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Abstract

During this first year of the new grant, research has been initiated and

conducted on the development and implementation of a new basic microscopic

theory of association/dissociation processes in dense gases. Expressions for

P the time-dependent rates RAD(t) for the association/dissociation of atomic or

molecular species A and B in a gas M are formulated in terms of the net

probability PiA.D for association/dissociation of bound energy level i of the

pair (A-B).

A new Variational Principle for these rates is proposed and is applied to

ion-ion recombination, as a benchmark, with very successful results.

rThe diffusional theory is examined and it is shown that highly accurate

results can be obtained for general mass systems provided the new basic

expression introduced here for RAD(t) is adopted.

3The microscopic basis of the macroscopic Debye-Smoluchowski Equation

(DSE) is examined and analytical expressions for rates are derived for general

-- interactons between A and B.

IL A valuable relationship between the rates of recombination appropriate to

the cases of ions generated with uniform frequency within a reaction volume

and ions which approach each other from infinite separation is derived.
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1. Research Initiated and Completed
1.1 List of Topics

During the first year (7/1/84 - 6/30/85) of the Grant, theoretical

research on the following topics was completed and written up for publication

in scientific journals:

(A) General Microscopic Theory of Association/Dissociation Non-Equilibrium

Processes in Dense Gases. A

(B) Diffusional Theory of Association/Dissociation Non-Equilibrium Processes

for General Systems.

(C) Microscopic Basis and Analytical and Numerical Solutions of the

Debye-Smol uchowskl Equation.

(D) Ion-Ion Recombination at High Ion Density.

1.2 Sumary of Topics

A summary of each of the above topics (A) - (D) now follows. Full

- details of each topic are presented in Appendices (A) - (D) of this report.

Topic (A): Sets of transport-collisional Master Equations for the

* two-particle non-equilibrium distribution function of subsystems (A-B) in a

thermal bath of dense gas M are derived in various physical representations,

* corresponding to the full range of gas density. Expressions for

time-dependent rates RA D(t) for association/dissociation are formulated in

terms of net probabilities PiAD for association/dissociation of bound energy

- level i of pair (A-B), so that association and dissociation are treated in a

unified manner and that evolution in time t towards equilibrium is naturally

ADachieved. The expressions for R are also independent of whether or not a

quasi-steady-state (QSS) distribution of highly excited levels is assumed and

are particularly valuable when approximate probabilities PiA.D are used. A

2



new Variational Principle for the rates RA'D(t) is proposed and is applied to

I ion-ion recombination, as a benchmark, with very successful results. Contact

of this Variational Principle (in general for chemical reactions in a gas) is

established with Tellegen's Theorem for electrical networks and with Onsager's

Principle of Least Dissipation for heat conduction.

Topic (B): Upon re-examination of the foundations of the diffusional

treatment of association/dissociation processes involving a non-equilibrium

distribution of (A-B) pairs in a gas M, it is shown that highly accurate

results may be obtained for general mass systems provided a new and more basic

expression for the time-dependent association/dissociation rates RAD(t) is

* introduced. These rates RAMD(t) are derived here in terms of the probability

PiA'D(Ei) that (A-B) pairs with internal energy Ei has associative or

dissociative character and are obtained without appeal to the

S. quasi-steady-state (QSS) condition for highly excited levels Ei. Then

* association and dissociation can be treated in a unified way and evolution

i towards equilibrium with the gas is naturally achieved. Comparison is made

. between the exact probabilities p.A,D obtained from the QSS-condition to the' . 1

Exact input-output Master Equation and those obtained from the derived

diffusional equational. RA'D(t) reduces to the constant-in-energy current

* J(t) through the excited levels only for exact QSS of the Master Equation.

* When approximate probabilities are adopted, identification of RA'D(t) with

J(t) is not justified. The basic expression here for RAD(t) is appropriate

* for both exact and approximate (diffusional) probabilities and yields

excellent results for ion-ion recombination in a dilute gas over the full

i i range of masses of the species involved and over various classes of

ion-neutral interaction (polarization, hard-sphere and charge-transfer).

.13
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Topic (C): By explicitly including collisions and by operating at a level

more basic than the macroscopic Debye-Smoluchowski Equation (DSE), various

-. assumptions within the DSE-treatment of transport-influenced reactions between

- A and B in a dense medium M become naturally exposed. The appropriate

modification of DSE to description of the kinetics within the region of the

sink is provided.

Analytical expressions for probability densities and rates are derived

which are exact solutions of DSE (a) at all times t and large internal

separations R of the pair (A-B), (b) at long times t and all R and (c) at

short times t and all R. Not only are the transient rates as(t) and L(t)

exact at short and long times, respectively, but they are naturally bounded

for all times with cs(t-*-) and aL(t'O) tending to the correct limit, albeit

with an incorrect transience. Comparison with exact numerical solutions of

DSE illustrates the effectiveness of a proposed solution over the full range

of time.

Topic (D): By appeal to a Thomson-type treatment of recombination, it is

shown that the rate for recombination of ions generated with uniform

frrequency within a reaction volume is a factor of (9/4) times greater than

the rate for recombination of ions which approach each other from infinite

separation. A valuable relationship connecting the two problems is uncovered.

* The analysis is pertinent to recombination involving dilute and high degrees

of ionization.

4.
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1.3 Papers Presented at Scientific Meetings

1. "Association/Dissociation in Dense Gases and Adsorption/Desorption on

Surfaces" by M. R. Flannery.

* 2. "Analytical and Numerical Solutions of the Time Dependent Debye-

owl Smoluchowskl Equation" by M. R. Flannery and E. J. Mansky.

3. "Electron-Excited Hydrogen and Helium Collisions" by E. J. Mansky and

M. R. Flannery.

4. "Symmetric Charge-Transfer Cross Sections in Rare Gas (Rg+-Rg)

Systems" by E. J. Mansky and M. R. Flannery.

All of the above papers were presented at the 37th Annual Gaseous

Electronics Conference, October 9-12, 1984, held at the University of Colorado

in Boulder.

The abstracts of the above papers now follow.

1.4 Abstracts of Papers Presented

I. LD-13 Association/Dissociation in Dense Gases and
Adsorption/Desorption on Surfaces,^' M. R. FLANNERY,
Georgia Institute of Technology--A new comprehensive
theory' is described for the time evolution towards
equilibrium of association and dissociation in a dense
gas. Expressions are formulated and are illustrated
for the net probabilities of association to stable
vibrational levels and dissociation to the continuum
from an arbitrary bound vibrational level via collision
with the thermal gas bath. A general variational prin-

" ciple emerges: The rate which corresponds to the over-
all direction of the pr6cess always adjusts itself to a
minimum and the time evolution towards equilibrium is
hindered. Analogy is established with Kirchhoff's
Laws and Tellegen's Theorem for electrical networks, and
with the Principle of Least Dissipation basic to thermo-

* dynamics, heat conduction, and fluid mechanics. The
theory can also be modified to provide the first basic
microscopic account of Associative Desorption of atoms
from and Dissociative Chemisorption of molecules to
surfaces.
*Research supported by AFOSR under Grant AFOSR-84-0023.
1M. R. Flannery, Phys. Rev. A, (1985).
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LD-2 Analytical and Numerical Solutions of the Time
Dependent Debye-Smoluchowski Equation,' M. R. FLANNERY
and E. J. MANSKY, Georgia Institute of Technology--The
macroscopic Debye-Smoluchowski Equation (DSE) with a
radiation boundary condition has been dertvedl from a
basic microscopic theory of association/dissociation
processes, A+B - AB, between A and B in a thermal gas
bath. There are at present no exact analytical solu-
tions of DSE for general interactions V(R) between A
and B for all separations R and time t. We formulate
here exact analytical solutions for the conditional
probability density and reaction rates (a) at long and
short times for all R and (b) at all times for large R
and compare the results with direct numerical solutions.
We also propose highly accurate working expressions for
the rates of transport influenced reactions at all
times.

Research supported by AFOSR under Grant AFOSR-84-0233.
1M. R. Flannery, Phys. Rev. A (1985).

C-1 Electron-Excited Hydrogen and Helium Collisions,*
E. J. MANSKY and M. R. FLANNERY, Georgia Institute of
Technology--The Multichannel Eikonal Treatment (MET) is
modified so as to facilitate highly accurate description
of various asymptotic long range dipole couplings im-
portant in electron excited atom collisions. MET is
applied to excitation in e-H(2s), e-H(2p), e-He(2 1 ,3S)

and e-He(2 1,3p) collisions at intermediate energies.
Integral and differential cross sections together with
various coherence and alignment parameters for the radia-
tive decay of the n=2 and 3 collisionally-excited P and
D states of H and He are determined from MET with 10
channels associated with n - 1, 2, and 3 sublevels.
Comparison is made with various recent measurements.

Research supported by AFOSR under Grant AFOSR-84-0233.

. . . .



LD-12 Symnetric Charge-Transfer Cross Sections in Rare

Gas (Rgs+Rg) Systems,' E. J. MANSKY and M. R. FLANNERY,
Georgia Institute of Technology--Symmetric resonance
charge-transfer, elastic, diffusion and viscosity cross
sections for the ion-atom collisions: Rg+ + Rg, Rg - He,
Ne, Ar, Kr, Xe are determined via a full quantal phase-
shift analysis using the pseudopotential of Sinha, et al.
[1] for He2+; and the spin-orbit ab-initio potentials of
Cohen and Schneider (2] for Ne2+, Wadt [3] for At2+, Kr2+

and Xe2+; and Michels, et al. [4] for Ne2+, Ar2+, Kr2+,
and Xe2+ at lab energies ranging from 0.001 eV to 1.keV.
The long-range ion-atom polarization attraction is ex-
plicitly acknowledged in the full interaction and in a
JWKB correction to the numerical asymptotic phase shift.
Differential cross sections are also obtained. Comparison

-" is made with existing experimental and theoretical data.
j (*Research supported by AFOSR under Grant AFOSR-84-0233.

[1 S. Sinha, S.L. Lin, and J.N. Bardsley, J. Phys. B
12 (1979) 1613.

(2) J.S. Cohen and B. Schneider, J. Chem. Phys. 61
(1974) 3230.

[31 W.R. Wadt, J. Chem. Phys. 68 (1978) 402.
[4] H.H. Michels, R.H. Hobbs, and L.A. Wright, J. Chem.

Phys. 69 (1978) 5151.
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1.5 List of Publications (in press and in preparation)

1. "General Microscopic Theory of Association/Dissociation Non-Equilibrium

Processes in Dense Gases," M. R. Flannery (Phys. Rev. A).

2. "Diffusional Theory of Association/Dissociation Non-Equilibrium Processes

for General Systems," M. R. Flannery (Phys. Rev. A).

3. "Microscopic Basis and Analytical and Numerical Solutions of the

Debye-Smoluchowski Equation," M. R. Flannery and E. J. Mansky (Phys. Rev.

A).

4. "Ion-Ion Recombination at High Ion Density," M. R. Flannery, J. Phys. B:

Atom. Molec. Phys.

5. "Modified Multichannel Eikonal Treatment of Electron Excited Atom (H,He)

Collisions," M. R. Flannery and E. J. Mansky (in preparation).

* 6. "Symmetrical Resonance Charge-Transfer in the Rare-Gas Sequence (Ne, Ar,

Kr, Xe)," M. R. Flannery and E. J. Mansky (in preparation).

7. "Kinetic Theory Foundation of Ion-Ion Recombination in a Dense Plasma,"

M. R. Flannery and E. J. Mansky (in preparation).

8. "A Variational Principle in Dynamics of Relaxation," M. R. Flannery (in

preparation).

9. "Classical Theory of Recombination," M. R. Flannery (in preparation).

10. "Selected Bibliography on Atomic Collisions: Data Collections,

Bibliographies, Review Articles, Books, and Papers of Particular Tutorial

Value," M. R. Flannery, E. W. Thomas and S. T. Manson, Atomic Data and

Nuclear Data Tables 33 (1985) 1-148.

Papers #1-4 above are included as Appendices A-D of this report.

Reprints of paper #10 will be sent to AFOSR under separate package. Papers
t.

#5-10 will be also sent to AFOSR when completed.

8
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1.6 Ph.D. Thesis Supervised

O Mr. E. J. Mansky has been a Ph.D. graduate student supervised by the

Principal Investigator (M. R. Flannery) and supported by the present and

" previous AFOSR grants (AFOSR-84-0233 and AFOSR-80-0055). He has now completed

Qhis thesis and is expected to graduate with a Ph.D. on September 1985. Copies

of his thesis are being prepared and will be submitted in due course to the

- AFOSR as a separate bound report.
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Appendices

In the following Appendices A-D are contained preprints of the following

articles submitted for publication to scientific journals.

(A) General Microscopic Theory of Association/Dissociation Non-Equilibrium

Processes in Dense Gases.

(B) Diffusional Theory of Association/Dissociation Non-Equilibrium Processes

for General Systems.

(C) Microscopic Basis and Analytical and Numerical Solutions of the

Debye-Smol uchowski Equation.

(D) Ion-Ion Recombination at High Ion Density.
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Appendix A

General Microscopic Theory of Association/Dissociation

Non-Equilibrium Processes in Dense Gases
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General Microscopic Theory of Association/Dissociation
Non-Equilibrium Processes in Dense Gases

M. R. Flannery
School of Physics,

Georgia Institute of Technology,
Atlanta, Georgia 30332

Abstract. Sets of transport-collisional Master Equations for the two-particle

non-equilibrium distribution function of subsystems (A-B) in a thermal bath of

- dense gas M are derived in various physical representations, corresponding to

* the full range of gas density. Expressions for time-dependent rates RAD (t)

for association/dissociation are formulated in terms of net probabilities

p ,D for association/dissociation of bound energy level i of pair (A-B), so

that association and dissociation are treated in a unified manner and that

evolution in time t towards equilibrium is naturally achieved. The

expressions for RAD are also independent of whether or not a quasi-steady-

*state (QSS) distribution of highly excited levels is assumed and are

particularly valuable when approximate probabilities P are used. A new

Variational Principle for the rates RA,D(t) is proposed and is applied to ion-

ion recombination, as a benchmark, with very successful results. Contact of

this Variational Principle (in general for chemical reactions in a gas) is

* established with Tellegen's Theorem for electrical networks and with Onsager's

*" Principle of Least Dissipation for heat conduction.

PACS: 34.10X, 34.50.1F., 82.20.Mj
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1. Introduction

When a distribution of ion-ion (A4 + B-) pairs, or of ion-atom (A+ + B)

pairs or of any (ion or neutral) subsystem of dissociated species denoted in

general by (A + B) is introduced in a dense gas of thermal species M, a highly

non-equilibrium situation exists. In this paper, a set of Master Equations is

formulated for the relaxation from some initial non-equilibrium distribution

of dissociated subsystems A + B (or of molecules AB) towards equilibrium with

a dense thermal gas M via the pertinent energy-change processes,

A + B + M *AB + M (1.1a)

a.A +B8+ M *AB + M (1.1b)

A+ 4B+M 4'AB8+ M (1.1c)

i.e., by the collisional association (recombination) of the dissociated

species, the forward direction of (1.1), or by the reverse of (1.1), the

collisional dissociation of molecules AB with an initial distribution

characterized by temperature TA which is higher than the temperature TM of

r- the dense gas M. A key component of this theory is inclusion of the essential

coupling between the macroscopic effects of transport and reaction between A

and B in M via a comprehensive microscopic treatment of the process.

Evolution of the two particle correlation function for subsystem (A-B) is

provided in terms of the internal energy E, internal angular momentum L and

internal separation R of the subsystem by explicitly including streaming (dif- .

fusion and drift) and discontinuous collisions with the heat bath M.

The present theory is a natural development of that previously proposed'



for the rate of ion-ion recombination (1.1c) as a function of density N of the

gas M. That theory1 then emphasized the steady-state rate of recombination

which can be expressed in terms of reaction and transport rates. Also the

treatment intrinsically assumed that the relative speed v was purely radial

and that the ratio of product concentrations of fully dissociated species, of
"'"4I~

concentration NA and N B' to their corresponding product rIANB under thermo-

dynamic equilibrium

N AN B/N ANB >> NAB /N AB (1.2)

is much larger than the corresponding ratio NAB/NA for fully associated

* species. The overall direction of (1.1) is then forward i.e., the overall

* rate of association is much greater than the rate of dissociation which is

* then neglected, by comparison. The aim of the present paper is to remove

those restrictions and thereby provide a comprehensive account of the time

evolution towards equilibrium of a highly non-equilibrium situation via the

dynamic balance as in (1.1) between association and dissociation processes,

which may then be treated in a unified way.

Because it remains a very basic problem in atomic and molecular physics

both in its detailed theoretical elucidation and in its central significance

to many physical situations of great current interest, solution of the general-

* problem represented by (1.1i) as a function of gas density is considered as a

prototype textbook study of a process in which collision theory and

0. statistical mechanics can be coupled via some unified microscopic treatment.

Association and recombination, the forward direction of (1.1), are

important in many instances, as for example, in gaseous discharges,2 in

electron-beam pumped exciplex laes (KrF, XeCl etc.), and in the recent

4Optoacoustic Effect where the acoustic wave is generated by the conversion

2



into translational heating of a dense gas via termolecular association of the

! photofragments A and B produced originally by photodissociatlon of a dense

molecular gas AB. For overall dissociation the reverse direction of (1.1),

externally-induced non-equilibrium distributions of AB in excited vibrational

levels can be produced by absorption by AB but not by M of short-duration

high-intensity thermal radiation with temperature T >> TM. or by the passage

of a shock wave through the gas. Here the translational and rotational

degrees of freedom of all species will relax to thermal equilibrium at

temperature T immediately behind the shock wave more rapidly than the much

slower relaxation of the vibrational distribution of AB associated with the

original and final temperatures TM and Ts, respectively. Charge-transfer

between molecular species (AB4 - AB) also produces5 a non-equilibrium

S distribution of AB in various high vibrational levels. Absorption by AB of

laser radiation will of course produce a vibrational distribution strongly

peaked about a specific vibrational energy. The vibrational distribution will

then relax by collisional association/dissociation processes.

In this paper, (1.1) is considered to be a closed system i.e.,

irreversible losses by curve crossings AB * A + B, quantum tunnelling, or by

mutual neutralization (A -B) :t A* + B are specifically excluded. The

concentrations NA and NB of subsystems are much less than the concentration N

of the gas system M so that the main relaxation mechanisms are energy-changing

collisions between the subsystem and gas. Relaxation via radiative

transitions and subsystem-subsystem collisions may therefore be neglected.

The gas is therefore regarded as a heat bath whose main function is to

collislonally exchange energy and angular momentum with the subsystem, while

maintaining its original thermodynamic state at temperature TM at all times,

thereby permitting the original dissociated or associated subsystems to relax

3
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to eventual equilibrium at temperature TM. The above three assumptions help

to keep the theory tractable but may, in principle, be all or individually

removed via straightforward generalization of what remains, however, a fairly

comprehensive theory presented here.

In the limit of low gas densities N, mutual transport of A towards B in

the gas M is very rapid so that the process (1.1) is determined by the rate

limiting step of reaction. The previous collisional input-output Master

Equations of Bates and Moffett6 , of Bates and Flannery7 , of Bates and Mendas8 ,

of Flannery, 2'9-1 for ion-ion recombination (1.lc), of Bates and McKibbin 12

for ion-atom association (1.lb) and the weak (diffusional) collision treatment

of Keck and Carrier13 and of Anderson and Shuler14 for association/

dissociation (1.1a) have all been designed specifically for reaction only in

the limit of low gas densities N. As N is raised the transport rate decreases

and the reaction rate increases until the rate limiting step of the overall

process in the limit of high gas densities becomes transport. The present .4

paper is therefore concerned with transport-influenced reactions and with the

design of appropriate Master Equations which govern transport-reaction

processes at all gas densities N. The Master Equation for the limit of low N

is well documented and discussed6 -14 and the present theory yields this limit.

The organization of this paper is as follows. In _§2, various

representations of the basic equation governing the mutual streaming

. (transport) of A towards B in the dense gas are presented. The corresponding

. transport-collisional (reaction) Master Equations for the non-equilibrium

" distributions are then developed in § 3. Simplifications introduced by

assuming equilibrium associated with one or more of various physical variables

as interseparation R, internal energy E, and internal angular momentum L of

the pair A-B, are then discussed in §4. Expressions for the rates of

4
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association and dissociation are formulated in 5 in terms of the solutions

to the Master Equation. In § 6, the time evolution towards equilibrium is

expressed in terms of the net probabilities of collisional association and

U dissociation of AB in high vibrational levels. A Variational Principle basic

to evolution towards equilibrium then emerges and is discussed in §7. It is

new and asserts that the conditional densities (or pair correlation functions)

of pairs AB in various energy levels are so distributed that the rates RA t)

and R.(t of association and dissociation, respectively, are extrema at time

t. If conditions are such that the overall direction is association, then

RA t) is minimum and RD t) is maximum; for overall direction of dissociation,

R A(t) is maximum and R (t) is minimum. Evolution towards eventual equilibrium

is therefore hindered and the Principle of Least Dissipation (first derived by

Onsager 15for heat conduction) is satisfied. When equilibrium distributions

are assumed for fully associated and dissociated pairs, the Variational

Principle yields the quasi-steady state condition (i.e., a steady-state

~ distribution of highly excited levels at all times) which rendered feasible

the many pioneering suis16 by Bates and colleagues of heavy-particle
I- 6-11

recombination and of electron-ion collisional radiative recombination in a

plsa 71 and in a gas. 19'20 Application of the Variational Principle to

* ion-ion recombination is made in §7.2.

Finally, in an effort to make this paper complete and comprehensive,

Appendix A contains classical distributions corresponding to equilibrium in

internal separation R, internal energy E and internal angular momentum L of

the pair (A-B) together with various classical-quantal correspondences. in

Appendix B are gathered various collision kernels and one-way equilibrium.

rates for energy-change collisions appropriate to various interactions

(charge-transfer'10, hard-sphere, 11polarization 8and Coulombic) between the

subsystem AB and the gas species M. The kernels are expressed in appropriate

form for direct application of the present theory.

5



2. Various Representations of the Transport Equation

The present theory is a natural development and generalization of the

microscopic theory recently proposed1 for the rate of ion-ion recombination

(or of any chemical reaction in general) as a function of gas density N. The

proposed theory1 bridged the density gap between the previous quasi-

steady-state theories 6 13 based on energy-relaxation alone and therefore valid
2

in the low-density limit, and the macroscopic mobility/diffusion theory 2

valid in the limit of high gas densities N. It was also shown1 that the

steady-state rate of recombination is determined by the well known relation a

= aTR aRN/(aTR + aRN) ' between the macroscopic rates aTR and aRN of mutual

transport and of reaction between the species, respectively. At low N when

TR > aRN then a aRN' the rate limiting step, while at high N when aRN >

'TR' then a -) aTR' the limiting rate. This relationship is also a natural

consequence of the macroscopic Debye-Smoluchowski Equation1 where aRN is

regarded as an externally assigned parameter, in contrast to the microscopic

theory I where aRN is internally determined.

At low N, equilibrium with respect to the internal separation R of the

(A-B) pair (ion-atom or atom-atom) is very quickly established in comparison

to the much slower relaxation in time t of both the angular momentum L and the

internal energy E of the pair. The appropriate time dependent master equation

would involve only the set (EL 2 ,t) of variables for ion-atom and atom-atom

association. For ion-ion recombination, the Coulombic attraction does not

support an angular momentum barrier and -equilibrium in L2 is then very quickly

established in comparison to energy relaxation so that the master equation

involves only (E,t), as in the previous quasi-steady-state treatments. 6 - 1 3

As the gas density N is increased, relaxation in internal separation R

occurs in a time comparable to relaxation in internal energy E so that both

transport and reaction are coupled. It has already been established '21 that

a "Boltzmann-llke" equation governs the development of the pair correlation

function, or conditional probability density n(R, ,t), which is such that n d"

6 7



is the probability that the internal momentum, = mv, and internal

I separation R of the (A-B) pair of reduced mass m and relative velocity X,is

within the interval dR dk about (R,g) at time t. Thus" 2

tn(",p,t) n - V at+ R

f f dP M f d~i [n(R,k';t)No(PM') - n(R,;t)NO(PM)][giM a
i=1,2 ZM i

- n(R, ;t) v(R,k) (2.lb)

where V(R) is the interaction between A and B, where the momentum P of the

gas species M is distributed according to a (time-independent) Maxwell

distribution N0 ( ) at temperature 0, and where aiMd~i is the (center-of-mass)

. cross section for A-M (i = 1) or B-M (i = 2) elastic scattering at relative

speed giM into solid angle dsli. If M is molecular, then aiM is augmented by

the collisional inelastic cross section for rotational and vibrational

S transitions. The 0i-integration in (2.1b) is over that scattering region Q'i

accessible for the production of all final scalar momenta p'( , M,Qi) and

PM of the (A-B) pair and the gas, consistent with energy

conservation and with fixed R and P Included also in (2.1b) is a term, nv

which specifies loss of bound or free pairs via irreversible chemical reaction,

as mutual neutralization at frequency v.

The emphasis of the earlier paper
I was the steady state recombination

rate for the case when there were many more dissociated A-B species than the

associated neutrals such that the dominant process was association alone. In

this paper, we focus on the time evolution towards equilibrium which is

7
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established by the balance between collisional association of the free pairs

and the collisional dissociation of the recombined pairs in a thermal gas

bath. In order to facilitate appropriate theoretical development, the

transport (streaming changes) portion (2.1a) and the collisional

(discontinuous changes) portion (2.1b) of the above Master Equation will be

formulated in various representations of physical interest.

2.1 (R,Z) Transport Equation.

With held fixed at angle 0 to variable R, then after some analysis,

vV n( _ 1 a (R2 npcose + [np sin 2  (2.2)

S. R2 5R )p,e R a(cose) p,R

+sine Ian +B sin 0, Ia . ctLnll
R [cos€ + sineR cote R  as]n4

for general n R(R, (p,e,o)],where k(e,o) is directed along (e,,) of a

spherical system with Z-axis along which, in turn, is directed along

(eR, OR) of a space-fixed spherical reference frame. Since the interaction

- V(R) is radial, then the probability density n is a function only of R, p and

e, the angle between and !,. Under azimuthal (0,0R) symmetry, and with theaid
A

of . (2.2) together with the corresponding expression for .V n, (2.1a)

can be expressed as

d an 1 aR 2 n v cos 0) + a( vs
d ,; at R2  (R np,e R a(cose)( p,R

"_-.aV 1 a 1 a .2

-L p (p n cosO)RO + - (n si ) (2.3a)aR 2 pR6 p acose) snepR] (.)

8
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which may be cited as the conservative form of the transport equation in one

dimensional spherical geometry, since the angular redistribution terms vanish

when integrated over the full range 0 < e < 7r of the momentum direction for

fixed R. An alternative form of (2.3a) is

K.d an [(an1 m V1 an
dn ( ,e;t) = + v cose j'Rp"- RJ (2.3b)

2 T- VTT- a(cose)R,p

where the internal energy E of the AB pair is

E = p2/2m + V(R) = 1/2 mv2 + V(R) = T + V(R) (2.4)

in terms of relative kinetic energy T and relative speed v.

2.2 (R,pIcoseD)-Transport Equations

Introduce the superscripts (+) to distinguish those pairs n + with

directed into the upper region, 0 < e < - where cose > 0 defines the

positive (+) region, with outward directed radial speed, from those pairs n

with directed into the lower region, -- < 8 < w where cos 0 < 0 defines the

negative (-) region with inward directed radial speed. At e = - , the radiai

speed v cose is zero (at the classical turning point of the relative motion).

The set of equations satisfied by,

nSd(R,k,lcosel;t) = n4 (R,p,lcosel;t) + n'( ,p,lcosel ;t), (2.5a)

the sum (s) and difference (d) of the 0-integrated quantities,

9



+ 2?r-
n+(RPplcos ;t ) =f' n (R,pZ;t)dO (2.5b)

o

is obtained from (2.3a) to yield,

.dnS(R,p, cose a;t) =a ns +1 + (R 2 d 1 a (n s in
dt at 2 3R R a(cose) ( e)

".. J I a (P(2 ondscos)) + a , ns sin2 e)3 (2.6a)
aRj p +pa~o~

p

and

dt =~los- a - - (R n vlcosel) +- R (cose)(n v sin 26)
Tt A, ~ at R2 aRR (o

1 a (p2 nlcosel) p a(cose sin 0)1 (2.6b)
1a1  2 p p a d ins(2eb

2.3 (R,p)-Transport Equations

Let

+" 21 1,0

n-(R,p;t) = f dO f d(cose) n±(R,;t) f n( ,,;t)dk (2.7) P..
o 0,-i+

be the conditional densities (per unit dR p2do) of pairs that are radially

expanding (+) or radially contracting (-) across a fixed element of surface S

at radius j. The corresponding intramolecular currents

= v S n( ,p;t)jcosejdk (2.8)

10
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L

t-:. 2
are the rates (per unit dR p dp) that pairs expand (+) or contract (-) across

a fixed surface S with normal es oriented along the fixed direction J. In

terms of (2.7) and (2.8), integration of the conservative form (2.3a) over

- each (+) region yields,

I+ I ' t~ I p1I 1(~~~
d n+-R,p;t) = an ++ l 2 2 j-(R,p;t)

-l- wt- 1 aV m1

T v n(R,p, = -1;t) 2- 1 , (2.9)
2 V 1 2= IR-E-V) i

+ i
where, owing to O-symmetry n (e -) is 2ir n-(R,,;t) evaluated at 0 = which2 , 2
corresponds to turning point(s), the pericenter and apocenter (where

appropriate) of the orbital motion.

This density n(-!) corresponds to orbits (with angular momentum Lt = JR x

W. = Rp),which are tangential (0 = ) to, but do not intersect the R-sphere

. i.e., n( 2-) is n'(-!) at the pericenter, and is n+(!) at the apocenter of the

" appropriate orbits. As R increases from zero, the angular momentum Lt

Prequired to provide this tangential orbit must also increase, so that the

orbit can only touch the R-sphere externally at its pericenter. For unbound
*il orbits (E > 0), Lt can increase indefinitely so that n(-) remains n(-) for

r-. all R. For bound orbits of specified E, however, then Lt = Rp required for a

-+ tangential orbit reaches a maximum at a radius A which is the root of

1Rp =  " -R TR = 0  (2.10)
R1 2 A

where T is the kinetic energy (E-V).

As R increases beyond this radius A, Lt decreases, and the required

* "1

*.. *I I . . . . . . .

= p + m - ' " " + " " "" " I. . .
"
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Lt-orbits become internally tangential to the R-sphere at their apocenters;

until R reaches the largest apocenter at R = B, the turning point of the L = 0

(straight line) motion determined by tEl = IV(B)l for attractive interaction.

Hence the density n in (2.9) is delineated as,

n-(Rp, e j-;t) ; T > T = 1/2 R (3V/aR)

n(R,p, e = 1;t) = (2.11)

+(R,p, e -= ;t) ; T 1T = /2 R (WV/DR)

Region I, characterized by T < T corresponds to (E > 0, all R) and to (E < 0,

0 < R < A) while Region II, characterized by T < T corresponds to (E < 0, A <

R <B).

Note that the coefficient of n in (2.9) vanishes at R = A and B. The

. radius of the bound circular orbit is given by the root of

,..Veff 2 2] 0A- -- IV + L2 /2mR 2 L=0 (2.12)

which is identical with A, the root of (2.10) i.e., the circular orbit is

associated with the largest value Lmax of the allowed angular momentum, as

expected. Hence, for R < A, the pericenters of all orbits with L < Lt = Rp for

given E lie within the R-sphere and that orbit with L = Lt touches externally

the R-sphere, and the apocenters for all L are all external to the R-sphere.

For R a A, Lt = Lmax and the orbits are circular with the pericenters and

apocenters lying on the R-sphere. For R > A, the pericenters of all L orbits

12
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and the apocenters of those orbits with Lt < L < L max are within the R-sphere

and the apocenters of orbits with L < Lt lie without the R-sphere. The Lt-orbit

is internally tangential to the R-sphere at the apocenter.

The radius A of the circular orbit for pure Coulomb attraction is e /21EI

and the maximum turning point B is 2A. The turning points appropriate to

fixed (E,L2) are

L R1 2 (E,L2 ) = A[1 + {1 - L2/2mIEIA 2 }I2 ]; A=e 2/21EI, (2.13)

such that, at RI, 2 = A then L2 [= 2mjE IA2 = 1/2 me4/IElwhich is the maximum2 L

permissible value Lmax of for a given tEl] decreases with stronger binding lEt.

- For L = 0, R1 = 0 and R = B = 2A. Also T > T* =e /2R for E > E = (-e /2R)

Hence (2.11) shows that n( -) is n for E > 0 at all R, is n for E < 0 and R

i < A, and is n+ for E < 0 and R > A.

With the sum (s) and differences (d)

P n Sd( ,p;t) = n+( ,p;t) + n-(,p;t) (2.14)

and with the total (s) current from, and with the net (d) outward current across,

s,d(R,p;t) = j+(R,p;t) + j-(R,p;t), (2.15)

t-

a fixed es-surface,then (2.9) is equivalent to the set,

-~.ns(R,p;t) ~2~+L[i - 2L.1Ii [Rjd p. ( 2.16a)dt atR 2 laRp ~2 AaRapIRu "
R p

13
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and

Ft -nI 1aifd(Rp;t) = nd + -L 1 p] ' (R ,p;t)] -

dt ~at R2  aR1  2 )p -2 T IR J L

r I

[2. 1 V n(-,p; e p ;t)v (2.16b)

in the (RI,p)-representation. The above forms are useful when n2-( ,p) are each

independent of e i.e., when the internal angular maomentum states are in

thermodynamic equilibrium (see Appendix A). Under this condition the set

* (2.16) with (2.7) and (2.8) reduces to

s d I 3I
d 5 R~pt) -an! + -j DV ani la and +12 _ 1 Vnd]dt~'~' at 2L a i ~ a p) R E- V7 aR/ J

(2.17a)

'-4.

(E-V

.'incte (R.1p)-isrpropiato The -boequilrim a eaged vlen ofp itpresents..

a gdeeneaiint of Es~. (hen1theinterna angu5la mofmef.u 1swhich are aoi atdol

• ithe speaieqvuilongiu the rAialndirectionde hscniintest

-"ifo (21 th total dent n28 andue tot-o

22rpot1 
Ion

W;2, o hen thea kietsicy nerg Tn to p )rte ta sue a aibe

v V
.+ v n s  -2n(e 2 1 ) v".

i- 12 (2.17b)-

i-//21Since (2.17a) is appropriate to the L2_equilibrium averaged value of ),it represents ''

.-.. a generalization of Eqs. (2.12),(2.20) and (5.1a) of Ref. 1 which are associated only

14
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then the corresponding densities and currents (per unit d dT d,) are

n(k,T,;t)= m p n(RIR ;t) (2.18)

and

j(R,T,;t)= m p j(RR;t) = v n(R,T, ;t) (2.19)

respectively, such that the g-integrated quantities which correspond to (2.14)

and (2.15) satisfy,

..d =-(RT;t) - [ R T .'R R j d T;t) (2.2Ua)
dt a '' I IaRl aT:.-RIT I0 RJ

dd FlI~ ' 2
~n(,T;t) 1-= + R IA a ) - j

dt IVa _Y aR T RT

-" " -J R',TR ;t)v (2.20b)

In thermodynamic equilibrium (Appendix A) at temperature O, the

conditional density factors as

n(RR) = (2 irm k 0) 3 /2 exp(-p /2m) exp(-V(R)/kE)), (2.21)

S d
and is independent of direction (such that n= 2', rd = 0). It therefore

satisfies the set. (2.17), where each term vanishes separately, and the set

(2.20) as expected.

15
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2.5 R-Transport Equations.

Integration of (2.16) over the full range (0,-) of T therefore yields the

set,
-b

d_( - + 1 a R2 j(R) (2.22a)
Tt ~at T2R

* and

;. ~ ~d ndR;t an I a [2s v 1 V+..
=(Rt) -d+ - a R is(1- [2 2 <v 1 (l n(R,e = ! ;t) <v> -

dt ~ R2 R (R2 AR -m -<v> a 2

o.'o

(2.22b)

where the macroscopic (configuration) densities are

nS'dR;t) = InSd(RT;t)dT (2.23)
0

and the macroscopic (configuration) currents are _

d (R;t) js, (R,T;t)dT (2.24)
0

The averaged speeds <vn> in (2.22b) are determined by,

n(R,e = -;t) <vn> f n+(R,T, 0 -;t) vn dT + f n'( ,T,e = -;t) vn dT (2.25)

where T (R) = R(aV/aR) is either the kinetic energy of a bound circular

orbit of radius R, as in (2.11), or else is zero for unbound orbits, and where -j

16 .. . . .. .
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n(e,= j-;t),= T n+(R,T, e= 2;t)dT + c n-(e,T e= ;t)dT (2.26)
0 Tr*

is the total macroscopic density at the turning points (apocenter for T < T*

and pericenter for T > T).

The variable sets (R,,), (Rp), (R,T) and R are quite natural at higher

gas densities N, since in the limit of high N, collisions are sufficiently

rapid to establish equilibriun in p or T such that (2.3), (2.6), (2.16),

(2.20) and (2.22) furnish quite naturally the appropriate non-equilibrium

equations in the various variables. When there is T-equilibrium for example,I-" +
- are separately independent of p and satisfy the Maxwellian distribution

n-( = ; -n- _,T) _ 2 1 T1/2 exp(-T/kO) (2.27)1 n-+(R;t) n-(R) k Ek))3/

where the tildas (') denote equilibrium values and where the configurational

density is

1

n+(R;t) = f rn(R,T;t)dT (2.28)
0

-The appropriate non-equilibrium equations for nSd(R,t) arp then (2.22)

where the currents are

js'd(R,t) = 1/2 nSd(R;t) V = 1/2 Cn+(R,t) + n'(R,t)] (2.29)

and where the averaged speed

<v> =-v (8 k /7m) I/ 2  
(2.30)

17
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is simply the mean thermal speed. For T-equilibrium (2.27) holds such that

n(R, e -;t)<v> u [n+(R,t) n nD(R,t) {1 (T*/k E ) exp(-T*/kO))}] (2.31)

and

n(, !;)<- V/e)n(Rt) n(R,t) exp(-T*Ike)] (2.32)

dd

* ~~n R-equnlibrium R nt s (RtheBlz)ndsrbto

-L~ = expl-V(R)/kG(R] (2.34~tex(T*Rk )

andc is 2f (or, cod ple0. tHencebo ao (2.22a) , withi9)nband2.(2.33 r

saIfen equilibrium, akt s xethe. lzan itrbto

At the higher gas densities N where relaxation in R becomes the rate

limiting step and where collisions are sufficiently fast to promote

equilibrium in p or T, then the sets of equations (2.6), (2.16), (2.20) and-

18



(2.22) derived above are appropriate for application from high N to

intermediate N.

2.6 (R,E,e)-Transport Equations

In the low N-limit, equilibrium in R (i.e., the Boltzmann distribution)

is achieved instantaneously relative to the rate limiting step of collisional

relaxation in the internal energy E. The set ( ,E,k) of variables is

therefore more natural to this situation. When the relaxation in E and in the

internal angular momentum squared,

L = R2p2 sin 2e = 2m[E-V(R)] R2 sin2e (2.35)

are both slow in comparison with R-relaxation,then the set ( ,E,L2) of

* variables is more appropriate.

The probability densities germane to the various sets are related by

"' (2.18) and by

n(R,g)dR dR nl(R,E, )dR dE d F n2 (R,E,L2)dR dE dL2 d, (2.36)

for the probabilities n dk, nI dE d and n2 dE dL
2 do that the pair with

* internal separation in the interval d about has the physical quantities ,

*'. (E,j), or (E,L,O)in the associated intervals. Hence the various probability

densities are related by

n(R, p)=R2 nI(R,E,k)v/R2P2 = 2R2 n2(,E, L2 )V cose (2.37)

19
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In what follows the 0-integrations are implied unless otherwise

indicated. In (2.36) the bound levels (E,L2 ) of the AB-pair are assumed -.

to lie sufficiently close (relative to the thermal energy kO of the gas bath)

that they form a quasi-continuum in energy E and angular momentum L. This

restriction is not essential and can be removed by appropriate discretization

,-.* of the continuous variables E and L2.

With the recognition that

( RE =- R p (FR a (2.38)

where the subscript denotes that quantity held constant throughout the

appropriate differentiation, then the basic (R,V)-equation,(2.3) with (2.4)

and (2.36),in the (R,E,k)-representation is equivalent to,

--L R- 2 oa
2-4

d 'RE, =an [ a (R;cse)
dt at 2F D R n1v E,e+

1 2 1 aV a (n sin 2 (2.39)
2 R TE-_V R 5(cose) 1 n R,E1

which is the conservative form similar to (2.3a),since the angular

redistribution term, when integrated over the full range of 6, vanishes as

with (2.3a).

2.7 (R,E.L 2 )-Transport Equations.

The transformation p (E,L2,q) in

%2..

n n(R,E(p,R), L(p,R,e), 0) (2.40)

20
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may be accomplished via use of the derived identities,

-- gp,e (a,2  , 2  R,

nn EIn + aEn anL 21L2  (2.41a)
R a a ,L2  aR a R ap IR,e

Lan 1 n an 1 (2.41c)
-a (cosa) E) 2 [apaR p

Also the derived identity

(R E,L2 = ( E,e 2 c R- +a } fa(coso)E (R,E

is valuable for transformation between derivatives taken with respect to fixed

L 2 and fixed 0, respectively.

Hence (2.3a) reduces after some analysis simply to

n(d 'R t) -L + v, cose 51P~ot

dt ~ at a , 2  (2.42a)

' for n(RR;t), or with the aid of (2.37) for nl(RE,k) to

d (R ,-;t) + (RIP cs) 2 Q ,Ek;t)v/R2 p2  L2 (2.42b)
dt +at R2  aR 1 JE,L

which,with the aid of (2.41d) can be shown to be identical with the conservative form

S.. (2.39) for n (R,E,R;t). In the (R,E,L2)-representation, (2.42a) is equivalent to

n d 2 n 2. + 1 a R cn (REL;t)v Cos E,L2 (2.43a)
idt 2 (R'E'Lz t  2 3R 2 IV

21
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i°.

for n2 (R,E,L2 ;t) of (2.36) in terms of quantities (E,L2) which are naturally

conserved in the absence of collisions with the gas. An equivalent and useful

form of (2.42a) is obtained from (2.37) and (2.42b) as,
'..

2; an 2+2
(RE,LZ;t) n +--- l(RE,;Ev/p L 2  (2.43b)

t at 2R2 a'R

In contrast to (2.3) for n(R,R),and to (2.39) for nl( ,E,q), the

microscopic vector current

2;t 2
2 (R,E,L2;t) = n2 (R,E,L ;t)v , (2.44)

associated with the density n2 of particles with fixed internal energy E and

angular momentum L, across a fixed surface therefore satisfies the simple

transport equation

dn an + 1 (R2j (2.45)
dt at R2 aR R

where n = n2 (REL 2 ), the microscopic density, and JR is the outward radial

component of the microscopic current (2.44).

In spite of the neat simplicity of (2.45) this is the first time to the

author's knowledge that the transport terms in the left-hand-side (2.3) of the

Boltzmann-like equation (2.1), have been written as (2.43a) in terms of the

2conserved quantities (E,L ) of a collisionless plasma being held fixed upon

the R-differentiation. The form (2.45) is normally reserved only for the

macroscopic net current (R) of all particles integrated over all vector

momenta (in magnitude and in direction). In equilibrium, (R2 n2 v cose) is

C,°o
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ii.

a function only of E (cf. Appendix A) such that the streaming (gradient) term

in (2.43) vanishes, as expected.

Introduce n2 (R,E,L 2;t) to distinguish those pairs with the same values of

(kE,L2) and therefore of

"cosel = [1 - L /R p2]1 2  (2.46)

but with directed at e with e into the positive (+) region, 0 < e < 2' or
into the negative (-) region - < e < w. Under this distinction, the transport

2

equation (2.43) is therefore equivalent to the set

T- -- a 2  (R, ;t)vo- + I (2.47a)
d ,t) - R2 R R2 n;E,L 2

+R

for n-, or to the set,

o5

.-d ns (RE,L 2 ;t) !! s + R R2  E,2t (2.47b)dt =a t- R2 a R 2  (R'%j 2tE,L2(24b

pd
d d 2 an 2 2s2- n (R,E,L ;t) -- + - -- R j (R,E,L 2 ;t)]EL 2  (2.47c)

for the sum (s) and difference (d),

n..d (R,E,L2 ;t) = n2+(R,E,L 2 ;t) + n2 (R,E,L2 ;t) (2.48)

of those (E,L2) pairs which are expanding (+) or contracting (-) across R with

associated total (S) and net (d) currents

23
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js,d E,L;t) = ns d(R, E, L;t)vlcoseI (2.49)

with direction at angle e with the normal es to the fixed surface. The

set (2.47) represents quite a formal simplification over the corresponding set

(2.6) in the equivalent (R,p,lcosel)-representation.

On integrating (2.43b) over the configuration volume between two spheres

of radii RI(E,L2 ) and R2 (E,L
2), the turning points (pericenter and apocenter)

for bound (E < 0) orbits and on recalling that n at R, and R is n and n-
2

respectively, then,

d+- 2 = _ 2w(v /P) (R ,E, E, e2t =,r/2 t)l*t) at + 2 -.29 E, e i2t vI

(2.50)
where pi and vi are the momenta and speeds at R.(i=l,J). Hence

1'." R2(E,L )

n t d(E,L2 ;t) n+(E,L 2 ;t) +n-(E,L 2 ;t) = nSd (REL2 ;t)dR
R1(E L (2.51) -

satisfy the set

d nS(E,L2 ;t)= nS(EL 2 ;t) (2.52a)

and

d nd(EL 2 ;t) 2nd + 4w v 2 ,E O/2;t)
dt at [9"

2-(vl/P )n (R1 ,E=,ff/2;t)j (2.52b) -

24
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The significance of the source/sink term in (2.52b) becomes transparent

0upon assuming t-equilibrium when (Appendix A),
-. ~ ~n(k,E,L 2;t) On(R,E,L 2  2 R2 vcsIR ,L] "

2 V [2.,R 2 VICoOeIT R(E,L) (2.53)"-- ~n(E,L2;t )  - (E,L2 ) (.3

where TR is the time to complete one radial orbit (RI  R2- R1 ) for fixed E

. and L2. With the aid of (2.37), (2.52b) therefore reduces to

nd- nd(E,L 2;t) = -n+ 4nd(E,L2;t)/TR(E,L2) (2.54)
dt 

at

which with (2.51a) yields,

d 2 + 2dnt(E,L = n--+2(n+_n-)/T (E,L E < 0 (2.55a)dt at -R

* i.e., at every half periods, expanding (+) pairs in bound orbits are converted

"' by transport at the apocenter into contracting-pairs, and contracting (-) pairs

1 are converted at the pericenter into expanding (+) pairs. For unbounded (E >

0) orbits only the pericenter RI is relevant. Since n-+ n as R - then (2.55a)

- is replaced by

.. 4.Tt n-(E,L ;t) - 2 n-TR (EL E>0(25b

such that transport converts contracting (-) pairs to expanding (+) pairs at the

pericenter. Hence each set (2.50) or (2.b2) of transport equations yields

quite naturally the radial period under R-equilibrium and therefore contains

Irather instructive information, particularly useful when orbital and

collisional times are to be compared.
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2.8 (RE)-Transport Equations

Since L2 in (2.35) varies between 0 and Lt2 = R2 p2 for fixed R and E as

varies within each separate (+) or (-) region, the use of Leibnitz's rule 22

for R-differentiation of an integral with variable R-limits yields,

222 22p

f 1 Rnd R oe7T 2 Vcose)EdL -2 AR fn 2  050a R R 1R 0 c L]_..~~ ~ =Jn 2 vos L2

- n2 v cos =./2 (R p E (2.56)

With the aid of (2.37)

2. ,E t) = n2 (,EL 2 ;t)v Icosel = n(,E,0;t)v/(2R 2p2 (2.57)

and with the aid of (2.10), the L2-integration of (2.43) over the range

(0 Lt ) therefore yields

d+ +

t n--(RE;t) + j(R,E;t}ETR.a-jd t -R2 A EE-R)-

nI(R,E,o= I;t) (2.58)

for the integrated densities

n4 (,E;t) n (R,E,L2;t)dL2  (2.59)
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and currents

L2

j-(R,E;t) = v ftn 2 -R,E,L2;t)cosejdL2n±R,E;t) v<lcosel> (2.60)
0

4The equivalent set of equations for

'.-" s,d(,+
n (tE;t) - n (%,E;t) + n(,E;t) (2.61)

and the corresponding currents

js'd(R,E;t) - j+(R,E;t) + j(R,E,t) (2.62)

which are the total (s) and net(d) rates (per unit d dE) at which particles

with speed v leave or cross a surface with normal is oriented along the fixed

direction 1, is

--(RE;t) + R jd(R,E;t (2.63a)

and

. d nd(RE;t) _ nd + 1 R s(RE;t)
at R2 aR [E

v n ,1;t n2.63b)
V[-R (E-V) R 1 ,E,~;t (923

On integration of (2.39) for n (RE,k;t) over the positive (+) region 0 < e <

L and the negative (-), j < e < , region of , the above set (2.58) for

22

- 27



i-.

n+(R,E;t) = f nl (R,E,,;t)dj  (2.64)

++-

jL(R,E;t) v f nR, ; cosej di (2.65)

and the set (2.63) for ns ' d also follow directly, since the -differential

operator in (2.39) and the i-integral operator in (2.64) simply commute. On

integrating (2.63) over the full range -V(R) < E <- of energies E, and with

the use of Leibnitz's rule, the macroscopic set (2.22) of equations, for

nS'd () = d ( ,E; t ) dE (2.66)
-V(R)

and

J s'd(R) = f js'd(R,E;t) dE (2.67)

-V(R)

is also reproduced with the averaged speeds determined by

E 0
*"" nl(R, = 2;t)<vn> = f n (R,E, = -;t) dE + f n'(,E 6 dE (2.68)'L:. V E*,

" where

E = 1/2 R - V(R) (2.69)

corresponds to T of (2.11), and is the energy of a bound circular orbit of

radius R.

28
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2 2For pure Coulombic attraction, E -e /2R < 0; for V " R 2 , E is zero;

and for V = -ae2 /2R4 then E* is ae2/2R4 > 0.

2.9 E-Transport Equations

On integrating (2.63) over all accessible R, then the equations satisfied

by,

.R.

~'d(E;t) f ) dR (2.70)
0

where R. is either the outermost turning point B determined by IE! = IV(Ri)

C for E < 0 or is infinity for E > 0, are

tnS(E;t) = .-ns(E;t) (2.71a)

m
S 2d"*. for n , since the net flux 4wR jd(R,E;t) vanishes at both R. and zero and

1

d d d 2s ( M.
I- d (E 0;t) + im [4wR J (RE;t)] - 4w f nI(R,E,e =jt)

x (R2p2)E dR (2.71b)

d d ) n R- +
tn (E U 0;t) = - nI'(R,E, e= 2't) + f n (R E -,t), dt t 1 02A 2

2a 2

L for n since the total current js vanishes at both 0 and Ri. Also A in

29



a 2(2.71c) is the root of (2.10) for constant E i.e., where * (R p2)E vanishes.

The physical significance of the above terms becomes apparent upon

examination under thermodynamic equilibrium in R and 6 when (Appendix A)

n( ,E) '(Q,E)

E (2.72)

n(E) n(E)

such that (2.71b,c) reduce in this limit to

d B
d n d(E>O;t) = -- nd (E;t)_E-V(A)]A 2/f pR2dR (2.73a)

f

exactly, since the total transport can be shown to vanish for ,}-equilibrium,

and to

d ndE<ot. = + nd(E;t)E-V(A)]A2 f p  dR (2.73b)

0

For Coulombic attraction, A = /21EI is the semi-major axis and

Be 2  3/2 _1/2 I1(E) 27c

[EV(A)]A2 [2] 1 =Z 1 1 2( 27 T(IEI) (2.73c)

0 e?

is simply half the time period T for a bound orbit of energy E. For Coulomb

attraction therefore
".-p

d and
(E>;t) -- 4n(E ;t)/T(E) (2.74a)

dnd(E<O ;t) = and 4nd
(E ;t )/  (2.74b)

dt at
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which, with (2.71a) yields

d n--(E>O;t) =T n- + 2n'lT(E)
" (2.75)" d + tn +  n+_n

A -=-E<O;t) = + 2(n -n)/T(E)

i.e., after every half-period (1) expanding (+) pairs in bound orbits (E < 0)

are naturally converted at the apocenter into contracting (-) pairs which in

turn (for bound and unbounded orbits) are converted at the pericenter into

expanding (+) pairs. This result is quite general in that it can also be

deduced from the corresponding eq. (2.54) for (E,L )-nonequilibrium in terms

of the averaged radial frequency

V R (E) = 1'' f [n(E,L 2 )/ (E,L2 )]dL 2/n(E) (2.76)

In this section the basic transport eq. (2.1a) has therefore been

S.represented in various forms (2.6), (2.17), (2.20), 2.22), (2.39), (2.47),

(2.52), and (2.63) appropriate, respectively, to the sets - (R), (Rp),

(RT), R, (R,E,p), R,E,L 2 ), (E,L2 ) and (R,E) - of variables all pertinent to

various ranges of gas densities N. At low intermediate N, the set (R,E,L2)

is more natural than the set ( ,T) which in turn becomes more appropriate for

- intermediate - high N. The transport equation assumes for the set ( ,E,L2 ) a

particularly simple form (2.43a) normally reserved only for configuration

densities (i.e., phase densities n(k,R) integrated over k). This form is also

preserved by ns(R,E;t) in (2.63a) but not by nd(R,E;t) in (2.63b) due to the

* conversions at the turning points.

The coupled equations (2.22a) and (2.22b) must in principle be solved to

* yield the net current j d(R) in configuration space. It has already been

1. 5shown via the continuity and momentum equations [which are v velocity
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averaged moments (s - 0 and 1, respectively) of Boltzmann's eq. (2.1b)] that

d
J may be expressed, to a very good approximation, in terms of the total -,

density ns, by

- ~ d(Rt) =fn(R,k;t),v dk

= - D'Vn s (Z,t) - (K/e)(XV)nS( ;t) (2.76)

.*" where D = DA + DB is the diffusion coefficient and K = KA + KB is the mobility

for the relative diffusional-drift of A and B in the gas M, in terms of the

individual coefficients DA,B and mobilities KA,B for each individual species A

or B in the gas. This recognition permitted 1 the overall rate a of the

process to be analyzed 1 in terms of rates, a RN and aTR, for reaction and trans-

port rates, respectively, which provided great insight to the overall variation

ofa with gas density. It also helps to establish (§5.3) the microscopic

foundation of the Debye-Smoluchowski Equation.
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3. Full Transport-Collisional Equations

The collisional rate (2.1b) in the basic equation (2.1) for the

devlopen ofthetw-particle correlation function n(RR;t) for (A-B) pairs
d e e o p e t o2.et w ~

has been transformed to the (R,E,L )-representation in Appendix B. With the

aid of (2.47a) the full Transport-Collisional Master Equation is then

d + 2

t ni(R,Ei ,L1 ;t) = -L + -- R- LRn±(R,Ei 'L;t)vlcoselL 2
I t i' R 21REiI

00 tf
- ~ dL [n± ( t)vif (R) - n±( ;t)vfi (R)] (3.1)
iv(R L0

f

where the i-index specifies the combined internal energy E1 and internal

angular momentum squared Lof the AB pair and where the direction cosine is

IcosOl = =ji (1 L L 2 ) (3.2)
ti

in terms of the maximum internal angular momentum squared

L i (E1,R) =mE -()I (3.3)

- consistent with a fixed internal energy E~ and separation R. Also

Vi(R) =V(R) L L/2mR2  (3.4)

is the effective radial interaction so that -V.(R) in (3.1) is the energy of the
*1

lowest vibrational level of AB consistent with separation R. The collision

kernel vif( ,Ei,Li 2;EfL f 2)dEfdL f 2is the frequency (s_) for the transitions
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r,

(R,Ei,Li2 ) - (REf+dEf, Lf +dL ) in the AB pair by collision with the gas

species M, under the assumption that remains fixed during the encounter

between (A-B) and M, an excellent approximation9 for ion-ion recombination.

The superscripts (+) indicate, as before, pairs which are radially-expanding

(+), cose > 0, or radially-contracting (-), cose < 0, under the provision

2 *
(2.11) that ni (R,Ei ,Lti ;t) is ni-() when E > E (region I) where

[12

E = V + 1/2 R(aV/aR) (3.5)

and is ni(.!) when E < E (region II). Since a closed system is assumed, the

r irreversible loss term ni vi in (2.1b) can therefore be neglected in (3.1).

" 3.1 (BE,L2 )-Equations.

1k Introduce the distribution

ASd(R;t) = s ( ,Ei,Li 2;t )/ i(R ,Ei L  (3.6a)

.- "

normalized to the conditional probability density ni for thermodynamic

* - equilibrium (see Appendix A) so that

yi __ 1 n (36bni(REiL 2 t = d (3.6b1

1 * b ( . n. E•" 2

The distribution yi is then independent of whatever variable ,Ei or L? is

associated with equilibrium. With the aid of the appropriate set (2.47b,c) of

transport equations, the Master Equation (3.1) therefore yields the set
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d S(R,E i L t) 1 R j(R;t)J 2
dt ni i' a 2 R Ei Li

2

f dE f [.'(R;t) -yf2(R;t)j C (REI 2 ;EfL2) (3.7a)f d f f f C fR, ,L fE
and -Vi(R) o

andd
d d 2 a + r 2 *S(~~ 2
dt ni (REi'ILi t t 2 aR R t

L2
Ltf 2 L2f(ft) -y(R;t) C R E SL S) (3.7b)

f -ff if, Jii ff-V o 

where =(Ei L 2 .
w Also,

nS d(REi ' L2 ;t) = [n+(REi' L2 ;t) + ni(REi'L 2 ;t)] = ys,d ni(R,Ei,L 2  (3.8)

and

s'd 2 E~d s d 2(R,EiL;t )  n.d(R,EiL;t) vicosol ys' ij RE L )(3.9)

are the densities and corresponding currents for fixed (R,Ei,L). The

equilibrium rate for i(Ei .) f(EfL2) collisional transitions at fixed

internal separation R is

CifREL ;f'L nf R i f Vf(R) hf (R) vf i(R Cf i(REf SL E IL

(3.10)

and satisfies detailed balance. Dependence on the density N of the thermal

'..dgas M occurs both via the (transport) coupling between n. and n. in (3.7) and the linea>
1 1

2dependence on N of the collision frequency (per unit dR dE. dLi2),
IV i I
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S \ N kif(RE.,L 1
2 ;EfLf2 ) (3.11)

where kif is the (cm3 s1) rate for i -* f transitions by collision between one

pair (A-B) with separation R and one gas atom M (see Appendix B).

* 3.2 (g,E)-Equations.

With the aid of the appropriate set of transport Eqns. (2.63a,b), integration of

(3.7) over all accessible Li2 yields the set,

S
"d (=R f dEf s(R;t)-y (R;t)] Cif(R)(3.12a)

t i i at TR2 R E Y

-v(R)nd

2"

nnS d(,Ei ; t )  R = n (E ;t 3.13)

d d

and the integrated currents,

22
L~L" ti S,

,nd(RE;t) = v f n i d( f,Ei,Li2 ;t)IccsEdLi 2  (3.14)

00

s. . v f n RE i ,L ;t) Icostid -- v nS'd(,E i ;t)<cose>Vf

L Note in (3.12b) that n1 is the angular density per unit dRdE i d(cose), as in
-2 2L t

(2.36), evaluated at e = !.i.e., at the turning points where Li
*2 i ti
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The collisional frequency vif(R) for (Ei,R) (Ef,R) transitions

integrated over all angular-momentum changes (Li 2, Lf2) consistent with fixed

E and Ef is given by -.i f.
tf

ni( ,Ei;t) vif(R)= I dLi' ni(R,Ei,Li2 ;t) f dLf2 vif( ,Ei,LiZEfLf) (3.15)
0 0

with corresponding equilibrium collisional rates

2 2
L Lti t

Cif(R) = dL dLf Cif(R,Ei,Li ;EfLf (3.16)
0 0

in (3.12). Expressions for the averaged rates (3.16) for various interactions between

AB and M can be formulated directly from collision theory (refs. 6-12 and Appendix B).

The normalized distribution in (3.12) is

s(REi;t) d(R,Ei ;t)/ni(R,E i)Ysi(RE i;t

2L t t i s'd2 2 'LYi s( ,EiL2;t) ni(R,Ei,Li2 )dL ]/ni(R,E i ) (3.17)

i 'i0

and becomes independent of Ei or , when equilibrium is attained in E. or R,

respectively.

3.3 R-Equations.

On integrating (3.12) over the full range -V(R) < Ei < of Ei, then, on

applying Leibnitz's rule, and on recognition of the null effect of collisions,
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the following set

S

ds~ an 1a r 2 d 1
dt n (R;t) n__.+ R [R- (R)j -o (3.18a)

R

d d d 1 2 <v-S1
-ztn (R;t) + (R JS+R)] n(R,!-;t) < m > y1  (3.18b)

is obtained for the macroscopic densities (2.66) and currents

(2.67). The quantities n1 <vn> are determined by (2.68). When

dthermodynamic equilibrium exists in all variables except R, then J is Ei-

independent and is given by (2.29) so that (3.7a) upon Ei-integration yields

(3.18a) directly.

3J 3.4 (E,L2)-Equation

The appropriate set of transport-collisional equations is, with the use

of (2.52),

S L
d s Dn. 0 Mif2  s 2 2• " d~f f 2S 2 L )(3.19a)
dt nS(Ei 'Lz ;t) =dEf f dLf (yf- yi) Cif(Ei,Li;Ef9Lf1

-D 0

where i specifies (Ei L 2 and
d nd(E , i ) ,

= and
d d 2. an 2
Sdn (E.,Li t) a + 4T (v2/P) nI(R ,E ,  ;t)

(V /p ) n-(R1 ,Ei.2. ;t)j

L2

' d mf 2 D .D 2
f dEf f dLf (Yf Yi) Cif(EiLi;Ef'Lf) (3.19b)

-D 0
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where the equilibrium rate for i - f transitions,

Cf f Cif(R,E19L-' EfLf~)dR (3.20)

is determined by -integration of (3.10) between the limits R'=

min[R-1(EiL i), RI(Ef,Lf)] and R2= min CR2(Ei,L i), R2(Ef,L). The lowest

2
bound vibrational energy of the AB pair is -D and Lf is the square of the

maximum angular momentum (2mIEf IA2) for E f < 0 or infinity for Ef > 0 for a

given energy Ef
*f1

3.5 E-Eguations.

On integrating (3.12) over all accessible consistent with (EiEf), and

on adopting the appropriate transport equation (2.71), the densities

R

n ~(Ei-t) f nd(R,Ei;t)dR (2.70)

per unit dE. then satisfy
1

s
d s a n.S y5 t)n i (Ei;t) f ~L dEf Lysf(t) -s (t Ci f (EiEf) (3.21a)

P.where -D is the energy of the lowest bound level of AB, and either

d
d an.2
Ft n! (E,>.0;t) li[w at , ,E1 ;t)] -47r atf n 1(RE 1 2e t)

{v a (R 2 p2) dR (3.21b)
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for E > O, or

d ,dd A B

t d 47r f n(RE, e= +0;t fn
A

v V a (R2p2  dR (3.21c)

p... P

for E < 0, set equal to the collisional rate

d d i (Ei;t)= f dEf[f(t) - yi(t)] Cif(Ei,Ef) (3.21d)
-D

The index i specifies only the energy Ei. The equilibrium rate Cif in

(3.19) for Ei + Ef collisional transitions at all accessible R and angular

momenta L2 satisfies detailed balance and, in terms of (3.16), is

Cif f f Cif( )d R Cfi (3.22)
0

where Rif is the minimum of the outermost turning points R1 and Rf associated

with Ei and Ef, respectively. The normalized distributions in (3.21a,b) are

R RR

-Y ( t )  ni(Ei;t)/ni(Ei) = f ni(R,Ei;t)dR/ f i(R,Ei)dR

0 0

Ri R, Ri

= f Yi(Ri; t ) ni(R,Ei)dR/ f n(R,Ei)dR (3.23)
__0 0

in terms of (3.17),and become independent of Ei for Ei-equilibrium in ni. The

collision rate (3.15) integrated over R is
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Rif

ni(Ei;t) vif =f ni(R,Ei;t) vif(R)dR (3.24) -

0 O

which reduces to (3.22) for Cif under full equilibrium.
if.

In contrast to the above derived transport-collision equations, (3.7) in
(R,Ei,L 2), (3.12) in (R,Ei) and (3.18) in R, eq. (3.21a) for ns appears

'~ ~V^V

uncoupled from (3.19b). It however remains complex in principle since the

collisional rates (3.24) and (3.15) are determined by the solutions n. (,EiL ;t) 1
to the original set (3.7). The above sets are equations satisfied by the

integrated quantities ni(R,Ei;t), n(R~t) and ni(Ei t) have all been derived

from the basic set of Master Equations (3.7) for non-equilibrium in R, E and

L2. Assumption of equilibrium in at least one of the variables L Ei andi j

provides the following simplification via reduction in the dimensionality of

the solutions.

422

°°-w

U=.4

i;'."

..
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4. Various Equilibrium Limits

4.1 L2-equilibrium; (B,E)-nonequilibrium

When thermodynamic equilibrium among the angular momentum levels is

established in n.+ and ni  independently much more rapidly than equilibrium

associated with the remaining variables, Ei and R, then (Appendix A)

n( REi.;t) nf(RE=4) 2R p +el(41
'n ni  ,Ei ;t) n-.(R,E i

s,d ( ,EiLi2 t) idpneto 2

and hence the normalized distributions Yi 
;t) are independent of L i -

;o. The current (3.9), reduces to

,sd ( 3 Ei  
2 ;t) = 1/2 vin i  (R,Ei;t)/R2p2  (4.2)

and is independent of L2 so that the L2-integrated current (3.14) is
1 i

(R,Ei;t) 1/2 vin' d(R,Ei;t) = 1/2 Y1 Ji (4.3)!i

s,d
where Yi are the normalized distributions (3.17).

The equilibrium total current (Appendix A) and its gradient are

= 's exp(-EikO) [ (4.4a)
Ji(R) = ni([,Ei)v i  2mko]3/2 [EV(R)

and

1 a . ( 1 a V 14 .4 b
2 R (RJi) - " TE-V Ji (4.4b)

I4
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a relation which is intimately connected with (2.10), since R2ji for constant E varies

as L = R p2. The derivative vanishes at R = A, the radius of the sphere whichm a x "'L

2intersects the maximum number of bound (E,L ) orbits possible at a given

energy E < 0.

For L2-equilibrium (4.1), the directional density (2.37),

n ( ,Ei,e;t) = 2R2p2 cos ni(R,Ei,Li 2;t) n (R,Ei;t) (4.5)

per unit dt dE d(cose) is therefore independent of e. The ($,Ei)-set of Master

- Equations (3.12) reduce,with the aid of (4.3) - (4.5) for L2-equilibrium,to

s

d1 s aR2 d 1"dns (R,E I + R y ki R;t) Ji(R)Ei.
dt I i at R2 AE

•dE [4R;t yskR;t) Cif(R) (4.6a)

and to

d n l Qi* (R)1 _ sy;-d }la iR2 % E.:1

ni(R'E.;t) = an. a R2  RZji R~t)Ji R2 aR (2 JiE 1"
d dt 1 1 R2 sR d2

[E (P ;t) - y4(R;t)] Cif(R) (4.6b)
IL -V(R)

where i now specifies Ei alone.

The upper (-) and lower (+) signs in the third term of (4.6b)

respectively apply to region I (E > 0, all R; Ei < 0, 0 .< R < A) or to region

II (E< 0, A $ B s B). It is important to note that the four equations obtained by -
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Bates and Mendas23 from conservation considerations in the interval dEdR and

from detailed balance arguments can be rewritten compactly in the form (4.6)
with the explicit time dependences snd ignored for all E and R.

Since (Eq. (2.3)),

(R ~ =-(Rjj] -1v d a ai )
.2R Tj1  R ( pR jIP a~p-J

23it is now apparent that consideration of the variation with R of the flux

appropriate to constant Ei is equivalent to consideration of both streaming terms

which separately give rise to diffusion and drift, respectively, in contrast to

that earlier thought (ref. 1, p 449).

For Coulombic attraction, V(R) = -e2/R, for example, the set (4.6) yields

the coupled set,

s a s ay i (2 E )dl1
dt i~) at, 2 3R~ R(EiV J

=f dEf [4ys(R;t) - y (R;t)] C f(R) (4.7a)
-v(R) I

where i denotes Ei, and

d nd(R E it n 1 ayd j2E

dt i i )T 2 A R(Ei-V) i Ji

= fdEf [4d(R;t) - (~) i()(4.7b)
-v(R)

which can be solved by numerical techniques.

Since Z-equilibrium is established at low gas densities N where

relaxation in internal energy E is the rate limiting step, the set (4.6) for

non-equilibrium R and E is naturally more appropriate for low to intermediate

N. In the limit of high N, (Maxwell) equilibrium in scalar momentum p, for

kinetic energy T Ei - V(R)]is established, and relaxation in the separation

R is the rate limiting step. Hence, a more natural set of variables for

intermediate-high N is (R,T) and the associated transport equation is provided by

(2.20). For L2-equillibrium, the appropriate set satisfied by
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s'd(R,Ti;t) = nSd(RTt)/ (R,Ti) (4.8)
Yi I',,I

is therefore

d Sn l + (@ a RVyd(_,i ;t) (R )
-" Tt n i( ,Ti;t) 7 t- + R2 3'R T-aRy('iR)J('i:

S tf dTf [s(;t) - y(R;t)] Cif(TiTf) (4.9a)
' -I d f U (R4t9-a)

where the equilibrium rate Cjf is simply a function only of T and Tf but not of R

'; (see Appendix B), and

d d and ( (vf41 fRs(R~~R
dti(R,T ;t) 1 V + 2 s (R,Ti ;t)J (R,T i

d _

= dT f [yf(R;t) - Yi(R;t)j Cif(Ti,Tf) (4.9b)

where Ji(R,Ti) is given by (4.4a) with Ti = Ei - V(R). Thus, the complexity
terra~typ22"-

* is shifted from solution of Volterra-type integro-differential equations

(4.6) with the first order differential taken with respect to one variable, R

and with the R-dependent function V(R) as an integration limit, to solution of

"" integro-partial differential equations (4.9) with first-order differentials

," now taken with respect to two variables (R,Ti ) but with fixed (0,-) integration limits...

In the limit of high gas density N, the distribution in kinetic energy T -
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is Maxwellian (2.27.), -Yi (;)are independent of T.i and the collision sides

.5of (4.9) vanish. On integration over To, (4.9) then reduces to the coupled

set (2.22a) and (2.33) with j(R) is given by (2.29).

- 4.2 (L2,)-equilibrium; E-noneguilibrium

If, in addition to -equilibrium, equilibrium in R is established for
s d* the total density n. (but not for the net density n~ so that relaxation in

E is the rate limiting step, as at low gas densities N, then

n ( ,Ei;t) _______)

5 -r.(E.)(4. 1U)
n s(Ej;t) A 1 Ei

and -y1  (but not y d is therefore independent of R. The set (4.6) reduces in this

limit to,

and to,0

d d
ns d(R Et - ay(;t) a jiR.] f dEf y f St) y (dt) Ci f(Rr dt i atA 2-vR

(4.11a)

wher to, n - pl orein n I epctvl. SneydR-

(4.11b)

where. an apl orgosIadIrsetvl.SneydR -t



• - . . r . ' .r r rn - . - . r-.VrT -" _ - . - r r -c -, -' - . C ' . - . . " -... .. -*.

vanish, then integration of (4.11) over all accessible R yields, in terms of

the integrated equilibrium collisional rate (3.20),

d (E.") anS 4(t) - ys(t)] C if(Ei f) (4.12a)
dt ii -D dEf - i

for the total probability density which is decoupled both formally and in

practice from its companion,

d n ;t) f 1 R (R) dR
d n i  t +TR f I I

RGo ;t )] if (E R )
f dEf f dR [ )- y!(R;t)] C ,(EiEf) (4.12b)

-D 
if

for the net balance of expanding contracting pairs.

This set (4.12) corresponds to the case of equilibrium for nis in

2 d 2( ),Li ) via (4.1) and (4.10),for n in L. alone via (4.1), and of

non-equilibrium for both ns ' d in Ei alone. This case is, in general,

appropriate to ion-ion recombination at low gas densities N. It is not,

however, appropriate to ion-atom or atom-neutral association since here, in

contrast to Coulombic attraction in ion-ion recombination, the A-B interaction

via the angular momentum barrier can support bound states with positive .

12
energies and angular momentum transitions are important. When -equilibrium

is assumed for ni, then Y in (4.12b) is zero.

Rates for association/dissociation can be determined directly (§ 5) from

(4.12a) without recourse to (4.12b) which furnishes via (4.11b) the net

0densities ni( ,Ei;t) and associated net currents (4.3). The above collisional input-~ (,~,E•;t

output Master Equation, (4.12a), has been the governing basis of many studies

of ion-ion recombination 6 -11 and atom-atom association 13 ,14 at low gas
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densities, and was there deduced from simple arguments based on the net rate

Pof growth of pairs in energy level Ei. The complementary Eq. (4.12b) or its

basis (4.10b) is new and serves to complete the picture of recombination at low

* -. gas densities.

4.3 l-equilibrium; (E,L2)-nonequilibrium

Even in the limit of low gas densities N, L -equilibrium is in general

not obtained except for the specific cases of interactions (as Coulombic)

which cannot support an angular momentum barrier at positive energies. For
12 12

ion-neutral and atom-neutral association, it is essential to acknowledge

T departure from L2-equilibrium. Low N implies -equilibrium in ni0, i.e.,

s 2

n % ,L2 t [2,vR2 COS1T RP (4.13)
ni Ei  L i lt

where R (EL,L2 s tAe "mr- de. Auena', B to complete one radial round

trip between the tur-',n. N- , - '.. Both the flux, which then reduces to

RZ P .. .* ' , 'R ' (4.14)

2 S2

and Y.s are then all independent ot R. The R,E, L )-set (3.7) reduces to,

S
d s 2;t ni 122

n n (R,Ei ,Li R- R ji R ;t) Ei
L 2

00 tf
*.fdEf f 2 s )- t Cif(R,Ei ,L 2 ;Ef9Lf2 (4.15a)

-v.(R) o
r

where index i denotes (Ei,L 2) and to
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7" 77 . . .-7--77

d2
dan. 0 -r

n(R,El e ;t) f f dEf f dLf ryo(R,t) -
dt itA. i at,V. -V (R) 

T-1

R
LS2 " 2 2 sd2

.- ;t) if n, (R,E i ,L ;t)dR (4.16)

therefore satisfy the set

R R L
nE (EiiL;;t) f dR f dE f 1 (R, E 2t) R  C.f(R)

L

an f2 tf
. i( t) _f f f( 4 .17a)

since the current i vanishes at the end points, and

d L:'" nd (.L 2 t an. R2 t'If 2f[4(Rt)iR ]) "4.7

dt" : -=fdR fdEf f dLf C2 s R)

"- n (Ei Li ' t )  ft dE dL Ys()] f i ( R  )  Ci ( 4.18)

:R I -V i (R) o i

dt ~ ~ i f fY

~which are now fully decoupled from one another.

-.. The integrations in (4.17a) may then be re-arranged to yield

"' d nSE L2 mf 2  2

-D 0

where R' min [R2 (Ei,L,), R2 (Ef,Li] > R' min[R,(Ei,Li), R2 (Ef,L2)] , where

w"I.-

. .
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2f is the square of the maximum angular momentum, (2m JEfI 
A2) for bound states

mor infinity for dissociated states],for fixed Ef and where -D is the energy of

the lowest bound vibrational level of the A pair.

Rates for association/dissociation can be obtained (§ 5) directly from

(4.17a) without recourse in principle or in practice to its decoupled

companion (4.17b), which yield the net densities n ,Ei  ;t) and

* associated currents Ji

In summary, coupled sets of Master Equations, (4.6), (4.9), (4.12), and

-*i (4.17) appropriate to non-equilibrium only in (R,Ei), ( Ei , and (Ei,L )

- sets of variables have been systematically deduced from the basic set of
-2

Master Equations (3.7) for general (R,Ei, L2)-non equilibrium. Even for the

."- most reduced case (4.12) of non-equilibrium in Ei alone, the subject of many

previous treatments 6-14, the present procedure has uncovered an additional equation

(4.12b) valuable for providing the full description of the recombination

. process at low gas densities.
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5. Rates and the Macroscopic Transport-Collisional R-Equation

5.1 Various Energy Blocks

The full transport-collisional equation (3.12a) for the density

(R,Ei;t) of (3.13) in terms of the net current ji of (3.14) is

n.(,.t niS j = (5.1 R)

SniS Ei;t ) = t+- [R2 Jd(R)] Sif(R,t)dEf  (5.1)
dt 1 A. at R2 all E v R f f

where

Sif(R,t) = n S(R,Ei;t) vif(R) - nfS(R, Ef;t) vfi(R) =-Sfi(,t) (5.2)

is the net two level collisional rate of depletion of energy level Ei or net

rate of production of Ef. The minimum energy level consistent with fixed R is

-V(R) which always lies above -D, the lowest energy level.

Subdivide the full region of internal energy Ei into three blocks: the

continuum block C with 0 < Ei < , an excited block E with -S < Ei  0 and the -

block S of lowest excited levels in the range -D < Ei < -S. The block S in

principle comprises all those levels between the lowest vibrational level -D

("%5 eV I 20U k (300/9) at both temperature 0 and an intermediate level -S

defined as that level below which the net probability of direct dissociation by

collision with the thermal bath is negligible. In practice, level -S arises

naturally from the collisional mechanics via the cut-off effect of the Maxwellian

distribution of the gas at temperature 0 and generally lies 1 10 ke below the

dissociation limit (taken as zero energy). The central block E of highly excited

" bound levels is sandwiched (Fig. 1) between the continuum C - the fully

dissociated block - and the fully associated block S and has no internal

sources or sinks but is coupled by collision to both C and S. Each of C and S
'..

may be considered as a source/sink combination interconnected by E when
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A4.

association is the dominant process, or as a sink/source combination when

dissociation is dominant. Dissociation can therefore occur via stepwise

collisional excitation through intermediate block E, as well as directly.

The macroscopic pair distributions

nc (R,t) f f niS(R,Ei;t)dEi (5.3a)
c-. 0 fl

in block C,

n e(Rt) = f n S(R,Ei;t)dEi (5.3b)

in block E, and

~~~S SU - R

over those levels in the energy range -V(R) < Ei < -S of block S accessible by

collision at R, therefore satisfy
14".

ant c(R c " dEiv Sif(Rt)dEf , all R (5.4a)

0 00

" -@ ne(R't) + V'J-q "S ~- Sf('df , R < Rs  (5.4b)
at e IV _f d~~ = -(~~ so -V

-S

Tt ns(t) + V.I dEi f Sif(R,t)dEf R<Rs (.c

where Rs is the classical turning point associated with level -S. The

L corresponding contributions from blocks C, E and S to the net radial current
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Jd(R~t) =f jid(R,Ei;t)dEi ='c (R,t) + Je(R,t) + J5(R,t) (5.5)
-V

are J 9  and Js, respectively. Since Si = -Sfi the upper limit to the

integration over Ef in (5.4a) is, in effect 0 while the lower Efllrit

-V is, in effect, -S for (5.4c).

Since the net effect of collisions is null for this closed system,

summnation of 5.35(a)-(c) yields the continuity equation,

En~ (R,t) + ne (R,t) + ns (R ,) + V = 0 (5.6)

which agrees with (3.18a). For R > R5,1 block S does not exist and

~n(~t = f dE. f Sif(R)dEf ,R > Rs(5.7)

holds instead of (5.4b,c). The lower Ef limit-V in (5.7) is 0, in effect.

Since di vanishes at infinity (for E. 2.U) and at the classical turning point

Ri (for Ei 0), integration of (5.1) over all accessible R-space yields

R.R
aa 1if 0

at n1 E , ) = -ir i ( ~ ~ ~ i~ f Sf(R,t)dR -D if t)dEf (5.8)

for the rate of change of density per unit energy interval. Within (5.8), the

formal order of (R,Ef)-integrations has been interchanged, Ri = i(~Rf) and

Rif

Sif(t) =f Si f(R,t)d -SfiMt (5.9) 2
0

is the net frequency (per unit dEidEf) of collisional transitions (i4f)

between E and Ef. Hence, the rate of change in the configuration density
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n (t) f f n (R,t)dR f dR f n.S(R,Ei;t)dEi = f ni(E,t)dE i  (5.10)
0 0 0 0

of free pairs is exactly,

aa
m c 0 

Go 0

tc(t) = .-f dEi f d . Sif(R,t)dEf = - f dEi f Sif(t)dEf
0 0 .V 0 -D

0 a

=f dEi f Sif(t)dEf (5.11)
-D 0

which can also be obtained by R-integration of (5.4a). The corresponding rate

of change in the density

R R - S
s Rs -S

ns(t) = f ns(R,t)dR = f dR f niS(R,Ei;t)dE i = f ni(Ei,t)dE i  (5.12)

o 0  V -D

i of pairs bound in block S is exactly

- -S C -S -S
L n () f dEi f dR f Sif(Rt)dEf f dE- Sif(t)dEf - dEi-f Sif(t)dEf

-D 0 -v -0 -S - (5.13)

which also follows from R-integration of (5.4c).

Integration of (5.1) over R from 0 to Rs yields,

R Rs  R
as sO2

a - f niS(R,t)dR + 4wRs2 jd (R5,t) = - f dR f Sif(Rt)dEf (5.14),-"at f 1%.
0 0 -V

- which expresses continuity for each level E within the reaction sphere of radius

Rs. Hence with the aid of (5.13),

R 2 Rs -S
f" dE i  s 2nfi S
at Ei f nis(R,,t)d + 41rRs f (Rs,t)dE. - dE1  d Sif(k,,t)dEf (5.15a)
-S -S V
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--S

= - dEI f Sif(t)dEf (5.15b)
-D

= - ans(t)/at (5.15c)

Eq. (5.15b) simply states that the flux entering the sphere equals the sum of

the collisional rate of production of S-pairs and the rate of increase of the

contributionfromthereaction volume to the density of C and E pairs. Eq.

(5.15c) also follows from (5.6) without the intermediate collisional step.

Integration of (5.1) over R from Rs to Ri, the classical turning point (for Ei

< 0) or infinity (for Ei > 0) yields

Ri R.
I

- f niS(Rt)dR - 4Rs2 jid( s,t -R dR vifSf, s (5.16)
Rs  s "

the continuity equation for each level Ei external to the reaction zone.

i, Hence,

-o 1
t f dER f nis(R t)dR - 4wRs fjid(Rs't)dEi= 0 (5 17)

-s-

due to the null effect of collisions. Addition of (5.15c) and (5.17) simply

yields the conservation equation

t [nc(t) + ne(t) + ns(t)] = 0 (5.18)

for the sum of the densities (5.10) and (5.12) in blocks C and S and of

0 0 R i-
ne(t) = f n(Eit)dEi  f dEi f ni(R,Ei;t)dR (5.19)

-S -S 0

the density of pairs in block E, as expected for this closed system.
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5.2. Association and Dissociation Rates

From (5.11), the net rate of depletion of C-pairs (into all bound levels

in E and S) is therefore

n OD CD 0Wn R SMf N d dE f dfSf(t)dEf f tdE f(5.20)

0 d 0 D td f

which is the net downward current across the dissociation neck at zero energy

and which, with the aid of (5.9), equals the net rate of production

f a dEi = -~dEj oS fdEf (5.21)

of E and S-pairs, as expected for this closed system. The net rate (5.13) of

production of S-pairs alone is

s.. - nij -s O S
"" Rst = fd = - f dEi f Sif(t)dEf = f dEi f Sif(t)dEf (5.22)

-D -D -D -S -D

so that, with the aid of (5.18),

0, an.
R c (t) R ) + -S t-i dEi  (5.23a)

0 oD

= R (t)- f dEi f Sif(t)dEf (5.23b)
-s -

Thus Rs and Rc are equal when ani/at R 0 in block E i.e., constant (in

energy) current flows through E which is in quasi-steady-state (QSS). For any

L fixed energies E1 and E2 , then (5.9) yields

I..5
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E 2  E 2  ,"

f dE' Sif(t)dEf = 0 (5.24)
E EE1 1-

which represents the null effect of collisions in the closed interval E1 < Ei

< E2 . The net downward current (5.20) across the dissociation neck can then

be rearranged in terms of the net downward collisional current across

arbitrary level -E as

S -E 0--

Rc (t) = dEi f Siflt)dEf + f (ani/3t)dEi  (5.25)
-E -D -E

and the net downward current (5.22) across level -S can be similarly -,

rearranged as

" -E -E
R(t) = f dEi f Sif(t)dEf f f (ani/at)dEi  (5.26)

-E -D -S 1(.

Note that (5.26) reduces to (5.22) directly when -E = -D, and that (5.25)

reduces to (5.23a) and to (5.20) when -E = -S and when -E respectively.

The expressions (5.25) and (5.26) provide alternative procedures which are

. valuable for accurate calculation of Rc (t) and Rs(t) particularly when block E

is in QSS. In the absence of QSS, Rc and R are determined by the exact set

(5.20) and (5.22) respectively.
A

On introduction of the (time-independent) probability Pi that pairs AB

with internal energy Ei are considered as associated then the overall rate for

association is,

n. an.
A- AOo(527

RA(t) = PI( Ei ) dEi = Rs(t) + f PitA(-)-dEi (5.27)
-S

since P is unity in block S and is zero in block C. The overall rate for
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dissociation is similarly,

RD(t) =fP~ 0(E) d = R Mt + 0"~ (.P dE. (5.28)
fD at 1  -sf at

where the probability P i that Ei-pairs are considered dissociated is unity in

the continuum block C, and zero in the fully associated block S. Pairs in

block E are in the process of associating and dissociating with probabilities

P iiD < 1. Expressions (5.27) and (5.28) are exact for RAD(t) under all conditions
,

(cf §7.1, §7.2).

Since

PiA(Ei) + PiD(Ei) = 1 (5.29)

addition of (5.27) and (5.28) yields, with the aid of (5.23a),

R A(t) + R(t) = 0 (5.30)

I-

as expected for this closed system.

Provided block E is in QSS (i.e., ani/at R 0), the association rate RA(t)

is therefore identical to R.s(t), the net rate collisional rate (5.22) or

(5.26) for formation of S-pairs and the dissociation rate RD(t) is identical

to -RM(t), the net collisional rate for formation of C-pairs. As shown by

(5.23a), Rs and Rc are then equal. Otherwise (5.27) and (5.28) must be used

for RA'D(t).

In § 7, extrema R,'(t) to the rates RA'D(t) at time t implies the QSS

condition. Hence these extrema in addition to (5.30) satisfy
0i

RA A(t) Rt) = ans (t)/at (5.31a)
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-T

= cINA(t)NB(t) - k ns(t) (5.31b)

= NA(t)NB(t) [1 -r(t)] (5.31c)

and -

R.D(t) = -Rc(t) =a n(t)/at (5.32a)

-k n (t) [I - r-(t)) (5.32b)

where a is the effective two-body rate (cm s" ) for association of

dissociated species A and B with densities NA,B(t) cm and where k is the

frequency (s" ) for dissociation of S-pairs AB with density ns(t). The

quantity -

r(t) = 'NANB/NA(t)NB(t)][ns (t)/ns] (5.33)

* is a measure of the departure of the densities from their corresponding

* time-independent values NAB and ns achieved under full thermodynamic

equilibrium (r = 1) with the gas bath M.

The QSS rate a is therefore determined by the equivalent expressions

A 
-SRA(t) = aNA(t)NB(t)[I - r(t)] = f dEi f Sif(t)dEf (5.34a)

',,-s -D

00S-R.(t) f dEi f Sif(t)dEf (5.34b)
0 -D

S-E
f f dEi f Sif(t)dEf (5.34c)

-E -D

60

...... . . ., " , I ' ' ' ....-............. "."......"...........................-.-- * ..-.. ." .



which are respectively the rate Rs for formation of S-pairs, the rate Rc for

. depletion of C-pairs and the rate for formation of all pairs with energy Ei <

-E. The QSS-frequency k for dissociation is provided by the detailed balance

relatio6

k n NANB (5.35)

Evaluation of the exact expressions (5.20) for Rc (t) and (5.22) for RS(t)

require solution in general of the time-dependent coupled set (3.7) for the

microscopic densities ni( ,E i ,L i
2 ;t) or of the set (4.6) for ni ( ,Ei ;t) when

t." 2
equilibrium in L, can be assumed. It is only when block E is in QSS that

(5.27) and (5.28) for the association and dissociation rates RAD (t) are equal

to Rs and-R . respectively such that the coefficients a and k are determined

directly from (5.34) and (5.35).

When block E is not in QSS, then the exact rates (5.27)and(5.28) with (5.8)

yields,
A 0 00A, 

CO

RA M PADdE f Sfi(t)dEf (5.36)

-D -D

" which is exact and which reduces to (5.31a) and (5.32a) only when the QSS-condition

" f Sif(t)dEf = 0 (5.37)

-D

is satisfied in block E (0 > Ei > -S). When approximate or variational distri-

butions (§7) are adopted, then (5.36), rather than (5.34), is the required expression.

61



5.3 Macroscopic Transport-Collisional R-Equation

With the aid of (5.4)-(5.7), the distribution

n(R,t) = n S(R,Ei;t)dE- nc(R,t) + ne(R,t) (5.38)
S IV

. in combined blocks C and E, and the associated ,et current

J( ,t) f Jid( 'Ei;t)dEi Jc('t) + Oe(Rt) (5.39)

then satisfy, for R > R5. .

at n(,t) + V.=o0 , R> R (5.40a)

which agrees with (3.18a) since ns(R > Rst) vanishes. For R 4 R s ,

m -S

t n(,t) dEi f Sif(R,t)dEf , R < Rs

- - v(R) n(k,t) (5.40b)

wherein v(R) is introduced as an effective frequency for collisional absorption

into block S of C and E pairs with fixed R < Rs. Integration of (5.40a) yields,

Ra n(R,t)d = 4iRs 2 J (Rs,t) (5.41a) -

a t R•I 5 4 a

with no flux at infinity With the aid of (5.8) and (5.13), integration of (5.40b)
yields

R R --

"~t f n(R,t)dR + 4wRs J( Rs,t)=- f dR f dEi_ Sif(R,t)dEf (5.41b)
0 0 -S -V
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= - Ei_ Sif(t)dEf (5.41c)

S_ ans (t)/at (5.41d)

-which agrees with (5.15) previously obtained from (EiR)-integration. The continuity

equations (5.41a) and (5.41d) also follow from (5.6) since Js (Rst) and

n (R>Rs,t) both vanish. Addition of (5.41a) and (5.41d) yields

at f n(R,t)dR + -L ns(t) = (5.42)
0

4 the conservation equation (5.18) appropriate for this closed system.

3 -1Define the averaged local rate a3 (cm s - ) for absorption within Rs by

R

(3n(Rs,t) = f v(R) n( ,t)dR f dEi f Sif(t)dEf (543)o -S -

so that the net rate (5.31) with (5.13)for production of pairs in block S is

therefore

at ns(t) a3 n(Rs't) c c NA(t) NB(t) [1 -r(t)] (5.44)

under quasi-steady-state (QSS) conditions in block E.

Evaluation of a still involves solution of the phase densities,

(R E.L 2 ;t), in general, or n.S(R,Ei;t) for L2-equilibrium, from theiS ,E , 1 i1 o i 1

appropriate set (3.7) or (4.6) of coupled equations.

5.3 Approximation and the Debye-Smoluchowski Equation

Assume in addition to QSS in block E where an./3t ^ 'Qthat those pairs with

R < R in the combined blocks C and E are also in steady-state, i.e.,

[ R

7t f n(Rs,t)dR = 0 (5.45)

0
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so that (5.41c) with definition (5.43) reduces to

47rRs 2 J(Rs 9t) = - a 3 n(Rst) = " ans(t)/pat (5.46)

For R > R the macroscopic current J can be approximated' by (2.76) i.e., by

J(R>Rs5 ,t) = (R>Rs,t) = -DVn - [(K/e)VVjn (5.47)

* since Js(R>Rst) and ns (R>Rst) both vanish. Provided the local rate a3 for

absorption is regarded as a pre-assigned external parameter, then (5.46) is,

in effect, a radiation boundary condition to the solution n(k,t) of the

macroscopic continuity equation (5.40a) with J given by (5.47). Since

t
ns(t) - ns(O) = a3 f n(Rs't)dt (5.48)

0

r(t) is therefore known from (5.33) so that the required rate of production of

S-pairs is determined only by n(Rst) via

cNA(t) NB(t) = 3 n(Rs't) [1 - r(t)]-l (5.49)

Hence under QSS in block E, the steady-state assumption (5.45) and aknown local reaction

rate a3' the problem is reduced to one of transport alone. The combination

(5.40a) with (5.47) for the current and the boundary condition (5.46) is

referred to as the Debye-Smoluchowski Equation (DSE) familiar in the theory of

reactions in condensedmatterand of coagulation of colloids in solution. Apart from a

1
previous account, DSE has not to the author's knowledge ever been derived from

a microscopic basic. If, however, a3 is not known (as is usual) then the
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present full microscopic treatment based on the coupled transport-collision

equations of § 3 and § 4 for n S'd is required.

242 27
Refs. (24-27) provide preliminary reports24-26 and a full detailed account

of the search for analytical solutions to DSE for general interaction V(R) between

A and B.

6-
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6. Time Evolution Towards Equilibrium

Relaxation of a plasma,or of any subsystem (A,B,AB) in a bath of systems

M,from any initial non-equilibrium distribution is, in principle, a time

dependent process which proceeds towards equilibrium under various distinct

time scales. A very fast initial transient characterizes Phase I, during

which a new distribution in ( ,E,L2) is rapidly established. This is followed

by a much slower Phase II, during which recombination, association or

dissociation and chemical reactions based on the newly developed distribution

of Phase I proceeds towards eventual equilibrium via a dynamic balance of

collisional association and dissociation established in Phase III.

During Phase I, the (, ,EL2)-distribution collisionally relaxes within

(collisional) time i to a quasi steady state of excited levels which persist

throughout Phase II and is the distribution characteristic of the eventual

equilibrium established as t/IT Phase II is characterized by (reaction)

times T2 A T As or TD for recombination, association from

* non-equilibrium free states or dissociation from non-equilibrium bound levels

(whichever pertains to the initial conditions). Since T is generally of the1

- order of the inverse of the collisional frequency vif, and since

" association/dissociation proceeds on a much slower time scale, T << T such

that the quasi steady-state distribution attained in Phase I persists

- throughout Phase II.

The beginning of the third Phase (III) association or dissociation

depending on the overall direction as determined by initial densities, has

* produced a significant population of bound pairs AB or free pairs A + B such

that the reverse process (dissociation or association) becomes important with

the result that the subsystem relaxes toward eventual equilibrium. -

Recognition of Phases I and II facilitated many pioneering and tractable
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$studies of recombination processes 6 12 ,17 ,18 in general, based on the solution

ll1

of integral equations, and the study 1 3,14 via a diffusion (weak collision) approxi-

matio to association/dissociation processes at low gas densities.

6-8 an f9-11
( The work of Bates et al. and of Flannery was concerned with the

case of the concentrations NA,B of dissociated (charged) species >> NAB, the

concentration of bound systems, such that only Phase II and association were
, .. _. 6-11

relevant. Also previous work on ion-ion recombination dealt with low gas

densities N. We are here concerned with theoretical development of both

association and dissociation in Phases II and III at all gas densities N, for

which the time dependent transport-collisional equations formulated in the

(" previous sections (9 2-4) are directly relevant.

6.1 Net Transition Probabilities for Association and Dissociation

As an aid to clarity of presentation, consider first the following

analysis of eq. (3.21a) in which explicit dependence on the (R,L2 ) variables

has been systematically integrated out from the original basic eq. (3.7a).

Eq. (3.21a) contains however implicit variation with (R,L2 ) as characterized

by (.3.13) and (2.70) for ni , and by (3.22) for yi. The (R,E,Li 2
'to.

and (R,E) sets (3.7) and (3.12) respectively may then be similarly analyzed

without any undue formal difficulty.

The governing equation for the conditional probability density ni of AB

systems per unit dEi isl1

f'" ni(Eiit)= a [nf(6)1af
,. n1 (Eit) Enf(t) Vfi - ni(t)vif]dEf - -Jd(Ei 9t)/aEi (6.1a).t -D

where vif is the frequency of i - f collisional transitions (Ei - Ef) and -D

is the energy of the lowest bound vibrational level of the AB pair.
V..
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Alternatively,

ani/at = f Lyf(t) - yi(t)]Cif dEf -a-i/aEi (6.1b)
-D

in terms of Cif, the equilibrium collisional rate (3.22), and of yi' the

normalized distribution (3.23). Since the energy levels of AB be sufficiently

close (relative to the thermal energy kO of the gas bath M), they form a

quasi-continuum and Ji(Ei,t) can then be interpreted as the net upward current (in

* energy space) across level Ei.

Introduce,

Afi = Vfi - 6(E f) f Vif dEf (6.2)

the net probability/sec for f + i irreversible collisional transitions. Then

(6 .la) can be compactly written as,

iGo
= = i Slif dEf 63

ani/at f nf Afi dEf (6.3)

where Sif is defined by eqs. (5.2) and (5.9).

Since the AB-subsystem is closed, curve crossing and quantum tunnelling

AB t A+B being precluded at present,

f (ani/at)dEi = (a/at) f ni dEi = 1 (6.4)
-D -D

"•° 2

When relaxation in L. and R is much faster that Ei- relaxation, assume

by the end of Phase I that collisions have been sufficiently rapid to

establish a Maxwell-Boltzmann distribution f(Ei ) in the energy Ei >0 of the _

dissociated (A,B) species. The continuum distribution is then
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"' c(t) - ENA(t)NB(t ) f(Ei)]/INANB f(Ei)] t 1, Ei >0 (6.5)

where NAB(t) are the time-dependent concentrations of the dissociated species

(A and B) or free ions (X+ and Y'), which approach their constant equilibrium

values NA,B as t--in this closed system. The normalized distribution (6.5)

is time-dependent but energy-independent. As association develops during phase II

the pair concentration of the lowest bound levels, within the range -S > Ei .

-D defining energy-block S, grows. Within S, energy-equilibrium is maintained

via collisions so that the S-block distribution, assumed to be

-S -S
Ys(t) =n i (Ei t)/' i (Ei) = f ni dEi/ ni dEi

-D D

n s(t)/n s - 1, -S > Ei > -D , (6.6)

S is only time-dependent. In this closed system, let the E-block be coupled to

the time-variations of C andS according tc the ansatz,

Yi(Eit) = PiD(Ei) Yc(t) + PA(Ei) Ys(t) * 1 (6.7)

where the coupling coefficients PiD and PiA which depend only on the energy

will be later identified as being the net probabilities that bound AB pairs of

energy Ei will be collisional dissociated into C or will be fully associated

by collision into S. From the asymptotic conditions (6.5) - (6.7), the net

probabilities satisfy the conservation of probability

+ iD + A 1 (6.8)

+Pi 6
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as expected, since the complete subsystem is closed to mechanisms other than

collisional association/dissociation.

Distributions (6.5) and (6.6) can be also incorporated within (6.7) since C
D ''

and S are naturally characterized by unit net probability P i (Ei > 0) for

A
dissociation, and unit net probability PiA (Ei < -S) for association,

respectively. Thus, (6.1b) yields,

ani/at = -[yc(t) _ Yf(t) F (pfA - PiA)Cif dEf (6.9a)
-D

f(f D E6.b
= [Yc(t) - YS(t)] (Pf - PiD)Cif dEf (6.9b)

which is separable in both time t and energy Ei, a natural result of the assumed

form (6.7) subject to the asymptotic constraints (6.5) and (6.6).

The rate of change in the probability densities of pairs in each of the

* blocks C, E and S is respectively,

ani/at -[yc(t) Ys(t)][ f Cfi dEf] Ei >_0; (6.10a)
1 c -D

. for block C in a form natural when association (y > ys) prevails,

anilat = LYc(t) - ys(t)]I f PfD C i dEf - iD f Cif dEfl ; 0 > Ei  -S
c-S -D

(6.lOb)

for block E and

ani/at = -lys(t) - Yc(t)][ f Pf Cfi dEf] - S > Ei > -D (6.10c)
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for block S, in a form natural for dissociation controlled processes (ys >Yc)" Thus, the

energy distribution PiD once established at the end of Phase I is then

preserved at all future times in Phases II and III. Relaxation then proceeds

in time at a rate determined by the established D,A and Yi(t) towards11

eventual equilibrium when Yc s * - 1.- sw

The upward current across any arbitrary level E is

E
V(:: J(Ei't) =f (an i / a t)dEi = -- Df (an /at)dE (611)

since conservation (6.4) applies to the system, closed between -D and 
®  so

that the currents J(-D) and J(-) across the end points both vanish.

Thus, the net current across a level E in block C is

J(E > O,t) = -Lc(t) - Ys(t)] dEi pfA Cfi dEf (6.12a)

and the net current across a level E in block S is

E 00

J(-S > E > -D,t) = [ys(t) - yc(t)] f dEi if If Cfi dEf (6.12b)
-D -s

which are directed down or up the energy ladder according as yc > Y or yc < Y

respectively. Thus, the overall direction of the relaxation is determined by

the inequality

NA(t)NB(t) > n(t)

< (6.13)n .
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which is originally established by the initial condition.

The net rate of growth of S-pairs or the downward current -J(S,t) into the

S-block is

-San. ns (t)/at =f (an i/at)dEi - J (- s , t )

-D

= Eyc(t) - Ys(t)]asWAW(B (6.14a)

which, with (6.5) and (6.6) for y yields

an- (t)/at - NA(t)NB(t) - k( n(t) (6.14b)

(c3 -

The (time independent) rate a (cm s ) of association and the

frequency ks  (s-1 ) of dissociation in (6.14b) are hence given by,

s .AB ks n = i ff V dE (6.15)
-D -

D
and therefore satisfy (macroscopic) detailed balance. Characterization of Pf

in (6.7) as the net probability of dissociation of level f once accessed by

*. collision from level i is therefore appropriate, in keeping with (6.15).

*-' When conditions are such that yc = NA(t)NB(t)/ANB >> n([S),t)/n([S]) = Y

, U, association is dominant, and yc decreases in time from a quantity >> 1 to

unity at equilibrium,while ys increases essentially from zero to unity. In -'A

the reverse limit, y >> Yc P 0, for the case of a shock wave moving through a

molecular gas, then dissociation prevails until equilibrium when Ysc 1 1 and
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the currents (6.14) vanish. The evolution toward equilibrium is described by

(6.14b).

The net rate of growth of the C-pairs in (6 .10a) or the upward current

J(O,t), (6.12a), entering block C is

'an(t) /at = f (ani/at)dEi -J(O,t)
0

= 1Ys(t) - Yc(t)] kc ns  (6.16a)

5,"

which, with (6.5) and (6.6) for Yc,s' yields

a nc (t)/at -ac NA(t)NB(t) + kc n St) (6.16b)
aC

3 -1
where (time-independent) rate a (cm s ) of association from the continuum

1

and the frequency k (s" ) of dissociation are given by

0 
A

a n fnfEV d (6.17)c ANB c ns = i f if f

which satisfies detailed balance. Thus, PfA in (6.7) is uniquely identified

in (6.17) as being the net probability of association of pairs in bound level

f once collisionally accessed from the continuum C.

IO The above expressions (6.15) and (6.17) for the rate of change of free

(fully dissociated) C-pairs, and of fully associated S-pairs, respectively,

are exact, irrespective of any approximation used to determine the

- probabilities PA." in the E-block (0 > Ei > -S).

In the quasi-steady-state (QSS) approximation, pioneered and used

6-8,62extensively by Bates and associates in many studies6 8 16-20 of various types

of recombination,
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I.- --N

• n- = 0 block E (0 >. Ei > -S) (6.18)
at1

since the frequencies of collisional production and destruction of d system i

of energy Ei in block E are very large relative to the low frequency of

"" explicit time decay of these excited levels i. The time-independent probabilities

in (6.9) are therefore solutions to the integral equation

p D f CfdE = [PD c
-sD if f ff (619

subject to the constraints P > 0) 1 1 and P . -S) = 0. Since the

system is closed, (6.4) applies i.e.,

anc(t)/at + ans(t)/at = -ane(t)/at = J(Ot) - J(-S,t) (6.20)

In the QSS-approximation, (6.15) and (6.17) are therefore equivalent, the

upward current J(-S,t) leaving block S being equal to the upward current J(O,t)

entering the block C.

On invoking the null effect of collisions (cf. eq. (5.24))

U =fdEi f nf vfi dEf- ni dEif if dEf f dEi f Lyf(t) yi (t)]Cif dEf
-E -E -E E -E E

(6.21)

*for an arbitrary bound level of energy -E within block E, the net upward

, current (6.11) across -E is

J(-E,t) = -e NA(t)NB(t) + ke ns(t) (6.22)
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where both

e A( ANB)-I fEdEi f (PiD Pf )Cif dEf (6.23)
-E -D

I°

and ke satisfy the detailed balance relation

NANB ae = s ke  (6.24)

-

From (6.11),

0
J(O,t) = J(-Et) + f (ani/t)dEi  (6.25)

-E

-E
J(-St) = d(-E,t) - f (ani/at)dE i  (6.26)

-S

which correspond to (5.25) and (5.26) the set (e ke) is identical to the exact
e e

set (as , k ) appropriate to the current J(-S,t) of (6.14) out of S and to

" (ac, kc) for the current J(O,t) of (6.16) into C, only under quasi-steady-state

.- conditions (ani/at)= 0 in block E.
1

When initial conditions are such that

Yc(t) NA(t)NB(t)/AAB >> 1 >> ns(t)/ s = ys(t) R O, (6.27)

then, the dissociation rate k ns(t) in (6.14b) and (6.16b), can only be neglected

for times t (in Phase II) much shorter than the time required for the establish-

ment of equilibrium when yc = Ys= 1.
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When Phase II is dominated by association Cy >> ys) the solution of

(6.16b) is then,

1__ + a + t (6.28)
NA,B(t) NA,B(O) 

the familiar macroscopic law of recombination 16 where time t is measured from -

the beginning of Phase II when it is assumed that the densities NA(0) and

. NB(0) of dissociated species are equal. Also the densities n (t) of S-pairs

are given by the solution of (6.14b) which yields,

ns(t) + NAB(t) = ns(0) + NA,B(O) (6.29)

when ac = as = a i.e., the total number of pairs in blocks C and S are conserved

under QSS-conditions in block E.

As t increases, yc(t) decreases rapidly from a very large quantity, as

Yc (t) : [NA B(0)/NA E1 + NAB(O)t]-I (6.30)

while ys increases slowly, essentially from zero as,

FaNA( t 1 NA(0) Fn5(r OA,Bo~o, AB.
Ys(t) : [ L (6.31)

L+aNA,B(t ns ns
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4.

The excited state distribution under (6.27) is

Y.(t) piD Yc(t) + Ys(t) PiD Yc(t) (6.32)

and is such that Yj ', PiD Yc only for those highly excited levels i at time t

when .ys(t) << Pi D as in Phase II.

All of the previous studies of recombination were concerned only with

Phase II and dissociation was neglected. When dealing, however, with

evolution towards eventual equilibrium (in Phase III) or with the enhancement

of mutual neutralization (or curve crossings) by three body collisions the

Cfull distribution (6.7), rather than (6.32) is appropriate.

The solutions (6.30) and (6.31) which correspond to condition (6.27) are

valid until a substantial fraction of associated pairs relative to their

equilibrium concentration have been created, and dissociation becomes important.

When initial conditions and times are such that

Ys(t) >> 1>>Yc(t) 0 (6.33)

then the net process is dominated by dissociation. The solution of (6.14b)

yields for Phase II,

ns(t) = n (0) exp(-kst) (6.34)

the familiar macroscopic law of dissociation, and the solution of (6.16b)

yields the conservation requirement (6.27) when ks and kc are equal. As

Phase III progresses, yc increases, association becomes important and equilibrium

is achieved.
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, 6.2 Multivariable Separation

The above strategy (6.7) for separation of the variables Ei and t can be

• .easily generalized to cover multivariable separation. Define, for example

± (R,Ei;t) =P±(REi)yc (t) + [1 -P±(R,E)]yCt (6.35)

where P is the net probability for eventual dissociation of an expanding (+)

- or contracting (-) pair with internal energy E. and internal separation R. The

set (4.6) therefore separates as _.

a s + 1 R 2 Pid(R) 1 R ) f dEf P(RP R C

a ti cs R 1 Ji(R)] - d f )-_if

(6.36a)

- and

atnid + I R2 PiS(R) Ji(R) - (P. -s di, R'-_t R _S 2A 2 2 A Ri

d R

S(ycYs f dEf [Pf d(R) - Pid (R)] Cif (6.36b)

to be solved for the functions

-Pi 1(R) [P +(R,Ei) + Pi-(R,Ei)] (6.37a) -12 i

and

Pid(R) = [Pi+(REi) - Pi(R,Ei)] (6.37b)

In blocks C and S, respectively, Pi is unity and zero, P.s is unity and

zero and Pi is zero. If the quasi-steady condition (6.18a) is assumed in block

, E, (6.36a,b) can be solved independently of the functions y Cst). The set

* (3.7) in R, Ei , Li2 and t may be similarly separated.
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7. Variational Principles

S 7.1 Association/Dissociation Rates for non-qSS (Quasi-Steady-State) and for QSS.

Upon identification of PA.,D in (6.7) as the net probabilities for
1

association/dissociation of one AB-pair of energy Ei , the overall net probabilities/

Fmm sec for association/dissociation are therefore
I

AD

RA'D(t) f f PA'D(Ei) ni(t)dEi f Ji(Eit)(apA'D/aEi) d E  (7.1a)
-D 1 0E

!-D

with the aid of (6.1b) and of integration by parts, since the current Ji

vanishes at the end points to Ei - (-D, ). Equivalent rates, obtained from

(6.9) for ani/at, are

RA(t) " P nl(t)dE f P dEl - Sfl(t)dEf
at-D i_

A A (7 .1b)

fy~)-Ys() Pi(Ei)dE1  f(Pi-Pf)CifdEf (.bc() -D t -DD

for association where Sif(t) i's given by (5.9) in terms of (5.2) and

R DPD n (t)dE, fPydEd

aRD(t) " -D t dEi f(t)dEf

D D D (7 .1c)

f.=-Eyc(t) - Ys(t)] fP(E 1 )dE, (P,-Pf)CfdEf

f6r dissociation. In accord with probability conservation (6.8) then for the

closed system (6.4),

RA(t) + RD(t) 0 (7.2)

at all times, as expected. Subject to the constraints
t-7
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D PA... ..

P1
D = 1 ; PiA = 0 ; C-block (Ei >O ; (7.3a)

. D = 0 ; PiA = 1 ; S-block (-S > Ei > -D) ; (7.3b)

A,Dimplicit in (6.5) and (6.6), assume that the probabilities Pi are so

distributed in energy space that the net rates RA D(t) are extrea at all

times.
22

From the calculus of variations a necessary condition for the integral

I = f f(y,y;x)dx , y = dy/dx (7.4)

to be an extremum is the Euler-Lagrange equation22

d f) 3 f =d y "y o ,(7.5)

the solution of which determines y(x).

Since PkiD remain constant in blocks C and S, then with x - Ei, y =

" , and f(y;x) = J(Ei) A D in-(7.5), RA' D of (7.1a) is an extremum provided

an.
at (Eit) ; E-block (0,Ei -S) (7.6)

, in block E i.e., the quasi-steady-state condition (6.18) of constant-in-energy

current J (t) in block E. The equation (6.9) with (7.3) and (7.6)

therefore reduces to

.-" d =f f ; block E (7.7a) ",
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for P1A and to

PD Ctfdf = dE PD CfdEf ; block (7.7b)

Sinc
for P. Since (aPt/aEt) vanishes in blocks C and S and since the current is

constant Je in block E - self consistent conditions (6.3) and (6.6) for an

extremum - the extrema of (6.1a) are therefore,

AD "- E A D

R*D(t) " J (t) = t[Yc (t)-yt) f dE- f p.D )C ff (7.8a)
e c s -E -D f I i

the constant-in-energy current Je past any level Et in block E; "Je directed

down the energy ladder for association and +Je upward for dissociation. The

extremum to (7.1b) for association is therefore,
-S -ps:

RA(t) =af . nidE, = [ (t) Ys(t)] .dEt D f DfdEfat_ ~ )- oSW i D i

aNAt)NB(t) - k ns(t) (7.8b)A -

where

.,RARB = dC ifdEf
-D D~~f~

The extremum to (7.1c) for dissociation is

R (t) = n IndE -1ye (M - y(t)] f dE1  fP C dEf (7.8:)
0 0 -D'

-NA(t)NB(t) + kns(t) (7.8d)

where

= fd 1  IPCjfdf = R'5 (7. 8e)

and where PD,A in block E are solutions of (7.7). The nature of the extrema 7-
a..- .

i is determined by performing independent variations SPA to P for each bound

level in block E under the constraint (6.3) of constant pA,D in blocks C and S.

The resulting change to (7.1) is
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. 6RA 6 RD - 2[Yc(t) - Ys(t)][ f dEi  - Cif dEf

+1 1/4 fdEi - (pA - 6 P ) Cif dEfl (7.9)

to second order in 6 PA. Since 6PiA are independent of one another, the

change in RA to first order in 6 PA vanishes for an extremum and condition (7.7a) is

* recovered from (7.9), as expected. The change in RA to second order is wholly

determined by the sign of (yc - Ys ). When yc > Ys and the overall direction

A Daccording to (6.8) is association, then R(t) is minimum-and RK(t) is
maximum . When the overall direction is dissociation, then y > Y and R*(t

is maximum and RA(t) is minimum.

The proposed Variational Principle is such that the rate corresponding to

* the overall direction always adjusts itself therefore to a minimum i .e., there is

a tendency to counteract the change and the evolution towards equilibrium is impeded.

Rather than solving the integral equations (7.7), an alternative

A,D ,procedure is therefore to explore the variation of R with PA,D and to seeki
A D* a minimum to that rate via (7.1b) for R and (7.1c) for R , whichever

corresponds to the net direction of the process.

Expressions (7.1) pertain to association/dissociation under all conditions,

including non-QSS (Quasi-Steady-State, while expressions (7.8) are valid only

for QSS-conditions (7.7).
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V' 7.2 General Rate Expression and Application of Variational Principle

Since aPDE tends to zero as E1 tends both to zero and to -D (- -),

a possible trial function is,

apD(A;A,)/aA - axe'd x ; d = 1/X (7.10)

where a is a normalization parameter, where x is the internal energy

(-Ei/ke) in units of ke of the gas N, and where d is the one variational

parameter which can be expressed as (1/X,), in terms of the location at

= X. of the minimum to (7.10).

Under the constraints that PD(x=O) is unity and that PD(x + _) tends to

zero then the normalization parameter a is (-1/x.), and integration of (7.10)

then yields,

PD(X;X*) = eX(l+x) , x = X/X. (7.11)

t2::

and

PA(X;X*) 1- pD = 1 - e-(l+x) (7.12)

which are simple one-parameter variational functions for the dissociation/

association probabilities PD'A(x). The variational association rate (7.14) in

terms of the time-independent rate a (cm2s"1) of association in (7.8b) and

ofr(t) of (5.33) is

R A=t A~ A NCrt) yt-st)] f POdE1 7 (p -pA)Cif dE (7.13)
-D -D f

.'
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= y 1- Ey()y(0)) dE1 f (pA -A P'CifaE (7.13b)
rD -D

Consider, as an example, ion-ion recombination (X+ + X- + X + X2 + X)

between equal-mass species. The relevant one-way equilibrium collision

kernels Cif to be used in (7.13) are given by expression (39), (B40), (B44),

(B51), (B52) and (B54) of Appendix B.

When (7.12) is inserted into (7.13) and when x* is varied, the long-

dashed curve in Fig. 2 is obtained for the ratio R(x*,t)/RA(t). The exact

A
rate R*(t) is determined by inserting the solution of the integral eqn.

(7.7a), the QSS condition, in (7.13), so that it is simply the downward (E-

constant) current, -Je , given by

R*(t) = "Je(t) = [Yc(t) - Ys(t)] - dE  -E (PA P)CifaEf  (7.14)"

-E -D

which is of course identical to (5-34a-c) and to (7.8a). Not only does the

variational parameter . = 1.25 provide a minimum but it yields its exact -

result!

Introduction of a three-parameter 
(x.,b,c) trial function

aPD (.;A*,b,c)/a. = ax(1 + b. + cx 2 )e - d "  (7.15)

where d can be expressed in terms of the location at x. of the minimum to

(7.15) by

2 2
*= l/d = x.(1 + b. + cx.)/(1+2bx, + 3cx*) (7.16)

-J

Upon integration, the association probability is therefore,
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PA(.;X,,b,c) 1 - e'X[ + x + x2A,(b + 3cA, + cA*x)/(1+2bA,+6cA*)] (7.17)

where

x =X/A (7.18)

and its derivative is,

dPA(X;X*,b,c)/3AX eX(x+bA*x 2+cA x 3)/(1+2bA.+6cA ) (7.19)

Fig. 2 illustrates that a minimum at x. * 1.25 is again obtained for the

combinations (b = 0.20, c = 0) and (b = 0.20, c = -0.006) and that this

minimum is the exact QSS-result. Comparison of the corresponding

probabilities for all three variational cases with the exact numerical

solution of (7.7) is shown in Fig. 3. The agreement is excellent for such

simple variational functions. A more sensitive test is provided in Fig. 4 by

the corresponding comparison of the derivatives. All these curves including

the exact solution display a maximum at the same location x = 1.25 = X. which

* is perhaps key to the overall success obtained.

In conclusion, the present Variational Principle appears to be very

powerful. Also, when approximate probabilities are derived then (7.13) is the

basic expression to be used for the association rates, rather than (7.14)

which is approriate only for exact QSS-solutions in block E. Under evact QSS,

(7.13) of course reduces to (7.14). If, for example, probabilities based on

the diffusion equation are adopted, then (7.13) provides highly accurate

.. rates. 28
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7.3 Tellegen's Theorem and the Principle of Least Dissipation

The set of equations (6.1b) for ani/at for the blocks C, E and S involves

the energy Ei as a continuous variable since the spacing between the bound

levels are much smaller than the thermal energy ke of the gas. The discrete

representation of (6.1b) can be written as

an. an (7.20)
i f7 t i - It t - i f (7 .2 0

at f

where

n = [yf(t) - yi(t)]Cif (Vf - Vi)/Rif -if (7.21)

Bates

As Bates 29 has pointed out, the formal structure of (7.20) is identical

to an electrical network where the current lif in the line segment eif (edges,

element) between nodes (vertices), i and f, of the network is equivalent to

the voltage drop Vfi (= Vf - Vi - yf - yi) times the conductivity Cif of the

element eif (with resistance Rif) i .e., (7.21) is simply Ohm's Law for each

element.

The quasi-equilibrium condition (ani/at = 0 in block E) is equivalent to

Kirchhoff's Current Law (KCL),

Ii(t) f lif(t) = 0 (7.22)

f

i.e., the net instantaneous current entering and leaving each node i in block

E is zero, which expresses the conservation of current.

Since Yi(t) varies continuously and monotonically with E between Y c-ii c

(constant over all energies in block C) and Ys (constant over all energies in
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block S),

. fi [yf(t) -Yi(t)] = 0 (7.23)
ef 1

where the sum is over each segment elf within a closed loop (C - E S). Eq.

7.23) is analogous to Kirchhoff's Voltage Law (KVL) i.e., the sum of voltage

- changes Vfi around a closed loop is zero, and expresses the uniqueness of

potential or of y."

S-Just as KCL and KVL deal with an equilibrium distribution of current and

voltage, an equally powerful relationship for equilibrium of power in a

network which satisfies Kirchhoff's Laws was first enunciated in 1952 by
Tellegen. 30  Tellegen's Theorem (TT) for KCL and KVL network states that the

sum of instantaneous powers pi delivered to all elements elf is zero 30-32 i.e.,

E (CE,S) 2
Pi(t) = Z lif(t) Vif(t) = - Z Z [yf(t) - Yi(t)) Cif = 0 (7.24)

.. for all elements elf with all nodes i only in the block E which only obeys

KCL (since ani/at = 0) and KVL, and with nodes f in any of the blocks C, E and

S. Since the equilibrium rate Cif is symmetric, the rate (7 .1a) with (7.2)

,- may be expressed as,

R(t) - y(t)) + 12p.A 1 fA)2cif dEf (7.25)
- -D -D

" where (+) and (-) are associated with RA and RD, respectively.

The contribution to (7.1) which originates from the block E is

R ~ oE t f Ap,D

RAD(E;t) ni(t)dE= 0 (7.26)
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* under the quasi-equilibrium condition (ani/at - 0 in block E). Hence

o -(iA pA)2ci

SRAD(Et) = + /2 [yc(t) - ys(t)] j dEi f M - Pf .1 dEf = 0 (7.27)
-S -D

which is the continuum analogy of Tellegen's Network Theorem (7.24)

Since pi is the time rate of change in total energy (nie i) of all pairs

ni of energy Ei ,

.-. Pi~ t M (niE i )  (7.28)"
at i

then Tellegen's Theorem imp-lies

0
Z Pi( t ) -t a (niEi) - niEidEi] = 0 (7.29)
i i , .

such that the total energy of all pairs in block E therefore remains constant

in time and total energy of all pairs in blockE is then conserved. This is a

*- remarkable result! But the principle of energy conservation is al ready

" inherent to Kirchhoff's Laws and therefore need not be separately stipulated

" as implied in (7.29) via TT. The three laws are equally powerful in that any

two of KCL, KVL and TT imply the third. The greater significance of

" Tellegen's Theorem, however, lies not in the confirmation of this fundamental

law to one network, which in itself is no surprise, but in its general

application to two topologically equivalent networks which obey Kirchhoff's

Laws via the basic result

l Iif(t) vif(t) = Z Z iif(t) Vif(t) = 0 (7.30)

i eif i e if
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where (Iif, Vif) and (iif, vif) are associated with each of two equivalent

networks respectively and satisfy Kirchhoff's Laws for each network.

The Voltage Minimax Theorem31 i.e., the maximum and minimum potentials in

nonlinear resistor networks are at external nodes (i.e., within the C and S

* blocks external to block E), is applicable here and can be deduced31 from Tellegen's

Theorem.

In the full electrical network composed of blocks C, E and S, KCL is of

course not satisfied in the C and S blocks (since ani/at is non-zero except in

the t limit of thermodynamic equilibrium), and neither is TT. With the aid

of (7.24) and (7.25) the total Dower absorbed by the complete network (C, E and S),

Spi(t) =* f Eini(t)dE1] = -[yc(t) _ ys(t)]2 f dEi f (Pif A A2 cf dE
C,E,S a D D D f

-2[Yc (t) - Ys(t)]RA(t) < 0
. {

+2 [Yc(t) - Ys (t)]RDt) < 0 (7.31)

is always negative i.e., energy is always dissipated. The equality only holds

at thermodynamic equilibrium when yc Ys -
. 1. When the net direction is associa-

tion, yc > Ys and RA is positive and minimum. The Variational Principle (§ 7.1)

of minimum R then implies via (7.31) that the energy dissipated to the gas bath

is least. When the net direction is dissociation, y > Y is positive and

minimum and the Variational Principle (§ 7.1) also implies via (7.31) least

*. energy of dissipation. An alternative form of the present Variational Principle

is that the probabilities are so distributed among the energy levels not only to

A,Dyield extremum rates R t), as in § 7.1, but also to provide least rate (7.31)

of energy dissipation. This Principle of Least Dissipation is of great significance
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in many fields e.g., thermodynamics,33 heat conduction, fluid mechanics, etc.

Onsager,15 for example, derived the Principle explicitly for heat conduction.

Joule's Law for a net current entering into a KVL and a KCL electrical network

(block E) via all connecting elements in the block C and to all existing modes in

the block S, states that the currents are so distributed within the network that the

summed rate of dissipation of energy in the combined C, E and S blocks is a

minimum. We have here derived the Principle explicitly from (7.22) via extrema

(§7.1) to the rates of association/dissociation processes. Bates, 29 by analogy with

Joule's Law, postulated that a measure S of the restoration rate of thermodynamic

equilibrium by recombination for highly non-equilibrium systems (i.e., Yc >> ys such

that explicit time-dependence can be ignored) be a minimum, a Principle which

resulted 34 for recombination alone in the quasi-steady-state condition (7.6) of

block E. From eq. (7.1) and (7.31) it follows that this unnormalized time-

independent measure S can now be identified with the rate 2dRARB. We have also

generalized the situation by asserting that association/dissociation in general

proceeds such that the rates RA'D(t) of (7.1) are extrema at all times such that

- RA'D(t =) tends naturally to zero when thermodynamic equilibrium is established (in

- contrast to 5). The Principle of Least Dissipation is then satisfied, irrespective

of the OSS-condition (7.6). Under the added constraints (7.3), the condition for
extrema in A ,D yields the QSS-condition (7.5) quite naturally. We have also shown

* that the QSS-condition is equivalent to Tellengen's Theorem (7.29) suzh that the

total power (7.31) in the Principle of Least Dissipation reduces to the sum of

powers dissipated only in blocks C and S.

* In conclusion, an alternative procedure to solution of coupled integro-

O differential equations derived in §4 is the direct search for extrema to the rates

- (7.1). These extrema are the actual rates of the process and the system satisfies

*the Principle of Least Dissipation. The procedure is, in general, irrespective of

the quasi-steady-state condition (7.5) which necessarily follows only when the

further constraints (7.3) are imposed. Direct application of the Variational

Principle yields excellent results (cf Fig. 2-4).
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8. Summary

Sets of transport-collisional Master Equations required for a

comprehensive description of the two-particle non-equilibrium microscopic

distribution n of subsystems (A-B) in a thermal gas bath M have been derived

in §2 and §3 for various physical representations. Each set is appropriate to

the variation of gas density N between its low and high density limits.

Assumption of equilibrium in one or more of the dynamical physical quantities

(R,E,L ,T1 ) in §4 helps reduce the complexity and dimensionality of the

solution n for the corresponding Master Equation for the distribution of

subsystems. Even in the limit of low gas density N, the procedure, not only

of course yields the appropriate input-out Master Equation (4.12a), the

subject of many previous studies6 "14 , but also uncovers an additional

eqn,(4.12b) or (4.17b) which helps complete the full description of

association/dissociation processes at low N. The various Master Equations

furnish complete details of n as N is varied.

In §5, expressions for association/dissociation rates RAD(t) are

formulated in terms of two-particle distribution function under conditions

both of quasi-steady-state (QSS) of block E and of non-QSS, when the

. appropriate rates are given by (3.34) and by (5.36), respectively. By

operating at a more basic microscopic level, the present approach has also

exposed in §5.3 the key assumptions inherent to the Debye-Smoluchowski

Equation used frequently for chemical reactions in condensed matter. The

present treatment therefore provides a unified account of reactions in both

gas and condensed matter phase.

In §6, the evolution from a non-equilibrium situation to full

thermodynamic equilibrium with the gas M is provided by introduction of the

probabilities PA,D for association or dissociation of level i of the A-B
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pair. Here, the ansatz (6.7) permits separation of time t from the remaining

physical variables as (Ei,Li2,R), and automatically permits the QSS-condition

to be maintained at all times towards eventual equilibrium. The non-QSS rates

RA.D(t) are now given by (7.1) and (7.13) and the QSS-rates by (7.8) or

(7.14). The former expressions are valuable 28 when approximate probabilities

P A.D such as those given by the diffusion approach,28 are used, whereas the

-aear npr28 AD
latter QSS-rates are inappropriate when approximate P , are used.

A new Variational Principle for general association/dissociation rates

RAD(t) of eq. (7.1) is proposed in §7.1. The Principle asserts that the

actual rates RAD(t) are extrema at all times i.e. the rate RA(t) or RD(t),

whichever corresponds to the overall direction of the process, always adjusts

itself to a minimum. If conditions are such that the overall direction is

association then, at all times t, RA(t) is minimum and RD(t) is maximum; and

vice-versa when dissociation is the overall direction. There is therefore a

tendency to counteract the change and evolution towards equilibrium is

impeded. Provided 0 is zero and unity in blocks Cand S, respectively, a

consequence is the QSS-condition (7.6), or the integral eq. (7.7b), so that

A D

QSS-rates R' D(t), which can now be derived directly from the current, are

extrema, and are exact.

Direct application of the Principle in §7.2 shows that use of simple

analytical variational functions for P in the new general expressions (7.1)
1

or (7.13) for RA,D(t) under non-QSS yields a minimum (for ion-ion

recombination) which reproduces the exact QSS-rates. 10  The general expression
.~A,D

(7.1) Is valuable when approximate probabilities Di are used, in contrast to

the QSS-expression (7.8).

In §7.3, contact is established between the present Principle and (a)

with Tellegen's Theorem 30 32 for theory of electrical networks i.e. the
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- total energy in OSS-block E remains constant in time, and (b) with the

Principle of Least Dissipation (of Onsager 15'33 for heat conduction) wherein

the total energy dissipated by the (A-B) pairs in combined blocks C, E and S

is always least and (c) with Bates' Postulate29 for highly non-equilibrium

systems (yc >> Ys) that, by analogy with Joule's Law 29, an unnormalized

measure S of the total rate of restoration of thermodynamic equilibrium is a

minimum, which results34 in the QSS-condition. The general principle here is

that the net time-dependent rates RA,D(t) are extrema at all times t, and it

naturally follows that RA,D(t + -) tends to zero, as it should, when

thermodynamic equilibrium is established.

Various components of the present theory e.g. reduction of the

collisional terms via a Fokker-Planck analysis to obtain a diffusional

treatment which is highly accurate for all systems and interactions, and the

search for (exact) time-dependent analytical solutions of the Debye-

Smoluchowski Equation (§5.4) for general interactions are considered in future

papers.
27 ,28
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.Appendix A: Equilibrium Distributions and Related Properties

Here we summarize and derive various classical equilibrium distributions

and properties relevant to the present theory. Bates and McKibbin 35 have

already discussed several important aspects of classical distribution

functions. The probability distribution of AB pairs with internal separation -

and internal momentum k in the phase interval dRdk under thermodynamic

equilibrium at temperature T with dissociated species A and B is
36

nAB(R,)dRdR _ WAB h3  dDdRn(R,k)dRdk E NAB 2mT 3/2  exp(-E/kT) (Al).
N A NB wAOB (2lwmkT)312 h

where the combined electronic and nuclear degeneracy factors are WAB for the

AB pair with phase density nAB, with reduced mass m and internal energy E g 0,

and are wA and wB for each of the dissociated species of equilibrium concentration

(cm ) NA and NB, respectively. The ratio of the corresponding translational

partition functions (number of quantum states available to "move" at

temperature T) is h3/(27mkT)3 /2, and d~dR/h3 is the number of internal AB

states (relative energy E and angular momentum L) in the element dkd of phase

space. The exponential term is the canonical distribution for the species of

* energy E< 0 interacting with a heat reservoir (gas) at temperature T. The

equilibrium constant Ke(R,k)dRdp = (a/k)dRdk for A + B Z AB,with forward3 k
association rate c(cm3 sI) and dissociation frequency k(s' ),is also given by (Al)

since A = knAB.

Implicit to (Al), the internal energy,

E = T + V(R) = p2/2m - V(R) (A2)

where V(R) is the potential energy between A and B at separation R and where

2T. is the relative kinetic energy p /2m, and the internal angular momentum
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squared of the AB pair,

L = R2 p2 sin2e (As)

where e is the angle between R andR, are both conserved in time. For structureless

particles WAB = wA wB"

The equilibrium distribution n(R,k) is independent of the directions

(e,O) and (6R, OR) of i and , respectively, and depends only on p and R via

(A2) for E. Since p2 dp d(cose) - (m p dE)dL2/(2R 2p2 cose), then

n( ,E,9) - exp(-E/kT) (A4)

(2-mkT) 3/2
I,

the probability density (per unit dkdEd(cose)) of (R,E,e) pairs is independent2 .2 =2o2

of e. Since L2 varies from 0 Lx(R 2 ) - 0 as e varies frommax
, 0 7r+ , then

2

n( ,E,L 2 ) =2 [ 2 2m ) (A5)
(2wmkT) /2 R2 (p2 .L2 /R2)1 /2

S
' is the probability density (per unit dk dE dL2 ) of pairs with (J,E,L2 ). Also

the probability density is

?~~~2 n2 ,,L 4

-," 2(RE) )dL2 " exp(-E/kT) Frmp (A6)
n(,E) n(,EL)dL 2  mkT) 3/2 "

. -

per unit d~dE and is the Maxwell-Boltzmann distribution

Tl/2exp(-Ti/kT)
n( ,T) 2 k)13/2 exp(-V/kT) (A7)vw (kT)'

per unit d~dT. The distribution per unit dE dL2 is

.9

1 95
t-!

* . . .. *%**** *....-.... ... y~..*



R
n(E,L) f n(R,E,L 2 d = exp(-4W 2TR(E,L2) (A8) (.

R, (2n-mkT) 1.

where TR is the radial period i .e., time dR/vR for completion of a round

22 2
trip between the turning points RI(E,L 2  R2 (E,L) R1 (E,L ) given by

. the zeros of the radial speed vR i.e., of

I mv p 2/m - L2/2mR2  E-[V(R) + L /2mR2 ]  (A9)

The probability that (E,L2 )-pairs have separation in the interval dt

about R is then

n Q , E , L - 2 d R d T ( A l O )

n(E,L2) TRVR T

where T is half the radial period. This is expected since L2 conservation implies

constant areal speed.

The radial period for a Coulomb field (V - -e2/R) is

R-2i( 2 1/) -(m/21EI)/2 f [(R2.R)(RR 1)]1'2 dR2

R" I(All)

= 2r(e2/21E1 ) /2(m/e2 )1/2 2_a 3 2(m/e2)z1/2 J

is independent of L2, and is proportional to the cube-root of the semimajor

axis a (B e'/21E1) for elliptical motion (Kepler's Law). Since the radial .

and angular periods are the same for Coulomb attraction R, is also the time T
C

.. for completion of the closed elliptical orbit,

R 2RIR2 [(RI+R2 ) + (R2-R,) cose] "  (A12)

which is the distance from the focus (force-center) and 6 is measured from the

eccentricity vector joining the focus to the periapsis.
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For the three dimensional harmonic oscillator (V =- 'k R2 ), the radial period2

is

2)22' 2 =1/2= 1/
(0U) (E,L) (r/k)' 2 f [( R)RR / dR = w(m/k) Tr/ r (A13)

is independent of both E and L2 , and is one half the angular period or the time

2v/w for completion of the associated closed elliptical orbit

2 = 2RI 2 R2
2 [(R 2+R2

2) + (R2
2 -R1

2 )cos2e] - I  (A14)

with the force center at the center of the ellipse. While circular orbits are

possible for certain combinations of E and L2 for other interactions V, closed

orbits for all E < 0 and L2 are only possible for the above Coulombic (C) and

oscillator (0) interactions which, in addition to conservation of E and L

appropriate to all radial V(R), yield a futher (time) conserved quantity

associated with a further dynamical symmetry; for C, the direction of the

* Runge-Lenz vector37 which joins the foci and periapsis is constant in time;

for 0, each component energy Ex and Ey for individual motion in the X and Y directions

of the orbit plane are conserved, as is E = Ex + Ey, the total energy.

The energy distribution for all states with L2 in a specified range 0 <_L
2 <_Lx 2

• of L2 is thereforewith the aid of (All) and (A13) in (A) given by

n(E,L 2<Lx) = ex(-E/kT) 4w 2TR L2 ] (A15)- (2-,mkT )3/2 R x

for both Coulomb and Oscillator interactions. The probability density (per

unit energy interval) of orbits with a given energy E which therefore
2 2 2

intersect a sphere of radius R is given therefore by (A15) with Lx  = px R2
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- 2m Rx2 [E-V(Rx)] where px is the momentum at Rx associated with the orbit

which just touches the Rx-sphere.

The distribution per unit dE is

REL2 
2 2

n(E) f n(R,E)dR f fn (EL 2 )dL2  (A16)
0 o 0 0

where RE is the classical turning point given by IV(RE) = IEI and where Lo is

the maximum angular momentum associated with a given energy E.

22
For Coulombic attraction, Lo 2 2m E a2 so that

nc(E) 4 4 2 exp(-E/T T(E)L 2 • exp(-E/kT) [2/2m/21r3e6] (A17)(2mk) 3/ 2  R L° (2,,mkT ) 3/ 2 L EEl / 2  '

the Saha-Boltzmann formula for ionization equilibrium. For the three-dimensional
1oscillator, L- = (m/k)ll. E = E/ • the equilibrium energy distribution is,

n (E)  exp(-E/kT) [4r (m/k) 3/2 E2 ] (A18)0 (2wmkT )3/2

The fraction of the total number of bound orbits of energy E which cross a

x2 2sphere of radius Rx , i.e., those with L2 , = 2m R EE-V(Rx)] is therefore,

2 -
(Rx/a) [E-V(Rx)]/IEI , Coulomb

,''f (E) L 2 =L (A19)
;. x X 0 - x "f ="=2m(wRx/E) EV(R x1, Oscillator

Thus f (E) n(E)dE is the number of classical orbits with energy between E
x

and E + dE that cross a sphere of radius Rx centered at the origin. As Rx

increases from zero, the number of crossing Coulombic orbits increases as Rx

2
reaches a maximum at R= a =e /21EI, and then decreases to zero as R tends to• "x x -
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e2/EJ = 2a, the classical turning point for the L = 0 orbit; because high

L-orbits fully encompass the Rx-sphere for small Rx < a ind are fully

encompassed by the Rx-sphere when a < Rx < 2a.

The fractional contribution to the overall Coulonmic density distribution

*m (A7) that arises within the Rx-sphere is

(E n(ER<R) 2 [e 1 sin2e sin4e + 1 sin6e] (A20)x 2x x 4 x

where ex = sin1(Rx /Rd in terms of the turning point RE - e2/IEI where gx - 1.
Thus gx(E)n(E)dE is the equilibrium number of pairs with internal separation

R < Rx and with internal energy between E and E + dE.

The density of bound AB-pairs with internal separation R is

T
0 0

n(R) =f n(R,E)dE f n( Ri)dTi  (A21)
-v(R) 0

where T is the maximum kinetic energy (-V) of relative motion at R. With
0

*respect to the distribution exp(-V/kT) over R of all levels (bound and continuous)

the normalized fraction

f(R) = n(R)/exp(-V/kT) [erf(-V/kT)1/2  IV/kTI/2 exp(V/kT)] (A22)

of bound levels varies from 0 to 1 as R decreases from infinity to zero. For

Coulontic attraction, f is 0.20, 0.43, 0.73 and 0.996 at R = 2Re, Re , 0.5 Re

and 0.15 Re, respectively, where Re is the natural (Onsager) radius e2/kT where

V = kT.

The conditional equilibrium probability or the equilibrium constants Keq

= /k per unit drI  ... for A + B : AB can in general be written as,
k

9g



3 -h3 exp(-E/kTa
n(rlr 2 •..,r s)P 22 (Erk- K(eq (rl,r2,.. •rS) (A23)

(2nmkT) 12q

where Pc is the classical density or statistical weights of internal states.

3The corresponding statistical volumes, h Pc are given directly by the square-

bracket terms in (A4) - (A8) for each of the five sets (R,E•O), (RE•2,

(Z,E), (Q,T) and (E,L2) of variables and in (A17) and (A18) for the particular

energy distributions appropriate to Coulonbic and oscillator attractions.

Finally, it is worth noting that equilibrium with respect to a given

variable r. alone implies that the fractional distribution n(rlr 2 • ... r

n drj is given simply by the corresponding equilibrium fraction.

Classical-Quantal Correspondences. Since the three-dimensional Coulomb (C)

and oscillator (0) interactions are unique in having closed bounded orbits

for all values of E 0 and L , new and interesting classical-quantal correspondences ,"

may be derived. Under appropriate quantization, n h and (nR,e+'/2)h when nR,0
- 1, of the actions associated with (0) and libration (R,e) generalized -

coordinates, and generalized momenta ( respectively, the full classical

' action for Coulombic attraction

J= + + p do + p de (2m) 1/2 e2  EJ- 1/2  (n r n n +)h (A24)

being quantized to integral (n > l)h, yields, as is well known, the exact

quantal energies. For the isotropic oscillator, the quantized classical action

J =Jpxdx + p + pzdz 2i(m/k) /2 E = (n+3/2)h n = 0, 1, (A25)
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yields the correct quantal energies38

En = (n + 3/2)' ; w = (k/m)1/2  (A26)

1
with degeneracy - (n+l)(n+2). The number of internal states pQ(E) per unit

energy interval dE is therefore given by

PQ(E)dE = (n+)(n+2)dn (n+l)(n+2)dE/nIhW (A27)

3
which in the limit of high n >> 1 agrees with the classical density pc(E) = 4r

E2/(h3w3 ) obtained from (A18) and (A23). Since even z are associated with

*- even n, and odd I are associated with odd n, then in the classical limit of

continuous L,

2 1 1A
SQ(EnL2)dEn dL2 = (2+41)dn di = - dE dL2 3  (A28)

Qn2 n(

- with L2 = (9+1)2 . This quantal density PQ agrees exactly with the

m classical density Pc(EL 2 ) = 472 rR/h 3 obtained from (A8) and (A13)

Corresponding identities

p{(E,L 2 ) = n3/(me4) = 412 Tc/h 3 = Pc(E,L 2) (A29)

and

pQ(E) = n/(e 2 /a o ) = /a 2 0 Lo 2 /h3 = Pc(E) (A30)

for Coulombic attraction have already been shown. 35 These identities support the

use of classical distributions for these interactions in heavy-particle systems.

5.1
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The classical average of R sfor bound orbits with E < 0 and all accessible

L 2 is-

<R5 (E)> =f Rs n(RE)dR/ f n(R,E)dR (A31)
0 0

which, for the Coulomb case, yields

<R5 (E)> R RE B(3~ 5 + s)/B(.- (A32)

where RE is the turning point e 2/1E1 and where the Beta function B(x,y) is

r(x) r(y)/r(x+y) in terms of the Gammna function r. Hence,

=RE) a ; a e 22IEnI n a (A33)

whch agrees at high n >> 1 with the quantal expectation value3

1 5 2 2

<Rn> - (2Z+1)<R~ n>z (1 +1/5n )n a 0  (A34)-

n 9, 2

Moreover, the classical average of R over a given bound (E,L 2)-orbit is

2 2 R2cR(E,L )>= f R n(R,E,L )dR,/ f n(R,E,L )d

(A35)

3 a -L 2/2me2

223

and agrees exactly with the quantal value ~a [3n2  z(L+i)].3  If the

b i~-sunination in (A34) is replaced by L 2-integration between 0 andL2ma
2

-2mjEja ,then the quantal result (A34) yields the classical result (A33) exactly.
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The averaged value of R for these orbits of energ F that cross a sphere of

radius Rx is therefore

L 22 dL 2  R
<R(E,L 2 )>  f dL2 f R n(R,E,L2)d / j dL2 f n(2,E,L2)dR

o 1  o R1

3 a - L 2/4me2 (A36)
T x

3 a- 1 R2LE - V(Rx)] (A37)2e 2 x

3

which for Coulomb attraction tends to a in the limit of small radii Rx << a

when only the L = 0 orbit crosses. When R equals a, all L2-orbits cross and

(A37) tends to (-.) a, in agreement with (A33).

Apart from the intrinsic interest and considerable insight gained from

noting that the classical equilibrium probability distribution and the quantal

probability [ [ntm2 have much in common, all of the distributions (A4)-(A8),

. (A15)-(A22) over physical variables (R,E,L2 ) and their associated properties

(A32)-(A37), are directly relevant towards implementation of the theory and

*solution of the Master Equations developed in the main text for association/

dissociation processes in dense gases.
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Appendix B: Equilibrium Energy-Change Collisional Rates for Various Subsystem

AB-Bath M Interactions.

Theoretical Equilibrium Rates: In this section the collisional term (2.1b) of

the "Boltzmann" equation (2.1) is transformed so as to yield equilibrium rates

Cif(R) for i f transitions in the internal energy Ei of the AB pair with

internal separation R via collision with the Maxwellian bath of gas particles

M. Explicit expressions for Cif appropriate to various interactions (Coulomb,

Polarization, Hard-Sphere, Charge-Transfer) of A and B with M are

summarized for use as a comprehensive package in the theory provided in the

main text.

Denote A, B and M by i = 1, 2 and 3, respectively, their masses and

reduced masses by M. and Mij , respectively, and their pre- and post-collision

velocities and momenta by , and )', P' taken all relative to the (1-2)

center of mass before the (1-3) collision. The (1-3) relative velocities

before and after the collision are and with orientation (i,4b) with

respect to polar axis along . The changes c(- Ef-Ei) and P in the internal

energy and internal momentum of the pair AB are IM [(v'-v 2 ) - (v -2)]

and MI2 (,'-Q), respectively.

The rate Cif is the sum Cf of the individual contributions Cf)

arising from (j-3) scattering alone. Expressions for the averaged rates

kif(EiEf) = f F(u) kif(u)du (Bi)

if

7 11arising from elastic (j-3) scattering by general, hard-sphere and

8 1
polarization interactions and from charge-transfer collisions1 0 for general

masses have been determined previously by integrating the partial rates

kif(u) for a fixed (1-2) relative speed u over the normalized speed
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distribution F(u). Since the emphasis here is on the non-equilibrium R

distributions of Boltzmann's equation at higher gas densities, the more

relevant quantity is the energy change kernel Cif(R) which is related to the

.. * previous quantity (Bi) via

Rif -Cif

kif(Ei,Ef) = [ni(Ei)]- f i(R,Ei) kif(R)dt - 1ni(Ei)] -  f Cif (R)d (B2)
0 0

where Rif is the minimum of the outermost turning points Ri and Rf associated

with Ei and Ef respectively. The isolated kernels Cif(R) for the various

interactions are extracted from the previous work7'8 '10 '11 as follows.

The Jacobians J in the following transformations

dg'(*,) d3(63o3 ) -E J2 ded(cos*)dg d,3 = J3 dldP dg de3  (B3)

- valuable to the collisional term in Boltzmann's Equation (2.1t: have already

been determined7'9 '40"42 as has42 also J5 in

dkl' dk = J5 dedP dR1 (B4)

valuable to transformation between quantal and semiquantal treatments42. The

- orientation (e3, 3) of 6 is taken with respect to the polar axis along ki-

Evaluationof J in (B3) yields (from ref. 7 for elastic A-M collisions and refs.

41 and 42 for inelastic A-M collisions),
,. .. 1d(cose3)do d(cos*) -q dq d(B5co)

- c d cVlV 3 gS(V1,V3,g) [(cos +_cosI)(cos _cos1_)]'/2 (B5)

where
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S(v v3 g)= 3 C(1+a)(vl2+av32) ag2)"2  S(v1 ,v3 ,g') (86) 2

is symmetric with respect to pre- and post-speeds. The limits7'41'42

*,-(vl,v3,g; ) in (B5) to the scattering angle * for fixed v I, v3, g and e need not be f.

reproduced here. The limits g-+(vlv 3;0) to the relative speed g in (B5) are 7'41'42  -

g-(v1 'v3;E) = max[lv,-v31 ' Ivf-v3 1]

(B7)

9 (vlv 3;e) = min[v1+v3 , v1'+v3']

+ --

and g+ > g'.

Determination of in (B3) yields 9'4 -42 the alternative expression,

1 d(cose )d d(cos) - d2 2 de P dP(
2 33 v p[(g2 _g2)(g2 _.g2 )-/2 m (2

where the limits g_(vlv 3;P,E) to the relative speed g for fixed vI, v3, P and .

also need not be reproduced here. The limits P-(vl,v 3 ;c) to the momentum

change P are

= -(vl'v3;r') max[Mlvl'-vll, Mslv 3 -v3 l]

(B9).

P+(vv 3; )= min[M(vl'+vl) I Ms(v3'+v 3)] } (B9)

where

M - M1(1 + M1/M2) (B10) -
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the effective mass of the AB pair in the (1-3) collision, and where

Ms a (MI+M2 )M3/(MI+MI+M 3 ) = aM = (1+a)M 13  , (B11)

the reduced mass of the full pair-gas system, can be expressed in terms of a

mass-ratio parameter
7

a = M2M3 /Ml(MI+M 2+M3 ) (B12)

for (1-3) collisions.

- Under thermodynamic equilibrium at temperature T,

I" i(R,E.) exp(-Ei/kT)

1~J 17-4iM 1 (V) (B13)
m (AXB (2 MI~k)3 3/- 12( MlVl) (BS

RAWB (2rrM 12 kT)/2

then the equilibrium rate for energy-change collisions at frequency Vif is

L Cif(R)dEf =ni(kEi)vif(R) dEf (Bl4a)

ni(R,Ei)dEff No( 3)d,~sga(g,¢) d(cos*l)(do/dE) (Bl4b)

-." which is, in general, a four-dimensional integral. The transformation (B5)

. is appropriate to the cases of general differential cross sections a(g,*) or of

isotropic cross sections a(g), and (B8) is appropriate for c(P,g) or a(P).

.  For isotropic gas distributions N (P3), Cif(R)is therefore a triple integralo 3)~CfR

for general scattering of the AB pairs by M. Considerable reduction to a double

L or single integral or to an algebraic expression occurs for the following specific

interactions.
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aI.X

CASE (1), a(P): For Coulombic attraction (-e /R) between 1 and 3, the

differential cross section per unit solid angle is

( (P) - 4 e4 M13
2 /P4  (B15)

a function only+of momentum-change P. With (B8) in (B14b), the g-integration involves
+ +_ 1/

the integral f (x +x)(x-x) 1/2 dx - w so that the equilibrium rate is (B14a)

with the frequency (per unit dEf) given by

V(1)(R) = (r/M2 3 1) f v31 G(vdvf a(P)dP (B16)
V

0 P

for general a(P). The limit v0  arises from reality of PL- in (B8) and satisfies

Ms Vo2 = max(O,Ef-Ei), which asserts that the kinetic energy of AB-M

relative motion be sufficient for excitation (Ef > Ei) or be at least zero for

de-excitation (Ef < Ei). The R-dependence of Vif at fixed Ei occurs via v1 in

E = M + V(R). The distribution G in speeds v3 of the bath particles 3 of

density N (cm"3) is orientation independent and may for example be taken as

the Maxwellian

f N°(k 3 )d3 = N G(v3 )dv3 = 2N 1 s v32/kT) 1 2

.47r

exp(- M v3 2/kT)d( !M v3 2/kT) (B17)
2 exp(- 2Ms  M

appropriate tcy thermodynamic equilibrium between 3 and the (1-2) center-of-

mass. Hence,

exp(-E /kT)v G I )dv -(-M/kT)12G-) 2s/ exp(-ElkT)d(E/kT) (18) '.

where the total (conserved) energy of the system is

108

-- a- ** .



"1 v2 1

E = Ms v3  + E= M v 2+ E (819)2

From (813) and (B15),

n~ (R, E) G(v )dv3  11 a2M

IE G3)3 2 al exp(-E/kT) d(E/kT) (B20)(A B v1'3 (kT)2

so that the equilibrium collisional (Ei-. Ef) rate (B14) for general o(P) is

P P+

C lf(R) : 2a/2MN f exp(-E/kT) d(E/kT)f a(P)dp (B21)2"M M W( k ) 2 E P-
13 0

r where Eo is max(EiEf). Since P+ of (B9) is symmetric with respect to pre and

post collision speeds, Cif is also symmetric thereby satisfying required

detailed balance. For hard-sphere scattering, a(P) = ao/4r, and the inner

integral in (B21) is simply (P+-P-)a/4n; and (B21) then agrees with Eq. (32)

of ref. (11), for Coulomb scattering (B15), the inner integrand of (B21) is
°-4 e4  2 3p-_P-3)

3 e M1 3  (P

The frequencies if and rates Cif are pure functions only of the initial

and final kinetic energies T 2-MvI and Tf = Mv,2 ; and the R-dependence

.' *. in (B21) arises via the (1-2) interaction V(R) in Ti = Ei - V(R) and Tf = Ef -

V(R) for fixed Ei and Ef.

CASE (2); a(g): When the (1-3) differential cross section is taken as the

* - orbiting cross section,

N. o(g) . (ae)/4M 1g2 / Big (B22)

appropriate to polarization attraction (-ae2/2R4) followed by core repulsion then, on

integrating (B5) over,
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(2 )(R) = (w/v1 )N fv -1 G(v3 )dv3 ) ga(g)dg/S(vlv 3,g) (B23)if _
V 0 9

for isotropic (1-3) cross sections o(g), in general.

On adopting the Maxwellian distribution (B17) for G, the equilibrium collisional

rate (B14) for this second case is therefore

CI2 )(R) = [2a 1 / 2 MN/(kT) 2 ] f exp(-E/kT)d(E/kT) f ga(g)dg/S(vl,v3 ,g) (824)
E g- "0

For polarization attraction (B22), the inner integral yields

g B(l+a) -1 1/)- 85B f dg/S 1/l/ [sin- (g,/A) sin-l(g-/A)] (B25).g- M13 a /2

where

A2(V1 ,V3) = (1+a)(v 12 +av32 )/a (B26)

Since

2 in 1  11/ 2 1 -("

sin - sin- (1-2x), (B27)

"8
the result of Bates and Mendas for k if, the averaged energy-change rate (B2)

per AB-pair, is recovered.

CASE (3); Charge-Transfer: On assuming that the cross section ax for "

symmetrical resonance charge transfer

X+ +X X +X +  (B28)
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is independent of the speed g of relative motion as at low energies, then the

3 angular integrations of (B14) yield simply,

. d(cose 3) 1 2 1

4r f [?a'((v 1+v3-2v*vdcose3) +2 2vdvcCos)
4w/ 1/ = 2 1 3/(, 1 3 3

L C. [v-(v I 2/M 1)] / 2 QXdEf/(2MlVV3) (B29)

where QX is the integral cross section for charge transfer, where

c - 1/M2  (B30)

*l for (1-3) collisions and where E-- Ef - is the energy change. The

frequency of i - f collisional transitions at (1-2) separation R is therefore,

v~IV

1 0.IZI v

where the limits to v3 for a specified energy change c at given speed 
vI are

+ = + ~1/2 cv(32
.v-(vl;) (1+c) [vI + 2 /MI(I+c)] +C V1 (B32)

S.- and originate from the assumption that the (1-3) collision (B28) simply

interchanges v, and v 3 . On adopting the Maxwellian distribution, (B31) can be

rewritten as

) (R) 2M1v1  exp(E T) lif(v1;EiEf) (B33)

where
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;E DE exp 'I+c l i exp[-V(R)/(2c+l)kT f G(E)dE (B34)if(Ii f i1+2cI kT - E

is symmetrical in Ei and Ef. The fraction of Maxwell particles with energies

+E in the range E' < E < E is dell

Eerf /2 2 ( / 2  E+G(E)dE =erf(E/kT) - 2(EkT) exp(-E/kT)] E (B35) "'

where for this case,

E= [c(1+c)/(1+2c)][{Ei-V(R)1112 +{Ef - V(R)}1/ 2]2  (B36)

Hence the equilibrium rate for i - f charge-transfer collisional

transitions is

cfR [(l+c1/c]3/2 N QX "E
(2CrM12 12 (kT)32 Iif(Vl;E i Ef) (B37).-'"

(M12)

an algebraic expression which satisfies detailed balance and which yields the

rate (in ref. 9) for kif, the averaged rate (B2) per AB-pair.

Computational Equilibrium Rates: All of these equilibrium rates for the

above three cases may be conveniently expressed for computational purposes

in terms of dimensionless units,

- - Ei/kT, u= - Ef/kT, v(r) = - V(R)/kT

(B38)

r R/Re, Re =e 2 /kT

as
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as

4v Cif(R)RdR dEi dEf rT F( ,i;r)r2 dr d)du, (cm3 s_ ) (B39)

in terms of specified mass factors r and the Thomson (low density) rates (see, for

example, ref. 10).

- T  ,(e/ 1 a 0  , 3/2 (B40)

* where ao is the integral cross section for (1-3) collisions at relative energy

3 kT. The appropriate mass factors r in (B39) and cross sections 0 in (B40) are

H I'/I3 (l )2 M12 ) o
r 1 I Tj a3 2 1 3/ aO (B41)

H
for hard-sphere (1-3) collisions with integral cross section 0

rC. 3a rH - c 1 7rR 2 (B2r w(=+a) ; oo o  e (42)

e

for Coulomb (1-3) collisions with integral cross section ao which corresponds

L . to Coulomb scattering by angles * > ./2, and to energy transfers c > (3/2)kT

-" for equal mass species. For (1-3) polarization attraction/core repulsion;

,,? .. .J .M

1P 3 (l+a) 2  M 12 1 co = 2(aRe/3)/2 (B43)r-= 2 a3/2  1 0 e

Panda adopted in Thomson's rate (B40) is the corresponding integral (elastic
0

or momentum transfer) collisional cross section at (3/2)kT relative energy.

" For (1-3) charge-transfer collisions,

rx - 12( ; o = 2Qx (B44)

where 0 in (846) is the corresponding momentum-transfer cross section, taken" 0

* as twice the cross section Qx for charge transfer.
43
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The corresponding dimensionless functions F in (B39) are symmetric in X

and u and are

FH(x ,;r) = f exp(-Y)dY [P+ - P; Yo max(-x,-U) (B45)

0

for hard-sphere (1-3) collisions with (dimensionless) momentum-change limits

P+ P_, given by

umax 1/2 1/22_ 1 /21. = - [-;- ; a [(Y+x) (Y+U)lI

and (B46)

P+(xu;r) min [Lv(r) X12 + Lv(r)-u]I/2  a1/2 [(Y+x)1/2 + (Y+,I)1/2j

Also -;

FC(x,u; r )  f exp(-Y)dY 1P_ p -3 (B47) :

0

for Coulomb (1-3) collisions.

For polarization (1-3) collisions,

F f r)p(-Y)dY Lsin 1 (G2 /A) -sin- (G1 /A)3 (B48)

where

Gi~xw~r max I (Y+X) 1/2 a 112 [v(r)-x] 1/2!; (Y+V 1 /2  a 1/2 (v(r)-u1/21i

1(B49)

= m'(y+X) 1/2 1/2 [r).~]1/2 11 112, 12
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and

A = (l+a)1 /2 Ev(r) + Y31/ 2  (B50)

For charge-transfer (1-3) collisions

,.'* : FX(x,u;r) = exp-2-l (A+,,) [ erf g - g exp(-g 2 ) (B51)
11+2c, 2 g-

-. where

9 2Xic [[v(r).x] 1/2 + tv(r)-v]1/2]2 (B52)

The universal expression (B39) is also valuable in that the one-way

* equilibrium rate across an arbitrary bound level v = - E/kT is simply

eq = r aT f dX f F(X,u)du (B53)
eq0 V

*l .i- where w = - D/kT is the maximum binding energy in units of (kT) and where

r

F(X,1) = f F(x,p;r)r2 dr , rm = 1/max(wj) (B54)
0

This equilibrium collisional rate displays10 '11 a minimum at v = (1-3)kT,

the location of a bottleneck. 28

Moreover, the non-equilibrium association/dissociation rate (6.3)

reduces simply to

L
V W DciA - raT f df LPD(A) - pD(P)] F(A,P)dp (B55)

-00 V
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7-. -. - . -

where PD(x) is the net probability of collisional dissociation of pairs with

energy (-AkT). Eq. (B55) with v = 0 provides the loss rate (6.17) from the

continuum (Block C); and provides, with v = -S/kT = e, the growth rate (6.15)

of block S, and with arbitrary v in the block E, (0 4 v 4 e), provides the

association rate (6.23) under quasi-steady-state conditions in block E.

Also various energy-change monents,

D"m)(Ei) L f (Ef Ei)mCifdEf (B56)

useful in a Fokker-Planck analysis 43 of the collision term (2.1b) of the main

text and expressed simply as -,

Dim(E i ) = ra(kT)m-l(-1)mli(m)() (B57)

where the dimensionless moments

I(m)(X) 1i if (U'X)mF(,'U)dU (B58)

are easily determined28 on using the relevant expression, (B45), (B47), (B48)

or (B51), appropriate to the chosen interaction between AB and the gas

species.
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Figure Captions

Fig. 1. Assignment of the fully dissociated block C of free A + B pairs, of

the fully-associated block S of bound (A-B) pairs and the block E of

-*. pairs in highly excited bound levels.

" Fig. 2. Ratio of the association rate RA(X*,b,c), eq. (7.13) to the exact

QSS-rate, eq. (7.14) over variational parameters X*, b and c.

. Fig. 3. Association and Dissociation Probabilities pA,D(x) as a function of

depth into the energy well. For Ei - 10 ke, where e is gas

temperature, pA is almost unity and pD is negligible. - EXACT

QSS; , ,....Variational Functions with X, = 1.25

and with the set (b,c) equal to (0,0), (0.20,0) and (0.20,-0.006)

respectively.

Fig. 4. First Derivative (dP AdX) of association probabilities, corresponding

to curves of Fig. 3. The minima of the exact QSS and Variational

functions result in identical locations.
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Appendix B

Diffusional Theory of Association/Dissociation

Non-Equilibrium Processes for General Systems
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Diffusional Theory of Association/Dissociation Non-Equilibrium
Processes for General Systems

M. R. Flannery,
. School of Physics,

Georgia Institute of Technology
Atlanta, Georgia, 30332, U.S.A.

Abstract: Upon re-examination of the foundations of the diffusional treatment

of association/dissociation processes involving a non-equilibrium distribution

of (A-B) pairs in a gis M, it is shown that highly accurate results may be

obtained for general mass systems provided a new and more basic expression for

the time-dependent association/dissociation rates RAD(t) is introduced.

These rates RAD(t) are derived here in terms of the probability PA'D (E.) that1 1

(A-B) pairs with internal energy Et has associative/dissociative character and

are obtained without appeal to the quasi-steady-state (QSS) condition for

5highly excited levels Ei . Then association and dissociation can be treated in

a unified way and evolution towards equilibrium with the gas is naturally

achieved. Comparison is made between the exact probabilities P A,D obtained

40 from the QSS-condition to the Exact input-output Master Equation and those

S- obtained from the derived diffusional equation. RAD(t) reduces to the

*] constant-in-energy current J(t) through the excited levels only for exact QSS

of the Master Equation. When approximate probabilities are adopted,

.*.. identificiation of RA'D(t) with J(t) is not justified. The basic expression

introduced here for RA'D(t) is appropriate for both exact and approximate

(diffusional) probabilities and yields excellent results for ion-ion

I "recombination in a dilute gas over the full range of masses of the species

involved and over various classes of ion-neutral interaction (polarization,

" hard-sphere and charge-transfer).

• -PACS: 34.1OX, 34.50.Lf., 82.20.Mj.
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L7 7.

- 1. Introduction

The picture of recombination and of association/dissociation processes

involving subsystems (A-B) in a thermal bath of dilute gas M as occurring via

v diffusion in energy-space has stimulated 1-7 a great deal of interest, in

principle valuable to elucidation of many examples of laser-induced plasmas,

decay, of reaction processes in flames, of shock wave propagation etc. In a

classic paper, Pitaevskii I derived a rather elegant analytical result, which

because of its inherent simplicity over more sophisticated and therefore time-

consuming procedures based on a collisional input-output Master Equation8-10

has been applied to situations 3-5 , other than to electron-ion recombination1,7

111

for which it was originally intended. Bates11 has pointed out that of the

several different classical diffusion models of electron-ion recombination,

the correct model is that of Pitaevskii. I Moreover, the formula of Pitaevskii

can be reproduced 12 exactly by Thomson-style arguments. In spite of its

attractive features, the diffusion picture as formulated1-6 achieved

remarkably disappointing results for heavy-particle ion-ion recombination 3 6,

or for any atom-atom association process, in a gas.

*] Apart from recognition that diffusion methods (based on a Fokker-Planck

"' reduction of the input-output collisional integral) are likely to be valid

only when the collisional energy changes are small, the basic intrinsic defect

. for application of the Pitaevskii expression to general mass systems remains

undetected. Moreover, that a much less sophisticated "bottleneck" model 13

achieved much closer agreement10 with the exact results of the Master

.' -Equation
8" 0 for ion-ion recombination presents a puzzle.

On examination in this paper of the foundation of the diffusion approach

" in a new light, the basic defect in the treatment becomes apparent. In §2,

probabilities _A,D for association/dissociation of pairs (A-B) with internal
I ° •

-S
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energy Ei are introduced and an expression for the time-dependent current

Ji(Ei,t) is developed. In §3.1, a Fokker-Planck (FP) analysis of the -

* collision integral and current Ji is performed consistently to fourth-order

and useful relationships between the various energy-change moments are

- established. In §3.2, the diffusion approach, based on a second-order FP-

AD
. analysis, is shown to provide accurate probabilities PD for general systems

but inaccurate heavy-particle currents from which previous rates were

obtained. 2 "6 A new expression for the time-dependent rates RAD(t) under dil

conditions is developed in §4 in terms of PAD These rates obtained with
i

* difusio A ,D~ will then be compared with exact rates I105 for the benchmark

- case of ion-ion recombination in a gas for various masses and ion-gas

interactions.

As initiated in ref (14), the analysis here so describes the time

evolution from a non-equilibrium distribution of (A-B) pairs with a thermal

bath of gas M towards full thermodynamic equilibrium that association and

dissociation are treated in a unified way and that general expressions for the

rates of association/dissociation are obtained without appeal to the quasi-

steady-state condition1 -10 for highly excited levels of the (A-B) pair.

2. Master Equation and Quasi-Steady-State Rates

The collisional input-output Master Equation ,4,8" 0 that governs the

distribution ni(Ei,t)dEi for the density (cm-3 ) of subsystems AB with internal

energy Ei in the interval dEi about Ei can be written as,
14

Tni(Eit) = - Sif(t)dEf - -hi Ji(Eit) (2.1)
-D 1

where the net two level input-output collisional rate of depletion of energy

level Ei is

2*-. . . . . . . . .. . . . . . . . . . . . *"
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Sif(t) = ni(Ei,t)vif(Ei,Ef) - nf(Eft)vfi(Ef,Ei) = -Sfi(t) (2.2)

in terms of vifdEf , the frequency (s
-1) for i + f transitions which change the

energy Ei to between Ef and Ef + dEf by collision of the (A-B) pair with the

gas M. The energy of the lowest bound level of the AB pair is -D with respect

- to the dissociation limit, taken as zero energy. The separation between the

energy levels of AB is sufficiently small in comparison to the thermal energy

(kT) of the bath species M that the levels form a quasi-continuum. Thus Ji in

(2.1) is the net upward current (in energy space) past energy level Ei. Since

Ji vanishes as Ei + - and -D, it is therefore determined either by the

integral expression,

E.i

J1i(E1,t) =f dE1 - fi (t)dEf fdE1 _f Sfi(t)dEf (2.3)
E. -D E iD

with the aid of the null effect, Sif + Sfi = 0, of collisions, or by the
if-

equivalent expression,

E i  E i "

i(Ei,t) = f dEi f Sif(t)dEf = f dEi f Sif(t)dEf (2.4)
1- -D - -D E.

11* since the currents past the end points (-0, ) vanish.

Subdivide the range (-D -) of internal energy into three blocks1 4; the

continuum block C in which the pairs (A+B) are fully dissociated, the

* intermediate block E of highly excited bound levels of (A-B) between the

dissociation limit at zero energy and a lower bound level -S, and the lowest

(sink) block S composed of tightly bound levels between -S and -D where the

pairs AB are fully associated. The level -S is sufficiently deep that the net

3 3A



probability of direct dissociation by collision with the thermal bath is

negligible. In practice, level -S arises quite naturally from the collisional

mechanics via the cut-off effect of the Maxwellian distribution of the gas

bath at temperature T and generally lies 10 kT below the dissociation limit

(cf. Fig 3 of §3).

The net rate of depletion of dissociated species (A+B) with density

(cm-3 ),

nc(t) = f ni(Eit)dE i  (2.5)
0

in block C (0 E. < ) is simply

an (t) o
Rc(t) - t = - J(O,t) = f dEi f Sif(t)dEf (2.6)

o -D

* the downward current past the dissociation neck. The net rate of increase in

,- the density (cm-3)

-S
ns (t) = f ni(Ei t)dE i  (2.7)

-D

of pairs considered to be fully associated in block S with energy Ei in the

range, -S < E. 4 -D is

'-.~t 3ns(t ) ->
Rs t) S(t) = -J(-S,t) =_ dEif_f Sif(t)dEf (2.8)

-S D

the net downward current past level -S.

Since the system is considered to be closed

4
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oo an
R (t) = M + f (.--)dEi  (2.9)

-S A
Introduce, as in ref. 14, the time-independent probability Pi(Ei) that

(A-B) pairs with energy Ei are considered as associated, then the overall rate

for association is

A Aan0 AanRA(t) = fP.(Ei)(--)dEi = Rs(t) + P a )dE (2.10)
at-Satf i ( dat i

A

since P. is unity in block S and is zero in block C. The overall rate for

dissociation is similarly,

D - a o 0  nR -(t) f Pi(Ei)(--)dEi = " Rc(t) + -ac(at)dE i  (2.11)

Dwhere P.(Ei), the probability that (A-B) pairs with energy Ei are considered

5 as dissociated, is unity in block C and zero in block S.

In terms of the one-way equilibrium rate

C. i.-(212

Cif i Vif : Cfi (2.12)

where nidEi is the (time independent) equilibrium number density of AB pairs

in the energy interval dEi about Ei, and of the normalized distribution,

yi(Ei,t) = ni(Ei,t)/ni(E i) (2.13)

U.-

then (2.2) yields

Sif(t) = [Yi(t) - Yf(t)]Cif = -Sfi(t) (2.14)

if

5"



with the aid of detailed balance (2.12). The Master Equation (2.1) is then

an. Go aJ1
'2.. = f [yf(t) - Yi(t)]CifdEf = - i  (2.15)

-D

Assume that the energy distribution of pairs in the Continuum block C and

the Sink block S is Maxwellian i.e.

y (t) , E. 0

Ys(t) , -S E. • -D (2.16)

are pure functions of time t which tend to unity as t + -.

The non-equilibrium energy distribution of pairs in the intermediate

block E of excited levels is therefore separable in energy and time according

to the ansatz'4 .

yi(Ei,t) = Pi(Ei)yc(t) +'P (Ei)ys(t) > 1 (2.17)

where P. is the probability that state i is coupled to the continuum i.e. P.
i i

is the probability of dissociation, and where pA is the probability that stateA1

i is coupled to the sink i.e. pA is the probability of association. Thusi
A pD-

(P. + P.) is unity at all times since y (t + -) and Y.(t + -) all tend to
1cs 1

unity when full thermodynamic equlibrium with the gas M is established. Hence

(2.15) can be conveniently separated in Ei and t according to

an (E1,)A AT - - [Yc(t) Y s(t)] f (P - P1 )Cf .Ef (2.18a)
-D

= [Yc(t) Ys(t)] f (p p)cifdEf (2.18b) "
- D
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' and the time-dependent current (2.3) or (2.4) separates as

Ji(E 1 ,t) = [yc(t) - ys(t)]lj(El) (2.19)

where the time-independent fraction of the current down the energy ladder is

-j (E )E E (PDPi i dE f  (2.20)d-"C-

.- E -D -D E.1

Hence i

an1aF [cM(t) - Ys(t)](MTi (2.21)

2.1 Quasi-steady-state (QSS) Rates

As has previously been shown14 , the association/dissociation rates

RAD(t) achieve extrema R'D(t) when the number densities ni in block E are in
quasi-steady-state (OSS) i.e. ani/at - 0 in E. The rate RA is a minimum14

when the net direction is association (as in relaxation of a fully dissociated

plasma). The minimum association rate in terms of the effective two-body

(constant) rate a (cm3s- 1) for association between A and B with densities

NA,B(t) at time t and of the frequency k(s-1 ) of dissociation of S-pairs with

• .density ns(t) is

- A
*.. R,(t) = aNA(t)NB(t) - kns(t) = Rs(t) = Rc(t) (2.22)

which, by (2.10), is therefore equal to the rate Rs(t) for production of

S-pairs or the rate Rc(t) for loss of C-pairs. Hence the required

coefficient a is determined from either

aNA(t)NB(t)[1-r(t)] = 7 dE f Sif(t)dEf = -J(-S,t) (2.23a)
-s - f

.-- ,



.i . .,,, 
- '  
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S1

with the aid of (2.3), or from

0

aNA(t)NB(t)[l-r(t)] = dEi  f Sif(t)dEf= -J(O,t) (2.23b)0 _-
* where a measure of the departure of the densities NA,B and ns from their

corresponding values NA,B and -ns for full thermodynamic equilibrium with the

gas M is provided by the factor,

r(t) = [WANB/NA(t)NB(t)][ns(t)/I s]  (2.24)

The dissociation frequency constant k in (2.22) automatically satisfies

the detailed balance relation

Ss A (2.25)

which satisfies (2.22) when equilibrium (r = 1) is established so that the net
AI

rate RA(t) vanishes.

Under the ansatz (2.17), (2.23) and (2.25) with the aid of (2.20) yield

"- the constants

A [f dE fpA CifdEf] = - j(O) (2.26)
0 D

;'-" A

which uniquely identifies P as the association probability, and
f

'" -S -
kis  f dE i  f - fdEf ] = - j(-S) (2.27)

-D -S

which similarly identifies P as the dissociation probability. Under OSS for
f a.

8



level El in block E, (2.21) shows that

A = - j(O) = - J(E) - -j(-S) = k' (2.28)

so that the constants a and k are simply determined by the current (2.20) past

arbitary level Ei in block E. Under QSS of block E, the probabilities PAD

in the currents (2.20), (2.26) and (2.27) must satisfy the integral equation

p,D CifdEf = I p 'DfdEf , (2.29)

-D -S

the QSS-condition, obtained from (2.18) and solved subject to the constraints
that A is zero in block C (0 4 E -), and is unity in blocks

D(-S >E -D). Also is unity and zero in C and S, respectively.t -S i • D.As i -

It is now the aim to find simple analytical approximate expressions for
pAID

both i and Ji by converting in §3 from an integral representation as (2.1)

or (2.18) to a differential representation, and then to raise and resolve the

question (in §4) whether or not (2.28) is the correct expression which has

a1-6 ADalways been assumed I- when approximate probabilities Pi  are involved,

rather than the exact solutions of the integral equation (2.29) - the exact

QSS condition which yields (2.28) exactly.

3. Fokker-Planck Reduction

The conversion of the integral operator in (2.18) into a differential

" operator is achieved by a Fokker-Planck analysis I useful when the collision

kernel Cif favors small energy changes. Here the current Ji in (2.18) is

* determined to fourth-order, rather than to the customary second order2.

9..' * '..'". V .,.



3.1 Fokker-Planck Current to Fourth-Order in Ener-Change Moments whose

On introduction of an arbitary but well-behaved function oi(E i) whose -

derivatives vanish at the end-points [-, -D], then, with the aid of (2.18),

an. - -
I i *dE5 = i YidEi - (of - ti)ClfdEf (3.1)

-D -D -D

On expanding the difference

inn

1f - = 1 (3.2)

n=1 n! 3E n

as a function of energy change (Ef-Ei), assumed small, and upon integration by

parts under the explicit recognition that (an,/En)  0 for n ; 1 as Ei* ~parts udrteepii eonto ht( 1 s 1  0frn lsE

[a, -D], then (3.1) can be expressed as

- an. 3n j.
dE = [f(3.3)-- D -at I , * D!-d (3.3)

to give the following expression for the current,

Ji(En,t) = a ()n n(YiD(n+l))(34ii(Eit) (3.4)
n=O E -

where the energy change moments2-4 of the collision kernel Cif for one-way

(I + f) equilibrium collision rates (2.2) are

D" m)(E,) f (E Ei)mC fdEf (3.5). -D if

10
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Evaluation of these moments can be facilitated by adopting the

expressions for Cif which corresponds to various A-M and B-M binary

interactions (symmetrical resonance charge-transfer8 -10, hard-sphere I0 ,
polarization 15, coulombic 14) which are presented in universal form in Appendix B

of ref. 14. These moments are normalized
14 to the quantity (-1)mraT(kT)

m '1

where aT is the Thomson rate14 , where ris a mass factor 14 which depends on the

interaction involved (see Appendix B, ref. 14), and where T is the temperature

of the gas bath.

The frequency of all collisions for an equilibrium distribution of E

pairs is D ;0  ' D/D and 2D /D are respectively the averaged energy-

t change <AE.> and the average energy change squared <AE2> per collision with

the gas. Figs. 1(a,b) illustrate the general trend of these moments

calculated here for the specific case 8 ,10 where internal-energy changes in an

ion pair (X+-X ") are due to symmetrical resonance charge-transfer (X+-X)

collisions. In this case, the velocity vectors of the (fast) ion X+ and the

(thermal) neutral X are interchanged. Large transfers of energy are therefore

* involved, as is confirmed by iDi the averaged energy-change squared

2<AE > per second shown in Fig. 1(a). This case will therefore provide a most

- stringent test for the weak-collision (diffusion) procedures studied here.

As the binding x = -E /kT, in units of the thermal energy kT of the gas,

increases from the dissociation limit (at zero), the equilibrium numberI0

exp xdx) of levels in the range dA about X decreases from a large

value, reaches a minimum at A* = 2.5 and then increases exponentially. Since

the energy change frequency vjf for each pair decreases rapidly with increase
(m

of binding, the overall shapes of the equilibrium moments Dm) in Figs. lab

can therefore be explained. Note that the equilibrium collisional frequency

D(O ) is relatively constant in the range (1.8-4) kT of binding. Also the

.-..-..'.,,." .- .°..... .. '.. . '.. . ... ..... ...-..-.-....... .-. ....--.-. . ...-..-.' .... .,....,....'.- .-- -....- , .



frequency D of energy-change is negative for binding energies
b1

- = (-EI/kT) c 1.4 = x i.e. these pairs become less tightly bound upon

collision and pairs with binding x > 1.4 kT become more tightly bound upon

- collision (when D!1) > 0). This critical binding energy specifies the

" location at X* of a bottleneck, which separates the region x 4 x* where

" excitation dominates from the region X > X* where de-excitation is prevalent.

Note also that the even moments D~m) display minima which become sharper with

increase of m, as expected, and that the minimum in D 2) coincides with the
I

zero of D.1) at X*, as clearly shown in Fig. lb. As we go deeper into the

well, D1/Do, the averaged energy-change per collision and D2/Do, the averaged

energy-change squared per collision tend to increase linearly with energy

* depth (Fig. 1b). These features are quite general for the various ion-neutral

interactions and can be exploited here.

Figs. (2a,b) illustrate the variation of inverses of the even moments

D 2 ) and D!4 ) for different interactions 14 of A and B with M (charge-transfer1!2

CX, hard-spahere HS, and polarization POL). The bottleneck to D 2) occurs

roughly in the same location (~ 1.25 kT) for all the interactions, and the

energy-change squared per sec is greatest for the charge-transfer interaction

and weakest for the polarization attraction, as expected. The

moment D 4 ) exhibits similar but more amplified behavior.

Since Cif is symmetrical in i and f - the detailed-balance relation

- (2.12) - then Cif, when expressed as a function of the energy-mean

(E + Ei) and the energy-change A = Ef-Ei, is such that2 Cif =

Cif (, I) On expanding Cif about Ei in terms of the expansion parameter

A, which is assumed small, then

1--anci

C = E1 + A, IAl) = Z 1 ( !)n C (3.6)
n=O aE

12
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TT 7

where C1 is Ctf(E * El, II). The moments (3.5) are therefore determined

from,

Sodd .nF(m+n)

m!Dm)(Ej) = (2nn!)- 1 1 1 ; m odd, (3.7a)
n-1,3,5, 3E n

eanF(m+n)
even F-

(2 n l) 1 J m even, (3.7b)
n=0,2,4, aE ;

" .o

which involves only the terms

F S)(EI) = ASCI(EI,IAI)dEf (3.8)
-D

with s-even, since -D is effectively infinite (~ 5 eV) for the excited states

i in the range 0 - E. o (10-20)kT of interest (cf. Fig. 3a, below).
1

In equilibrium, yi in (3.4) is unity and the current can then be

expressed, with the aid of (3.7), as

-nD(n+l) even even
= _,)n[ 1 " = (n-2j)[2J+l(n+2)!(j+l)!] "1

n=0 3E0 n=0,2, j=0,2

".'

a EJ+n+l (3.9)

i.

This new form clearly shows that the coefficient of its first term

3F 2 /aEi, which arises from the leading term of the expansion (3.7) for both

1. 13



D(I) and D'D2) , is identically zero. The coefficient of the second term

"a 3I F() ,which is the net balance of the second term in the expansion (3.7)

for() and aD 2)/aE i and of the leading term in the expansion (3.7) for

both a 2D 3 /aE and a3D 4 /aE is also zero. The leading non-vanishing
11 1 a 1,

contribution to (3.9) is -1 a5F 6)/aE5 ] which is the net balance of the
576 I I (I)~ (n ~2)/aiado h "-

third terms in the expansion (3.7) for both D!1i and 3D /aE and of the
1 1 1•~ 2(3)/E 2 n a3D!4)/ 4 .  :

second terms in the expansion (3.7) for both a D! /aE anda

The consistent neglect of a D! /aE ~ a 5F /aE and higher-order derivatives

demands both the neglect in (3.4) of terms with n > 4 and the neglect in

(3.7a) and (3.7b) of terms with n > 5 and n > 4, respectively. Hence, the

equilibrium current

D !1 aD 2)/aE. + a2 D !3)/aE 2 -aD!
4)/aE 3 =0 (3.10)

is exact to fourth-order in the moments and is identically zero!

Relationships between even and odd moments can be obtained from (3.7) by

neglecting (6 and higher terms, i.e. D!5 ) and higher moments, to give

[D 2 )  2i(4

D(1 ED -~ (3.11a)
i aE1

i 3E I

which also ensure zero equilibrium current. In view of (3.11) note that "

equilibrium ( 0 = ) is obtained only when the current (3.4) is expanded to

even order.

With the aid of (3.10), the non-equilibrium current (3.4) to fourth order

in moments Dim) is

14



(4aa 3 aDi') ay. 3D~4  3 Y.
i (Eit) [D 1 23E + 3 Ej-)-- 2 [Nat 3  - 1 --

i~ a ai- 3

3
-D;)(- )  (3.12)

aE
i

which is the differential representation (up to and including the fourth-order

(4)moment D. ) of the double integral

E.ir - w

J (Elt) = f dEI  f [yf(t) - yi(t)]CifdEf (3.13)
Ei  -D

for the exact current (2.3). The differential form (3.12) can be called the

Fokker-Planck current to fourth-order since the general Fokker-Planck

expansion can be employed for any variable whose changes are small in

comparison with averaged characteristic values e.g. the collisional energy

change a here is assumed small relative to the thermal energy kT of the gas

bath. Changes in vector momentum e are in general very large here so that the

usual Fokker-Planck analysis I in vector 2-space would not be valid.

Upon use of the approximations (3.11), which are internally consistent to

neglect of moments higher than D.4 , (3.12) reduces to

t 2D)4_ ](i 1 D ( ) - O( 4 )(- 32 i) (3.14)

an1 (Elt) aji (Ei)
=- (t) - (t (3.15)

I

D
where in terms of the probability Pi for dissociation, the time independent

15



I

current to fourth-order is,

4  ) 2  D aP. -
(E) D ) 2 -+ 3

aE 1  aE1  1E

+ D. 3) 3 1 - D 4 ) + ... (3.16)
1 aE. 1 aE.i

For quasi-steady-state (QSS) in block , Ji is constant. When third-

0
order and higher derivatives of Pi' are ignored, a straightforward exercise in

the solution of the resulting second-order differential equation can be

.
performed to provide analytical expressions for PD, if required.

3.2 Diffusion Equation and Current

On ignoring in (3.16) moments D. and higher, the (diffusional) current

is,

(2) PD a2) aP"J(Ei) = - D -' = Di  (3.17)idi aE1  I aE1

so that (3.15) reduces to

ani(Ei ,t) a 2
) (P

-M- Yc(t) " ys(t)] a [D (3.18)

which is a diffusion equation in energy space. The frequency D 2 ) at which-

the averaged energy-transferred squared changes under thermodynamic

equilibrium conditions is the diffusion coefficient (energy2s"I) in energy

space. This kind of streaming equation has been previously derived via other

techniques by Pitaevskiil for electron-ion recombination under highly non-

equilibrium conditions when yc >> Ys so that yi= PiYc in (2.20), and by Keck

and Carrier2 for heavy-particle assoclation/dissociation. It has been studied

16
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by Landon and Keck 3 , by Mahan 5 and by Bates and Zundi 6 for highly non-

equilibrium (y >> Y ) ion-ion recombination. By explicitly including here
C 0

the factor (Y - Y ) via the ansatz (2.17), eqs. (3.15) and (3.18) for
c .

all Y cs help to emphasize the complete evolution towards thermodynamic

equilibrium attained when y1c + Ys + I.

Another advantage of the ansatz (2.17) is that the intermediate block

of highly excited levels can be taken to be in quasi-steady-state (QSS) i.e.

ani/at - 0 in either (2.18) or (3.18) for all times. The QSS-diffusional

curent (3.17) is constant over E, so that the solution of (3.17) subject to

condition

PD(-S) 0, P(-S) 1 1 (3.19)
Ei

is

P PD(E) 3  f dE/D (2)(E)] 1- P A(Ei) (3.20)-S

* where the subscript d denotes quantities associated with the diffusion

equation (3.18). Various levels of approximate schemes readily follow.

(A) Since

P(0) 1, PA() 1 (3.21)

Ji

then (3.20) yields

( o (2)
.j = dE/D (E)] = aPRARB (3.22)

r°., -S

Lfor the downward diffusional current which, when compared with (2.28) provides

the recombination rate a of Pltaevskii I used for ion-ion recombination by

17
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Landon and Keck 3 and by Mahan. 5  Note that the current (3.22) is proportional

to the area under the curves in Fig. 2a, and that the association and
... "dissciaton robailites A,D

dissociation probabilities A at energy Ei are proportional to the areas

which correspond to the energy-ranges (0 + E.) and (Ei  + -S) respectively.

(B) Rather than requiring (3.21), id in (3.20) can be fixed by inserting

(3.20) into (2.26) for j(O) to give

-j(O) = CfdEf + Jd _f dEfCf[_f dEi (3.23)

-D D -S

where

Cf(Ef) = f Cif(EiVEf)dEi (3.24)
0

is the total one-way equilibrium rate for collisional population of a bound

level Ef from the continuum C. On equating the exact current j(O) in (3.23)

with the diffusional current id, then

0 Ef
.(k) f (2) -i

- f CfdE f)]1 4_ dEfCfE-f dE/D (E)--DS= K A B (3.25)

" which yields the expression of Keck4 for ak. The term in braces, [_}-

. is simply the ratio of the downward diffusional current to the one-way

S.equilibrium current across the dissociation neck.

(C) Another possibility in similar vein to (B) is to insert (3.20) into -

(2.27) for j(-S) to give

" oEf

(-S) f fdEf{l + f dEfDf[ f dE/D(2)(E)]}-1  (3.27)
o -S -S

18



where

Df(Ef) = I Cif(Ei ,Ef)dEi (3.28)

-D

is the total one way equilibrium rate for collisional excitation out of

block S to any level f in blocks E and C. The term in braces, {_} is simply

the ratio of the upward diffusional current across -S to the one-way

equilibrium current across -S.

The feature common to all the above procedures (A)-(C) is that the

required current (3.17) depends on the accuracy of the gradient (dP./dEi)

which, due to the neglect of higher derivatives in (3.16), is described by the

diffusion equation (3.18) less precisely than are the actual diffusion QSS-

solutions i.e. (3.18) may furnish accurate PD but relatively inaccuratei

5 derivatives. More importantly however is that (2.28), which is valid only

under exact QSS-condition (2.29) of the exact Master Equation, (2.1) or

(2.18), has been invoked for the diffusional currents j P) of (3.22) and

(k)
i jd of (3.23) which result from the QSS-condition of the different Master

(diffusional) Equation (3.18).

The QSS-solution of (3.18) subject to constraints (3.19) and (3.21) is

P (Ei) = { f dE/D(2 )(E)}{ f dE/D 2)(E) 1_1 (3.29)
1 Ei  -S

,d i

for the probability that any level Ei in block E, once accessed by collision,

". has "associative" character. The probability that level Ei has "dissociative"

character is the complementary function

D E1  0
d(Ei) I dE/D(2 )(E)}{ f dE/D 2)(E)} "  (3.30)

hZ-~ P E) = {S -S

19
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Thus both functions are constrained to vary monotonically between zero OA

and unity as does the exact numerical solution to the integral equation (2.29)

so that, when compared with the exact numerical values, will involve less

error than their corresponding derivatives
7

30,D
IE--'- = ; D2) E)lj (p),(k) (3.31)

aE~ fD i d

appropriate to currents (3.22) and (3.25) in schemes (A) and (B) above.

3.3 Calculations

The ion-ion (termolecular) recombination process

X + Y- + M + XY + M (3.32)

is taken as a benchmark case. The recombination coefficient a has previously

been represented very accurately by the sum -,

Q 9 = 1 + L2  (3.33)

of coefficients ai obtained by considering separate contributions from (X+ -Z)

and (Y'-Z) binary collisions (i = 1 and 2, respectively). The exact numerical

rates ai are obtained from (2.28) by inserting the exact numerical solution of

the integral equation (2.29), the OSS-condition into (2.20) for the current

jI(Ei). The rates ai have been tabulated 9 "0 ,15 as a function of the mass-

ratio parameter,

1 = M i(M3 /M 1(M + M2 + M3 ) (3.34)
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where Mi are the masses of species X+ , Y- and M, I = 1,2 and 3 respectively

and where the set (ij) is equal to (1,2) or (2,1) depending (1-3) or (2-3)

collisions, respectively.

Based on previous analysis 8'l0 , universal expressions have been presented

in Appendix B of ref 14 for the equilibrium rate Cif appropriate to the three

classes - polarization 15, charge-transfer8 ,10 and hard-sphere10 - of ion-

neutral interactions, calculations have been performed here for the exact QSS-

.: rates a that rise from (1-3) collisions and for the corresponding diffusional
VE

rates, (3.22) for a and (3.25) for aK of Pitaevskii I and Keck4 respectively.

The exact rates aE reproduce the previous calculations 10 , and there is

little discernable difference between a and aK which now be simply called the

diffusional rates aD obtained when the diffusional current (3.17) is inserted

* in (2.28).

Table I provides present values of the ratio aD/ E for the various

interactions over the full range of mass parameter a, eq. (3.34) with i=1 and

2. Small a - 10 corresponds to collisional recombination of heavy ions jar

(M1 -M 2 >> M3 ) in a much lighter (electron) gas, intermediate a( z 1/3 for

M= 2 = M3) corresponds to species of equal mass, and large a - for

M< - M3 corresponds to electron-ion recombination in an ambient gas.

The cases of small and large a involve energy transfers which are very much

less than the energy kT of the gas so that the diffusional (weak collision)

approach is likely to be valid.

As Table I shows, the diffusional rates are reliable, as expected, only

for recombination in a vanishingly light gas (a - 10-3) or for electron-ion

recombination (a - 103) in a general gas, the case for which Pitaevskii I

designed his diffusional treatment. The diffusional rates are higher by

t 21°°1
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*" between a factor of 3-6 for intermediate a 1 1. As the ion-neutral

interaction varies from polarization attraction, to hard-sphere repulsion and

to charge-transfer interaction, the energy-change in the ion-neutral collision

becomes progressively larger (see Fig. 2a,b) so that the diffusional rates

(based on weak collisions) become less accurate, as shown directly by the
-1

variation of entries in Table 1 for a specified mass parameter a.

Since (3.17) predicts zero current in both the fully dissociated and

fully associated blocks, C and S respectively, the diffusional current (3.17)

is therefore discontinuous, zero in C, id In E and zero in S. The diffusion

rates (3.22) of Pitaevskli and (3.25) of Keck are therefore expected to be

valid only in the limit of vanishingly small rates a of association. This is

true only for the limiting cases in Table 1 of small and large a. Then the

actual rates a, for electron-ion collisional recombination in a gas and for

electron-ion recombination in a gas are 7 _ 10-9 cm3 s-1 at STP, which are -

three orders of magnitude less that the rate 17 -E 1O 6cm3s' at SP for ion-

'*.] ion recombination in an equal mass gas. . -

Another reason for failure of the diffusion approach as previously

applied to general-mass cases is also apparent. As Figs. 3(ab) show, the

diffusion equation (3.18) in general furnishes fairly accurate probabilities

AD AD
P 1• (3.29) and (3.30), but less reliable gradients dP i•/dE i

In an effort to distinguish between the requirements of accurate

distributions P and the integral/differential forms of the collision

integral of the Master Equation, assume that the intermediate block E between -

, blocks C and S is absent i.e.

1, -E El

P (Ei) = { (3.35)
0, -D Ei i -E
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where -E is some bound energy level. The current (2.25) then reduces to

- -E

_jN (-E dEi f CifdEf = GBN (E)RARB (3.36)

which is the one-way equilibrium downward current across level -E. As -E is

varied, this current achieves a minimum10 at energy -E* (- -2kT) which

therefore acts as a "bottleneck'13 to the recombination which proceeds at rate

,L aBN(E*). The ratio of aBN at the bottleneck E* to the exact numerical rate

a E is displayed in Table I for the "intermediate" hard-sphere case
10 . The

* bottleneck method fails quite markedly for small and large mass parameters a,

where by contrast the diffusion current is successful, and becomes much more

reliable than the diffusion approach at intemediate a (- 1). Since (3.36)
_A90

assumes the least possible knowledge of the probabilities P, (subject to the

constraints) but an integral form to the input-output collision dynamics, it

follows that accurate distributions are essential at small and large a where

the collision dynamics is weak, so that the discontinuous integral form (2.25)

"" does reduce indeed to the continuous streaming form (3.17). For intermediate

. a when the energy-changes are certainly not weak, inclusion of the integral

form (2.25) is apparently more important than the use of accurate

distributions (which are constrained to vary between unity and zero at the

boundaries of block E).

The closeness exhibited in Fig. 3(a) between the diffusional

," probabilities, (3.29) and (3.30), and the exact numerical probabilities may be

exploited in two ways. First, an interative procedure

p(n+l)(EI) f CifdEf = f( P(n)(Ef)CifdE f  (3.37)

]::.D -s
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to the solution of the integral equation (2.29) can be developed by using the

diffusional analytical probabilities as the starting (n=O) solution. It is

found here that convergence to within 1% of the exact solution can be in

general achieved after five iterations, so that accurate rates can then be

* determined from (2.28) and (2.20) since the QSS-condition (2.29) is satisfied. ,

Since the diffusional probabilities (3.29) and (3.30) are reasonably

accurate, a second possibility is to insert them directly into (2.20) to yield

the rate a from (2.28). This procedure, at first sight attractive, is however

inconsistent, in that the diffusional probabilities while satisfying quasi-

steady-state (QSS) of the diffusional equation (3.18) in block E, do not

satisfy the condition (2.29) for QSS of the Master Equation (2.18). The

resulting current (2.20) will therefore not be a constant in block E. This is

demonstrated by Fig. 4 which compares the exact downward current -jE(Ei) past

level Ei obtained from the solution of (2.29) in (2.20) with the approximate

downward current -jA(Ei) obtained by inserting (3.29) in (2.20). Not only is

the approximate current past the bound levels far from being constant, but

assignment of a bound level Ei for determination of a from (2.28) is

uncertain. Moreover the current Ji exhibits a very rapid variation in the

neighborhood of the dissociation limit (at zero energy) that use of j(O) in

(2.28) cannot be recommended. The exact value of j(O) is - 50% higher than

the approximate j(O). Some defense can be made by adopting the value of JA at

the bottleneck energy of - 2 kT to (3.36). Then JA JE, but the foundation

is not firm.

The basic reason for the inconsistency of this second approach for JA is

not that the diffusional probabilities are not sufficiently accurate for

*. useful application but that the current expression (2.28) for the association

24
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rate is not valid when approximate probabilities, which do not satisfy the

QSS-condition (2.29) to the exact Master Equation, are used. This dilemma is

resolved in the following section.

4. Basic Expression for Rates and Results

The expression (2.9) for the time-dependent association (recombination)

rate RA(t) is exact, while expressions for a in §2.1 hold only for QSS

(ani/at = 0) of the Master Equation (2.18) for block E. With the aid of (2.1)

in (2.9), the rate

RA(t) = PAdE . Sfi (t)dEf (4.1)
-D -D

where Sfi is given by (2.2) is also exact. Under the basic ansatz (2.17),

then

R A t)Ey~ M -Y(01)] Od f(pA.pA)C dE(4.2a)c s - I L -D I f jfdf

1 g

ly M -Y (01f dE i 7 (pA -pA)2 C E(.b
= c( - 5() -D _D f ifd f .b

(I NA(t)NB(t) - kns(t) (4.3)

with the result that the time-independent rate constant a (cm3s"') of

association is determined by

. NB f P .dE f (Pi f)CfdE (4.4)
A -D _-D i

When the exact QSS condition (2.29) is satisfied by the probabilities

PAD, then (4.4) reduces to (2.28) with (2.20) for the current ji. When

25
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P AD are determined via an approximate procedure, as by the diffusional

treatment of §3.2, then (4.4) remains the appropriate expression for the

rate m. The QSS-condition (2.29) corresponds to a minimtm 14 in a and hence

any approximate will yield higher rates i (cf. Table 1).

An alternative exact expression which emphasizes the role of the current

O is obtained by using (2.1) and by integrating (2.10) and (2.11) by parts to

give

RA'D(t) = - PA'D(Ei)( )dEi = iJi(Ei,t)(Vp' D/3Ei)dE i  (4.5)

A,D

since Ji vanishes at the end points and since P i are both constants in

blocks C and S. It is only when Ji, given exactly by (2.3) or (2.4) is

constant-in-energy (QSS) over block E that it can be taken outside the

integral sign to give the minimum -
4

A D
Rc(t) RD(t) [Yc(t)-yjt))ji(Ei) (4.6)

cf

in terms of (2.20) for ji and of Pi determined from the QSS-condition

. (2.29). Otherwise, the exact expression (4.5) is used.

The exact rates aE obtained in §3.3 for the various ion-neutral

interactions are normalized (cf ref. 10 and Appendix B, ref 14) to the

corresponding Thomson rate 10

4 3 1/2
T (Re/0) (3kT/M N , = 3/2 (4.7)

where Re is the natural unit (e2/kT) for Coulombic attraction between the ions

1 and 2. The integral cross section ao for (1-3) elastic collisions at
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3 /
relative energy (- kT) is taken in (4.5) to be 2QX, 2r(pR e/3)1/2 and aH

respectively for symmetrical resonance charge-transfer collisions11 with cross

section QX, for polarization (orbiting) collisions in terms of the

polarizability p of the gas M, and for hard-sphere collisions with cross

Hsection a . Universal expressions for the normalized ratios (aE/a T) have

already been presented 14 in a form suitable for direct computation.

Approximate rates aA can now be determined by inserting the diffusional

(approximate) probabilities (3.29) in (4.4). Fig. 5 displays a comparison of

the corresponding ratios

RT = (M/M 2 )(3/41T) (4.8)

where a is taken as the exact rate aE or the approximate rate aA' which arises

from (1-3) collisions.

Excellent agreement is obtained over the full range of the mass parameter

- a, eq (3.34) with i = 1 and j =2 i.e. from a w I0"3 for association of heavy

ions in a light (electron) gas, to intermediate a - 1/3 for equal mass species

and up to large a - 103 which corresponds to electron-recombination in a gas.

As expected, greatest departures occur for the case of equal masses which

involves the largest energy transfer so that the diffusional probabilities

would also show their greatest departure from the exact probabilities as in

Fig. 3a. For this case (a = 1/3), the diffusional result corresponding to

hard-sphere collisions which in turn involve largest energy-transfers (cf.

Fig. 2) exhibit the largest of small departures. The present diffusional

treatment is also excellent for all of the various classes of (1-3)

interaction considered.
L
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5. Summary

On introduction of probabilities P AD(Ei ) that pairs (A-B) with internal _

energy E, will tend to associate and dissociate in a thermal bath of gas M,

and upon use of the ansatz (2.17) for their normalized energy distribution

Yi(t) at time t, the basic Master Equation (2.1) and current (2.3) has been

transformed into corresponding equations (2.18) and (2.19) which are separable

in Ei and t. The diffuslonal equation (3.18), which is a derived

approximation to the Master Equation (2.18), yields, for general systems,

accurate probabilities 0AD (cf Fig 3) but very inaccurate currents (3.22) or

(3.25), cf Table 1. Since previous expressions for association

(recombination) rates a rely on a Quasi-Steady-State Condition (QSS) of (2.29)

*l to the original Master Equation (2.18), they were therefore based on the

currents (2.20), (2.26) and (2.27) via eq (2.28). Since the diffusional

probabilities do not satisfy this original QSS-condition, the corresponding

diffusional current is, in general, not appropriate for determination of the

rates a. The resulting diffusional rates (3.22), or (3.25), are therefore not

reliable 2-6 (Table 1), except for those cases in which the current is

relatively small i.e. for collision electron-ion recombination I in a gas and

for ion-ion recombination in a vanishingly light gas.

A new expression (4.2), derived for the rates, is the correct and more

basic expression for use under general conditions, as when QSS is not

satisfied. When QSS is satisfied, (4.2) reduces to (2.28) based on the

current (2.20) and the QSS-rates are minimum.14  The rate (4.2) is required _

for use of approximate probabilities, such as those (3.29) provided either by

the diffusional treatment, as here, or by simple analytical variational

" functions for PA,D, which do not satisfy the basic QSS-condition (2.29).

I
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The diffusional probabilities can be used in an iterative solution of

(2.29) to give highly accurate probabilities (to within 1%) after a few

iterations and hence accurate rates (2.28). They can also be used in the

basic formula (4.2) to yield excellent agreement with the exact numerical QSS-

results for various classes of ion-neutral interactions over the full range of

mass parameters for general systems.

In conclusion, application of the diffusional equation (3.18) to general

systems is an accurate procedure provided the solutions P are inserted in

the appropriate and more basic expression (4.2) for the rate, rather than into

the derived expressions (3.17) or (2.20) for the diffusional or exact

currents, which only follow from the QSS-condition (2.29) to the exact input-

output Master Equation (2.18).
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Table 1: Variation of the ratio (%I/ci) and (%OLE) with mass-ratio

parameter a for (1-3) collisions and with the various (1-3) interactions:

polarization (POL), hard-sphere (HS) and symmetrical resonance charge-transfer

(CX).. The exact, diffusional and bottleneck rates are aE' aD and aBN,

respectively.

D E  aBN/ E
a POL HS CX* HS

0.001 0.955 0.969 0.997 50.51
0.01 1.159 1.205 1.295 7.692
0.1 2.000 2.410 2.985 2.950
1/3 2.924 3.891 5.051 2.227
1.0 3.413 4.854 6.329 2.020
10.0 2.000 2.941 - 2.674
100.0 1.156 1.403 - 6.452
1000.0 0.955 1.053 - 32.26

*Here small a implies M2 << M1 = M3 and a = 1 implies M2  M1 = M3.

U
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Figure Captions

Fig. 1 (a) Normalized energy-change frequency moments D(m) (energym s-1), m =

0-4, as a function of internal energy Ei = -x(kT) of the bound ion-

pair. (b) Ratios D(m)/D(o) (energym per collision), m = 1 and 2, and

comparison of D 1) with D.Z)/X which shows that the minimum1 1=

of D 2) has same location as the zero in D!I). Equal-mass species and

charge-transfer ion-neutral collisions are assumed and moments are

normalized to the quantity (-1)mraT(kT)m-1 given in ref. 14.

Fig. 2 Inverses of moments (a) D (2)(x) and (b)D(4)(x) as a function of

internal energy Ei = -XkT of the ion-pair for various ion-neutral

interactions: POL (polarization), HS (hard-sphere), CX (charge-

* transfer). Equal-mass species are assumed.

Fig. 3(a). Probabilities pA,D for association and dissociation of an ion-pair

bound with energy Ei = -XkT. Equal-mass species and charge-transfer

ion-neutral collisions are assumed. -: Exact QSS-solution of eq.

(2.29). ---- : Diffusional Approximation, eq. (3.29) and (3.30).

Fig. 3(b) Derivatives (dpA/dx) of probability pA of Fig. (3a) for

association. QSS: from solution of eq (2.29). D: diffusional

approximation, eq (3.31).

* Fig. 4. Comparison of currents, eq (2.20), past energy level Ei = -xkT,

obtained (- ) from exact solution of eq (2.29) and from (---)

diffusion probabilities eq (3.29). Equal-mass species and charge-

transfer ion-neutral collisions 1re assumed. The current is

normalized to (2TA 4B) where aT is the Thomson rate, eq (4.5).
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i.

Fig. 5. Normalized rates RT, eq (4.6), for ion-ion recombination in a dilute

gas as a function of mass parameter a, eq (3.34) for various ion-

neutral interactions: HS (hard-sphere), CX (charge-transfer) and POL

(polarization). - : exact rates. 0, 0, A: rates obtained with

diffusional probabilities, eq (3.29), in basic eq (4.4) for HS, CX and

POL interactions.

I
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Appendix C

Microscopic Basis and Analytical and Numerical Solutions of

the Debye-Smoluchowski Equation
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Microscopic Basis and Analytical and Numerical Solutions

of the Debye-Smoluchowski Equation

M. R. Flannery and E. J. Mansky

- School of Physics

Georgia Institute of Technology

Atlanta, Georgia 30332

By explicitly including collisions and by operating at a level more basic

than the macroscopic Debye-Smoluchowski Equation (DSE), various assumptions

within the DSE-treatment of transport influenced reactions of A and B in a

*: dense medium M become naturally exposed. The appropriate modification of DSE

to description of the kinetics within the region of the sink is provided.

Analytical expressions for probability densities and rates are derived

- which are exact solutions of DSE (a) at all times t and large internal

separations R of the pair (A-B), (b) at long times t and all R and (c) at

short times t and all R. Not only are the transient rates s(t) and L(t)

exact at short and long times, respectively, but they are naturally bounded

- for all times with as(t-o-) and aL(t+O) tending to the correct limit, albeit

- with an incorrect transience. Comparison with exact numerical solutions of

DSE illustrates the effectiveness of a proposed solution over the full range

- of time.

PACS: 34.10.+x, 51.10.+y, 66.10.+x.
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1. Introduction

In chemical kinetics of reactions in the condensed phase or in solution

and of coagulation of colloids, the Debye-Smoluchowski Equation (DSE)1-3 has

K: received widespread application. It involves solution of the continuity

- equation

dan(R,t)/at + v.J (R,t) = 0 R R (1.1)

subject to the radiation boundary condition

4irRs 2 Jd(Rst) = -a3 n(Rs,t) , (1.2)

which equates (as in heat-conduction problems) the frequency of transport with

U the frequency of absorption, assumed to proceed at a local rate c3 (cm
3 s 1 ) at

the boundary of a spherical sink of radius Rs. The number density of pairs AB
with internal separation R between R and R + dk is n(k)d and dR is the

intramolecular net current within pairs which are in the state of internal

expansion across interval d about within some medium M. In the absence of

* "any sources, the rate of disappearance of pairs with R > Rs is,

(3/3t) f n(Z,t)dR 4iR Jd(Rs,t) = -a(t)NANB (1.3)

R S

number densities NA,B at time t. Hence the rate,

a a(t) = a3 n(Rst)/NANB (1.4)

* *
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relies only on the macroscopic density n(Rs,t) at the sink boundary provided

the local rate is regarded as a pre-assigned parameter. The net current Jd
2-4 

ir. (1.1) can be related to the total density n via

, (R,t) = -D V n( ,t) + (K/e)({V) n( ,t) (1.5)

where V(R) is the energy of interaction between A and B. In terms of the

diffusion and mobility coefficients DA,B and KA,B, respectively, for the

isolated species A and B in the medium M, the coefficients in (1.5) for

relative diffusion and relative mobility are D = DA + DB and K = KA + KB.

Hence the rate a(t) can be determined from the solution of (1.1) at the sink

via (1.4) and the overall problem is reduced to one of transport alone.

Although the DSE-method has been applied to reactions in solution, its

de-facto generalization to lower densities of the medium (as a gas) is not

".* immediately obvious, nor are the assumptions intrinsic to validity of DSE

transparent. The effective decoupling of reaction from transport as in (1.2)

and in (1.4) is likely to be valid in the limit of high gas densities when

reaction proceeds much faster than transport which is then the rate-limiting

step. As the density is reduced, reaction and transport are coupled, and

4address is required at a microscopic level more basic than (1.1)-(1.5). In

*" §2, this microscopic basis 5  of DSE is summarized so that the validity

* requirements of DSE are naturally exposed. It is shown that the DSE-method

when applied to transport-influenced reactions in a gas retains its usefulness

" for evaluation of time dependent rates a(t) via determination of that

" particular time-dependent combination of the individual transport and reaction

rates aTR and aRN, respectively, which are time-independent and which are

* regarded as being independent parameters, externally assigned.

2



Although DSE can be solved exactly for the field-free case (V = 0), no

simple exact analytical solution yet exists for general interaction V(R)

between A and B. For the pure Coulomb case, DSE has been solved6 in terms of

Mathieu functions, which can be expressed as infinite series of products of

- modified Bessel functions but which are as complicated to evaluate as the

exact numerical solution. For approximate solution of (1.1) with general V(R)

"* a large body of literature (see ref. 7) exists on various schemes based on Green's

function,8 prescribed" diffusion9 and "matched perturbation" techniques.

Here (in § 3 and §4), highly accurate analytical solutions for general

* V(R) are proposed, and are then tested (in § 5) explicitly for pure Coulombic

attraction. Exact analytical expressions for the densities n(R,t) and the

* rates a(t) are derived (a) for short times and all R, (b) for long times and

all R, and (c) for all times t and large R. The only simple analytical

expression available up to now has been that derived11 from the method of

"matched perturbation solutions" 10 for the exact asymptotic transient

(t + w) . The present long-time solution,(b) above,not only yields this exact

* asymptotic transient but provides an analytical solution which is exact down

to much shorter times. Some preliminary reports of these analytical

12-14
. expressions have already been presented. Finally, an approximate and

highly accurate combination of short-time and long-time solutions is proposed

-" in § 6 for the rates a(t) at all times t.

The aim of the present paper is therefore to examine the foundation and

validity requirements of DSE within a modern perspective and, then to present

analytical solutions of OSE under a general interaction V(R) between the

species A and B reacting in a thermal gas bath M. The microscopic theory used

in this paper has been developed earlier
5.

-
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2. Microscopic Basis of the Debye-Smoluchowski Equation

For the closed system,

A + B + M J' AB + M (2.1)

with no external sources or sinks as discussed previously,5 the continuity

equation

• c nS(lt) + v. (Rt) 0 (2.2)
at AV R t n!

holds for the integrated macroscopic distribution

nS(R,t) = f n ,Ei,t)dE. (2.3)r ."- V R ) i

3in number density (cm" ) of AB pairs. The microscopic distribution nS is
1

such that ni dRdE is the number density of pairs with internal separation "

and internal energy Ei within the interval d~dE i about (k,Ei ) and nsd is then

the number density within interval d of pairs with all possible internal

,. energies between the lowest bound level -V(R) consistent with a fixed R and

the far continuum. The interaction between A and B is V(R). The net

.- R-macroscopic current vector

d ~t f j~d(RE 1 ,t~dL (2.4)-

dis the energy-integration of the (R,Ei)-microscopic net current j in

IAckR,Ei I) fn Z iX ;t) id - f i Ev *,y=) ni(t,Ei,,i;t)v1 d,+ f n ,d i  (2.5)
,',(+) (-)

- J. (RE.,t) + J. (REi ,t)

4
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+..7

where the conditional pair distribution ni( ,E i, i ;t) is such that the number

density of pairs AB with internal separation R, internal energy ki and with

the direction i of the internal relative velocity Xi in interval d dEi d i

*. about (R,E is at time t. Corresponding to (2.5)

define the sum (s) and difference (d) of microscopic densities by

n sd(R,t)= n fd (R+Eift) f ni( ,Ei,i;t)dvi If ni(R,E , i;t)dvi (2.6)

n +

'I

The integrations in (2.5) and (2.6) are over the positive (+) region

, where R.v. > 0, and the negative (-) region where R.vi < 0, such that the net

current di and the net density n d of pairs which are in the states of

internal expansion (+) or contraction (-) are (J - Ji-) and (ni - ni-)
e s+ +9

- respectively. Also niS and Ji are the respective sums (ni + niJ) and (Ji +

] .'-i Ji') of densities and currents of internally expanding (+) and contracting (-)

1L1
*: pai rs.

The continuity equation corresponding to (2.2) but for the microscopic

distribution niS(R,t) has already been derived 5 from a Boltzmann-type equation
T for the two-particle correlation function n(R,v,t) and is5

n.(REi't) + VJid (REi't) =_f Si(Rt)dEf (2.7)

, where the net frequency of collisional transitions (i f) is Sf given in

=Rt n5id (R,t) vif(R) -nf5sd(R,t) ,i1(R) = Sfi(R,t) (2.8)

in terms of the frequency vif dEf of AB-M collisions, which change the

internal energy of a pair AB from E1 to between Ef and E + dEf at a fixed

5



nuclear separation R of A and B. Thus, the net rate at time t of collisional

production of (R,Ei)-pairs from all levels f within the accessible energy

range [-V-+ -] is the RHS of (2.7). On integration of (2.7) over the full

energy range of Ei, the macroscopic continuity equation (2.2) for the closed

system is recovered since the overall effect of collisions f dE. f dEf Sfi
-V

is null. Although the macroscopic net current J (R,t) can be related to the

summed densities nS(R,t) via the excellent approximation,4

d K
J (R,t) = -DvnS(Rt) + (K) (VV) nS(R,t) (2.9)

in term of the macroscopic coefficients D and K for relative diffusion and

relative mobility of A and B in medium M, no similar relation has yet been

dderived for the corresponding microscopic current J. (R,Ei t). As has
I~ 1

previously 5 been shown, (2.7) must then be coupled to the following equation

an d (Eit + v SRE - (EiV)- V n, -(Ei , i ;t)vi  (2.10)

f= S i(R,t)dEf
-V

in terms of the quantities Ji, ni and S d defined in (2.5), (2.6) and (2.8) respectively.

When equilibrium is established in the internal angular momentum L of the pair

5 s,d(A-B), ni is then independent of v. so that Ji in (2.7) and (2.10) are simply

1 ni  vI . Also n± in (2.10) is then given by5n (n i S - nid) for all R

1 D
andE i . 0, and for bound levels Ei $ 0 by ni = 2 (ni + n ) for R $ A or byand

n 1 (n s - n for A s R s B. Here A is the radius of the bound circular

orbit (associated with maximum angular momentum L), and B is the radius of the

outermost turning point of the orbit with L = 0 where JEij= V(B). Under

6
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-- 3'3 -- A -I,

conditions of thermodynamic equilibrium in L, Jsd 1 n vI in (2.7) and
Ji Z~ i V

(2.10) which are therefore coupled in n s and nid; in contrast to the direct
1

use of (2.9) in (2.2) for the macroscopic densities nS( ,t). Operation at a

level more basic than (2.2) therefore necessitates solution of coupled

time-dependent equations, rather than the single equation (2.2). It is

" therefore advantageous to explore the conditions for which a macroscopic

*i treatment based on (2.2) can be invoked.

2.1 Macroscopic TransDort-Collisional Equations

For a given R, subdivide the energy range into three blocks: a block

* of strongly bound levels between levels -V(R) and -S within which the pairs

are considered to be fully associated, a block S of excited levels between -S

and the dissociation limit taken at zero energy within which the pairs are in

the process of associating or dissociating, and a continuum block C which

describes fully dissociated pairs. The sum of the distributions nc and ne of

* -pairs in blocks C and E respectively,

n(k,t) "n 1 (REs;t)dE1  nc(R,t) + ne(R,t) (2.11)" '-S (' i di lo e"

* and the corresponding net current

J(R,t) = fJid(k,Ei;t)dE Jc(R,t) +e(Rt) (2.12)
-S lu(~~ + Je

then satisfy, with the aid of (2.7), the equation

Lnt) + =- dElf Sif(Rt)dEf ; R s  (2.13)

p 7I.4



4 ';

for R Rs , the outermost turning point associated with level -S. In (2.13)

and in what follows S is written simply as Sif For R > Rs , block S doesan n wh t f ll w if if*.

not exist so that

Ttn(R,t) + V-J 0 ;R > Rs  (2.14)

Integration of (2.13) yields,

Rs RS Co -S.:t n(R,t)dR + 4wR 2 J(Rst) = - dR dEi f Sif(R,t)dEf  (2.15)

0 o -S -V

On introducing

if

Sif(t) Z f Sif(R,t)dR- Sfi(t) (2.16)
0

the net frequency per unit dEidEf of collisional transitions between levels E.

and Ef, where R is the lser of R. and Rf, the turning points associatedif Rf
with levels Ei and Ef, integration of (2.7) over all accessible R-space yields

R.oR i asS ~t ~

jf ni(Eit) = f dR f Sif(Rt)dEf -f Sf(t)dEf (2.17)

Eq. (2.15) is then

L2"--" 's R SD -S '

.-•f n(R,t)dR + 4wR J(R ,t) = - f Sif(t)dEf= - ans(t)/at (2.18)
o -S D

where the density of pairs in block S is

R s R s -S -S
n(t) = f' n(Rt)d = f dR f ni(REi;t)dEi =f ni(Ei,t)dEi (2.19)

o - . 4 - - D

. . . . . ... . . . .. . 8



Eq. (2.18) states that the flux, -4wRs2 J, entering the (reaction)

sphere of radius Rs equals the net collisional rate of production of S-pairs

plus the rate of increase of the contribution from the reaction volume to

the density (2.11) of C and S pairs. On assuming no net flux at infinite

separation R, integration of (2.14) yields

t n(R,t)dR 2 = J(Rs ,t) (2.20)

which, when added to (2.18), provides

f n(R,t)dR + ns(t) = 0 (2.21)
0

the conservation equation as expected for this closed system. On defining the

i averaged local rate a3 (cm3 s'1) for production of block S via collisional

- absorption from blocks C and S by

_= S

* 3 n(Rst) - dE-ISf(t)dEf ans(t)/at (2.22)

The effective two body rate a(cm3 s ) for association of dissociated

species A and B with densities NAB(t)(cm ) and the frequency k (s) for

* dissociation of S-pairs AB with density n s(t) are related by15)

an sN(t)/at AA(t)NB(t) - k ns(t) (2.23)

when quasi-steady-state (QSS) conditions (ani/at) are assumed for block E.

L On further assuming that those pairs within the reaction volume of blocks

C and E are also in QSS i.e.,

9
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RRs

f f n(R t)dk - 0 (2.24)

then (2.18) and (2.22) yield

ans = - 2 J(Rs,t) = - a3 n(Rs,t) (2.25)

so that the effective two-body rate of association is

a(t) = c311 - r(t))I n(Rs,t)/NA(t)NB(t) (2.26)

where the quantity

r(t) = [NANB/NA(t)NB(t)] [ns(t)/n s] (2.27)

"" is a measure of the departure of the densities of the dissociated A,B and

" associated AB species from their corresponding time-dependent values NAB

and ns appropriate to full thermodynamic equilibrium (r = 1) with the gas

bath M. Since

mJ t

ns(t) ns (0) = c 3 f n(Rst)dt, (2.28)
0

r(t) can therefore be determined given NAB(t).

Provided the local rate a3 in (2.22) is specified as some external

" parameter or else is obtained by other means, a is therefore determined via

(2.26) solely by the transport equation (2.14),

n(R,t) + y-j: 0 R > Rs  (2.29a)

10
" .. at.* .* . *.**=*.%' " ~ *
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"N solved subject to the radiation boundary condition

4iRs 2 J(Rst) = 3 n(Rs't) (2.29b)

at the sink. When (2.9) is used for J, this combination (2.29) represents

the Debye-Smoluchowski Equation (DSE), familiar in kinetics of reactions in

the condensed phase1 '3 and in solution7 "1 0 and to coagulation of colloids.

It was obtained originally by applying the macroscopic continuity Eqn. (2.2)

outside (R > R ) the sink region, and by equating the transport and absorption

rates at R = Rs, as in (1.1) - (1.5). Since the reaction rate a is considered

as a pre-assigned parameter, DSE concentrated solely on solution of the

transport portion JD(R , R st) of the problem, external to the sink.

2.2 Assumptions Intrinsic to DSE

By operating at a level more basic than DSE, the present treatment has

exposed the two underlying criteria for validity of DSE

n - ni(Ei ' t) 0 0> Ei ' -S}
ati

Rs (2.30)

f. f n(R,t)dR d 0a" t 0 IV

.. i.e., quasi-steady-state conditions are assumed for pairs in the intermediate

. block E of excited levels and for those pairs with internal separation R . R
5

and with internal energies in the E and the continuum block C.

The present treatment has also provided the logical transport equation

(2.13) for description of the sink. It is also usual to consider a situation

of high non-equilibrium (r << 1) so that the association rate is simply

11



Q3(t) = 3 n(Rst)/NANB. (2.31)

where NAB is the averaged concentration of dissociated species A and B.

If however a3 is not predetermined (as is the general case) then the

complete microscopic treatment based on the solution of the coupld transport-

collision equations (2.7) and (2.10) for the microscopic densities n d is

required.

Since a 3 in (2.22) is also determined by the collisional frequency vjf in S if

, assignment and use within DSE as an external parameter can, however, provide

very valuable insight to chemical kinetics in a dense medium. For example the

steady state solution (an/at = 0) of (2.29) yields the steady-state rate
3 4

which can be written as, 4'12

- "RN (TR (2.32)

= (RN + 1TR)

in terms of the reaction rate, defined by

RN e3 xp(-KV(Rs)/De) (2.33)

and of the transport rate

.TR = 47rD R (2.34)

' where

£ ' = UR 2  dR - 1. ".I R = f f exp(KV/De)R 2 dRI (2.35)
R

F-" The steady state ratea is therefore controlled by the rate limiting

step. However, there are at present no exact analytical solutions of OSE

(2.29) - for general V(R), although a large body of literature7-10 exists for

,
"," 12
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L

various types of approximations. For the pure Coulombic case, DSE can be

Isolved formally6 in terms of Mathieu functions, which in turn can be expressed
as an infinite series of products of modified Bessel functions, the full

Vol

evaluation of which is however as time consuming and as illuminating as the

direct numerical solution of (2.29).

In the following section 1 3, useful time-dependent analytical solutions

for the rates a(t) and densities n(R,t) of (2.24) for general V(R) are

proposed. The assumed initial (t = 0) condition and asymptotic (R 1.)

L- boundary condition

r n(R,t=O) = 0 exp(-KV/Oe) = n(R-*,t) (2.36)

are appropriate to association of (A-B) pairs with an initial Boltzmann

distribution in internal separation Rand to a continuous source at infinity

which maintains the Boltzmann distribution only at asymptotic R.

2.3 Field-Free Expressions

For reference purposes, the analytical solution15 for the field-free case

(V=O) of (2.29) subject to (2.36) can be written as
4

_ n(R,t) - No{1 + (a /d)(S/R) [exp(xo2 )exp(2x 0 ) erfcC(xo0+n) - eric 0o }(2.37)

In terms of the time-dependent pair (xo,%) of functions, 4

Xo(t) - (0 3/GL)(Dt/S 2 ) 2  o(R,t) (R-S)/2(Dt) 1 / 2  , (2.38)

and of the steady-state (field-free) rate

k--,." 13



a( 0 ) * (a3ad)/(c13 + d) (2.39)

where cI3 is the pre-assigned rate of reaction at Rs  S, the sink-radius, and

where

M d 47OS (2.40)

is the rate of pure diffusion at S. The exact transient rate of association

- from (2.31) is therefore,

(t) = c3{l + (cO)/(d) [exp Xo2 erfc X 1 ]} (2.41a)

- [1 + (/ exp erfc xo ]  (2.41b)

which initially decreases from the finite reaction rate a3 as

a(t.O) = 3 )[1 - (2/w1/ 2)(a 3 /ad)(Dt/S 2) 1/2 , (2.42)

and approaches the steady-state rate m(0) via the asymptotic transient

COt- )  l(O)[1 + (aO /Cd )(S 2/rDt)1/2) (2.43)

In the diffusion limited region a 0)  ad < then (2.41b) reduces

exactly to (2.43). It Is worth noting that the only exact analytical
" exresst on11

expression yet available (to the author's knowledge) for the rate a(t) under
12_

general V(R) is the asymptotic transient which may be rewritten compactly as,

-4' Q(t -. ) - a + (a-/OTR) (S2/nDt)1 /2 ] (2.44)

14



which corresponds to the same level of approximation as (2.43) but with a 3 ,

Q1" .(O) and S all replaced by ORN. aTR' a. and S of (2.32) - (2.35),
respectively. The basic expression had been earlier obtained1 1 from a

straightforward application of the method10 of "matched perturbation

solutions". An expression which covers a time range considerably broader than

the asymptotic transient (2.44) is derived in the following section, together

* mwith a corresponding short-time solution which tends to the initial transient

a(t*O) = aRN [-(2/w11 2 )(cRN/OTR)(dR/dR)S (Dt/S 2) (2.45)

r' This transient is the appropriate generalization of (2.42) to arbitrary

* interaction V(R), but with inclusion of the additional factor

Y2

(dR/dR) = (R/R) exp(KV/De) (2.46)

- which is absent in the corresponding generalization (2.44) of the asymptotic

J transient (2.43).

15
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3. Exact Analytical Solutions (a) for All Times and Large R, (b) for Long

Times and All R, and (c) for Short Times and All R.

Under the nonlinear transformation4 '12'16

-2 -1

R C f exp(KV/Oe) R 2 dR] -  (3.1)
R

the Debye-Smoluchowski Equation (1.1) for general interaction V(R) has been

shown to reduce to12

ap(R,t)/at = D(dR/dR, p(R,t) (3.2)

where the fractional departure from Boltzmann equilibrium is

p(R,t) - n(R,t)/[N0 exp(-KV/De)] (3.3) -

At temperature T of the gas, the Einstein relation De = K(kT) holds for

. weak fields so that the argument of the exponent in (3.1) and (3.3) is (V/kT).

12In this 'tilda' space the total flux

b 4 R~2 J('v 2

ORJ(Rt) = 4 R J(R,t) (3.4)

remains invariant, with the current vector in this R-space being defined as

J=-DN0 V- p (3.5)

which is formally equivalent to the current due to field-free diffusion in

R-space but with n(R,t) replaced by N0 p(R,t).

16 -1



In terms of this solution p of (3.2) and of the rates aRN and aTR in

(2.34 and (2.34) for reaction and transport under interaction V(R), the

association rate cx(t) of (1.4) and the "radiation" boundary condition RBC of

(1.2) yields

a(t) - RN p(S,t) = aTR S[aplaRI (3.6)

. which shows that p(S,t) * 0 when aTR < aRN, as in the limit of high gas

densities N, and that (ap/aR) -) 0 (which implies the Boltzmann distribution,

I  p = 1) when aTR > URN' as in the limit of vanishing N. At each of these

respective limits, a , the steady-state rate (2.32) tends to the rate limiting

.: step of transport or of reaction, respectively.

Introduce the dimensionless variables,

AU r j = /S-, -t/ 2

r = R/S -=1, T Dt/S (R/S)p =(+1)p (3.7)

so that (3.2) reduces to

-"(r,=)/aT (d'?/dr) 2 (a2 / 2) (3.8)

subject to the initial and asymptotic boundary conditions (2.36), rewritten as

b°

0(rT= 0) = ('+1) = *(r-wcr) (3.9a)

and to RBC in (3.6), rewritten as

S ( OT)] (3.9b)

17
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since the sink is located at r = 0.

Under Laplace transformation,

*(r,s) = f *(rr) exp(-sT)dT (3.10)
0

then, with the initial condition (3.9a) incorporated, (3.8) yields

- 22 '

(Var) = (dr/dr) s[o - (r+l)/s], (3.11)

with formal solution,

11/2
0(r,s) = A(s) exp[-Y(r,s)s + 1)S, (3.12)"

in terms of unknown functions A(s) and Y(r,s). The asymptotic boundary

condition (3.9a) specifies that y(r"-,s) On setting
%"

k = (dr/dr) R (S/S)(dR/dR) (3.13)

then (3.12) in (3.11) yields the differential equation

s-I2 (dy/d'r) = y2(r,s) - k2(r) (3.14a)

to be solved for y and hence y in

y(r,s) = dy(r,s)/dr (3.14b)

With knowledge of y and y, and with RBC in (3.9b) used to

18



determine A(s) in (3.12), the Laplace transform ' of the departure function p,

S (3.3), is therefore

"':( .)/(.+1"RN exp-[y( ,s)-y(o s)]s( / 2'.p(r's) = (~)(+)= -(3.15)

'TRI ( '+1)sy(o,s)sl/ 2+ ,]RN/]

.The corresponding Laplace transform a of the transient association rate

a(t), (3.6), is therefore

"'(s) = ORN p(O,s) =RN (1/s - (aRN/GTR)[s{y(Os)s /2 + aRNc}]- , (3.16)

Progress in the search for simple analytical formulae is now limited by

the availability or determination of closed expressions for the inverse

Laplace transforms of the overall s-functional dependence in (3.15) and (3.16),

which are mainly governed by the form of y(r,s) and its derivative y = (dy/dr).

For attractive interactions of the general form (V/kT) a -(Re/R)n, where

Re is the natural unit of length characterized by V(Re) - kT, integration of

(3.1) then yields,

x= ( /Re) = ny[(1/n), xn]  ; x = R/Re  (3.17)

where the incomplete Gamma function is

y(l/n,x-n) = + m mn (3.18)x; 0M . mOl

In the limit of small x, R << Re, and y r(1/n), the complete Gamma

function, 
so that

I
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.x . n r(/n) xo,  x R/Re < 1 (3.19)

a constant;1 (n = 1), 1.1284 (n = 2), 1.1200 (n = 3), 1.1032 (n * 4) and

1.0779 (n - 6) for the Couloinbic (n = 1), Dipole (n = 2), Quadrupole (n • 3),

Polarization (n = 4) and Van der Waals (n • 6) attractions, respectively.

-For large R >> Re then

__ n 1" x-2n
X= X + +rE;t +
X 1 n+1l 2(2n+1) n (n+l)(2n+)

- -3n + (3.20)
"" + 63n+1)"'-.

. to give

x =x 1/2+ (1/12x) + 0( ) ,( 1)

x + (1/3x) + (1/90x3 ) (11/1890x 5) (n 2)

x + (1/5x3) (7/4x 7) , (n = 4)

= x + (1/7x 5) - (23/1274x) + ... , (n = 6)

*) for the various attractions, respectively. The derivative which appears in

the basic expression (3.2) is

(dR/dR) • ( /x)2 exp(-x n) 0-l (Xo/X)2 exp(-xn) (3.21)

" so that

20
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n-1 n i 1 (I2n-)l -2n +
(dR/dR) = .in-1 X (201) .2 n  (3.22)n- ) 'n -"(n+l)Zl

As illustrated in Fiq. la for the various attractions, (dR/dW) increases rapidly

from zero at x = x0 to its unit asymptote at large x > 1. Note that the

coefficient of in (dR/dR) and of x 2 in (R/Re) vanishes for Coulombic

attraction, so that (dR/dR) tends to its unit asymptote as[-(1/12)x
2 + O(x")

which is somewhat faster than that [-(1/3) x-2 + O(x )]for the pure dipole

case.

Particular values of the nonlinear function

V,.

(R/Re) x -exp(-I/x)]
"  (3.23)

e

for Coulomb attraction and of its derivative

; (dR/dR) (d'/dx) n .2(1 - x-) xn2(1 - (3.24)

are displayed in Table 1 which shows that the derivative attains its unit

asymptotic value

'u ~-2 + N-3 + 131) -
(dx/dx) 1 12 + x + (13/15) x + ... )

'T2-

. very rapidly. This variation is also amplified in Fig. (ib) over the

important range 0 < R < 1.5 of R.

(a) On this basis, the solution at large R (> 1.5 n.u.) is therefore obtained

by replacing (dR/dR) in (3.13) by unity so that the solutions of y and y of (3.14) are,

r.. 21
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y(r,s) - .(3.25)

YOrs) Pr /S (R-S)/S J

which are all independent of s.

(b) At long times (when s o), y in (3.14a) is therefore constant for

all r, so that

"I"

y0l,s 4-o) SS -y ,

(3.26a)

t(r,s o) = Sr/S y

which are all identical with (3.25). The criterion for validity of (3.26) is

that

s1/2E(S/S)2 - (dr/du)) 0 (3.26b)

which holds, not only for long times and all R as in (b), but also for large R

and all times as in (a), so that the solutions at long times for all R and at

all times for large R are identical. The closer that (dr/dr) is to (u/S).

the greater will be the range of toverwhich (3.26) is valid. The variation

of (d)/dr) with r for various values of S is illustrated in Fig. 1(c) which

shows quite clearly that the key function (d'e/dr) in (3.8) may be considered

" constant (S/I) over a large range of r and S.

(c) At short times when s =, the solutions of (3.14) are,

ylr,s >> smin) = k(r) y (r) -

(3.27)

y(ff,s) r Y (r) J
22
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In this approximation, (3.14a) yields

i.(y/k) - 1 - S_ 1/2 [1 d2rl d 2

so that the above approximation (3.27) is valid provided

1/ >> (d r/d7' 2/(dr/d' 2 U 1/mi (3.28b)

. mm

a condition which is more rigorous and less restrictive than the requirement

of infinite s.
For r > 0.25 in Fig. (ic), k - (dr/d t (S/S) so

that the key validity criterion s >> min can be satisfied for longer times.

Also.(3.27) for Y. at "short" times and all r tends at large 'r to (3.25) for y

at all times and large r, so that the range of validity of the above short-time

solution (3.27) can extend into longer times by increase of 'r.

All of the above three solutions, (3.25) - (3.27), are s-independent so

that the inverse Laplace transfom of (3.18) can be readily performed to

yield the sane formal expression

p(R~t) -n(R~t)/N 0 exp(-KV/De) =(ut/ri

sl(1 + perfc (x(2 c) - erfc Q (3.29)

for each of the above cases (a) (c) which are distinguished by the pair

)-'l

yieldxQ of s funtoa eprsso

,o4

| i:! pR~t - nR~t/N o exp(KV/e) €(?t)/ 23
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L -

XO y(t) (RN/ aR)/%d r (=(N))(S/S),r)'/
(3.30)

Rr(R) =r/2 ER-S)/(2ST) -(S/S)2j .

for cases (a) and (b) i.e., for long times and all R, or for all times and

, asymptotic R i n.u., ( (3.25) and (3.26) are identical); and by

|x(t) [R/ Go p( t) (=RN/%) (dR/dR)s (S/S)T (R/ 1} 3) 2

(3.31) "
n,6(R,t) =(R-S)/2SV = r/2r '-

for case (c) for short times and all R. For la e S note that x i . and

that a ao for large R and S.

The corresponding transient recombination rates obtained from (3.16) or from

(3.6) directly, are writte fo terms of the steady-state rates (2.26) (2o28)

and of the appropriate (X,O) above as

Not p a (3.) r (3.3 ) or alon orsortal tie ca respe tively.

*:. * * . . * ... ** . ** . . . -
repeet ) t th "il r e pressions (2.31 + () /aTd {p 2.-5). B] . 2cne thtr.2anr rate2 frm all form aydtRical (in the rationdatefo

013 to ORN(2.33),and the pair of functions (X,n o) of (2.38) to either of the

pairs (3.30) or (3.31) for long or short times, respectively. ..

.. 24 -
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Short-time and long-time expansions of (3.29) are facilitated with the

. aid of the corresponding expansions,

I-.

exp x2 erfc x-* - (2/-r1/)X + X (4/31/ 2)X3 +* ; X 0 (3.33)

for small X (at short times) and

exp X2 erfc x.illx/rl 2 )(1 - X +IX - ... ); X- (3.34)

for large x (at long times).

Since the higher-order expansion terms above are alternatively positive

(n)
and negative, the short time limits cs where n denotes the order of x

included in (3.33), tend to (3.32a) from above or below according as n is even

or odd, respectively. At short-times, therefore the rate a(t) initially

decreases from aRN as t via

a °(1) (t 40) Ure {1 R - /aTR)(2/71/2X6 }

RN {1 (aRN/aTR)(dR/dR)S (4Dt/IS 2)"12} (3.35)

which tends to as from below. At longer times it decreases as t" 2 via

-L(
1 )(t + f) = a 11 + (aRN/aTR)/Xw 1/2)

* [1 + (a./aTR)(S / Ot) (3.36)

which tends to al from above and then to the asymptotic steady-state limit a OD

This asymptotic transient (3.36) is identical to that previously

derived I1 by the method10 of "matched perturbation solutions". Thus (3.30) in

(3.32b) provide the appropriate extension of (3.36) down to shorter times; and

25



(3.31) in (3.32a) extends the new short-time transient (3.35) up to longer

times. Both the t 1 /2 long-time transient and the t1/2 short-time transient

become suppressed in the "reaction limited region" where mRN < TR" and are

fully amplified in the "transport limited region" where a- TR << CRN" The

resulting formulae for i%, and aL(1) appear to be the only simple 17resultifromo(3.36)foforSL 1)

analytical expressions apart from (3.36) for aL  , yet derived for general

interactions V(R).

Procedures for numerical solution (see 3 5) of the basic eq. (3.2) for

all times require initialization of a and 3p/3 either at short times when

• integrating forward in t, or at long times when integrating backwards in t.

Direct differentiation of the basic solution,

r,' 1 ( £exp X exp(2xn) erfc(x4n) - erfc a]/(r+i) (3.37)

* where the sets (x4,) and (X , I) distinguish short and long times,

r. respectively, yields

(plr) - (GRN/cITR) C(' )erfcSl( +1) + (aRN/%)[C( )-(m /aRN)/( +)](p-I) (3.38)

where

0 (dr/dr)o/(d/dr)

(3.39)
"'" C (r) - 1 .

for short (4) and long (t) times, respectively. The radiation boundary

condition,

26
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aTR (/a )o aRN P(0,T) =RN (1 + (z/ATR) [exp X2 erfc X- 1) (3.40)

is of course satisfied by (3.38) at the sink (r 0) at all times. As t . 0,

0:p * 1 o 0(r/2),and (apla'') varies continuously with ra

(cg(aRN/RTR)
hIRN/iR) T .

(p/3?) (- ) C (r) erfc a (3.41)
0+1) 6 S ORN/aTR) 2C40) [ 1/2

I (+1) r exp(-r7/4-)

r >> 2v'T

which indicates the dramatic decrease, with increase of r,

of (,/a)) at short times from a constant value ((sRN/QTR) at the

sink. Accurate numerical integration around initial times T "% 10" therefore

demands intervals Ar in r as small as 10-3 so as to ensure dense coverage of

0D the complementary error function

eric 2 exp(-a 2 )d a (3.42)

between unity (at r -0) and zero (at r >> 2rT).
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4. Extension for Intermediate Times and all R

In an effort to seek extensions of (3.29), with (3.30) for long times,

down to intermediate times for all R, insert the expansion

y",s) " yz,[ + F1O)s + 2(')s + ... (4.1) .

in powers of sI/2 in (3.14a), and equate equal powers of s. Since the exact

solution at large r is y,, (3.26), then Fi (r - -) - 0. The expansion

coefficients are therefore determined by

=lq, S- 1fm(d) ]dR

which for Coulomb attraction tends at large R to

F () = (R/S) / 1 (Re/R)2 + (4.2)1 e [12R/R e 4

and by

F2 (r) = - 2S 1 f Fl('r)dW. (4.3)

R

On retaining only the Fl-term in (4.1), the rate, obtained directly from

the inverse Laplace Transform of (3.16), is

LS(t) - [1f (aRN/GTR) xa+ 2 erfc x - a exp X+2 erfc ×+} ! (a -a)]

(4.4) "

.4,
28
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for long * short times and is restricted to cases for which

11 + [1 4)S F(O) 1/2

XIT= a = {I+ I - 4 (ctRN/G )S FI(O)/S]IL} 12F 1(O) (4.5)

1 4"

*ll remain real i.e., when FI(O) .< ( /RN)(S/S). The range of application of

(4.4) is therefore rather limited.

The corresponding extension from shorter (s * =) to longer times may be

accomplished by expanding y in terms of s"1/2 so that, on equating equal
,.. s- /2

powers of ,

Sy(r,s k(; k = drld (4.6)

where k' is (dk/dr). The condition for validity of the short-time solution y

=k(I) is therefore sI/2 >> (d2 r/dr2)/(dr/d') 2 , as before. The required rate,

for short,- long times and for all assigned parameters is

C91 ex XL2 erfc - i}

'SL(t )  RN [1 + (1 /aTR) {1 (k'0 /2ko)(% /aRN)} {exp XSL XSL

(4.7a)

CL -1+(' 2 / 1 */k)(x2
W {1 + (k'o0 2ko)(/RN)}- [1 + (k' o/2k o RNTR epXSL erfcXSL]

(4.7b)

where k' is k'(rO) and where
0

a'-" k'o/ko) ] (4.8)XSL N(N/aw) + (k'0/2k0)]T'/k0

Although (4.7a) has been designed as an extension of the short time

result aS to longer times, it does not, however, tend to the correct
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• .'; asymptotic (t +-) limit, %, as does aS, (3.31) in (3.32b). Because it is

automatically constrained to vary monotonically between aRN (as t -+ 0) and NJ

( as t * S), c may indeed yield a better approximation than mSL except

perhaps in some intermediate-time range. Although aS tends to the correct

asymptotic limit a, its asymptotic transience (i.e., the rate at which S

approaches m ) will not be correct since it is characterized by X× rather than

by the correct x to give

a -) m oo[ + (a=/cTR)(dR/dW)s (S2/Dt) (4.9)

which agrees with the exact transient (3.36) only for large sink radii S when

(dR/dW)S 1 (cf. Fig. ib).

Analogous considerations also apply to the comparison of aLS of (4.4)

with a of (3.29) and (3.27). The rate L decreases monotonically from RN

to a as T increases, in contrast to a which does not tend to a as T 0.

The long-time solution aL yields, however, the incorrect short-time transience

L(t O) = mRN[I - (aRN/aTR)(4Dt/WS2) 12] (4.10)

which agrees with the exact short-time transience (3.35) only for large S when

!-- (dR/dR)S  1.
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5. Numerical Solutions

The basic equation (3.2) in tilda-space for the fractional departure

(3.3) from Boltzmann equilibrium, is
I.--

AM 2k j(dr)2 [2!p 2 )3pr (5.1)

in dimensionless units (3.7). In numerical algorithms, the assigned initial

condition

p(r,O) 1 (5.2)

must be supplemented by an additional initial condition for (8pla'). Eqs.

(3.37) and (3.38) with (3.31) for (x6 9S16) are used to facilitate forward

integration in T from i0" when small intervals Ar in r are required. The

, boundary conditions at the sink (r 0) and at asymptotic r are

3('(,T)/3 r)o  (aRN/QTR) p(OT),

(5.3)pI
at all times T. Eq. (5.1) is a linear partial differential equation with

nonlinear coefficients and is of the general form

af(x,t)/3t = F(x,t,f(x,t), af/ax, D2 f/ax 2) (5.4)

which can be solved by standard numerical procedures17 subject to the initial

. conditions,

U." ?31
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f(x,t=O) = fo(X) ; 3f(xO)/ax = afo/aX (5.5)

and the boundary (x-*O,-) conditions

af(x,t) + 8 af(x,t)/ax = Y(t) ; (x-*O,-) (5.6)

where a and 8 are constants independent of (x,t). In the numerical method

adopted, 17 the boundary conditions are imposed indirectly via the differential

equation

af(x,t)/at + 8a f(x,t)/atax = ay/at (5.7)

such that y(t) in (5.6) must be either constant or a continuous function of t.

The selected algorithm 18 DPDES designed primarily for parabolic problems (as

is the case here) solves a system of equations of type (5.4) by a method of

lines, wherein the solution is expanded in a series of cubic Hermite basis

functions of x. The t-dependent undetermined coefficients are evaluated from

17a collocation procedure at each t i.e., from the differential equations

obtained by imposing the boundary conditions (5.7) at the endpoints (xo  xN)

and by requiring that the differential equation (5.4) is satisfied at two

Gaussian quadrature points between adjacent points xp, xp+ 1 in the

x-discretization: x0  x p XN; Xp x0 + ph (p = 0, 1, 2, ... , N).

Eq. (5.1) was therefore solved numerically in equal intervals Ar = 10-

10"2 and 5 10-2 over the respective ranges (0 - 10-2), (10-2 - 5 10-2) and

(5 10-2 - 30) in r; at equal intervals AT 10- 3, 10- 2 and 5 10-2 over the

L respective T-ranges, (10 - 0-2), (10-2 - 1) and (1 - 100). At short times
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3 - - 2 3.

TI'10" - 10 2, small intervals &r o 10 - in r are required (see 5 3) for

accurate initialization via (3.37) and (3.38). All calculations were

performed on a COC 7600 computer with a typical execution time of 14 minutes

(with a relative error of 10-6 in the t-discretization) for a given sink

radius S and ratio (ci,/aTR).

As a test, the numerical results reproduced the exact analytical

solutions (2.37) and rates (2.41) for the field-free (V 0 0) case.

Figure 2 illustrates for a representative case (S =  n.u., a'cTR= 1/2)

of Coulombic attraction,the collapse with scaled time r(= Dt/S ) of the exact

fractional departure p(r,T) = n(R,t)/exp(-KV/De) of the probability density n

from its initial Boltzmann distribution, p(r,O) = 1, onto the steady-state

(p/a'r 0 as T + m) distribution

"'I',

Pr = 1 - (a/arR)(S/R) (5.8)

as a function of r = (R/S) - 1. With increase of the parameter (a-/TR) to

its limiting value of unity (characteristic of full transport controlled

processes), the steady-state p=is approached much more rapidly than those for

smaller (x/TR), and deeper holes in the distribution appear in the

neighborhood of the sink at r = 0 where a highly non-equilibrium distribution

has developed. As the sink radius S decreases, the curves in Fig. 2 for given

(c=/3TR) collapse onto p. over all r much more slowly i.e., it takes longer to

attain steady-state, as expected.

The above asymptote p. in Fig. 2 is rendered universal for all

by simply relabelling the p-axis from the vertex at (1 - IftTR ) in general,

rather than at 0.5, in equal intervals to unity.

The variation with T of the intercept p(O,r) provides directly the T-
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variation of the recombination rate,

ct RN P(0,T) = TR Epr0t/] 0 (5)
a,..

Since the accuracy of the various schemes (1 3,4) of analytical

approximation improves at all T for larger r, detailed comparison between the

. exact numerical intercept PE(0 ,") and the derived analytical intercepts

p(Or) = 1 + (i /ITR) [exp x erfc x- 1] = (T)/GRN (5.10)

or between the corresponding association rates a(r), provide the most

stringent test of the accuracy of the various approximations for p(r,T) and

its derivative (ap/ar). -

5.1 Comparison with Analytical Expressions

As indicated by (3.35) and (3.36), the transience, a(T) versus T[ B

(Dt/S 2), in units of (S2/D) a characteristic time scale for diffusion across a

distance S], becomes amplified for larger x i.e., for transport controlled

regions, when GRN > (i.e., when a/TR * 1), and/or for large sink radii

S which result in larger (dr/dr) for x (cf. Fig. 1c) and in smaller (S/S)

for X. (cf. Table 1).

Figs. 3(a-h) - 5(a-h) illustrate comparison with-;the exact numerical

solution OE of the various short-time solutions aS and aSL as in (a-d), and

- of the various long-time solutions OL and 'LS' as in (e-h), over externally assigned

values of both the sink radius (S - 1, 0.75, 0.5, 0.25 n.u.) and of the ratio 4j

"-/GTR ( 0.1, 0.5, 0.9). Since the transition from steady-state reaction
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controlled processes to transport controlled processes is characterized by

increase from small a/aTR (where aRN << aTR) to unit a%/QTR (where aRN >>

GTR) as in (2.32), the selected range (0.1 - 0.9) of a-/aTR therefore

corresponds to increase in gas density. Since a(t) tends to aRN as t 0 and

to a as t-1--, all of the short-time curves (a) - (d) for a(T)/aRN, and all of

the long-time curves (e) - (h) for a(T)/a6 are normalized so as to tend to

unity at their respective short-time and long-time limits. As t-', a(T)/aRN

in (a) - (d) tends to (1 - (a/ aTR)], which gives 0.9, 0.5 and 0.1 for each

respective value of (a./a TR); and M(T)/, in (e)-(h) tends as t-*O to [1 - (a,/aTR)I

i.e., to 1.11, 2, and 10 for each respective case.

Figs. 3(a) - 3(d) for the small ratio (a /aTR) = 0.1 i.e., for (a /aRN) -

0.9 which imply a reduction In a(T) of 10% from aRN over the full time range,

show that aS, (3.22a) with (3.31), and aSL, (4.7a) with (4.5), both reproduce

the exact numerical results aE at short times over the given range (1 - 0.25

n.u.) of S. As S increases both aS and aSL agree with aE over longer periods

of time, as expected from validity criteria (3.28b). They also represent

substantial improvements over the short-time transients, 1) and as(3 ) which

are the expansions of as , (3.32) up to and including terms in t'/2 and t

As -0 bth (5
1 ) (3)

respectively. As t 0 both aS and as eventually converge (from below)

to aS, as expected, and then to aE. For the larger S, the suggested more

rapid variation in all of the rates fromaRN is apparent.

As expected, aSL shows some improvement over aS for longer times up to

T 9 1, particularly at larger (aIaTR) and smaller S, as is apparent in Figs.

3-5. For longer times T " 1, aSL eventually diverges since it is not

automatically constrained, as isaS, to tend to the limiting asymptotea.

This is the essential reason that the short-time expression for a S exhibits in

general a better overall agreement with the exactaE over the full range of T.
p -°E

Even for the most extreme case, S - 0.25 n.u. in Figs. (3-5)d, for which
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(dR/dR) is small (cf. Fig. Ib) so that the basic analytical approximation for

all times tends to lose validity, cS departs from aE at intermediate T -. 1 but

then eventually approaches a albeit with an incorrect transience, as t- , in

direct contrast to GSL. Note that an overall effect of increase in (/T .-

in Figs. 3-5 is to effectively shift the amplification from short times (Fig.

3), to intermediate times (Fig. 4) and longer times (Fig. 5).

The exact long time rates aL, (3.30) in (3.32b), the long-short

approximation LS of (4.4), and .(1) the asymptotic transient (3.36) to aL'

* are all compared in Figures 3(e-h) - 5(e-h) with the exact numerical results

SE" Both and LS yield considerable improvement over aL(1) which up to now11

has been the "best" simple analytical long-time expression yet proposed (via
the method of matched perturbation solutions10 ). This result cL eventually

tends to the present analytical result aL which then tends to ME (see in

particular Fig. 4(h) and Fig. 5(g), 5(h)).

Although LS (which, in order to ensure real a. in (4.5), is restricted

only to cases (e) of Figs. 3 and 4 and to case (f) of Fig. 3), is designed to

extend al into the shorter-time regime, it only partially succeeds, but it

does not, in general, represent an overall improvement to a The rate aL is,

of course, automatically constrained to vary from the exact asympLutic (t-)

limit with the correct long-time transience to the exact (t - 0) limit XRN'

with, however, the incorrect short-time transience. In contrast a does

increase with the correct long-time transience from ci, but reaches a maximum

and then tends as t - 0 to the incorrect limit 3.

Corresponding sets of curves are displayed in Fig. 4 for the ratio OL./aTR =

0.5 which is appropriate to atmospheric gas pressures and which represents

equal rates of transport and reaction. A 50% decrease in (t) from NRN to

will therefore occur as t develops. Both aS and OiSL again represent a
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l(mitsnd (1)(3);nda
considerable improvement over their short-time limits a nd andI

is significantly more accurate than the previous standard result a . Note,

for this larger ratio of a,/GTR, that the extensive range [I0 2 - 102) in

time does not include the short-time limits when a/aRN + 1, as in Fig. 3, but

emphasizes rather the intermediate-time and long-time regimes. Fig. 3

illustrates very clearly, even for the worst case (h) with S - 0.25 n.u., the

dividend that accrues from the built-in variation of between 0RN at short

times and at long times. At intermediate times, mS > aE, aL c and aLl)

> E. Since 0L(1) tends to aL more rapidly than OL tends to OE , aL(1) must

therefore cross aE so that somewhat closer but accidental agreement is

exhibited,as in Figs. (4h) and (5h).

The general picture which is therefore emerging is that both aS and aC.
are highly accurate analytical solutions which are, in general, better than

their corresponding extensions aSL and aLS, respectively, into the

intermediate-time regime, mainly because the basic expression (3.32)

automatically varies between the correct limits 0RN and a ; c&s is the exact

short-time transience and aL is the exact long-time transience. No short-time

approximation as aS (1), 3), SL has been previously proposed and the

present long-time result is quite superior to a (1) which has been the only

analytical expression previously reported.
11

* . This underlying order has become further clarified in Figure 5 which is

appropriate to transport-controlled processes at high gas pressures ( " tens

of atmospheres). This case with (c/GTR) = 0.9, involves a 90% reduction ing." 10-2 10=20.9,

M(T) from aRN to a., as T develops. The T-range [10 - 102) emphasizes

intermediate .long times. Figs. 5c,d exhibit quite clearly, for the first

' time, the marked departure of aS from aE at intermediate times T - 1 - 10

followed by the eventual return of as to %E in the limit of long-times. Also
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the convergence of cL(1) to OL is quite apparent in Fig. 5h. Even for this

most extreme case S - 0.25 n.u. where the validity criteria (3.26b) and

(3.28b) is being stretched for all times, the present expressions for as and

a are quite superior to as(1), aS(3) and to aL(1), respectively.

Since the various terms in the expansion (3.33) for aS of (3.32a), are

(n)
. alternatively negative and positive, ) tends to as from above or below

depending on whether the number n of time-dependent terms included in (3.33)

is even or odd, respectively. Since L ts less than QE and since aS is

greater than GE at intermediate times, some time-dependent combination of aS

. and L is suggested (see j 6).

The long-time curves (e) - (h) in Figs. 3-5 show directly that aE,L,S

achieve their steady-state value a more rapidly for transport-controlled

recombination, i.e., for (//aTR) < 1, than for reaction-controlled

recombination, ( /aTR) << 1, which is characterized by a much slower rate of

decrease to a higher relative value

Even with its incorrect short-time transience, aL is somewhat better than

cs over all time T for the reaction dominated recombination, (Fig. 3), and

s o in spite of its incorrect long-time transience, is somewhat better than aL

over all T for transport dominated recombination (Fig. 5).
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6. Validity Criteria and Improved Transient Result

Although the long-time and short-time expressions obtained by inserting

(3.30) and (3.31) respectively in (3.29) for n(R,t) and in (3.32) for a(t),

have now been shown to be highly accurate, they have been derived from the

Laplace-transform technique such that neither do the actual equations satisfied

by the derived analytical formulae or do rigorous validity criteria apart from

(3.26b) and (3.28b) naturally materialize. The basic equation

I~j~?'1 I a~ j(6.1)v- ? r l ar2}

for f Ot) - ('+) p(',t), as in (3.7) and (3.8), where p is the fractional

departure n(R,t)/N o exp(-KV/De) of the probability density n(R,t) from Boltzmann

equilibrium, may be expressed in alternative forms as

= + 1(6.2a) :

IaTJ~ a~dJd2f ar
3~2  I 2 't ( 6.2b )

used to discuss the short-time solution, or as

-
2  a2  2_ dr 21 dLN 2  a&

ar ar iT L ( r

&" used to discuss the solutions at large r.

The recombination rate is simply

a(T) a iRN p(O,T) = aTR [Pp(?' .O))/ ] (6.3a)

or, equivalently,
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| F-=CIRNq *(O.T) = 3Ea(7 4.,'r)/3r~ (6.3b)

in which RBC, the radiation boundary condition (3.6) or (3.9b) between the

function and its derivative, is explicitly used.

Provided

1/at1 >> (d2 /dr2)[(a./i) " (6.4)

as for all r and small T (but not for large r and all T), (6.2b)

reduces to

6 6 d (6.5)

ar dr

which, apart from the term d1/dr is formally identical to field-free

diffusion in (rr)-space. Provided,

F~d~2  S2]! d jr2  dRI 1<1 (6.6)

S IdR J -

as at large r and all , then (6.2c) reduces to

. - S/- /S)2 (6.7)

BT ar

which is formally identical with field-free diffusion in (rT)-space.

The exact solutions of (6.5) and (6.7) appropriate to the above

initial and boundary conditions (3.9) in (rT) space are then

2r = (r+1) + (a./aTR) [exp(2nx) exp x erfc(x +il) - erfc n] , (6.8)
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where the pair (X,a) of functions are defined as

. , a 'z A a - (oRNl.)(dr/dr)o; at = (QRN/)(S/S) (.

(6.9) .

"A (rT) r/2/T; la (r,T) =rl2F

with subscript 4 appropriate to the exact solution s at short times and all r,

and with subscript I appropriate to the exact solution 0 for all times and

large r.

These approximate solutions 0 of the basic eq. (6.1) are exactly those

(3.29) - (3.31) previously derived via the Laplace Transform technique which

procedure is however required to show that the solution 0 for large r and all T is

identical with that for all r and long T. Direct differentiation of (6.8) yields

+ (RN/) ) - (AU+1) + (% /aTR) erfc as ] (6.10a)

. and

(a Ia) = i + (QRN/OLI) [ - ( +1) + (/a ITR) erfc ] (6.10b)

- which assume their largest values [a (T)/,] at the sink (cf. Fig. 2) where

RBC, Eq. (6.3b) is of course satisfied. Also, differentiation of (6.8) yields

a [. ((+)+ /GTR){ erfc, -exp(- 2  )/( vxW, )}J

(6.11)

which can be used to provide 2 /3r 2 or 92o O via (6.5) or (6.7),

respectively.

.
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Fig. ic, which illustrates the variation for Coulomb attraction of
,"a

(dr/dr) with r for various sink radii shows that the terms of (6.2b) and

(6.2c) which are omitted in (6.5) and (6.7), respectively, are largest at the

sink. At the sink,

2
6,9(0,T) 1 + (a/cTR) [expx erfc x-1] (6.12a)

= (==/=RN)['4,L(0,T)/ar] = cS,L(T)/aRN

and

a4 ,OT)/3T = (a2/IaRN) 2[ )S,L(r) cSL(-em)] (6.12b)

where are the long-time asymptotic transients,

aS,L(T-) [ + (RNTR)x6,t, (6.13)

of the basic rates,

/ () 0(

"./a ) 2 rf 0 s  - 1 (6.15a)

and at short times,
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V (rTO) = (r+1); (f, /aT) . -(aRN/aTR)(d/dr)o exp(-r/4T)/A/fT (6.16)

With the aid of (6.10a) and (6.11),the key criteria (6.4) for validity of

the short-time solution for all r is,

.(aRNIaO.)I - (i)r+ + (a/lTR)Zerfc 1 - exp(-Q 2)/xs/ ]I

2,, 2
> (d r/dr)
(dd> 0(?Idr) I - ( +1) + (a./aTR) erfc a.1 (6.17a)•(dr/dr)o0(dr/dr)

which specifically excludes long times (To-) since then s)Q, 0 and both

sides vanish, with the aid of (6.15). This condition becomes more transparent

at the sink where (6.4) reduces, with the aid of (6.12a,b) to,

I
(aRN/a.)(d/dr)o EaS(T) -CS(T )] (d~fr/dr2 )0 EcLS(T) - ] (6.17b)

which also specifically excludes long times since as tends to aS(T-X-), the long-time

transient, faster than aS tends to a., the steady-state asymptote. Moreover the

validity of this "short time" solution extends into longer times both for the

transport controlled regime when (aRN/a®) >> 1, and for larger sinks when
2dr2)o

(dqr/dr) 0 becomes larger so that (drdr )o becomes smaller (cf. Fig. Ic).

This systematic trend is indeed confirmed by Figs. 3-5.

'U" The key criteria (6.6) for validity of the solution 0. of (6.7) is

satisfied for large R (cf. Fig. 1 and Table 1) at all times. As shown by the

Laplace Transform method is also the exact solution for all R at long times.
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6.1 Effective Transient

Although s L(T) yield the exact transients at the respective short (S)

and long (L) times, aS(T-O ) does not tend to the correct long-time transient

a () ( ) of (3.36),and aL(T 0) does not tend to the correct short-time transient

; '41) of (3.35) since, a and a in (6.9) are not equal, except at large sink

radii (cf. Figs. 3(a) - 5(a)) when (dr/dr) + (S/'). The appropriate

asymptotic limits aRN at zero tiand a. at infinite t are however reproduced by

both as and aL via the functional dependence (6.14), an asset worth

exploitation.

Expand the solution,

SA ('rT) = *6(r,T) exp - 0(T) + 0,(r,T) [I - exp -a(T)] , (6.18)

* -of the basic Eq. (6.1) in terms of the known functions * . The exact

short-time and long-time transients are ensured by insisting that the unknown

].. function a(T) is such that a(T -o 0) - 0 and a(T *) -. Also OA(r--,T)

(r+l),irrespective of a(T). The radiation boundary condition in (6.3b) is

satisfied provided a is a function only of r. This restriction precludes

(6.18) from tending to the exact solution *2 (r,T) at large r. The

. combination (6.18) is therefore expected to provide an improved transient in.

the vicinity of the sink where the transient rates a(T) = aRN *(O,T) are

- determined.

According to Figs. 3-5, aS departs most from the exact rate at

intermediate times T > 10, and aL departs most at short times T < 1.

Plausible combinations consistent with (6.18) are therefore

Q(_ (T) = aL(T) exp(-T 1 /2 ) + aS(T) [I exp(-T /2)] (6.19)
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and

a (+) (T) =aL() [1 -exp(-r /2] + aS(r) exp(- (6.20)

L(T)1 1(.0

In Table 2 are displayed the maximum percentage errors

A = 100 (a - E)/E (6.21) -

between the exact numerical rates QE and the analytical rates a =aS' L and

a (-) over all T. The above combinations for a(±) provide considerable improvement over

the individual aSL particularly in the transport limited regime a. - a TRfor

the extreme case of smaller S 1- 0.25. The combination (6.20) provides rates

within 7% lower than the exact rates over the full T-range. Other trial

combinations involving - instead of T in (6.20) and (6.19) were adopted

5 with similar but somewhat less accurate results. As Cols. 2 and 3 of Table 2

show, the greatest error occurs for those cases with the largest differences

between a. and a. in (6.9). Also aL involves less error in general than aS over the

full T-range.

Another possibility is retention of the basic functional forms,(6.8) for

. and (6.14) for a, but to allow XT to vary continuously from a5 , the

exact short-time value (6.9) to a,, the exact long-time value (6.9). The

forms (6.8) and (6.14) ensure automatic satisfaction of both boundary

conditions (radiation and asymptotic) for well behaved (X,a) and provide the

correct limits aRN and a= at zero and infinite times, respectively. Since

maximum error in the previous analytical expression for a's occurred for

those cases with the largest constants (X -x4 ) T-12 direct approximation

to x, under the constraints that x x as T - 0 and x +x as T - 0, is

therefore Indicated.

Figs. 6(a) - 6(c) illustrate the variation of ( -1/ 2  where
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X,-)(T) = exp(--n/2)X + [1 - exp(-T-n/2)] Xs ; n = 1, 2 (6.22)

between the exact short-time and long-time constant limits, as compared with

the numerical solution XE of (3.32) with a taken as the exact numerical rates

aE. Since X6 <X E <X9 , then E < <at, as illustrated already by Figs.

3-5. The more gradual variation of x is much closer to XE than is the more

abrupt variation of X (- ) even for those transport limited cases which

involved the largest difference (x 9 - xA).

Figs. 7(a) - 7(c) demonstrate the close agreement of the resulting rates

la[X')] with the exact numerical rate over the full range of T for the worst

cases (transport-limited and small sinks). Although the percentage errors

(Table 2) associated with aL and aS are here as large as -33% and 68%,

respectively, use of x(") in (6.14) involves errors less than 4%, as

indicated in Column 9 of Table 2. Inspection of Figs. 6 and 7 shows that a is

not too sensitive to variation in X e.g., a 10% variation in X in Fig. 6 results in

little variation of a. Also the fact that X, intersects XE twice (Xl < XE at

short times, X, > XE at intermediate times, X1 < XE at long times) results in

a corresponding but less of a variation in a.
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7. Summary and Conclusions

By operating at a level more basic than the macroscopic Debye-

Smoluchowskl Equation (OSE), the present treatment (§ 2), has exposed the

following assumptions intrinsic to DSE: (1) the densities n and associated

~ net current J in eq. (1) refer to pairs in the combined blocks C (of fully

dissociated states) and E (at highly excited states) as in eq. (2.11);

mjj (2) steady-state conditions for all pairs in each energy level of block E and

(3) steady-state for all pairs with R < R and all energies in blocks C and E

as in eq. (2.30). Also (4) DSE is mainly limited to cases of high non-

equilibrium.

In addition, the microscopic treatment has also provided the appropriate

modification (2.14) of DSE, which was applicable only to regions R >R

external to the sink, to description of the kinetics within (R < R ) the sink.
5

The microscopic treatment has also indicated that the actual rate (2.2U)

is determined by the self-consistent solution5 of the two simultaneous

equations (2.7) and (2.10) each of which couple transport and collisions.

The local rate c13 of reaction in (2.23) thus remains an integral and

internal part of the treatment by being determined from the self consistent

solutions.

This local rate c%3 (or cIRN) is externally assigned in DSE which therefore

. describes via (2.9) in (2.24a), the transport portion of the problem

consistent with this external choice for a Under the provisor that the

transport and reaction rates OITR and aRN are fully uncoupled, the

V OSE-prescription is valuable for investigation of that particular

time-dependent combination of aRN and aTR involved in the process as time

evolves.

In 3, a nonlinear transformation12 into tilda-space R(R) has
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facilitated the search for simple analytical time-dependent solutions of DSE

for general interactions V(R). Expressions have been obtained for the time

dependent probability density n(R,t), that the pair AB has separation R, and

for reaction rates a(t) which are exact (a) at all times and large R, (b) at

long times and all R and (c) at short times and all R. In particular, the -,

solutions for cases (a) and (b) are identical. The transformation technique

, is, in itself, quite general and can be applied to a variety of problems. For

example, Cukier19 by following previous reports 12 of this strategy, recently

used this tilda space representation to successfully study concentration

dependent fluorescent quenching.

By comparison in § 5.1 with exact numerical transient rates aE of § 5,

the rates cas(t) and aL(t), (3.32) with (3.31) and (3.30), are the exact DSE

transients at short and long times, and are, respectively, higher and lower

than aE at intermediate times. Over the full time-range, aL(t) is, in

general, closer to aE than is aS. Retention of only the first t'I 2 -term

in the t'l2-expansion of L(t) provides a L)(t) in (3.36), which is identical

with the asymptotic transient derived11 previously from a perturbation-type

method.1 0  The present expression (3.32) with (3.30), for aL(t) provides

considerable improvement over a which, up to now, has been (to the author's

knowledge) the only simple analytical rate available. Similar expansions

(3.35) for short times are also provided.

Not only is aS the exact transient at short times but as tends to the

correct steady state asymptote a at long times, albeit with an incorrect

transience; and aL, not only is the exact long time transient but tends (with

an incorrect transience) at short times to the correct rate aRN at t z 0. The

varations of both a L,S(t) with t are therefore bounded, unlike the previous -

rate all). This asset Is the essential reason that extensions of aLS
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proposed in 5 4 to cover intermediate times are not as effective over the full

time-range.

By exploitation of this asset,which is based on the unique functional

dependence of a(t) in (3.32) on x(t), a time-dependent combination of x,(t)

and X (t) for x(t) provides, in § 6.1, rates highly accurate (to within 4% for

the worst case) over several decades of time!

Acknowledgement

This research is supported by the U. S. Air Force Office of Scientific

S Research under Grant No. AFOSR-84-0233.

-49

* '~ % %q% .. a'. a~* .*~**~ .* %' X-



.-a-

- References

1. M. von Smoluchowski, Phys. Z 17, 557, 585 (1916); Z Phys. Chem. 92, 127

(1917).

2. P. Debye, Trans. Electrochem. Soc. 82, 265 (1942).

3. R. M. Noyes, Prog. React. Kinet. 1, 129 (1961).

4. M. R. Flannery, Phil. Trans. Roy. Soc. A 304, 447 (1982).

5. M. R. Flannery, Phys. Rev. A (preceding paper).

6. K. M. Hong and J. Noolandi, J. Chem. Phys. 68, 5163 (1978).

7. S. A. Rice, P. R. Butler, kt. J. Pilling and J. K. Baird, J. Chem. Phys. 70, 4001(L5?:

8. S. A. Rice and J. K. Baird, J. Chem. Phys. 69, 1989 (1978) and references

therein.

9. A. Fozumder, J. Chem. Phys. 61, 780 (1974) and references therein.

10. J. L. Magee and A. B. Tayler, J. Chem. Phys. 56, 3061 (1972).

11. K. M. Hong and J. Noolandi, J. Chem. Phys. 68, 5172 (1978).

12. M. R. Flannery, Phys. Rev. Letts. 47, 163 (1981); 48, 1573(E)

(1982).

13. M. R. Flannery, Phys. Rev. Letts. 49, 1681 (1982).

14. M. R. Flannery, Phys. Rev. A 25, 3403 (1982).

15. A. T. Reid, Arch. Biochem. Biophys. 43, 416 (1952).

16. M. R. Flannery, in Applied Collision Physics, edited by H. S. W. Massey,

B. Bederson and E. W. McDaniel (Academic, New York, 1982) vol. 3, chap. 5.

17. L. Collatz, The Numerical Treatment of Differential Equations (Third

Edition) (Springer-Verlag, Wien, 1960), Chap. V, 4.

- 18. IMSL Library (Edn. 9, 1982).

• 19. R. I. Cukier, J. Chem. Phys. 82, 5457 (1985).

50

• "-..

* , * ..- '. - , *. ** -. .. * . .*. %.*. -. %: ..*% .* .



2Table 1. Values of R and R, in natural units (Re a e /kT),%e

and of (dR/dR) for Coulombic Attraction.

I',.,

R R (dR/dR)

0 1 0

0.25 1.0187 0.3041

; 0.5 1.1565 0.7241

0.75 1.3580 0.8642

1.0 1.5820 0.9207

1.5 2.0552 0.9638

2.0 2.5415 0.9794

3.0 3.5277 0.9908

6.0 6.5139 0.9977

10 10.5083 0.9992

R R+0.5 1.0

:. ..5
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Table 2: Largest Percentage Errors A * 100(G- GE)/aE associated with various

levels of approximation.

at at

(a/aTR) S at aL . -

, 0.1 1 0.647 0.702 0.15 0.13 0.03 0.04 0.03 0.06

0.1 0.75 0.530 0.614 0.29 0.22 0.05 0.08 0.05 0.09

0.1 0.50 0.348 0.480 0.69 0.45 0.07 0.21 0.07 0.16

0.1 0.25 0.083 0.273 2.98 1.24 -0.24 0.93 -0.43 0.85

0.5 1 1.164 1.264 0.93 0.96 0.26 0.21 0.26 0.45

0.5 0.75 0.955 1.105 1.75 1.62 0.42 0.41 0.39 0.72

0.5 0.50 0.626 0.865 4.33 3.24 0.68 1.09 0.61 1.25

0. 0.25 0.149 0.491 20.63 8.92 1.33 5.67 -2.64 -5.43

0.9 1 5.820 6.322 2.25 3.63 1.23 0.17 1.20 1.77

0.9 0.75 4.773 5.523 4.32 6.14 2.17 0.33 2.05 3.16

0.9 0.50 3.130 4.323 11.24 12.32 4.62 0.87 3.88 6.69

0.9 0.25 0.746 2.454 68.29 32.70 15.06 6.43 3.65 11.24

-SL (): Eq. (3.32) with (3.31) or (3.30);cx( ]: Eq. (3.32) with (6.22)

for Xl2.

": (-) .1/2 12
a T) - exp(-T + - exp(-T ) •I;

t a T-1/2
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Figure Captions

Fig. 1. Variation of (dW/dR) with R(n.u.) for (a) the attractive interactions

V(R) -- (R/R)n, 1, 2, 4 and 6. R is in units of Re , the natural

unit (n.u.). The variation for pure Coulomb attraction (n = 1,

Re z e2/kT) is amplified in (b) where X) denote the values selected

as sink radii S.(c) Variation of scaled derivative (d?/dr) with

L scaled distance r for the selected sink radii (S 1 1, 0.75, 0.5 and

0.25 n.u.).
f.-

Fig. 2. Exact numerical solutions for the fractional departure p = n/N exp(-V/kT)
0

of the probability density n from Boltzmann equilibrium as

a function of reduced distance r = (R/S)-1 at scaled sequential
/2

times T = (Dt/S) = 0.05, 0.5, 1, 2, 5, 10, 20, 30, 100, 200, 500

up to infinity (-). Assigned parameters: Q-/aTR = 0.5, S = 0.5 (n.u.).

Fig. 3. Comparison with exact numerical rates of various short-time (a)-(d)

and of various long-time (e)-(h) analytical rates over several decades

of scaled time T = Dt/S2 , for various sink radii S(n.u.). Assigned

parameter: a./aTR = 0.1.

Fig. 4. As in Fig. 3,but with %a/aTR = 0.5.

Fig. 5. As in Fig. 3,but with ae/UTR = 0.9.

Fig. 6. Variation of x(T) T-1/2 with scaled time T = (Dt/S 2) for extreme case

of small sink radius S = 0.25 n.u. and for a /aTR taken as (a) 0.1, (b) 0.5

and (c) 0.9. Curve E is obtained from exact solution of eq. (3.22)

for exact numerical rate,and curves 1 and 2 are obtained from eq. (6.22)

of text with n = I and 2, respectively. Long-time and short-time exact

limits XZ,.6(T) T
"1/2 are illustrated.
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L2

Fig. 7. Comparison over scaled time T - (Dt/S2) between exact numerical rate

and various analytical rates: a[Xl{')] obtained from eq. (6.22) ,

for X, in eq. (3.22) for a. The exact long-time and short-time

transients are aL and aS, respectively. Assigned Parameters: (aTR)

- (a) 0.1, (b) 0.5, (c) 0.9; and S = 0.25 n.u. an extreme case for

validity of basic assumptions.

"-
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Ion-Ion Recomnbination at High Ion Density

M. R. Flannery

School of Physics

Georgia Institute of Technology

Atlanta, Georgia 30332, U.S.A.

Abstract. By appeal to a Thomson-type treatment of recombination, it is shown

that the rate for recomnbination of ions generated with uniform frequency

within a reaction volume is a factor of (9/4) times greater than the rate for

recomubination of ions which approach each other from infinite separation. A

valuable relationship connecting the two problems is uncovered. The analysis

is pertinent to recombination involving dilute and high degrees of ionization.
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For (X+-Y") ion-ion recombination in an ambient gas Z (neutral or ion), -,U

the following important distinctions between the cases of low and high ion

densities N* are evident:

(A) For dilute ionization with ion densities N± t 108 n-3 ,

recombination can be based on consideration of the flow of positive

ions X+ (say) towards a central stationary negative ion Y. Steady-

state conditions are then maintained by a source of ionization at

infinity. For high ionization with N* Z 2 x 1014 (T/300)3/2 cm"3,
when the Debye-Huckel shielding distance Rs  Re, the natural unt

(e2/kT) of length characteristic of ion-ion recombination in a low

density gas at temperature T, the positive ions X+ already exist in

a pre-assigned configuration with respect to Y, and the steady-

state source is then distributed uniformly throughout the volume

(Bates 1981).

(B) Recombination results not only from ion-neutral gas collisions but

also from ion-ion (X+-X+), (Y'-Y'), (X+-Y") collisions which tend to

increase the rate (Bates 1982).

(C) The interaction between the ions may no longer be considered as pure

Coulomb at low gas densities N but will involve some appropriate

0 measure of screening as determined by the self-consistent Poisson-

Boltzmann treatment (Flannery 1981, 1982a,b).

(0) There are no longer isolated sinks, as for low N*, but cooperative

and competitive effects can arise between the closely spaced sinks

distributed throughout the region..

Bates (1981) has reasoned that screening (C) does not affect the

recombination at high gas densities N, on the basis that ions Aich are

* initial nearest neighbours remain nearest neighbours, and drift towards one

2
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another until recombination occurs, with the result that the usual Langevin-

Harper rate at high N is not affected by increase of ion-densities Nt.

Flannery (1981, 1982a) has shown that the recombination rate a is, in general,

determined as a function of N and N* by the self-consistent solution of the

Boltzmann equation for the two particle distribution function and of Poisson's

equation for the interaction between the ions. Calculation (Flannery 1981)

Indicates that increase in ion density up to 1014 cm"3 causes some reduction
LA.

to a only at low and intermediate N. A molecular dynamics simulation (Morgan

et al 1982) which incorporates this self-consistent idea (Flannery 1981)

illustrates that the reduction can become quite significant when higher

densities Nt k 1015 at gas pressures < 1 atm are reached. Bates (1982)

demonstrated that the effect of ion-ion collisions in (B) then tends to oppose

the decrease resulting from (C) particularly at lower temperatures T and

Nt Z 1015 cm°3. The isolated effects of (A) and (D) have not yet been

addressed.

The present goal is to investigate the effect of distinction (A) above,

in isolation from (C) and (0). Since a detailed treatment based on

microscopic principles (Flannery 1982a) would couple (A)-(D), and would

- therefore tend to obscure the key issue, it is worthwhile to illustrate the

general trend by appeal to a Thomson-style treatment (constant speed, full

absorption upon suitable collision). In so doing, a valuable connection

between two distinct problems becomes apparent.

In the following analysis, diffusional drift which influences the

approach of the ions at intermediate gas densities N is ignored so that the

present treatment is appropriate to iow N 1 1017 - 1018 cm"3. At higher

N Z 1020 -10 21 cm"3, the distinction A loses its significance since the

radius RT of the reaction sphere, within which recombination occurs, becomes

3
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very small in comparison with both the Debye-Hickel radius Rs and the natural

unit Re, so that ions are generated well outside the reaction volume. _

Let the positive ions X+ be born isotropically with frequency Fr at a

point r from the central negative ion Y-. The flux (number of ions per sec)

which escapes in all directions aE through a convex surface of area S

enclosing a volume V (Figure la) is

FE(r) = (Fr/4w) f R-2exp(-R/x)(0Ehn)dS = (Fr/4,) f exp(-R/x)do E  (1)
S

where R is the length from the internal point source r to the exit point on S

in the direction aE' where A is the mean free path of the ion X+ in the gas,%.

2
and where doE is the solid angle (a.e)dS/R subtended at r by elemental area

dS with outward normal n The probability for escape through S of ions born

at r is therefore 2

PE(r) FE(r)/Fr - (1/4w) f exp(-R/x)daE (2)

and provided the production frequency Fr is the same constant at all points r

within V, the averaged probability for escape is

E P.> f P (r)d.c (1/4irV) f dY f exp(-R/X)daE (3)
V v

Subdivide V into tubes with axes directed along a E' as in Figure 1(b),

such that the elemental volume at r is,
S.....

dV = (n l' E)dSdR (4)

4
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( where R is the distance along aE of r from elemental area dS with normaln

pointing inward. On integration over R between zero and the maximum chord

length R("E"ni) consistent with the specified directions aE and nt , the

averaged escape-probability is

<P > (,,V) f dS f dQE(Q .ni)[1-exp(-R /X)J (5)
S a

where the region of integration is such that aE ;0 0.

The averaged probability for absorption within V is therefore

<>- 1 < (6)A E

so that, the rate aV (an 3s) of volume recombination (absorption) within V

is,

V" <PA> Sv (7)

where v is speed of the Ions across surface S. This rate holds for ions

generated with constant frequency Fr at all points within any volume V

enclosed by any convex surface of area S. Under steady-state conditions, the

source frequency is

FrE GV<P> (8)

-where <p> is the averaged density (l/V)f p(r)dr within volume V in terms of
V

the density distribution p(r) of ions within V.

For a sphere of radius RT, in particular, Rm is Z(aE-nt)RT, so that the i
absorption probability obtained via (6) is

i.'1

L 5o'
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<PA 1 -(3.x4RT)W(RT/X) (9)

where

W(X) I 1 - (1/2X2)(1 - (1 + 2X)exp(-2X)] (10)

4 3 2 ~2 1 3 .),X.
(P1)1 -tx +'~ 6

+ 1 - (1/2X2) , X +

is the well-known Thomson probability (Thomson 1924, Loeb 1955), the relevance

of which to the present problem will become apparent below. The recombination

rate (8) for ions distributed with uniform frequency within the reaction

sphere is therefore,

2QLv 4RT v1- (3x/4RT)W(RT/X)] (11)

which tends at low gas densities (where x >> RT) to

!-.' 9 4 3
v= ( A)(3 RT)(v/x) (12)

which is a factor of (9/4) higher than the corresponding Thomson rate for

*recombination of ions approaching from infinite separation (Thomson 1924,

;" Loeb,1955), rather than from the pre-assigned configuration.

For dilute ionization, the number of ions per sec which travel (still in

the absence of diffusional drift) from infinity and enter the volume V through

. S from all directions io is

dNEN 1"-
- - (p.v/4w) fdSf( -n)d' o-  p vS (13)

S a
0

6
5% S.

,:- .', " ,'' ''" 'J',' '- 'a'","~~~~~~~S S" '.-,- '. ,%, * • 3 ,.- - *. . - .. , - ." € r - . . -. -* • . - - - - -, " * .'%, ' . , . . o ' . .- ', , . , , .,* ..- w -,,=. "
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where n is the outward-pointing normal to surface area dS. The density within

Visr) - p(rQ)d (14)

where the angular density at the internal point r in direction Q is
Oft

p(r,Q) -- (p4,v/4w)fdSf K(r,;r<, o)(0o.n)dn (15)

V in terms of K(r,g;1o,a ) which is the angular density of ions at r travelling

in direction a which originate from a source radiating with a unit (flux) rate

at ro in direction ao at surface S. This propagator satisfies the principle

of microreversibility,

Kr,;ro,) - K(ro,-Qo;r,-Q) (16)

which is such that the angular density at r in direction a which originates

from a unit source radiating at !r in direction o , is equivalent to the

angular density generated at !o in direction -00 by a unit source radiating at

r in direction -Q. In terms of this propagator, the probability of escape of

ions born at i is, by definition,

E) - (v/4w)fdSf K( o,a ;r,n)(a .n)do (17)

the ratio (2) of the frequency at which ions emerge (with pon 0 0) through

surface S in directions a to the frequency of their internal production at

r. Upon use of (16) in (15), and upon reversal of signs of o and a in

7
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the resulting expression for (14), the internal density (14) is simply

p(r) P(r). . (18)

The average escape probability is then

<P >
E [f p(r)dr]/p. = <p>p. 19)

for any surface geometry.

This expression (19) therefore provides the unique link common to the two

distinct problems addressed here i.e., between the escape probability for ions

generated isotropically at constant frequency within a confined volume V and

: the averaged density of ions injected into V from an external bath extending

to infinity.

Since the rate of ion entry into V from the bath is given by (13), and

since the number of ions which exit per second from V back into the bath is

dNEX
- (pv/4r)fdSf exp(-Rm/ X)(qo-n)dno (20)

the number of ions which are absorbed per second within V is

dNA d
=. E (NEN NEX) = (p~v/4w)fdSf (%on)E1-exp(-Rm/))do Cp 1  (21)

where ap. is the frequency of generation of ions at infinity.

The treatment assumes that absorption (recombination) occurs following

collision at constant speed v so that the absorption frequency is also
-J

8



dNA

PA
d.-u (Nov) f p(r)dV (-)<p>V (22)
MV

where o is the cross section for collisions with the third bodies Z of density

N. With the equivalence of (21) and (22) in (19), the escape probability (19)

is then

SP> <p>/p=- (X/V) f dS f do (a on)[1-exp(-R /X)J (23)
S o

which is precisely the relation (6) previously derived ab-initio without the

connection (19). The fraction. of ions that are absorbed within V is

f = (dNA/dNEN) = (4V/Sx)PE> (24)

3 which, for a sphere of radius RT, reduces to

f = ( 4 RT/ 3 X)<PE> a W(RT/X) (25)

U

" which is, as expected, simply the Thomson probability (10) for collision,

. within the trapping sphere, of ions which enter the sphere from an external

bath.

* The connection of <PE> to the rates of both problems is demonstrated by

comparison of the rate

-" V ) >v (1) fSv (26)

" obtained from (21) and (22) for recombination of ions entering S from infinity

with the rate (7),

,,•94 , "



Lv * [1-<PE>)Sv = E1-()fSv (27)

for recombination of ions generated isotropically within V at a uniform

frequency. The appearance of f (S the Thomson probability W for a sphere) in

both problems is now evident.

Moreover, the averaged density <p> within the reaction volume follows

from (19) directly or from (26) where the frequency ip. of ion production at

infinity is set equal to the frequency (v/X)<p>V of absorption within V to

give

<P> %P.(X/vV) (28)

irrespective of the mode of transport from inifinity to S. When a0 is

1 -
controlled by reaction alone (i.e. i is T fSv), then, for a spherical volume

<p> [(3/4x)W(x)lp. (29)

which tends at low gas densities N (where X = RT/A << 1) to P [1- 3RT/A +....

The linear dependance on N(-1/X) of If in (28) therefore arises from the

constant term p., in this expansion of <p> so that the recombination rate at

. low N follows directly by taking either <p> = in (28) or <P > = 1 in (26)E
to give

>> RT 3
-., V(v/) = (4/3 )wRT(v/X) (30)

thereby providing a one-line derivation (from (28)) of the Thomson N-linear

10
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rate at low N. Nonlinear variation of a with N arises from the departure

of <P>from unity.

In the presence of diffusional drift, the above Thomson rates (26) and

(27) can be regarded as reaction rates (Flannery 1982a,b). As the gas density

N increases then, for a sphere, the ratio (av/%) increases from 2.25 to 4

when X < RT. The factor 4 is simply the relative measure of flux for both

problems. This enhancement will favor an earlier onset with N of diffusional-

drift which will eventually become the rate limiting step.

In summary, the partial recombination rate arising from (X+-Z) collisions

for the (dilute-ionization) case of (X+-Y " approach from infinite separation

r at speed v12 is the Thomson rate,

2 V / RT 4 3 -3
R vT W(R /) ( (v 1 2 A) o =3/2 , (31)I TT

(which incidentally identifies Re as the natural unit (e2/kT) for volume

- recombination). This is to be compared with the corresponding rate

2
V= 4wRT v12[1 " (3x/4RT)W(RT/X)] (32)

;;12 A>>RT
T___ 94 R3W3 (v9

> e ( 1Re3)o-(v 12/X) = 4'T

for the present (dense ionization) case where a steady-state distribution of

ions X+ is maintained by constant-frequency isotopic sources (8) distributed

uniformly within the reactive sphere centered at Y. The full rate is the sum

of the partial rates based on X+-Z and Y-Z collisions. So as to account for

L the inefficiency of energy transfer between dissimilar masses, the Thomson-

rate (31) can be multiplied by a mass-dependent efficiency factor designed to

p -2
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reproduce the highly accurate rates (cf Flannery 1982b) obtained from solution

of the conventional collisional input-output Master Equation at low gas

densities. This overall normalization should not affect the basic connection

between (31) and (32), or the basic prediction that the effect of the

*distinction (A) between the cases of dilute and high degrees of ionization is

to increase the recombination rate (by a factor 9/4).

The effect of ion-ion collisions (B) can now be incorporated directly

within (32) by regarding (Bates 1982) third bodies Z as ions X+(or Y-).

* Thomson- recombination between ions of separation R 4 RT = (2/3)e2/kT occurs

upon any collision which is assumed to transfer energy AE > (3/2)kT. For ion-

ion Coulomb scattering between equal masses at relative energy (3/2)kT, this

energy is transferred provided the (CM) scattering angle is greater than

(w/2). The cross section for such collisions, after a straightforward

exercise, is

a (/g)wR e2  (33)

In a gas of electrons of mass m and density N-, (33) in (31) yields

(e) = 2 3 1/2R5
.T (4w /270 )(8kT/wm) R N- (34)

3 -

3.5 10"T-
4 .5 N" (cm s

" )

for the rate of electron-ion collisional recombination which, remarkably, is

92% of the identical collisional rates (Mansbach and Keck 1967, Stevefelt et

al. 1975) based on the detailed Master Equation. Generalization of (34) to

cover ion-ion recombination in an ion gas may be deduced as in Bates (982).

Incorporation of ion-ion collisions within (32) will also increase the

12
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recomubination rate, particularly for ion-densities N* > 1015 cm-3 and lower

temperatures (Bates 1982).

In conclusion, the rate for recombination of ions distributed uniformly

within a reaction volume V has been shown to be a factor of (9/4) greater than

the rate for ions which approach the reaction sphere from infinity. These two

situations are respectively appropriate to the present examination of the

effect of distinctions A and B (in isolation from C and D) on the cases of

high and dilute ionization, respectively. In so doing, a valuable

relationship (19) which connects the two distinct problems of approach from

infinity and of escape from a confined volume of generation has been

uncovered.

p.2.

13



* Acknowledgment.

This research is supported by the U. S. Air Force Office of Scientific-

Research under Grant No. AFOSR-84-02333.

References

Bates D R 1981 J. Phys. B:At. Mol. Phys. 14 L115-9

Bates D R 1982 J. Phys. B:At. Mol. Phys. 15 L755-8

Flannery M R 1981 Chem. Phys. Lett. 80 531-6

Flannery M R 1982a Phil. Trans. Roy. Soc. A 304 447-97

*Flannery M R 1982b Applied Atomic Collision Physics. Vol. 3:Gas Laser ed

H S W Massey, B Bederson and E W McDaniel (New York:Academic) Chap 5

* Loeb L B 1955 Basic Processes of Gaseous Electronics (Berkeley:University of

California Press) Chap. 6

* Mansbach P and Keck J 1969 J. Chem. Phys. 181 275-89

Morgan W L, Bardsley J N, Lin J and Whitten 8 L 1982 Phys. Rev.,, A 26 1696-

1703

* Stevefelt J, Boulmer J and Delpech J-F 1975 Phys. Rev. A 12 1246

* Thomson, J J 1924 Phil. Nag. 47 337-378.

-4

14,



n

U S E

Figre : () onsbars a pintr wthi vlum V nclse

byiurfe S ea scape a in within soivnled 2 hough eleentl rea

K with outward normal n. (b) Elemental volume dV -(nE-2i)dSdR of

tubes with axis along nE at angle to inward normal ni of surface

element dS. Rm is maximum chord length for specified directions
flj andQE



FIME

11-85

DTIC


