is a function of the position of the body
of the human head-spine-torso structure. Its (i.e., standing, sitting, etc.), the geometry
fully three-dimensional formulation is just one and material properties of external interaction
of the features which signigicantly distin- surfaces (e.g., an ejection seat back and seat
guishes it from earlier such models. The HSM pan) and a number of physiological variables.
consists of two distinct components: a computer Fig. 1 shows frontal (X2X3 or YZ) and sagittal .
program, SAM (Structural Analysis of Man), which (X1X3 or XZ) plane views of the HSM. Depicted
is actually a general purpose program for the are only those components of the model whose
dynamic analysis of three-dimensional struc- local geometries do not change. None nf the
tures; and a data base containing inertial, deformable elements representing the various
material, geometric and connectivity data spinal connective tissues are shown. The
describing the head-spine-torso structure as overall spinal geometry approximates that of a -
well as other data items, descriptive of the 50th percentile representative of the male
specific problem and output to be generated, Air Force flying population seated upright in a

• required by SAM. The HSM has been described generic ejection seat (i.e., with the seatback
previously in [9-13], hence, only a brief parallel to the Z axis).
description will be given here.

In the head-spine-torso structure, the Z
spinal elements, consisting of the seven
cervical (CI-C7), twelve thoracic (T1-T12) and
five lumbar (Ll-L5) vertebrae plus associated
intervertebral discs and, to a lesser degree,
articular processes, constitute the primary ""
structural member for transmission of vertical
loads. At AFAMRL, we are particularly concerned
with dynamic compressive and bending loads .
experienced by the spine during the ejection
event. A secondary loading path provides for

* the transmission of viscera-abdominal wall
system pressures through the diaphragm to the C -

rib-cage-lung system and then to the spine
through the costo-vertebral and costo-transverse

joints [9, 12 and 14].,

The development of the HSM required the
formulation of descriptions of local and global
spinal geometries, head and torso inertial dis-
tributions, the material behavior of the primary G;
spinal connective tissues and a measure of spi- C,
nal injury.

Geometry C

Describing the local spinal geometries
amounts to the defining of the geometries of the
individual vertebrae. This is accomplished by
specifying the global, Xk, k - 1,2,3, coordi-
nates (a right-handed Cartesian system fixed
in space) of a number of points, called Fig. 1 - AFAMRL Head-Spine Model (HSM)

sagittal (XlX 3 or XZ) and frontal(X2X3 or YZ) plane views
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Inertial Distribution example, the element coordinate system. k, is
as follows: the origin is at node I; eI is

The inertial description of the torso con- directed from I to J; the direction of e2 is
sists of the specification, for each torso determined from the average of the node I and
segment, of the global coordinates of the J rotations about il e3 is obtained from the
center of mass (called a primary nodt in the vector product of 'i and 12. The global com-
model); a "body" coordinate system, Xk, a ponents of the 4k (direction cosines between
right-handed Cartesian system fixed on the body the k and Xk axes) arranged in the matrix
and with unit vectors bk, k - 1,2,3, coincident
with the principal axes of inertia; the ell e21 e31
translational mass and the three principal eeE em o m e n t s o f n e r t a , _"k . T h e n e r t a l p r o p e r -( P E9 2 _ 3 0 1 2 2 2( )

ties of the torso segments were based directly [e13 e23 e33
on the work of Liu and WiSkstrom [15]. The E
global components of the bk (direction cosines
between the ik and Xk axes arranged in the define the transformations
matrix T

[A) - EU]E{A} and A) = [PI{EA (4)'bll b21 b31  ,
31 (1) for any vector A with element and global

[AlIbl' b2" = b12 b22 b32  (1) components Ak and Ak respectively.
b b2 b33 Transformations from element to body

coordinate systems and vice versa are given by

define the transformations,

AA a AA (2) 4A) = [X)[l E{A} and W = [ 3 Ex](A) (5)

for any vector, A, with body and global compo- respectively. In this example, the mass center
nents Xk and Ak respectively. Since the Xk are of rigid body I would be a primary node associ- 6fixed in space and the (1k), are fixed on rigid ated with element E.

body, I, the updated components of the (tk)I or,
equivalently, [x]l,define the orientation of All element deformation quantities, (d),
body I with respect to the global axes [9]. are defined with respect to the element coordi-

nate systems thus eliminating all rigid body
The inertial descriptions of the head plus motion contributions. Element nodal force

helmet and encumbrances, the pelvis and any computations are based on small strain theory
other rigid bodies are defined similarly. Note and, for the beam element, require that local
that the term "rigid bodies" is used only to nodal rotations be sufficiently small suchindicate that their inertial properties remain that their decomposition into vectorial

constant relative to their body coordinate components remains valid [9]. Note, however,
systems, and that distances between a segment's that overall displacements and rotations of the
primary node and secondary nodes (sometimes deformable elements can be arbitrarily large.
called rigid links) remain constant. Element nodal force (and moment) components are

normally computed from equilibrium equations
Deformable Elements of the form k

The torso segments interact through defor- fi = kij dj + c ij d. (6)
mable elements (springs, beams, pressure-volume
and special-purpose elements described in Material nonlinearities are generally
detail in [9 and 12)) which represent the various introduced by defining the stiffness coefi-
connective tissues: the intervertebral discs, cients, kii, to be quadratic functions of
spinal ligaments and articular facets; the deformatioh of the form
primary musculature of the cervical spine; the 2
elastic properties of the viscera-abdominal wall kij = kI + k2 6 (7)
system; the costo-vertebral, costo-transverse
and costo-sternal joints and the intercondral where k1 and k2 are linear and cubic stiffness
-cartilage and intercostal tissues of the rib coefficients respectively and 6 is a deformation
cage [see also 14 and 17]. quantity. The damping coefficients are defined

as either
A local, or element, coordinate system, = 2&4lij (8)

;k, a right-handed Cartesian system with unit cij '
vectors ek, k - 1,2,3, described as a rigid-
convected or corotational coordinate system where = specified fraction of
by Belftschko and Hsieh [16], is defined for critical damping,
each element. In the case of a three-dimen- M (m+ m)2
sional beam element with nodes I and J, for I m
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and ml and mj are nodal translational or rota- [22]) including the effort described in this
, tiona masses; or paper.

C ak. , (9) The second approach involves the specifi-ij iJ cation of a restraint system force time history;

where a = stiffness proportional the conversion of this into contact forces
damping parameter, acting on rigid bodies approximating the
We= 2/ geometry and inertial characteristics of the

shoulders; and the transmission of these contact
and B = specified system natural circular fre- forces into resultant forces and moments acting
quency to be damped by an amount defined by c. at the TI, T2 and T3 torso segment primary

nodes through beam elements approximating the
The most recent version of SAM also in- deformation characteristics between the shoul-
TemsreeterinoSAaloi-ders and the remainder of the upper torso £11].

" cludes an exponential force-deformation rela- This appr a ich ounts for los of
" tionship and a three-parameter viscoelastic This approach, which accounts for loss of

stress-strain law which are used to represent contact but neglects friction between the
- the material behavior of the ligaments and restraint system components and the torso, has
' muscle elements, respectively, in a recently been applied to the study of head-spine system

developed, highly detailed three-dimensional response to crewmember retraction [23, 24].
model of the head-cervical spine structure
(HCSM) [17, 18]. The experimental and analyti- Numerical Integration of Equations of Motion

,'- cal bases for the selection of the material
. properties for the HSM deformable elements are SAM uses an explicit numerical integration

-described in (9, 12, 19. 20 and 21]. scheme to solve for HSM kinematics. The
Sdi 2approach requires no matrix inversions since

External Environment all element nodal loads are computed at the
element level, i.e., with respect to the

The mechanical environment external to the element coordinate systems, xk. After the
element by element computations have determinedHSM4 can be defined in terms of elastic planes, the element nodal loads, these are transformed

spring elements, special-purpose restraint the elemed no al ndar fored

system-torso interaction algorithms and the and assembled into an internal nodal force

specification of forces on and/or accelerations a intal nd nthe array, inte an internal nodal moment array, Aint (the .
* of model primary nodes. components of which are defined in the various

An ejection seat is defined by a system of Xk coordinate systems).

elastic planes. Interactions between the HSM Global translational accelerations at time
and a plane are defined by relationships simi- step j+l are then obtained by the direct solu-
lar to those expressed in Eqs. (6) through (9), tion of Newton's Second Law for each transla-
with dj and 6 in (6) and (7) both representing tional degree of freedom, i.e.,

*.. the re ative normal displacement of 3 rigid
body with respect to the plane and Aj in (6) ij+l = ext int
representing the relative normal velocity. A i CFiI "iI )/m (10)
force is applied to the primary node only if

where i corresponds to the Xj degree of freedom
d < 0 and d i 0, for primary node I, mI is the translational mass

associated with node I, and
i.e., the rigid body has penetrated the plane ext
and is either moving into or is stationary Fi = global components of the

- relative to the plane. The motion of a plane prescribed external force
is defined by specifying its acceleration array.
profile (which is internally integrated twice
to provide displacements) and the direction The angular accelerations are obtained
cosines between the plane's acceleration from the Euler equations of motion written in

- vector and the global axes. the body coordinates. Since these are coinci-
dent with the principal axes of inertia, all

A restraint system between the ejection products of inertia are zero and the angular
seat and the HSM is approximated in either of accelerations at time step j+l are given by
two ways. The first, which is used most often, -j+l [ext - t - y
consists of using spring elements between the = " " _ - (I ) _ )
elastic planes and appropriate primary nodes in x -x x z y yint

-" the HSM. Rather than being directly attached _+ ext ) int . (j-x _ z) /I (11)
- to and moving with a plane, the motion of the y y y x x y
. attachment point of a restraint system spring j+l =rext _int _
- element is prescribed such that the resultant z = LZ -tZ -" .) Zi

force (nonzero only in tension) is always ,yxy
normal to the plane. This approach to restraint where an additional subscript, say J, identify-
system modeling has been used with reasonable ing the primary node has been omitted for
success in a number of applications (see, e.g., convenience:
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X, Y and Z refer to body coordinates lk for body where B - 2w/T is the natural circular frequency
(primary node) J; wx, wv and wz are the angular for free vibration of the element and T the

velocities in Xk compor Tnts computed during natural period. Hence,

time step j; I, iy and Iz are the principal T
moments of inertia with r'espect to the Xk sys- Ats = • (15)
tem; and 

IF

In practice, the actual integration time step
iext and -t external and internal used is less than Ats.k k

moments about the origin of the Rk system for Spinal Injury Prediction V

body J. The HSM has a spinal injury prediction

Once the accelerations have been deter- capability called SIF (Spinal Injury Function)
mined, the velocities (translational and which addresses the predominant spinal injury 1%

angular) are updated using an equation based on mode associated with aircrewmember ejection;
a central-difference expression for the vertebral body compressive fracture resulting

acceleration at the midpoint of the integra- from combined axial compression and bending

tion interval, i.e., loads. The SIF provides an indication of the
likelihood of vertebral body compressive yield-

... ing associated with axial compression and
Ui +_ 2j+l M+ 1 bending (anterior-posterior (AP) or lateral ())

load& computed at each vertebral level of the

and (12) thoracolumbar (TL) spine during a simulation.
It is computed from

Cj+l rj + (3i+l + -aFMAPI i' i max
il 2 i ,) SIFv P +max , V (16)

where at = integration time step. 1 IM y
where V = vertebral level; P, MAP and ML acor- 

Displacements are updated using a three- puted instantaneous equilibrium values of the
term (i.e. up to and including the second cmnpressive load and the Iccal AP and lateral

derivative) Taylor's Series expansion on the bending moments, respectivey; and Py,.M~p and
previous time step displacements, i.e., My are the corresponding yield values. y

= • +t2__ The Py are based on axial compression load-
.l l + at "j + 2 (13,1 deformation data (to failure) obtained by r26]

(as reported by [27)) and [28). No cerrespgnd-

Updating the orientation of, for example, ing data for AP and L bending were found. MA v "

rigid body I requires that the global compo- and M* were, therefore, generated oy treating

nents (i.e., direction cosines) of its unit each v~rtebral body as an elliptical cylinder
vectors, k, be updated. The formulation for with midheight major and mitior radii, a and b

this process begins with a three-term Taylor's and the assumption of a homogeneous distribution

Series expansion on the bk similar to Eq. (13) of material with mechanical properties interme-

and proceeds with the substitutions of vector diate to those of the vertebral hody core (tra-

products, involving angular accelerations and becular bone) and shell (cortical bone). The

velocities and the tk
J , for the time deriva- effective yield stress for this material is

. tives of the unit vectors. This formulation then given by

is discussed in detail by Belytschko et al. in Py9]. "~o y -(1 7 ) I

19) A.-

Unlike an implicit numerical integration where A = midheight cross-sectional area = nab.
. scheme which has, essentially, unrestricted Using the flexure formula from strength of

numerical stability (albeit at the potentially materials,,the bending moment which produces
large expense of matrix inversion and iteration a s"t.res y in the extreme fibers at the mid-
requirements), an explicit scheme such as out- height of such an elliptical vertebral body can IV

, lined above requires the selection of an inte- be related to Py by
ration step which will insure a stable solution

?25]. The stability limit, At., or maximum * A M*an
allowable integration time step, for SAM is M P and Ly . L p  (18)

determined by selecting the element in the y bA ya

. model having the highest natural frequency and
equating the solution propagation speed, Vs, for AP and lateral bending, respectively. In
;."equation (18) IAp and IL are the second moments

and the wave speed, c, for this element. This IL
results in of A about the major, 2a, and minor, 2b, dia-

meters, respectively, Since
ats  2 (14) b2  a24. ~ = 2 n L :2A, (19)
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Eqs (18) take on the rather simple form, Validation of the HSM dynamic response and
spinal injury prediction capability (i.e., SIF

b Pand the associated yield criteria) is scheduled
P and M p (20) to be completed by the end of calendar yeary Ly y 1986.

where a and b are based on [28, 29]. APPROACH

a r-The SIF, as given by Eq. (16), represents The Aerospace Medical Division's CREST
a ratio of computed quantities to specified Program Office requested that the HSM be used

* yield quantities. A value of SIF=l at any to evaluate the effects, on head-spine struc-
vertebral level, V, is therefore taken to ture ejection-induced dynamic response and
correspond to a 50% likelihood of compressive injury likelihood, of variations in the
yielding due to combined axial compression following ejection system parameters: head-pad
and bending at that level. The likelihoods or location relative to the plane of the seatback,
probabilities associated with values of SIF t 1 a, and catapult acceleration vector angle, a,
are obviously dependent upon the chosen and magnitude, a(t). The ranges for the varia-
distribution function. For example, Payne [27] tions of these parameters were also specified.
reports probability distribution functions, Values requested for A were -2.54, 0 and +2.54
for vertebral compressive failing loads norma- cm, where negative, zero and positive a indi-
lized to L5, based on both Normal and Gamma cate the front (+X) surface of the head-pad
probability densities. Applying his Normal is aft, even and forwards, respectively, of the
distribution function to the SIF we find, for front surface of the seatback (for the remain-
example, that SIF values of 0.9 and 1.1 would der of this paper, X, Y and Z are used to
correspond to 16% and 84% probabilities, identify the global axes with X, Y, and Z posi-
respectively, while 10% and 90% probabilities tive forwards, to the left, and up, respective-
would correspond to SIF values of 0.87 and 1.13 ly). Values specified for a were -10', -5', 0,
respectively. We have, however, not yet estab- +5° and +10 where a is measured from the Z
lished the validity of applying a probability axis (in the XZ plane) and negative, zero and
distribution function for vertebral failing positive values of a indicate that the X
loads based on axial compression experiments component of the catapult acceleration vector
to the SIF which addresses vertebral body is negative, zero or positive, respectively.
yielding due to combined axial compression Two acceleration levels, which will be referred
and bending loads. Hence, although it is to as al(t) and a2(t), were corsidered. Both
stated above that the SIF provides an indica- were parabolic approximations to the first 150
tion of the likelihood of yielding, the only msec of an ACES II catapult acceleration time
SIF value to which we currently actually assign history, i.e.
a probability (i.e., 50%) is SIF=l.

Several different versions of varying ai(t) = Ai -(sinai + cosaj), o:t<.l5sec (21)
complexity (i.e., number of degrees of freedom), 1.15

of the HSM exist. These range from the SSM
(Simplified Spine Model), having 48 degrees of where Ai, the 150 msec (and peak) magnitude
freedom, to the CSM (Complex Spine Model), with of 'i(t) were specified to be 12 and 18 G
252 degrees of freedom. These differences in (11,768 and 17,652 cm/sec 2 ) for al(t) and a2 (t)
degrees of freedom translate into significant respectively. In the remainder of this paper,

differences in computer time for similar the vector symbol (-) is omitted when al(t) or
simulations. A CSM simulation requires almost a2(t) refer to acceleration level or magnitude.

two orders of magnitude times the computer time
of a similar SSM simulation. The level of For the HSM simulations, the li(t) were

detail (i.e., number and locations of response prescribed directly at the pelvis primary node
variables) desired determines which version of and on a single elastic plane representing the

the HSM is used for a particular application. seatback. Hence the pelvis and seatback moved

The system component(s) (usually the TL spine) together. A restraint system was defined using

whose response is of primary concern is modeled three spring elements between the seatback

in detail, while the remaining components are plane and the primary nodes of the TI, T2 and
approximated with only the degree of discreti- T3 torso segments. The motions of the seatback
zation necessary such that their contributions 'attachment points" of these spring elements

to the overall response of the model and their were constrained such that their Z displacements

effects on the response of the primary compo- were identical (to within a time step) to those

nent are reasonable (as determined by earlier of their corresponding torso segment primary

studies comparing responses of different ver- nodes, thus assuring that the tensile forces

slons of the HSM [11, 12]). developed in the springs were always normal to
d 'the seatback.

HSM validation is an ongoing program at
-* AFAMRL and involves comparisons of model Of primary interest in this study were the

predictions with data obtained from experimen- effects of the aforementioned parameter varia-

tal programs and from reconstructions of tions on TL spine injury likelihood as deter-

operational ejections [11, 12, 30 and 31]. mined by the SIF. The version of the HSM used
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t I4 - 2 (t) 17,652 cm/sec"
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* SYSEM { TI. T2, AND T3'SPRIN PRIMARYNOES 2I "

SPIG 8 a 1 t I aM 17681/t cm/sec2

-1,7

( (a) (b) '-

i Fig. 2 - (a) HSM version used in this study and definition of parameters

(b) Parabolic approximations to ACES I] catapult acceleration time history

.- in this study was, therefore, one in which the through L5). .

TL spine is modeled in detail while simplified ,

approximations are used for the remaining It can be seen, in all three figures, that -
subsystems. Fig. 2 depicts the sagittal (XZ) increasingly negative values of m (correspond-
and frontal (VZ) plane views of this model and ing to increasing -x components of al(t)) have

"again defines the ejection system parameters the primary effect of increasing SIF in the mid- .

,"which were evaluated. This HSM contains a fully to-upper thoracic spine with the magnitude of .
*i discretized representation of the TL spine, this increase and the number of affected verte- -

. i.e., each vertebral level and the interconnec- bral levels also becoming larger with increas- "
*. ting intervertebral discs, spinal ligaments and ingly positive values of A. Also noteworthy

- articular facets are included. The head/helmet is that in going from o = +1O0 to = -lO°, the!and pelvis are modeled as rigid bodies, the maximum value of SIF shifts from the mid-lumbar
cervical spine as a single three-dimensional spine to the mid-thoracic spine (obviously true

,beam element and the secondary loading and for A = 0 and +2.54 cm; not quite the case for

.- stiffening effects of the viscera-abdominal = -2.54 cm but the trend is there). .

wall-diaphragm-rib-cage system are accounted for .

•with a column of nonlinear beam elements which Mechanical insight into the reasons for
' approximately parallels the primary column. these changes in SIF can be gained by plotting

'-' These nonlinear beam elements, whose only non- the axial (P/Py) and bending (M/My) contribu-.-
zero stiffnesses are cbcstiffness cef-tions to SIF versus vertebral level. This has

-cients for local AP and lateral bending deforma- been done in Fig. 4 for the SIFs of Fig. 3b,

"tions, interconnect the primary nodes directly i.e., for A = . It is immediately apparent
!.and provide resistance to large relative rota- that the increase in upper thoracic SIF is pri- .

tions only. marily attributable to increased bending, '

' " specifically, flexion (forward bending) in the "
-"RESULTS AND DISCUSSION upper thoracic spine. It is also apparent that

~~the bending response in the lower thoracic and"'
Each of Figs. 3a, b and c shows the effects lumbar spine is not significantly affected (with"

Sof variations in (-lO S c +100); with a = the exception of T2) and that the SIF changes
-constant (-2.54, 0 and +2.54 cm for.Figs. 3a, b in these regions, though for the most part

and c respectively) and for the 12 G accelera- small, are directly attributable to the axial '
tion profile (a(t)), on TL spine injury likeli- response. In fact, the SIF and its axial -

!'"hood as determined by the HSM SIF (Eq. 16). contributions are seen to decrease in these
Results for = -5 ° and +50 were not included regions.

e, since these turned out to be intermediate to -

those which were plotted. The SIF are plotted Fig. 5 depicts HSM sagittal (XZ) plane con-

as functions of TL spine vertebral evL? Tl figurations at 25, 75, 10, 125 and 150 msec for-

105

, ..:'.2:'...' ............-......"........-.'............................................... . . . .
: ¢:

', -~~~~~~~.. .. ... . . ....- .'. .".-.,. .'. .....-.-...... . ..... * .



1.0 a=-I0*
0 0

0.1 +100

-0.6-
ft.0 I A ONO3

U. A A A A
A A

6'0.4- A. AA

0.2

0.0 III
L5 L3 L I T11 T9 T7 T5 T3 TI

VERTEBRAL LEVEL
(a)

1.0

A

0.8 * 0
U +100

AA

-0.6- An A N
o A

0.2

0.2L

L5 L3 LI T1I T9 T7 T5 T3 TI
VERTEBRAL LEVEL

(b)

Fig. 3 -(a) SIF variations with -100 <S c £ +100 for -- 2.54 cm and al(t) (12 G profile);
(b) a~ 0 cm;
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F Fi. 3 - (C) SIF variations with ~,-100 +10* for a +2.54 cm and al(t) (12 G profile)
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Fig. 4- P/P and M/M (AP bending) from the SIFs of Fig. 3b
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I 0i
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Fis 3b an 4, 'epcie t4raiyai h piaysuc fteicesdfr
apparent..... fro ths cofgrtos tha as a=adbnig ftem -IO°e thraicspn

_ I (c)

a 1t1A 2S 75 lOG 125 150 rnsec

Fig. 5 - HS sagittal (XZ) plane configurations for (a) a a + m0e, (b) u = 0, (c) = - d° with
= 0 and a1(t) "

(a) a = +10, (b) f = 0 and (c) a ndu0c (with the cervical spine and its associated muscles
t 0 and al(t)), i.e., the three cases corres- and ligaments). The increase in the magnitude
ponding to the SIF and P/P and / plots in of this head motion with increasingly negative*Figs. 3b and 4, respectivel'y. It il readily a is the primary source of the increased for-

*apparent from these configurations, that as a ward bending of the mid-to-upper thoracic spine ':
*decreases, or becomes increasingly more nega- while at the same time resulting in a decrease
*tive, the tendency for a Ct) to induce a posi- in the inertial axial compressive loading of the

tive rotation of the head and upper torso about lumbar and lower thoracic spine (obviously the-?
V (positive rotation of the head and upper corresponding decrease in the +Z component of,

torso flexion is somewhat limited by the res- a1 (t) also contributes to the decrease in the
traint system but the forward translation and axial compression of the lower spine).
rotation of the head is limited only by the
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Each of Figs. 6a, b and c shows the effects It is also of interest to compare the SIF P.
of variations in A (-2.54 s A & +2.54 cm); with for a - -10, A +2.54 cm and a (t) in Fig. 6
a - constant (-10, 0 and +100 for Figs. 6a, b to that for a = 0, A - 0 and a2(1) in Fig. 9.
and c respectively) and for the 12 G accelera- Even though the first curve is based on an ac-
tion profile, on the HSM SIF. In all three celeration level 33-1/3% less than that ?f the
figures, it can be seen that increasingly larger second, the mid-to-upper thoracic spine T5-T1)
values of a with a constant produce similar SIF is slightly higher for the first. The
variations in SIF as increasingly negative difference would be even more significant if
values of a, i.e., increases in mid-to-upper the SIF for a = -10, A - +2.54 cm and al(t) ,.
thoracic region SIF and a change in the location were compared to any for a > 0 and/or A < 0
of the maximum of SIF from the mid lumbar to and a2(t). It is pparent then that certain
the mid-to-upper thoracic spine. Fig. 7 shows combinations of a and A (primarily a < 0 and
plots of the axial (P/P ) and bending M/My) A > 0) may have at least as significant an
contributions for the SIFs of Fig. 6b• Again effect on human ejection acceleration toler-

it is apparent that the SIF increases in the ance, as indicated by the SIF, as small
mid-to-upper thoracic spine are directly attri- variations about a system's design acceleration
butable to increased bending in this region. profile.

Fig. 8 depicts HSM sagittal (XZ) plane CONCLUSION
configurations at 25, 75, 100, 125 and 150 msec
for (a) A = -2.54 cm, (b) A - 0 and (c) A = The Air Force Aerospace Medical Research
+2.54 cm (with a = 0 and al(t)), i.e. the three Laboratory's Head-Spine Model (HSM) and its
cases corresponding to the SIF and PI/P and structural analysis software, SAM, have been
M/My plots in Figs. 6b and 7, respectively. It described along with the application of the
is apparent that as a increases, the tendency HSM to a problem in ejection system design.
for aT(t) to induce a positive Y rotation of the This problem was the qualitative evaluation of
head and upper torso increases. Comparisons of the effects of variations in A (head-pad lo-
Figs. 6b, 7 and 8 with Figs. 3b, 4 and 5, cation relative to the plane of the seat-back),

* respectively, clearly show that increasing A a (catapult acceleration vector angle) and a(t)
(from -2.54 cm to +2.54 cm with 0 = ) and (catapult acceleration vector magnitude) on
decreasing a (from +10' to -l0° with A = 0) ejection-induced TL spine injury likelihood.
produce quite similar changes in both head-spine Ranges for the parameter variations were

- structure kinematics and TL spine injury likeli- specified and are representative of these
hood. This is not particularly surprising since parameters in existing ejection systems.
decreasing A and increasing a both have the
effect of decreasing the +Y angular acceleration Results from the HSM ejection simulations
of the overall center of mass (CM) (or, equiva- were presented in the form of SIF plots versus
lently, increasing the magnitude of the -Y angu- TL spine vertebral levels and model sagittal
lar acceleration of the CM) while, conversely, (XZ) plane configurations. These results

- increasing A and decreasing a both have the demonstrated that variations in a from +100
effect of increasing the +Y angular acceleration to -100 (with A constant) and a from -2.54 to
of the CM (or equivalently decreasing the magni- +2.54 cm (with a constant) had similar effects
tude of the -Y angular acceleration of the CM). on the SIF. Both sets of parameter variations

(in the directions indicated) resulted in
a 1Fig. 9 compares the SIF for the 12 G (al(t)) increases in mid-to-upper thoracic spine SIF
and 18 (a(t)) acceleration profiles for the and a change in location of the maximum value
case a = 0 i.e., S1(t) and a2(t) are both of the SIF from the mid-lumbar to the mid-
straight up) and A = 0 (i.e., head-pad even with thoracic spine. It was also demonstrated that

seatback). There is a fairly uniform increase, the increases in mid-to-upper thoracic spine
having an average value of 36%, in SIF for Tl SIF were directly attributable to increased
through LS. Fig. 10 compares the HSM configura- forward bending in this region and that the
tions from these two simulations. Kinematics axial compression contributions to the SIF
for the two cases are qualitatively quite simi- were considerably less affected. These obser-
lar, with the 18 G profile obviously resulting vations hold for both acceleration levels.
in somewhat larger deformations.

Using the HSM, we have shown that ejection
Fig. 11 shows the SIF for three different system geometric parameters, such as a and A,

combinations of a and A (and the 18 G profile may have as significant effect on human ejec-
in all three cases). The most severe case tion acceleration tolerance as the accelera-
shown Is obviously a = -5' and a I +2.54 cm, tion profile itself. None of the one-dimen-
which turned out to be the most severe combina- sional types of head-spine structure models
tion of these parameters considered in the study (such as the DRI) which preceded the HSM, could
(the combination, Q =-100, A = +2.54 cm and a2(t) have provided the type of quantitative (nor
was not considered). For this case the SIF was qualitative) results upon which this statement
greater than 1.0 (corresponding to 50% likeli- is based. The results presented here lead to
hood of vertebral body -.ompressive yielding) for the conclusion that limitations must be placed
three vertebral levels, T3, T4 and T5, with the on a (for a < 0) and A (for A > 0) to insure
maximum occurring at T4. minimum TL spine injury likelihood during the

catapult acceleration phase of the ejection
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DISCUSSION springs have had cubic stiffness terms, but most
elements are linear. But, from the geometry, it

Kr. Robbins (University of Michigan): I noticed is a large deformation problem. It is a small
in both the movies you presented, and in some of strain problem, but it is also a large
the earlier slides, the pelvis orientation was displacement problem. So, you will have some
shown fixed, and there was an S curvature nonlinear effects from that. I have done that
particularly evident in the lumbar spine. Wat problem, and it is a nonlinear type of behavior.

data base did you use to determine there should
be that much S curvature in a spine which Mr. Helfrich: Which portions tend to get worse?

represents a seated posture?
Mr. Privitzer: It gets worse in the upper

Mr. Privitzer: The pelvis is fixed because we thorastic spine first because of the bending; we

are driving the pelvis directly. also have more problems up there because of the
difficulty in modeling the restraint system.

Mr. Robbins: I am talking about the orientation

of the pelvis, not that it was fixed.

Mr. Privitzer: I an not sure of the official

name of the data base, but it is supposedly
based on some x-ray data of seated pilots that
were gathered in the early 1970's. I am not
sure what they were seated in, though; It might

have been in a seat with a lumbar pad. But,
that is just one particular configuration; we
can modify that configuration according to

* whatever situation we are dealing with.

Mr. Robbins: Have you modified the pelvic
orientation to take the S out of the bottom in
any of your simulations?

Mr. Privitzer: No. I have not. I have let it

rotate. But, most of the time, we do not know
enough about whatever is going on beneath the
pelvis to let the pelvis respond. So, I usually

put my input right at the pelvis.

Mr.Robbins: I guess my main concern was the

spinal curvature. I would think that would be
an important variable; whether you have an S or
more of a straight column. It seems like it
would have a lot of effect on the inner

vertebral discs and in the injury function.

Mr. Privitzer: Yes. If we are addressing a
specific ejection system, then ideally we would
want to model the spinal curvature as it would

be on the mean in that system. The only
question is how we will get that data because

you would have to x-ray people to get it, and
you are not supposed to do that.

Mr. Robbins: Is the crest seat design fixed so
you will have to use this function?

Mr. Privitzer: No.

Mr. Helfrich (Pacific Missile Test Center): You
showed the two curves from the Al and the A2 in
the spinal injury function curve, and they were
fairly constant. Do you think that is a linear
function? If you went up to another g level

would you expect the same thing, or do you think
that would end up being nonlinear?

Mr. Privitzer: It will not be linear. The beam

elements I used in this study are linear; I did
not use a cubic stiffness in that. Some of the
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TIME DOMAIN MATHEMATICAL MODELING OF ELASTIC
INSTABILITIES AND LARGE ELASTIC-PLASTIC

DEFLECTIONS

Robert P. Brooks

Franklin Research Center
Philadelphia, Pennsylvania

Mathematical modeling and computational techniques, based on an explicit
time integration scheme, are presented for the calculation of elastic
instabilities and large elastic-plastic deflections of beam elements. The
equations are formulated to facilitate their introduction into time-domain
computer programs.

The simple models presented, demonstrate the phenomena of Euler, angle and
lateral buckling, as well as plastic-buckling with strain-rate effects.
This methodology can be implemented to analyze complex structures,
consisting of members that may exhibit failure instability when subjected
to large, short-duration loads.

, LIST OF SYMBOLS INTRODUCTION

SA - Area The purpose of this paper is to present 5

. As - Shear area dynamic mathematical models of beam elements
D - Length between adjacent mass centers that respond correctly to buckling loads and

of corresponding points on adjacent exhibit large plastic deformations. The
masses models are in the form of readily programmable

E - Modulus of elasticity logic, which the analyst can include in his or
G - Shear modulus her own software. These models are aimed at
I - Inertia (area or mass) predicting catastrophic failure in the time
J - Polar moment of inertia domain instead of detailed stress distribution.
K -K Spring constant
k - Torsional rigidity Five mathematical modeling schemes are
L - Length (axial direction) presented in this paper. The first three
M - Moment models are for (1) Euler buckling, (2)
m - Mass buckling of angles and (3) lateral buckling.
P - Axial load When using these models, the analyst must know
T - Torsion the failure mechanism. The fourth is a
t - Time general outiol embodying all three buckling
V - Shear force modes. The lost model is an extension of the

* X - Coordinate axis or motion fourth one witi, added logic to approximate
SY - Coordinate axis or motion yielding and strain rate effects.

Z - Coordinate axis or motion
- Rotation about the X-axis The primary use for these models is to
- Rotation about the Y-axis analyze compression members subjected to

. - Rotation about the Z-axis large, short duration loads such as in shock
loading. Analysis using these models

. Subscripts demonstrates that the structural elements can
withstand short duration loads which have a

c - Compression/tension spring peak greater than static critical buckling
m - Mass load. In such cases costly and time consuming
S - Shear spring redesign can be avoided.
0" - Direction

% - Direction Another helpful application of these
- Direction models is in the analysis of the failure of

submarine hulls subjected to underwater
All other symbols are described in the text as explosions. One proposed theory of failure is
they appear. that the web of the ring stiffener may

"cripple" (buckle) when the submarine is
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subjected to an underwater explosion. This
failure mode is within the capability of these
models.

BASIC BEAM MODEL

The modeling schemes presented in this
paper are all variations of the beam model
described in [1]. For that reason a brief Fl

review of that model is in order.

Timoshenko's theory of beam bending T-l To..

supplies the following basic equations:

M + EIk-- 0 (IA)
Fig.1 - Basic beam model

V - AsG (4-') 0 (IB)

0L 111 (IC)

From consideration of Figure (1), the

Pl. P A = 0 (10) finite different form of the equation set is

E I( -l'+ 1 )(A
The first two equations relate loading to Mi = -(A f i+l) (2A)

movement. Equation (IA) expresses the
and relative cross-sectional rotation I +- A L + (2B)

(31'.). Equation (IB) stipulates the L

relationship between the vertical shear force
on a beam cross-section (V), and the shear (.& (V; Vi)/ i -)/~dLPI (2C)
angle (ay/L-1).

The latter two equations relate Y Y(V - 1V 1 )/PAAL (2D)
accelerations to the loading. Equation (IC)
defines the effect of rotary inertia AC
(plI 2T/t 2 ) developed by considering F= AE (AX 1, - AX@) (2E)
rotational motion of beam elements 

during

vibration. Equation (10) considers
translation motion of the beam elements. T k i& ('4OC A OC (2F)

The axial and torsional loading of a rod X j (F-i. )/PAAL (2G)
gives the following equations: (Tj _ liI - TjIPTA L (2H)

F - AE -LX  0 (E) Equations (2A), (2B), (2E) and (2F) nowL -form the static set, and equations (2C), (2D),

(2G) and (2H) the dynamic set. The integration
T + kG -= 0 (IF) scheme which is aplied to each mass in the

model, in readily programmable form is:

-4 P A -0 (IG) time - t +At

.._ ._ ACCI  (forces or moments)/
AL J 4 0 (lH) (mass or inertia)

Dynamic
Equation (IE) relates the axial force (F) to equation VEL i  = VELi + ACCi (At)

. the relative axial motion (IX/)L). Torsion loop
(T) is a function of rotation about the axis
of the rod (W/)L) as shown in Equation (IF). DISPi DISPi + VELi (At)

The last two equations relate loading and Static

acceleration. Equation (1G) give the axial equation LOADi = K(DISPi - DISPi'I)
L motion (82X/9t2 ) based on axial load. loop LEquation (H) describes how the rotational

acceleration relates to the torsional loading.
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The dynamic and static program loops are Model i
typical of the sets for each degree-of-freedom r
considered in a model. If all six The dynamic model, Figure 3, which has
degrees-of-freedom are included, then three been developed for buckling response to
translational and three rotational compressive loads is derived from the beam
accelerations are calculated and integrated model in the previous section. In this model
(as above) to obtain displacements. For six the tension/compression spring need not be
degrees-of-freedom, the static set contains parallel to the X-axis. Thus, if the internal
six equations, corresponding to six loads: compressive forces are great enough, the shear
three moments and three forces. At the and moment springs may not be able to balance
conclusion of the static equation loop all the the Y component and buckling would result.
calculations for the time increment are
completed. Time is then updated and the
process repeated, until the desired simulation -__,,
time, or other criteria is reached.

EULER BUCKLING

Description

Column or Euler buckling is probably the
simplest and best known form of elastic VM"
instability. This type of failure occurs when
the compressive loads on a column are great Y-
enough that external moment (Me), see Figure NOTES: . SHEAR SPRINGS ARE
2, ASSUMED TO ACT IN THEIR

ORIGINAL OIRECTION. x

Me = P (8 Y) b. mm1 cONvENTION-
1. COMPRESSION IS CONSIDERED A IL

cannot be compensated for by the internal POSITIVE FORCE IN THE SPRINGS.
moment LIF Y(I IS POSITIvE IT CREATES A POSITIVE

MOMENT IN THE (V MOMENT SPRING AND AMi = E I "'GA NTIVE MOMENT IN THE (I-) MOMENT SPRING.X-

The problem was originally solved for static
loads by Leonhard Euler in 1744, hence the
common name of the phenomena. Fig.3 Beam model for column buckling

The equations and logic for the model of
Figure 3 are as follows:

8 The load equations, which are calculated

each time increment for every set of
II springs in the model are:

I AX = Xi - Xi+l +AL

'Y = Yi - Yi+l

ID = i(&X)2 + (Ay) 2

Fi = Kc (&L-D)

" FXi = Fi AXAL

DI FYi = Fi AYAL

Vi Ks(Y,+1 - Yi + (AL/2)(Ti +fi+l))

Ffi = Kr (Ti - ri+l )

where, AL = original mass spacing, P

Fig.2 - Column buckling Kc - AEI.,

119 0

......................-....... ,.-....,..,, .. , .. -..., ,-.... :...,..,-,..,....:, .. ,....-¢-. ,. .. ', . .:,.,. . .. .. . ..

. . . . . .



" Ks-As- W ,

K1  - MAL.

and, coordinate positions are measured
from the original unstressed positions.

aMA
The corresponding acceleration equations , t LOs)
are: 1 4-

ii (FXi - FXt+ l)/m

YI (Vi - V i+1 + FYi " FYi+I)Im I -- -

1 •(Fr Ff I -- 
- (L/2)(FSt + FSi+I))/Im ka -. 0254

The accelerations are numerically ________._--- _

integrated twice to obtain the necessary
displacements.

Verification -. 00.4;

To verify the derived model, a free-free
beam subjected to a constant compressive load
was chosen as a test problem. The beam is 7
198.12 cm (78 in) in length with 5.08 cm
(2 in) by 5.08 cm (2 in) cross section. Since 1o-' , .K-- o 1 -300o
this mathematical beam was perfect, it was 0a 9 2 L4 3 40 M

necessary to perturbate one of the masses to
start the dynamic simulation.

Figure 4 shows the maximum displacement Fig.4 - Peak dynamic displacement of
of the oscillation of the center mass in the the center mass as a function
Y-direction as a function of compressive of compressive load
load. Figure 5 depicts the frequency
exhibited by the model versus compressive q.

force compared with the exact solution. The
model shows very good agreement with theory,
[2]. The simulation with p = 315,790 n
(7C ,O LB) was stopped at time - 0.0834
seconds. At that time the rate of center
deflection was still increasing.

This type of model should be used if
column buckling is suspected as a possibility,
because it does not force buckling. The model
will buckle only if the load is above critical ,i
and is of sufficient duration. -

BUCKLING OF ANGLES I
Description

If an angle section is compressed as
shown in Figure 6, It may fail in two
different ways:

1. if the width (W) is relatively
small, It will buckle as a column;

2. If W is large, the flanges will I !| I
buckle.

The flange buckling mode is similar to the Fig.5 - Beam frequency as a function
buckling of a plate hinged on three sides. of compressive load
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.0635w. (411 in)- I

S co i2n.) 6L d

MATERIAL.ALIUNIUM VERTICAL

b ~COPO NT "H

01 GIVES ATOSIONAL LOAD

_____________TOPISION

P (LB) TAfe(rd)f)
6 dA- dydi

Flg.6 -Compression of angle section
T .4ff XX v' +*~

Model T 0 * e L)

T ( IfA-L(%F+h.Pt(I+I
Though angle buckling has two failure

modes and one of them is plate buckling, the Fig.8 - Derivation of torsional
problem is solved here by employing two beam component of axial stress
models coupled along their length..

Figure 7 depicts a portion of the model.
Each beam in the model appears similar to the50
previous buckling model (a tension/compression 5C ~
spring that may not remain axial, a torsion 1
spring, two shear springs. and two moment
springs between the mass faces). However,40C --

there is one important difference which allows !40
for the torsional component of the axial
stress. This phenomenon is shown and derived d MODEL RESLT.
in Figure 8. When the equation on Figure 8 is 5
added to the model, the flange buckling mode W 30WC -I

is included. W THEORETICAL CURVE
CL FOR SUCKLING Of SIDES

U) AS PLATES HINGED
M 0ON THREE SIDE&~
_j 2000---
0 5

0

TEORETICAL NCURVE FOR WCKLR4G %AS AN EULER COLUMN.

WIDTH OF SIDES-INCHES

Fig.9 - Buckling of angle section

Verification

Timoshenko's work on elastic stability
Fig.7 -Local buckling model [23 includes a graph of the buckling strength
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of an angle as a function of flange width. Model
This graph is reproduced in Figure 9 and
compared with the results of the dynamic angle The springs which are necessary to allow
buckling model. Since only static results the lateral buckling of the beam are shown in
were found, this model is not correlated in Figure lla. Note that an axial spring is not
the frequency domain. The loading of this included. For the previous problems it was
model is the same as in the previous section. necessary to calculate the coqponents of the
That is, a constant compressive load is axial spring. For this problem it is
applied to the model and a small perturbation necessary to calculate the components of the
is applied to one of the masses. If the model two moment springs and include them in the
oscillates there is no buckling and the load proper rotational acceleration equations.
is increased for the next simulation. This is This scheme allows the applied load to excite
repeated until the model starts to collapse the lateral bending and torsional motions of
instead of oscillating. Again, the model the model masses.
results show very good correlation to theory

- and experimental results.

BEAM IN PURE BENDING

Description
z

Figure lOa depicts a narrow rectangular
beam subjected to pure bending about Z-axis.
As the bending moment increases the beam bends
in the lateral direction and twists as
illustrated in Figures lob and 1c. When the
external moment, Mo, becomes large, the
torsional and lateral rigidities of the beam
cannot compensate for small components of Mo
about X andY axes resulting in buckling.

Y

x. x

z Fig.ll - Lateral buckling modelc.

The following two equation sets are
defined for the model. Figures llb and llc
indicate the positive direction of the angle

y and a used in the equation sets.
X Load Equations

0i = TAN'l((vi - Yi+l)L)

a = TAN'I((Zi - Zi+l)/&L)z z

-b 3ECTIShear force in the Y-direction
AXXo VYi - Ks(Yi+I - Yi + (4-12)Ci + I,+l))

Shear force in the Z-direction

VZi - Ks (Zi+l - Z- (- /2)(0i +1i+l))
Fig.lO Lateral deformation due to

pure moment loading - (a, + t+12
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Torsion

+ sin(i)(0i -is3+1)
+ sin(e)( t - tj+1))

Bending moment in - direction

=pi Kp (sin(*1 cos(a6 1)(t+1 "Oi) "-" cos(&'c cs(4') (J# "t5 + 1)

+ sin(Adc)(r'+1 - ri))

Bending moment in - direction ,-It

ji K1(cos(A1C )sin(1 )( (t+l -ci)

+ sin(at)(& + .j1) Fig.12 - Beam frequency as a function
11+1 of the applied external

+ cos(Aec1)cos(e)(11 - lj+1 ))  moment NO with two

different model
Acceleration Equations definitions

Vi - (VYt - VYi+l)/m
As in the Euler buckling problem, this

Zi " (VZi - VZi+l)/m model shows an expected increase in period as
the constant load, %0 is increased. Also,

&i - (cos(#i+l)COS(i+l)T the buckling load will approach the value
predicted by theory asthe mass spacing

- cos(4i)cos(Oi) T~i decreases. It should be noted that the points
labeled as buckling points are not necessarily

- cos(A6Ci+l)sin(4t+ 1) NMA,1  the lowest buckling values, but merely loads
at which each model exhibited buckling.

+ cos(&,Ki)sin(ei)N/i
-s ( lci N.GENERAL BUCKLING NODEL, ~- s in(Oat+ )cos (&Gt+ 1)m1T+ 1 -.

+ sin(G)cos(A6lx) Mfi 1,i Description

AIn order to solve some of the problems in
Si (sin(#i+l) lK1€- - sin( &i) Tdc elastic instability, modifications are made to

the standard 3-D beam model; the calculation
+ cos((q-i1)cos(Aei..-) MN t-I of the 3-D orientation of the tension/

compression spring for Euler buckling, the
- cos()cos( t) Mpi calculation of the torsional component of
-axial stress due to twist for local buckling
- sin4Maj..1) Mi.._ + sin(Aej) Mfi (angle section), and the calculation of the

3-D orientation of moment springs for lateral
+ (AL/2)(VZj + VZil))/Ip buckling (rectangular section).

i- (sin(Sitl)T1(il - sin(0i) I i If all of these effects were incorporated
into one model, the resulting computer program

- sin(h4t.l)Mi. 1 + sin(Ahc t) "Pi could become quite cumbersome. Certainly
another type of more general spring-mass model "

+ Cos (ei..1)cosW.(j. 1)Mr. 1  should be developed. Such a model should not
require the analyst to know the actual

- cos(sj)cosIEt) NC1  buckling mechanism which might occur in the
structural system problem before the program

- (AL/2)(VYj + VY.1))/Ir is run. Also, the possibility of including
yielding effects should be kept in mind.

Verification
Model

The ability of the model to predict
static lateral buckling for the 198 cm (78 in) All of the buckling problems considered

* long beam with 5.08 cm (2 in) by 25.4 cm so far involve axial stress; whether directly,
(10 in) cross-section is depicted in Figure as in Euler and local buckling, or indirectly
12. The ordinate of Figure 12 is the observed as in the lateral buckling problem (pure
frequency of the model in the Z-direction. moment loading may be considered a combination
The abscissa is the ratio of the applied of tension and compression). In order to
moment to the theoretical critical moment, account for all three modes of buckling in one
[2]. Two different mass spacings are shown. model it was necessary to replace the two
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bending springs and the one tension/ TABLE 1
compression spring with a group of
tension/compression springs, each with PERCENTAGE OF AREA OF INERTIA AS A FUNCTION OF
possible components in all three directions. NUMBER OF SPRINGS ON RECTANGULAR SECTION FOR A
This spring group approximates the stress 2-0 BUCKLING STUDY
distribution over the cross-section of the~beam.

Number of Springs Effectlve Inertia X 100
Actual Inert1 a

2 75
3 88.9

___ 4 93.75
AL A 5 96

-' 6 97.22
7 97.96
8 98.44
9 98.76510 99

ELASTIC/STABLE 1

2. calculating the new length and force
of every spring, and

AE AL3. calculating the contribution of theA1: springs for each of the six degrees of
4L) AL Ffreedom of both masses to which the

springs are attached.

ELASTIC / UNSTABLE

Fig.13 - General buckling model (2-D) pi P OF ITERM

Figure 13 illustrates a 2-0 beam model "
• 'with the old arrangement for stable elastic

problems and the new arrangement. Shear Q.'
forces and their contribution to bending are
still calculated as given before in the

*, discussion of the basic beam model.

Assuming that the tension/compression "
springs are evenly spaced, the first modeling
decision is the number of springs. Table 1
shows the ratio of effective area moment of

* inertia of the spring group to the actual area Fig.14 - Location of end point of a
moment of inertia of the rectangular spring with respect to the
cross-section as a function of the number of
springs. Since it is more efficient to use C.G. of a mass
less springs, and a mathematical model is
usually stiffer than the real structure, four
springs are recommended (4 by 4 or 16 springs The following procedure describes how this is
in a 3-D model), done for one point of interest as shown inF igure 14: "'

All of the effects necessary to predict the 
...

* buckling modes presented in this report are
present in this new model and are obtained by;

1. following the motion at each end of
every spring,
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1. known from this time increment load in Z-direction, mass (i) ,
Fz - F (ZL/D)

Ti t(rotational velocites
of mass ol interest) load in X-direction, mass (i+1) -

Xj, Yt, Zj (location of mass
with respect to original position) load in Y-direction, mass (i+I) -- Fy e

known from last time increment
Xpi, Ypi, Zi (location of point load in Z-direction, mass (i+l) -
of interest with respect to c.g. - Fzof mass)

load in C-direction, mass (I) -
calculate new position of point with (Fz) (Ypi) - (Fy) (Zpi) -

respect to c.g. of mass assuming small
incremental rotations load in P -direction, mass (i)

Xpi Xi + (iM(At)(Z4) - ( i'i)(At)(Yip) (Fx) (ZPj) - (Fz) (Xpi)
load in i-direction, mass (i) -

YPi", Y~i 
+ (ii)(At)(Xi) - ( la t)(pi) (Fy) (Xpi) - (Fx) (Ypi)

Zpi I e= i + (ci)(At)(Ypi) - (4)(it)(6) load in c- dir., mass (i+l)-(fz)(YPt+l) + (fy)(Zpi+ 1 )  -

calculate the position of this point i
with respect to the original position load in1P - dir., mass (i+1) = .

-(Fx)(Zpi+l) + (Fz)(Xpi+l)AlXp i = X1 + Xpi d
Siload mV - dir., mass (i+l) =
AYPi - Yi + Ypi -(Fy)(Xpi+l) + (Fx)(Ypi+I)

AZpi - Zi + Zpj When compared to the models of the previous
sections, this logic is relatively simple to

Since the end points of the springs use. With this model, rectangular sections
connected to a mass are assumed to may be joined (as was done for the angle
lie in a plane (straight line if 2-0 section) to form more complicated shapes, such
model), it is not necessary to follow as "I" beams where the entire cross-section
every end point. Because three points does not remain plane under lateral or
define a plane, only two end points torsional buckling loads.
plus the mass C.G. locations are
sufficient to define the locations of
the other end points on the plane.

2. calculate the new length and force in I

the spring

XL 'AXpj +&Xi+l +AL

YL 'AYPj + Ayi+1

oi offSZ L "AZpj +AkZt+ 1  ........

0. + .+ 4
Force

F - K (AL -D) I)'. , r~~~l'I' ;;" f
' 

I ITl' I Il lll i

3. calculate the load in all six
directions for each mass Fig.15 - Center mass motion of a beam

l i d t)loaded with a constant.load in X-direction, mass (t) -

Fx - F (kID) external moment, Mo, and

load in Y-direction, mass (I) - given an initial small
Fy - F (YL/D) pertubation at the center
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Verification Model

Two problems are utilized to examine the In the General Buckling Model section, a
new model. The first problem is the lateral logic was described that followed the end
buckling of a narrow rectangular cross-section points of each spring, calculated new lengths
subjected to pure moment. The second problem and force, and found the contribution to the

* is the column buckling of an "I" beam. acceleration equations for each spring for
each time increment. In the plasticity model,

The results of the first problem are everything remains the same except for the
shown in Figure 15. The beam has the same force equation,
dimensions as in the previous section and is
simulated by 13 masses. The figure shows the F = K(AL - D).
deflection time histories of the center of the
beam for three different values of the Where K will be replaced by a nonlinear
constant externally applied moment, Mo. As relationship if the force has exceeded the
before, the center of the beam is given a elastic region.
small perturbation to get it moving. It is
obvious that buckling will occur between 90% In this model, yielding (nonlinearity)
and 110% of critical loading. It appears that will only occur in the individual
a loading of 100% critical is very close to tension/compression springs. This is
the value necessary to buckle the model. The accounted for by prescribing data such as is
predicted critical moment Is more accurate shown in Figure 16 as the initial form of the
than that calculated in the previous lateral stress-strain curves used to calculate force.
buckling problem because the effective area This data is based on information given in
moment of inertia was lower than the real Ref. [3] and is used in the sample problem for
inertia, as indicated in Table 1. this section. Permanent set is also accounted

for, thus the stress-strain curves will be
The second problem is solved using three changing throughout the simulation.

rectangular beam models connected to form an
"I" beam with seven masses per beam. The
connections between masses on different beams P KP,

is the same type (with different spring -- _
constants) as between masses on the same
beam. The model demonstrated buckling at 104%
of critical load and did not buckle at 93%.

These two problems demonstrate that the ______

*new model and logic is proper. 0 "
PLASTICITY MODEL -W :300.00011

, "Description
As mentioned in the last section, a b

general buckling model should be developed -_ :2oo.ooo ..
with forethought to elastic-plastic
phenomena. Since the general model does allow

- for an approximation of the axial stress -oo
distribution, it is possible to monitor each
spring on a mass surface so that a different ___ooo _

point and slope on the stress-strain curves
can be defined for each spring. These curves
are dynamic in that they can change during a ___

simulation due to permanent set. Logic of
this type allows for elastic and plastic 0 31 34 o3 o b
regions on the same cross section at the same
time. Fig.16 - Stress-strain-strain rate

" for plasticity model

The problem considered in this section is fc
based on an experiment performed at Brown
University (test #S12, [3]) in which a mild
steel frame, subjected to a concentrated The known quantities, logic, and
explosive pressure pulse of short duration, equations necessary to incorporate Figure 16
exhibits viscoplastic behavior during large into the model are:
deflection. The impulse from the explosion is
calculated in [3]. This impulse is used to 1. Known from the preceeding time
obtain the initial velocity of the loaded area increment
of the frame for the simulation presented in

* this section. Do (length of spring)
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0us (unstressed length of spring, F A(sr) 6DA01 (where, A is
AL + permanent set) the portion of the cross-sectional

area acted on by one spring). -
ADe (amount a spring can 

deform and

still remain elastic, this The logic is simplified when strain
comes from the E - 0 curve on rate effects are excluded.Figure 16) -

Note that shear forces and summation

2. Known from the current time increment of moments is still calculated as in
the previous section (General Buckling

0 (length of spring) Model)

3. Then, calculate the absolute value of Verification
strain rate,

Figure 17 shows a 20.32 cm (8 in) high by
- (D0 - D)/((AL)(ht)); 30.48 cm (12 in) long frame which was

subjected to an explosive charge on the center
calculate the percentage increase in steel block.
yield strain due to strain rate effects

_15.24c. 6141
a (40) "2) (refer to [3]); 6-.2ft zM t5

2.22e. (WIe.. Wg Ig~ta lbS,calculate the amount the spring may w CATwsS
deform and remain elastic based on ..- L8 SICIstrain rate effects, _T-- .

ADsr - (1. + Q) Wle; IN9 U

calculate the change in length of the Ie5,?-)lN 1-

spring from its unstressed length,

AD = Ous- D

If, 1ADI:1 Dsr , then calculate
force as F = KAD and the logic is
complete for this spring.

If, 10D frADsr, then calculate the

static yield stressT= EADe/AL Fig.17 Test setup for

And, calculate strain fI 1us - DIAL elestic-viscoplasitc problem

If,6 -- .01, set Ey = 0. (Ey = Only plane motion was considered in the
Stress/Strain). model which necessitated four springs per

face. Since symmetry was assumed, only half
If,6>.O1, set Ey = 18,333. of the frame is modeled. The vertical leg was

modeled with sixteen masses and the horizontal
Calculate the change in stress above member by eleven masses.
yield,

The results of the simulation of this
40- Ey (ADI -ADsr)A/L; event are shown in Figures 18, 19 and 20. In

Figure 18 the model strain histories at the
and, the stress with strain rate top of the vertical columns are presented
effects is, along with test results. The observed

frequencies differs by about only 10% from
(sr" (1 + Q) (O'+AMO). test, the initial buildup does not match, and
T n uti lg otthe final permanent set is within 83% of
The new unstrained length of the test. The model displacement history of the
spring is, center steel block is given in Figure 19. The v

reader will notice that the frame is still
Ousn - Dus - (IAD I -,Dsr - oscillating at time - .043 sec (there is no
("O~a,/E))ADIW I damping included in the model). Probably the
Calculate the new ADe, most important result is shown in Figure 20,

" A) LEwhich compares the final deflection of the
ADen - (a'+WY) & L/E. frame model with the test result. The final

deflection of the test is shown as a solid
And finally, the force for one spring line and the model result, shown as a dashed
is line, is obtained by averaging the residual

oscillation of the model.
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Fig.18 -Strain at gage location Fig.20 -Final deformation of frame

(top of column)

CONCLUSION

The procedures developed herein for
buckling of structures appears to have some
validity with respect to static and dynamic
buckling responses of compression members.

For computer efficiency, the first three
models should be used if the mode of buckling

- - ____________________________ is known. The general model should be used if
_________________ the buckling mode is unknown.

The yielding model shows promise but only
one comparison to test data has been attempted.

The author wishes to express his

appreciation to the M&T Co. of King of

Z -Prussia, PA, for their cooperation in
ppreparation of this paper.
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LOW ORDER DYNAMIC MODELS OF INDIAN REMOTE SENSING SATELLITE

M. Sambasiva Rao, B.G. Prakash and M.S.S. Prabhu
Structures Division, ISRO Satellite Centre,

Bangalore 560 017, India

Simple low order equivalent dynamic models of Indian Remote Sensing
Satellite (IRS) are generated. The models consist of physical elements
like springs, beams, etc., with lumped masses. Two decoupled models,
one in longitudinal and the other in lateral direction, are generated
representing the dynamic characteristics of the satellite adequately
in the low frequency range of 0-100 Hzs. A building-block approach
is followed in systematically constructing the models. First, conceptual
models are generated based on the study of load paths, modes of vibration
etc., from a detailed finite element analysis of IRS already made. The
important spacecraft subsystem models are derived by simulating their
base-fixed modes of interest using equivalent physical single degree
of freedom systems by matching the frequencies and modal effective
masses. This required a new approach in representing subsystems with
multi-node interfaces for their equivalent masses and forces. Lastly
the subsystem models are assembled and interface elements are tuned
to match with the basic dynamic behaviour of IRS as observed from
detailed finite element analysis. The dynamic models so constructed
are used in the coupled dynamic analysis of the spacecraft and the launch
vehicle and the design loads of spacecraft are refined. Also the models
are used in carrying out many parametric studies to obtain changes
in the dynamic behaviour of the spacecraft with design changes.

I. INTRODUCTION than in actual flight. Realistic simulation
of such base impedence in tests using a vibrator

A spacecraft is subjected to the most severe system is still in the infancy [2] and overtesting
- environment of its mission during the launch is generally controlled by 'notching' the input

phase and it depends on the vehicle and spacecraft based on the results of detailed coupled analysis.
dynamics and their interaction. Since this inter-

• action cannot be obtained before the spacecraft Dynamic models of spacecrafts developed
design is completed, an initial estimate of the for launch vehicle/spacecraft coupled analysis
design loads of the spacecraft is arrived at should possess some desirable characteristics
by performing a coupled dynamic analysis of which are the outcome of the functional needs
the spacecraft with the vehicle assuming the of these models. Firstly, in the initial stages

, spacecraft to be a rigid mass. Alternatively, of a spacecraft project, not only design loads
previous experience with other similar spacecraft are approximate, but also there could be choices
launched with the vehicle is also used in defining in the launch vehicle. The design of the space-
the initial dynamic environment for the spacecraft. craft itself will not be available in all details.
However, a better load definition is obtained To work within these constraints, the dynamic
by carrying out a detailed coupled analysis of model of the spacecraft should be as small

i launch vehicle and spacecraft using the flexibility as possible to be cost effective in conducting
characteristics adequately (1]. The results of repeated analyses for accurate load definition
this coupled analysis then provide the refined with different environments. The small size
loads useful for validating/improving the design also helps in carrying out parametric studies

of the spacecraft and its subsystems. Further, with respect to the spacecraft design. Secondly,
during the qualification tests, since the spacecraft it is desirable that the model be built up from
is tested as a base-fixed system as against the simple physical rather than mathematical
flexible support provided by the vehicle in flight, elements to simulate important subsystems.
the spacecraft loads would be generally higher Mathematical elements are nothing but condensed
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stifness and mass matrices which may correspond of low order dynamic models of Indian Remote
to physical and/or modal coordinates. The Sensing (IRS) Satellite. IR. is a first step
choice of physical elements mainly helps in in evolving an operational spacecraft to obtain
identifying a major subsystem in the model, timely, reliable and accurate information in
in computing loads on the subsystem straight the fields of agriculture, hydrology and geology
away from coupled analysis and in directly for the natural resource management system.
linking changes in dynamic model to frequent It is a sun-synchronous 3-axis stabilised system
changes in the design of the subsystem early scheduled for launch in 1986. Two decoupled
in the project. Thirdly, the model should satis- models of IRS representing the longitudinal
factorily represent the flexibility characteristics and lateral behaviour of the spacecraft are
of the spacecraft and the subsystems in the developed as required by the launch vehicle
low-frequency spectrum of interest (generally authorities.
0-100 Hzs range). Fourthly, it is preferable
to develop models separately in longitudinal The development of equivalent dynamic
(along vehicle axis) and lateral directions. This models of IRS started with a conceptual model
follows from the fact that most of the launch evolved on the basis of load paths, and location

* vehicles are axi - symmetric in nature and of major subsystems in the actual spacecraft.
their models are generated decoupled in longi- The results of static and free vibration analysis
tudinal and lateral directions. of a large detailed finite element model of

the spacecraft [9] also provided an important
The use of simple low order dynamic models data in arriving at the conceptual model.

for spacecraft structures is well recognised Each important subsystem is represented in
in literature and some procedures are available the model by one or more of its base node(s)-
[3-7] for generating such models. Of all these fixed elastic modes, simulated by an equivalent
procedures, the approach which uses modelling simple single d.o.f. system like a spring-mass
of important modes of a subsystem by equi- or a beam with a lumped mass. The selection
valent single degree of freedom systems is of modes retained for representing a subsystem
the most attractive. These principles were is based on their effective masses, obtained
applied at complete structural system level, from a detailed analysis of the subsystem.
in a previous paper [8], to derive an equivalent The subsystem models thus generated are
low order dynamic model of METEOSAT space- then connected in such a way that the complete
craft. The spacecraft had a single (statically model can represent the overall behaviour
determinate) interface node with the APPLE of IRS spacecraft as observed in the global
spacecraft at' .,.ched to it and the dynamic modes of free vibration analysis of detailed
model was built using spring-mass systems finite element model. To account for the joint
and cantilever beams, carrying tip mass and flexibility between subsystems, flexible springs
inertia. The equivalent single d.o.f. system are introduced at nodes corresponding to the
for a mode is obtained by matching the 'effective interfaces. The stiffness of these springs are
mass' (when a structure is subjected to base initially assumed based on the properties of

' acceleration, the reaction forces/moments actual elements joining the subsystems. Later
developed at the base can be expressed as they are tuned so that the results of the dynamic
a series summation where each term represents model match with the results of detailed finite
the contribution from a base restrained elastic element analysis. Except for the sizing of
mode of the structure which, in turn, is given various physical elements used in the dynamic
as a product of base input acceleration, a transfer model, the entire configuration of the model
function and a characteristic mass associated is visualised at the conceptual model stage
with the mode called 'effective mass'. The itself.
modal effective mass is a square symmetric
matrix corresponding to base d.o.f. and is inde- The IRS dynamic models thus developed
pendent of the type of normalisation performed are used in the coupled analysis of launch vehicle
on the mode) and natural frequency of the and spacecraft. The refined design loads are
particular mode with the corresponding quantities generated and used in validating the spacecraft
of the model. As the sum of the effective design adequacy. Test specifications for the
masses of all modes of a structure is equal spacecraft and its subsystems are suitably modified.
to its total mass it is necessary to represent The simple dynamic models are also utilised
in the model only such modes which have signi- in several parametric studies aimed at improving
ficant effective masses in relation to the rigid spacecraft design.
mass. The contribution of left out modes is
represented by a so called rigid 'residual' mass. 2. DETAILED FINITE ELEMENT ANALYSIS
These effective mass principles are so far OF IRS STRUCTURE
used in modelling structural systems having
single node at the 'base' or interface with 2.1 Description of the structure
another system. Generally, spacecraft subsystems
have multi-node interfaces with other subsystems A brief description of IRS structure is
and some important modifications are needed given here for the purpose of an easy understanding
before effective mass concepts can be used of the modelling of the structure. Fig.l shows
to model such subsystems. a disassembled view of the spacecraft indicating

the major structural elements and suosystems.
The present paper describes the generation The structure basically consists of
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(a) a box like structure made up of four vertical with the condensation of relevant boundary
decks VI, V2, V3 and V4 and two horizontal degrees of freedom at substructure level, is

decks at the top and bottom. All the decks used to define 'hinges' at relevant nodes in
are of honeycomb construction and carry the required directions. Fig.2(a) shows the
subsystem packages. They are connected disassembled view of the finite element idealisation
to each other all along their common edges of the IRS structure showing various constituent
by a framework of angles. substructures. The sketch does not show all

the elements but shows only a selective view
(b) a main cylinder stiffned internally by 20 corresponding to dummy flange elements introduced

longitudinal stiffeners forming the major for ease of understanding and clarity in plotting.
load transfer path. The top of the cylinder
is attached to the top deck through a stiffening The detailed finite element model has
ring (angle) and the bottom is attached a total of 2419 effective degrees of freedom
to the bottom deck. There is an intermediate out of which 1406 d.o.f. are condensed out
ring (channel) which provides circumferential at the substructure level and the remaining
stiffening to the cylinder around the middle 1013 are carried to the main structure assembly.
level. Whereas all the main structure equations are

straight away used for static displacement
(c) an interface ring (channel) with its top and stress analysis, a further static condensation

attached to the bottom of the cylinder, to the level of 485 d.o.f. (retained) is carried
Its bottom interfaces with the launch vehicle out for free vibration analysis. Mass and inertia
at 4 points through lugs. properties of IRS spacecraft computed using

this model are given in Table l(a).
(d) an RCS deck (honeycomb) located midway

in the cylinder and attached to the inter- Results obtained for the first 35 system
mediate ring through 20 support brackets. frequencies (upto 100 Hz) are given in Table
This deck carries fuel tanks and other 1(b) along with brief description of modes of
RCS elements for the control of the space- vibration. Of these, the first three modes
craft. correspond to the global modes and are shown

graphically in Fig.2(b,c,d). The remaining are
(e) four main struts connecting the cylinder mostly local subsystem modes. These results

assembly with the bottom deck. They are carefully studied before deciding on which
run between the intermediate ring and global and local modes should be represented
the bottom deck corners with pin-jointed in the low order dynamic models of IRS. Clearly

ends. In addition to main struts there the dynamic model must be able to represent
are 3 secondary struts on either side of the fundamental global longitudinal and lateral
the cylinder connecting the vertical decks modes and also the important modes of major
V2 and V4. subsystems like top and bottom decks, vertical

decks, RCS deck, etc., which fall within the
The global axes system followed throughout frequency range of 0-100 Hzs. Though it is

the analysis work is shown in Fig.]. observed that there are several modes which
come under this category all are not equally

2.2 Finite Element Analysis important. The question of finding out which
of these modes are really important is sorted "

A detailed dynamic analysis of the space- by performing a free vibration analysis of each
craft structure is carried out by the application major subsystem for its base-fixed modal effective
of finite element method using static condensa- masses and is discussed in a later section.
tion procedures available in the general purpose
finite element software package ASKA. This 3. DEVELOPMENT OF DYNAMIC MODELS
work forms a part of detailed static and dynamic OF IRS
analysis of the satellite structure carried out
by our entire group. Only relevant details 3.1 Conceputal Model
needed for the purpose of this paper have
been extracted from Ref.[9). The IRS structure First an attempt is made here to evolve
which is divided into 21 substructures is idea- an equivalent low order dynamic model
lized by space frame and flat-shell elements. for IRS, conceptually. This forms an important
Structural elements such as stringers, stiffener step because as pointed out earlier, the complete
rings, main and secondary struts, etc., are framework of the model is frozen at this stage.
idealized by space frame elements which have It includes identifying major spacecraft suosystems
the capability to account for eccentricity to be represented in the model, simulation
between a node and centroid of the beam. of these subsystems by simple equivalent single
The cylinder and other honeycomb panels d.o.f. systems with the provision that they
are idealized using flat-shell elements which can be easily modified later to accommodate
incorporate the distance between face sheets the subsystem design changes and assembling
of the honeycomb element, but the effect the models of the subsystems to represent
of the core material is not included. Local the overall behaviour of the spacecraft. The
coordinate systems (different from global physical nature of the spacecraft as per the
system) have been appropriately defined at structural design and the various equipment
many nodes of the structure, This, together deck layouts and results of static and free
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vibration analysis of detailed finite element V2 or V4 and is obtained by matching the effective
model provide the necessary information to mass and natural frequency of the corresponding
form the conceputal model. The next logical mode. The modes selected for simulation in
step is the estimation of the stiffness values the model are based on the frequency range
of various physical elements and nodal masses of excitation, here 0-100 Hzs, and the relative
to be used in the model. This is followed by value of modal effective mass as compared
tuning these values to match the behaviour to the subsystem rigid-mass. After accounting
of the dynamic model with that of the detailed for such 'dynamic masses' of the deck in this
finite element model. The entire procedure way, the residual or 'static mass' is lumped
of obtaining simple low order models starting at the base or supports of the deck, such that
with a conceptual model is shown in the flow the centre of gravity of the model remains
chart in Fig.3. same as that of the subsystem. The parallel

beam arrangement for a subsystem has the
The mass distribution on IRS structure advantage that any future modifications in

indicates that the vertical decks V2 and V4 that component can be easily accommodated
are heavier than VI and V3 and a sort of symmetry in the model without affecting the other compo-
exists about the plane YZ (Fig~l). The symmetry nents.
can also be seen from the data given in Table
I. Therefore the plane YZ is chosen for repre- The stiffened cylinder and the interface
senting the dynamic characteristics of the ring are mainly stiffness elements, their mass
spacecraft in the small order model. The symmetry being quite low. From the first and second
also helps in reducing a complex 3 dirensional modes of vibration of IRS as seen from the
%tructural system into a 2 dimensional system. results of detailed analysis, it can be concluded
Further, the design and detailed analysis of that the cylinder behaves more like a cantilever
the spacecraft, allow generation of two separate beam. The cylinder aspect ratio i.e., length
decoupled models for representing longitudinal to diameter, being small (of the order of I)
and lateral behaviour, further reducing the it is necessary to include both bending and
size of each model. transverse shear deformations in the beam

model used for simulating the cylinder. Thus
(i) Model for lateral vibration the cross sectional moment of inertia of the

cylinder due to lumped areas of the various
When the structure vibrates in the YZ stringers on the periphery and alsu tne shape

plane in the lateral direction (Y), it is reasonable factor, given as the ratio of average to maximum
to assume that the decks VI, V3, top and bottom shear flow in the cylinder cross section when
decks act like rigid members. This follows subjected to transverse shear force, are computed
from the fact that the equivalent in-plane and incorporated in the beam model as the
stiffness of the honeycomb decks is much larger initial estimates. As both top and bottom decks
than the bending rigidity. Thus only V2 and are quite rigid in lateral (Y) direction, the
V4 decks participate as elastic riembers in beam model of the cylinder can be directly
the vibration of box-like structure (see 2.1) connected to the middle points of rigid beams
and need to be modelled. The boundary condition representing the top and bottom decks as shown
for these decks correspond to a case in between in Fig.4.
all edges simply supported (SSSS) and all edges
clamped (CCCC). Top, bottom, VI and V3 The main struts connect the cylinder and
decks being quite stiff in their own planes the bottom deck. As the bottom deck is assumed
provide a simply supported condition along to be rigid in the lateral dynamic model, the -'

the edges of V2 and V4. The angle members flexibility of main struts need not be represented.
running all along the edges of the box provide On the other hand the secondary struts which
restraint against edge rotation whose magnitude connect the main cylinder with V2 and V4 are
depends upon the torsional rigidity of the angles. mainly stiffness elements and coinsiderably
This is also supported from a review of detailed affect the vibration of the decks. The struts
finite element analysis results [9]. However, are long, slender and pin-ended. These charact-
to start with, this rigidity can be neglected eristics of the struts enable us to simulate
and V2 and V4 modelled as SSSS decks mainly them by equivalent linear springs in the dynamic
from the point of view of convenience. Finally model, as shown in Fig.4. The detailed analysis
by using flexible torsional springs (with one results also support this as no significant bending
end grounded) at the edges, suitable edge conditions of the struts is observed.
can be simulated. In addition it is assumed
that secondary struts also provide a point support The RCS deck is one of the heavy and
to the decks at the place of their attachment. major subsystems in IRS. The mass distribution
Now V2 and V4 can be modelled oy beam mass on this deck is such that it has a larlse moment
systems ABC and DEF respectively as shown of inertia about the middle plane of the deck.
in Fig.4, using the principles indicated in Appen- Consequently, whether IRS is vibrating in lateral
dix . Each beam mass system (ABC or DEF) or longitudinal direction RCS deck undergoes
consists of one or more parallel beams having out-of-plane vibration, based on modal effective
a lumped mass or inertia. Each beam is an masses, suitable equivalent spring mass systems
equivalent single d.o.f. representation of an are constructed to model the RCS deck bendviour
important base-fixed elastic mode of the deck in spacecraft lateral vibration. The RCS subsystem
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model is represented by 13 in Fig.4. sations similar to the ones employed in
the detailed structural analysis of the spacecraft.

Fig.4 thus shows the conceptual dynamic General purpose structural analysis program
model of IRS in lateral direction developed ASKA is extensively used in these analyses
as explained above, and the details of the results are discussed

here.
(ii) Model for longitudinal vibration:

(i) The main cylinder: The stiffened cylinder
When the spacecraft vibrates in the YZ is divided into two elements cutting it off

plane in the longitudinal direction (Z), all the at the level of RCS deck. The cross section
vertical decks VI, V2, V3 and V4 behave like of the cylinder is simplified as a thin shell
rigid elements and only the top, bottom and with lumped areas corresponding to stringers
RCS decks need simulation in the dynamic on its periphery. The equivalent spring constant
model as elastic members as far as the box- of each element representing the cylinder in
like structure is concerned. The vertical decks the longitudinal direction is computed from
provide simply supported edge conditions for the cross sectional area and length. Similarly
the top and bottom decks. The cylinder also the moment of inertia of the beam element
provides a simply supported condition for top used for simulating lateral vibration characteri-
and bottom decks all along its interface. This stics of the cylinder is obtained from the second
is due to the fact that the vertical decks and moment of the lumped areas on the simplified
the cylinder are relatively stiff in the longitudinal cross section. The shape factor KT is also
direction. As in the lateral model, equivalent calculated for the beam (.312) as the ratio
parallel beam-mass systems are generated for of average and maximum shear flows in the

* top and bottom decks. These systems have cylinder when it is subjected to a transverse
4 point supports as indicated by AbCD and symmetric load. To check the adequacy of
EFGH in Fig.5 for top and bottom decks respect- the beam model in the lateral direction, both
ively. Again flexible torsional springs are provided the detailed finite element model and the equi-

at the support points to account for the rotational valent model of the cylinder are subjected
restraint generated by stiffening members to unit tip load with their base clamped.
like angles and channels running all along the The displacements obtained indicated goo-
interface edges of these decks. matching. The uniformly distributed mass

of the cylinder is lumped at the 3 nodes in
From the first mode of vibration of the the model using a lumped mass approach.

IRS structure as indicated by the detailed analysis
it can be observed that it involves the vibration (i) The struts: The main struts (2 Nos. on
of only vertical deck assembly moving parallel either side of cylinder) and the secondary struts
to cylinder axis, the cylinder periphery providing (3 Nos. on either side of the cylinder) are assumed

" support for both top and bottom decks. This to behave like uniform rods. Thus they have
' behaviour cannot be represented by the dynamic only axial stiffness based on their cross sectional
" model if we connect by linear elements the area and length and are located in different

middle points of top and bottom decks as is directions. Their effective spring constants
done in the lateral model. An intermediate are computed taking into account their new
support corresponding to the actual periphery length and number (one on each side of the
of the cylinder should be provided in the model cylinder) of springs representing them in the
for the top and bottom decks. To achieve dynamic model. Only main struts are simulated
this objective, the cylinder is modelled by equi- in the longitudinal model and only secondary
valent linear springs and joined with the top struts are simulated in the lateral model.
and bottom decks as shown in Fig.5.

(iii) The RCS deck: The detailed finite element
In the longitudinal vibration, the secondary idealisation of RCS deck is used with its bounaary

struts do not play any role as they are connected simply supported in obtaining its free vibration
to the vertical decks which are assumed to frequencies and the effective masses of the
be rigid. The main struts, however, are simulated corresponding modes. because of the multinooe
by equivalent linear springs joining the middle interface of ItCS deck the total reaction force
of the cylinder with ends of bottom deck. transmitted to the base when the entire base
The RCS deck is again simulated by an equivalent is subjected to unit longitudinal acceleration
spring mass system as in the lateral case and is computed as effective mass of a mode in
is identified by 13 in Fig.5. the longitudinal direction. Knowing this mass

and the corresponding frequency in the longitudinal
The complete conceptual dynamic model direction, the mooe is simulated in the model

- of IRS derived using the above ideas is shown by a spring-mass system where the mass equals
in Fig.5. the effective mass. A similar approach

is followed in the lateral case also. The details
3.2 Simulation of subsystems of RCS deck analysis are shown in Table 2(a).

It is found necessary to simulate only one mode
In order to determine the physical properties each in the longitudinal as well as in the lateral

of various elements visualised in the conceptual models. The rest of the mass of the subsystem
model, the major subsystems are analy sed after subtracting the 'dynamic mass' is lumped
individually using detailed finite element ideali- at the base of the RCS model which corresponas
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to middle point of the cylinder, models are developed with the assumption that
their interfaces with other subsystems are

(iv) V2 deck: In the longitudinal model, V2 simply supported. This is mainly done because
deck is simulated by linear springs of large it is easy to simulate them by simply supported
stiffness to represent its rigidity. Its rigid multi-span beam-mass systems. But, in the
mass including that of the solar panels, is lumped actual structure, at these interfaces, stiffening
at both the ends of the spring such that the members like rings, channel or angle members
centre of gravity is at the same level as that exist which apply some constraint against the
obtained in the detailed analysis of V2 deck. rotation and this must be taken into account
For obtaining the equivalent beam-mass models in dynamic models also. For this purpose flexible
of the deck to represent its out of plane behaviour, torsional springs, with one end grounded, are
modal effective masses of the deck are computed included at various interface nodes in the dynamic
with respect to the 3 lateral support d.o.f. models. Though the stiffness values of these
corresponding to top and bottom decks and springs can be estimated fairly well from the
secondary struts. Because of statically indeter- cross sectional geometry of the corresponding
minate nature of the beam in this case, effective members in the spacecraft, such an exercise
forces corresponding to unit lateral base accele- is not done and instead they are all initially
ration are matched between the modal model assumed to be high. The reason for following
and the deck by a trial and error procedure this procedure is this: the various local modes
in addition to matching the natural frequencies. of subsystems simulated in the model can oe
The results of the free vibration of V2 deck adjusted to match with the appropriate frequencies
are shown in Table 2(b). An example calculation obtained in the detailed finite element analysis
for the equivalent beam-mass representation by suitably altering the stiffnesses of these
of the deck mode is given in the Appendix. torsional springs. This is true not only for

local modes but for global modes too, which,
(v) V4 deck: The procedure adopted for obtaining however, may need tuning of some beam or
equivalent models for this deck is similar to linear spring elements also.
that of V2 deck and the results of free vibration
of V4 deck are included in Table 2(c). First we look at the tuning of frequencies

of longitudinal model of IRS (Fig.6), which
(vi) VI and V3 decks: Their total mass is requires simulation of the overall longitudinal
simulated in the models at the four corners mode 3 (Table 1) of the spacecraft, the RCS
corresponding to the edges of top and bottom deck mode 7 and top deck mode 15. The first
decks, such that the CG is properly represented. mode is a global one and the latter two are

local. It is also clear that adjusting slightly
(vii) Top and bottom decks: In the lateral any of these frequencies does not seriously
model these are represented as rigid beam affect other ones. Thus tuning of each frequency
members. In the longitudinal model the top can be done almost independently. The RCS

. deck is simulated by a beam supported at four mode is represented by a linear spring, element 6,
points and carrying a mass; and the bottom in the low order model and its frequency can
deck by 2 identical beams* supported at two be manipulated through its spring constant.
points and carrying lumped masses. Again There are 8 torsional springs, elements 7-14,
effective longitudinal base forces for unit base in the model which can be used for adjusting
acceleration are considered for modelling these the other two frequencies. Considering that
beams. The results of the free vibration analysis symmetry has to be maintained about Z-axis

* of top and bottom decks are shown in Tables 2(d) because of the nature of the model, the effective
- and 2(e) respectively, torsional spring stiffnesses at our disposal reduce

to four. Further, it is easy to visualise that
(viii) Interface ring: The interface ring is the global longitudinal mode frequency is sensitive
treated as an extension of the stiffened cylinder to the spring stiffnesses of elements 11-14
and the same spring and beam characteristics and the top deck frequency to those of the
as that of the cylinder are used in representing remaining torsional springs, viz., elements
it in the dynamic models. 7-10. The size of the model being small (21

d.o.f.) the trial and error procedure which can
(ix) Interface joints: At all the nodes corres- be used for tuning the stiffnesses of these
ponding to subsystem interfaces, flexible torsional torsional springs to adjust the two frequencies
springs, with one end grounded, are introduced of the model is not a difficult task. *e now
to realistically account for the joint flexibilities. turn our attention to tuning the lateral model
To start with, these spring constants are set (Fig.7) frequencies of IRS. The global lateral
to high values. mode I can be adjusted by altering the bending

rigidity of the adaptor simulated by beam element
The final longitudinal dynamic model of 8 in the model. The first lateral mode of

IRS constructed using the subsystem model V4 deck i.e., mode 12 can be adjusted through
data is shown in Fig.6. Similarly the lateral torsional springs 6 and 7. Similarly the second
model is shown in Fig.7. lateral mode frequency of V2 deck can be

manipulated through tursional springs 4 and
3.3 Tuning of the dynamic models 5. RCS deck frequency,(node 13)can be corrected

by altering the linear spring stiffness of element 3.
It may be recalled that most of the subsystem Trial and error procedure can be easily employed
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in tuning the lateral model element stiffnesses 4. SOME PARAMETRIC STUDIES USING IRS
also as the size of the model again is quite DYNAMIC MODELS
small (21 d.o.f.).

The small order dynamic models of IRS
Thus the trial and error procedure of adjusting derived in this paper are very useful for performing

the various stiffness constants is effected till parametric studies to improve the design efficiency
a satisfactory tuning of important global and of IRS structure. Three such studies conducted
local mode frequencies of the dynamic models are reported here. The first one is a study
with those of detailed analysis of the structure on the design adequacy of the structure to acco-
is achieved. However, it is ensured that the mmodate possible increase in the payload at
final values of torsional spring constants are a later stage. The second one relates to raising
within the range of actual torsional stiffnesses the overall longitudinal frequency of the space-
of interface members and are not mathematical craft and the third one aims at improving the
adjustments. design of secondary struts which mainly influence

the behaviour of vertical decks.
3.4 Dynamic Models of IRS

The IRS payload being a very heavy package
Complete details on stiffness parameters (175 Kgs) situated at the top of the spacecraft

of various elements, nodal mass distribution, (on the top deck) exercises considerable influence
mass and inertia properties and natural frequencies on the natural frequencies and stress levels
corresponding to the tuned longitudinal dynamic of the overall spacecraft. The present position
model of IRS (Fig.6) are given in Table 3. of the payload is such that most of its mass
Similar details on lateral dynamic model (Fig. 7) is located directly on the main cylinder. This
are presented in Table 4. A good matching has a large influence on the fundamental frequency
of results obtained using the detailed finite of the spacecraft in the lateral direction but
element model and low order models developed not much in the longitudinal direction where
in this paper can be seen by comparing Table I the top, bottom and vertical decks move parallel
with Tables 3 and 4. For ready reference this to the cylinder axis. If the payload position
exercise is shown in Table 5. is altered such that its mass is uniformly distri-

buted on the top deck, it will affect the funda-
The dynamic models of IRS generated mental longitudinal frequency significantly.

here mainly took into account the constraints The frequency constraints imposed by the vehicle
imposed by the vehicle authorities. Consequently, on the spacecraft are 15 Hzs in lateral direction
two decoupled models, one for longitudinal and 30 Hzs in longitudinal direction. With the
behaviour and the other for lateral behaviour present payload configuration, the spacecraft
are developed. Thus a complex structure with has a fundamental lateral frequency of 25.7
mass distribution in 3 dimensions is reduced Hzs and a longitudinal frequency of 36.7 Hzs.
to a simple model in 2 dimensions. This has Thus there is a good margin available with respect
been possible due to the symmetry in the structure to lateral frequency constraint but is somewhat
and its mass distribution in IRS. A plane with close in the longitudinal case. So it is desirable
heavier mass is therefore considered for modelling, to maintain the longitudinal frequency atleast
But in the process, the dynamic behaviour at the present level even if there is a change,
in the other perpendicular plane (corresponding in future, in payload mass and its distribution.
to VI, V3 deck vibration) of IRS and also its With this in view, a study has been made, using

* torsional vibration characteristics could not the low order longitudinal dynamic model of
* be simulated in the model. But it is easy to IRS, to see how the spacecraft frequencies

see that all these aspects can be incorporated and stresses due to static acceleration loads
in the model if 3 dimensional low order dynamic change with payload mass changes. The height
model is generated again using the same principles of the centre of gravity of the payload from
of this paper. This work is currently in progress. its base is assumed to vary proportionally with

its mass. Suitable design changes are proposed
It is appropriate here to mention some to improve the situation where needed. Details

of the limitations of the procedures mentioned of the results of the study are presented in
in this paper in deriving equivalent low order Table 6.
dynamic models of structures. Simulation of
modes of structures with single base node by From the design of the IRS structure and
equivalent single d.o.f. systems is straight the free vibration analysis results it is clear

" forward but it is not so when the base has that the main struts play an important role
multiple nodes (or statically indeterminate), in deciding the overall fundamental longitudinal
In the present paper a trial and error procedure frequency of the spacecraft. It is also reasonable
is successfully employed in obtaining equivalent to assume that changing the area of cross section
models for some systems with more than one of the main struts (thereby altering their stiffness)
base node. Though it is found that in such is the best way to control the fundamental
cases it is possible to generate simple single longitudinal frequency of the spacecraft. Thus
d.o.f. systems, some more effort is needed a study of the variation of this frequency with
to evolve a general procedure for systematically respect to the main strut area is conducted
obtaining simple models for structural systems using the longitudinal low order dynamic model
with statically indeterminate interfaces, of IRS. The results of the study are shown

graphically in Fig.8. The present design area
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for the main struts is taken as the base value design changes. Currently the models are con-
(100%). The study revealed that there is consider- structed in 2 dimensions, mainly due to constraints
able scope to raise the longitudinal frequency from the vehicle side, but generalisation to
of the spacecraft by changing the area of the 3 dimensions is straight forward.
main struts. The frequency is observed to
vary almost linearly with respect to the strut ACKNOWLEDGEMENTS
area in 100% to 300% zone.

The authors gratefully acknowledge the
Finally a study is carried out, using the efforts of all members of Structural Analysis

low order lateral dynamic model of IRS, to Section whose structural analysis of IRS has
estimate the variation of the fundamental been used in this work. The authors thank
frequency of V4 deck with respect to the cross Mr. A.V. Patki, Director, Mechanical Systems
sectional area of the secondary struts (see Group, for his encouragement and help during
Fig. 9). The present design value for strut the course of this work. Thanks are also cue
cross sectional area is taken as base value to Dr. P.S. Nair, Head, Structures Division,
(100%). From Fig.9 it can be seen that the and. Prof. S. Durvasula, Aerospace Engineering
area of the secondary struts can be reduced Department, Indian Institute of Science, Bangalore
to about 60% of the present value without for their useful suggestions.
any appreciable change in the frequency of
the V4 deck. REFERENCES

5. SUMMARY AND CONCLUSIONS 1. A. Girard, J.F. Imbert and M. Vendrenne,
"Payload Dynamic Behaviour Study on the

In this paper, equivalent dynamic models Ariane Launcher", Paper presented at Inter- I
are generated for Indian Remote Sensing Satellite national Astronautical Federation (AF) XXVIIIth
(IRS). They are of small size, decoupled in Congress, Prague, 25 Sept-l Oct, 1977.
longitudinal and lateral directions, consist of
physical elements and are built-up from important 2. A. Girard and S. Michel, "Launch Vehicle
subsystem models. They represent the flexibility Simulation For Uniaxial Vibration Testing
characteristics of the spacecraft in the low of Satellites", ESA Journal, 1982, Vol.6,

. frequency range and also the rigid body properties PP 439-448.
like mass, centre of gravity, inertia, etc.
The advantage of having small order dynamic 3. H.N. Abramson, Ed. "The Dynamic Behaviour
models of structures using physical elements of Liquids In Moving Containers", 1966,
are emphasised here and a method for generating NASA-SP-106.
such models is illustrated through IRS. It may
be noted that the method, however, is quite 4. R.M. Bamford, B.K. Wada and W.H. Gayman,
general, can be used in other structural systems 1971, "Equivalent Spring mass Systems for
too and not restricted to spacecraft application. Normal Modes", Jet Propulsion Lab., Calif.,

TM: 33-380.
Subsystem models in this paper are derived

by simulating the important base-fixed modes 5. J.F. Imbert and A. Mamode, 1977, "The
by equivalent single degree of freedom systems. Effective Mass Concept in base Excitation
This sort of simulation is easy for subsystems Dynamics and Its Application to Sular Array
with single base node where the modal 'effective Dynamics", Proc. of NASTRAN Users' Confere-
mass' and frequency can be matched. But nce, Munich, MacNeal Schwindler Corporation
in a spacecraft where most of the subsystems Ed.
have multi-node bases a different approach
is required for modal simulation. In such cases 6. F.H. Wolf and A.J. Molnar, 1978, "Reduced
the 'effective forces' at the base for unit base System Models Using modal Oscillators For
acceleration are matched by trial and error Subsystems (Rationally Normalised Modes),
procedure. This procedure requires further Shock and Vibration Bull., No. 48, Part 1,
standardisation and is being attended to. These PP 111-118.
concepts are incorporated in the general purpose
finite element structural analysis program ASKA 7. M. Sambasiva Rao, P.S. Nair and S. Durvasula,
(see Fig.10) and used extensively in IRS subsystem 1980, "Effective Mass And Its Application
model generations. to Vibration Problems", ISRO Satellite Centre,

Bangalore, India, Report No. 21-80-07-05-012.
The dynamic models of IRS are used in

the coupled analysis of the spacecraft with 8. M. Sambasiva Rao, P.S. Nair and S. Durvasula,
the launch vehicle. This has resulted in refined "Equivalent Dynamic Models For Spacecraft
load levels which are used in validating and And Its Subsystems", Paper Communicated
improving the design of the spacecraft and for Publication in ESA Journal.
also in its qualification tests. Being small
and representing the spacecraft behaviour accu- 9. Structural Analysis Section, April 1983,
rately in the low frequency zone, the dynamic "PDR Oocument on Structural Analysis of
models are found to be very convenient in IRS", ISRO Satellite Centre, Bangalore,
parametric studies carried out to predict changes India, Report No.IRS-ISAC-21-83-04-05-019.
in the dynamic behaviour of spacecraft with

136..

V9 I" Z*%, 10, . -1 0

%. % %

-.- %-%.U %u 7-,.- % .= . 4 '.%.- - .- ,- U•* .* .. . .... ............. .. ,
.'-. *---', ' '.'l-'; *-. "-". " " 

, ." " " " "' .."" " "- "- - "- "- "- "-. •. " ."-" "- ." . " . '



-A..!IL1I 2F -.ZM ~LiW.1 IF. -K T-17 W'v~.r. ~-..

TABLE I

Free Vibration Analysis Results of IRS Using Detailed Finite Element Model

(a) Mass and Inertia Properties

Structural Mass in KgS 150.6

Total Spacecraft Mass in Kgs 876.4

Centre of gravity location in M X 0.0092

(From the base of spacecraft) Y 0.0129 -

Z 0.8570 .

Moments of Inertia about spacecraft
base in Kg MIxx 11.03E+3

I y0.99E+3
yy

I 0.41E+3

Ixy = 0.19E+2

y yz -0.IIE+2

I z-0.12E+2zx

(b) Natural Frequencies and Modes

" Mode No. Frequency Mode Descriptionin Hzs

1 25.6 Lateral (Y) Global Mode

2 26.6 Lateral (X) Global Mode
3 36.2 Longitudinal (Z) Global Mode
4 45.0 Local Solar Panel Mode

. 5 45.6 Local Solar Panel Mode
6 46.0 Local Solar Panel Mode ,-
7 46.5 Lateral Mode of VI and RCS Decks
8 47.0 Lateral Mode of VI and V3
9 48.1 Lateral Mode of VI and V3
10 49.6 Solar Panel Assembly Mode
11 49.6 Solar Panel Assembly Mode
12 54.3 V4 and Solar Panel Assembly Mode
13 57.6 Antisymmetric Bending Mode of RCS and Global Torsion
14 60.1 Solar Panel Assembly Mode .
15 61.1 Combined Mode of Top Deck and Solar Panel Assembly
16 62.2 Solar Panel Assembly Mode 5.

17 62.7 Solar Panel Assembly Mode S.

18 63.8 Solar Panel Assembly Mode
19 65.9 Solar Panel Assembly Mode
20 67.2 Solar Panel Assembly Mode
21 68.8 Solar Panel Assembly Mode
22 70.2 Combined Mode of Vertical Decks, RCS and Solar Panel Assembly
23 72.1 Combined Mode of Vertical Decks, RCS and Solar Panel Assembly e
24 78.9 Combined Mode of Vertical Decks, RCS and Solar Panel Assembly
25 82.5 Combined Mode of RCS and V4
26 84.9 Solar Panel Assembly Mode
27 85.2 Solar Panel Assembly Mode
28 85.5 Combined Mode of Solar Panel Assembly and Vertical Decks VI and V3
29 86.2 Combined Mode of Solar Panel Assembly and Vertical Oecks V1 and V3 -

5,
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Table I (continued)

(b) Natural Frequencies and Modes

Mode No. Frequency Mode Description~in Hzs

30 89.3 Combined Mode of Solar Panel Assembly and Vertical Decks VI,V3 and V4
31 89.3 Local RCS Deck Mode
32 93.9 Local Solar Panel Assembly Mode
33 94.3 Local Solar Panel Assembly Mode
34 96.9 Local Solar Panel Assembly Mode
35 97.4 Local Solar Panel Assembly Mode

TABLE 2

Free Vibration Analysis Results of IRS Subsystems
(using detailed finite element models with simply supported base conditions)

(a) RCS Deck (With Fixed Base) (Total Rigid Mass 103.94 Kgs)

Mode No. Frequency Total Effective Force (Mass)in Hzs in Kgfand its Direction

1* 55.22 20.56 (Q)
2 63.24 0.0
3 73.46 91.81 (X)
4* 75.56 69.46 (Y)
5 87.25 8.34 (X)

(b) V2 Deck (Total Rigid Mass 73.94 Kgs)

Mode No. Frequency Effective Mass Matrix (Ks) Effective Force Total Effe-Mode in Hzs g Vector(Kgf) ctive Mass(Kgs)
(Y) (Y)

15 1.2 5 j0.843 -0.116 1.7431 2.471 7.24"%'0.116 0.016 -0:239 039

Li.743 -0.239 3.6021 5.106

2* 68.85 F7.096 -0.913 9.876] 16.059 36.34
1-0.913 0.117 -1.271 2.067]
L9.876 -1.271 13.745 L22.35

(c) V4 Deck (Total Rigid Mass 88.46 Kgs)

Effective Force Total Effe-
Mode No. Frequency Effective Mass Matrix (Kgs) Vector(Kgf) ctive Mass(Kgs)

in Hzs()(y,-..(Y) (Y),

4, 46.70 6. 437 0.468 12.016 [ 18.92,1 55.62

[0. 468 0.034 0.874 1.376

. 74.94 F4.089 -2.914 1.822 2.9971 2.20
-2.914 2.076 -.298 2.136

%1.822 -1.298 0.812 1.336
%
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Table 2 (continued)

Wd Top Deck (Total Rigid Mass r278.9 Kgs)

FeunyEffective Force Total Effective
*Mode No. irun cy Effective Mass Matrix (Kgs) Vector (Kgf) Mass (Kgs)

in zs(Z) QZ)

* *61.92 027 0.039 -0.866 -0.884 6 '164 I103.74
'-0.866 -1.243 27.470 28.020 53. 381
_0o.884 -1.268 28.020 28.590J 5 4.458J

2 -94.76 r1.057 0.719 0.569 0.9931 3.3381 10.55 A

0.719 0.490 0.387 0.6761 2.272
0.569 0.387 0.306 0.535 S 1.797

L0.993 0.676 0.535 0.934 J L3.1381

(e) Bottom Deck (Total Rigid Mass 72.5 Kgs)

FreuecyEffective Force Total Effective
Mode No. reunyEffective Mass Matrix (Kgs) Vector (Kgf) Mass (Kgs)

in zs(Z) (Z)

1* 62.33 [1.136 0.749 1.450 2.8381 [6.173 133.54
0.749 0.494 0.956 1.8711 4.070I
1.450 0.956 1.851 3.623 7.880

12.838 1.871 3.623 7.089 5.421

2 91.35 F0.031 -0.111 -0.239 0.1251 -0,1941 1.21
-0.111 0.399 0.858 _0.450I p696
-0.239 0.858 1.845 -0.969 49
10.125 -0.450 -0.967 0.506 [0.786

*Modes corresponding to these subsystems are simulated in the dynamic models.

TABLE 3

Characteristics of IRS Low Order Dynamic Model (Longitudinal)

(a) Element Stiff nesses (Spring Constant K for Spring and Bending Rigidity El for Beam Elements)

Element Element Type Element Stiffness Element Element Type Element Stiffness
Number Number

I Linear Spring 7.6425E+8 N/M 11 Torsional Spring 1.0 E+6 NM
2 Linear Spring 5.7007E+8 N/M 12 Torsional Spring 1.0 E+6 NM
3 Linear Spring 6.2600E+8 N/M 13 Torsional Spring 2.0 E+4 NM
4 Linear Spring 1.4500E+7 NIM 14 Torsional Spring 2.0 E+4 NM
5 Linear Spring 1.4500E+7 N/M 15 Beam 3.5945E+ 3 N/M
6 Linear Spring 1.8000E+6 N/M 16 Beam 2.5264E+5 N/M
7 Torsional Spring i.OOOOE+6 NM 17 Beam 2. 5264E+ 5 N/M
8 Torsional Spring 1.OOOOE+6 NM 18 Beam 3.594 5E+ 3 N/M
9 Torsional Spring l.OOOOE+6 NM 19 Beam 1. 0 4 52E +3 N/M
10 Torsional Spring l.OOOO11+6 NM 20 Beam 1 .0452E+ 3 N/M

21 Beam 1.0452E+3 NIM
d22 Beam I .0 4 52E +3 N/M
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* Table 3 (continued)

(b) Nodal Masses

Node No. Mass in Kgs Node No. Mass in Kgs Node No. Mass in Kgs Node No. Mass in Kgs

1 5.7 5 104.0 9 111.25 13 58.85
2 j2A 6 61.45 10 62.45 14 21.0

- .3 98.44 7 111.25 11 58.85 15 17.0
4 12.0 8 61.45 12 62.45 16 17.0

(c) Mass and Inertia Properties

Total Spacecraft Mass in Kgs 876.02

Centre of Gravity Location in M Y 0.0
(From the base of the spacecraft) 2 0.8520

Moments of Inertia About Spacecraft I 1.IE+3
Base in Kg M' xx

I =y 0.9E+3yy

1 = 0.0
yz

(d) Natural Frequencies and Modes

Mode No. Frequency Mode Description~in Hzs

36.7 Symmetric (about Z) vibration mode of V2 and V4 in longitudinal direction.
Top and bottom decks bend symmetrically about Z axis.

2 37.4 Same as mode 1, except this is unsymmetric about Z axis. This is a fictitious
mode because of d.o.f. selected in the configuration (symmetric) of the
model.

3 46.5 RCS longitudinal mode.

4 60.9 Symmetric mode about Z axis involving top deck and slight motion of V2
and V4 in longitudinal direction.

TABLE 4

Characteristics of IRS Low Order Dynamic Model (Lateral)

(a) Element Stiffnesses (Spring Constant K for Spring and Bending Rigidity El for Beam Elements)

Element Element Type Element Stiffness Element Element Type Element Stiffness
Number Number

I Linear Spring 2.2500E+7 N/M 9 Beam@ 3.3854E+7 N/M
2 Linear Spring 2.2500E,7 N/M 10 Beam @ 3.3854E+7 N/M
3 Linear Spring 9.4400E+6 N/M 1i Beam 4.0149E+4 N/M
4 Torsional Spring 1.0000E+5 NM 12 Beam 4.0149E+4 N/M
5 Torsional Spring I.O000E+5 NM 13 Beam 4.6293E+3 N/M
6 Torsional Spring 3.OOOOE+5 NM 14 Beam 2.6610E+4 N/M
7 Torsional Spring 3.OOOOE+5 NM 15 Beam 2.6610E+4 N/M
8 Beam 6.8670E+6 N/M 16 Beam 2.6610E, I N/M

@ For these beams shape factor KT 0.312

140

. ...... .A.. ..... ........ ..... °o , , o+O .-.- =o°¢-.,.°o... +... - . .° - ... o*,, .. ... .....•- " , . * .° O. .. -. . . . ,% -.... . "



Table 4 (continued)

(b) Nodal Masses

Node No. Mass in Kgs Node No. Mass in Kgs Node No. Mass in Kgs Node No. Mass in Kgs

1 5.7 5 81.3 9 80.46 13 69.5
2 54.2 6 36.34 10 55.62 14 12.0
3 50.94 7 0.5 11 0.5 15 69.2
4 144.6 8 74.85 12 74.85 16 65.28

(c) Mass and Inertia Properties

Total Spacecraft Mass in Kgs 876.0

Centre of Gravity Location in M V 0.013
(From the base of the spacecraft) 0.852

Moments of Inertia about 1 I.IE+3
Spacecraft Base in Kg M xx0

I 0.9E+3
yy

Syz  = 0.IE+2
yz

(d) Natural Frequencies and Modes

Frequency
. Mode No. inMode Description

1 25.7 Overall lateral (Y) bending mode.

2 54.8 Lateral mode of V4.

" 3 57.8 Lateral mode of RCS deck.

4 72.0 Lateral mode of V2 (actually this is second mode of the deck
which is simulated in the model because of its larger effective mass)

TABLE 5

Matching of Important Frequencies of IRS Between Detailed and Low Order Models

t

Mode No. Frequency in Hzs

(Detailed Model) Detailed Low Order Models Remarks
Ref. Table I Model Longitudinal Lateral L

Ref.Table I Ref. Table 3 Ref. Table 4
(1) (2) (3) (4) (5)

1 25.6 25.7 Y Global Mode.
2 X Global mode. Not simulated.
3 36.2 36.7 Z Global mode.
4-6 Solar panel modes. Not simulated.
7 46.5 46.5 RCS mode Z. %
8-9 VI and V3 modes. Not simulated.
10-11 Solar panel modes. Not simulated.
12 54.3 54.8 V4 mode.
13 57.6 57.8 RCS mode Y.
14 Solar panel mode. Not simulated.
15 61.1 60.9 Top deck mode.
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Table 5 (continued)

(1) (2) (3) (4) (5)

16-21 Solar panel modes. Not simulated.
22 70.2 First V2 mode. No significant effective

mass. Not simulated.
23 72.1 72.0 Second V2 mode.
24-25 V2, V4 modes. No significant effective

mass. Not simulated.
26-30 Solar panel, VI, V3 modes. Not simulated.
31 RCS mode. No significant effective

mass. Not simulated.
32-35 Solar panel modes. Not simulated.

TABLE 6

Details of Results of Parametric Study for Change in IRS Payload Mass

Present 20% Increase in 40% Increase in
Details of study payload payload mass payload Mass

A. Stiffness Calculations

1. Mass of payload in Kgs 175.0 210.0 245.0
2. Height of payload CG in M

from spacecraft base 1.364 1.394 1.424
3. Fundamental frequency in Hzs in

lateral direction 25.7 24.5 23.3
4. Fundamental frequency in Hzs in

longitudinal direction
- Present payload distribution 36.7 36.2 35.7
- Payload as uniformly distributed

load on top deck plate 34.3 33.5 32.8
5. Percentage increase in main strut

area to raise longitudinal frequency
to 36.7 Hzs 20% 30% 35%

6. Increase in spacecraft mass due
to main strut area increase (in Kgs) 0.3 0.5 0.6

7. Percentage increase in top deck plate
stiffness (core thickness) to raise
longitudinal frequency to 36.7 Hzs 200% 200% 250%

8. Increase in spacecraft mass due
to top deck plate core thickness
increase(in Kgs) 1.5 1.5 2.5

B. Strength Calculations

1. Percentage increase in top deck
plate stress for longitudinal accelera-
tion (present stress 3 Kg/mm1 ) 0.0 20% 40%

2. Percentage increase in top deck plate
stress for lateral acceleration
(present stress 1.25 Kg/mm% ) 0.0 45% 95%

3. Percentage increase in cylinder stress
for longitudinal acceleration
(present stress 4 Kg/mm L ) 0.0 4% 8%

4. Percentage increase in cylinder stress
for lateral acceleration (present
stress 5 Kg/mm' ) 0.0 8% 15%
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APPENDIX Solving Eq.(5) for steady-state response condi-
tions, assuming the excitation to be harmonic,

GENERATION OF EQUIVALENT MODELS FOR we get;
MODES OF A SUBSYSTEM L

1. General expression for 'effective mass' of )- n.)

a normal mode of a base-fixed system where

Let r and I refer to the 'base' and interior ( . "

d.o.f. of a structural system respectively. Here H
'base' is used to represent the support of a ,li(COM0 ..(7)
system as well as its interface with another
system. In partitioned matrix form the equations In Eq.(7), ca is the excitation frequency, CL is
of equillibrium of the system when subjected the natural frequency of i th elastic mode of
to prescribed base motion is given by; the base-fixed system, 1% is the modal damping
IM 1F.. I r ir[*iratio (c; /( 2mL w'L ))" Substituting Eqs.(6) and

rr M r j rr C r (7) in Eq.(3), the total base reaction force can

LMlr MI X1 [Cir C Xc (t) [ M c+ M-' H96

+ i th base-fixed elastic mode of the system and
+ [K rr K 11 I [0hr V i aldth efciems'or l i (tis given by;

LT  L.

M e  = i ..IS)
where M, C, K are structural mass, damping m.
and stiffness matrices respectively and X is For more information on this topic Reference [5 ]
the displacement vector. The response at any can be consulted. A procedure implemented
point in the structure can now be expressed in ASKA for computing modal effective masses

, as: is given in the form of a flow chart in Fig.10.

SX = E 0 ) j', .. ( 2) 2. Generation of Equivalent Models for a Normal
Mode

where 4 are constrained modes and e. are Equivalent single d.o.f. systems can be
elastic modes of the base-fixed system. * C generated for a normal mode by matching its
are obtained by solving K, = 0 with a unity natural frequency and effective mass, in the
matrix correspondin to base d.o.f. 6 is prescribed case of systems with single base node. But
base displacement input and 17 are generalised for systems with multiple nodes at the base

* modal coordinates. Assuming that the eigen the 'effective force' of a mode obtained by
vectors are orthogonal with respect to damping multiplying the effective mass with unit base
matrix in addition to stiffness and mass and acceleration is conveniently matched by a trial
substituting Eq. (2) in Eq. (1) and premultiplying and error method. Here this procedure is illustra-
throughout by [ * 5fEq. (1) becomes; ted with respect to V2 deck of IRS.

c(t) = Mc 5 + LTV .(3) Step 1: The V2 deck (see Fig.7) is first analysed
for its out of plane free vibration characteristics,

* m 1 + c 7+ kfl = -L .. (4) like natural frequencies, modes and modal effective
masses by applying simply supported boundary

where fc is the base reaction force, M e, is the conditions all along its edges and a point support
mass matrix condensed with respect to base at the middle where the secondary struts join.

- d.o.f. (Guyan's reduction) and L are modal partici- 3 nodes A,B,C lying on the middle line of the
pation factors given by *TgM V . m, c, k are plate are chosen as base nodes to compute the

* diagonal matrices denoting generalised mass, effective masses. The 'V' coordinates at these
- modal damping ratio and stiffnesses of the base- points are thus taken into the 'r' set described

fixed elastic modes of the system. Eq.(4) actually above and all other remaining d.o.f. into the
represents a system of decoupled linear equations '1' set. In order to simulate the simple support
each corresponding to a single d.o.f. system condition around the plate, a stiffener having
subjected to external loads. A typical i th equation large bending and axial stiffnesses with zert
is given by; torsional stiffness is attached to its edges.

The stiffener has negligible mass. Further at
m I i k1  - rotational d.o.f. St are suppressed. The resulting

w ii r ofrequencies in 0-100 Hzs range and the modal
where LI. is i th row of L effective masses are given in Table 2(b).
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U,

Step 2: Now the simply supported deck V2
is simulated in the model by a beam simply
supported at 3 points AB and C. The properties
of this beam are adjusted to represent the
second mode of the deck for which the effective
mass and effective force vector are given in
Table 2(b). The effective forces at the support

U of the beam are given by RA = -2.066,
Ra = 22.35 and Re = 16.058, which when
added up give a total effective force (or a
total effective mass in Y direction) of 36.34
Kgf acting in a direction transverse to the
beam. The location of this force is required
to be estimated such that the reaction forces
at the supports match with its effective force
vector. For this purpose, it is assumed that
bending rigidity of the beam in the span AB
is (El) and in the span BC it is k(E). Using
Clapyron's theorem of 3 moments, the constant
k is found to be 8.673. The distance of the
point T where the total effective force acts
on the beam is computed approximately as
0.356 M from support C, the total length of
the beam ABC being 1.068 m. The beam configu-
ration thus arrived at produces reaction forces

. at the supports given by RA = 2.07, RA = 22.35
and Re = 16.06 and matches satisfactorily
with effective force vector.

" .Step 3: The final step involves estimating
the bending rigidity of the beam in both the
spans. At T the total effective mass of 36.34
Kgs is lumped and the value of (El) is obtained
so that the beam has a natural frequency equal
to that of the mode it represents, i.e., 68.85 Hzs.
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When studying or designing a vibrating system, it is useful to have
a quick estimate of frequencies, especially the fundamental frequency.

* The lower and upper bounds of the fundamental frequency provide the
approximation and range of this frequency. This paper presents a direct
method to get the lower and upper bounds of a fundamental frequency. In
contrast to currently used approaches, the lower and upper bounds can be
obtained simultaneously by this method. The method is applicable to
discrete and continuous systems. For discrete systems this procedure
involves substituting an assumed mode shape into the equations of
motion, and then the bounds of the fundamental frequency are obtained by 6
the enclosure theorem. For continuous systems, an initial distributed
load is assumed instead of an initial modeshape. A simple formula for
estimating the bounds of the fundamental frequency of a continuous beam
is derived in this paper. This technique is especially appropriate for
a system having a first modeshape which is easy to estimate. Several
examples are presented to illustrate the method.

tive procedures. The original Dunkerley's or
INTRODUCTION Rayleigh's relations usually serve as the first

It is commonly accepted that the lower step of the iterative procedure.
Sbound of the fundamental frequency of a vibra- The direct method presented here involves

ting system can be obtained using Dunkerley's substituting an assumed modeshape of a discrete
Method (1 and the upper bound can be found by

means system or an initial distributed load acting onresuls ofcalaedhsingethese methdsne are a continuous system into equations of motion.

mresults calculated using these methods are The lower bound and upper bound for an eigen-
* sometimes not sufficiently accurate, both value can then be obtained at the same time.

improved Dunkerley's and Rayleigh's methods These bounds for the fundamental frequency are
have been developed (2], (3], [4], [5]. In calculated using an iterative procedure and
general, these improved methods involve itera- their accuracy can also be improved, as long as
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* the initially assumed modeshape is not ITERATION TECHNIQUES AND IMPROVED
orthogonal to the first mode of the vibrating RALEIGH'S AND DUNKERLEY'S METHODS
system. This method is quite efficient for a
vibrating discrete system when a rough estimate The Inverse Iteration Procedure
of the first modeshape is available. For a The natural frequencies of a vibrating
continuous mass system where a distributed load system can be found by solving the eigenvalue
is assumed, a simple and useful formula for problem
estimating the lower bound of the fundamental
frequency is obtained in the latter part of Kx: x ()
this paper. Examples are presented to illus-
trate this direct method, or, equivalently,

NOMENCLATURE x = XsHx (2)

H - mass matrix where:

K - stiffness matrix K = stiffness matrix

a - flexibility (influence coefficient) M = mass matrix
matrix

x = eigenvectors

* D - dynamic matrix

u = influence coefficient
X - eigenvector in iteration procedure (flexibility) matrix

X, - actual modeshape for discrete system X = W2 . the frequency parameter.

Y (x) - actual modeshape for continuous An inverse iteration procedure using an assumed

systems eigenvector x(° ) would be

y(x) - modeshdpe for _continuous system In x(I) = ox( ) (3a)
iteration procedure

I - eigenvalue, the frequency parameter x(2) (1)

S - fundamental frequency parameter ( Mx(3b)

I - upper bound of Xu 1 ;(k) UM (k-1) (30)
L 1 For the first mode, x (k) will approach the
I R - Rayleigh's quotient first modeshape, and the ratio of corresponding
R Timoshenko's quotient elements of x (k) (k-1) will approach the
XT - toosekos uxin

T Xfirst igenvalue X1 [6], provided that x(o) is

D 1 using Dunkerley's not orthogonal to the first modeshape.
formula

From a physical point of view, the
X1 - lower bound of using improved iteration procedure seeks the displacements of
ID 1 erlboun foulthe vibrating system due to the inertia force

Dunkerley's formula generated by the motion of the system in an

assumed modeshape. Thus, a modeshape is
(x~u) -Green's function approached step by step finding the kth

displacements due to the inertia force
E - Young's modulus associated with the (k-l) displacements.

* I - moment of inertia of beams The Improved Rayleigh's Method

m(x)" mass of beams with variable cross

:etinThe 
improved Rayleigh's formula for thesection fundamental frequency is [3] (8]

p -mass per unit length of uniform X Tkxbeams = xk
u xTM (4)

q(x,,- distributed load acting onbeams(kon bwhere x is x(k) obtained by the iteration

f - fundamental frequency procedure. Thus
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(k) T (k) mental eigenvalue X with increasing k. From

u 
) = (k)IT Klx(k) Eqs. (7) and (9)

When k - 0 in Eq. (5), X
( ) 

is the usual Dx(O) 1
u X X(o)

Rayleigh's quotient t
R,~~~ x(O) = 2 ( ) L x ( )

M kx X Ix D1xo

With increasing k, x(k )  
approaches the x = D x = DDx = D 2

f irst modeshape, and I(k) should approach the Te

fundamental frequency. Since Eq. (4) is based

on a particular energy principle, X(k), ap- x(k+l) = Dk+l x(O) x(O)

proaches )I from the high side. It is an upper X

bound. Dk+l x(O) i (o) =0 (II) "

Ik+l
Tinoshenko's quotient XT [7) [81 is

so that

slightly different from I( ). In this quotient Vu I 
k+ 

1 1 1 0(1 )"

the x(o) is used for computing the maximum Dk . 0 (12)

is) Ik+l
kinetic energy and x is used to compute the X
potential energy [4). This leads to and

IR > )L > 1(l) (6) n .R k+l k+1 - %

Then the result from Eq. (5) is closer to XI XID ( I Dii ) (13)

*than Timoshenko's quotient. i=1

The Improved Dunkerley's Method where X is th eigenvalue from the improved
Dukr"ysDunkerley's method.

Dunkerley's formula is usually derived
from With an increase in k, IID will approach

Dx - x x - 0 (7) A1 , but from below. It is a lower bound.

with D = uM, the dynamic matrix. The character- The improved Rayleigh's and Dunkerley's

istic equation is the polynomial methods are approximate methods for computing
the fundamental frequency. The exact value is
approached from the higher and lower sides,

_1 - = 0 respectively. For large systems, the
A Dcomputation involved in Dunkerley's method

makes it impractical. An alternative,

. From the theory of equations, efficient method to obtain the lower bound is
desirable.

D n (8) It can be shown that lower and upper

!l Dit  bounds can be derived from the iteration
•il procedure itself. This method for computing

both the lower and upper bounds directly from
where the iteration procedure will be referred to

here as the direct method. It is also an
D = diagonal elements of matrix D approximate method. The exact value of A I is

approached from both the higher side and lower
X = lower bound from Dunkerley's formula. side rather than just from one side.

The improved Dunkerley's formula presented DIRECT METHOD FOR DISCRETE SYSTEMS
in [2) [$5 can be also derived from an itera-
tion procedure. Set In the direct method, the eigenvalue

(k) k (o) bounds are computed directly from Eqs. (2) and
x - (9) (3). Begin with an assumed initial eigenvector

(k) (0)
• substitute x into Eq. (7) x and substitute it into Eq. (2)

" k 1)x(o) = a M x(o) (14)

(k) x(k )  . o ( (0

In Eq. (10), x(k ) should be closer to the first
modeshape and I should be closer to the funds-
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Define a vector X(o) with elements X
k

o) = (k)

(k+l) (17)

X(o)I k fi 1, 2, . .

2~o an(k) ~ (k)2 and min max (18)

with X(k) and X(k) the lower and upper bounds
min max

of the fundamental frequency, respectively.

X(o) The spread between X(k) and I(k) will decrease•" in max

with increasing k and, hopefully, will approach
zero. One important implication of the results
is that both the upper and lower bounds of an
eigenvalue can be obtained during each step of
the inverse iteration procedure for computing
eigenvalues. This fact does not appear to have

1(o) been used in eigenvalue solution routines... X(o)
n

L Applications and Comparisons With Other Methods

The direct method for discrete systems
x(o) will be demonstrated and compared with the

X(o) _ j ff" other methods considered previously.[a M HX(o)] x(
1)  

(15)
Example 1. Shown in Fig. I is a 3DOF

system. There are three concentrated masses
j f 1, 2 . . n connected by springs. The masses and stiff-

nesses are indicated on Figure 1. The matrices

So that the 1 (o) is the ratio of the cor- M, K, and a are

responding elements of vectors x ( °) and xl
)
. 1 0 0

If x(o) is an actual eigenvector Xi, then ?fim 0 2 0-

all of thle X(o) in the vector X
(o) will be the 0 0 3

same. That w b e
X() () = () = 5 -2 0

1 2 n
. where X is the i th eigenvalue. K k [2 3 -1

I

In practice, x(o) will only approximate an -l 1 ,
"" eigenvector and the 1(),s will differ. K-

1  
1 2 2 21

". K =k 2 5- 5

According to the enclosure theorem p3) ements, when a 2 " 1Sis a diagonal matrix with positive elements, 12 5 11

there will be a true eigenvalue 1 that satis-
. fies Having assumed

X (0) < X < X(0)
min max()

where X(o) and X(° ) are the smallest and
largest elements of the vector X(o), respec- the upper bound, 0.176 k/m, and lower bound,
trvely. 0.1463 k/m, of X1 are obtained for this system

using Eq. (15). The results improved greatly

When the iteration procedure is employed, with the next iteration step (k = 1). Seec a o (k) Table 1. The results obtained by using P
we can get a saries of X Dunkerley's and Rayleigh's methods are also

listed in Table 1. The initial vector used in
Rayleigh's method is the same as in the direct
method. All the results improve when k = 1.
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when it is exactly the same as the actual
egenvector.

2 P1P-

X, "i 1 2 El

3k 2k k

1/3 1/32 X

9-.

Fig. 1-Example 1 3DOF System
Fig. 2- Example 2 2DOF Beam -

Example 2 is a beam with two concentrated F Ee
masses (Fig. 2). The segments are assumed to
be weightless. The results obtained by using The Effect of Initially Assumed Eigenvectors
the three methods are shown in Table 2.

An assumed initial vector can be expanded
Looking at only the accuracy, by comparing in the actual modeshapes X1 , K2 . . .

the results in Tables 1 and 2, would make it n
difficult to choose the superior method. For x X + c
example, the accuracy of the lower bound 1 - 2 -2 n -n
derived by Dunkerley's method depends on a
property of the vibrating system, the spread of x1  x x2 . Xi

the fundamental frequency X 1 and the next i F12 1

frequency X2 " Also, the choice of the initial x21 22 22

cthf)vector x(o) affects the bounds derived by -,
Rayleigh's method and the direct method. ,J
However, the direct method has the X x n
characteristic that both bounds are found in Lln2 - Ln

the same step. This is its advantage.
(19)

When the initial estimated eigenvector where X * T X
does not have elements that are opposite in = [ll x2 1  - 1x1 2 x22
sign to the corresponding elements of the first . .Xn2x T and x is the displacement at point
modeshape, then both the lower and upper bounds n2  is

* can be obtained by the direct method in the i of the jth modeshape. Therefore, the
initial step (k = 0). Otherwise, the lower displacement at point i of the initial vector
bound becomes negative when k = 0, which is not x(o)x. is
useful. However, the upper bound can always be 1

derived, and a useful lower bound can be n
calculated with a larger k, except when the X o) = t c x
approximate vector is orthogonal to the l i"1(20)
fundamental aigenvector. We do not need the
lower bound in this case, since this occurs Substitute (19) and (20) into Eq. (3) to get

Table I - Lower and Upper Bounds of Fundamental

Frequency of the 3DOF System Shown in Fig. I

Number of Lower bound of A Upper bound of X Exact
1.. value

iteration Dunkerley's Direct Direct Rayleigh's of X1

Method Method Method Method

k - 0 0.1333 ! 0.1463 h 0.176 0.1579 0.1546

m m m m m

Deviation -13.78 -5.42 13.8 2.12
.9"

*"k k k k k.,0.1532 k 0.1540 1 0.1548 0.1546 - 0.1546

m m

Deviation -0.9% -0.382 0.13C 0.002
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- L

1)= n D DIRECT METhOD FOR CONTINUOUS SYSTEMS
9x~ = I D cx(21)

l x The direct method can be applied to
If every element of vector x(1) has the continuous systems. The beam in Fig. 3, which

same sign as the corresponding element of has a continuous mass, will be used to
sam sin as tdemonstrate this.

vector x (), the ratio xi  (o) should be

greater than 0. Then, from Eqs. (20) and (21),
the following inequality should be satisfied

nX
(aO) I c. x

4) = > 0 (22)xM1 n
I D cxj=l i i

The inequality of Eq. (22) indicates that x
(
o) Fig. 3

is near a modeshape. The next iterative step The equation of motion of this beam is

will indicate if X(o) is near the first mode-
shape by using the inequality y(x,t) = - J e(x,u)f(u,t) m(x) du (25)

X(M) - X(l) < X(o) - X(o) (23) 0
max min max min

where a(x,u) is Green's function.

If Eq. (23) is not satisfied, the iteration Assume y(u,t) = y(u) sin wt (26)
procedure should continue until

max mn max _ - (24) Then y(x) = X f a(x,u) y(u) m(u) du (27)
0

Generally, Eq. (23) is easily satisfied.
For the beam shown in Example 2, when cI/C 2 > Once an initial function yo(x) is assumed,

6.6%, the inequality of Eq. (23) is satisfied, the iteration procedure appears as

This conclusion comes from Eq. (22), by letting
the numerator and denominator be greater (and yl(x) = I m(x,u) Yo(U) m(u) du

less) than zero at the same time. There will 0

always be some negative elements in the higher
modeshape; therefore, the coefficient of c1 is

much larger than the coefficients of c2, c3 .... Y2(X) = I (x,u) Y(U) m(u) du

It can be seen that D in Eq. (22) affects the
ij

ratio cl/c 2. When the diagonal elements Dii

are much greater than the other elements, the d
ratio c1/c2 will increase. Yk(x) = I e(xu) Ykl(u) du (28)

Table 2 - Lower and Upper Bounds of Fundamental

Frequency of the 2DOF System shown in Fig. 2

Number of Lower bound of 6 1 Upper bound of wI Exact
value

iteration Dunkerley's Direct Direct Rayleigh's of "

Method Method Method Method 1

k - 0 7.7942 b 6.647 b 9.165 b 12.47 b 8.0498 b

Deviation -3.2% -20.2% 13.85% 54.9

k- 1 8.04096 b 7.966 b 8.1327 b 8.0776 b 8.0498 b

Deviation -0.1% -1.04% 1.03 0.35%

b 2/P bb- = 
2  P
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It can be proved (Appendix) that Applications

Lim Yk(x) = Y I x (29) The application of the direct method for
k-+- continuous systems will be demonstrated in the

next three examples. The simple beam with a

Yk.l(x) uniform cross section used in the next example
Lim W 1I (30) is shown in Fig. 4. Since it is a uniform
k - Yk(x) beam, the initial load is assumed to be uni-

form.
During the iteration procedure, x( )(x) is

1 EIa function of x rather than a constant.
According to the enclosure theorem _ _ _ _ _ _

min [XC()cx)] < Xl < max [X(k)(x)j (31)

(0)
Since Green's function a(x,u) and its q ' IIVV tV tttt 9?((x)t

integral are difficult to compute, the fol-
lowing procedure will be used. For a beam with
variable cross sections the differential
equation of motion is y (x

q(1)q (ICx) ,
-d2 [E ] X m(x) y (32)dx2  E dx2

Although an initial y°(x) can be assumed and yW(x)

, substituted into Eq. (32) to get ( C)(x), it is
more convenient to begin with an assumed

initial distributed load q(°(x).

d2  d2y Fig. 4

q°(x) =- [El d2 (33) (O) = q = constant
dx 2 dx 2q (x) q=cntn

and from Eq. (32) Theny(x) = q (I3x 2 x3 + x4

24EI

C ) _= x()yx) (34) Substitute y (x) into Eq. (34)

X(O x) = q = 24EI
where y 0°(x) is the deflection of the beam due pYo(x) p(I3 x - 2tx3+x4)

to the load q(°)(x). where E - Young's modulus

The next step is to let the distributed I - moment of inertia

(1)

lodq( ) emCx )yo ix) p - mass per unit length

q(W1)Cx) = mx) Yo(x) (35) From Eq (31).

Then (1)(x )  Yo )  
76.8 I < X<

mXx)y Cx) y Wx m
In the next step, let q(1 ) (x) be proportional

(2t x6)toq (x)

W (36)y2~) W = p yPx) pq (E3x - 2tx 3 + X4

q Cx)24EI

x(k)() Yk-l(X) 7 6
=X Y()Y(X) = q t _ x

24E
2
I2 60

After k iterative steps, X should satisfy 3

minlCk)x)1 < X1 < maxlxk) x)]

(1) Yo(x)
S (x)yl(x
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" 3 2 x
3  

-. This is not the case when the beam is

[ 60EI I 2x2 + supported on elastic supports.

X 7Ix 
6  

X
3 4 

5 2 1
7 

c7 The next example is a beam with a variable
2cross section which is supported on three

elastic supports. The initial load is assumed
to be proportional to the mass, as shown in

(1) EFig. 5(b).

X max = 98.8235 E 4
PC

E( ) 
q(O) (x) 1 N/m 0 x S 5

p 4 1.45 N/m 5 < x S 7.5

The deflection of the beam shown in Fig. 5(c)
96.55 El. < Xl < 98.8235 El was derived by using a computer program. The

p14 p 4 maximum deflection is

The exact value of X of the beam is 97.4091 EI

p4[Y(X) =0.1049 x 10
.3 

m

The lower and upper bounds of the
fundamental frequency and their deviations are
listed in Table 3. It should be noted that "-
since there are rigid supports in this example, () 4271.712 (Rad/sec)
the upper bound obtained in the first step is Lower 

=  
m(x) Y(X) m inR

.2-2

d 6 x 10
- 2 

m"

d = 72 7 0
- 2 m12

tk T P, . 21.87 kg/m -

S5 m 2 k k3 31.67 kg/m

M, = 154.9 kg
a. - M 2 = 100 kg

a. 2 - 3/rq 1 N/mn 1 ' , / -

k3 4 x 10 N/mr

b. 11b.E . 2 x 10 N/m,

Fig. 5 - A Beam with Three Elastic Supports

and Variable Cross

Table 3 - The Lower and Upper Bounds of the Fundamental

Frequency of the Beam of Fig. 4

Frequency f, cycles/second Deviations

1L 1L exact fV 1L lU
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f(o) = 10.4 cycles/see. X(o) = ( (0)a(x)3 9.8 x 10

lower u m(x) yo(x) max 0.5229 x 31.67

X(o) = ()(x) = 8724.254 (Rad/sec)
2  = 591.7789 (Rad/sec)

2

upper = *(x) y0 Cx) Imax f = 12.459 cycles/sec
u 4

Thus
f(o) = 14.864 cycles/sec
upper 5.128 < f < 12.459 cycles/sec.
10.4 <fl <1484yle/a
The efac 1 au f 1 6 is15 y c The exact value of f can be computed to beThe exact value of fl is 11.58 cycles/sec5.7 cy l s e .15.978 cycles/sec.

as calculated by a transfer matrix program. In
this example both lower and upper bounds of the The Effect of the Initial Load
fundamental frequency are obtained in the first
step. It is evident that the closer the initial

When the beams have concentrated masses, assumed load q ()(x) is to the actual inertia
the initial load should be assumed to be made force generated by the first mode, the better I

of not only a distributed load, which is the results. When there are no in-span sup-
proportional to the continuous mass, but also ports, there should not be any nodes in the
concentrated loads which are proportional to first modeshape. Therefore, we can assume thatthe concentrated masses. C(O)
t eq (x) remains in the same direction and the

The next example is a beam with two magnitude is proportional to the mass of the
c Te n ex ames a beam ith twoe beam. In this case, the lower and upper bound.concentrated masses as shown in Fig. 6. The of the fundamental frequency can be derived by

deflection of this beam due to its initial load uo n t e q (34)n an nequ aiy (3) where

was derived with a beam analysis program and k is equal to zero.

the lower and upper bounds of the fundamental
frequency found using Eq. (31) are For a beam with more than two elastic

supports, the q(°)(x) can be assumed as was

X(o) (x) 9.8 X 10 described above. But, it should be noted that
L m(x) y (x) ) min 0.4313 x 21.87 when the stiffness of the in-span supports

Increases, the deflection, due to q(°)(x) for
2" which all loads are in the same direction, can

= 1040.368 (Rad/sec) be in opposite directions on some parts of the
beam. In this case, the lower bound will be ,f L= 5.128 cycles/se negative when k is zero. Of course, the

Table 4 - The Lower and Upper Bounds of the

Fundamental Frequency of the Beam

of F:.g. 5 from 1st Step

Frequency fl cycles/second Deviation

f f f f flL I exact lU lL lU

10.4 11.58 14.864 -lO +28%

Table 5 - The Lower and Upper Bounds of the
Fundamental Frequency of the Beam in Fig. 6

Frequency f cycles/second Deviation1

f" '' f ieat f f ff L f 1 e a tf 1 U 1 1 1 U
5.128 5.978 12.459 -14.2% +108
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k2
ki  1 d1  5.9 x 10.2 m

" k d2 7.1 x 10- 2 m2 4 m 272,4

-1 m kI  3.5 x 10 N/m

4.5k - 7 x 104 N/m

5 a k3 . 3.5 x 10 N/m
7.5 a=P,. 21.87 kg/m

a. P2 = 31.67 kg/m

7.08 n 4.75 n E - 2 x 1011 N/m

1.45 N (0)

b.
Fig. 6 - A Beam with Concentrated Masses

positive bound can be obtained using the is similar to that in Fig. 5. The deflection

iteration procedure (Eqs. (35) and (36)), but of the beam changes with increasing stiffness

it is much better to change the assumed load k2 of the in-span support. When k2 = 5 x 10
6

q(o)(x) into a load containing components in N/m, as shown on the last line of Table 6, the
different directions. This is illustrated by deflection yo(x) near the in-span support is in

the example in Table 6, which uses a beam which 0

TABLE 6 The Influence of the inspan support
Stiffness on the Initial Load

d: d 5.9xlO',2 m
± _____d =:71x10 4 r

T kk P : 21.87 Kg/rm
74 kaf IPg =31.6 7 Kg/rn

1 - 7.5m Ik = k3 = 4.5x 104 NAfl

k2  q0 (K) f Frequency cycles/sec. Error

N/m Assumed load Deflection ffeoct fpOe;" flowe femct uppe fler"

N/m m l

0.149X10

7 xlO 4 1 10.40 11.580 14.864 -10.2%

1 1.45 __ _

, j. l 0.7063X o0'
3 x 10 12.675 13.151 25.908 3.6%

4 X 106 13.774 14.835 203.45 - 7.2%

5 x10s f # ...5... 11.808 13.492 O0 -21.5%
1.45

1 1.45

5 x I04 1 l E -L 0 14.823 C0
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the opposite direction; then the lower and 5. L. S. Jacobson and R. S. Ayre, Engineering
upper bounds become indefinite. But, when the Vibrations, McGraw-Hill, New York, NY,

initial load changes as shown on the fourth 1958.
line of Table 6, the lower bound is derived
when k is zero. The upper bound will be 6. Zheng Zhaochang, Mechanical Vibrations (in

obtained in next step, when k = 1, as Chinese), Publishing House of Mechanical

mentioned in the simple beam example. Industry, Beijing, China, Second Edition,
1982.

From all the examples of the continuous
system, the lower bounds of the fundamental 7. C. H. Popelar, "Lower Bound for the

frequency obtained in the first step of the Buckling Load and the Fundamental Fre-

direct method are much better than the upper quency of Elastic Bodies," Journal of

bounds. Applied Mechanics, Vol. 41, 151-154, 1974.

CONCLUSIONS 8. A. B. Ku, "Upper and Lower Bound Eigen-
values of a Conservative Discrete System,"

All the methods discussed here - Journal of Sound and Vibration, Vol. 53(2),
Rayleigh's and improved Rayleigh's methods, 183-187, 1977.
Dunkerley's and improved Dunkerley's methods,
and the direct method - involve iteration 9. Stephen Timoshenko and J. H. Gere,

procedures. The direct method is a technique Theory of Elastic Stability, McGraw-Kill,

by which both lower and upper bounds can be New York, NY, Second Edition, 1961. .
derived by the iteration procedure itself. r

APPENDIX
The direct method appears to be an effec-

tive method for estimating the bounds of the An assumed initial modeshape yo(u) can be

fundamental frequency of a vibrating system. expanded in the actual modeshapes YI Y2

The advantages of this method are that both
bounds can be obtained at the same time. The Y i""*
direct method is more efficient for a system
for which a rough estimate of the first mode- .
snape is available. Since many modern Yo (u) = I c Yi  ()
eigenvalue extraction routines use some form of ifi
the inverse iteration procedure, an important
implication of the direct method is that both When the iteration procedure is employed, the

upper and lower bounds can be obtained during modeshape in the kth step will be
the iteration process. Existing routines can
take advantage of this fact. I Y

Yk(x) I a (x,u) Y 
(u ) m(u) du (2)

For continuous systems it is more con- 0

venient to assume an initial load instead of an r
initial modeshape, and the bounds can be
derived by computing the deflection due to the Substitute (1) into (2); when ki 1

load. The lower bound for beams derived in the
first step of the direct method seems much I £
better than the upper bound. Y1 (x) I fi (xu) cIYIu) m(u) du (3)

i1o

ACKNOWLEDGEMENT; and

The work of W. Pilkey was supported by the
Office of Naval Research, Arlington, Virginia. 9
RF C Yi(x) = Xi I a(x,u) Yi(u) m(u) du (4)
REFERENCES 0

1. William T. Thomson, Theory of Vibrations Substitute (4) into (3)
with Applications, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1981.

- 2. A. kutenberg, "Dluiikerley's Por,,z111, .1i1l Y1 (x) = X r Yi(x) (5)
Al ternttive Approxim.nt ois ." Jolirnaiil of i1 i
Sound -and Vibration, 1973, \uI. 3'J(4), The next iteration step will be
53T-331.

3. S. Crandall, Engineering Analysis, McGraw- Y2(30 a (x,u) Yl(U) m(u) du

Hill, New York, NY, 1956. y2(x xu 1 u ~)d
4. Ray W. Clough and Joseph Penzien, 9y-

namics of Structures, McGraw-Hill, New
York, NY, 1975.

165

9..,. . . .,., , , .. .. . ... .o.. . ... . . . . . .. .. ,. . .. .-...... ......%-. 9% %

"."," ; . """ " ''."' ,. "-,.''".' ", ; ",". " "," "." ' ",". ... ' ",."- - ,"- '-""". . .""".""" - ,--2""
% ..-. ,'..'. . .=, , %- : - " ._" _ ,< " • , - , " "1 : ' " : . ,



= a (X,U) - Y(u) du

0 J1l I

a Yi(u) c i

=Z I e(x,u) I m(u) du: i-I o

- Yi(x)
=1 2 (6)
i=l XktI'I

- Yi(x)

=X 1 k c

Then Yk-l(x)

Yk(x)

XI k-1

.___2
.',.k-1 1/k- 1 c Y (X) + c2 Y2(x)

Since (7)

1 2 3*"'

Lim Yk(x) ( (9)

. .:k -* -

Yk-1(x) (9)Lim =

T.' -- k -(X)

o.
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APPROXIMATING DYNAMIC RESPONSE IN SMALL ARRAYS
USING POLYNOMIAL PARAMETERIZATIONS
AND RESPONSE SURFACE METHODOLOGY

K. P. White, Jr, H. C. Gabler, III, and W. D. Pilkey
School of Eninenring and Applied Science

University of Virginia
Charlottesville, Virginia

This paper describes a method for deriving an approximate algebraic model which
defines the performance of a dynamic system as a function of its response para-
meters. The method extracts essential response information from large amounts
of ts data or simulation output and stores this information in a single, small,
two-dimensional array. This data compression provides for highly efficient
storage of essential information in a form which is especially convenient for
subsequent use in analysis, experimentation, model validation, or design
optimization. The method is illustrated by an application to passenger-vehicle
crashworthiness design optimization.

INTRODUCTION

Managing the large volume of experimental and/or NOMENCLATURE
simulation data required for design studies is a
sigificant problem in many applications. This paper a(t) : simulated vehicle acceleration
describes a method for dealing witl. such problems 0, polynomial coefficient
that has proven successful in vehicle collision re- be polynomial coefficient
search. The method involves (1) characterising the
continuous response of a dynamic system in terms of b: polynomial coefficient
Manageable set of performance measures and (2) bik polynomial coefficient
deriving an approximate algebraic model which defines bik, polynomial coefficient
each of these performance measures as a function of fj i-th response surface component
selected design parameters. In this way, essential : vetor-valued response surface
design information can be extracted from large Ill(t) approxiated vehicle deceleration
amounts of data and represented as a single, small, p a'l(t) approximated vehicle velocity
two-dimensional array. The resulting compression p(t) approximated vehicle displacement
permits the efficient management and storage of t) time to deceleration centroid
essential design information in a form which is
especially convenient for subsequent use in*analysis, t. time to maximum crush
experimentation, model validation, or design v, velocity at maximum crush
optimization. v, rebound velocity

Vo :initial velocity
In the following sections, we first define the y i eloi

*-i problem addressed in this paper. Second, we describe x: j-th predictor variable
the general method for developing polynomial para- x rector of predictor variables
meterinations of deceleration time histories and x11 (t) actual vehicle acceleration
demonstrate the application of this method in vehicle xltlt) actual vehicle velocity
collision research. Next, we describe the general x(t) : actual vehicle position
response surface method and its application in pas- y: i-th response variable
senger vehicle design optimization studies. y vector of response variables
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Problem Definition pression of the data is achieved by replacing the
4000 or more [a(t),t] data pairs (where a(t) is the

The specific application considered in this acceleration of the vehicle occupant compartment)
paper and used to demonstrate the general method defining the complete simulated deceleration profile

. arises in passenger-vehicle collision resaroh. The with only two parameters. These two parameters,
basic problem is that of summarising information together with the collision conditions, define a
which defines the dependence of the dynamic response polynomial approximation of the original waveform
of a vehicle during a barrier collision on the levels and represent summary performance measures for the
of a set of structural response parameters. In this complete vehicle dynamic response.
paper it assumed that complete information on the
significant structural behavior of a vehicle, in The implicit relationship contained in the
terms of the impact of that behavior upon occupant summary design/response data from this initial step
dynamics, is contained in the deceleration time is subsequently converted into an explicit model of
history or crasA lgrnature of the vehicle occupant the relationship by applying response surface method-
compartment. This assumption is generally accepted ology. For each of the vehicle response parameters,
and, indeed, it is standard practice to describe the a polynomial approximating function is developed by
dynamic response of a vehicle in laboratory crash stepwie, multiple, linear regression on the
tests by the deceleration of a fixed point on the design/results data. While the purpose of this step
vehicle. While the ultimate relationship between is to derive an explicit relationship convenient for
vehicle deceleration and occupant injuries in actual optimization studies, a second and equally signifi-
highway accidents is impossible to prove (or dis- cant compression of the data is also achieved.
prove), good correlation can be shown between
deceleration and standard occupant dynamic response The end result of this two-step procedure is a
measures in both laboratory tests and computer single, two-dimensional array containing the desired
simulations. In addition, other correlates with information from a large number of vehicle crash
occupant response measures (such as impact velocity, simulations. Each row of the array corresponds to
absolute velocity change, and vehicle crush) can be one of the parameters of the polynomial approxi-
derived from the vehicle deceleration profile. See mation of the original crash signatures. Two columns
for example White, t. al. [1], for an cor- are required for each parameter of the polynomial
relation analysis of vehicle and dummy response approximation of the corresponding row parameter,
measures using test data for twenty 1962 Citations; one for the coefficent value of the regression
Huag, *I al [2], for an analysis of relationship equation and a second for the code identifying the
between vehicle deceleration and simulated occupant corresponding predictor. This convenient compression
responses; and Langwieder, et. al [31, for a of the data represents, in effect, a simple algebraic
comparison of passenger injuries in frontal col- model relating the collision response of the vehicle
lisions with dummy loadings in equivalent to its structural design.
simulations.

Data implicitly describing the relationship Parameterisation of Dynamic Res
between crash signatures and selected vehicle re- uuing Polynomial Aproximations
sponse parameters can be derived from computer
simulations of collisions under a range of different To apply the method described in this paper, the
crash conditions. Data from several hundred ono- continuous response of a dynamic system must first
puter simulation iune are required to complete the be characterised in terms of a manageable set of
simulation experiment design, however, in order to parameters. This is a universal problem in experi-
insure that the relationship is adequately defined. mentation and simulation. Parametric representations
For the current application, a compact representation of continuous time histories are commonly used as "-
of the information contained in these data is time-domain performance measures and in establish-
required for efficient storage and retrieval. In ing time-domain performance specifications. Such
addition, the relationship defined by thene data must characterisations are also essential for the sta-
be stored in an explicit form which is convenient for tistical analysis of experimental data and simulation
use in subsequent design optimiation studies, output, for empirical and model-based sensitivity

analysis, and for experimental and simulation optimi-
The original design/response data for eah simu- zation. Moreover, such simplified descriptions of thelation run include the simulation input parameters dynamic response permit the efficient storage of

defining the value of each collision parameter and large amounts of test data or simulation output for
each design parameter and the corresponding subsequent use in experimentation, modeling, analy-
(digitized) occupant compartment deceleration profile sis, validation, or design optimiation.
derived from the simulation output. Initial on- -op
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Although there are many means available for o the equality of the first a area moments of p 21(t)
achiving the desired parameterisation, a general and x(t)
approach is to use the coefficients of a polynomial-
in-time which has been fit to the actual dynamic o the equality of the corresponding definite integrals
reponhe variable (here, the crash signature a(t)) from 0 to t of Plt0%) and Pkkt) up to and including
This p araneteriation permits the results a single order n-I
laboratory experiment or computer simulation to be
stored in a single vector of dimension (p-s-n), where o the equality of the centroid Limes t. of the

* (p-2) is the order of the approximating polynomial corresponding integrls of pi(t) and xPt k(t) up to and
and n is the number of control variables of the including order n-I
simulation (or, equivalently, the number of experi-
mental treatments). The results of multiple simula- The TESW Anroximation The simplest polynomial
Lions can be stored in m such vectors, or in an array approximtion of the crushing phase of the vehicle

. of dimension (m x (p--n)]. where m is the the number appration ofite cshin as of te
• of simulation runs with different combinations of deceleration profile is a linear or first-order

control variable settings (or, equivalently, the approximation. When combined with a second linearnumber of experimental observations with different seglment to aocount for the rebound phase of the
temen deceleration, the result is the piecewise linear TESW

(tipped equivalent square wave), shown in Fig. 1.

Polynomial Parameterisations of Crash Sivnatures
* Although approximating a continuous function with a With the general equivalence conditions specified
" polynomial fit is a standard practice, the parameter- above, and with the final time of the collision

isation of vehicle crash signatures using polynomials-
in-time appears to have been studied originally by ta seleted to insure the equality of the actual
Huang, *I a/. The general problem considered was and approximated rebound velocities, the TESW for a
that of approximating an arbitrary continous vehicle collision can be completely specified by four

'*" deceleration profile xl(t) with an nth-order poly- parameters
* nomial in timeSito t,, the time to maximum total dynamic crush

n o L. the time to the centroid of deceleration

i=O o v,, the rebound velocity

o vm, the change in velocity at the time of
over the time interval (t,.>t>O) in the least squares maximum crush

sense

L While specification of the TESW requires four par&-

min [ x(t) - p"'(t)]dt meters, for barrier collisions two of these four
parameters are redundant, since v. equals the initial
vehicle velocity vo (which is the collision para-

meter) and since t can be calculated directly from t

* subject to the equality of the initial conditions on and vs. Thus the entire crash pulse can be specified
velocity with only two parameters, L, and v,.

NPt (O) : xNl(O) Figures 1, 2, and 3 show the measured decelera-

Lion, velocity, and position time-histories of a 1982
" and position Chevrolet Citation during a 35mph frontal-barrier

crash test, together with the corresponding TESW
p(O) = 40). approximations. Note that the TESW deceleration

profile in effect smooths the raw accelerometer date
such that successive integrations of the TiSW show

Huanlg *I a/, showed that the least squares cri- generally excellent correlation with the oor-
terion, together with the specified initial conditions, responding integrations of the actual accelerometer
implae the following (equivalent) conditions data (particularly during the crushing phase).
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V 08MON2M~tBvs2 CHFVAtOMTATION sEH In validation studies, the TESW approximation

~ V47VV804 d~6 vi a osu.E UAW VIH has proven to be remarkably successful in capturing
cr~.~ffIWWM- WT PWW N MMurnthe essence of vehicle collision response, at least

insofar as this response determines simulated
__________________ occupat dynamics. Huan, *I. al., report differences

in simulated occupant head and ohest decelerations of0
low than 7%, when using complete deceleration data

4Q0 and the corresponding TRW approximation. In work
V currently in progress, the authors preliminarily have
EL X0 -found differences in HIC (head injury criterion) and

0 C CSI (chest severity index) of less than 10% in
Y 2Q0 -similar tests, although this work has not yet been
* verified.

Tet at Response Surface Methodology

3 QO A response surface is a mathematical rupre-
santation of the relationship between a dependent or
response variable and a set of independent or predic-

TESWs~ometwtor variables. Response surface methodology (RSM)
refers to the unique synthesis of otherwise standard

3100 ON go 10a 10 I= 200 statistical techniques which are used to develop
response surfaces for experimental or simulated data.
The general issue of RSM is considered by Myers [41

Fig.2-AtualandT~Wapprximtio of ccuant Box, Hunter. and Hunter [$1 and Box and Draper [61Fig.2-AtualandTBSWappoximtio of ccuant among others. The specific application of RSM to
comprtmnt vlocty urin a arrer clliioncomputer simulation experiments is considered by

Fishman [6] and Naylor, *I al. [81 Biles and
Swain (9) provide an excellent description of RSM in
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the context of industrial experimentation and determining optimal vehicle designs for occupant
optimization,. protection (at step 4), is described by White, *1

al. [10,11,121 Heue we limit our attention to the
The primary objective of RSM is determining a form of the model developed and its implications for

relationship of the form data storage and retrieval.

Y= "~x) Step 1. The respons variables selected for
this application are the two nonredundant TESW

from the experimentally determined n-tuples (yzu) parameters, t. and v,, which (together with the col-
where y is th vector of response variables; yi, lision parameter ye) characterize the vehicle decelera-
x is the vector of predictor variables x and I tion profile during a barrier crash. The predictor
is the vector-valued function representing the re- variables are selected physical properties of
sponse surface. This relationship is not intended to structural components of the front structure of the
be a causally correct representation of the under- design vehicle, together with the parameter definingr
lying process, such as one would seek in developing a the collision type. The structural design parameters
dynamic simulation based upon differential or differ- are

.

ence equations. Rather, the response surface is
intended to be a statistically optimal summary of the xf = constant collapse force of the foreframse
data (usually in the least squares sense), which xt constant collapse force of the aftframse
provides a parsimonious and explicit representation = constant collapse force of the sheetmetal
of the observed but otherwise implicit input/output fo avibe crush len of t fm e
relationship between predictor and respoe vari-X = r e
ables. The resulting response surface typically is l e ren e te
used for (1) investigating the relationship of the

hresponse to the predictor variables, in order to as shown in the one-dimensional lumped-mas model
determine sensitivities or to evaluate the underlying of a vehicle during front-to-fixed-object collisions
process mechanism, and (2) determining the combina- depicted in Fig. 4. For the initial study, the
tion of predictor variables for which the response is predictor or design variables were chosen based upon
optimized . engineering judgement. Subsequent sensitivity analy-

sis using the response surface developed by theRSM concerns itself with the four steps of method described here provides an ultimate test ofdeveloping and using response surfaces. These are this judgement (see [12D.

Step Determining the appropriate number and

choice of response and predictor variables yj and x,o

Stop 2. Designing an experiment to generate the

* predictor/response data (yz4

ofStep S Deriving the response surface y=ox)
from the predictor/response data. NIP

Step 4. Applying the response surface for analysis
and/or optimization. El ri

Details of each of these steps for general applica-
tions can be found in the RSM literature previously
cited. In the following, we outline the first three
of these steps as these apply to the application PAS

under consideration. iMAS d Wer t
IA 13 ftespent Me~traLAt

TW Crash Signaturesponse Surface In the Vs 3.n At [ ..
tA is IReffitL.S11. tel"

St ~ ~ ~ ~ ~ ~ ~ Etiaif sweagts nepeien o ee~t h

application described, we seek to develop a response

C to*: srfac whc deines the relaonshi between thex "

%summary parameters of the crash signature of a pea- CA I? C."'.. 2khd Adt8/~~if
% senger vehicle and a set of vehicle structural design 9A 6- ZateItsee

variables. The broader context of this application, Fig. 4-One-dimensional lumped-mmw model of a
in which the resulting response surface is used in vehicle during a barrier collison

.
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Stp . Data defining the implicit relationship mental treatments). We have suggested that a poly-

betveen the design variables and the TESW response nomial in Lime of order (p-2) is a suitable candidate
parameters, were generated by completing 128 cor- for achieving the desired parameterization. Similarly,

' puter simulation runs using the CRUSH [13] vehicle we have shown that the results of multiple experi-

" simulator. Bach run corresponds to one of the ments or simulations can be stored in a single array

combinations of design parameter values and collision of dimension [m x (p-n)] where m is the the number

condition defined by an experiment design developed of simulation runs with different combinations of

specifically for this application (se Ford [14]) control variable settings (or, equivalently, the

The occupant compartment deceleration profile number of experimental observations with different

obtained from each run was postproceseed to deter- treatments).

mine the corresponding TESW parameters. The
design/response data for all the simulation runs was
concatinatd into a single design/results file--an model of the data can be achieved through the appl-"of dimension (128 x 8). cation of response surface methodology, which further

• arcompresses the original data. In the general case,
SMop S A response surface typically is derived we have shown that the data in the [m x (p-n)]

by multiple, linear, least-squares regression of a dimensional array can be modeled by the coefficients
polynomial in the (perhaps coded) predictor variables of p polynomials in the experiment or simulation

on the predictor/response data for each of the control variables. We have suggested that stepwise,
-* (perhaps transformed) response variables. First- and multiple, least-squares, linear regresion is an

second-order polynomial response surfaces are appropriate candidate means for specifiying these

reported almost exclusively in the literature. In approximating polynomials. As a consequence of this

the current application, however, significant fits modeling, the results of the entire simulation study

could not be achieved for the design/response data are summarized by a global response surface, which

using either first- or second-order approximating can be stored in an array of dimension (p x 2q)j

functions. A third-order polynomial approximating where q is the maximum number of terms in any of

function of the form the approximating polynomial regression equations.
Bach row of the array corresponds to one of the

k k k k k k summarizing parameters of the dynamic response
variable. Two columns are required for each para-

,* y, = be bpx, bpqxAx, bpq,zxrxzx meter of the polynomial approximation of the
p=l p=! q=1 p=l q=l r=l corresponding row parameter, one for the coefficient

value and a second for the code identifying the
* was required for each component fi, i=l,2 of corresponding predictor.

the response surface 1. Stepwise, multiple, linear,
alest-squares regression was applied to minimize the For the specific vehicle collision problem

number of terms in the regression equations. In this described in this paper, we have shown that the
way, significant fits (r).95) were obtained with 17 deceleration time history or crash signature of the
terms in each case. The response surface represent- vehicle can be characterized by the coefficients of a
ing an explicit model of the design information low-order polynomial approximation. Specifically, we
derived from the simulation runs can then be stored indicated that the barrier crash signature can be
in a single file---an array of dimension (2 x 34). approximated by the piecewise linear TESW approxi-

mation, involving only two parameters which are dis-
tinct from the collision condition specified in the

" CONCLUSIONS simulation input. This paraneterization permits the
results of a single laboratory or computer simula-

In this paper we have illustrated a general Lion, consisting of a minimum of 8M00 data elements,
method for approximating performance of a dynamic to be summarized by only 8 data elements. Similarly,
system as a function of its design parameters, by the results of 128 multiple simulations, consisting
reference to a specific application of this method in of a total of more that a million individual data
oonjunction with passenger-vehicle crashworthiness elements, can be stored in a single array of dimen-
design optimization. In the general cae, we have sion (128 x 8), with only 1024 data elements. Thus
shown that if an adequate parameterization of a con- the original data storage requirements are compressed

" tinuous dynamic reponse in p parameters can be by three orders of magnitude.

achieved, this parameterization permits the results
of a single laboratory experiment or computer simula- For the vehicle collision problem described in
tion run to be stored in a vector of dimension (p.n), this paper, we also have shown that the data in the
where n is the number of control variables of the (128 x 8) arry achieved after parameterization can

, simulation (or, equivalently, the number of experi- be modeled by a third-order global response surface.
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This response surface can be characterized by 17 8. Naylor, T., Balintfy, J., Burdick, D., and
oefficients terms, permitting the results of the Chu, K., Computer Simulation Techniques, Wiley,
entire simulation study to be stored in an array of 1966.
dimension (2 x 34). Each row of the array corres-
ponds to one of the two nonredundant parameters of 9. Biles, W.E., and Swain, J.J., Optimization
the TESW approximation of the crash signature, and Industrial Experimentation, Wiley, 1980.
Seventeen paired columns are required for the
response-surface coefficente, one for the coefficient 10. White, K.P., Jr., Pilkey, W.D., Gabler,
value and a second for the three-digit integer code H.C., and Hollowell, W.T., "A computer-aided design
identifying the corresponding predictor. Thus the tool for automobile crashworthiness: overview of the
thousand-plus nonzero data elements obtained through system model,' Large Scale Systems, Vol. 4, No. 4.
the initial parameteriation, corresponding to the November 1983, pp. 245-262.
original million-plus nonzero data elements
associated with the simulation study, are compressed 11. White, K.P., Jr., Pilkey, W.D., Gabler,
into the 68 elements defining response surface. H.C., and Hollowell, W.T., *Optimizing design para-

Te emeters for highway vehicle safety," International
The end result of this method is a small array Journal of Vehicle Design, Vol. 4, No. 6, November

representing an approximate closed-form solution for 1983, pp.618-632.
the dynamic response of a vehicle during barrier
collisions as a function of its design variables. 12. White, K.P., Jr., Pilkey, W.D, Gabler,
Approximations of the this relationship have been H.C., and Hollowell, W.T, *Minimizing injuries in
achieved with only 68 individual data elements, re- fronta collisions using the SSOM optimization

- suiting in a reduction of data storage requirements technique," International Conference on Structural
by almost seven orders of magnitute. This approxi- Impact and Crashworthiness, Vol. II, July 1984.
mation has been used with success in subsequent
design optimization studies. 13. Ford Motor Company, Crash Reproduction

REFERENCES Using Static History (CRUSH) Reference Guide 11,' R]'VERNCFSMarch 1975.

1. White, K.P., Jr., Gabler, H.C., III, and 14. Ford Motor Company, Safety Systems Opti-
Pilkey, W.D., Limiting Performance Approach to mization Model, Final Report, in 3 volumes, U.S.
Systems Design: Refinemente to the Safety Systems Department of Transportation, report under contract
Optimization Model, Report UVA/529361/MAE5/102 DOT HS-6-01446, November 1978.
University of Virginia, September 1984.

2. Huang, M., Lawson, G.P., Powell, B.K, and
* Walker, J.H, "Characterization of vehicle deceleration

time histories in the analysis of impact dynamics,"
SAE paper no. 770013, 1977.

3. Langwieder, K., Danner, M., Schmelsing, W.,
Appel, H., Kramer, F., and Hofmann, J, "Comparison
of passenger injuries in frontal car collisions with
dummy loadings in equivalent simulations,' 23rd Stapp
Car Crash Conference, October 1979, pp. 201-231.

4. Myers, R.H., Response Surface Methodology,
Allyn-Bacon, 1971.

5. Box, .R.P., Hunter, W.G., and Hunter, J.S.,
Statistics for Experimenters, Wiley, 1978.

6. Box, G.E.P., and Draper, N.R., Evolutionary
Operation: A Statistical Method for Process Improve
mont, Wiley, 1969.

7. Fishman, G., Concepts and Methods in Dis-
crete Event Digital Simulation, Wiley, 1973.

*U.S. OOV1n1T PRININO OFFICEi 1985-.61-639t20008

173

. .-.... ... . - .. .
%I

16 -*' I i l


