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Abstract

During this first year of the new grant, research has been initiated and
conducted on the development and implementation of a new basic microscopic
theory of association/dissociation processes in dense gases. Expressions for
the time-dependent rates RA’D(t) for the association/dissociation of atomic or
molecular species A and B in a gas M are formulated in terms of the net
probability PiA’D for association/dissociation of bound energy level i of the
pair (A-B).

A new Variational Principlie for these rates is proposed and is applied to
ion-ion recombination, as a benchmark, with very successful results.

The diffusional theory is examined and it is shown that highly accurate
results can be obtained for general mass systems provided the new basic
expression introduced here for RA,D(t) is adopted.

The microscopic basis of the macroscopic Debye-Smoluchowski Equation
(DSE) is examined and analytical expressions for rates are derived for general
interactons between A and B.

A valuable relationship between the rates of recombination appropriate to

the cases of ions generated with uniform frequency within a reaction volume

and ions which approach each other from infinite separation is derived.
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l. Research Initiated and Completed

1.1 List of Topics

During the first year (7/1/84 - 6/30/85) of the Grant, theoretical
research on the following topics was completed and written up for publication
in scientific journals:

(A) General Microscopic Theory of Association/Dissociation Non-Equilibrium

Processes in Dense Gases.

(B) Diffusional Theory of Association/Dissociation Non-Equilibrium Processes
for General Systems.

(C) Microscopic Basis and Analytical and Numerical Solutions of the
Debye-Smoluchowski Equation.

(D) Ion-Ion Recombination at High Ion Density.

1.2 Summary of Topics

A summary of each of the above topics (A) - (D) now follows. Full

details of each topic are presented in Appendices (A) - (D) of this report.

Topic (A): Sets of transport-collisional Master Equations for the
two-particle non-equilibrium distribution function of subsystems (A-B) in a
thermal bath of dense gas M are derived in various physical representations,
corresponding to the full range of gas density. Expressions for

time-dependent rates RA’D(t) for association/dissociation are formulated in

A,D

terms of net probabilities Pi for association/dissociation of bound energy

level i of pair (A-B), so that association and dissociation are treated in a

unified manner and that evolution in time t towards equilibrium is naturally

A’D

achieved. The expressions for R are also independent of whether or not a

quasi-steady-state (QSS) distribution of highly excited levels is assumed and

A,D are used. A

are particularly valuable when approximate probabilities Pi
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new Variational Principle for the rates RA’D(t) is proposed and is applied to
ion-ion recombination, as a benchmark, with very successful results. Contact
of this Variational Principle (in general for chemical reactions in a gas) is
established with Tellegen's Theorem for electrical networks and with Onsager's

Principle of Least Dissipation for heat conduction.

Topic (B): Upon re-examination of the foundations of the diffusional
treatment of association/dissociation processes involving a non-equilibrium
distribution of (A-B) pairs in a gas M, it is shown that highly accurate

results may be obtained for general mass systems provided a new and more basic

expression for the time-dependent association/dissociation rates RA’D(t) is

introduced. These rates RA’D

A,D
P

(t) are derived here in terms of the probability
(Ei) that (A-B) pairs with internal energy E; has associative or
dissociative character and are obtained without appeal to the
quasi-steady-state (QSS) condition for highly excited levels Ei' Then
association and dissociation can be treated in a unified way and evolution
towards equilibrium with the gas is naturally achieved. Comparison is made
between the exact probabilities P].A’D obtained from the QSS-condition to the
Exact input-output Master Equation and those obtained from the derived

gAsD

diffusional equational. (t) reduces to the constant-in-energy current

J(t) through the excited levels oniy for exact QSS of the Master Equation.

When approximate probabilities are adopted, identification of RA’D(t) with

A’D(t) is appropriate

J(t) is not justified. The basic expression here for R
for both exact and approximate (diffusional) probabilities and yields
excellent results for ion-ion recombination in a dilute gas over the full

range of masses of the species involved and over various classes of

ion-neutral interaction (polarization, hard-sphere and charge-transfer).
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Topic (C): By explicitly including collisions and by operating at a level
y .
more basic than the macroscopic Debye-Smoluchowski Equation (DSE), various

assumptions within the DSE-treatment of transport-influenced reactions between

A and B in a dense medium M become naturally exposed. The appropriate
modification of DSE to description of the kinetics within the region of the
sink is provided.

Analytical expressions for probability densities and rates are derived
which are exact solutions of DSE (a) at all times t and large internal
separations R of the pair (A-B), (b) at long times t and all R and (c) at
short times t and all R. Not only are the transient rates as(t) and aL(t)
exact at short and long times, respectively, but they are naturally bounded
for all times with as(t+~) and aL(t+0) tending to the correct limit, albeit
with an incorrect transience. Comparison with exact numerical solutions of
OSE illustrates the effectiveness of a proposed solution over the full range

of time.

Topic (D): By appeal to a Thomson-type treatment of recombination, it is
shown that the rate for recombination of ions generated with uniform
frrequency within a reaction volume is a factor of (9/4) times greater than
the rate for recombination of ions which approach each other from infinite
separation. A valuable relationship connecting the two problems is uncovered.
The analysis is pertinent to recombination involving dilute and high degrees

of ionization.
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1.3 Papers Presented at Scientific Meetings

1. “Assocfation/Dissociation in Dense Gases and Adsorption/Desorption on

v
o

Surfaces" by M. R. Flannery.

“Analytical and Mumerical Solutions of the Time Dependent Debye-

vy S
N
.

Smoluchowski Equation” by M. R. Flannery and E. J. Mansky.

T 3. "Electron-Excited Hydrogen and Helium Collisions" by E. J. Mansky and

M. R. Flannery.
4, “Symmetric Charge-Transfer Cross Sections in Rare Gas (Rg+-R9)
Systems" by E. J. Mansky and M. R. Flannery.
A11 of the above papers were presented at the 37th Annual Gaseous
(~ Electronics Conference, October 9-12, 1984, held at the University of Colorado
in Boulder,

The abstracts of the above papers now follow.

1.4 Abstracts of Papers Presented

a LD-13 Association/Dissociation in Dense Gases and

L Adsorption/Desorption on Surfaces,® M. R. FLANNERY,
Georgia Institute of Technology--A new comprehensive
theoryl is described for the time evolution towards
equilibrium of association and dissociation in a dense
gas. Expressions are formulated and are illustrated

—_ for the net probabilities of association to stable
vibrational levels and dissociation to the continuum
from an arbitrary bound vibrational level via collision
with the thermal gas bath. A general variational prin-

. ciple emerges: The rate which corresponds to the over-

- all direction of the précess always adjusts itself to a
minimum and the time evolution towards equilibrium is

" hindered. Analogy is established with Kirchhoff's

Laws and Tellegen's Theorem for electrical networks, and

with the Principle of Least Dissipation basic to thermo-

- dynamics, heat conduction, and fluid mechanics. The

z‘ theory can also be modified to provide the first basic

: microscopic account of Associative Desorption of atoms

from and Dissoclative Chemisorption of molecules to
surfaces.
*Research supported by AFOSR under Grant AFOSR-84-0023.
IM. R. Flannery, Phys. Rev. A, (1985).




LD-2  Analytical and Numerical Solutions of the Time

Dependent Debye-Smoluchowski Equation, M. R. FLANNERY a—
and E. J. MANSKY, Georgia Institute of Technology--The .
macroscopic Debye-Smoluchowski Equation (DSE) with a ’
radiation boundary condition has been derivedl from a .
basic microscopic theory of association/dissociation f1
processes, A+B + AB, between A and B in a thermal gas S
bath. There are at present no exact analytical solu-

tions of DSE for general interactions V(R) between A o
and B for all separations R and time t. We formulate

here exact analytical solutions for the conditional

probability density and reaction rates (a) at long and

short times for all R and (b) at all times for large R

and compare the results with direct numerical solutions.

We also propose highly accurate working expressions for

the rates of transport influenced reactions at all

times.

*
Research supported by AFOSR under Grant AFOSR-84-0233.
IM. R. Flannery, Phys. Rev. A (1Y85).

LC-1 Electron-Excited Hydrogen and Helium Collisions,*
E. J. MANSKY and M. R. FLANNERY, Georgia Institute of
Technology--The Multichannel Eikonal Treatment (MET) is
modified so as to facilitate highly accurate description
of various asymptotic long range dipole couplings im-
portant in electron excited atom collisions. MET is
applied to excitation in e-H(2s), e-H(2p), e-He(21l:»3s)
and e-He(2153P) collisions at intermediate energies. ~
Integral and differential cross sections together with

various coherence and alignment parameters for the radia-

tive decay of the n=2 and 3 collisionally-excited P and

D states of H and He are determined from MET with 10

channels assovciated with n = 1, 2, and 3 sublevels.

Comparison is made with various recent measurements.

. *
e Research supported by AFOSR under Grant AFOSR-84-0233,
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LD-12 Symmetric Charge-Transfer Cross Sections in Rare
Gas (Rgt-Rg) Systems,™ E. J. MANSKY and M. R. FLANNERY,

Georgia Institute of Technology--Symmetric resonance
charge-transfer, elastic, diffusion and viscosity cross
sections for the ion-atom collisions: Rgt + Rg, Rg = He,
Ne, Ar, Kr, Xe are determined via a full quantal phase-
shift analysis using the pseudopotential of Sinha, et al.
[1] for Hez'; and the spin-orbit ab-initio potentials of
Cohen and Schneider [2] for Nept, Wadt [3] for Ara*, Krz,
and Xez ; and Michels, et al. [4] for Nept, Arpt, Krpt,
and Xep' at lab energies s ranging from 0.001 eV to 1 keV.
The long-range ion-atom polarizatiom attraction is ex-
plicitly acknowledged in the full interaction and in a
JWKB correction to the numerical asymptotic phase shift.
Differential cross sections are also obtained. Comparison
is made with existing experimental and theoretical data.
earch supported by AFOSR under Grant AFOSR-84-0233.
[1]) S. Sinha, S.L. Lin, and J.N. Bardsley, J. Phys. B
12 (1979) 1613.
(2] J.S. Cohen and B. Schneider, J. Chem. Phys. 61
(1974) 3230.
(3] W.R. Wadt, J. Chem. Phys. 68 (1978) 402.
{4] B.H. Michels, R.H. Hobbs, and L.A. Wright, J. Chen.
Phys. 69 (1978) 5151.
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1.5 List of Publications (in press and in preparation)

"General Microscopic Theory of Association/Dissociation Non-Equilibrium
Processes in Dense Gases," M. R. Flannery (Phys. Rev. A).

“Diffusional Theory of Association/Dissociation Non-Equilibrium Processes
for General Systems," M. R. Flannery (Phys. Rev. A).

“Microscopic Basis and Analytical and Numerical Solutions of the
Debye-Smoluchowski Equation," M. R. Flannery and E. J. Mansky (Phys. Rev.
A).

“lon-Ion Recombination at High Ion Density," M. R. Flannery, J. Phys. B:
Atom. Molec. Phys.

"Modified Multichannel Eikonal! Treatment of Electron Excited Atom (H,He)
Collisions," M. R. Flannery and E. J. Mansky (in preparation).
"Symmetrical Resonance Charge-Transfer in the Rare-Gas Sequence (Ne, Ar,
Kr, Xe)," M. R. Flannery and E. J. Mansky (in preparation).

“Kinetic Theory Foundation of Ion-Ion Recombination in a Dense Plasma,"
M. R. Flannery and E. J. Mansky (in preparation).

"A Variational Principle in Dynamics of Relaxation,"” M. R. Flannery (in
preparation).

“Classical Theory of Recombination," M. R. Flannery (in preparation).
“Selected Bibliography on Atomic Collisions: Data Collections,
Bibliographies, Review Articles, Books, and Papers of Particular Tutorial
Value," M. R. Flannery, E. W. Thomas and S. T. Manson, Atomic Data and
Nuclear Data Tables 33 (1985) 1-14s.

Papers #1-4 above are included as Appendices A-D of this report.

Reprints of paper #10 will be sent to AFOSR under separate package. Papers

#5-10 will be also sent to AFOSR when completed.
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1.6 Ph.D. Thesis Supervised

Mr. E. J. Mansky has been a Ph.D. graduate student supervised by the
Principal Investigator (M. R. Flannery) and supported by the present and
previous AFOSR grants (AFOSR-84-0233 and AFOSR-80-0055). He has now completed
his thesis and is expected to graduate with a Ph.D. on September 1985. Copies

of his thesis are being prepared and will be submitted in due course to the

AFQSR as a separate bound report.




Appendices
In the following Appendices A-D are contained preprints of the following

articles submitted for publication to scientific journals.

f
(A) General Microscopic Theory of Association/Dissociation Non-Equilibrium

Processes in Dense Gases.

(B) Diffusional Theory of Association/Dissociation Non-Equilibrium Processes

for General Systems.

(C) Microscopic Basis and Analytical and Numerical Solutions of the

Debye-Smoluchowski Equation.

(D) Ion-lon Recombination at High Ion Density.
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General Microscopic Theory of Association/Dissociation
Non-Equilibrium Processes in Dense Gases

M. R. Flannery
School of Physics,
Georgia Institute of Technology,
Atlanta, Georgia 30332

Abstract. Sets of transport-collisional Master Equations for the two-particle
non-equilibrium distribution function of subsystems (A-B) in a thermal bath of
dense gas M are derived in various physical representations, corresponding to
the full range of gas density. Expressions for time-dependent rates RA,D (t)
for association/dissociation are formulated in terms of net probabilities

P?’D for association/dissociation of bound energy level i of pair (A-B), so
that association and dissociation are treated in a unified manner and that
evolution in time t towards equilibrium is naturally achieved. The

expressions for RAsD are also independent of whether or not a quasi-steady-

state (QSS) distribution of highly excited levels is assumed and are

A,D
i
Variational Principle for the rates RA’D(t) is proposed and is applied to ion-

particularly valuable when approximate probabilities P are used. A new

fon recombination, as a benchmark, with very successful results. Contact of
this Variational Principle (in general for chemical reactions in a gas) is
established with Tellegen's Theorem for electrical networks and with Onsager's

Principle of Least Dissipation for heat conduction.

PACS: 34.10X, 34.50.1F., 82.20.Mj
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I. Introduction

When a distribution of ion-ion (A+ + B”) pairs, or of ion-atom (A+ + B)
- pairs or of any (ion or neutral) subsystem of dissociated species denoted in
general by (A + B) is introduced in a dense gas of thermal species M, a highly
ﬂs non-equilibrium situation exists. In this paper, a set of Master Equations is
i formulated for the relaxation from some initial non-equilibrium distribution
v of dissociated subsystems A + B (or of molecules AB) towards equilibrium with

a dense thermal gas M via the pertinent energy-change processes,

g- A+B+M * AB + M (1l.1a)
i A*+B +M zABT + M (1.1b)
b At + BT +MZAB+M (1.1c)
.:..
-

i.e., by the collisional association (recombination) of the dissociated
g! species, the forward direction of (1.1), or by the reverse of (1.1), the
collisional dissociation of molecules AB with an initial distribution
o characterized by temperature TAB which is higher than the temperature TM of
'S the dense gas M. A key component of this theory is inclusion of the essential
1

coupling1 between the macroscopic effects of transport and reaction between A

Qj and B in M via a comprehensive microscopic treatment of the process.

. Evolution of the two particle correlation function for subsystem (A-8) is =
E;L provided in terms of the internal energy E, internal angular momentum L and ?
. internal separation R of the subsystem by explicitly including streaming (dif- §
% fusion and drift) and discontinuous collisions with the heat bath M.

gi The present theory is a natural development of that previously proposed1

{. 1
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for the rate of ion-ion recombination (l.1lc) as a function of density N of the
gas M. That theory1 then emphasized the steady-state rate of recombination
which can be expressed in terms of reaction and transport rates. Also the
treatment intrinsically assumed that the relative speed v was purely radial
and that the ratio of product concentrations of fully dissociated species, of
concentration NA and NB’ to their corresponding product ﬁ;ﬁg under thermo-

dynamic equilibrium

n N 4"
NANB/NANB >> NAB/NAB (1.2)

is much larger than the corresponding ratio NAB/NAB for fully associated
species. The overall direction of (1.1) is then forward i.e., the overall
rate of association is much greater than the rate of dissociation which is
then neglected, by comparison. The aim of the present paper is to remove
those restrictions and thereby provide a comprehensive account of the time
evolution towards equilibrium of a highly non-equilibrium situation via the
dynamic balance as in (1.1) between association and dissociation processes,
which may then be treated in a unified way.

Because it remains a very basic problem in atomic and molecular physics
both in its detailed theoretical elucidation and in its central significance
to many physical situations of great current interest, solution of the general
problem represented by (1.1) as a function of gas density is considered as a
prototype textbook study1 of a process in which collision theory and
statistical mechanics can be coupled via some unified microscopic treatment.

Association and recombination, the forward direction of (1.1), are
important in many instances, as for example, in gaseous discharges,2 in

2,3

electron-beam pumped exciplex lasers (KrF, XeCl etc.), and in the recent

Optoacoustic Effect4 where the acoustic wave is generated by the conversion

I
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into translational heating of a dense gas via termolecular association of the
photofragments A and B produced originally by photodissociation of a dense
molecular gas AB. For overall dissociation the reverse direction of (1.1),
externally-induced non-equilibrium distributions of AB in excited vibrational
levels can be produced by absorption by AB but not by M of short-duration
high-intensity thermal radiation with temperature T >> TM' or by the passage
of a shock wave through the gas. Here the translational and rotational
degrees of freedom of all species will relax to thermal equilibrium at
temperature TS jmmediately behind the shock wave more rapidly than the much
slower relaxation of the vibrational distribution of AB associated with the
original and final temperatures TM and TS, respectively. Charge-transfer

5 a non-equilibrium

between molecular species (AB+ - AB) also produces
distribution of AB in various high vibrational levels. Absorption by AB of
laser radiation will of course produce a vibrational distribution strongly
peaked about a specific vibrational energy. The vibrational distribution will
then relax by collisional association/dissociation processes.

In this paper, (1.1) is considered to be a closed system i.e.,
irreversible losses by curve crossings AB 2z A + B, quantum tunnelling, or by
mutual neutralization (A+ -87) 2 A' + B are specifically excluded. The
concentrations NA and NB of subsystems are much less than the concentration N
of the gas system M so that the main relaxation mechanisms are energy-changing
collisions between the subsystem and gas. Relaxation via radiative
transitions and subsystem-subsystem collisions may therefore be neglected.

The gas is therefore regarded as a heat bath whose main function is to

collisionally exchange energy and angular momentum with the subsystem, while

maintaining its original thermodynamic state at temperature TM at all times, -
R
thereby permitting the original dissociated or associated subsystems to relax a
o]

..................




to eventual equilibrium at temperature T,,. The above three assumptions help
to keep the theory tractable but may, in principle, be all or individually
removed via straightforward generalization of what remains, however, a fairly
comprehensive theory presented here.

In the limit of low gas densities N, mutual transport of A towards B in
the gas M is very rapid so that the process (1.1) is determined by the rate
limiting step of reaction. The previous collisional input-output Master

6 7, of Bates and Mendas®,

12

Equations of Bates and Moffett
2,9-11

, of Bates and Flannery

of Flannery, for ion-ion recombination (1.1c), of Bates and McKibbin

for jon-atom association (1.1b) and the weak (diffusional) collision treatment

13

of Keck and Carrier = and of Anderson and Shuler14 for association/

dissociation (1.1a) have all been designed specifically for reaction only in

the limit of low gas densities N. As N is raised the transport rate decreases

and the reaction rate increases until the rate limiting step of the overall
process in the limit of high gas densities becomes transport. The present
paper is therefore concerned with transport-influenced reactions and with the
design of appropriate Master Equations which govern transport-reaction
processes at all gas densities N. The Master Equation for the 1imit of low N

is well documented and discusseds'14

and the present theory yields this limit.
The organization of this paper is as follows. In §2, various
representations of the basic equation governing the mutual streaming
(transport) of A towards B in the dense gas are presented. The corresponding
transport-collisional (reaction) Master Equations for the non-equilibrium
distributions are then developed in § 3. Simplifications introduced by
assuming equilibrium associated with one or more of various physical variables

as interseparation R, internal energy E, and internal angular momentum L of

the pair A-B, are then discussed in §4. Expressions for the rates of

b o
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association and dissociation are formulated in § 5 in terms of the solutions
to the Master Equation. In § 6, the time evolution towards equilibrium is
expressed in terms of the net probabilities of collisional association and
dissociation of AB in high vibrational levels. A Variational Principle basic
to evolution towards equilibrium then emerges and is discussed in §7. It is
new and asserts that the conditional densities (or pair correlation functions)
of pairs AB in various energy levels are so distributed that the rates RA(t)
and Rp(t) of association and dissociation, respectively, are extrema at time
t. If conditions are such that the overall direction is association, then
RA(t) is minimum and RD(t) is maximum; for overall direction of dissociation,
RA(t) is maximum and RD(t) is minimum. Evolution towards eventual equilibrium
is therefore hindered and the Principle of Least Dissipation (first derived by

15

Onsager™” for heat conduction) is satisfied. When equilibrium distributions

are assumed for fully associated and dissociated pairs, the Variational
Principle yields the quasi-steady state condition (i.e., a steady-state
distribution of highly excited levels at all times) which rendered feasible

the many pioneering studies16

6-11

by Bates and colleagues of heavy-particle

recombination and of electron-ion collisional radiative recombination in a

17,18

plasma and in a gas.lg’20 Application of the Variational Principle to

ion-ion recombination is made in §7.2.

Finally, in an effort to make this paper complete and comprehensive,
Appendix A contains classical distributions corresponding to equilibrium in
internal separation R, internal energy E and internal angular momentum L of
the pair (A-B) together with various classical-quantal correspondences. In
Appendix B are gathered various collision kernels and one-way equilibrium
rates for energy-change collisions appropriate to various interactions

6,10 11 8

(charge-transfer » hard-sphere,”® polarization® and Coulombic) between the

subsystem AB and the gas species M. The kernels are expressed in appropriate

form for direct application of the present theory.
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2. Various Representations of the Transport Equation

N The present theory is a natural development and generalization of the =i
EE microscopic theory recently proposed1 for the rate of ion-ion recombination =
.. (or of any chemical reaction in general) as a function of gas density N. The T?
iﬁ proposed theory1 bridged the density gap between the previous quasi- 'f
?? steady-state theories®™13 based on energy-reiaxation alone and therefore valid ;ﬁp

in the low-density limit, and the macroscopic mobility/diffusion theoryz, |
EE valid in the limit of high gas densities N. It was also shown1 that the R
EE steady-state rate of recombination is determined by the well known relation a o
n = aTR “RN/(°TR + “RN)’ between the macroscopic rates %R and aoN of mutual

transport and of reaction between the species, respectively. At low N when .1;

atp >> %y then a » %aN? the rate limiting step, while at high N when aoN > .-
Grpe then a -+ trR> the limiting rate. This relationship is also a natural
consequence of the macroscopic Debye-Smoluchowski Equation] where AnN is

regarded as an externally assigned parameter, in contrast to the microscopic

-~ theory1 where apy is internally determined. :j
* At low N, equilibrium with respect to the internal separation R of the .
;3 (A-B) pair (ion-atom or atom-atom) is very quickly established in comparison -
; to the much slower relaxation in time t of both the angular momentum L and the —
- internal energy E of the pair. The appropriate time dependent master equation ‘
Zi would involve only the set (E,Lz,t) of variables for ion-atom and atom-atom
. association. For ion-ion recombination, the Coulombic attraction does not -
; support an angular momentum barrier and -equilibriuminp L2 is then very quickly
- established in comparison to energy relaxation so that the master equation -
6-13 =

involves only (E,t), as in the previous quasi- steady-state treatments.

?g As the gas density N is increased, relaxation in internal separation R f
EZ occurs in a time comparable to relaxation in internal energy E so that both

’: transport and reaction are coupled. It has already been establishedl’21 that :;‘
E; a "Boltzmann-1ike" equation governs the development of the pair correlation .
iﬁ function, or conditional probability density n(R,p,t), which is such that n dRdp :
N




is the probability that the internal momentum, B = mx, and internal

separation 5 of the (A-B) pair of reduced mass m and relative velocity Xsis

within the interval dR dg about (R’R) at time t. Thusl’z
s N
d _3an . vl e,
a"t‘ n(59R)t) = 3t + ,\Vl V’B‘n - (QR ) B Vpn (2.13)
"]

"o éMdRM [,40; [nR.g*stING(Ry") = n(R.R3e )N (Ry) L osi IimlSim¥))
' i

- n(g.g;t) v(g,g) (2.1b)

where V(R) is the interaction between A and B, where the momentum RM of the
gas species M is distributed according to a (time-independent) Maxwell
distribution NO(KM) at temperature @, and where GiMin js the (center-of-mass)
cross section for A-M (i = 1) or B-M (i = 2) elastic scattering at relative
speed g;u into solid angle in. If M is molecular, then TiM is augmented by
the collisional inelastic cross section for rotational and vibrational
transitions. The Qi—integration in (2.1b) is over that scattering region Qli
accessible for the production of all final scalar momenta p'(R’RM’Q{) and
PM'(R,RM,Q{) of the (A-B) pair and the gas, consistent with energy
conservation and with fixed R and RM‘ Included also in (2.1b) is a term, nv
which specifies loss of bound or free pairs via irreversible chemical reaction,
as mutual neutralization at frequency v.

The emphasis of the earlier paper1 was the steady state recombination
rate for the case when there were many more dissociated A-B species than the

associated neutrals such that the dominant process was association alone. In

this paper, we focus on the time evolution towards equilibrium which is
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established by the balance between collisional association of the free pairs )
(S
and the collisional dissociation of the recombined pairs in a thermal gas -
bath. 1In order to facilitate appropriate theoretical development, the .
transport (streaming changes) portion (2.la) and the collisional D
(discontinuous changes) portion (2.1b) of the above Master Equation will be o
formulated in various representations of physical interest.
2.1 (5,2) Transport Equation. ]
With p held fixed at angle 6 to variable R, then after some analysis, :
_1 3 g2 1. 2 8
. E-vB‘n(B,B) = R2 R (R npcose)p,e *R 3(cos8) [np sin e]p,R (2.2)
o sine an sing [ an . an
- —— L[cos¢ )+ - ( ) - sin¢ cot® (— ]
b R (aeR sinép 3¢R Rl 3¢ y
: for general nlR(R,6p,6p), p(p,6,0)],where p(6,4) is directed along (8,4) of a -,
;Z:;: spherical system with Z-axis along R which, in turn, is directed along
‘ (eR, ¢R) of a space-fixed spherical reference frame. Since the interaction -
» V(R) is radial, then the probability density n is a function only of R, p and
e 8, the angle between B and é Under azimuthal (¢,ép) symmetry, and with theaid X
of (2.2) together with the corresponding expression for E-Vgn, (2.1a) -
can be expressed as
d 4y 2o, 1 3,2 1.3 . 2 -
at MERIE) = gtz sRIRT NV OS Olp o * R FTcaser(" v SN0y g _
V-1 5 .2 1 3 2 )
o - ( s )[pz 3p (™ n °°5°)R,e * D 3(cose) (n sin e)p,R] » (2.3a) ~




) o { F.-'

which may be cited as the conservative form of the transport equation in one

dimensional spherical geometry, since the angular redistribution terms vanish

when integrated over the full range 0 <8 < v of the momentum direction é for

oo
A A

fixed 5. An alternative form of (2.3a) is

s
I
<.

n(B s it) "- + v cos 9[(3R 6" p ( ’( )R e] (2.3b)

~rTTe
o
¢ oA

1. .22 1 _av ] _an

. c
- olcoselp, p .
SN :
i where the internal energy E of the AB pair is ;
= E =p2/2m+ V(R) = 1/2 w2 + VR) = T + V(R) (2.4)
3 in terms of relative kinetic energy T and relative speed v.
Eﬁ 2.2 ig,p,lcosel)-Transgprt Equations
o, -
i Introduce the superscripts (+) to distinguish those pairs n+ with P
!. directed into the upper region, 0 < 6 < %- where cos® > O defines the
G

positive (+) region, with outward directed radial speed, from those pairs n~ .
%ﬂ with é directed into the lower region, §-< 8 < m where cos 8 < 0 defines the f
- negative (-) region with inward directed radial speed. At 6 = %-, the radiai
L speed v cos6 is zero (at the classical turning point of the relative motion).
fo. The set of equations satisfied by,
&

nS+d(R,p, |cose|5t) = n*(R,p,lcoslst) + n(R.p,lcosel;t), (2.5a)

&l the sum (s) and difference (d) of the ¢-integrated quantities,

- T N 2. I I T S} IR I S oo T R P I SR L) e et T et et T Tt T et T e s T e
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+ LLEN
n"(R,p,[cosefst) = [ n—R,p;t)de (2.5b)

o

is obtained from (2.3a) to yield,

15 M =3__ l._a. J.. 9 S 2
7" (Ryp,|cose];t) TE -7 R (R v]cose]) * R 3(coseT (n”> v sin“e)

( )[1 .a% |cose|) pﬂ?gs'—e'y(ns sin?8)] (2.6a)
and

D
d 2an” .1 3 p2,s 1__ 2 d | <inl
dt n (R.P |cose|;t) = 3t + R2 R (R n> v|cose|) + R ETEEEET(" v sin“6)

vl 2 (2.8 1.3 d _. 2
( aR) [ pz 3 (p© n>|cose|) + D STEBEET(n sin® 8)] (2.6b)

2.3 (R,p)-Transport Equations

Let
1,0 )
n“(R,p;t) = [ a¢ [ d(cose) n{R,p;t) = [ n(R.p;t)dp (2.7)
o 0,-1 (+,-)

be the conditional densities (per unit dR pzdo) of pairs that are radially
expanding (+) or radially contracting (-) across a fixed element of surface S

at radius R. The corresponding intramolecular currents

Ji(ﬁ, p;t) = V(J ;(Q R 3t) lcoseldg (2.8)
+, -
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E
o +
" . * v 2 .+
2 Roost) = 2 i#[(—a%\p - %(%—\R p} [R® 5*R.p3t)]
. p
FlunRp, 6=5t){2- L 3V (2.9)
2 NP 229 R~ TE-V) 3R ’

!! required to provide this tangential orbit must also increase, so that the

P orbit can only touch the R-sphere externally at its pericenter. For unbound
orbits (E > 0), L, can increase indefinitely so that n(g-) remains n'(g-) for
all R. For bound orbits of specified E, however, then Lt = Rp required for a

2dp) that pairs expand (+) or contract (-) across

are the rates (per unit ds p
a fixed surface S with normal és oriented along the fixed direction g. In
terms of (2.7) and (2.8), integration of the conservative form (2.3a) over

each (+) region yields,

where, owing to ¢-symmetry n (o = %) is 2w ni{g,g;t) evaluated at ¢ = %3 which
corresponds to turning point(s), the pericenter and apocenter (where
appropriate) of the orbital motion.

This density n(-%) corresponds to orbits (with angular momentum Lt = [Q X
Bl = Rp),which are tangential (6 = g-) to, but do not intersect the R-sphere
i.e., n{ %0 is n'(%) at the pericenter, and is n+(gd at the apocenter of the

appropriate orbits. As R increases from zero, the angular momentum Lt

tangential orbit reaches a maximum at a radius A which is the root of

-
R2p2

2 1

2 m2.2y] . 13V
[Sﬁ (R%p )]E ‘[ﬁ () a

vl 2 _ 13V
R|IZR ™ TR

0 (2.10)

where T is the kinetic energy (E-V).

As R increases beyond this radius A, Lt decreases, and the required

[N ey
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Lt-orbits become internally tangential to the R-sphere at their apocenters;

until R reaches the largest apocenter at R = B, the turning point of the L = 0
(straight line) motion determined by |E| = |V(B)| for attractive interaction.
Hence the density n in (2.9) is delineated as,

(n"(R.p, 8 = 55t) 5 T> T" = 1/2 R (3V/3R)

n(R.p, 8= ;t) =< (2.11)

\nt(R,p,8=T5t) ; T <T =1/2R (3V/R)

*
Region I, characterized by T < T corresponds to (E > 0, all R) and to (E < 0,
0 <R <A) while Region II, characterized by T < T* corresponds to (E <0, A <
R <8B).

Note that the coefficient of n in (2.9) vanishes at R = A and B. The

radius of the bound circular orbit is given by the root of

e 2 v L2/2nR?], = 0 (2.12)
which is identical with A, the root of (2.10) i.e., the circular orbit is
associated with the largest value Lmax of the allowed angular momentum, as
expected. Hence, for R < A, the pericenters of all orbits with L < Lt = Rp for
given E lie within the R-sphere and that orbit with L = Lt touches externally
the R-sphere, and the apocenters for all L are all external to the R-sphere.

For R = A, Lt = Lma and the orbits are circular with the pericenters and

X

apocenters lying on the R-sphere. For R > A, the pericenters of all L orbits
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and the apocenters of those orbits with Ly <L <Ly are within the R-sphere

!' and the apocenters of orbits with L < Lt lie without the R-sphere. The Lt-orbit
. is internally tangential to the R-sphere at the apocenter.

o

¢ The radius A of the circular orbit for pure Coulomb attraction is e2/2|E|
o~ and the maximum turning point B is 2A. The turning points appropriate to

v fixed‘(E,Lz) are

e

= 2 2 2 2

’ Ry (E,LE) = AL + {1 - L%/2m|E[A%)}/2); A=e?/2|E], (2.13)
o

C such that, at R, , = A then L2[= 2m|E|A2 = 1/2 me4/|E|which is the maximum

e ’ 2

permissible vailue Li of L

ax for a given [E|] decreases with stronger binding |E|.

For L =0,R =0andR, =B =2, AlsoT >T =e%/&R for £ > E" = (-e¥/R).

cvvie

i Hence (2.11) shows that n( gq is n for E >0 at all R, is n” for E <0 and R
' <A, and is n* for £ <0 and R > A.

With the sum (s) and differences (d)

.._ ns’d(ﬁ,p;t) = n*(R.p;t) +n (R.pst) (2.14)

o
.

- and with the total (s) current from, and with the net (d) outward current across,

s,d . Lt . - .
(Rspst) = 3 (R.psit) + 3(Rypst), (2.15)
‘- ]
a fixed g¢-surface,then (2.9) is equivalent to the set,

3
. d Spop:4) =24 L1 [2) _m[avlfa 2.do . (2.16a)
R ! [E A1 EI XA
( R P
' 13

--------




d
d do oy _ ) 3V 2.5,
dE TRwPiY) = 3¢ —z[(?ﬁ)p -3 (sﬁ)(%)R "] LENtEID)

LT 3
2 1 a3V e AT
in the (B,p)-representation. The above forms are useful when nI{B,p) are each g;
independent of 8 i.e., when the internal angular momentum states are in
thermodynamic equilibrium (see Appendix A). Under this condition the set o
(2.16) with (2.7) and (2.8) reduces to N
.
S d d
d SRopst) =20 4 1 f{anT) _maVvifan” 2 __1 vy d
gt "RePst) = 5t g V[( aR )p p( aR)( P | +( R~ TE-V aR) n ] :
(2.17a)
-
r!

for the total density n® and to

d S S *

d .d 2,1 n] _m{avifan_
at " (ﬁ,p,t) ot * 7 Y [( aR ) p (aR )(ap ) ] .
1 s =Tyl 2 1_av -
tg Vv [" - on(e = 3 )][R " TE-V) aR] T
(2.17b)

Since (2.17a) is appropriate to the Lz-equilibrium averaged value of y, it represents
a generalization of Eqs. (2.12),(2.20) and (5.1a) of Ref. 1 which are associated only

with the speed v along the radial direction R. o

2.4 (R,T)-transport equations.

When the kinetic energy T (= p2/2m) rather than E is used as a variable, -
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then the corresponding densities and currents (per unit dR dT dé) are
n(R,T,pst) = mp n(R,p;t) (2.18)

and

JR,T,pst) = mp J(R.pst) = v n(R,T,pst) (2.19)

respectively, such that the é-integrated quantities which correspond to (2.14)

and (2.15) satisfy,

]
é%-ns(E,T;t) = éf- '%?[\QR) { )\é%)R‘[RZ d(R T; t)] (2.20a)
.
d ndr,7;t) =BT —15[ aR) ( )5%-) [*% 35(g.750)]
R LA \°" IR
[—% %—g—] R T, 8 = % st)v (2.200)

In thermodynamic equilibrium (Appendix A) at temperature 0, the
conditional density factors as

-3/2

H5(R.p) = (27m ko) exp(-pé/2m) exp(-V(R)/k@), (2.21)

4"
and is independent of direction (such that %S 2n1, d = 0). It therefore
satisfies the set- (2.17), where each term vanishes separately, and the set

(2.20) as expected.

15
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2.5 R-Transport E quations.

Integration of (2.16) over the full range (0,») of T therefore yields the ~T
set, -
'.::
N
d S . = aLS l—a_ 2 d y -—
at T(Rst) = at T r2 3R [R J (R)] (2.22a) N
and =
4 ndr;t) = anf, L2 [v? )] -|3-2 w > (o (Ryo =1,
at "\RY =3 p2 R R™m <v> 3R | | M(Rs0 = 5 5t) <v>

b

(2.22b)

where the macroscopic (configuration) densities are
W)
S, . = " S,d . .

nS:4R;t) [ n® g, iy (2.23) .
and the macroscopic (configuration) currents are —
Js’d(g;t) = | Js’d(g,T;t)dT (2.24) =
5 -
=
The averaged speeds <v"> in (2.22b) are determined by, N
T* o .-::'

nR, 0= 75t) <™ = [ n"(R,T,0=25t) V" dT + [ n"(R,T,0=25t) " dT  (2.25)

n 2 F N 2 * 2

where T*(R) =~% R(3V/3R) is either the kinetic energy of a bound circular )
orbit of radius R, as in (2.11), or else is zero for unbound orbits, and where -

-------

...........
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T o
n(R, & = 7;t) = ! n*(R,T, 0= Jit)dT + {*n'(B,T, 8= 7;t)dT (2.26)

is the total macroscopic density at the turning points (apocenter for T < T*
and pericenter for T > T*).

The variable sets Qeze), (s,p), QB,T) and R are quite natural at higher
gas densities N, since in the limit of high N, collisions are sufficiently
rapid to establish equilibriun in p or T such that (2.3), (2.6), (2.16),
(2.20) and (2.22) furnish quite naturally the appropriate non-equilibrium
equations in the various variables. When there is T-equilibrium for example,

+ , . . . . .
M= are separately independent of p and satisfy the Maxwellian distribution

+

n“(R,T5t) _ AR _ 2 1 V2
+ = = - p(-T/ke) (2.27)
nf(Rit) MR /7 (ke) Y2

where the tildas (V) denote equilibrium values and where the configurational
density is
+

=(R5t) = fwni(B,T;t)dT (2.28)
o

The appropriate non-equilibrium equations for ns’d(s,t) are then (2.22)

where the currents are
3 9R,t) = 1/2 0% 9(R5t) ¥ = 172 [n*R,E) £ 0T(R,E)I T (2.29)
and where the averaged speed

<> =7 = (8 k of/am)/? (2.30)
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r is simply the mean thermal speed. For T-equilibrium (2.27) holds such that
n -+ D * *
n(R, 6= g;t)<v> = v[n (5,t) -n (S,t) {1+ (T /ko)exp(-T /kO)}] (2.31) y
'1'.37r
and N
Z (R, 0= Jit)v™> = (Wke)la"(R,t) - nY(R.t) exp(-T /ke)] (2.32) 2
The macroscopic eq. (2.22b) therefore reduces to,
d - 9 c
_.d_ d = .a_n_ + _V_ — 'R2 S . ~
at n (RQt) 3 2R2 BR . n (R’t)] ~
-
1-12 v v *
-7V [ﬁ - Q—e;—][nf‘(g;w + nd(gst)] - & nd(Rst)exn(-T (R)/ke) i
(2.33)
which is, of course, coupled to its companion (2.22a), with Jd given by (2.29). -
In R-equilibrium, n (Rst) is the Boltzmann distribution
")
n(R) = exp[-V(R)/ke] (2.34) —-
o
and 7S = 2 5*(R), n9 = 0. Hence both (2.22a) with (2.29) and (2.33) are =
satisfied in equilibrium, as expected.
At the higher gas densities N where relaxation in R becomes the rate <-.
Jimiting step and where collisions are sufficiently fast to promote
equilibrium in p or T, then the sets of equations (2.6), (2.16), (2.20) and -




”
SO

e

s

(2.22) derived above are appropriate for application from high N to

intermediate N.

2.6 (R,E,b)-Transport Equations

In the low N-limit, equilibrium in R (i.e., the Boltzmann distribution)
is achieved instantaneously relative to the rate limiting step of collisional
relaxation in the internal energy E. The set (E,E,é) of variables is

therefore more natural to this situation. When the relaxation in E and in the

internal angular momentum squared,
L2 = R%p? sin% = 2m(E-V(R)] R? sin (2.35)

are both slow in comparison with R-relaxation,then the set (B,E,Lz) of
variables is more appropriate.

The probability densities germane to the various sets are related by

(2.18) and by

= a a 2 2
n(ﬁ,e)ds dp = nl(g,E,E)dB dE dp nz(E,E,L )dB dE dL" d¢ (2.36)

for the probabilities n dp, n, dE dp and n, dE a? dé¢ that the pair with

internal separation in the interval dg about 5 has the physical quantities R>
(E,Q), or (E,@,¢)in the associated intervals. Hence the various probability

densities are related by

n(R.p)=R2n;(R,E.Q)v/RP? = 2R% ny(R,E,L%)V cose (2.37)




In what follows the ¢-integrations are implied unless otherwise
indicated. In (2.36) the bound levels (E,Lz) of the AB-pair are assumed
to lie sufficiently close (relative to the thermal energy kO of the gas bath)
that they form a quasi-continuum in energy E and angular momentum L. This
restriction is not essential and can be removed by appropriate discretization
2

of the continuous variables E and L™.

With the recognition that

2| - (2 m(avVil s
(), (4, -3 B,

where the subscript denotes that quantity held constant throughout the
appropriate differentiation, then the basic (ﬁ,g)-equation,(2.3) with (2.4)

and (2.36),in the (R,E,@)—representation is equivalent to,

d NURNLAls W B IO WY
gt "(RER3E) = 5 [_2 R (R

A n, v COSB)E,e +

—

2 _ v 3 ‘02 2.39
VAR - TEVY 3R} 3Tcosey (M sin e)R,E] (2.39)

N —

which is the conservative form similar to (2.3a), since the angular
redistribution term, when integrated over the full range of 8, vanishes as
with (2.3a).
2
)

2.7 (R,E,L®)-Transport Equations.

2

The transformation p » (E,L
N

s¢) in

n(R:R) = N(R.E(p,R), LE(P.R,0), o) (2.40)

A e A A A o T At I R A R a4 - BT TRV TR T AT TR TR TR AT AL
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may be accomplished via use of the derived identities,

2
iﬂ_\ - (3_n1 + (an) (aE) + ( an \ (3L ] (2.41a)
aR “\eR]. 2 " |3E], 2| R 2 aR ’
b L " lp,0 E.L RsL plal ’5’5 b.e
- anl | an] lﬁ) + (_3_'1_) (_3_3) (2.41b)
2 \2Plg,o  \3Elp, 2 1%l Lal?l, (130 IR,
C A
- [_%n__jl ‘ ) [_T____y (2.41c)
L 0s6 R.p JL2 cose) Jg
’ .
E - Also the derived identity
4
- 2
( 3 _la sin‘e . 2 1 v 3
(ﬁ)E 2 (aR)E o * 2 cose LR T TE-V) 3R | 3(cose) R.E (2.414)

LAS AR BB g Ab -

is valuable for transformation between derivatives taken with respect to fixed

_. L% and fixed 8, respectively.

Hence (2.3a) reduces after some analysis simply to

. dt n(R,g t) = = + v cose ['aa—R"(B’B;t)]E,LZ (2.42a)

for n('\F‘{,B;t), or with the aid of (2.37) for "1(5’E’f3) to

. an 2 2
d . - 1 (R°p“cose) 3 [p2 ~ 22
at M(R-E-Rst M. 2 (R nREBs0v/RS?] 2 (2.420)
= which,with the aid of (2.41d) can be shown to be identical with the conservative form
(2.39) for nl(}é,E,é;t). In the (,%,E,Lz)—representation, (2.42a) is equivalent to
U d 2 My 1 5 [p2 2
It nz(}\?l,E,L 3t) = 5Tt —2- 3R [R nz(,F\il,E,L st)v cose]E,LZ (2.43a)




for nz(g,E,Lz;t) of (2.36) in terms of quantities (E,Lz) which are naturally

conserved in the absence of collisions with the gas. An equivalent and useful

]

form of (2.42a) is obtained from (2.37) and (2.42b) as,

» ,lY M
A s, 8,
e ‘g 8 0 4

-

an
d 2,0y o 2,1 3 5. 2
3t Mo (RE,LT5t) = 3=+ 2 3R [nl(fg,E,g,wv/p ]E,LZ (2.43b)

2

In contrast to (2.3) for n(%,g),and to (2.39) for nl(Q,E,R), the

microscopic vector current

7 DI A% I gy
o LW e e
. . : oo s, 1
Lt ' et et T

. 2.,y _ 2, -
,lz(%,E,L ’t) = nz(%,E,L ,t)x Py (2.44) B

ﬁji associated with the density n, of particles with fixed internal energy E and i?

angular momentum L, across a fixed surface therefore satisfies the simple

transport equation e

2

on (R Jg) (2.45) <

dn_3n 1 3
dt ot R2 3R
where n = nz(B,E,Lz), the microscopic density, and Jp is the outward radial
component of the microscopic current (2.44).

In spite of the neat simplicity of (2.45) this is the first time to the -
author's knowledge that the transport terms in the left-hand-side (2.2) of the .
Boltzmann-1ike equation (2.1), have been written as (2.43a) in terms of the
conserved quantities (E,Lz) of a collisioniess plasma being held fixed upon
the R-differentiation. The form (2.45) is normally reserved only for the

macroscopic net current Q(R) of all particles integrated over all vector

momenta p (in magnitude and in direction). In equilibrium, (R2 Ny v cos®) is -

22
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a function only of E (cf. Appendix A) such that the streaming (gradient) term
in (2.43) vanishes, as expected.

Introduce ng(g,E,Lz;t) to distinguish those pairs with the same values of
(B,E,LZ) and therefore of
Lz,Rzpz]l/z

|cose| = [1 - , (2.46)

but with é directed at 8 with éS into the positive (+) region, 0 < g < %3 or
into the negative (-) region §-< 8 < m. Under this distinction, the transport

equation (2.43) is therefore equivalent to the set

*

d + 2,0y 220 . 1 3 (a2 *(pg 2.
L nt(REL%t) = 2+ 7 R [R® n*(R,ELL ,t)vlcosellE’Lz (2.47a)
for ni, or to the set,
d s 2.0y 200 . 1 2 2 dp 2.
gt " (R,E,L%5t) = 25—+ 22 R [R™ J7(R.E,L%5t) g | 2 (2.47b)
4 1dip g%t = and L1 o (R ;% (R,E,L%;t)] (2.47¢)
dt m, s ? a Rz BR J ,\‘l ’ ’ E,L2 .
for the sum (s) and difference (d),
s,d 2.0y _ o % 2. - 2.
n*T(R,E,LT5t) = ny (RLE,LTSE) + ny (RLE,LTSE) (2.48)

of those (E,LZ) pairs which are expanding (+) or contracting (-) across R with

associated total (S) and net (d) currents




i%9R,EL%5t) = nS29R,E,L2;t) v] cosol (2.49)

A

with direction P at angle 8 with the normal és to the fixed surface. The

set (2.47) represents quite a formal simplification over the corresponding set

(2.6) in the equivalent (g,p,lcosel)-representation.

2

h On integrating (2.43b) over the configuration volume between two spheres
of radii Rl(E,Lz) and RZ(E,LZ), the turning points (pericenter and apocenter)
for bound (E < 0) orbits and on recalling that n at R1 and R2 is n and n+

respectively, then,

+

& oHEL%e) = 3 ¢ 20 [(vy/in (RyEs 0 w/23t) - (vi/piInT(RYE, 6 =n/25t)]

" ow_m ae 4
v e a1
A A

(2.50)
where p; and v; are the momenta and speeds at Rk(}zliég. Hence
2 ]
e = 0t 650 a6 = [ S dRELG R
R(EsLD)
(2.51)
satisfy the set
Edt—ns(E,Lz;t) =§t—nS(E,L2;t) (2.52a)
and
. d
L.-‘: _d- d 2- = 2’.‘—. 2 + = o
::. dt n (EsL ’t) 3t + 4"[(v2/p2)n (BZDESS '"'/Zat)

i - (vl/pf)n'(gl,E,ew/z;t)] (2.52b)

1'.'.

't
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The significance of the source/sink term in (2.52b) becomes transparent

upon assuming R-equilibrium when (Appendix A),

n(R.EL%t)  W(R,ELD)
n(E.L55t)  R(E.LD)

= [2nR® vl cose|p(E,L2)] ! (2.53)

where tp is the time to complete one radial orbit (R, -+ R, -+ Rl) for fixed E

and L2. With the aid of (2.37), (2.52b) therefore reduces to

d
d d 2,.y - 3n~ d 2. 2
3" (E,L%;t) - A (ElL ,t)/rR(E,L ) (2.54)
which with (2.51a) yields,
d + 2 ant + 2
3¢ ME,L75t) = = *2(n"-n")/7p(E,L%); E <0 (2.55a)

i.e., at every half periods, expanding (+) pairs in bound orbits are converted
by transport at the apocenter into contracting-pairs, and contracting (-) pairs
are converted at the pericenter into expanding (+) pairs. For unbounded (E >

0) orbits only the pericenter R, is relevant. Since n > l—ﬁ as R » = then (2.55a)

N

is replaced by

*

nt(e,L%;¢) = N 20" /(L

d an_
at

2
dt )

sy E>0 (2.55b)
such that transport converts contracting (-) pairs to expanding (+) pairs at the
pericenter. Hence each set (2.%0) or (2.52) of transport equations yields

quite naturally the radial period under ﬁ-equi]ibrium and therefore contains

rather instructive information, particularly useful when orbital and

collisional times are to be compared.
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2.8 (R,E)-Transport Equations

2

Since L2 in (2.35) varies between 0 and Ltz = R®p® for fixed R and E as é

varies within each separate (+) or (-) region, the use of Leibnitz's rule22

for R-differentiation of an integral with variable R-limits yields,

R2p2
2 _ 1 3 |g2 2
ny v cose)E dL® = R2 R [R g n, v cose L ]E

- [n2 v cose]9="/2 [g% (Rzpz)]E (2.56)

With the aid of (2.37)

JRSE,LE5t) = ny(R,E,LE5t)v T cose] = n(R,E,85t)v/(2R%%)  (2.57)

and with the aid of (2.10), the Lz-integration of (2.43) over the range

©0 -~ Lf) therefore yields

l h . =_3_n_ _]___a_ 2 .+ . -1 2 1 3V
3t REst) = 2+ L2 [R% it Ese)] # -z-v[ﬁ- WQ_R]

R
= T,
nl(’%!Eye- th) (2-58)
for the integrated densities
L
R.E5t) = [ g (R,ELZ5t)aL? (2.59)
8]

£ L




and currents

LZ
t

ji(g‘,E;t) =y fnzi(l}‘,E,Lz;t)|cose|dL?~=n1(l§‘,E;t) v<|cose|>
[o]

The equivalent set of equations for

ns’d(&.E;t) n+(&,E;t) + n (R,E;t)

and the corresponding currents

£9REst) = 3TR,EsE) + 5TR,E, )

(2.60)

(2.61)

(2.62)

which are the total (s) and net(d) rates (per unit dR dE) at which particles

with speed v leave or cross a surface with normai és oriented along the fixed

direction g, is

d Sipe.t) =25, 13 [p2 :dig .
& rwesn « B0 L & [ s,
and
d
d d a1 9 fp2 s
3t RED) = 5+ —p ok (R BB

On integration of (2.39) for nl(g,E,é;t) over the positive (+) region 0 < ¢ < =

and the negative (-),-% <6 <m, region of é, the above set (2.58) for

'''''''
i

(2.63a)

(2.63b)

2 3
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nLREt) = [ n)(R.EBit)df (2.64)
(+,°)

JHR,Est) =V [ ny(R,E,Rst)cose| dp (2.65)
(+,-)

and the set (2.63) for ns»d also follow directly, since the R-differential

operator in (2.39) and the é-integral operator in (2.64) simply commute. On
integrating (2.63) over the full range -V(R) < E < = of energies E, and with

the use of Leibnitz's rule, the macroscopic set (2.22) of equations, for

n*dR) = [ n*dR.Est) oE (2.66)
~V(R)
and
Bm) = [ 9R.E aE (2.67)
-V(R)

is also reproduced with the averaged speeds determined by

*
E

n (R, 8=3;t)<w™ = [ n*(R,E, 8= T5t)v" dE + [ nT(R,E, 6= 3t)v" dE (2.68)
1 2 R 1 2 E* 1

where

¥ = 1/2 R (g—” - VR) (2.69)

*
corresponds to T of (2.11), and is the energy of a bound circular orbit of

radius R.
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- *
For pure Coulombic attraction, E* = -e2/2R <0; for VAR 2, E is zero;

and for V = -ue2/2R4 then E* is aez/ZR4 > 0.

2.9 E-Transport Equations

On integrating (2.63) over all accessible 5, then the equations satisfied

by,
Ry
n®Ese) = [ nSYR.E) oR (2.70)
0
where R, is either the outermost turning point B determined by |E| = |V(Ri)[

for E < 0 or is infinity for E > 0, are

Edf nS(E;t) = 2n°(E;t) (2.71a)

2

for ns, since the net flux 4mR jd(R,E;t) vanishes at both Ri and zero and

d d an ) 2 .S ) ® e
gE N (E20;t) =33+ ’LT [4mR® §7(R,E;t)] - 4n {nl (B,E,e-f,t)
x[%s% (Rzpz)E]dR (2.71b)
p
at nl(e < 05t) = - 4v[fn1'(R.E. o= Z;t) + f%f(g,s, 6= g;t)]
0 A
X [—"2-3% (Rzpz)E]dR (2.71c)
p
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»::: -
- (2.71c) is the root of (2.10) for constant E i.e., where é% (R2p2)E vanishes.

The physical significance of the above terms becomes apparent upon

examination under thermodynamic equilibrium in 5 and 6 when {Appendix A)

n(R,E)  R(R,E)

DN (2.72) -
n(E)  W(E) 1
such that (2.71b,c) reduce in this limit to
d dEs05t) = 20° n'(E't)[E-V(A)]Az/fB R2dR (2.73a)
gt MR at " ; ;P y

exactly, since the total transport can be shown to vanish for B-equi]ibrium,

and to

d B -
& fEeost) = 3+ ndEse) V(Y [p R2 @R (2.73b) -
o

For Coulombic attraction, A = e2/2[E| is the semi-major axis and

B 2 13/2 1/2
2 2. o1-1 _ 1 e m 1
E-V(A)|A [; pR dR] = 5 217[ ] ( ) = 5 t(|E|) (2.73¢)
[ ] 5 2 2[E] ;7 2
is simply half the time period t for a bound orbit of energy E. For Coulomb —
attraction therefore
4 d(eost) - i'f-4n‘(s-t)/r(s) (2.74a) -
at " = 3t ’ y
d d and d
i (E<O;t) = —F—+dn" (E;t)/(E) (2.74b)
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which, with (2.71a) yields

d + .
it n—(E>0;t)

2 nt ¥ 2n"/t(E)
(2.75)

é% n{E<0;t) ni-i_Z(n+-n-)/T(E)

Q2
rrl‘”

i.e,, after every half-period (%) expanding (+) pairs in bound orbits (E < 0)
are naturally converted at the apocenter into contracting (-) pairs which in
turn (for bound and unbounded orbits) are converted at the pericenter into
expanding (+) pairs. This result is quite general in that it can also be
deduced from the corresponding eq. (2.54) for (E,LZ)-nonequilibrium in terms

of the averaged radial frequency
valE) = 1g(E) = [ [n(E,L%)/ <(E,L%)1dL%/n(E) (2.76)

In this section the basic transport eq. (2.1a) has therefore been
represented in various forms (2.6), (2.17), (2.20), 2.22), (2.39), (2.47),
(2.52), and (2.63) appropriate, respectively, to the sets - (5’8)’ (g,p),

(R.T), Ry (R.Ewp), R.E,LD), (E,L%) and (R,E) - of variables all pertinent to

various ranges of gas densities N. At low + intermediate N, the set (g,E,L2

)
is more natural than the set (R,T) which in turn becomes more appropriate for
intermediate > high N. The transport equation assumes for the set (B,E,Lz) a
particularly simple form (2.43a) normally reserved only for configuration

densities (i.e., phase densities n(R,p) integrated over p}. This form is also

preserved by ns(g,E;t) in (2.63a) but not by nd(ﬁ,E;t) in (2.63b) due to the
conversions at the turning points.

The coupled equations (2.22a) and (2.22b) must in principle be solved to
yield the net current jd(R) in configuration space. It has already been

) shownl via the continuity and momentum equations [which are xs velocity

"“‘VT"— Pt P,
. y A
A A et e
-,
N




averaged moments (s = 0 and 1, respectively) of Boltzmann's eq. (2.1b)] that

Jd may be expressed, to a very good approximation, in terms of the total R
density n%, by .
d = . . -
- ,e (5:t) = j n(gsg’t)x dB N
S S(p-

= -Dgn> (R,t) - (K/e)(qV)n"(R;t) (2.76)

where D = DA + DB is the diffusion coefficient and K = KA + KB is the mobility
for the relative diffusional-drift of A and B in the gas M, in terms of the ;;

individual coefficients DA B and mobilities KA B for each individual species A
or B in the gas. This recognition permitted ! the overall rate a of the =
process to be analyzed1 in terms of rates, apy and app, for reaction and trans- .
port rates, respectively, which provided great insight to the overall variation -

of o with gas density. It also helps to establish ( §5,3) the microscopic "

foundation of the Debye-Smoluchowski Equation.
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3. Full Transport-Collisional Equations

The collisional rate (2.1b) in the basic equation (2.1) for the
development of the two-particle correlation function "(B%E;t) for (A-B) pairs
has been transformed to the QB,E,LZ)-representation in Appendix B. With the

aid of (2.47a) the full Transport-Collisional Master Equation is then

+
an;
d 7 2.0y 23 .1 5 2 ¢ 2.
L2
= TtE .
= S GEe [ alelng RithvieR) - ng Qithve; (R)] (3.1)
1 12=0

where the i-index specifies the combined internal energy Ei and internal

angular momentum squared Lf of the AB pair and where the direction cosine is
= Rl = (1 - 1272 V2
lcose| = [Rpsl = (1 - L) (3.2)

in terms of the maximum internal angular momentum squared

2 2 2

Ly = Li(EjuR) = 2mlE; - VR)IR (3.3)
consistent with a fixed internal energy Ei and separation R. Also
_ 2 2
Vi(R) = V(R) + L /2mR (3.4)

is the effective radial interaction so that -Vi(R) in (3.1) is the energy of the

lowest vibrational level of AB consistent with separation R. The collision

2 2 2 -1

kernel vif(B’Ei’Li ;Ef,l.f )dEdef is the frequency (s °) for the transitions
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P (Q,Ei,Liz) > (R,Ep+dEe, L2+dL 2) in the AB pair by collision with the gas
» species M, under the assumption that R remains fixed during the encounter

3 between (A-B) and M, an excellent approximationg for ion-ion recombination.

2

! ~
: - The superscripts (+) indicate, as before, pairs which are radially-expanding
K. (+), cose > 0, or radially-contracting (-), cose < 0, under the provision
- i .
(2.11) that "i(R’Ei’Lgi t) is n, (g-) when E > E (region I) where
E¥ =V + 1/2 R(aV/3R) (3.5)
*
s and is n:(g-) when E < E (region II). Since a closed system is assumed, the
. C irreversible loss term n; % in (2.1b) can therefore be neglected in (3.1).
3.1 (R,E,L?)-Equations .
i l! Introduce the distribution
o Sydp.,y _ S,d 2.0\ 2
; vi? (Rst) = T RLELLL T5t) /0L (RLESLLS) (3.6a)
L
- ' normalized to the conditional probability density gi for thermodynamic
equilibrium (see Appendix A) so that
A nERE LS = 2 (v« 40 BR,ELLD) (3.6b)
SADELIEL I 7 Y'i—Yi j\RsEy .
’ The distribution Yj is then independent of whatever variable B,Ei or L? is
3 o associated with equilibrium. With the aid of the appropriate set (2.47b,c) of
i . transport equations, the Master Equation (3.1) therefore yields the set
'af
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S
an;
4 s 2.4y 2 1,1 3 [p2 sdep.
gt M (ReEqulyst) = 5 + 22 R [® Ji(ﬁ't)]Ei,Lf
LZ
= fwdE a2 S(R;t) - vS(Rst)] €. o(RLE,,L2E.,LD) (3.7a)
) £l fhfv RERLY J RACVARS R R At A
and ViR o
d d 2 3"? 1 3 (o2 s
dt "M REList) =5 Yo7 R % HETD) P
© Lif 2
- 2 . dp. din. £ 12
where 1 = (E;,L.%). Also,

s,d 2.\ Lo 2. . 2 1 s 2
.:. ni (%’E]’L )t) = [ni(%’ET’L 9t) i n1(%’E1’L ,t)] = Ys_i’d n-i (EJ,E-laL_i) (308)
':‘:: and
-~
o s,d 2.\ _ s.d 2. _s,d v 2
337 RLE,LT5t) = T (RLELT5t) v]cose] = v2°7 35 (R,E,LY) (3.9)

are the densities and corresponding currents for fixed (ﬁ’Ei’L?)‘ The
equilibrium rate for i(Ei,Liz) - f(Ef,sz) collisional transitions at fixed
internal separation R is

2 2 2

Eo12y .y - - .

(3.10)

and satisfies detailed balance. Dependence on the density N of the thermal
s

gas M occurs both via the (transport) coupling between n; and n? in (3.7) and the 1ineaﬁi

dependence on N of the collision frequency {(per unit dg dEi dLiz),

36

-d




= 2, 2

3

where kif is the (cm s'l) rate for i > f transitions by collision between one

pair (A-B) with separation 5 and one gas atom M (see Appendix B).

3.2 (R,E)-Equations.

With the aid of the appropriate set of transport Egns. (2.63a,b), integration of

(3.7) over all accessible Li2 yields the set,

S
an, o
d s 4y = 1 .1 3 o2 dp. S (Ret)_S(R-
at " BEY) =58 * o7 R [® Ji(ﬁ’t)]si J dEg [V R0 (Rs1)] €3RI (3 12)
-V(R)
d d on N roonj2 1 eV
& Rt = 5p s 7 o (R0 - nREe BV - W
I den.vy - (d(r.
-V(R)
in variables 5 and Ei for the integrated densities,
4
s,d e\ = s,d 2, 2
" (R.E;st) -c{ ny " (RL.E, L “5t)dL, (3.13)
and the integrated currents,
Lf:i
S,d Cey o s,d 2, 2
3, (R,Ej5t) = v £ ny’ (RsEqsL;®st)[cos8|dL, (3.14)

’d - )d .
v fi (R.Ei,L%;t)|coseldQ vy ni (R,E, st)<cose>

Note in (3.12b) that n is the angular density per unit dngi d{cos8), as in

2 .
ti

(2.36), evaluated at o = % i.e., at the turning points where L? =

L




The collisional frequency “if(R) for (51’5) + (Ef,ﬁ) transitions

integrated over all angular-momentum changes (Liz,sz) consistent with fixed

ﬁ; E; and E is given by
2 2 2
s L. L

n:(R,E:5t) vic(R) = 7idL 2 1. (R,E.,L5t) }f dL 2 (R,E.,L.2,E.,L2) (3.15)
1 (R>Eq5t) vie(R) = A B B M B A VieRoEisliToEpsls .

with corresponding equilibrium collisional rates

2 2
L L
ti 2 tf 2

. 2. , 2
Cie(R) = g ai® [ dle” CipReEpLy TiEpsLeT) (3.16)

in (3.12). Expressions for the averaged rates (3.16) for various interactions between
AB and M can be formulated directly from collision theory (refs. 6-12 and Appendix B). ZS

The normalized distribution in (3.12) is

b

J

s,d .
Yi (59E1' ,t)

S,d PR
ni (B,’E'l’t)/n1(R'E'|)

[[]
m,m
S—
<
v
-
Q.
o~

= 2,y 2 24 v
REjuLy Sit) iy (RLEG L )L 1/ (RE;) (3.17) ~

and becomes independent of Ei or R when equilibrium is attained in Ei or R,

respectively.

3.3 R-Equations.
On integrating (3.12) over the full range -V(R) f.Ei < = of Ei’ then, on

applying Leibnitz's rule, and on recognition of the null effect of collisions,
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s
d s _ an 1 3 2.d
q gt " (Rst) = s+t ?ﬁ [R J (R)] =0 (3.18a)
= 4 14 Rit) = afl L 1 [R2 JS(R)] = n(R,I;t) <v» | 2 - 25
dt ? ) RZ 3R 1«.’2’ R m <v> aR (3.18b)
- _
o
is obtained for the macroscopic densities (2.66) and currents
(2.67). The quantities ny <v"'> are determined by (2.68). When
thermodynamic equilibrium exists in all variables except R, then Jd is Ei'
{ independent and is given by (2.29) so that (3.7a) upon E;-integration yields
(3.18a) directly.
- 3.4 (E,LZ)-Equation
The appropriate set of transport-collisional equations is, with the use
of (2.52),
]
S e L:uf
| d s 2 _ ___1 2 ;s S 2, 2
at "i(Ejalist) = 5% _f dE ({dl'f (vg = v3) CiplEgaLisEply) (3.19a)
where i specifies (Ei,Lf), and
an(':il 2 T
I 3 " (ELgit) = g+ 4”[("2/"2) ny(RpoEy 0= Fit)
-
- (v/P%) NT(R,LE, 6= Lit)
171 V1079 2’
.. L2
_ 2,0 D 2 2
L : f"Ef f die (re - vi) Ce(BpolysEele) (3.19b)
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where the equilibrium rate for i >~ f transitions,

'
i 2.0 2
Cit = [ CipRoEpslyiEp,Lp)dR (3.20)

1
Ry

is determined by R-integration of (3.10) between the limits Ri =

& minRy (E;5L%), R (E¢,L2)] and RY = min [Ry(E;,L2), Ry(Ec,L2)1. The Towest

N -
- bound vibrational energy of the AB pair is -D and L;f is the square of the .jl
!‘I maximum angular momentum (ZmIEfIAz)for Ef < 0 or infinity for Ec >0 for a .
.A .. . .]i
ij. given energy Ef. R

3.5 E-Equations.

On integrating (3.12) over all accessible R consistent with (Ei,Ef), and

}; on adopting the appropriate transport equation (2.71), the densities .
o ) H

R, =

s,die ..y o s,d .
ng (E;st) = g n (R,E;5t)dR (2.70)

. per unit dE, then satisfy ?é
% e
o s i - .S
. -D
iﬁ where -D is the energy of the lowest bound level of AB, and either .
= an’ o =
). d d ) = —1 4 Yim(aeRZ i )] - - - I
7 dt ni (E110,t) 3t + ;_12\[41!’[2 J‘i('%’E'I ,t)] 4n i’ nl(R’Ei’ 6= Z’t) .
- {_!f 5% (R2p2)%} dr (3.21b) 5
- p i s
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for £ > 0, or

. A

: d
\ _ B
i -dit n? (E1<0;t) = .a_t]— - 4‘"’[ f n (R’E, 6= %;t) + IAn+(R,E, o= _;_;t)
n-. 5
vV 3 (2.2
2 2R (R%%)g oR (3.21c)
= for E < 0, set equal to the collisional rate
¢

The index i specifies only the energy Ei' The equilibrium rate Cif in
(3.19) for E; Ef collisional transitions at all accessible R and angular
momenta L2 satisfies detailed balance and, in terms of (3.16), is

Rie
Cip = [ CieRIR = Oy (3.22)

! where Rif is the minimum of the outermost turning points Ri and Rf associated

with E; and Eg, respectively. The normalized distributions in (3.2la,b) are

R R
o i i,
> vi(t) = ny(E55t)/ng(E;) = [ ny(RE55t)dR/ [ ny (R,E;)aR
o]
R R
_ i . n i,\‘ ]
o = £Y1(§-51 st) ny(R,E;)dR/ gni(B’Ei)d«B (3.23)

in terms of (3.17),and become independent of Ei for Ei-equilibrium in n,. The

collision rate (3.15) integrated over R is




R
if
"i(Ei;t) vif = é "i(ﬁ’Ei;t) “if(R)dE (3.24)

which reduces to (3.22) for C;¢ under full equilibrium,

In contrast to the above derived transport-collision equations, (3.7) in

2 . ' . s
(%,Ei,L ), (3.12) in (ﬁ’Ei) and (3.18) in R, eq. (3.21a) for n. appears
uncoupled from (3.19b). It however remains complex in principle since the
collisional rates (3.24) and (3.15) are determined by the solutions n?’d(g,Ei,Lz;t) ;ﬂ
to the original set (3.7). The above sets are equations satisfied by the .
integrated quantities "1(53Ei;t)’ n(%;t) and "i(Ei3t) have all been derived 5ﬂ
from the basic set of Master Equations (3.7) for non-equilibrium in R, E and Ry
Lf. Assumption of equilibrium in at least one of the variables Lf, Ei and R -
provides the following simplification via reduction in the dimensionality of I%
the solutions.
;3;‘!
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o
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) 4. Various Equilibrium Limits
) 4.1 L2%-equilibrium; (R,E)-nonequilibrium
When thermodynamic equilibrium among the angular momentum levels is
established in "1‘+ and ni' independently much more rapidly than equilibrium
» associated with the remaining variables, E; and [t, then (Appendix A)
+ 2 vt 2
. ns(RL.E;,List)  ni(RLE,LY) .
- 1}3 LA 11 - [2R2p2|cose|] ! (4.1)
8 T(R,E, 5t) nT(R,E.)
AT i‘wr Ty
2
and hence the normalized distributions Y?’d(}\?‘,Ei,Liz;t) are independent of Li'
o The current (3.9), reduces to
r
ok .5 ,d 2.\ _ s,d . 2 2
' and is independent of Lf so that the Lf-integrated current (3.14) is
.S ,d ey . s,d ey s,d " .
J.‘ (Q,Ei,t) =1/2 vin.i (B’E’i’t) = 1/2 Y-i J'I (403)
s,d . e
where Y; " are the normalized distributions (3.17).
The equilibrium total current (Appendix A) and its gradient are
- N ~S exp(-Ei/ke) [
i.(R) = ns(R,E v, = 7375 8rmlE.-V(R)]] , (4.4a)
4 34 i RsEy)vy [anke]3/2 i ]
and
1 3 % 1 V]
2 R Ry [R (E-V) aR]Ji (4.4b)
[




a relation which is intimately connected with (2.10), since R23i for constant E varies

2 _ 522
as Lmax = R%p~.

The derivative vanishes at R = A, the radius of the sphere which
intersects the maximum number of bound (E,Lz) orbits possible at a given
energy E < 0.

For Lz-equilibrium (4.1), the directional density (2.37), -

. "
)N L P e "
s . . A S N

ny(RE;»85t) = 2RPPZ cose ny (R,E;,L;%5t) = (RE t) (4.5)

» per unit dB dE d(cosé) is therefore independent of 9._The (R,Ei)-set of Master
. Equations (3.12) reduce,with the aid of (4.3) - (4.5) for L2-equilibrium,to

S
- - an.
L d s 4) = 3,1 8 |1p2 d
+ at "y (RoEgst) =55+ 22 3R [2 R™ vy1Rs t)J (R) E; :
f dE [y (R;t) - y?(R;t)] C.(R) (4.6a)
_V(R)f f i if
and to -
d
7 d d i, 3|12 s=d, 1 3 ,1.,2%
. dt "i(B’E1 at) 3t + RZ aR [2 R Y ‘R t) (R)] 1 - ('Yi+'Yi) E""a‘ﬁ (_2' R JT)E.l
. d ”
A = yAR:t) - vAR;t)] C.o(R) (4.6b)
- V(R) f [ fin it ] if

where i now snecifies Ei alone.
The upper (-) and lower (+) signs in the third term of (4.6b)

respectively apply to region I (E 2 0, all R; E <0, 0 <R £A) or to region

II (E<0, A <B <B).Itis important to note that the four equations obtained by -
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Bates and Menda§23 from conservation considerations in the interval dEdR and

T

from detailed balance arguments can be rewritten compactly in the form (4.6)
with the explicit time dependences an?’d/at ignored for all Ei and R.

Since (Eq. (2.3)),

;lz[R(RZJ)] =Ri“iR(RZJ vy f )
;i it is now apparent that consideration23 of the variation with R of the flux
gﬁ appropriate to constant Ei is equivalent to consideration of both streaming terms
' which separately give rise to diffusion and drift, respectively, in contrast to
- that earlier thought (ref. 1, p 449).
For Coulombic attraction, V(R) = -eZ/R, for example, the set (4.6) yields
the coupled set,

PR (2 E;-V) d]w
dt i

- 1 aY1
n; (R,E;5t) —?_ 2 _-TE V) i

where i denotes Ei’ and

[ )
d . an1 1 3Y1 |2E -v| d. A
» 3t N (ReEyst) =5+ 7-[ _TE__VT Yi | i
=_V(R) ¢ [r#R:t) - v§(Rst)] celR) (4.7b)

E? which can be solved by numerical techniques. '
. Since R-equilibrium is established at low gas densities N where W
i relaxation in internal energy E is the rate limiting step, the set (4.6) for |

non-equilibrium R and E is naturally more appropriate for low to intermediate

N. In the 1imit of high N, (Maxwell) equilibrium in scalar momentum p, [or
ii kinetic energy T = E; - V(R)]is established, and relaxation in the separation

R is the rate limiting step. Hence, a more natural set of variables for

intermediate-high N is (R,T) and the associated transport equation is provided by
;, (2.20). For Lz-equ111brium, the appropriate set satisfied by
- 45
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VAR, T5e) = SR, TH0 /A RLT) (4.8)

is therefore

' ans. n
vi{ 5 1,2 ey
oot -5 (3], - [l o S
i
= c{ dT [st(g;t) - yi(g;t)] Cig(TysTe) (4.9a)

where the equilibrium rate Cif is simply a function only of Ti and Tf but not of R

(see Appendix B), and

ang
Ly Lital _favif 8l 1 /Llg2s )Y
it T2 HBR)Ti (aRHaTi’R] {2 R Yi(B’Ti’t)Ji(R’Ti)>

U

d d
af ni(%aTi;t)

[l
)

15794y 1 afo
2 bt ) g R{R (BT |
T T P
= g de [Yf(ﬁst) < Yi(g’t)] Cif(Ti’Tf) (4-9b) -
where yi(B,Ti) is given by (4.4a) with Ti = Ei - V(R). Thus, the complexity -

is shifted from solution of vmtem-type22 integro-differential equations

(4.6) with the first order differential taken with respect to one variable, R ~
and with the R-dependent function V(R) as an integration limit, to solution of
integro-partial differential equations (4.9) with first-order differentials
now taken with respect to two variables (R,Ti) but with fixed (0,») integration 1imits.;,

In the limit of high gas density N, the distribution in kinetic energy T -

. .t "
e tatate e aas




is Maxwellian (2.27), Y?’d(Q;t) are independent of T, and the collision sides
of (4.9) vanish. On integration over Ti' (4.9) then reduces to the coupled

set (2.22a) and (2.33) with JR) is given by (2.29).

-
e
- 4.2 jL?,B)-equi]ibrium; E-nonequilibrium
o If, in addition to L2-equilibrium, equilibrium in R is established for f
3
e the total density niS (but not for the net density nid) so that relaxation in -
S ¥
. E is the rate limiting step, as at low gas densities N, then ﬁ
~ S . " \1
"1(B’Ei’t) < "1(5’Ei) (4.10) "
'S ni(Ei;t) 'ﬁ’i(Ei) ol
;f and Yis (but not Yid) is therefore independent of R. The set (4.6) reduces in this
| limit to, ¥
- j
‘ S ~
d s i 1.3 102 digey¥q. 1 s _ .S 5
e R n'i (r\,’E'l ’t) = —t" + —7 'a—R [ ? R Yi (5 ’t)Ji] = f dEf [‘Yf (t) Y]- (t)]Cif(R) N
" R -V(R) g
:
n (4.11a) .4
" and to, !
r. ]
d dig g .. 2", vilRit) o 1.2y, o do do. 1
R -V(R) 5
R
-l -3
(4.11b) g
]
. where (+) and (-) apply to regions I and II, respectively. Since yid(R + o t) ﬂ
. J
N
l. for E; > 0, and j; at the turning point R; = B for bound levels (E; < 0) both 3
. .
-.'. :]
q
. 47
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vanish, then integration of (4.11) over all accessible R yields, in terms of

the integrated equilibrium collisional rate (3.20),

an% ;

S
1

for the total probability density which is decoupled both formally and in

practice from its companion,

d R d
an; i 3y
d dig..t)=—d71 7 1
at " Est) =5p 2 [0 (aR ) dR
R
" [ar [ d
REPE: [¥4Rst) - v3(Rst)] Cy4(E;.E4oR) (4.12b)

for the net balance of expanding contracting pairs.

This set (4.12) corresponds to the case of equilibrium for nis in
(R,L;%), via (4.1) and (4.10),for n ¢ 2
s,d

in Li alone via (4.1), and of

non-equilibrium for both n in Ei alone. This case is, in general,

appropriate to ion-ion recombination at Tow gas densities N. It is not,
however, appropriate to ion-atom or atom-neutral association since here, in
contrast to Coulombic attraction in ion-ion recombination, the A-B interaction

via the angular momentum barrier can support bound states with positive

. .y . 1
energies and angular momentum transitions are important. 2

+ )
is assumed for N then Y? in (4.12b) is zero.

When R-equilibrium

Rates for association/dissociation can be determined directly (§ 5) from
(4.12a) without recourse to (4.12b) which furnishes via (4.11b) the net
densities niD(B,Ei;t) and associated net currents (4.3). The above collisional input-
output Master Equation, (4.12a), has been the governing basis of many studies

6-11 13,14

of ion-ion recombination and atom-atom association at low gas
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densities, and was there deduced from simple arguments based on the net rate
of growth of pairs in energy level E;. The complementary Eq. (4.12b) or its
basis (4.10b) is new and serves to complete the picture of recombination at low

gas densities.

4.3 R-equilibrium; (E,L )Aponequ1]1br1um

Even in the limit of low gas densities N, Lz-equilibrium is in general
not obtained except for the specific cases of interactions (as Coulombic)
which cannot support an angular momentum barrier at positive energies. For

ion-neutra]lz and atom-neutral association, it is essentia]12 to acknowledge

departure from L2-equi11br1um. Low N implies R-equilibrium in nf, i.e.,
nRAE; e n e 2. -1
- A s e [2evR® cose e (4.13)
. " 9 -
n]\E .Li,t A
where R (Ei.L123 15 the *'me <ee Appeng'x B' to complete one radial round
trip between the turr'ng po - ~v< = arc %.. Both the flux, which then reduces to
2 s Z . 2
RO JUTRE WS = T B S 2 e, L)) (4.14)

and Yis are then all independent ot R. The (R.Ei. L?)-set {3.7) reduces to,

s
d s ML s e
15 15 (R, L )~3t—*;ga—g[" JHR'”]E1,L2
.l ’
2 2 .
= [dE. [ dLS [y )| Cip(R.E4 LS ELLE) (4.15a)
_Vi(R)f o f [ f ] if e

where index i denotes (Ei,Liz), and to
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an, © cf
d d 2 o1 2 r.d d
Gt Mg (RELTst) = gp- = [ dEe [ odif [vE(R.t) - 1§(R.0)]
'Vi(R)
2.0 2 y
Cie(RLE 5Ly ELLY) (4.15b)
which is fully decoupled from (4.14a). '
The R-integration densities, J
Rz Y
S, 2. - S9d 2 -
nSHEL L5 = [ o REL L) aR (4.16) -
R
l .
. =
therefore satisfy the set
2 .
S R L
an; 2 ol tf
d s 2.y - 1 _ 2 1. s S; |
at N (Epolyst) =5 I{ dR Vf(g)Ef [odg [ve(t) - vi(t)] cie(R) g
1 T4 ° )
(4.17a)
since the current jid vanishes at the end points, and -~
2
d R L
an. 2 s tf
d d 2.y _ 1. 2 rd,,. d/p.
-CE n‘l(E'l’L'l ,t) = S__ = f d,% def f de ['Yf(,%st)"Y.i(,%at)] C'If(R) (4.l7b)
R, -V.(R) o
1 i
which are now fully decoupled from one another. :
j‘ The integrations in (4.17a) may then be re-arranged to yield R
b" . Lng ®
i d s 2,02 2 r.s s

. 1

e 2 2 VL
L where R, = min [RZ(Ei’Li)’ Ry(Eeslp) ] > Ry = m1n[R1(Ei,L§), R2(Ef,L§)], where -
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L;f is the square of the maximum angular momentum, (2m [Efl Az)for bound states

or infinity for dissociated states],for fixed Ef and where -D is the energy of
the lowest bound vibrational level of the AB pair.

Rates for association/dissociation can be obtained (§ 5) directly from
(4.17a) without recourse in principle or in practice to its decoupled
campanion (4.17b), which yield the net densities n.%(R,E;,L.%;t) and
associated currents j1¢.

In summary, coupled sets of Master Equations, (4.6), (4.9), (4.12), and
(4.17) appropriate to non-equilibrium only in (E’Ei)’ (g,Ti), E;» and (Ei’Li)
sets of variables have been systematically deduced from the basic set of
Master Equations (3.7) for general (R,E;, Li)-non equilibrium. Even for the
most reduced case (4.12) of non-equilibrium in E; alone, the subject of many

6-14

previous treatments , the present procedure has uncovered an additional equation

(4.12b) valuable for providing the full description of the recombination

process at low gas densities.
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5. Rates and the Macroscopic Transport-Collisional R-Equation

5.1 Various Energy Blocks

The full transport-collisional equation (3.12a) for the density

nis(ﬁ,Ei;t) of (3.13) in terms of the net current jid of (3.14) is

s
an. ©
4,5 ct) = —1 1 3 p2.4d =
gt Ny (ReEsst) = =+ =5 25 RE §,°(R)g = - { S;¢(R.t)dE, (5.1)
R i -V(R)
where

Syp(Rot) = 0 S(REE) vip(R) = neP(REg ) vei(R) = =S¢y (Ryt)  (5.2)

is the net two level collisional rate of depletion of energy level Ei or net
rate of production of Ef. The minimum energy level consistent with fixed R is
-V(R) which always lies above -D, the lowest energy level.

Subdivide the full region of internal energy Ei into three blocks: the
continuum block C with 0 < E; <=, an excited block E with -S < E;, <0 and the
block S of lowest excited levels in the range -D < E; < -S. The block S in
principle comprises all those levels between the lowest vibrational level -D
(v5 eV % 200 k (300/@) at both temperature © and an intermediate level -$S
defined as that level below which the net probability of direct dissociation by
collision with the thermal bath is negligible. In practice, level -S arises
naturally from the collisional mechanics via the cut-off effect of the Maxwellian
distribution of the gas at temperature © and generally lies ~ 10 kO below the
dissociation 1imit (taken as zero energy). The central block E of highly excited
bound levels is sandwiched (Fig, 1) between the continuum C - the fully
dissociated block - and the fully associated block S and has no internal
sources or sinks but is coupled by collision to both C and S. Each of C and S
may be considered as a source/sink combination interconnected by E when
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b
N, 4
5
A association is the dominant process, or as a sink/source combination when
_n dissociation is dominant. Dissociation can therefore occur via stepwise
collisional excitation through intermediate block E, as well as directly.
" The macroscopic pair distributions
L
( S S .
n.(R,t) = g n; (5,E‘.,t)dE’- (5.3a)
!:...
T
in block ¢,
." O S
- ng(Rst) = [ n; (R,E, ;t)dE, (5.3b)
(': [o]
-;:'. in block £, and
-
i n.(R,t) = -Sn S(R,E.;t)dE (5.3c)
[ 5 s&3 1 .
N
b over those levels in the energy range -V(R) < Ei < =S of block S accessible by
[ ) collision at R, therefore satisfy
L
i . ) [ ) - ]
; 2 Nc(Rot) + 99, = - gdei_\{ S;g(R,t)dE, , all R (5.4a)
3 2 n (R,t) + Veg = [odE ”s R,t)dE R 5.4b
’ a3t Me'R» ) noRe --S i_\{ 'if( 't) f » RXZ S (5.4b)
-S
- 3 - £ ®
2t Ng(Rut) + o = --6 d i_{ S;e(Rot)dEe , R <R (5.4c)
, where Rs is the classical turning point associated with level -S. The
L corresponding contributions from blocks C, E and S to the net radial current
”;}".
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UR2) = [ 3 REGEIES = I (Rat) + Jg(R,t) + I (R,)

are Jc, Je and JS, respectively. Since Sif = 'Sfi

integration over Ef in (543) is, in effect 0 while the lower Ef-]'illllt

the upper limit to the

-V is, in effect, =S for (5.4c).
Since the net effect of collisions is null for this closed system,

summation of 5.35(a)-(c) yields the continuity equation,

ZF D0 Rt) * ng(®,t) + ng(R,6)1 +7-9% = 0 (5.6)

which agrees with (3.18a). For R Z.Rs» block S does not exist and

0 [ ]

TN (Ret) + 704, = - [ s LR 2R (5.7)

holds instead of (5.4b,c). The lower Ef-limit-v in (5.7) is 0, in effect.

Since jid vanishes at infinity (for Ei.l 0) and at the classical turning point

R; (for Ei < 0), integration of (5.1) over all accessible R-space yields

® R]f oo

i ®
35_5 S;¢(R,t)dE, = '-é dE £ Sig(R,t)dR = -_é S;p(t)dEs (5.8)

2 ]
at Mi(Ept) = -

O Y~ O

for the rate of change of density per unit energy interval. Within (5.8), the
formal order of (R,Ef)-integrations has been interchanged, Rig = min(Ri,Rf) and
Rif
S;p(t) = £ S;¢(R,t)dR = -Sei(t) (5.9)

is the net frequency (per unit dEidEf) of collisional transitions (i + f)

between Ei and Ef. Hence, the rate of change in the configuration density




1
&
) ] o s _ [ ] :
n(t) = [ n (R,t)dR = [ dR [ n;>(R,E,5t)dE; = [ n,(E,t)dE;  (5.10) A
o o 0 o '
<
<
of free pairs is exactly, N
3 3 ™ o) ®© 0
3 "e(t) = - [ dE; [ dR [ Sip(R,t)dE¢ = - [ dE; [ S;e(t)dEs
0 o -V 0 -D
(s} -]
= é dE; [ Sye(t)dEg (5.11)
- [¢]

which can also be obtained by R-integration of (5.4a). The corresponding rate

of change in the density

R R =S

s s =3 .

2 = S . = .
ng(t) -{ ng(R,t)dR = ! dR J n>(R,E st)dE; = [ ni(E;,t)dE;  (5.12) ;
- -D .

of pairs bound in block S is exactly

. R.
oA -S i o -S ® ® =S
.~'. 3 = - 2 - =
v 3 Ns(t) = _[{ dE, c{ dR-\jI' S;¢(R.t)dE; _g asi_g S;g(t)dEg _g dEi_[{ S;¢(t)dEg
(5.13)
which also follows from R-integration of (5.4c).
Integration of (5.1) over R from 0 to Rg yields,
Rs R
_3_f n S(R t)dR + 4xR 2 ; d(R t) = - ISdR I“S (R,t)dE (5.14)
at ) M W T T J s AR LNt ¥

which expresses continuity for each level Ei within the reaction sphere of radius

Rg. Hence with the aid of (5.13),

R R
S L) © s =S

) s 2 r.d _

—at-g dE; £ n;>(R,t)dR + 4mR _gJi (Rs,t)dEi—-_g dE £dn_\{ Si¢(Rst)dE¢  (5.15a)

-----------------------------------------
..........................

.................



« =S
= - £ dE; [ S;¢(t)dEg (5.15b)
- -D

= - an.(t)/at (5.15¢)

Eq. (5.15b) simply states that the flux entering the sphere equals the sum of
the collisional rate of production of S-pairs and the rate of increase of the
contribution fromthe reaction volume to the density of C and E pairs. Eq.
(5.15c) also follows from (5.6) without the intermediate collisional step.
Integration of (5.1) over R from RS to R,, the classical turning point (for Ei
< 0) or infinity (for E; > 0) yields

R

i R,
3 . v
3t/ 0 R0 - k3Rt - W% [VsifQB't)dEf’Ri>Rs (5.16)
R s -
S

the continuity equation for each level Ei external to the reaction zone.

Hence,
o R'i ®
9 S 2 . d -
Ef;é dEin n;"(R\t)dR - 4R, _é 3; (Rg,t)dE; =0 (5.17)
s

due to the null effect of collisions. Addition of (5.15c) and (5.17) simply

yields the conservation equation

2 -

5% [nc(t) + ne(t) + ns(t)] =0 (5.18)
for the sum of the densities (5.10) and (5.12) in blocks C and S and of

R
0 o 1
ng(t) = é n(E;,t)dE; = g dE; g ni (R,E45t)dR (5.19)

the density of pairs in block E, as expected for this closed system.
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5.2 Association and Dissociation Rates

From (5.11), the net rate of depletion of C-pairs (into all bound levels

in E and S) is therefore

of 3N . ad L ad 0
R.(t) = - c{(a—tl) dE; = { dEi-]{ Sif(t)dE, = £ dEi_If) S;¢(t)dEg (5.20)

which is the net downward current across the dissociation neck at zero energy

and which, with the aid of (5.9), equals the net rate of production

Io ( Bn,i fo ®

= dE, = - | dE. S. (dE (5.21)
- at i b p if f
of £ and S-pairs, as expected for this closed system. The net rate (5.13) of

production of S-pairs alone is

=S f3n, =S L © -S
- —1- 2 - =2
Rs(t) j {at dEi [ dEi f Sif(t)dEf f dEi f Sif(t)dEf (5.22)
-D -D -D - -D
so that, with the aid of (5.18),
o 8n1.
Rc(t) = Rs(t) +sf, (W dE‘i (5.23a)
o o
= R (t) --g dEi_l}; Sip(t)dEe (5.23b)

Thus Rs and Rc are equal when ani/at % 0 in block E i.e., constant (in
energy) current flows through E which is in quasi-steady-state (QSS). For any

fixed energies E1 and E2, then (5.9) yields
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E2 E:2
[ dEy [ Sie(t)dEc = 0 (5.24)
R

which represents the null effect of collisions in the closed interval E; < E,

< E,. The net downward current (5.20) across the dissociation neck can then

be rearranged in terms of the net downward collisional current across

arbitrary level -E as

R.(t) = j dE; £ S;¢(t)dE + f (an;/at)dE, (5.25)
and the net downward current (5.22) across level -S can be similarly

rearranged as

R (t) -éch _g S;g(t)dEs - f (an;/3t)dE; (5.26)

Note that (5.26) reduces to (5.22) directly when -E = -D, and that (5.25)
reduces to (5.23a) and to (5.20) when -E = -S and when -E + « respectively.
The expressions (5.25) and (5.26) provide alternative procedures which are
valuable for accurate calculation of Rc(t) and Rs(t) particularly when block E
is in QSS. In the absence of QSS, RC and RS are determined by the exact set
(5.20) and (5.22) respectively.

On introduction of the (time-independent) probability PiA that pairs AB
with internal energy Ei are considered as associated then the overall rate for
association is,

an,
RA(t) f P. A(E ) (at )dE = R (t) + f P, A (331 dE; (5.27)

since PiA is unity in block S and is zero in block C. The overall rate for

O |
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dissociation is similarly,

Dipy - (5 D 3Ny ° o[

RV(t) -]{ PiUES) [ ) 98y = - R (t) +é' Pi |57 ) %€, (5.28)
where the probability PiD that Ei-pairs are considered dissociated is unity in
the continuum block C, and zero in the fully associated block S. Pairs in

block E are in the process of associating and dissociating with probabilities

PiA’D < 1. Expressions (5.27) and (5.28) are exact for gA-D

(cf §2.1, §7.2).

(t) under all conditions

Since

e + 20 -1 (5.29)
addition of (5.27) and (5.28) yields, with the aid of (5.23a),
RA(t) +RP(t) = 0 (5.30)

as expected for this closed system.

Provided block E is in QSS (i.e., ani/at ~ 0), the association rate RA(t)
is therefore identical to Rg({t), the net rate collisional rate (5.22) or
(5.26) for formation of S-pairs and the dissociation rate RD(t) is identical
to -Rc(t), the net collisional rate for formation of (-pairs. As shown by

(5.23a), Rg and Rc are then equal. Otherwise (5.27) and (5.28) must be used
for RA’D(t).

In § 7, extrema Rf’D(t) to the rates RA’D(t) at time t implies the QSS A

condition. Hence these extrema in addition to (5.30) satisfy

RA() = R (1) = an(t)/at (5.31a)
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= aNp(tINg(t) - k nc(t)

= o NA(t)NB(t) [1 -r(t)]

and

RO(E) = R (t) =an_(t)/at

=k n(t) [1 - r-l(t)]

where o is the effective two-body rate (cm3 s'l) for association of
E dissociated species A and B with densities Na B(t) em3 and where k
frequency (s'l) for dissociation of S-pairs AB with density ns(t).

quantity

r(t) = [NyNp/Ny(t)Ng(t)10n (£)/R ]

(5.31b)

(5.31c)

(5.32a)

(5.32b)

is the

The

(5.33)

is a measure of the departure of the densities from their corresponding

time-independent values NA ) and :s achieved under full thermodynamic

equilibrium (I = 1) with the gas bath M,

The QSS rate a is therefore determined by the equivalent expressions

® -3
Ra(t) = aNp(E)Ng(£)[1 - (1)) = [ dE; [ Sye(t)dE
-5 -D

D. - 0
= -Relt)= [ dE; [ S;.(t)dE,
0 -D

® -E
= [ dE; [ S.c(t)dE
-E 1_D if f

(5.34a)

(5.34b)

(5.34c¢)

RaEhaAd |

A
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which are respectively the rate Rs for formation of S-pairs, the rate Rc for

depletion of C-pairs and the rate for formation of all pairs with energy E; <

|

-E. The QSS-frequency k for dissociation is provided by the detailed balance

o

fer relation

I
vl R L -
'.L:

) Evaluation of the exact expressions (5.20) for Rc(t) and (5.22) for Rs(t)
ﬁi require solution in general of the time-dependent coupled set (3.7) for the

' microscopic densities "i(B'Ei’Liz;t) or of the set (4.6) for ni(B,Ei;t) when
(' equilibrium in L1.2 can be assumed. It is only when block E is in QSS that

rA.D

(5.27) and (5.28) for the association and dissociation rates (t) are equal y

P
I
S
e

to RS and-Rc respectively such that the coefficients a and k are determined

]

L |

il directly from (5.34) and (5.35). 4
When block E is not in QSS, then the exact rates (5.27)and(5.28) with (5.8)

. yields, .

» A,D  AD. ]

£ RTE(t) = [ PYUdE; [ Seq(t)dEg (5.36) )

-D -D

which is exact and which reduces to (5.31a) and (5.32a) only when the QSS-condition

)

[ S;¢(t)dEe = 0 (5.37)
-D

3 is satisfied in block £ (0 > E; 2 -S). When approximate or variational distri-

butions (§7) are adopted, then (5.36), rather than (5.34), is the required expression.




5.3 Macroscopic Transport-Collisional R-Equation

With the aid of (5.4)-(5.7), the distribution

n(R,t) = é nis(g,Ei;t)dEi = n (R,t) + n (R,t) (5.38) N

in combined blocks C and E, and the associated ..et current
. d . . )
IRt = [T RE5EIE; = I (R,1) + Jg(Ryt) (5.39)

then satisfy, for R > RS.

R+ Td =0 , R>R (5.40a)
which agrees with (3.18a) since ns(R 3_Rs,t) vanishes. For R < Rs’ —
:1: ) © =S
x 3t MRt) + 7oJ = -_é dEi_J Sis(R,t)dEe  , R <R
= - V(R) n(R,t) (5.40b) -
) wherein v(R) is introduced as an effective frequency for collisional absorption -
into block S of C and E pairs with fixed R < Rg. Integration of (5.40a) yields, »
3 _ 2 =
3T { n(R,t)dR = 4mR " J (R ,t) (5.41a)
S =
- with no flux at infinity . With the aid of (5.8) and (5.13), integration of (5.40b) .
- yields :
R R S -
3 S 2 ) S a -
o £ n(R,t)dR + 4nR_© J(R ,t) = - c{ dg-é' dEi_\{ Si¢(R,t)dE¢ (5.41b)




© -5
= --£ dEi-é S;¢(t)dEe (5.41c)

= - ang(t)/at (5.41d)

which agrees with (5.15) previously obtained from (Ei,R)-integration. The continuity
equations (5.41a) and (5.41d) also follow from (5.6) since Js(Rg,t) and
ng (R>R_,t) both vanish. Addition of (5.41a) and (5.41d) yields

altj n(R,t)dR + ait ng(t) =0 (5.42)
(¢}
the conservation equation (5.18) appropriate for this closed system.
Define the averaged local rate ag (cm3 S'l) for absorption within RS by

R
s © =S
agn(Rg,t) = [ v(R) n(R,t)eR = é dE, é Sig(t)dEg (5.43)
5 - -

so that the net rate (5.31) with (5.13)for production of pairs in block S is

therefore

2 0 (t) =ay n(Rg,t) = o Np(t) Ng(t) [1 - r(t)] (5.44)

under quasi-steady-state (QSS) conditions in block E.
Evaluation of « still involves solution of the phase densities,

S 2. . s . 2
n, (&,Ei,Li ;t), in general, or n, (Q,Ei,t) for L

-equilibrium, from the
appropriate set (3.7) or (4.6) of coupled equations.

5.3 Approximation and the Debye-Smoluchowski Equation

Assume in addition to QSS in block E where ani/at ¥ Qthat those pairs with

R < RS in the combined blocks C and E are also in steady-s*ate, i.e.,

R
2 [ n(R,t)dR = 0 (5.45)
o}




so that (5.41¢) with definition (5.43) reduces to

4nR52 JR,t) = - ag n(R,t) = - an (t)/at (5.46)

For R 3-Rs the macroscopic current J can be approximate& by (2.76) i.e., by
JRR,t) = JIRR ) = -Dgn - [(K/e)TVIn (5.47)

since J (R>R.,t) and n (R>R ,t) both vanish. Provided the local rate aj for
absorption is regarded as a pre-assigned external parameter, then (5.46) is,
in effect, a radiation boundary condition to the solution n(g,t) of the
macroscopic continuity equation (5.40a) with J given by (5.47) . Since

t
n(t) - n (0) = aq f n(Rg,t)dt (5.48)
(o]

T(t) is therefore known from (5.33)so that the required rate of production of
S-pairs is determined only by n(RS,t) via

aN,(t) NB(t) = a, n(RS,t) 1 - 1‘(1:)]'1

(5.49)

Hence under QSS in block E, the steady-state assumption (5.45) and a.known local reaction
rate a,, the problem is reduced to one of transport alone. The combination
(5.40a) with (5.47) for the current and the boundary condition (5.46) is
referred to as the Debye-Smoluchowski Equation (DSE) familiar in the theory of
reactions in condensedmatter and of coagulation of colloids in solution. Apart from a
previous account} DSE nhas not to the author's knowledge ever been derived from

a microscopic basic. If, however, aq is not known (as is usual) then the
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present full microscopic treatment based on the coupled transport-collision

equations of § 3 and § 4 for n.s’d

i is required.

24-26 27

Refs. (24-27) provide preliminary reports and a full detailed account

of the search for analytical solutions to DSE for general interaction V(R) between

A and B.




6. Time Evolution Towards Equilibrium

Relaxation of a plasma,or of any subsystem (A,B,AB) in a bath of systems
M,from any initial non-equilibrium distribution is, in principle, a time
dependent process which proceeds towards equilibrium under various distinct
time scales. A very fast initial transient characterizes Phase I, during
which a new distribution in (E,E,Lz) is rapidly established. This is followed
by a much slower Phase II, during which recombination, association or
dissociation and chemical reactions based on the newly developed distribution
of Phase I proceeds towards eventual equilibrium via a dynamic balance of
collisional association and dissociation established in Phase III.

During Phase I, the (B,E,Lz)-distribution collisionally relaxes within
(collisional) time L3 to a quasi steady state of excited levels which persist
throughout Phase II and is the distribution characteristic of the eventual
equilibrium established as t/T1 > =, Phase Il is characterized by (reaction)
times T, & Tp, Ty, OF T for recombination, association from
non-equilibrium free states or dissociation from non-equilibrium bound levels
(whichever pertains to the initial conditions). Since rlis generally of the
order of the inverse of the collisional frequency v, and since
association/dissociation proceeds on a much slower time scale, r] << T, such
that the quasi steady-state distribution attained in Phase I persists
throughout Phase 11I.

The beginning of the third Phase (III) association or dissociation
depending on the overall direction as determined by initial densities, has
produced a significant population of bound pairs AB or free pairs A + B such
that the reverse process (dissociation or association) becomes important with

the result that the subsystem relaxes toward eventual equilibrium.

Recognition of Phases I and II facilitated many pioneering and tractable
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6-12,17,18

studies of recombination processes in general, based on the solution

1314

of integral equations, and the study via a diffusion (weak collision) approxi-

mation to association/dissociation processes at low gas densities.

The work of Bates et al.5-3 9-11

and of Flannery was concerned with the
case of the concentrations Ny p of dissociated (charged) species >> Npg, the
concentration of bound systems, such that only Phase II and association were

6-11 jealt with low gas

relevant. Also previous work on ion-ion recombination
densities N. We are here concerned with theoretical development of both
association and dissociation in Phases II and III at all gas densities N, for
which the time dependent transport-collisional equations formulated in the

previous sections ( § 2-4) are directly relevant.

6.1 Net Transition Probabilities for Association and Dissociation

As an aid to clarity of presentation, consider first the following
analysis of eq. (3.21a) in which explicit dependence on the (R,Lz) variables
has been systematically integrated out from the original basic eq. (3.7a).
Eq. (3.21a) contains however implicit variation with (R,Lz) as characterized
by (3.13) and (2.70) for ny, and by (3.22) for v;. The (R,E,L;%)
and (§,E) sets (3.7) and (3.12) respectively may then be similarly analyzed
without any undue formal difficulty.

The governing equation for the conditional probability density n. of AB

i
systems per unit dEi is

2

where vif is the frequency of i -~ f collisional transitions (Ei - Ef) and -D

is the energy of the lowest bound vibrational level of the AB pair.
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Alternatively,
ani/at =-£ [Yf(t) - Yi(t)]cif dEf = 'adi/aEi (Golb)

in terms of cif’ the equilibrium collisional rate (3.22), and of Yi» the
normalized distribution (3.23). Since the energy levels of AB be sufficiently
close (relative to the thermal energy kO of the gas bath M), they form a
quasi-continuum and Ji(Ei’t) can then be interpreted as the net upward current (in
energy space) across level E;.

Introduce,
Afi = \)f,i - G(Ei-Ef)-é \)if dEf ’ (6'2)

the net probability/sec for f - i irreversible collisional transitions. Then

(6.1a) can be compactly written as,

where S, is defined by eqs. (5.2) and (5.9).

Since the AB-subsystem is closed, curve crossing and quantum tunnelling
AB z A+B being precluded at present,

[ (an./at)dE, = (3/3t) [ n, dE, = U (6.4)
-D -D

When relaxation in Li2 and R is much faster that Ei' relaxation, assume
by the end of Phase I that collisions have been sufficiently rapid to
establish a Maxwell-Boltzmann distribution f(Ei) in the energy E; > 0 of the

dissociated (A,B) species. The continuum distribution is then
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Yo(t) = INy(EDNg(t) FIED /NN FLENT B2 1, €y >0 (6.5)

where NA,B(t) are the time-dependent concentrations of the dissociated species

(A and B) or free ions (X+ and Y'), which approach their constant equilibrium
values ﬁA,B as t » »in this closed system. The normalized distribution (6.5)

is time-dependent but energy-independent. As association develops during phase II
the pair concentration of the lowest bound levels, within the range -S Z.Ei‘l

-D defining energy-block S, grows. Within S, energy-equilibrium is maintained

via collisions so that the S-block distribution, assumed to be

" =S =S,
YS(t) = "1' (E.| ’t)/"i (E‘I) =-é n'i dE'i/_é ni dE'i

- l\l -
= ns(t)/ns 1, -S>E,>-D , (6.6)

is only time-dependent. In this closed system, let the E-block be coupled to

the time-variations of C and S according tc the ansatz,

v;(Et) = PRGES) v (t) + P AR v (0) B3 (6.7)

where the coupling coefficients P].D

and PiA which depend only on the energy
will be later identified as being the net probabilities that bound AB pairs of
energy Ei will be collisional dissociated into C or will be fully associated
by collision into S. From the asymptotic conditions (6.5) - (6.7), the net

probabilities satisfy the conservation of probability

P]. + i =1 (6.8)
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as expected, since the complete subsystem is closed to mechanisms other than
collisional association/dissociation.

Distributions (6.5) and (6.6) can be also incorporated within (6.7) since C
and S are naturally characterized by unit net probability PiD (Ei > 0) for
dissociation, and unit net probability PiA (Ei < =S) for association,

respectively. Thus, (6.1b) yields,

ang/at = <lrg(t) - vg(1)] P - PP, deg (6.9a)

[re(®) = v5(8)] > - p.0)c,, ok, (6.9b)

which is separable in both time t and energy Ei’ a natural result of the assumed
;Qf form (6.7) subject to the asymptotic constraints (6.5) and (6.6).
iii The rate of change in the probability densities of pairs in each of the

blocks C, E and S is respectively,

; ang/at = =Ly (t) - vg(t)1L _[f)onA Cey dEg) 5 E5 205 (6.10a)
ﬁj for block € in a form natural when association (yc > ys) prevails,
E:
ﬁA ani/at = [yc(t) - ys(t)][.é°° PfD Cfi dEf - Pin-gmcif dEf] ; 0 Z-Ei > =S
(6.10b)
for block E and
any/at = -Lyg(t) - Yc(t)][_g° P oy dE(] =S 2 E;z D 6.10¢)
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for block S, in a form natural for dissociation controlled processes (ys >yc). Thus, the
D

N

energy distribution P,” once established at the end of Phase I is then

preserved at all future times in Phases II and III. Relaxation then proceeds

in time at a rate determined by the established P?’A

.
A

and Yi(t) towards

E’ eventual equilibrium when Yo T Vg + 1.
o
The upward current across any arbitrary level E is
IS4 - E
(- J(E;,t) = [ (any/at)dE; = - [ (an;/at)dE, (6.11)
R E. -D
v j
é? since conservation (6.4) applies to the system, closed between -D and =, so
that the currents J(-D) and J(«) across the end points both vanish.
ﬁf Thus, the net current across a level E inblock C is
l' J(E > 0,t) = =Ly (t) - v.(t)] °°dE ? p A C., dE (6.12a)
20 Ye Vs { ig f Cfi Of 6-
and the net current across a level E in block S is
» .
5 _ E 20 3
(-S 2 E > -D,t) = [yg(t) - v (t)] [f)dEi-é Pe Cey dEg (6.12b)
3 "
N
v which are directed down or up the energy ladder according as Yo > Y OF Yo < Ygo 3
- -
respectively. Thus, the overall direction of the relaxation is determined by o
e K
o the inequality ;
N
§ Na(tINg(2) | (t)
" < == (6.13)
A'B s

LIRS . - -
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which is originally established by the initial condition.
The net rate of growth of S-pairs or the downward current -J(S,t) into the
S-block is

-S
ans(t)/at =f (3"1/at)dE1 = 'J('S’t)
-D

= [y () - vg(t) 1o Nyl (6.14a)
which, with (6.5) and (6.6) for Yo s yields

ans(t)/at = o Na(EINg () - kg ns(t) (6.14b)

3

The (time independent) rate LR (cm s'l) of association and the

frequency kg (s'l) of dissociation in (6.14b) are hence given by,

ag Ny = k B = [ 0 dE; [P vo dEg (6.15)
and therefore satisfy (macroscopic) detailed balance. Characterization of PfD
in (6.7) as the net probability of dissociation of level f once accessed by
collision from level i is therefore appropriate, in keeping with (6.15).

When conditions are such that v, = NA(t)NB(t)/ﬁANB >> n(LS1,t)/n((S]) = g

~ U, association is dominant, and Y. decreases in time from a quantity >> 1 to
unity at equilibrium,while Yg increases essentially from zero to unity. In
the reverse limit, Yg > Y. % 0, for the case of a shock wave moving through a

molecular gas, then dissociation prevails until equilibrium when Yo o M 1 and

1

e
B

.




o the currents (6.14) vanish. The evolution toward equilibrium is described by K
F (6.14b).
) The net rate of growth of the C-pairs in (6.10a) or the upward current .
éﬁ J(0,t), (6.12a), entering block C is
- ®
o an(t)/at = [ (an,/at)dE; = J(0,t)
(o]

= Dyg(t) = o (£)] k. A (6 .16a)
(.
which, with (6.5) and (6.6) for Ye,s® yields
L '
b an(t)/at = ~a_ Np(t)Ng(t) + k  n (t) (6.16b) X

where (time-independent) rate a. (cm3 s'l) of association from the continuum

E} and the frequency kC (s'l) of dissociation are given by

P o 0
Ny
i n

'\:'\4_ _ A
a. NaNg = ke Ng = £ ; dEi_é Pe vig dE

3

£ (6.17)
which satisfies detailed balance. Thus, PfA in (6.7) is uniquely identified
in (6.17) as being the net probability of association of pairs in bound level

f once collisionally accessed from the continuum C.

i; The above expressions (6.15) and (6.17) for the rate of change of free
- (fully dissociated) C-pairs, and of fully associated S-pairs, respectively,
ra are exact, irrespective of any approximation used to determine the
f: probabilities P?’D in the E-block (0 > E; > -5).

In the quasi-steady-state (QSS) approximation, pioneered and used
E? extensively by Bates and associates in many studies® 811620 o¢ various types

. of recombination,
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—_i.9 . - 6.18
< =0 ; block E (03 E; > -5) ( )

since the frequencies of collisional production and destruction of a system i

of energy E; in block & are very large relative to the low frequency of

expliéit time decay of these excited levels i. The time-independent probabilities

in (6.9) are therefore solutions to the integral equation
PD [ . dE. = [ PO, .dE (6.19)
ig iff I f "iff ’

D

subject to the constraints Pi(Ei 2 0) =1 and P?(Ei < =S) = 0. Since the

system is closed, (6.4) applies i.e.,
anc(t)/at + ans(t)/at = -ane(t)/at = J(0,t) - J(-S,t) (6.20)

In the QSS-approximation, (6.15) and (6.17) are therefore equivalent, the
upward current J(-S,t) leaving block S being equal to the upward current J(0,t)
entering the block C.

On invoking the null effect of collisions (cf. eq. (5.24))

a -] -] - -]

-E -E -E -E -t -t
(6.21)

for an arbitrary bound level of energy -E within block E, the net upward

current (6.11) across -E is

J(-E,t) = -a,  Np(t)Ng(t) +k, n (t) (6.22)

e
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where both

®  -F

o . v -1 D D

S ag = (NyNp) {EdEi-é (P,” - Pe°)Cyp dEg (6.23)

- , , :

k- and k, satisfy the detailed balance relation

é: N

NANB % = Ng ke (6.24)

) From (6.11), 4
‘: f:; 1
® 0 |
. J(0,t) = J(-E,t) + [ (3n,/0t)dE, (6.25) *
o -E
. .
| il J(-S,t) = J(-E,t) --g (an,/3t)dE, (6.26)

&3 which correspond to (5.25) and (5.26) the set (a,, k,) is identical to the exact

set (as, ks) appropriate to the current J(-S,t) of (6.14) out of S and to

(ac, kc) for the current J(0,t) of (6.16) into C, only under quasi-steady-state
- conditions (3an;/at)= 0 in block E.

When initial conditions are such that

tidemmtindecd id b ot cofBendbo & o fosd adeadhchadedionedh o

r

. v(t) = Ny (O (/MG >> 15> n (8)/F = v (t) 40, (6.27)

;; then, the dissociation rate k ns(t) in (6.14b) and (6.16b), can only be neglected i
for times t (in Phase II) much shorter than the time required for the establish- 5
ment of equilibrium when Yo = v = L i

l 1




When Phase Il is dominated by association (yc >> ys) the solution of

(6.16b) is then,

1 -l __sat (6.28)

the familiar macroscopic law of recombination16 where time t is measured from
the beginning of Phase II when it is assumed that the densities NA(O) and
NB(O) of dissociated species are equal. Also the densities ns(t) of S-pairs

are given by the solution of (6.14b) which yields,
ns(t) + NA,B(t) = nS(O) + NA,B(O) (6.29)

ii when @, = ag = a i.e., the total number of pairs in blocks C and S are conserved

under QSS-conditions in block E.

As t increases, yc(t) decreases rapidly from a very large quantity, as

v (t) = [Ny g(0)/Ny g1 [1 + aNy g(0)e]™! (6.30)

while y¢ increases slowly, essentially from zero as,

aNy o(0)t | N, o(0) n.(0)
vs(t)=[ A,B } A8 {i—} (6.31)

1+“NA,B(O)t ng ng
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- The excited state distribution under (6.27) is

x p.D % p.D (6.32)
] v () B P v (£) + vg(t) B P v (t) .
e

- and is such that Yi v PiD Ye only for those highly excited levels i at time t
D when.ys(t) << PiD Yo a5 in Phase II.

o A1l of the previous studies of recombination were concerned only with

- Phase II and dissociation was neglected. When dealing, however, with

{2 evolution towards eventual equiliibrium (in Phase III) or with the enhancement

p of mutual neutralization (or curve crossings) by three body colliisions the

« full distribution (6.7), rather than (6.32) is appropriate.

- The solutions (6.30) and (6.31) which correspond to condition (6.27) are

' valid until a substantial fraction of associated pairs relative to their

’l equilibrium concentration have been created, and dissociation becomes important.

When initial conditions and times are such that

] Ys(t) >> 1>>yc(t) ~0 (6.33)
v

r-

;;' then the net process is dominated by dissociation. The solution of (6.14b)

_ yields for Phase II,

- ns(t) = nS(O) exp(-kst) (6.34)
-

;ﬁ the familiar macroscopic law of dissociation, and the solution of (6.16b)

yields the conservation requirement (6.27) when kS and kc are equal. As

i. Phase III progresses, e increases, association becomes important and equilibrium
I is achieved.

%
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6.2 Multivariable Separation

The above strategy (6.7) for separation of the variables E; and t can be -

easily generalized to cover multivariable separation. Define, for example

Yi(RoEgst) = PREY () + [1 - PH(R.ED vg(t) (6.35) -
i where P: is the net probability for eventual dissociation of an expanding (+)
E§ or contracting (-) pair with internal energy Ei and internal separation R. The -
- set (4.6) therefore separates as
$ 3 1 3 . 1.2,d.,, ¥ o Sior oS :
’t R (YC'YS) _R—Z_a—R 7R P, (R) Ji(R)] = (YC-YS)_‘{ dE¢ [P (R)-Pi (R)]cif o
3 {6.36a)
¥ and
iﬁ =
3 13 102,507 sypdy L3 (lp27 -
3 st T o) (g ar L2 REPTR) G - (P PyT) o5 5 (R 440
% -
8 = (v.-v.) [ dE. P3(R) - P.9(R)] C (6.36b)
-‘ Te™s fif i if -
j{ to be solved for the functions .
g ‘e
S 21 + -
3 Pi7(R) = 5 [Py (R.EL) + PLT(R,E,)] (6.37a) -
- and '
P.9(R) = 2 (P.*(R,E.) - P. (R,E.)] (6.37)
i 2 i " i | '

In blocks C and S, respectively, Pit is unity and zero, Pi'S is unity and

-

zero and Pid is zero. If the quasi-steady condition (6.18a) is assumed in block
E, (6.36a,b) can be solved independently of the functions Ye S(t). The set

(3.7) in R, Ess Li2 and t may be similarly separated.
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7. Variational Principles

7.1 Association/Dissociation Rates for non-QSS (Quasi-Steady-State) and for QSS.

A,D
i

Upon identification of P in (6.7) as the net probabilities for

association/dissociation of one AB-pair of energy E,, the overall net probabilities/

sec for association/dissociation are therefore

RAD(e) = é%;é PA+D(E,) ny(t)dE, o 35 (€4 ,t) (ap3°0/aE ) Gk, (7.1a)

with the aid of (6.1b) and of integration by parts, since the current Jj
vanishes at the end points to E; = (-D, =). Equivalent rates, obtained from

(6.9) for an,/at, are

3 pA . pA ®
RA(e) = 52 é Phn, (£)dE, _g PaE, _g Sy (t)dE,

" A * AA (7.1b)
for association where Sif(t) is given by (5.9) in terms of (5.2) and
[} [_J D o
RO(t) = 5 g Pon, (t)dE, = _g PdE, -é Sy (E)dE,
(7 .1c)

“oD ®pD_pD
C S -D -D
for dissociation. In accord with probability conservation (6.8) then for the

closed system (6.4),

RA(t) +RP(t) = 0 (7.2)

at all times, as expected. Subject to the constraints
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P." =0 ; C-block (Ei > 0) ; (7.3a)

P."=0 ; P,7 =1 ; S-block (- > E; > -D) ; (7.3b)

implicit in (6.5) and (6.6), assume that the probabilities P?’D are so

distributed in energy space that the net rates RA’D(t) are extrema at all

times.

From the calculus of variations22 a necessary condition for the integral
= [ fly,yix)dx , y = dy/dx (7.4)

to be an extremum is the Euler-Lagrange equation22

£ (af ¥ -0 (7.5)

the solution of which determines y(x).

Since Pﬁ’D remain constant in blocks C and S, then with x = Ei’ y =

Pﬁ’o, and f(y;x) = J(E;) P?’D in-(7.5), R?’D of (7.1a) is an extremum provided a’
\ _an, o
B_E?J'i (E‘i’t) =0 3T 8 E-block (OZEiZ‘S) (7.6)
in block E i.e., the quasi-steady-state condition (6.18) of constant-in-energy E;
current J; = Je(t) in block E. The equation (6.9) with (7.3) and (7.6) .
therefore reduces to o
: pAC.. dE, = J’mp Ac..dE, ; block E (7.7a) -
- i_é ifT5F Ty f Cif Tof 0 y
oo
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for P? and to

5 CypdE, = £ P?Cidef . block (7.7b)

D
Py

for P?. Since (aPilaEi) vanishes in blocks C and S and since the current is
constant J, in block E - self consistent conditions (6.3) and (6.6) for an
extremum - the extrema of (6.1a) are therefore,
» -E
A’D rd A,D A,D
Re> () = F J,(t) = 2Ly (t)-yy(t) _{ dE, _g (Pg?"=PL7)C, (dE (7.8a)
the constant-in-energy current J, past any level E; in block E; -J, directed

down the energy ladder for association and +J, upward for dissociation. The

extremum to (7.1b) for association is therefore,
RA(t) ] }Sn dE, = [y. (t) - v_(t)] -SdE f.PDC dE
* at g i1 e Ts _é i frifcf
= aNA(t)NB(t) -k ns(t) (7.8b)
where

=S @
i D¢, 4. = kR
Myl = [ dey [ PR e, = i

The extremum to (7.1c) for dissociation is

RO(t) =22 [ ngdE, = [y (t) - v (t)] [ dE, i PRC. €. (7.8¢c) :
0 0 - -
R
= -aN,(t)Ng(t) + kn_(t) (7.8d) :L
where
oMo R = [ dE, é PRc, (dE, = ki, (7.8e) :
0 - N

and where P?’A in block E are solutions of (7.7). The nature of the extrema

A A

is determined by performing independent variations sPi to Pi for each bound

level in block E under the constraint (6.3) of constant PAsD in blocks C and S.

The resulting change to (7.1) is
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5
) i
sR = - 68D = 20y (t) - v (00 [ dE, sp [ (P - B Ry Cif dEc )
-5 -D [
. . \ 5
+ 18 fa; | PR -sp el dEld (7.9) .
00
to second order in GPiA. Since GPiA are independent of one another, the :
change in R to first order in sP* vanishes for an extremum and condition (1.7a) is :
recovered from (7.9), as expected. The change in R? to second order is wholly ‘,
determined by the sign of (yc - ys). When Yo 2 Y and the overall direction -
according to (6.8) is association, then Rﬂ(t) is minimum - and RE(t) is
maximum . When the overall direction is dissociation, then Yg > Ye and RE(t) =
is maximum and Ré(t) is minimum. ~
The proposed Variational Principle is such that the rate corresponding to L
the overall direction always adjusts itself therefore to a minimum i.e., there is -
a tendency to counteract the change and the evolution towards equilibrium is impeded. :
Rather than solving the integral equations (7.7), an alternative
procedure is therefore to explore the variation of RA’D with P?’D and to seek
a2 minimum to that rate via (7.1b) for RA and (7.1c) for RD, whichever —
corresponds to the net direction of the process. .
Expressions (7.1) pertain to association/dissociation under all conditions, LTZ;
including non-QSS (Quasi-Steady-State), while expressions (7.8) are valid only -
for QSS-conditions (7.7). )
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7.2 General Rate Expression and Application of Variational Principle

Since BP?/aE1 tends to zero as E; tends both to zero and to -D (~ - =),
a possible trial function is,

A .g=an, (7.10)

0(a;2,)/01 = are”
whefe a is a normalization parameter, where A is the internal energy
(-Eilke) in units of ko of the gas M, and where d is the one variational
parameter which can be expressed as (1/X,), in terms of the location at
A = A, of the minimum to (7.10).
Under the constraints that PD(A=0) is unity and that PD(A + =) tends to
zero then the normalization parameter a is (-1/),.), and integration of (7.10)

then yields,

PD(a;a*) = eX(14x) , X = A/A, (7.11)

and

PAOGA"Y 21 - PP = 1 - eX(14x) (7.12)

which are simple one-parameter variational functions for the dissociation/
association probabilities PD’A(A). The variational association rate (7.14) in
terms of the time-independent rate a (cmzs'l) of association in (7.8b) and

ofr(t) of (5.33) is

RA(t) = aNyNy[1-T(t)] = [y, (t)-vg(t)] Z PdE, Z (P} - PRlc, e, (7.13)
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= 3 [y (t)-y (t)] [ o, | (P} - PPl (7.130)

Consider, as an example, ion-ion recombination (X* + X~ + X » Xp + X)
between equal-mass species. The relevant one-way equilibrium collision g}
kernels cif to be used in (7.13) are given by expression (B39), (B40), (B44), —
(B51), (B52) and (BS4) of Appendix B. <
When (7.12) is inserted into (7.13) and when A* is varied, the long- g
dashed curve in Fig. 2 is obtained for the ratio R(A*,t)/Ri(t). The exact g
rate Ri(t) is determined by inserting the solution of the integral egn. ii
(7.7a), the QSS condition, in (7.13), so that it is simply the downward (E- F:
constant) current, -Jg, given by ;ﬁ
A = B A A |
Re(t) = -Je(t) = [yc(t) - ys(t)] -é dE; -é (Pi - Pf)cifaEf (7.14) N
=3
which is of course identical to (5-34a-c) and to (7.8a). Not only does the ‘;
variational parameter A, = 1.25 provide a minimum but it yields its exact Eé
result! -
&; Introduction of a three-parameter (A,,b,c) trial function g
- D 2, -dx N
# P (A5n,,b,c)/3x = ax(l + ba + cA")e (7.15) ,-.‘
fﬂ} where d can be expressed in terms of the location at A, of the minimum to g
R (7.15) by <
=
Ay = 1/d = 2, (1 + ba, + cxi)/(1+2bx, + 3cx§) (7.16)
v
4

Upon integration, the association probability is therefore,
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PA(A;A*,b,c) =1-eX[1+x+ xZA*(b + 3cA, + cA*x)/(1+2bA*+6cA3)] (7.17)

where

x = /A, (7.18)

and its derivative is,

2+cA,2,x3)/(1+2bA,+6cAE) (7.19)

aPr (a2, ,b,c) /02 = e X (x+bA,x

Fig. 2 illustrates that a minimum at A, =~ 1.25 is again obtained for the
combinations (b = 0.20, ¢ = 0) and (b = 0.20, ¢ = -0.006) and that this
minimum is the exact QSS-result. Comparison of the corresponding
probabilities for all three variational cases with the exact numerical
solution of (7.7) is shown in Fig. 3. The agreement is excellent for such
simple variational functions. A more sensitive test is provided in Fig. 4 by
the corresponding comparison of the derivatives. All these curves including
the exact solution display a maximum at the same location A = 1.25 = A, which
is perhaps key to the overall success obtained.

In conclusion, the present Variational Principle appears to be very
powerful, Also, when approximate probabilities are derived then (7.13) is the
basic expression to be used for the association rates, rather than (7.14)
which is approriate only for exact QSS-solutions in block E. Under exact QSS,
(7.13) of course reduces to (7.14). If, for example, probabilities based on
the diffusion equation are adopted, then (7.13) provides highly accurate

rates .28
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7.3 Tellegen's Theorem and the Principle of Least Dissipation

The set of equations (6.1b) for ani/at for the blocks C, E and S involves
the energy Ei as a continuous variable since the spacing between the bound
levels are much smaller than the thermal energy ko of the gas. The discrete
representation of (6.1b) can be written as

an,

j anif
Lzt~ ;a—t—_ ; Lif (7.20)

where

(Vf - vi)/Rif s Iif (7.21)

nie = Dyglt) - vy (8)1C,

As Bates29 has pointed out, the formal structure of (7.20) is identical
to an electrical network where the current Iif in the line segment e;f (edges,
element) between nodes (vertices), i and f, of the network is equivalent to
the voltage drop Vg; (= Ve - Vi = vp - v;) times the conductivity C.c of the
element €i¢ (with resistance Rif) i.e., (7.21)1s simply Ohm's Law for each
element .

The quasi-equilibrium condition (3n;/3t = 0 in block E) is equivalent to

Kirchhoff's Current Law (KCL),

Li(t) = [ Iig(t) =0 (7.22)
f
i.e., the net instantaneous current entering and leaving each node i in block
E is zero, which expresses the conservation of current.
Since v, (t) varies continuously and monotonically with E; between Y.

(constant over all energies in block C) and v (constant over all energies in




............................

O

(e~
.l...u'
2% ",

block S),

ﬁ. e§ Vei =8 Drelt) -v;(0)1 =0 (7.23)
o if

:! where the sum is over each segment e.. within a closed loop (C 2 EZ S). Eq.
" 7.23) is analogous to Kirchhoff's Voltage Law (KVL) i.e., the sum of voltage
é% changes Vc; around a closed loop is zero, and expresses the uniqueness of

- potential or of T

4 Just as KCL and KVL deal with an equilibrium distribution of current and
é@ voltage, an equally powerful relationship for equilibrium of power in a

network which satisfies Kirchhoff's Laws was first enunciated in 1952 by

Tel]egen.30 Tellegen's Theorem (TT) for KCL and KVL network states that the
’ sum of instantaneous powers P; delivered to all elements ef is zer'o30'32 i.e.,
‘ E (C,E,S) )
2 I opi(e) = I Liglt) Vyplt) = = T T Drglt) - vj(0)3% 0 =0 (7 59
Vo 1 1 e5¢ 1 ejf
!! for all elements e;s with all nodes i only in the block E which only obeys

KCL (since an;/at = 0) and KVL, and with nodes f in any of the blocks C, E and
S. Since the equilibrium rate C;c is symmetric, the rate (7.la) with (7.2)

—_ may be expressed as,

RMP(e) = + 1720 (1) - vg(0)] [ o, | P -tz e, (7.25)

A

where (+) and (-) are associated with R" and RD, respectively.

- The contribution to (7.1) which originates from the block E is

0
N RAD(E;t) = é% é P?’D nj(t)dE; =0 (7.26)
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under the quasi-equilibrium condition (an;/3t = 0 in block E). Hence

0 ]
RAD(g,t) = + 172 [y () - vg()] [ dgy [ (A -pMy%c, ae =0 (7.27)
= -D

which is the continuum analogy of Tellegen's Network Theorem (7.24)

Since p; is the time rate of change in total energy ("iEi) of all pairs

n; of energy E;,

Pi(t) =-§% (niEi) (7.28) =

then Tellegen's Theorem implies

{7.29)

]
(=]

3 0

1 py(®) =% I (nEp)
1

such that the total energy of all pairs in block E therefore remains constant :

in time and total energy of all pairs in block E is then conserved. This is a
remarkable result! But the principle of energy conservation is already :&
inherent to Kirchhoff's Laws and therefore need not be separately stipulated |
as implied in (7.29) via TT. The three laws are equally powerful in that any o

two of KCL, KVL and TT imply the third. The greater significance of -

Tellegen's Theorem, however, lies not in the confirmation of this fundamental

law to one network, which in itself is no surprise, but in its general

Lv..-.

application to two topologically equivalent networks which obey Kirchhoff's

Laws via the basic result -3

DL Tig(t) vig(t) = ) Tg(t) Vig(t) =0 (7.30)
Teif iejf
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where (I.c, Vic) and (i;¢, vi¢) are associated with each of two equivalent
networks respectively and satisfy Kirchhoff's Laws for each network.

31 ji.e., the maximum and minimum potentials in

The Voltage Minimax Theorem
nonlinear resistor networks are at external nodes (i.e., within the C and S
blocks external to block E), is applicable here and can be deduced31 from Tellegen's
Theorem,

In the full electrical network composed of blocks C, E and S, KCL is of
course not satisfied in the C and S blocks (since ani/at is non-zero except in

the t - « limit of thermodynamic equilibrium), and neither is TT. Uith the aid

of (7.24) and (7.25) the total power absorbed by the complete network (C, E and S),

I opi(t) =2 O] Egny(t)dE;] = =Dy (t) - v ()% [ o, [ (P AP M)%C,( ae,
C}Eps -D "D 'D

20y (1) - v (IRY(L) < 0

= {

#20v,(8) - v (1)IR(t) < 0 (7.31)

is always negative i.e., energy is always dissipated. The equality only holds

at thermodynamic equilibrium when Yo T Y 1. When the net direction is associa-
tion, Yo > Y and RA is positive and minimum. The Variational Principle (§ 7.1)
of minimum RA then implies via (7.31) that the energy dissipated to the gas bath

is lTeast. When the net direction is dissociation, y_ > Yoo RD is positive and

S
minimum and the Variational Principle (§ 7.1) also implies via (7.31) 1least

energy of dissipation. An alternative form of the present Variational Principle
is that the probabilities are so distributed among the energy levels not only to
yield extremum rates RA’D(t), as in § 7.1, but also to provide least rate (7.31) ;

of energy dissipation. This Principle of Least Dissipation is of great significance {




in many fields e.qg., thermodynamics,33 heat conduction, fluid mechanics, etc.

Onsager,15 for example, derived the Principle explicitly for heat conduction.

Joule's Law for a net current entering into a KVL and a KCL electrical network
(block ) via all connecting elements in the block C and to all existing modes in

the block S, states that the currents are so distributed within the network that the
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summed rate of dissipation of energy in the combined C, E and S blocks is a

minimum. We have here derived the Principle explicitly from (7.22) via extrema

(§7.1) to the rates of association/dissociation processes. Bates,z9 by analogy with

Joule's Law, postulated that a measure S of the restoration rate of thermodynamic
equilibrium by recombination for highly non-equilibrium systems (i.e., Ye >> Y such
that explicit time-dependence can be ignored) be a minimum, a Principle which
resu]ted34 for recombination alone in the quasi-steady-state condition (7.6) of
block E. From eq. (7.1) and (7.31) it follows that this unnormalized time-
independent measure S can now be identified with the rate ZQNANB‘ We have also
generalized the situation by asserting that association/dissociation in general

proceeds such that the rates RA'D(t) of (7.1) are extrema at all times such that

RA’D(t-»w) tends naturally to zero when thermodynamic equilibrium is established (in

contrast to S). The Principle of Least Dissipation is then satisfied, irrespective

of the QSS-condition (7.6). Under the added constraints (7.3), the condition for 7{
extrema in RAsD yields the QSS-condition (7.5) quite naturally. We have also shown -
that the QSS-condition is equivalent to Tellengen's Theorem (7.29) such that the 15
total power (7.31) in the Principle of Least Dissipation reduces to the sum of -—
powers dissipated only in blocks C and S.

In conclusion, an alternative procedure to solution of coupled integro-
differential equations derived in §4 is the direct search for extrema to the rates
(7.1). These extrema are the actual rates of the process and the system satisfies ?:
the Principle of Least Dissipation. The procedure is, in general, irrespective of
the quasi-steady-state condition (7.5) which necessarily follows only when the -4

further constraints (7.3) are imposed. Direct application of the Variational

Principle yields excellent results (cf Fig. 2-4).
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8. Summary

Sets of transport-collisional Master Equations required for a
comprehensive description of the two-particle non-equilibrium microscopic
distribution n of subsystems (A-B) in a thermal gas bath M have been derived
in §2 and §3 for various physical representations. Each set is appropriate to
the variation of gas density N between its low and high density limits.
Assdmption of equilibrium in one or more of the dynamical physical quantities
(ﬁ,E,Lf,Ti) in 84 helps reduce the complexity and dimensionality of the
solution n for the corresponding Master Equation for the distribution of
subsystems. Even in the limit of low gas density N, the procedure, not only
of course yields the appropriate input-out Master Equation (4.12a), the
subject of many previous studie55'14, but also uncovers an additional
eqn,(4.12b) or (4.17b) which helps complete the full description of
association/dissociation processes at low N. The various Master Equations
furnish complete details of n as N is varied.

In 85, expressions for association/dissociation rates RA'D(t) are
formulated in terms of two-particle distribution function under conditions
both of quasi-steady-state (QSS) of block E and of non-QSS, when the
appropriate rates are given by (3.34) and by (5.36), respectively. By
operating at a more basic microscopic level, the present approach has also
exposed in §5.3 the key assumptions inherent to the Debye-Smoluchowski
Equation used frequently for chemical reactions in condensed matter. The
present treatment therefore provides a unified account of reactions in both

gas and condensed matter phase.

In §6, the evolution from a non-equilibrium situation to full

thermodynamic equilibrium with the gas M is provided by introduction of the

probabilities P?’D for association or dissociation of level i of the A-B




pair. Here, the ansatz (6.7) permits separation of time t from the remaining

physical variables as (Ei,Liz,g), and automatically permits the QSS-condition
to be maintained at all times towards eventual equilibrium. The non-QSS rates

RA-D(t) are now given by (7.1) and (7.13) and the QSS-rates by (7.8) or

28 when approximate probabilities

(7.14). The former expressions are valuable
?’D, such as those given by the diffusion approach,28 are used, whereas the
28

P,
latter QSS-rates are inappropriate“® when approximate P?’D are used.

A new Variational Principle for general association/dissociation rates
RA’D(t) of eq. (7.1) is proposed in §7.1. The Principle asserts that the
actual rates RA'D(t) are extrema at all times i.e. the rate RA(t) or RO(t),
whichever corresponds to the overall direction of the process, always adjusts
itself to a minimum. If conditions are such that the overall direction is
association then, at all times t, RA(t) is minimum and RD(t) is maximum; and
vice-versa when dissociation is the overall direction. There is therefore a
tendency to counteract the change and evolution towards equilibrium is
impeded. Provided P? is zero and unity in blocks Cand S, respectively, a
consequence is the QSS-condition (7.6), or the integral eq. (7.7b), so that
QSS-rates RQ’D(t), which can now be derived directly from the current, are
extrema, and are exact.

Direct application of the Principle in §7.2 shows that use of simple

A,D

analytical variational functions for Pi in the new general expressions (7.1)

or (7.13) for RA’D(t) under non-QSS yields a minimum (for ion-ion
recombination) which reproduces the exact QSS-rates.10 The general expression
(7.1) is valuable when approximate probabilities P?’D are used, in contrast to
the QSS-expression (7.8).

In §7.3, contact is established between the present Principle and (a)

with Tellegen's Theorem30-32 for theory of electrical networks i.e. the

’l

Lo
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total energy in QSS-block E remains constant in time, and (b) with the

Principle of Least Dissipation (of 0nsager15’33 for heat conduction) wherein

“m

the total energy dissipated by the (A-B) pairs in combined blocks C, Eand S

is always least and (c) with Bates' Postu'late29 for highly non-equilibrium

)
"J.l

- systems (yc >> ys) that, by analogy with Joule's Lawzg, an unnormal ized

Q? measure S of the total rate of restoration of thermodynamic equilibrium is a
- minimum, which results3? in the QSS-condition. The general principle here is
S that the net time-dependent rates RA’D(t) are extrema at all times t, and it
ﬁ_ naturally follows that RA'D(t + =) tends to zero, as it should, when

{ thermodynamic equilibrium is established.

af Various components of the present theory e.g. reduction of the

i collisional terms via a Fokker-Planck analysis to obtain a diffusional

b treatment which is highly accurate for all systems and interactions, and the
il search for (exact) time-dependent analytical solutions of the Debye-

: Smoluchowski Equation (§5.4) for general interactions are considered in future
%E papers.27,28

.
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- Appendix A: Equilibrium Distributions and Related Properties

Here we summarize and derive various classical equilibrium distributions
and properties relevant to the present theory. Bates and McKibbin35 have
. already discussed several important aspects of classical distribution

functions. The probability distribution of AB pairs with internal separation
R and internal momentum P in the phase interval dﬁdg under thermodynamic

equilibrium at temperature T with dissociated species A and B 1536

Nao(R,p)dRd w 3 dpdR

n(Rp)ddp = P8 RRTAR B hT__ ( ”3“‘)exp<-E/kT) (A1)
A'B AB (2wmkT) /2 \ h

where the combined electronic and nuclear degeneracy factors are Wag for the

AB pair with phase density Nag» with reduced mass m and internal energy E < O,

and are g, and for each of the dissociated species of equilibrium concentration
A “g

s (cm'3) NA and NB’ respectively. The ratio of the corresponding translational

o partition functions (number of quantum states available to "move" at

temperature T) is h3/(2wka)3/{ and dﬁdﬁ/h3 is the number of internal AB N

states (relative energy E and angular momentum L) in the element dpdR of phase
e space. The exponential term is the canonical distribution for the species of
energy E< 0 interacting with a heat reservoir (gas) at temperature T. The :;
o .
equilibrium constant K (R,B)dep = (“/k)deB for A + B 2 AB,with forward
eq’\t oA v k -
association rate a(cm3 s'l) and dissociation frequency k(s'l),is also given by (Al) .
: N = .
since “NA”B knAB‘ o
Implicit to (Al), the internal energy, '

TN

E =T, +V(R) = p?/2m + VR) (A2)

where V(R) is the potential energy between A and B at separation R and where

,
(

L
.
FOPRPAT AR

Ti is the relative kinetic energy p2/2m, and the internal angular momentum

il i It




A0

N T
L

squared of the AB pair,

L2 = R2 p2 sin26 (A3)

where g is the angle between B and é. are both conserved in time. For structureless
particles wag = Wp wpe

The equilibrium distribution n(&,g) is independent of the directions
(6,¢) and (8p» #g) of é and B, respectively, and depends only on p and R via

2

(A2) for E. Since p? dp d(cose) = (m p dE)dL?/(2R%p? cose), then

n(R,E,e) = M

(ZNMRT)a/Z (2™mp)

, (A4)

the probability density (per unit dngd(cose)) of (Q,E,e) pairs is independent

2

of 8. Since L™ varies from 0 -» L:ax(=R2p2) + 0 as 8 varies from

O-P%+1r , then

2, _ exp(-E/kT 2mm ] ;
n(R,E,L) z;ﬁﬁ;;;37%' [E§?;§:I§7EE;T7; (AS) ]

is the probability density (per unit dR dE dLZ) of pairs with (R,E,Lz). Also 1

the probability density is 1
22 .
R
2y 2 exp(-E/kT (A6)
n(R,E) = n(R,E,L")dL" = ——jﬁ——i—7l 4xmp
K ip : (2nmkT) 3/ 2 [' ]

per unit dng and is the Maxwell-Boltzmann distribution

T 20xp(-T. /KT)
n(R,T) = L exp(a/’ exp(-V/KT) (A7)
o (km¥2

2

per unit dRdT. The distribution per unit dE dL™ is
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2 2 -E/KT) [, 2 2
; n(E, L) = 4; n(R.E,L%)aR = %ﬁﬁi;;;37% [4w ta(E,L )]

(A8)
where R is the radial period i.e., time

dR/vR for completion of a round
trip between the turning points Rl(E,Lz) > RZ(E,LZ) - RI(E,LZ) given by

the zeros of the radial speed R i.e., of

1

5 va2 = p2/2m - L2/2mR2 = E-[V(R) + Lz/ZmRz]

(A9)

The probability that (E,LZ)-pairs have separation R in the interval dR
about R is then

2
MRELIR o _ar
n(E,L9) TR T

(A10)
where T is half the radial period.

This is expected since Lz-conservation implies
constant areal speed.

The radial period for a Coulomb field (V = -ez/R) is

=
—
m
-
—

~N

—~—

]

(m2[€)) /2 [ [(RyR)(R-R))] /2 aR?
!

(A11)
2n(e2/2|E]) /2 (mre?) /2 = 202’ 2(mye?) /2

is independent of L",and is proportional to the cube-root of the semimajor
axis a (= ez/2|E|) for elliptical motion (Kepler's Law). Since the radial

and angular periods are the same for Coulomb attraction TR,is also the time T
for completion of the closed elliptical orbit,

R = 2R RyL(R;#R,H) + (Ry=Ry) cose]™

(A12) N
which is the distance from the focus (force-center) and & is measured from the

eccentricity vector joining the focus to the periapsis.
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...........................
----------------------

.

I

!

....
--------



-y
et
o

AR R A A A N A LR P ugh gl A S i cat ity S lbia S Rt i Mg A T AR ‘el Al Al e e ol e et S o B

For the three dimensional harmonic oscillator (V = %-k Rz), the radial period
is
(0) 2 1/ "2 2 02\,02 52\]1-1/ 2 1/ 1
g (ELS) = (m/k) /2 [ [(RG-RO)(R R3)]2 dR® = a(m/k) T2zmje = 31, (A13)

is independent of both E and LZ, and is one half the angular period or the time
2%/w for completion of the associated closed elliptical orbit

2

R = R ZR12L(RPR,Z) + (R,2-R,%)cos2e]! (A14)

with the force center at the center of the ellipse. While circular orbits are

2 for other interactions V, closed

possible for certain combinations of E and L
orbits for all E < 0 and L2 are only possible for the above Coulombic (C) and
oscillator (0) interactions which, in addition to conservation of E and L
appropriate to all radial V(R), yield a futher (time) conserved quantity

associated with a further dynamical symmetry; for C, the direction of the
37

Runge-Lenz vector®’ which joins the foci and periapsis is constant in time;
for 0, each component energy Ex and Ey for individual motion in the X and Y directions

of the orbit plane are conserved, as is £ = Ex + Ey, the total energy.

The energy distribution for all states with L% in a specified range 0 §.L2 i.sz
of L2 is thereforewith the aid of (A11) and (A13) in (A8) given by
n(eL2a?) = exRUEAD) Tg,2, 2] (A15)
(27mkT) "/ 2

for both Coulomb and Oscillator interactions. The probability density (per

unit energy interval) of orbits with a given energy E which therefore

intersect a sphere of radius Rx is given therefore by (Al15) with sz = px2 sz
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= 2m sz [E-V(Rx)] where p, is the momentum at R, associated with the orbit

which just touches the Rx-sphere.

The distribution per unit dE is

2
o 2y4.2
n(E) = [ n(R,E)R = [ n (E,L%)dL (Al6)
o o

where Rc is the classical turning point given by |V(RE) = |E| and where L, is
the maximum angular momentum associated with a given energy E.

For Coulombic attraction, Lo2 =2m E a2 so that

1/, 3/, 3 6
4n exp(- E/kT), 2 _ exp(-E/kT) 12 "2m "2x7¢
n (E) = o(E)LD = [ ] (A17)
c 2zmkT) 2 R0 umay 2 L e[

the Saha-Boltzmann formula for ionization equilibrium. For the three-dimensional

oscillator, Lo = (m/k)1/? E = E/w, the equilibrium energy distribution is,

no(E) = figiiffk}l [4" (m/k) /2 EZ] (A18)
™m

The fraction of the total number of bound orbits of energy E which cross a
sphere of radius Rx’ i.e., those with L2 < sz = 2m RXZ[E-V(RX)], is therefore,

(R,/2)2(E-V(R )1/|E| , Coulomb

F(E) =L ?- (A19)
2m(me/E)2[E-V(Rx)], Oscillator

Thus fx(E) n(E)dE is the number of classical orbits with energy between E
and E + dE that cross a sphere of radius Rx centered at the origin. As Rx
increases from zero, the number of crossing Coulombic orbits increases as Rx’

reaches a maximum at Rx = 3= e2/2|E|, and then decreases to zero as Rx tends to

3

3

!

b

L
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e2/|E| = 2a, the classical turning point for the L = 0 orbit; because high
L-orbits fully encompass the Rx-sphere for small Rx < a ind are fully
encompassed by the Rx-sphere when a < Rx < 2a.

The fractional contribution to the overall Coulombic density distribution

(A17) that arises within the Rx-sphere is

g (E) = n(ERR) L2 [e S Llsinze - Lsinge + <L sinée ] (A20)
X n(E) » Lx 4 x 4 x 12 X

where o = sin'l(Rx/RE) in terms of the turning point R; = eZ/IEI where g - 1.
Thus gx(E)n(E)dE is the equilibrium number of pairs with internal separation

R 5-Rx and with internal energy between E and E + dE.

The density of bound AB-pairs with internal separation 5 is

T

Q (o]
n(R) = { n(R,E)dE = [ n(R,T,)dT, A21
R) = [ RUENE = [ n(R.T, ) (h21)

where T° is the maximum kinetic energy (-V) of relative motion at R. With

respect to the distribution exp(-V/kT) over R of all levels (bound and continuous)

the normalized fraction

l1/2

f(R) = n(R)/exp(-V/kT) = [erf(-v/kT)}/2 - 2 |v/kT| M2 exp(v/kT)] (A22)

2
/r

of bound levels varies from O to 1 as R decreases from infinity to zero. For
Coulombic attraction, f is 0.20, 0.43, 0.73 and 0.996 at R = 2Re, Re’ 0.5 Re
and 0.15 Re’ respectively, where Re is the natural (Onsager) radius ez/kT where
vV = kT.

The conditional equilibrium probability or the equilibrium constants Keq

a
... for A+ B 2 AB can in general be written as,

= a/k per unit dr'1 dr
k

2
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3
< h” exp(-E/KkT) = r
n(TysTpseesT) 2onkch) 2 po(TpsTgsersTg) = Kyo(TyaTpnens ;) (A23)

where Pe is the classical density or statistical weights of internal states.
3

el

The corresponding statistical volumes, h P are given directly by the square-

bracket terms in (A4) - (A8) for each of the five sets (g,E,e), (g,E,Lz),
(g,E), (B,T) and (E,LZ) of variables and in (Al7) and (A18) for the particular

energy distributions appropriate to Coulombic and oscillator attractions.

P
"_‘.1-’.«

Finally, it is worth noting that equilibrium with respect to a given
variable rj alone implies that the fractional distribution n(rl,rz, cees rs)/f ;%
n drj is given simply by the corresponding equilibrium fraction. )
Classical-Quantal Correspondences. Since the three-dimensional Coulomb (C) ..
and oscillator (0} interactions are unique in having closed bounded orbits ;j
for a1l values of E < 0 and Lz, new and interesting classical-quantal correspondences <
may be derived. Under appropriate quantization, n¢h and ("R,e+1/2)h when "R,e,¢ !
=0, 1, ... , of the actions associated with (¢) and libration (R,8) generalized jf
coordinates, and generalized momenta (pR,pe,p¢) respectively, the full classical
action for Coulombic attraction
J = §deR + 4 p¢d¢ + 4 pede - (2m)1/2 T e2 |E|'1/2 = (nr tngen,+ 1)h  (A24) =
being quantized to integral (n > 1)h, yields, as is well known, the exact .
quantal energies. For the isotropic oscillator, the quantized classical action 3%
;j
J = §pdx + fpdy +f pdz = 2n(mk) /2 E = (320, n=0, 1, ... (A25) .\
100 {
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i yields the correct quantal energies38

E = (n+32fe 5 w= (kymt/? (A26)

T
S

- with degeneracy %-(n+1)(n+2). The number of internal states pQ(E) per unit

energy interval dE is therefore given by

pqEIE = 3 (m+1)(n+2)dn = 5 (n+1)(n+2)dE, /o (A27)
3
which in the limit of high n >> 1 agrees with the classical density pc(E) = 4
EZ/(h3m3) obtained from (Al18) and (A23). Since even % are associated with
even n, and odd £ are associated with odd n, then in the classical limit of

continuous 2,

dE, dL?/h% (A28)

Nl.—l

2 2 _1 -
°Q¢RL JdE dL® = 5 (2¢+1)dn dz =
with L2 = 1(1+1)ﬁ2. This quantal density oQ agrees exactly with the

!! classical density pC(E,LZ) = 4nl rR/h3 obtained from (A8) and (Al3).

Corresponding identities

- og(EsL?) = n%/(ne®) = 4n? < /= 5 (12 (A29)
fi and
5,/ .2 2

0q(€) = n°/(e?/a ) = an® L Z/nd = o (E) (A%0)

t; for Coulombic attraction have already been shown.35 These identities support the
use of classical distributions for these interactions in heavy-particle systems.

CZ
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The classical average of RS for bound orbits with E < Q and all accessible

L2, is

R

R¥(E)> = [ R® n(R,E)aR/ [ n(R,E)dR (A31)
[+ o
which, for the Coulomb case, yields
S(E)> = RS B(2 3 3s
<R (E)> = RE B('z‘ 92 + 5)/8(2 32 ) (A32)

where RE is the turning point e2/|E| and where the Beta function B(x,y) is

I'(x) T'(y)/T(x+y) in terms of the Gamma function . Hence,

. (5 . 2 _ 2
R(E,)> = (Z) a ; a=ef2[g | =0 (A33)

whch agrees at high n >> 1 with the quantal expectation value39

n-1
I @)k > = % (1 + 1/5n%)n%a
£=0

(A34)

_ 1
<Rn>-:i o

Moreover, the classical average of R over a given bound (E,Lz)-orbit is
2 2 2 2 2
R(E,LS)> = [ R n(R,E,L5)aR/ [ n(R,E,L%)aR
R Ry
1 (A35)
= 34 - L2%/2me?

2

. 1 2 39

and agrees exactly with the quantal value 7 a,[3n" - e(g+1)]. [f the

g-summation in (A34) 1S replaced by L2~integration between 0 and Lzmax

= 2m|Ela2,then the quantal result (A34) yields the classical result (a33) exactly.
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£

The averaged value of R for these orbits of energy £ that cross a sphere of

radius Rx is therefore

2 2

L R L R
2 x 2 2 2qrs (a2 £ 2
RE,LP= [ dL® [ Ra(RELMR/ [ dL° [ n(R,E,L%)dR
o Rl o Rl
=3 a- L %aned (A36)
= 2.1
S R.LE - VR, )] (A37)

which for Coulomb attraction tends to %-a in the 1imit of small radii Rx << a
when only the L = 0 orbit crosses. When Rx equals a, all Lz-orbits cross and
(A37) tends to |2) a, in agreement with (A33).

Apart from the intrinsic interest and considerable insight gained from
noting that the classical equilibrium probability distribution and the quantal

probability |y _, [2 have much in common, all of the distributions (A4)-(A8),

nem
(A15)-(A22) over physical variables (Q,E,Lz) and their associated properties
(A32)-(A37), are directly relevant towards implementation of the theory and
solution of the Master Equations developed in the main text for association/

dissociation processes in dense gases.
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Appendix B: Equilibrium Energy-Change Collisional Rates for Various Subsystem

AB-Bath M Interactions.

Theoretical Equilibrium Rates: In this section the collisional term (2.1b) of

the "Boltzmann" equation (2.1) is transformed so as to yield equilibrium rates
Cif(R) for i » f transitions in the internal energy E; of the AB pair with
internal separation R via collision with the Maxwellian bath of gas particles
M. Explicit expressions for Cif appropriate to various interactions (Coulomb,
Polarization, Hard-Sphere, Charge-Transfer) of A and B with M are
summarized for use as a comprehensive package in the theory provided in the
main text.

Denote A, B and Mby i = 1, 2 and 3, respectively, their masses and

reduced masses by Mi and M respectively, and their pre- and post-collision

ije
velocities and momenta by y;, R; and X' Ril taken all relative to the (1-2)
center of mass before the (1-3) collision. The (1-3) relative velocities

before and after the collision are g and ¢' with orientation (¥,¢) with
q 1

respect to polar axis along é. The changes e(= Ef-Ei) and P in the internal
2

1) - (o))

energy and internal momentum of the pair AB are %'MIZ[(X

and M12 (g'-g), respectively.

The rate Cif is the sum Cgi) + Cgi) of the individual contributions C§g)

arising from (j-3) scattering alone. Expressions for the averaged rates

kig(EHE) = [ Flu) k,

1f(u)du (B1)

arising from elastic (j-3) scattering by general,7 hard-sphere11 and j%

T - I . s
polarization” interactions and from charge-transfer c0111s1onslo for general
7,11

masses have been determined previously by integrating the partial rates

kif(u) for a fixed (1-2) relative speed u over the normalized speed
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distribution F(u). Since the emphasis here is on the non-equilibrium R
distributions of Boltzmann's equation at higher gas densities, the more
relevant quantity is the energy change kernel Cif(R) which is related to the

previous quantity (Bl) via

R. R,
if, n g if
k‘if(‘E'i aEf) = ["\“1 (Ei)]-l ({ n; ('%’E‘i) kif(R)dB = ["1' (E‘i)] 1 J c'if(R)dB (B2)

where Rif is the minimum of the outermost turning points R.i and Rf associated

with E; and E, respectively. The isolated kernels Cif(R) for the various
7,8,10,11

interactions are extracted from the previous work as follows.
The Jacobians J in the following transformations
dé'(zp,q,) d§3(e3¢3) =J,de d(cosy)dg d¢5 = J; dedP dg dég (B3)

valuable to the collisional term in Boltzmann's Equation (2.1b) have already

been determined’*2+40-42 a5 nas? 4150 Jg in
valuable to transformation between quantal and semiquantal treatments42, The

orientation (93,¢3) of é3 is taken with respect to the polar axis along El'
Evaluation of J2 in (B3) yields (from ref. 7 for elastic A-M collisions and refs.
41 and 42 for inelastic A-M collisions),

1 _ g dg de d(cosy)
+ d(cose.,)d¢ d(cosy) = = - (B5)
2 3 V13 95(V1V329) (cosyt-cosw)(cosy-cosy )14/

where
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M
S(vpv3eg) = ay [sa)(v®avy?) - ag?22 = s(vrvgig')  (86)
7,41,42

is symmetric with respect to pre- and post-speeds. The limits

wi(vl,v3,9; ) in (B5) to the scattering angle y for fixed Vis V3> @ and ¢ need not be
7,41,42

reproduced here. The limits gi(vl,v3;e) to the relative speed g in (B5) are
g-(vl,v3;e) = max[|vq-v3| , [v;'-v3'|]
(B7)
g+(v1,v3;e) = min[v1+v3, v1'+v3']
and g >q .
. . . . 9,40-42 . .
Determination ofJ3 in (B3) yields the alternative expression,
1 . g dg 29 de P dP
5 d(cose,)d¢ d(cosy) = 3 (88)
2 3 V1'3 P1(g%-¢%) (g%-g%)1"/2 M§392

where the limits g+(v1,v3;P,e) to the relative speed g for fixed Vis V3» P and ¢
also need not be reproduced here. The limits Pt(vl,v3;e) to the momentum

change P are

P7(visvgie) = max[M]vy'-v; |, Mg |vg'=vq]]

(B9)

P+(v1,v3; ) min[M(v1'+v1) R Ms(v3'+v3)]

where

M= M1+ My/M,) (B10)

.
v,

{ L

[ 2}
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the effective mass of the AB pair in the (1-3) collision, and where

v
M -

A
l'-‘i'

the reduced mass of the full pair-gas system, can be expressed in terms of a

TV YT rTT
- ey
.

mass-ratio parameter7

_ as M2M3/M1(M1+M2+M3) (B12)
e for (1-3) collisions.
te Under thermodynamic equilibrium at temperature T,
f N
. n.(R,E.) exp(-E./kT)
2 &; - L 37, 4M 1 H( MV ) (B13)
3 ~ then the equilibrium rate for energy-change collisions at frequency Vif is
1 N
Cif(R)dEf = "i(B’Ei)“if(R) dEg (B14a)
=W (R,E;)0Ee [ Ny(R3)dp390(g,y) d(cosy)(de/de) (B14b)

which is, in general, a four-dimensional integral. The transformation (B5)

is appropriate to the cases of general differential cross sections o(g,y) or of
isotropic cross sections o(g), and (B8) is appropriate for o(P,g) or o(P).

For isotropic gas distributions No(P3)’ Cif(R) is therefore a triple integral
for general scattering of the AB pairs by M. Considerable reduction to a double

or single integral or to an algebraic expression occurs for the following specific

= interactions.
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;S CASE (1), o(P): For Coulombic attraction (-eZ/R) between 1 and 3, the
'é differential cross section per unit solid angle is
[}, > —
. Lo
o o (p) = 4 et M, 0/p (815)
.‘_‘ a
. -
i; a function only+of momentum-change P. With (B8) in (B14b), the g-integration invo]vesg*
- x
. the integral s (x+-x)(x-x') -1/2 dx = 7 so that the equilibrium rate is (Bl4a) &
x PO
. with the frequency (per unit dEf) given by
> . = pt :E::
vif)(R) = (w/Mgv)N [ vg" Glvz)dvz [ o(P)dP (816)
Yo P
for general o(P). The limit Yo arises from reality of pt in (B8) and satisfies -
-% Ms vo2 = max(O,Ef-Ei), which asserts that the kinetic energy of AB-M ~
%I relative motion be sufficient for excitation (Ef > Ei) or be at least zero for i}
E de-excitation (Ef < Ei)’ The R-dependence of Vi at fixed Ei occurs via Vi in )
E; =M v2 + V(R). The distribution G in speeds v of the bath particles 3 of =
- density N (cm'3) is orientation independent and may for example be taken as .-
Z; the Maxwellian iy
3 _2N 1 2, 1/2
[ Ny(p3)dps = N G(vy)dvy = = (5 Mg v3°/kT)
47 m
~ 1
- exp(-3 M v 2/kT)d(F M, v 2/kT) (817) _
;; appropriate to thermodynamic equilibrium between 3 and the (1-2) center-of- .
mass. Hence, ~
: exp(-E. /KT)VIY G(vo)dv, = = (2 M_/kT)}2 exp(-E/KT)d(E/KT) (818)
- PL-t4 3 393 T =17 P R

where the total (conserved) energy of the system is
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G
-
= 1, .2 1, .2
) From (B13) and (B15),
N
R n,
: n.(R,E.) G(v,)dv 1/,
jlar™y K 2 a'“M
, = = SZ—= exp(-E/KkT) d(E/KT) (820)
- N 1% T (kT)?

so that the equilibrium collisional (E1.-> Ef) rate (Bl4) for general o(P) is

pt

1/ ®
2
c{ DRy = Z2ZMN_ o \n(-E/kT) d(E/KT) [ o(P)dp (B21)
if 2 2 -
MI(KT)® E P
13
f; where E  is max(Ei,Ef). Since P, of (B9) is symmetric with respect to pre and

post collision speeds, Cif is also symmetric thereby satisfying required

t detailed balance. For hard-sphere scattering, o(P) = 9,/47, and the inner
i . integral in (B21) is simply (P+-P-)o°/41r; and (B21) then agrees with Eq. (32)
: of ref. (11), for Coulomb scattering (B15), the inner integrand of (B21) is
2 et w2 (33,
i The frequencies Vi¢ and rates Cif are pure functions only of the initial
e and final kinetic energies T, = %lez and Te = %Mv'lz; and the R-dependence
in (B21) arises via the (1-2) interaction V(R) in T = E1. - V(R) and Tf = Ef -

V(R) for fixed Ei and Ef.

CASE (2); o(g): When the (1-3) differential cross section is taken as the

orbiting cross section,

< a(g) = (se?/am ,o%)1/% = B/g (B22)

\!,

) .

L appropriate to polarization attraction (-ae2/2R4) followed by core repulsion then, on

integrating (BS) over v,

—
(=]
(Vo)
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+ o
vii)(R) = (a/v)N { vl G(v3)dvy z_ 90(9)dg/S(v),v4,9) (B23) -

0 -

for isotropic (1-3) cross sections g(g), in general.
On adopting the Maxwellian distribution (B17) for G, the equilibrium collisional
rate (B14) for this second case is therefore -

+

™ g
c{@)R) = [2al/2MN/(kT)2] | exp(-E/KT)d(E/KT) [ 9o(9)dg/S(v).v5.9)  (B24)

Eo 4

For polarization attraction (B22), the inner integral yields

g -3
B [ dg/s = Eil’%/l [sin"L(g*/A) - sin"l(g7/A)] (B25) =
g M,qa ‘2
13
where
AZ(v),v3) = (14a) (v 2*avyt)/a (826)
Since
2 sin~l x1/2 =1q . sin"}(1-2x), (B27)

the result of Bates and Menda\sf8 for kif’ the averaged energy-change rate (B2)

per AB-pair, is recovered.

CASE (3); Charge-Transfer: On assuming that the cross section Ux for

symmetrical resonance charge transfer

Xt e x> x o+ x* (B28)
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is independent of the speed g of relative motion as at low energies, then the

II angular integrations of (B14) yield simply,
. d(cosse,)
- 3 X 1,22 1/, 4%
= -——TEF_—kw,£,¢;go (g,w)d(cosw)d¢]d¢3 5 (v]+v3-2v1v3cose3) Q d(cose3)
X .- 1+c 2 2 .2 1/, o
> _ = T) [v3-(vi+2e/M;)] "2 Q dEL/(2M v v5) (B29)

where Q% is the integral cross section for charge transfer, where

c=M/M, (B30)

for (1-3) collisions and where € = Ef - Ei is the energy change. The

frequency of i = f collisional transitions at (1-2) separation 5 is therefore,

3/ V+
(3) /oy < [1+c) /2 NQ* -1 2 ,.2 1
Vif (R) = < WFOIT f‘ V3 G(V3) [V3-(V1+25/M1)] /2 (B31)
v
L where the limits to Va for a specified energy change ¢ at given speed 1 ar‘e]0
+
v-(vl;e) = (1+c) [vl + 2 /Ml(l'rc)]l/2 A (B32)
e and originate from the assumption that the (1-3) collision (B28) simply
interchanges 1 and V3. On adopting the Maxwellian distribution, (B31) can be
it rewritten as
3/ X
(3)py = [1+c] 2| NQ .
’ vig (R) = < 2M1V1 exp(Ei/kT) Iif(vl’Ei’Ef) (B33)
(
where
' M

.................................

......
................
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E.+E ET
Lip(v 3EsLEg) =[exp —(%—IZ%)( ;T f)] exp[-V(R)/(2c+1)kT] {:_ G(E)dE (B34)

is symmetrical in Ei and Ef. The fraction of Maxwell particles with energies

E in the range £~ < E <E' is

% 6(E)dE = Lerf(e/kT)/2 - 2 (E/kT)M/2 exp(-E/kT)IE* (B35)
,t':',' b4 -~

- where for this case,

z B = [c(l+c)/(142¢) JUE;-VR ) /2 & (B, - vR) /202 (836)
.

53 Hence the equilibrium rate for i + f charge-transfer collisional

o transitions is

3
() - Wirei 2w gt
R T RE

Iif(vl;Ei’Ef) (B37)

an algebraic expression which satisfies detailed balance and which yields the
rate (in ref. 9) for kif’ the averaged rate (B2) per AB-pair.

Computational Equilibrium Rates: A1l of these equilibrium rates for the

above three cases may be conveniently expressed for computational purposes

in terms of dimensionless units,

; M=o EKT,  wos - BT, w(r) = - VR)/KT =
:‘: (B38)

b 2

K r= R/Re, Re = e~ /kT

as




' i min 0 208
R T Tl

DO

%%

3471 (B39)

4n C;fRICAR|AE, | [dEc|= Ty F(A,usr)r? dr drdu, (cm

in terms of specified mass factors I and the Thomson (low density) rates (see, for
example, ref. 10).

or = % n(Re/8)3(3kT/M12)1/2 oN . B=32 (B40)

where g, is the integral cross section for (1-3) collisions at relative energy
3

3 kT. The appropriate mass factors I in (B39) and cross sections % in (B40) are
1
Ho[3)2e3) s)® (M2} | ow 541
2 n 3/, |M * 9% 9% (841)
a 1
H

for hard-sphere (1-3) collisions with integral cross section 9

C._ 3a H . _ ¢ _1 2

= STV b 05 %9575 "Ry (B42)

for Coulomb (1-3) collisions with integral cross section coc which corresponds

to Coulomb scattering by angles ¥ > v/2, and to energy transfers € 2 (3/2)kT

for equal mass species. For (1-3) polarization attraction/core repulsion;

S/, | M 1
P 3Y[(83) (1+a) /2 [ ™12 . . P /2
L= (E)(T a3/2 (Hl ) ' 00 %o 2‘"(°Re/3) (843)

and cop adopted in Thomson's rate (B40) is the corresponding integral (elastic
or momentum transfer) collisional cross section at (3/2)kT relative energy.

For (1-3) charge-transfer collisions,
1/ 3/
X o [3]7383) [Lrec] 2 . = 20"
r (2) (" < y 9, 2Q (B44)

where S, in (B46) is the corresponding momentum-transfer cross section, taken

as twice the cross section Qx for charge transfer.43
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The corresponding dimensionless functions F in (B39) are symmetric in A

and u and are

(- - n N
FlOusr) = [ exp(-Y)dY [P, - P_I; Yo = max(-x,-u) (B45) :
Y :
for hard-sphere (1-3) collisions with (dimensionless) momentum-change limits
n 4

P, > P_, given by

B_(X.u;") .
and (B46) it
B, (housr) = min l[v(r) =12 pv(n)-n2M2 a2 L2 4 (v 12

max [[v(r) N R TS T LY al/zt(v+x>1/2-<v+u)1’21]

Also
® N n_
FE(x,u3r) = [ exp(-Y)dY [P_3 - P+3] (B47)
YO .
for Coulomb (1-3) collisions.
For polarization (1-3) collisions,

P > =
| F'asusr) = [ exp(-Y)dY Lsin‘l(Gz/A) - sin'l(Gl/A)] (B48) |
. Y

a o

* where -

L (ra) 2 < 412 172, 1/2 _ 172

Gﬂxm;r)=rMX{ tvir)-r] s (Y4) tv(r)-ul

Gy(Asusir) = min'[(Yﬂ)l/2 v aZu(r) -8 (72 al/z[V(r)-ull/z]
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and
A = (1+40)2 [u(r) + ¥2Y/2 (B50)
For charge-transfer (1-3) collisions
FX(A,u3r) = exp(iigc) (A+n) [g erf g-g exp(-gz)]gt (851)
where
oZOousr) = %%%%%%-[IV(P)-AII/Z 1,IV(P)-u]1/2}2 (B52)

The universal expression (B39) is also valuable in that the one-way

equilibrium rate across an arbitrary bound level v = - E/kT is simply

Vv w
dq = T o7 {wdx { F(x,u)du (BS3)
where w = - D/KT is the maximum binding energy in units of (kT) and where
r
n 2
FOau) = [ FOuuse)r® dr , roo= 1/max(d,u) (B54)
o
. o . . 10,11 _ . . *
This equilibrium collisional rate displays a minimum at v = (1-3)kT,

the location of a bott:]eneck.z8

Moreover, the non-equilibrium association/dissociation rate (6.3)

reduces simply to

\Y w D D
ap = Tap [ aaf LP(2) - P7(u)] F(A,u)du (BS5)
Rt




where PD(A) is the net probability of collisional dissociation of pairs with
energy (=AkT). Eq. (B55) with v = 0 provides the loss rate (6.17) from the
continuum (Block C); and provides, with v = -S/kT = ¢, the growth rate (6.15)
of block S, and with arbitrary v in the block E, (0 < v < €), provides the
association rate (6.23) under quasi-steady-state conditions in block E.

Also various energy-change monents,

oiM ey = Lo 1 (g, - £, poE, (BS6)

useful in a Fokker-Planck analysis43 of the collision term (2.1b) of the main

text and expressed simply as

D,"(E,) = ra(kT)m'l(-l)mvi(m)(A) (B57)

where the dimensionless moments

m!

iii vgm)(x) oL ™ ) (858)

are easily determined?® on using the relevant expression, (B45), (B47), (B48)
é;A or (B51), appropriate to the chosen interaction between AB and the gas

species.
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Fiqure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Assignment of the fully dissociated block C of free A + B pairs, of
the fully-associated block S of bound (A-B) pairs and the block E of
pairs in highly excited bound levels.

Ratio of the association rate RA(A*,b,C), eq. (7.13) to the exact
QSS-rate, eq. (7.14) over variational parameters A*, b and c.
Association and Dissociation Probabilities PA’D(A) as a function of
depth into the energy well. For E; ~ 10 ke, where o is gas
temperature, PA is almost unity and PO s negligible, —— EXACT
QsS; e oy mmmm, teees Variational Functions with A, = 1.25
and with the set (b,c) equal to (0,0), (0.20,0) and (0.20,-0.006)
respectively.

First Derivative (dPA/dA) of association probabilities, corresponding
to curves of Fig. 3. The minima of the exact QSS and Variational

functions result in identical locations.
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(-~ Diffusional Theory of Association/Dissociation Non-Equilibrium
Processes for General Systems

M. R. Flannery,

- School of Physics,

e Georgia Institute of Technology
v Atlanta, Georgia, 30332, U.S.A.
-

D Abstract: Upon re-examination of the foundations of the diffusional treatment
of association/dissociation processes involving a non-equilibrium distribution
of (A-B) pairs in a gas M, it is shown that highly accurate results may be

obtained for general mass systems provided a new and more basic expression for

the time-dependent association/dissociation rates RA'D(t) is introduced.
A,D
i

(A-B) pairs with internal energy Ei has associative/dissociative character and

tﬁ These rates RA’D(t) are derived here in terms of the probability P (Ei) that

are obtained without appeal to the quasi-steady-state (QSS) condition for

.i highly excited levels E;. Then association and dissociation can be treated in

a unified way and evolution towards equilibrium with the gas is naturally

A,D

j obtained

oy,
A

achieved. Comparison is made between the exact probabilities P
a from the QSS-condition to the Exact input-output Master Equation and those
e obtained from the derived diffusional equation. RA’D(t) reduces to the

constant-in-energy current J(t) through the excited levels only for exact QSS

of the Master Equation. When approximate probabilities are adopted,

identificiation of RA’D(t) with J(t) is not justified. The basic expression
introduced here for RA’D(t) is appropriate for both exact and approximate

;f (diffusional) probabilities and yields excellent results for ion-ion
recombination in a dilute gas over the full range of masses of the species
involved and over various classes of ion-neutral interaction (polarization,

(: hard-sphere and charge-transfer).

PACS: 34.10X, 34,.50.Lf., 82.20.Mj-
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1. Introduction

The picture of recombination and of association/dissociation processes
involving subsystems (A-B) in a thermal bath of dilute gas M as occurring via
diffusion in energy-space has stimulatedl-7 a great deal of interest, in
principle valuable to elucidation of many examples of laser-induced plasmas,

decay, of reaction processes in flames, of shock wave propagation etc. In a

1

classic paper, Pitaevskii® derived a rather elegant analytical result, which

because of its inherent simplicity over more sophisticated and therefore time-

consuming procedures based on a collisional input-output Master Equationa'lo,

3'5, other than to electron-ion recombination1’7

has been applied to situations
for which it was originally intended. Bates!l has pointed out that of the

several different classical diffusion models of electron-ion recombination,

the correct model is that of Pitaevskii.1 Moreover, the formula of Pitaevskii

412

can be reproduce exactly by Thomson-style arguments. In spite of its

attractive features, the diffusion picture as formu]atedl'6 achieved

remarkably disappointing results for heavy-particle ion-ion recombination3'6, K

or for any atom-atom association process, in a gas.
Apart from recognition that diffusion methods (based on a Fokker-Planck
reduction of the input-output collisional integral) are likely to be valid
only when the collisional energy changes are small, the basic intrinsic defect
for application of the Pitaevskii expression to general mass systems remains
undetected. Moreover, that a much less sophisticated "bottleneck" model 13 E
achieved much closer agreement10 with the exact results of the Master l
Equat:ions'10 for ion-ion recombination presents a puzzle.
On examination in this paper of the foundation of the diffusion approach
in a new light, the basic defect in the treatment becomes apparent. In §2,

probabilities P?’D for association/dissociation of pairs (A-B) with internal

......
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energy E; are introduced and an expression for the time-dependent current
Jj(Ej,t) is developed. In §3.1, a Fokker-Planck (FP) analysis of the
collision integral and current J; is performed consistently to fourth-order
and useful relationships between the various energy-change moments are
established. In §3.2, the diffusion approach, based on a second-order FP-
analysis, is shown to provide accurate probabilities P?’D for general systems

but inaccurate heavy-particle currents from which previous rates were

obtained.z’6 A new expression for the time-dependent rates RA'D(t) under ail

A,D

conditions is developed in §4 in terms of Pi . These rates obtained with

diffusional P?’D will then be compared with exact rates10s15 for the benchmark
case of ion-ion recombination in a gas for various masses and ion-gas
interactions,

As initiated in ref (14), the analysis here so describes the time
evolution from a non-equilibrium distribution of (A-B) pairs with a thermal
bath of gas M towards full thermodynamic equilibrium that association and
dissociation are treated in a unified way and that general expressions for the

rates of association/dissociation are obtained without appeal to the quasi-

steady-state conditionl-10 fop highly excited levels of the (A-B) pair.

2. Master Equation and Quasi-Steady-State Rates

The collisional input-output Master Equation2’4’8‘10 that governs the

distribution n;(E;,t)dE; for the density (cm'3) of subsystems AB with internal
14

-—v'vv"'.'.'.'.*.. —
I R

energy E; in the interval dE; about E; can be written as,

3 - -3
5t ng(E;ot) = - / Sie(t)dE, = 3, J,(Eut) (2.1)

where the net two level input-output collisional rate of depletion of energy

level Ei is

-




Sye(t) = M (E,t)v: (ELEQ) = no(E,t)ves (EGEL) = =S (t) (2.2)

in terms of “idef’ the frequency (s'l) for i » f transitions which change the
energy E; to between Ef and Ef + cEg by collision of the (A-B) pair with the
gas M. The energy of the lowest bound level of the AB pair is -D with respect
to fhe dissociation limit, taken as zero energy. The separation between the
energy levels of AB is sufficiently small in comparison to the thermal energy
(kT) of the bath species M that the levels form a quasi-continuum. Thus J; in
(2.1) is the net upward current (in energy space) past energy level Ej. Since
J;j vanishes as E; » = and -D, it is therefore determined either by the

integral expression,

» E,

Ji(Ei’t) =E{ dEi_g Sﬁ(t)dEf = £.dEi -é Sﬁ.(t)dEf (2.3)
1

with the aid of the null effect, Sif + S¢; = 0, of collisions, or by the
equivalent expression,

E, E,

i ® i
Ji(Ei,t) = _lg dE, / Sif(t)dEf = _é dEi

-D

m— 8
w
-
-
—_———
t
d
Q
m
-
~
~N
P-4
S

since the currents past the end points (-D, =) vanish.

Subdivide the range (-D + =) of internal energy into three b]ocksl4; the
continuum block C in which the pairs (A+B) are fully dissociated, the
intermediate block E of highly excited bound levels of (A-B) between the
dissociation 1imit at zero energy and a lower bound level -S, and the lowest
(sink) block S composed of tightly bound levels between -S and -D where the

pairs AB are fully associated. The level -S is sufficiently deep that the net
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probability of direct dissociation by collision with the thermal bath is

negligible. In practice, level -S arises quite naturally from the collisional -
mechanics via the cut-off effect of the Maxwellian distribution of the gas

bath at temperature T and generally lies ~ 10 kT below the dissociation limit

(cf. Fig 3 of §3).

The net rate of depletion of dissociated species (A+B) with density

(cm-3),
nc(t) = g ni(Ei,t)dEi (2.5)
in block C (0 < Ei < ») is simply e
an_ (t) ® 0 e
Rc(t) = -3 = - J(0,t) = £ dEi {Dsif(t)dEf (2.6) .

the downward current past the dissociation neck. The net rate of increase in
the density (cm'3)
-S ~
ns(t) = _f ni(Ei’t)dEi (2.7) -
of pairs considered to be fully associated in block S with energy E; in the

range, -S < Ei < <D is

an_(t) »

R(t) = ;t = 2J(-S,t) = _£ dEif-é S;¢(t)dE, (2.8)

e
P
l.l S

the net downward current past level -S.

Since the system is considered to be closed
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0 ani
Rc(t) = Rs(t) + -£ (SF—)dEi (2.9)
'l Introduce, as in ref. 14, the time-independent probability P?(Ei) that

- (A-B) pairs with energy E; are considered as associated, then the overall rate

for association is

- A = Ay 2N ° A "y
¢ R7(t) = -g Pi(Ei)(W)dEi = Rs(t) + -é P'i (BT)dEi (2.10)
- since P? is unity in block S and is zero in block C. The overall rate for
dissociation is similarly,
N ® an, 0 an
. D _ D j - . D, i -4
t R7(t) = -é Pi(Ei)(Ef_)dEi = Rc(t) + _£ P‘.(at )dEi (2.11) 'l
2
where P?(Ei)’ the probability that (A-B) pairs with energy E; are considered lﬂ
n
‘I as dissociated, is unity in block C and zero in block S. f:
In terms of the one-way equilibrium rate ;:
]
~ -
- Cif = Mvie = Cpy (2.12) R
i -]
~ i
where nidEi is the (time independent) equilibrium number density of AB pairs -]
; in the energy interval dEi about Ei’ and of the normalized distribution, J
. vi(Et) = 0y (B, t) /A (E;) (2.13) :f;
. "
= then (2.2) yields b
.«
- _ _ 4




with the aid of detailed balance (2.12). The Master Equation (2.1) is then

an, ® aJi
t = -é [Yf(t) - Y‘i(t)]Cidef = - EE;' (2.15)

Assume that the energy distribution of pairs in the Continuum block C and

R
the Sink block § is Maxwellian i.e. S
v(t) L E >0
vi(Ejt) = { () ,-S>E >-D (2.16)
& are pure functions of time t which tend to unity as t » =,
é% The non-equilibrium energy distribution of pairs in the intermediate -t

block E of excited levels is therefore separable in energy and time according

to the ansatzl?, v

T
C

vi(E5t) = PRCE v (8) + PR(E vy (t) 222 1 (2.17)

where P? is the probability that state i is coupled to the continuum i.e, PE

is the probability of dissociation, and where P? is the probability that state o

;f i is coupled to the sink i.e. P? is the probability of association. Thus
E{ (P? + P?) is unity at all times since Y. S(t + ) and Yi(t + ») all tend to
, unity when full thermodynamic equlibrium with the gas M is established. Hence K
[ (2.15) can be conveniently separated in E; and t according to .
ani(Ei’t) = A A N
"a'r = - [Yc(t) - Ys(t)] -[f) (Pf = pi)cifd-f (2.18&)
= Dy (t) - vo()] [ (0 - pD)c, .k (2.18b)
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6 -

. a‘.a’_~'-.- R G T R R L I UL L S L SE R e e et

- . « ™. ST FRC ".. ML R S e e » el A
POTIIIIIEREINTS Z2S I8 SN N D It It S ATIRI G NN AT 7 s




RS AR 2 i T U T A i A I BN e Rt RS (SR LA A A Sl h sah Yl Sl A A N A R e N N N o o .
S . RS B L I .

.........

&2 and the time-dependent current (2.3) or (2.4) separates as ?L

Ji(Eqt) = Dy () - v (t)]i(E) (2.19) %
& A
& -
where the time-independent fraction of the current down the energy ladder is r
m~
; - T oA oA LA

- -Ji(Ei) = Ef dEi é (Pf- i)cidef = é dEi £ (Pf-P,i )cidef (2.20)
L Hence | i -
any 34 N
3t = Drel®) - vg(6) ) (2.21)

-
Pragh
»
)

2.1 Quasi-steady-state (QSS) Rates

As has previously been shown14, the association/dissociation rates -

RA’D(t) achieve extrema RQ’D(t) when the number densities n; in block E are in

i‘ quasi-steady-state (QSS) i.e. ani/at = 0 in E. The rate RQ is a minimum!4

) when the net direction is association (as in relaxation of a fully dissociated
Ei- plasma). The minimum association rate in terms of the effective two-body

'I (constant) rate a (cm3s'1) for association between A and B with densities

NA,B(t) at time t and of the frequency k(s'l) of dissociation of S-pairs with
density ns(t) is

= A N

" Re(t) = aNA(t)NB(t) - kns(t) = Rs(t) = Rc(t) (2.22) :

& which, by (2.10), is therefore equal to the rate R (t) for production of

e S-pairs or the rate R.(t) for loss of C-pairs. Hence the required f

»:": -
coefficient a is determined from either N

i ‘

: o =S

{ 7

................
.......................

........
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with the aid of (2.3), or from
® 0
aNA(t)NB(t)[l-r(t)] = ,{ dE, _[{ Sif(t)dEf = -J(0,t) (2.23b)

where a measure of the departure of the densities NA,B and ng from their
corresponding values NA g and ;s for full thermodynamic equilibrium with the
k]

gas M is provided by the factor,

r(t) = [Ny /Ny ()N (£) J0n (£)/] (2.24)

The dissociation frequency constant k in (2.22) automatically satisfies

the detailed balance relation
kng = aNANB (2.25)

which satisfies (2.22) when equilibrium (I = 1) is established so that the net
rate Rﬁ(t) vanishes.

Under the ansatz (2.17), (2.23) and (2.25) with the aid of (2.20) yield
the constants

0

“NANB = [ 6( dE

0 A
i é Pe CiedEL] = - §(0) (2.26)

which uniquely identifies P? as the association probability, and

ki, = [ [ dE, £ PRC, (dE ] = - §(-5) (2.27)

which similarly identifies P? as the dissociation probability. Under QSS for




Yy P

level E; in block E, (2.21) shows that

uNANB = - j(0) = - j.(E;) = -j(-S) = ka‘s (2.28)

so that the constants a and k are simply determined by the current (2.20) past

A,D
, i
in the currents (2.20), (2.26) and (2.27) must satisfy the integral equation

arbitary level E; in block E. Under QSS of block E, the probabilities P

A,D A,D
Py p

-z cidef = -Z P Cidef s (2.29)
the QSS-condition, obtained from (2.18) and solved subject to the constraints
that P? is zero in block C (0 < Ei < =), and is unity in block S
(-S> E1 > -D). Also P? is unity and zero in C and S, respectively.

It is now the aim to find simple analytical approximate expressions for
both P?’D and j; by converting in §3 from an integral representation as (2.1)
or (2.18) to a differential representation, and then to raise and resolve the
question (in §4) whether or not (2.28) is the correct expression which has

dl'6 when approximate probabilities P?’D are involved,

always been assume
rather than the exact solutions of the integral equation (2.29) - the exact
QSS condition which yields (2.28) exactly.

3. Fokker-Planck Reduction

The conversion of the integral operator in (2.18) into a differential
operator is achieved by a Fokker-Planck ana]ysis1 useful when the collision

kernel Ci¢ favors small energy changes. Here the current J; in (2.18) is

determined to fourth-order, rather than to the customary second orderz.

.
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3.1 Fokker-Planck Current to Fourth-Order in Enery-Change Moments

On introduction of an arbitary but well-behaved function oi(Ei) whose -

derivatives vanish at the end-points [=, -D], then, with the aid of (2.18),

Z)n,i o

R

On expanding the difference

- a"e
1 n j
0, -6, = ) 4 (E-E.)T ] (3.2)
f LISl f i aE? -
as a function of energy change (E¢-E;), assumed small, and upon integration by o
parts under the explicit recognition that (a"ai/oE?) +0 forn>1asE;»
[=, -D], then (3.1) can be expressed as &l
o ani - o aJi
to give the following expression for the current, T
+
® n an(YiDi(n 1))
Ji(Ept) = 1 (1) - (3.4)
n=0 of; -~
i "
where the energy change momentsz'4 of the collision kernel Cij¢ for one-way =
.':\
(i » f) equilibrium collision rates (2.2) are -

o™ () = 47 (B - £ gk (3.5)

10

,,,,, . e . . ER N T T .
P S . . L e T, WL EEN L e - R .
...... . S S o, ® VL T et T e A ) BRI PSRN

T R T T A S P ST N S S ST T S S S T R SIS S S}

o




6

v T

RS S

Evaluation of these moments can be facilitated by adopting the

expressions for C;¢ which corresponds to various A-M and B-M binary
interactions (symmetrical resonance charge-transfers'lo, hard-spherelo,
po1arization15, cou]ombic14) which are presented in universal form in Appendix B
of ref. 14. These moments are normalized!? to the quantity (-l)mrmT(kT)m’1
where ar is the Thomson rate14, where Tis a mass factorl4 which depends on the
interaction involved (see Appendix B, ref. 14), and where T is the temperature
of the gas bath.

The frequency of all collisions for an equilibrium distribution of Ei'

pairs is D$0); Dgl)/Dgo) and ZDgz)/Dgo) are respectively the averaged energy-

change <AE1> and the average energy change squared <AE$> per collision with
the gas. Figs. 1(a,b) illustrate the general trend of these moments
calculated here for the specific caseg'10 where internal-energy changes in an
jon pair (X+-X‘) are due to symmetrical resonance charge-transfer (x*-x)
collisions. In this case, the velocity vectors of the (fast) ion X* and the
(thermal) neutral X are interchanged. Large transfers of energy are therefore
involved, as is confirmed by D$2)’ the averaged energy-change squared
<AE$> per_second shown in Fig. 1(a). This case will therefore provide a most
stringent test for the weak-collision (diffusion) procedures studied here.

As the binding A = -Ei/kT, in units of the thermal energy kT of the gas,
increases from the dissociation limit (at zero), the equilibrium number10

(~ A-5/2

exp Adr) of levels in the range di about A decreases from a large
value, reaches a minimum at A* = 2.5 and then increases exponentially. Since
the energy change frequency Vig for each pair decreases rapidly with increase
of binding, the overall shapes of the equilibrium moments ng) in Figs. la,b
can therefore be explained. Note that the equilibrium collisional frequency

Dso) is relatively constant in the range (1.8-4) kT of binding. Also the
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Y b P
et s o il s s

N

Pl
aa O lu'a

BN T




(0)
i
A= (-EilkT) < 1.4 = 2* |, i,e. these pairs become less tightly bound upon

frequency D of energy-change is negative for binding energies

collision and pairs with binding A > 1.4 kT become more tightly bound upon
collision (when Dgl) > 0). This critical binding energy specifies the
location at A* of a bottleneck, which separates the region A < A* where
excitation dominates from the region X > A* where de-excitation is prevalent.
Note also that the even moments ng) display minima which become sharper with
increase of m, as expected, and that the minimum in D§2) coincides with the
zero of Dgl) at A*, as clearly shown in Fig. 1b. As we go deeper into the
well, DI/Do’ the averaged energy-change per collision and DZ/Do’ the averaged
energy-change squared per collision tend to increase linearly with energy
depth (Fig. 1b). These features are quite general for the various ion-neutral
interactions and can be exploited here.

Figs. (2a,b) illustrate the variation of inverses of the even moments
D§2) and 024) for different interactions14 of A and B with M (charge-transfer
CX, hard-spahere HS, and polarization POL). The bottleneck to D§2) occurs
roughly in the same location (~ 1.25 kT) for all the interactions, and the
energy-change squared per sec is greatest for the charge-transfer interaction
and weakest for the polarization attraction, as expected. The
moment D§4) exhibits similar but more amplified behavior.

Since C;¢ is symmetrical in i and f - the detailed-balance relation
(2.12) - then Cifs when expressed as a function of the energy-mean
E =-% (Ef + Ei) and the energy-change A = Ef-Ei, is such that? Cif =
Cif (E,{a]l). On expanding Cjf about E; in terms of the expansion parameter

A, which is assumed small, then

— (3.6)




o )
..'n"

where C; is Cif(ﬁ = E,, |a]). The moments (3.5) are therefore determined

from,
(m) odd n -1 aanmm)
m!D1 (Ei) = ) (2'n!) D———7;——J ; m odd, (3.7a)
n=1,3,5, aEi
even 1 a"F$m+")
= ¥ (2"n1) [—n] ; m even, (3.7b)
n=0,2,4, 3E1

which involves only the terms

F{S)(e,) = oty laleg (3.8)

with s-even, since -D is effectively infinite (~ 5 eV) for the excited states
i in the range 0 > Ei > (10-20)kT of interest (cf. Fig. 3a, below).
In equilibrium, Y; in (3.4) is unity and the current can then be

expressed, with the aid of (3.7), as

n, (n+l)
® 3D even even .
G= I (1= 1 T (ne2p2l™ne2)i(genyer?
n=0 aEi n=0,2, j=0,2
aj+“+1F$j+"+2)
. 3.9)
J+n+l (
31E

This new form clearly shows that the coefficient of its first term

aFfz)/aEi, which arises from the leading term of the expansion (3.7) for both
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Dgl) and aDgz)/aEi, is identically zero. The coefficient of the second term

e I A
R .

U
. P
o o

r

33F$4)/aE?, which is the net balance of the second term in the expansion (3.7)
for both Dgl) and aDgz)/aEi and of the leading term in the expansion (3.7) for

both 320§3)/aE§ and a3D§4)/aE?, is also zero. The leading non-vanishing
1

576 °

third terms in the expansion (3.7) for both Dgl) and 3022)/3Ei and of the

secdnd terms in the expansion (3.7) for both azDg

The consistent neglect of a4D§

A A

contribution to (3.9) is [- Sng)/aE?] which is the net balance of the

3) /22 and 2%{ e
5)/3E? ~ angs)/aE? and higher-order derivatives
demands both the neglect in (3.4) of terms with n > 4 and the neglect in
(3.7a) and (3.7b) of terms with n > 5 and n > 4, respectively. Hence, the

equilibrium current

< nfl) (2) 20(3) .2 _ .n(4) ,.p3 .
31 D;"' - aD;"/3E, + 3°D.7/AEy - Dy’ /3E] = 0 (3.10)
is exact to fourth-order in the moments and is identically zero!
~.
Relationships between even and odd moments can be obtained from (3.7) by Q&
neglecting ng) and higher terms, i.e. D§5) and higher moments, to give
o 220, (4 :
s p{l) -3 pfd 1 4 (3.11a)
b, - i F1 1 2
- i aEi
b. (3) _,_3_ (%) -
{’ ;7 =2 3 D; (3.11b) o
which also ensure zero equilibrium current. In view of (3.11) note that -
equilibrium (31 = 0) is obtained only when the current (3.4) is expanded to
even order.
With the aid of (3.10), the non-equilibrium current (3.4) to fourth order

|
in moments ng) is _




Sty
DAY

(3) 2,(4) (4) 2
aD %D 3y, ad} "’ 3%y,
aMe .t = - f2) 2 agi + 33— + o - 3 3, 1)
i i
9
. o§4)(-§i) (3.12)
aE,i

which is the differential representation (up to and including the fourth-order
moment D§4)) of the double integral
E.

1
I (E,t) = fidEi -é [vp(t) - v;(t)1C, dE. (3.13)

m

for the exact current (2.3). The differential form (3.12) can be called the
Fokker-Planck current to fourth-order since the general Fokker-Planck
expansion can be employed for any variable whose changes are small in
comparison with averaged characteristic values e.g. the collisional energy
change A here is assumed small relative to the thermal energy kT of the gas
bath. Changes in vector momentum p are in general very large here so that the

usual Fokker-Planck ana]_ysis1

in vector p-space would not be valid.
Upon use of the approximations (3.11), which are internally consistent to

neglect of moments higher than D$4), (3.12) reduces to

2,(4) 2 3
(4) - (2) 2 D; Y4 1,(3)2 Y 4),2Y4
JYTE, L) = - [0} - ——](=") - = DY (—5) - DY (—2) (3.14)

Inserting the ansatz (2.17) in (3.12), then (2.15) with (3.12) yields

3"1(51'” aji (Ei)
3T = - [yc(t) - Ys(t)] 3E. (3.15)
j

where in terms of the probability P? for dissociation, the time independent
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- current to fourth-order is, R
(3)  ,2)(4) o0 '\J
I ’(4)(E ) - [D(z) 3D . 3 1 ](BP ) o3
. Ji aE E2 3L, ]
od D(4) azpn 33 D )

3 3 4

w + [Dg ) - 3 ]( 2 ) - D( )( ) eese (3.16) -
1 L
For quasi-steady-state (QSS) in block , j; is constant. When third- --

order and higher derivatives of P?, are ignored, a straightforward exercise in
the solution of the resulting second-order differential equation can be
performed to provide analytical expressions for P?, if required.

3.2 Diffusion Equation and Current =

On ignoring in (3.16) moments D§3) and higher, the (diffusional) current

is,
. (2) GP? (2) P} o
SqlBy) = = 0 g~ = 0 e (3.17)
1 :.:-
so that (3.15) reduces to
(E1,t) 3 (2) aP? )
3{‘ Ly (t) - v (t)] 3@; (o, 3@;‘J (3.18) =

which is a diffusion equation in energy space. The frequency D$2) at which
the averaged energy-transferred squared changes under thermodynamic

equilibrium conditions is the diffusion coefficient (energyzs‘l) in energy =

Y
4"" RACAANER
2 % PRI
Co RN -

space. This kind of streaming equation has been previously derived via other

ey
oyt
»
P

techniques by Pitaevskiil for electron-ion recombination under highly non-

equilibrium conditions when Yo > g SO that v = P?yc in (2.20), and by Keck

h? and Carrier? for heavy-particle association/dissociation. It has been studied

16
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by Landon and Keck3, by Mahan® and by Bates and Zundi® for highly non-

equilibrium (y_ >> y_) ion-ion recombination. By explicitly including here
c 0

the factor (yc - ys) via the ansatz (2.17), eqs. (3.15) and (3.18) for

all Yeos help to emphasize the complete evolution towards thermodynamic Q

t )

equilibrium attained when Yo * Y * 1.

e ~#
oy Another advantage of the ansatz (2.17) is that the intermediate block 5
“ of highly excited levels can be taken to be in quasi-steady-state (QSS) i.e. f
w ani/at = 0 in either (2.18) or (3.18) for all times. The QSS-diffusional 4
i g; curent (3.17) is constant over g, so that the solution of (3.17) subject to ]
condition 4
‘- D, oy - n ohrcy o 5
i P;(-S) = 0, PL(-5) =1 (3.19) .
is 5
E. x
. D ! (2) A
PP(E,) ==~ 3, [ [ dE/D*/(E)] =1 - P (E.) (3.20) -3
ll d'i d -5 d*i -4
-
where the subscript d denotes quantities associated with the diffusion jﬁ
- equation (3.18). Various levels of approximate schemes readily follow. i
= (A) Since R
R
P2(0) = 1, #(0) =1 (3.21)
-~ B
i then (3.20) yields ]
= |
° -
- -iP) = g £ d€/ 2 (E)] = o N,N, (3.22) 2
L - 5
1
ii for the downward diffusional current which, when compared with (2.28) provides g
the recombination rate ap of Pitaevskiil used for ion-ion recombination by E?
{
o
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Landon and Keck3 and by Mahan.® Note that the current (3.22) is proportional -
to the area under the curves in Fig. 2a, and that the association and -

dissociation probabilities P?’D at energy E; are proportional to the areas

which correspond to the energy-ranges (0 » Ei) and (E; » -S) respectively. ;§
(B) Rather than requiring (3.21), j4 in (3.20) can be fixed by inserting
q
(3.20) into (2.26) for j(0) to give e
. o 0 Es (2) o
-j(0) = [ Cdef + iy / dEfo[ f dEi/Di ] (3.23)
-D -D -5
where
o
Cf(Ef) = g cif(Ei’Ef)dEi (3.24)
is the total one-way equilibrium rate for collisional population of a bound -
[
level E¢ from the continuum C. On equating the exact current j(0) in (3.23)
with the diffusional current j4, then ;ﬂ
0 20 Fcde I ¢ fdECL ?de/D(Z)(E)]}'I = o N,N (3.25) R
Id ARt S S ol K'A'B .
which yields the expression of Keck? for a . The term in braces, L—}'l )
is simply the ratio of the downward diffusional current to the one-way .
equilibrium current across the dissociation neck.
(C) Another possibility in similar vein to (B) is to insert (3.20) into =

(2.27) for j(-S) to give

) ) @ b 0 Ef (2) -1 - N N
Jgl-8) = € g (dE {1 +-£ dEfo[_£ dE/D S/ ()1} = o NNy (3.27)
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where

-s
D (E,) = -é C,p(EL,E)dE, (3.28)

is the total one way equilibrium rate for collisional excitation out of

block S to any level f in blocks E and C. The term in braces, {—}'1 is simply
the ratio of the upward diffusional current across -S to the one-way
equilibrium current across -S.

The feature common to all the above procedures (A)-{C) is that the
required current (3.17) depends on the accuracy of the gradient (dP?/dEi)
which, due to the neglect of higher derivatives in (3.16), is described by the
diffusion equation (3.18) less precisely than are the actual diffusion QSS-
solutions i.e. (3.18) may furnish accurate P? but relatively inaccurate
derivatives. More importantly however is that (2.28), which is valid only
under exact QSS-condition (2.29) of the exact Master Equation, (2.1) or
(2.18), has been invoked for the diffusional currents jép) of (3.22) and
jék) of (3.23) which result from the QSS-condition of the different Master
(diffusional) Equation (3.18).

The QSS-solution of (3.18) subject to constraints (3.19) and (3.21) is

(] 0
PR = {  aenn@ ey [ den@ ey}t (3.29)
E. -S
i
for the probability that any level E; in block E, once accessed by collision,
has "associative" character. The probability that level E; has "dissociative"
character is the complementary function

E
i )
PO(E,) = { [ de/n(?) ()} [ de/0(?) (g)} ! (3.30)

......

.......................

v
O

e e e F L

-

RIP APARATY

L'AJ- A

) PR RN N

Al A




~
~
.“
.
~
A
-"

Fel ;‘_'l-_ A A

r

“ Yy Y l.'_l‘ ﬁ'_l".

Y

PALLL

T e e

Thus both functions are constrained to vary monotonically between zero
and unity as does the exact numerical solution to the integral equation (2.29)
so that, when compared with the exact numerical values, will involve less
error than their corresponding derivatives

apho0

agi = 3 p{& e,y ip) (0 (3.31)

appropriate to currents (3.22) and (3.25) in schemes (A) and (B) above.

3.3 Calculations

The ion-ion (termolecular) recombination process
X+ Yy + M XY+ M (3.32)

is taken as a benchmark case. The recombination coefficient a has previously

been r‘epresentedg’16 very accurately by the sum
a=a +a, (3.33)

of coefficients a; obtained by considering separate contributions from (X% -2)
and (Y~-Z) binary collisions (i =1 and 2, respectively). The exact numerical
rates @y are obtained from (2.28) by inserting the exact numerical solution of
the integral equation (2.29), the QSS-condition into (2.20) for the current
ji(Ei)' The rates ay have been t:abu'lat:edg'm’15 as a function of the mass-

ratio parameter,

a; = MjM3/Mi(M1 + M2 + M3) (3.34)




where Mi are the masses of species x*, Y and M, i = 1,2 and 3 respectively
and where the set (i,j) is equal to (1,2) or (2,1) depending (1-3) or (2-3)
t:_ collisions, respectively.

8-10

Based on previous analysis » universal expressions have been presented

in Appendix B of ref 14 for the equilibrium rate Cijr appropriate to the three
15

classes - polarization=~, char‘ge-tr'ansfer-a'10 and hard-sphere10 - of ion-
neutral interactions, calculations have been performed here for the exact QSS- =

rates ap that rise from (1-3) collisions and for the corresponding diffusional

- re
D
AP

rates, (3.22) for ap and (3.25) for ay of Pitaevskiil and Keck? respectively. Lf

E} The exact rates ap reproduce the previous calculationslo’ls, and there is

little discernable difference between ap and ay which now be simply called the
diffusional rates ap obtained when the diffusional current (3.17) is inserted
ii in (2.28).

Table I provides present values of the ratio aD/aE for the various
£ interactions over the full range of mass parameter a, eq. (3.34) with i=1 and
'. 2. Small a » 10'3 corresponds to collisional recombination of heavy ions

(My ~ My >> M3) in a much lighter (electron) gas, intermediate a{ = 1/3 for

e Mp =M = M3) corresponds to species of equal mass, and large a = 103 for

My << Mp = M3 corresponds to electron-ion recombination in an ambient gas.

r

. The cases of small and large a involve energy transfers which are very much
.- less than the energy kT of the gas so that the diffusional (weak collision)
tﬁ approach is likely to be valid.

As Table I shows, the diffusional rates are reliable, as expected, only
for recombination in a vanishingly 1ight gas (a =~ 10'3) or for electron-ion
recombination (a =~ 103) in a general gas, the case for which Pitaevskiil

designed his diffusional treatment. The diffusional rates are higher by
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between a factor of 3-6 for intermediate a ~ 1. As the ion-neutral
interaction varies from polarization attraction, to hard-sphere repulsion and

to charge-transfer interaction, the energy-change in the ion-neutral collision

becomes progressively larger (see Fig. 2a,b) so that the diffusional rates

(based on weak collisions) become less accurate, as shown directly by the
variation of entries in Table 1 for a specified mass parameter a.

Since (3.17) predicts zero current in both the fully dissociated and
fully associated blocks, C and S respectively, the diffusional current (3.17)
is therefore discontinuous, zero in C, jq in E and zero in S. The diffusion
rates (3.22) of Pitaevskii and (3.25) of Keck are therefore expected to be
valid only in the limit of vanishingly small rates a of association. This is
true only for the limiting cases in Table 1 of small and large a. Then the
actual rates ag for electron-ion collisional recombination in a gas and for
electron-ion recombination in a gas are’ ~ 1079 cm3 s-1 at STP, which are
three orders of magnitude less that the rate17 ap ~ 10-6cm3s-1 at STP for ion-
ion recombination in an equal mass gas.

Another reason for failure of the diffusion approach as previously
applied to general-mass cases is also apparent. As Figs. 3(a,b) show, the

diffusion equation (3.18) in general furnishes fairly accurate probabilities

A,D

Pi s

(3.29) and (3.30), but less reliable gradients dP?’D/dEi.
In an effort to distinguish between the requirements of accurate
distributions P?’D and the integral/differential forms of the collision
integral of the Master Equation, assume that the intermediate block E between

blocks C and S is absent i.e.

1, -E ¢ E1 £

7(ED = (3.35)
0, -D < E1 < -t

22
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where -E is some bound energy level. The current (2.25) then reduces to

- ~E
-Jgy(-E) = _g dE; _g C;pdEe = apy(E)N,NG (3.36)

which is the one-way equilibrium downward current across level -E. As -E is
varfed, this current achieves a minimum10 at energy -E* (= -2kT) which
therefore acts as a "bottleneck"l3 to the recombination which proceeds at rate
aBN(E*). The ratio of apN at the bottleneck E* to the exact numerical rate

ap is displayed in Table I for the "intermediate" hard-sphere casel®, The
bottieneck method fails quite markedly for small and large mass parameters a,
where by contrast the diffusion current is successful, and becomes much more

reliable than the diffusion approach at intemediate a (~ 1). Since (3.36)

A,D
i

constraints) but an integral form to the input-output collision dynamics, it

assumes the least possible knowledge of the probabilities P (subject to the
follows that accurate distributions are essential at small and large a where
the collision dynamics is weak, so that the discontinuous 1ntegra1 form (2.25)
does reduce indeed to the continuous streaming form (3.17). For intermediate
a when the energy-changes are certainly not weak, inclusion of the integral
form (2.25) is apparently more important than the use of accurate

distributions (which are constrained to vary between unity and zero at the

boundaries of block E).
The closeness exhibited in Fig. 3(a) between the diffusional
probabilities, (3.29) and (3.30), and the exact numerical probabilities may be

exploited in two ways. First, an interative procedure
(n+1) T . plm
P (E;) _é CipdEs = _£ PY(EL)C, (dE (3.37)

23




to the solution of the integral equation (2.29) can be developed by using the
diffusional analytical probabilities as the starting (n=0) solution. It is
found here that convergence to within 1% of the exact solution can be in
general achieved after five iterations, so that accurate rates can then be
determined from (2.28) and (2.20) since the QSS-condition (2.29) is satisfied.

" Since the diffusional probabilities (3.29) and (3.30) are reasonably
accurate, a second possibility is to insert them directly into (2.20) to yield
the rate o from (2.28). This procedure, at first sight attractive, is however
inconsistent, in that the diffusional probabilities while satisfying quasi-
steady-state (QSS) of the diffusional equation (3.18) in block E, do not
satisfy the condition (2.29) for QSS of the Master Equation (2.18). The
resulting current (2.20) will therefore not be a constant in block E. This is
demonstrated by Fig. 4 which compares the exact downward current ‘jE(Ei) past
level E; obtained from the solution of (2.29) in (2.20) with the approximate
downward current -ja(E;) obtained by inserting (3.29) in (2.20). Not only is
the approximate current past the bound levels far from being constant, but
assignment of a bound level E; for determination of a from (2.28) is
uncertain. Moreover the current j; exhibits a very rapid variation in the
neighborhood of the dissociation 1imit (at zero energy) that use of j(0) in
(2.28) cannot be recommended. The exact value of j(0) is ~ 50% higher than
the approximate j(0). Some defense can be made by adopting the value of j, at
the bottleneck energy of ~ 2 kT to (3.36). Then j, ~ jg, but the foundation
is not firm.

The basic reason for the inconsistency of this second approach for jp is

not that the diffusional probabilities are not sufficiently accurate for

useful application but that the current expression (2.28) for the association

24




rate is not valid when approximate probabilities, which do not satisfy the

QSS-condition (2.29) to the exact Master Equation, are used. This dilemma is
resolved in the following section.

4, Basic Expression for Rates and Results

The expression (2.9) for the time-dependent association (recombination)
rate RA(t) is exact, while expressions for a in §2.1 hold only for QSS
(an{/at = 0) of the Master Equation (2.18) for block E. With the aid of (2.1)
in (2.9), the rate

RA(t) = Z P?dsi z Sy (t)dE, (4.1)

where S¢; 1s given by (2.2) is also exact. Under the basic ansatz (2.17),

then
RA(E) = [y (1) - v (8)] | PAdE, | (P} - PRIC, e, (4.2a)
= 3 Dy (t) = vg(t)] e »} - Ph%e, e, (4.2b)
= a Ny(t)Ng(t) = kn(t) (4.3)

with the result that the time-independent rate constant a (cm3s‘1) of

association is determined by

. oA A oA
aN,Ny -5 PLdE, _g (P - P)C, (dE, (4.4)

When the exact QSS condition (2.29) is satisfied by the probabilities

P?’D, then (4.4) reduces to (2.28) with (2.20) for the current Jyj. When
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?’D are determined via an approximate procedure, as by the diffusional

P

treatment of §3.2, then (4.4) remains the appropriate expression for the

4

rate a. The QSS-condition (2.29) corresponds to a minim: ml in a and hence

any approximate P?’D

will yield higher rates a (cf. Table 1).
An alternative exact expression which emphasizes the role of the current

J; is obtained by using (2.1) and by integrating (2.10) and (2.11) by parts to

give 'u
RAD(e) = - [ phD( ) (el = [0, (E.t)(2PP0)aE )k (4.5) o
I, B ST Flane BRI The hi I i i/ : =
L . . A,D . __}I
since J; vanishes at the end points and since Pi are both constants in
blocks C and S. It is only when J;, given exactly by (2.3) or (2.4) is -2
constant-in-energy (QSS) over block E that it can be taken outside the "
integral sign to give the minimum .
. W) A o
Ra(t) = Ry(t) = [y (t)1-v{t)1j; (E;) (4.6)
in terms of (2.20) for j; and of Pi determined from the QSS-condition :
(2.29). Otherwise, the exact expression (4.5) is used.
The exact rates ap obtained in §3.3 for the various ion-neutral
interactions are normalized (cf ref. 10 and Appendix B, ref 14) to the ;f
corresponding Thomson ratel0 -
4 3 1/2
ap =37 (R/8)P(KTM )N, 8 =32 (4.7)

where Re is the natural unit (e2/kT) for Coulombic attraction between the ions

1 and 2. The integral cross section 9 for (1-3) elastic collisions at
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relative energy c% kT) is taken in (4.5) to be ZQX, 2u(pRe/3)

respectively for symmetrical resonance charge-transfer collisionsll with cross
section Qx, for polarization (orbiting) collisions in terms of the
polarizability p of the gas M, and for hard-sphere collisions with cross
section o: . Universal expressions for the normalized ratios (aE/aT) have
already been presented14 in a form suitable for direct computation.

| Approximate rates a, can now be determined by inserting the diffusional
(approximate) probabilities (3.29) in (4.4). Fig. 5 displays a comparison of

the corresponding ratios

where a is taken as the exact rate ag or the approximate rate Gps which arises
from (1-3) collisions.

Excellent agreement is obtained over the full range of the mass parameter
a, eq (3.34) with i =1and j =2 i.e. froma = 10~3 for association of heavy
jons in a light (electron) gas, to intermediate a = 1/3 for equal mass species
and up to large a =~ 103 which corresponds to electron-recombination in a gas.
As expected, greatest departures occur for the case of equal masses which
involves the largest energy transfer so that the diffusional probabilities
would also show their greatest departure from the exact probabilities as in
Fig. 3a. For this case (a = 1/3), the diffusional result corresponding to
hard-sphere collisions which in turn involve largest energy-transfers (cf.
Fig. 2) exhibit the largest of small departures. The present diffusional
treatment is also excellent for all of the various classes of (1-3)

interaction considered.
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5. Summary
On introduction of probabilities P?’D(Ei) that pairs (A-B) with internal

energy E; will tend to associate and dissociate in a thermal bath of gas M,
and upon use of the ansatz (2.17) for their normalized energy distribution
yi(t) at time t, the basic Master Equation (2.1) and current (2.3) has been
transformed into corresponding equations (2.18) and (2.19) which are separable
in E; and t. The diffusional equation (3.18), which is a derived
approximation to the Master Equation (2.18), yields, for general systems,
accurate probabilities P?’D (cf Fig 3) but very inaccurate currents (3.22) or
(3.25), cf Table 1. Since previous expressions for association
(recombination) rates a rely on a Quasi-Steady-State Condition (QSS) of (2.29)
to the original Master Equation (2.18), they were therefore based on the
currents (2.20), (2.26) and (2.27) via eq (2.28). Since the diffusional
probabilities do not satisfy this original QSS-condition, the corresponding
diffusional current is, in general, not appropriate for determination of the
rates a. The resulting diffusional rates (3.22), or (3.25), are therefore not
reliab]e2’6 (Table 1), except for those cases in which the current is

relatively small i.e. for collision electron-ion recombination!

in a gas and
for ion-ion recombination in a vanishingly light gas.

A new expression (4.2), derived for the rates, is the correct and more
basic expression for use under general conditions, as when QSS is not
satisfied. When QSS is satisfied, (4.2) reduces to (2.28) based on the
current (2.20) and the QSS-rates are minimum.l? The rate (4.2) is required
for use of approximate probabilities, such as those (3.29) provided either by
the diffusional treatment, as here, or by simple analytical variational

functions for P?’D, which do not satisfy the basic QSS-condition (2.29).
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The diffusional probabilities can be used in an iterative solution of

(2.29) to give highly accurate probabilities (to within 1%) after a few
iterations and hence accurate rates (2.28). They can also be used in the
basic formula (4.2) to yield excellent agreement with the exact numerical QSS-
results for various classes of ion-neutral interactions over the full range of
mass parameters for general systems.

In conclusion, application of the diffusional equation (3.18) to general
systems is an accurate procedure provided the solutions P?’D are inserted in
the appropriate and more basic expression (4.2) for the rate, rather than into
the derived expressions (3.17) or (2.20) for the diffusional or exact
currents, which only follow from the QSS-condition (2.29) to the exact input-

output Master Equation (2.18).
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Table 1: Variation of the ratio (aD/aE) and (aBN/aE) with mass-ratio
parameter a for (1-3) collisions and with the various (1-3) interactions:

!! polarization (POL), hard-sphere (HS) and symmetrical resonance charge-transfer
) (CX).. The exact, diffusional and bottleneck rates are @ s Gp and agNs

[
.

K respectively.

- ap/ag agn/ g

, a POL HS CX* HS

- 0.001 0.955 0.969 0.997 50.51

t; 0.01 1.159 1,205 1.295 7.692
0.1 2.000 2.410 2.985 2.950
1/3 2.924 3,891 5.051 2,227
1.0 3.413 4.854 6,329 2.020
10.0 2.000 2,941 - 2.674
100.0 1.156 1.403 - 6.452

i 1000,0 0.955 1.053 - 32.26

*Here small a implies M) << My = Ma and a = 1 implies My, >> M; = M.,
2 1 3 2 1 3




Figure Captions

-1)

Fig. 1 (a) Normalized energy-change frequency moments p(m) (energy™ s™*), m =
0-4, as a function of internal energy E; = -x(kT) of the bound ion- -
pair. (b) Ratios o(m) /p(0) (energy™ per collision), m = 1 and 2, and
comparison of Dgl) with abgz)/ax which shows that the minimum

of Dgz) has same location as the zero in Dgl). Equal-mass species and
charge-transfer ion-neutral collisions are assumed and moments are

normalized to the quantity (—1)"'I'cn1.(kT)m-1 given in ref. 14,

Fig. 2 Inverses of moments (a) 0(2)(A) and (b)D(4)(A) as a function of

internal energy Ei = -AkT of the ion-pair for various ion-neutral

interactions: POL (polarization), HS (hard-sphere), CX (charge-

transfer). Equal-mass species are assumed.

Fig. 3(a). Probabilities PAsD for association and dissociation of an ion-pair
bound with energy Ei = -AkT. Equal-mass species and charge-transfer
ion-neutral collisions are assumed, ——: Exact QSS-solution of eq.

(2.29). ----: Diffusional Approximation, eq. (3.29) and (3.30).

Fig. 3(b) Derivatives (dPA/dA) of probability PA of Fig. (3a) for

association. QSS: from solution of eq (2.29). D: diffusional

approximation, eq (3.31).

Fig. 4. Comparison of currents, eq (2.20), past energy level E; = -AkT,
obtained (——) from exact solution of eq (2.29) and from (---)
diffusion probabilities eq (3.29). Equal-mass species and charge-
transfer jon-neutral collisions ure assumed. The current is «

normalized to (ZaTNANB) where ay is the Thomson rate, eq (4.5).

32




Fig. 5. Normalized rates Ry, eq (4.6), for ion-ion recombination in a dilute
n gas as a function of mass parameter a, eq (3.34) for various ion-
neutral interactions: HS (hard-sphere), CX (charge-transfer) and POL
jZ;': (polarization), : exact rates. O, O, a: rates obtained with
h diffusional probabilities, eq (3.29), in basic eq (4.4) for HS, CX and
- POL interactions.
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Appendix C

Microscopic Basis and Analytical and Numerical Solutions of

the Debye-Smoluchowski Equation
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Microscopic Basis and Analytical and Numerical Solutions

of the Debye-Smoluchowski Egquation

M. R. Flannery and E. J. Mansky
School of Physics
Georgia Institute of Technology

Atlanta, Georgia 30332

By explicitly including collisions and by operating at a level more basic
than the macroscopic Debye-Smoluchowski Equation (DSE), various assumptions
within the DSE-treatment of transport influenced reactions of A and B in a
dense medium M become naturally exposed. The appropriate modification of DSE
to description of the kinetics within the region of the sink is provided.

Analytical expressions for probability densities and rates are derived
which are exact solutions of DSE (a) at all times t and large internal
separations R of the pair (A-B), (b) at long times t and all R and (c) at
short times t and all R. Not only are the transient rates as(t) and aL(t)
exact at short and long times, respectively, but they are naturally bounded
for all times with as(t*w) and aL(t+0) tending to the correct limit, albeit
with an incorrect transience. Comparison with exact numerical solutions of
DSE illustrates the effectiveness of a proposed solution over the full range

of time.

PACS: 34.10.+x, 51.10.+y, 66.10.+x.
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1. Introduction

In chemical kinetics of reactions in the condensed phase or in solution
and of coagulation of colloids, the Debye-Smoluchowski Equation (DSE)I'3 has

received widespread application. It involves solution of the continuity

equation

d ) )
an(g,t)/at + X'ﬂ (g,t) =0 , Rz RS (1.1) j
1
subject to the radiation boundary condition E
)
amr 2 YR t) = -aq n(R.,t) (1.2) ‘
s s? 3 MRs» ’ . 4
which equates (as in heat-conduction problems) the frequency of transport with ;
the frequency of absorption, assumed to proceed at a local rate u3(cm3 s'l) at ]
the boundary of a spherical sink of radius Rs' The number density of pairs AB ?
. . . . d . '

with internal separation R between R and R+ dR is n(g)dg and J (R)qB is the

intramolecular net current within pairs which are in the state of internal

expansion across interval dR about R within some medium M. In the absence of

any sources, the rate of disappearance of pairs with R > RS is,
(3/3t) i n(R,t)dR = 4nR.“ J(R_,t) = - a(t)N Ny (1.3)
8
where o is the overall rate of association of species A and B with averaged ]

number densities NA B at time t. Hence the rate,
)

VR g g g 8t

alt) = ag n(Rs,t)/NANB (1.4)

k
J
b
1




relies only on the macroscopic density n(Rs,t) at the sink boundary provided

. . d
the local rate a3 is regarded as a pre-assigned parameter. The net current 3

ir. (1.1) can be related to the total density n v1'a2'4

LURE) = D g n(R,t) + (K/e)(TV) n(R.t) (1.5)

where V(R) is the energy of interaction between A and B. In terms of the
diffusion and mobility coefficients DA,B and KA,B’ respectively, for the
isolated species A and B in the medium M, the coefficients in (1.5) for
relative diffusion and relative mobility are D = DA + DB and K = KA + Kg.
Hence the rate a(t) can be determined from the solution of (1.1) at the sink
via (1.4) and the overall problem is reduced to one of transport alone.
Although the DSE-method has been applied to reactions in solution, its
de-facto generalization to lower densities of the medium (as a gas) is not
immediately obvious, nor are the assumptions intrinsic to validity of DSE
transparent. The effective decoupling of reaction from transport as in (1.2)
and in (1.4) is likely to be valid in the 1imit of high gas densities when
reaction proceeds much faster than transport which is then the rate-limiting
step. As the density is reduced, reaction and transport are coupled, and

4

address is required at a microscopic level more basic than (1.1)-(1.5). In

§2, this microscopic basis5

of DSE is summarized so that the validity
requirements of DSE are naturally exposed. It is shown that the DSE-method
when applied to transport-influenced reactions in a gas retains its usefulness
for evaluation of time dependent rates a(t) via determination of that
particular time-dependent combination of the individual transport and reaction

rates ap and apN? respectively, which are time-independent and which are

regarded as being independent parameters, externally assigned.
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Although DSE can be solved exactly for the field-free case (V = 0), no

simple exact analytical solution yet exists for general interaction V(R)

6 in terms of

between A and B. For the pure Coulomb case, DSE has been solved
Mathieu functions, which can be expressed as infinite series of products of
modified Bessel funétions but which are as complicated to evaluate as the

exact numerical solution. For approximate solution of (1.1) with general V(R)

a large body of literature (see ref. 7) exists on various schemes based on Green's

9 and “matched perturbation"u)techniques.

function,8 "prescribed" diffusion
Here (in§ 3 and §4), highly accurate analytical solutions for general
V(R) are proposed, and are then tested (in § 5) explicitly for pure Coulombic
attraction. Exact analytical expressions for the densities n(R,t) and the
rates a(t) are derived (a) for short times and al} R, (b) for long times and
all R, and (c) for all times t and large R. The only simple analytical
expressioﬁ available up to now has been that derivedllfrom the method of
"matched perturbation solutions"10 for the exact asymptotic transient
(t + ») . The present long-time solution,(b) above,not only yields this exact
asymptotic transient but provides an analytical solution which is exact down
to much shorter times. Some preliminary reports of these analytical

12-14 Finally, an approximate and

expressions have already been presented.
highly accurate combination of short-time and long-time solutions is proposed
in § 6 for the rates a(t) at all times t.

The aim of the present paper is therefore to examine the foundation and
validity requirements of DSE within a modern perspective and, then to present

analytical solutions of DSE under a general interaction V(R) between the

species A and B reacting in a thermal gas bath M. The microscopic theory used

in this paper has been developed ear]iers.




2. Microscopic Basis of the Debye-Smoluchowski Equation

For the closed system,
A+B+M T AB+M~ (2.1)

with no external sources or sinks as discussed previously,5 the continuity

equation
2 nS(R,t) + g9 R,0) = 0 (2.2)

holds for the integrated macroscopic distribution

s s
n’(R,t) = [ n, (R,E.,t)dE; (2.3)
n -V(R)1 LY | i

in number density (cm'3) of AB pairs. The microscopic distribution n1.S is

such that nisd,ISdE1 is the number density of pairs with internal separation R
and internal energy Ei within the interval dngi about (B’Ei) and nSdB is then
the number density within interval dR of pairs with all possible internal
energies between the lowest bound level -V(R) consistent with a fixed R and
the far continuum. The interaction between A and B is V(R). The net

g-macroscopic current vector
d > d
2 (Ret) = [ 7 (R,E L) dE; (2.4)
-V
is the energy-integration of the (g,Ei)-microscopic net current g? in

+ -
i (ReEpt) £ (R.Eput)

-

e
-

-

x"_t' 5 !




where the conditional pair distribution ni(g,Ei,%i;t) is such that the number

density of pairs AB with internal separation 5, internal energy 51 and with

the direction Yi of the internal relative velocity X in interval dR dEi dy;
about (Q,Ei,ii) is ni(g,Ei,gi;t)deEidgi at time t. quresponding to (2.5)

define the sum (s) and difference (d) of microscopic densities by

n?.d(%,t) = "?’d(ﬁ’Ei’t) =({) “i(&’Ei’ii;t)dzi ilf)"i(ﬁ’Ei’ii;t)dgi (2.6)

The integrations in (2.5) and (2.6) are over the positive (+) region
where R.v. > 0, and the negative (<) region where R.vy: < 0, such that the net
current Jid and the net density n].d of pairs which are in the states of
internal expansion (+) or contraction (~) are (Ji+ - Ji') and ("i+ - ni')
respectively. Also nis and Jis are the respective sums ("i+ + ni') and (Ji+ +
Ji') of densities and currents of internally expanding (+) and contracting (-)
pairs.

The continuity equation corresponding to (2.2) but for the microscopic
distribution nis(g,t) has already been derived® from a Boltzmann-type equation

for the two-particle correlation function n(ﬁ,x,t) and is5

2

S
ot " RoEiat) * T

d _ 2 s
REE) = [ S5 (e (2.7)

where the net frequency of collisional transitions (i + f) is S:i given in
’d 9 'Y ,d
SpeRt) = 0.5 R, ) vip(R) - n SR vy (R) = -SHIRLE)  (2.8)

in terms of the frequency Vif dEf of AB-M collisions, which change the

internal energy of a pair AB from E1 to between Ef and £ + dEf at a fixed

TR S
-
L)




M e T e w W  a  e S e R Ty Ty e

<
~

nuclear separation 5 of A and B. Thus, the net rate at time t of collisional
production of (R,Ei)-pairs from all levels f within the accessible energy
range [-V + =] is the RHS of (2.7). On integration of (2.7) over the full

energy range of Ei’ the macroscopic continuity equation (2.2) for the closed

system is recovered since the overall effect of collisions [ dEi / dEf §;i -
-V -V -
is null. Although the macroscopic net current Jd(g,t) can be related4 to the

summed densities ns(g,t) via the excellent approximation,4
Jd(R t) = -DynS(R,t) + (5) (vV) nS(R,t) (2.9)
Aot N e’/ 'a a? ‘

in term of the macroscopic coefficients D and K for relative diffusion and
relative mobility of A and B in medium M, no similar relation has yet been
derived for the corresponding microscopic current Jf (Q,Ei,t). As has

previous]y5 been shown, (2.7) must then be coupled to the following equation

3 .d s 2 -13Vy| ¢ S I
3€"ﬂ§ﬁvt)+1%i(%Evt)‘[ﬁ'(Ef” ﬁﬂ"ﬂ%iwﬁ%rﬁ“”vi (2.10)

-4 . d
_{ Sﬁ(R,t)dEf

in terms of the quantities J5, n{ and 3. defined in (2.5), (2.6) and (2.8) respectively.

When equilibrium is established in the internal anguliar momentum L of the pair

d

(A-B), n; is then independent5 of v, so that J?’ in (2.7) and (2.10) are simply

- i
? 1 ps.d v+ Also nii'- in (2.10) is then given bysni' = % (nis - nid) for all R

2 i
and E1 > 0, and for bound levels E1 < 0 by ni+ =-% (niS

"i- * %'("15 - "id) for A < R < B. Here A is the radius of the bound circular

+ niD) for R < A or by

LA AR A
LS

orbit (associated with maximum angular momentum L), and B is the radius of the

outermost turning point of the orbit with L = 0 where IEi|= V(B). Under
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i

Y conditions of thermodynamic equilibrium in L, Ji %-n
d

vy in (2.7) and
(2.10) which are therefore coupled in niS and n; s in contrast to the direct
use of (2.9) in (2.2) for the macroscopic densities nscg,t). Operation at a

level more basic than (2.2) therefore necessitates solution of coupled

time-dependent equations, rather than the single equation (2.2). It is
therefore advantageous to explore the conditions for which a macroscopic

treatment based on (2.2) can be invoked.

2.1 Macroscopic Transport-Collisional Equations

For a given R, subdivide the energy range into three blocks: a block

of strongly bound levels between Tevels -V(R) and -S within which the pairs

are considered to be fully associated, a block S of excited levels between -S
and the dissociation 1imit taken at zero energy within which the pairs are in

the process of associating or dissociating, and a continuum block C which

DA ars . manas e arangy
. PR
K . PR

describes fully dissociated pairs. The sum of the distributions ne and o of !

pairs in blocks C and E respectively,

R _ (s X .
R n(R,t) —_s{ n;"(R,E;3E)AE; = n (R,t) + n (R,t) (2.11)
< and the corresponding net current
-\\ ® d
J(g,t) =_g Ji (B’Ei3t)dEi z Jc(ﬁ,t) + Je(g,t) (2.12)

then satisfy, with the aid of (2.7), the equation

=S
d = .
35 MR.t) +3-) = -_g dEi-é Sye(Ryt)dEL 5 R <R (2.13)

S




....................

for R ¢ Rs’ the outermost turning point associated with level -S. In (2.13)
and in what follows ng is written simply as Sif‘ For R > RS, block S does
not exist so that

3 =0
g MRst) +9:9=0 5 R2R (2.14)

Integration of (2.13) yields,

R R
3 S L -S
2. 2 <
3t g n(g,t)dg + 4R J(gs,t) = . g dR_g dEi-J Sif(R,t)dEf (2.15)
On introducing
Ryt
Sif(t) = g S;¢(R,t)dR = - Sfi(t) (2.16)

the net frequency per unit dEidEf of collisional transitions between levels Ei
and Ef, where Rif is the l.sser of Ri and Rf, the turning points associated

with levels Ei and Ef, integration of (2.7) over all accessible R-space yields

R,
1 @ o
9 = - = .
= ni(Ei,t) g dB-J Sif(R,t)dEf _g S;p(t)dEg (2.17)
Eq. (2.15) is then L
R
3 > 2 > -S o
r g n(5,t)d5 *+ 4R, J(gs,t) = °_£ dEi-g Sif(t)dEf = - ans(t)/at (2.18)

where the density of pairs in block S is

.-
x e
—t

S Rs -S S -S
ns(t) = g ns(g,t)dg = g dg-J n; (g,Ei;t)dEi =-£ “i(Ei’t)dEi (2.19)

.......................................




Eq. (2.18) states that the flux, -4:Rs2 J, entering the (reaction)

sphere of radius Rs equals the net collisional rate of production of S-pairs
plus the rate of increase of the contribution from the reaction volume to
the density (2.11) of C and S pairs. On assuming no net flux at infinite
separation R, integration of (2.14) yields

2 = 4aR 2
X3 { n(g,t)dg = 41rRs J(Rs,t) (2.20)
S
which, when added to (2.18), provides
3 3 _
3t { n(g,t)dg * 3 ns(t) =0 (2.21)
the conservation equation as expected for this closed system. On defining the

averaged local rate aq (cm3 s'l) for production of block S via collisional

absorption from blocks C and S by

© =S
ag n(R,,t) =_£ dEi-[f) S;¢(t)dE; = an (t)/at (2.22)
The effective two body ratea(cm3 s'l) for association of dissociated

species A and B with densities Na B(t)(cm'3) and the frequency k (s'l) for
dissociation of S-pairs AB with density ns(t) are related by(s)

an (t)/at = aNy(t)Ng(t) - k n (t) (2.23)

when quasi-steady-state (QSS) conditions (ani/at) are assumed for block E.

On further assuming that those pairs within the reaction volume of blocks

C and E are also in QSS i.e.,
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S
ﬁ!nmywq=o (2.24)

then (2.18) and (2.22) yield
= 2 -
ans(t)/at = - 4R, J(Qs,t) = - a, n(Rs,t) (2.25)
so that the effective two-body rate of association is
a(t) = agll - T(t)171 n(Rg,t)/Ny(tING (1) (2.26)
where the quantity
n oo, "
r(t) = (NNg/Ny(t)Ng(t)1 [ng(t)/n ] (2.27)

is a measure of the departure of the densities of the dissociated A,B and
"N,

associated AB species from their corresponding time-dependent values NA B

and ks appropriate to full thermodynamic equilibrium (r = 1) with the gas

bath M. Since
t
ns(t) - “5(0) = ay g n(Rs,t)dt, (2.28)

r(t) can therefore be determined given Na B(t).
Provided the local rate aq in (2.22) is specified as some external
parameter or else is obtained by other means, a is therefore determined via

(2.26) solely by the transport equation (2.14),

3 . =
3z "MRst) + 73 =0 , R2R (2.29a)

“'
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solved subject to the radiation boundary condition

2 =
4sz J(Rs,t) = a4 n(Rs,t) | (2.29b)

at the sink. When (2.9) is used for J, this combination (2.29) represents
the Debye-Smoluchowski Equation (DSE), familiar in kinetics of reactions in

1-3 and in solut1'or|7'10

the condensed phase and to coagulation of colloids.

It was obtained originally by applying the macroscopic continuity Eqn. (2.2)
outside (R 3 Rs) the sink region, and by equating the transport and absorption
rates at R = R, as in (1.1) - (1.5). Since the reaction rate a; is considered
as a pre-assigned parameter, DSE concentrated solely on solution of the

transport portion JD(R Py Rs,t) of the problem, external to the sink.

2.2 Assumptions Intrinsic to DSE

By operating at a level more basic than DSE, the present treatment has

exposed the two underlying criteria for validity of DSE

%ni(Ei,t) x 0 03 E, 3 =S
(2.30)

o

S
2 [ n(R,t)dR 0

o

i.e., quasi-steady-state conditions are assumed for pairs in the intermediate
block E of excited levels and for those pairs with internal separation R < Rs
and with internal energies in the E and the continuum block C.

The present treatment has also provided the logical transport equation
(2.13) for description of the sink. It is also usual to consider a situation

of high non-equilibrium (r << 1) so that the association rate is simply
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a(t) = ay n(R,t)/NyNg- (2.31)
where NA,B is the averaged concentration of dissociated species A and B.

If however a3 is not predetermined (as is the general case) then the
complete microscopic treatment based on the solution of the coupl>d transport-
collision equations (2.7) and (2.10) for the microscopic densities n?’d is
required.

Since aq in (2.22) is also determined by the collisional frequency Vif in Sif T
assigmment and use within 6SE as an external parameter can, however, provide
very valuable insight to chemical kinetics in a dense medium. For example the

steady state solution (2n/3t = 0) of (2.29) yields the steady-state rate3™4

which can be written as,4’12

Gy @ 5
“«»:T’_RNTB—T (2.32)
RN T TR
in terms of the reaction rate, defined by
apn = @3 exp(-KV(R.)/De) (2.33) "

and of the transport rate

N,
Arp = 4nD Ry (2.34)
where
A=l [ -2 4o1-1 =
R=0( [ exp(KV/De)R™® dR] (2.35)

R

The steady state rate Q'is therefore controlled by the rate 1imiting

step. However, there are at present no exact analytical solutions of DSE

7-10

(2.29) - for general V(R), although a large body of literature exists for




various types of approximations. For the pure Coulombic case, DSE can be
solved formallysin terms of Mathieu functions, which in turn can be expressed
as an infinite series of products of modified Bessel functions, the full
evaluation of which is however as time consuming and as illuminating as the
direct numerical solution of (2.29).

-In the following section § 3, useful time-dependent analytical solutions
for the rates a(t) and densities n(R,t) of (2.24) for general V(R) are
proposed. The assumed initial (t = 0) condition and asymptotic (R+ =)

boundary condition

n{R,t=0) = No exp(-KV/De) = n{R+, t) (2.36)

are appropriate to association of (A-B) pairs with an initial Boltzmann
distribution in internal separation R, and to a continuous source at infinity
which maintains the Boltazmann distribution only at asymptotic R.

2.3 Field-Free Expressions

For reference purposes, the analytical solution15 for the field-free case

(V=0) of (2.29) subject to (2.36) can be written as4

n(R,t) = No{l + (qnlad)(S/R) [exp(xoz)exp(ZXOQo) erfc(x°+no) - erfc 901}(2.37)

in terms of the time-dependent pair (xo,ﬂo) of functions,4

172

)12 ;g Ret) = R-s)2000)2 (2.38)

Xo(t) = (ag/a)(Dt/s

and of the steady-state (field-free) rate




Gio) = (qsad)/((!3 + Gd) (2~39)

where ay is the pre-assigned rate of reaction at Rs = §, the sink-radius, and

where
ay = 4nDS (2.40)

is the rate of pure diffusion at S. The exact transient rate of association

from (2.31) is therefore,

alt) = ay(l + (a£°)/ad) fexp x> erfcx, - 1 1} (2.41a)
2 a [1+ (a3/ud) exp xoz erfc x°] (2.41b)

which initially decreases from the finite reaction rate ag as

a(t+0) = 0,001 - (@2/7V/2)(ay/a) (D115H)1/ 2 (2.42) -
and approaches the steady-state rate uio) via the asymptotic transient ff
a(to =) = G'a(.O)[l + (“9)/%)(52/"013)1/2] (2.43) .

In the diffusion limited region aiO) * ay <<ag, then (2.41b) reduces
exactly to (2.43). It is worth noting that the only exact analytical

11

expression” = yet available (to the author's knowledge) for the rate a(t) under v

general V(R) is the asymptotic transient which may be rewritten12 compactly as, -

alto=) = a1+ (o arg) (5%/m0t)}/2] (2.44)




which corresponds to the same level of approximation as (2.43) but with a3,

N
aqs aiP) and S all replaced by %pNs OTR® O, and S of (2.32) - (2.35),
respectively. The basic expression had been earlier obtained11 from a

10

straightforward application of the method™  of "matched perturbation

solutions". An expression which covers a time range considerably broader than
the asymptotic transient (2.44) is derived in the following section, together
with a corresponding short-time solution which tends to the initial transient

4"

This transient is the appropriate generalization of (2.42) to arbitrary

interaction V(R), but with inclusion of the additional factor
4" n 2
(dR/dR) = (R/R)" exp(KV/De) (2.46)

which is absent in the corresponding generalization (2.44) of the asymptotic

transient (2.43).
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3. Exact Analytical Solutions (a) for A1l Times and Large R, (b) for Long

_ &
% Times and A11 R, and (c) for Short Times and All R. 5
{i Under the nonlinear transformation4’12’16 @
3 &

n * - -
R=C f exp(kv/De) R™2 dR]™} (3.1) o
R e
the Debye-Smoluchowski Equation (1.1) for general interaction V(R) has been

ﬂé shown to reduce to12
: v N ) v .
- ap(R,t)/at = D(dR/dR," g‘% o (R,t) (3.2)
-2 R "
;f where the fractional departure from Boltzmann equilibrium is

£ A ';-
~y p(R,t) = n(R,t)/[N, exp(-KV/De)] (3.3 -
i; |
.:'} s
{j At temperature T of the gas, the Einstein relation De = K(kT) holds for

weak fields so that the argument of the exponent in (3.1) and (3.3) is (V/kT). <]
In this 'tilda’ spacelz, the total flux
2 v v N

-— 4mR® J(R,t) = 4nR™ J(R,t) (3.4) ~
N
" remains invariant, with the current vector in this R-space being defined as
oy .

- % = -DNo zap (3.5)
K ")

- which is formally equivalent to the current due to field-free diffusion in ~
._:_ n
o R-space but with n(R,t) replaced by Ny P(R,t).
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In terms of this solution p of (3.2) and of the rates apy and agp in
!i (2.33 and (2.34) for reaction and transport under interaction V(R), the

association rate a(t) of (1.4) and the "radiation" boundary condition RBC of

e o®
.

(1.2) yields

" .

“- "' f\' '\‘ ..

. a(t) = apN p(S,t) = arR S[ap/aR]'g‘ (3.6) ]

v ]

. % . . 1

which shows that p(S,t) + 0 when arp << @ppy» 3S in the limit of high gas h

v 1

densities N, and that (3p/3R) - 0 (which implies the Boltzmann distribution, ]

]

%: o = 1) when ayp >> apy, as in the 1imit of vanishing N. At each of these i

respective 1imits, a_, the steady-state rate (2.32) tends to the rate limiting h

[ ] &

step of transport or of reaction, respectively. f
Introduce the dimensionless variables,

N
r

L 2 N n
=R/S -1, T =0Dt/S°, ¢ = (R/S)p = (r+l)p (3.7)

!! so that (3.2) reduces to
: 36 (Fyr) /ot = (dr/dr)2 (2%/5%2) (3.8) 1
subject to the initial and asymptotic boundary conditions (2.36), rewritten as E
o )
¢(Fy = 0) = (F+1) = ¢(Foo,7) (3.92)
0 and to RBC in (3.6), rewritten as
A
n ")
a(t) = apy ¢(0,7) = o [36(r>0,1)/0r] (3.9b)
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since the sink is located at ? = 0,

Under Laplace transformation,

4(Fys) = fn¢(?.r) exp(-st)dr (3.10)
o)
then, with the initial condition (3.9a) incorporated, (3.8) yields
(59a¥2) = (ar/d¥)? s} - (R+1)/s], (3.11)
with formal solution,
n

3(F.s) = A(s) expl-v(F,s)s'/2] + (F+1)/s, (3.12)

in terms of unknown functions A(s) and Y(r,s). The asymptotic boundary

condition (3.9a) specifies that y(%+w,s) + o, On setting
k = (dr/dr) = (5/5)(dR/dR) , (3.13)
then (3.12) in (3.11) yields the differential equation
s'l/z(dy/d?) = yz(?,s) - kz(?) (3.14a)
to be solved for y and hence y in

y(?.S) = dy(:,S)/d? (3.14b)

With knowledge of y and vy, and with RBC in (3.9b) used to

Jov




B
\
determine A(s) in (3.12), the Laplace transform p of the departure function p,
F (3.3), is therefore
N, a y 1/2
e B(F,s) = §(F,s)/ (1) = l(ﬂ] exp=[y(r,s)-yi0,s)]s (3.15)
S VORI (®1)sty(0,s)s ™ Srapy/a_]

- The corresponding Laplace transform a of the transient association rate

a(t), (3.6), is therefore

3(s) = apy £(0,5) = apy {1/5- - (agy/arp)Csiy(0,8)s/2 + aRN/aw}]-]}, (3.16)

Progress in the search for simple analytical formulae is now limited by
iij the availability or determination of closed expressions for the inverse
Laplace transforms of the overall s-functional dependence in (3.15) and (3.16),
- which are mainly governed by the form of y(?,s) and its derivative y = (dy/d'r\").
o For attractive interactions of the general form (V/kT) = -(Re/R)", where
Re is the natural unit of length characterized by V(Re) = kT, integration of
a (3.1) then yields,
X= (R/Ry) = nyL(1/m), x" ; x=RR, (3.17)
' where the incomplete Gamma function is
e - n o (_l)m xmn
Y(1/n,x ") =2 [1 + 7 7 (3.18)
’ X mo ™ (mn+1)
In the 1imit of small x, R <« Re’ and Y *T(1/n), the complete Gamma
! function, so that
[
)
[}
k. 19
> L
[
e N e e e o e T AT e e Y




CXanrlam) = x,,  x =R/R << 1 (3.19)
N a constant;1 (n = 1), 1.1284 (n = 2), 1.1200 (n = 3), 1.1032 (n = 4) and
1.0779 (n = 6) for the Coulombic (n = 1), Dipole (n = 2), Quadrupole (n = 3),
Polarization (n = 4) and Van der Waals (n = 6) attractions, respectively.

-For large R > Re then

v 1 -n 1 1 -2n 1 1
x=x|1+ x  + - x T+ -
[ (n¥T) (1) 2(2n+1) {(n+1)3 (n+1)(2n+1)
1 -3n
"'m} X + ...] (3.20)

to give

X+ 1/2 + (1/12x) + 0 (x'3) » (n=1)

xe
n

x + (1/3x) + (1/90x3) - (11/1890x°) + .. , (n = 2)

X + (1/5x3) - (7/450x7) + .o , (n

4)

x + (1/7x3) - (2371278x1}) + ... , (n=6)

for the various attractions, respectively. The derivative which appears in

the basic expression (3.2) is

(dﬁ/dR) = (')‘('/x)2 exp(-x"") 5551—+(x0/x)2 exp(-x'") (3.21)

PR ¥
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(dR/aR) = {1 - ({57 x *[?' (Zne1) - Enzl—)%]x T+l (3.22)

As illustrated in Fig. la for the various attractions, (dR/dX) increases rapidly
from zero at X = Xo to its unit asymptote at large x 2 1. Note that the
coefficient of x~1 in (dﬁ/dR) and of x™2 in X = (E/Re) vanishes for Coulombic
attraction, so that (dﬁ/dR) tends to fts unit asymﬂtote as[-(1/12)x"2 +0(x"h
which is somewhat faster than that [-(1/3) x2 + 0(x'4)]for the pure dipole
case,

Particular values of the nonlinear function
(R/Ry) = % = [1 - exp(-1/x)17" (3.23)
for Coulomb attraction and of its derivative
(dR/dR) = (d%/dx) = %2(1 - X71) en?(1 - %71 (3.24)

are displayed in Table 1 which shows that the derivative attains its unit

asymptotic value

Vo

N n
(d%/dx) - 1 ‘%z [x2 + X3+ (13/15) x4 + ...]

very rapidly. This variation is also amplified in Fig. (1b) over the
important range O 5_3‘5 1.5 of E.

N
(a) On this basis, the solution at large R (i 1.5 n.u.) is therefore obtained

N
by replacing (dR/dR) in (3.13) by unity so that the solutions of y and y of (3.14) are,

...................

..........

-----
s 2 -9
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y(¥.s) = /s,

- XN

(¥ s) = ¥ ¥/s = R-S)/S

o which are all independent of s.

(b) At long times (when s - o), y in (3.14a) is therefore constant for

n,
all r, so that

N v )
y(r,s »0) =S/S=zy, ,

s (3.26a)

N N
¥(r,s + 0) = Sr/S = Y,

which are all identical with (3.25). The criterion for validity of (3.26) is

that
s1/20(s/5)2 - (dr/df)2] - 0 (3.26b)

;! which holds, not only for long times and all R as in (b), but also for large R

and all times as in (a), so that the solutions at long times for all R and at

N
all times for large R are identical. The closer that (dr/d?) is to (S/S).

. the greater will be the range of t overwhich (3.26) is valid. The variation
'3_ of (d?/dr) with r for various values of S is illustrated in Fig. 1(c) which
- shows quite clearly that the key function (d?/dr) in (3.8) may be considered
constant (S/g) over a large range of ¥ and S. éﬁﬂ
~ (c) At short times when s + =, the solutions of (3.14) are,

y(Fos > ) = k(P 2y, (F) -

. (3.27) :
v,(r) -

Y(?ss) =r
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.. In this approximation, (3.14a) yields

2 2
(y/k) =1 - s‘I/Z{( :T'z'.)/‘%) (3.28a)

'.'a?
D"

-

b

ﬁ; so that the above approximation (3.27) is valid provided

(- s/2 5> (dPr/dt)2/(dr/at)? = 5112 (3.28b)

a condition which is more rigorous and less restrictive than the requirement

of infinite s.

NN San
e nl i s

n
For T > 0.25 in Fig. (1c), k = (dr/dr) tends to the constant (S/S) so

.' that the key validity criterion s >> s can be satisfied for longer times.

min
o Also.(3.27) for y, at "short" times and all ¥ tends at large ¥ to (3.25) for y
at all times and large ?, so that the range of validity of the above short-time

ﬂ‘ solution (3.27) can extend into longer times by increase of F.
i

LIS

A1l of the above three solutions, (3.25) - (3.27), are s-independent so
o that the inverse Laplace transform of (3.18) can be readily performed to

- yield the same formal expression )

N p(Ryt) = n(R,t)/N, exp(-KV/De) = ¢(F,t)/(F+1)

g
(- Vo 2

e * {1 + (a,/a;p) (S/R) [exp(2ax) exp x° erfc (x+) - erfc Q@ ]} (3.29)
£

{ for each of the above cases (a) - (c) which are distinguished by the pair

E: (x,R) of functions,

ta”

[ 4

b 23
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=

n

Xz(f-) = (uRN/aﬂyz)',; = (GRN/QQ)(S/S)/‘F =

(3.30) 7

8, (R,t) = v,(F)/2/% = (R-8)/(25/%) = F(§/s)/2/k

for cases (a) and (b) i.e., for long times and all R, or for all times and ;}
asymptotic R 2 1 n.u., (since (3.25) and (3.26) are identical); and by

N

xs(t) = lagy/a, ¥4(0)1VT = (agy/a)(dR/dR)S(S/S)VE = (ay/a ) (dF/dr) /7 o

(3.31)

a,(R,t) = (R-S)/2SVx = r/2/x T

for case (c) for short times and all R. For large S note that Xy * Xy and

that Q, > Qz for large R and S.

£

[

The corresponding transient recombination rates obtained from (3.16) or from
(3.6) directly, are written in terms of the steady-state rates (2.26) - (2.28)

and of the appropriate (x,%) above as
G(t) = GRN p(s,t) = GRNEI + (GO/aTR) {exp xz ef‘fCX- 1}] (3.323)
= a_[1 + (agy/agg) exp 1% erfc x] (3.32b) -

Note that (3.29) and (3.32) are all formally identical (in the tilda

representation) to the “field-free" expressions (2.31) and (2.35). By

comparison, the overall effect of the general field V(R) is therefore to

change the transport rate from ad,(2.4e),to “TR’(2°34)’ the reaction rate from ‘
ay to aRN,(2,33),and the pair of functions (xo,no) of (2.38) to either of the -

pairs (3.30) or (3.31) for long or short times, respectively.
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Short-time and long-time expansions of (3.29) are facilitated with the

aid of the corresponding expansions,

exp x2 erfc x>1 - (2/2M)x + %% - (@323 + Ly x 0 (3.33)
for small x (at short times) and

exp x2 erfc x-»(l/xwllz)(l - %.x'z + %.x'4 - eee)) X+ (3.34)
for large x (at long times).

Since the higher-order expansion terms above are alternatively positive

and negative, the short time limits as("), where n denotes the order of x
included in (3.33), tend to (3.32a) from above or below according as n is even
or odd, respectively. At short-times, therefore the rate a(t) initially

ve

decreases from apN 23S t ia

a1t +0) = apy 11 - (a/am)(2/nP)x,)

=gy {1 - (ogy/org) (dR7AR)g (4Dt/782)1/2) (3.35)

which tends to ag from below. At longer times it decreases as t'l/2 via

GL(I)(t ‘*“") = a, [1 + (GRN/QTR)/XEWI/ZJ
= [1 + (o jag) (s2/x0)1/2] (3.36)

which tends to @ from above and then to the asymptotic steady-state limit a_ .

This asymptotic transient (3.36) is identical to that previously

derived11 by the method10 of "matched perturbation solutions". Thus (3.30) in

(3.32b) provide the appropriate extension of (3.36) down to shorter times; and

AR TURS
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(3.31) in (3.32a) extends the new short-time transient (3.35) up to longer
times. Both the 1:'1/2 long-time transient and the tl/z short-time transient
become suppressed in the “reaction limited region" where apy << oRs and are
fully amplified in the “transport limited region“ where o = arp << Gppe The
resulting formulae for as» “S(l)’ o and °L(1) appear to be the only simple
analytical expressions apart from (3.36) for aL(l), yet derived for general
interactions V(R).

Procedures for numerical solution (see § 5) of the basic eq. (3.2) for
all times require initialization of o and ap/a? either at short times when

integrating forward in t, or at long times when integrating backwards in t.

Direct differentiation of the basic solution,
p(:,r) =1+ (a /aqg) Cexp xZ exp(2xe) erfc(x+a) - erfc Q1/(¥+1) (3.37)

where the sets (xé,ﬂé) and (xz’nz) distinguish short and long times,

respectively, yields

(3p/37) = (apn/a1R) C(F)erfca/(F+1) + (aRN/qa)[C(?)-(aﬂ/uRN)/(¥+1)](p-1) (3.38)

where

Cs(F) = (dF/dr) /(dF/dr)

(3.39)
Cz(r) = ]

for short (s) and long (2) times, respectively. The radiation boundary

condition,

PV AT l l.‘l

I
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um(ap/a?")o 2apn P (0,7) =apy {1+ (o Aqg) [exp x2 erfcx- 111  (3.40)

is of course satisfied by (3.38) at the sink (?' = 0) at all times. Ast -+ O,

p =+ 1~ 0 1/2),and (ap/a"r'-) varies continuously with b as,

. (GRN/GTR) H ? +0
/
(3p/3F) = M CA(F) erfc o, - (3.41)
P (agy/arg) 26,()

1/72
(%) exp(-r2/4t)

s r > 2/
which indicates the dramatic decrease, with increase of r,

(*+1) r

of (sp/a?) at short times from a constant value ("RN/“TR) at the

sink. Accurate numerical integration around initial times t ~ 10'3

demands intervals Ar in r as small as 10'3 SO as to ensure dense coverage of

therefore

the complementary error function

erfc g = 2 [ﬂexp(-az)dn (3.42)
mQ

between unity (at r = 0) and zero (at r >> 2/7).

WL L =5
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. 4. Extension for Intermediate Times and all R

: In an effort to seek extensions of (3.29), with (3.30) for long times, ze
. down to intermediate times for all R, insert the expansion .
X -
'

- y(F,s) =y, (1 + F(AsH2 4 Fy(Prs + o0 ] (4.1) G
X in powers of 51/2 in (3.14a), and equate equal powers of s. Since the exact ii
. solution at large ¥ is Yg» (3.26), then Fi (? + =) + 0, The expansion

Ti coefficients are therefore determined by
g vy L o1 (7] dR\Z y =
- Fi(F) =8 I[(— - l]dR ,

! X dX -

"]
which for Coulomb attraction tends at large R to .

: ¥) - 1 L /)2 .
j{ Fl(r) (Re/S) [G(Re/R) * 17 (Re/R) + ...] (4.2) b
- and by

' Folr) = - 2571 [ F (P, (4.3) -
", Y
:: On retaining only the Fl-term in (4.1), the rate, obtained directly from ;f
o the inverse Laplace Transform of (3.16), is

f‘ aLS(t) =a [l + (aRN/aTR) {a, exp xf erfc x_ - a_ exp x+2 erfc x,} / (a+-a_)] ;.
-, (4.4) »
> o
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for long + short times and is restricted to cases for which
JVTo=a, ={1+ [l - 8(apy/a )s F,(0)/s1¥2 /2F,(0) (4.5)
Xs t = ORN/%e /> T 1 y

n
remain real i.e., when Fl(O) 3 %-(q'/aRN)(S/S). The range of application of
(4.4) is therefore rather limited.

The corresponding extension from shorter (s + =) to longer times may be

accomplished by expanding y in terms of s~1/2

powers of s"1/2,

so that, on equating equal

y(F.8) = k(¥ + k' (M/2(M1s7H2 ;5 k= (dr/dr) (4.6)

where k' is (dk/d?). The condition for validity of the short-time solution y

1/2

= k(?) is therefore s >> (dzr/d?z)/(dr/d?)z, as before. The required rate,

for short+ long times and for all assigned parameters is

ag (t) = apy [1 + (a /app) {1+ (k'o/2ko)(“a/“RN)}-1 {exp XSLZ erfc xg - 1}]

(4.7a)

a {1 + (k‘o/ZkO)(a,ﬁuRN)}'l [1+ (k' /2k )+ (apn/aqg) expxSL2 erfexg, ]
(4.7b)

where k'o is k'(?=0) and where

xg * [lapn/a,) + (k'o/2k )1/T/k (4.8)
Although (4.7a) has been designed as an extension of the short time

result ag to longer times, it does not, however, tend to the correct

e e
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asymptotic (t + =) limit, a_, as does ag, (3.31) in (3.32b). Because it is

automatically constrained to vary monotonically between apN (as t ~ 0) and :i
(as t » =), ag may indeed yield a better approximation than ag, except .%
perhaps in some intermediate-time range. Although g tends to the correct ;:
asymptotic limit a_, its asymptotic transience (i.e., the rate at which ag ;%
approaches a_) will not be correct since it is characterized by X, rather than -
by the correct x, to give ;?
aglt »=) = a_[1+ (a /ag)(dR/d)g ($2/20t)1/2) (4.9) <
which agrees with the exact transient (3.36) only for large sink radii S when =
(dR/dR)g » 1 (cf. Fig. 1b).
Analogous considerations also apply to the comparison of @ g of (4.4)
with o of (3.29) and (3.27). The rate a decreases monotonically from %N if
tii to a_ as t increases, in contrast to % g which does not tend to Gan 35 T > 0. ~
Eij The long-time solution @ yields, however, the incorrect short-time transience %:
B -

ay(t +0) = apy[1 = (agy/are) (40t/ns%) /2] (4.10)

which agrees with the exact short-time transience (3.35) only for large S when

]

N
(dR/dR)S + 1.
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5. Numerical Solutions

!‘, The basic equation (3.2) in tilda-space for the fractional departure

(3.3) from Boltzmann equilibrium, is

“rr.e
IRy
LA |

3 ﬁz 3%p + 23 (5.1)
5 3t {dr 2 n ", .
ar (r+1) or

L

in dimensionless units (3.7). In numerical algorithms, the assigned initial

condition

N
A p(r,O) =1 (5'2)
|
o must be supplemented by an additional initial condition for (ap/3¥). Egs.
[
(3.37) and (3.38) with (3.31) for (xb,ﬁé) are used to facilitate forward
" integration in T from 10'3 when small intervals Ar in r are required. The
o boundary conditions at the sink (? = 0) and at asymptotic T are
N "N
g (ap(r,r)/ar)o = (GRN/“TR) 9(091)9
(5.3)
;_'t: p(rsm,7) =1
at all times t. Eq. (5.1) is a linear partial differential equation with
. nonlinear coefficients and is of the general form
: 3F(x,t)/3t = Fx,t,f(x,t), 3f/ax, 32f/ax’) (5.4)
f’:\_
{ which can be solved by standard numerical procedures17 subject to the initial [
. conditions,
.
‘-
. . 4




f(x,t=0) = f (x) ; 8f(x,0)/ax = af /ox (5.5)

and the boundary (x+0,») conditions
af(x,t) + B 3f(x,t)/ax = v(t) ; (x*0,=) (5.6)

where o and B are constants independent of (x,t). In the numerical method

17

adopted, " the boundary conditions are imposed indirectly via the differential

equation
a af(x,t)/a3t + B azf(x.t)/atax = 3y/at (5.7)
such that v(t) in (5.6) must be either constant or a continuous function of t.

The selected algorithm18 DPDES designed primarily for parabolic problems (as

S is the case here) solves a system of equations of type (5.4) by a method of

lines, wherein the solution is expanded in a series of cubic Hermite basis -
functions of x. The t-dependent undetermined coefficients are evaluated from
a collocation procedure17 at each t i.e., from the differential equations
obtained by imposing the boundary conditions (5.7) at the endpoints (xo, xN)
and by requiring that the differential equation (5.4) is satisfied at two

Gaussian quadrature points between adjacent points xp, Xo+1 in the

p+
x-discretization: Xg ¢ X5 $ Xy Xp = Xg + ph (p=0,1,2, ..., N).

2 Eq. (5.1) was therefore solved numerically in equal intervals Ar = 10'3,

10'2 and 5 1072 over the respective ranges (0 - 10'2), (10'2 -5 10'2) and f;

-3 -2 2

(5 10'2 - 30) in r; at equal intervals At = 10 and 5 10°° over the

-3

, 10
-1072), (1072 - 1) and (1 - 100). At short times "

respective t-ranges, (10

e e e e T e T e e e e T e T e T e e T e e T e e e e e T e e e e e “..‘.-‘.'~' *
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, small intervals ar a 1073 in r are required (see § 3) for
?’! accurate initialization via (3.37) and (3.38). All calculations were

performed on a CDC 7600 computer with a typical execution time of 14 minutes
6

| AR W 2 4

it% (with a relative error of 107 in the t-discretization) for a given sink

tp radius S and ratio (a_/arp).
- _As a test, the numerical results reproduced the exact analytical

solutions (2.37) and rates (2.41) for the field-free (V = 0) case.

Figure 2 illustrates for a representative case (S =‘% N.U., “o/°TR = 1/2) .

&f of Coulombic attraction,the collapse with scaled time t(z Dt/SZ) of the exact

IR L

fractional departure o(F,r) = n(R,t)/exp(-KV/De) of the probability density n

~
1
.

=3¢

from its initial Boltzmann distribution, p(?,O) = 1, onto the steady-state

(3p/at + 0 as t + =) distribution

.“ W
D
. LR I- .,

o (Fyem) = 1 - (a_farg) (S/R) (5.8)

1
Ty
s r
"R

N N
as a function of F = (R/S) - 1. With increase of the parameter (a/are) to
its limiting value of unity (characteristic of full transport controlled

processes), the steady-state p”is approached much more rapidly than those for

JAREROL |

smaller (aa/“TR)’ and deeper holes in the distribution appear in the

neighborhood of the sink at F = 0 where a highly non-equilibrium distribution

::
te has developed. As the sink radius S decreases, the curves in Fig. 2 for given
e (“¢/°TR) collapse onto p_ over all r much more slowly i.e., it takes longer to
o

attain steady-state, as expected.

00

The above asymptote p_ in Fig. 2 is rendered universal for all (0./0TR)

by simply relabelling the p-axis from the vertex at (1 - %JHTR) in general,

Y R
1]

rather than at 0.5, in equal intervals to unity.

The variation with t of the intercept o (0,T) provides directly the t-




..........

variation of the recombination rate,
n, N
a(t) = apy 0(0,7) = arp [ (r0,7)/2r], (5.9)
Since the accuracy of the various schemes (§ 3,4) of analytical

approximation improves at all t for larger r, detailed comparison between the
exact numerical intercept pE(O,T) and the derived analytical intercepts

0(0,7) = 1+ (a /agg) [exp x” erfc y - 11= alr)/agy (5.10)
or between the corresponding association rates a(t), provide the most

n N
stringent test of the accuracy of the various approximations for o (r,tr) and

its derivative (3p/3F).

5.1 Comparison with Analytical Expressions

As indicated by (3.35) and (3.36), the transience, a(t) versus t[ =
(Dt/Sz), in units of (SZ/D) a characteristic time scale for diffusion across a
distance S], becomes amplified for larger x i.e., for transport controlled
regions, when ap\ >> a (i.e., when a /ot * 1), and/or for large sink radii
S which result in larger (d‘r"/dr)° for X, (cf. Fig. 1c) and in smaller (§/S)
for Xy (cf. Table 1).

Figs. 3(a-h) - 5(a-h) illustrate comparison with-the exact numerical
solution ap of the various short-time solutions ag and ag , as in (a-d), and

of the various long-time solutions o and a gs S in (e-h), over externally assigned

values of both the sink radius (S = 1, 0.75, 0.5, 0.25 n.u.) and of the ratio

q-’“TR (= 0.1, 0.5, 0.9). Since the transition from steady-state reaction
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controlled processes to transport controlled processes is characterized by

increase from small a_/ao (where apN << “TR) to unit o /ar (where apy >>
“TR) as in (2.32), the selected range (0.1 - 0.9) of “~/°TR therefore
corresponds to increase in gas density. Since a(t) tends to apy as t 0 and
to a_ as t+=, all of the short-time curves (a) - (d) for a(t)/cRN, and all of
the long-time curves (e) - (h) for a(t)/a_ are normalized so as to tend to
unity at their respective short-time and long-time limits. As t-+=, a('t)/aRN
in (a) - (d) tends to [1 - (a_/ °TR)]’ which gives 0.9, 0.5 and 0.1 for each
respective value of (°o/“TR); and a(t)/a_ in (e)-(h) tends as t+0 to [1 - (c::m/m.m)]'1
ji.e., to 1.11, 2, and 10 for each respective case.
Figs. 3(a) - 3(d) for the small ratio (qw/aTR) = 0.1 i.e., for (a“/aRN) =
0.9 which imply a reduction in a(t) of 10% from apy over the full time range,
show that ags (3.22a) with (3.31), and agys (4.7a) with (4.5), both reproduce
the exact numerical results ag at sh?rt times over the given range (1 - 0.25

n.u.) of S, As S increases both ag and ag agree with agp over longer periods

of time, as expected from validity criteria (3.28b). They also represent E
substantial improvements over the short-time transients, as(l) and as(3) which ;
are the expansions of ags (3.32) up to and including terms in t1/2 and t3/2, :i
respectively. As t - 0 both as(l) and “S(3) eventually converge (from below) E?
to ag, as expected, and then to age For the larger S, the suggested more 5
rapid variation in all of the rates from apN is apparent. i

As expected, ag shows some improvement over ag for longer times up to i
T % 1, particularly at larger Gﬁ-A“TR) and smaller S, as is apparent in Figs. -

3-5. For longer times t >> 1, ag eventually diverges since it is not
automatically constrained, as is(:s, to tend to the limiting asymptote a_ .

This is the essential reason that the short-time expression foraS exhibits in

general a better overall agreement with the exact o ¢ over the full range of t.

;
)
q
]
3
Even for the most extreme case, S = 0.25 n.u. in Figs. (3-5)d, for which %
o
Jd
4
.

e
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(dﬁ/dR) is small (cf. Fig. 1b) so that the basic analytical approximation for
all times tends to lose validity, ag departs from qp at intermediate ¢ ~ 1 but
then eventually approaches a_ albeit with an incorrect transience, as t+= , in
direct contrast to ag . Note that an overall effect of increase in (a_/arg)
in Figs. 3-5 is to effectively shift the amplification from short times (Fig.
v. 3), to intermediate times (Fig. 4) and longer times (Fig. 5).
The exact long time rates % » (3.30) in (3.32b), the long-short

(1)

!. approximation g of (4.4), and @ the asymptotic transient (3.36) to o

are all compared in Figures 3(e-h) - 5(e-h) with the exact numerical results

! ag. Both a and ag yield considerable improvement over aL(l) which up to now
has been the "best" simple analytical long-time expression yet proposed11 (via

the method of matched perturbation solutions10

). This result GL(I) eventually
tends to the present analytical result o which then tends to o (see in
particular‘Fig. 4(h) and Fig. 5(g), 5(h)).

Although % 5 (which, in order to ensure real a, in (4.5),’15 restricted
only to cases (e) of Figs. 3 and 4 and to case (f) of Fig. 3), is designed to
extend @ into the shorter-time regime, it only partially succeeds, but it
does not, in general, represent an overall improvement to @ . The rate @ is,
of course, automatically constrained to vary from the exact asymptotic (t+=)

limit with the correct long-time transience to the exact (t - 0) limit SaN?

with, however, the incorrect short-time transience. In contrast % g does

increase with the correct long-time transience from a_, but reaches a maximum
and then tends as t > 0 to the incorrect limit a_,

Corresponding sets of curves are displayed in Fig. 4 for the ratio /%R =
0.5 which is appropriate to atmospheric gas pressures and which represents
equal rates of transport and reaction. A 50% decrease in a(t) from aN to

will therefore occur as t develops. Both g and A again represent a
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considerable improvement over their short-time limits cs(l) and as(s); and e

is significantly more accurate than the previous standard result uL(l). Note,
for this larger ratio of a_/arp, that the extensive range [10'2 - 102] in
time does not include the short-time limits when a/aRN + 1, as in Fig. 3, but
emphasizes rather the intermediate-time and long-time regimes. Fig. 3
illustrates very clearly, even for the worst case (h) with S = 0.25 n.u., the
dividend that accrues from the built-in variation of o between apy at short
times and a_ at long times. At intermediate times, ag > ag, a < ag and a{l)

(1)

> ag. Since aL(l) tends to a| more rapidly than a tends to ag, a must
therefore cross ag SO that somewhat closer but accidental agreement is
exhibited,as in Figs. (4h) and (5h).

The general picture which is therefore emerging is that both ag and o
are highly accurate analytical solutions which are, in general, better than
their corresponding extensions agL and a5 respectively, into the
intermediate-time regime, mainly because the basic expression (3.32)
automatically varies between the correct limits RN and a_; ag is the exact
short-time transience and o is the exact long-time transience. No short-time
approximation as ags as(l). us(3). agL has been previously proposed and the
present long-time result o is quite superior to aL(l) which has been the only 1
analytical expression previously reported.11

This underlying order has become further clarified in Figure S which is
appropriate to transport-controlled processes at high gas pressures ( ~ tens

of atmospheres). This case with (a“/aTR) = 0.9, involves a 90% reduction in

.. . .
U BRI

a{t) from apn tO a_ as t develops. The t-range [10'2 - 102] emphasizes
intermediate » long times. Figs. 5c,d exhibit quite clearly, for the first 3
time, the marked departure of ag from ag at intermediate times r = 1 - 10

"J

followed by the eventual return of ag to g in the limit of long-times. Also
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w
~
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the convergence of “L(l) to a is quite apparent in Fig. 5h. Even for this
most extreme case S = 0.25 n.u. where the validity criteria (3.26b) and
(3.28b) is being stretched for all times, the present expressions for ag and
@ are quite superior to as(l). “5(3) and to aL(l), respectively.

Since the various terms in the expansion (3.33) for ag of (3.32a), are
alternatively negative and positive, us(") tends to ag from above or below
depending on whether the number n of time-dependent terms included in (3.33)
is even or odd, respectively. Since e is less than ag and since ag is
greater than ag at intermediate times, some time-dependent combination of ag
and a s suggested (see 5 6).

The long-time curves (e) - (h) in Figs. 3-5 show directly that % L,S
achieve their steady-state value a_ more rapidly for transport-controlled
recombination, i.e., for (“o/“TR) < 1, than for reaction-controlled
recombination, (°~/“TR) << 1, which is characterized by a much slower rate of
decrease to a higher relative value o

Even with its incorrect short-time transience, @ is somewhat better than
ag over all time t for the reaction dominated recombination, (Fig. 3), and

ags in spite of its incorrect long-time transience, is somewhat better than a

over all t for transport dominated recombination (Fig. 5).
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6. Validity Criteria and Improved Transient Result

Although the long-time and short-time expressions obtained by inserting
(3.30) and (3.31) respectively in (3.29) for n(R,t) and in (3.32) for a(t),
have now been shown to be highly accurate, they have been derived from the
Laplace-transform technique such that neither do the actual equations satisfied
by the derived analytical formulae or do rigorous validity criteria apart from

(3.26b) and (3.28b) naturally materialize. The basic equation

- 81 3

for ¢ (%,t) = (*+1) p(¥,t), as in (3.7) and (3.8), where p is the fractional
departure n(R,t)/No exp(-KV/De) of the probability density n(R,t) from Boltzmann

equilibrium, may be expressed in alternative forms as

(32 - 3%, ﬁ)zda_r (AQ (6.2a)
FY3 g an \dr dgz ar
32 _ ’dz?,fﬂ (6.2b)
ar arel oy

used to discuss the short-time solution, or as

[ -3 (2, 188 D0 3 .20

used to discuss the solutions at large r.

The recombination rate is simply

a(t) = agy 0(0,7) = arp [3p(¥s0,1)/2F] (6.3a)
or, equivalently,
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a(t) = apy #(0,7) = o [24(F+0,7)/2F] (6.3b) :
in which RBC, the radiation boundary condition (3.6) or (3.9b) between the
function and its derivative, is explicitly used. zﬁ
Provided

lagrat| > (a®¥/ar)[(aerat) - 1] (6.4)

as for all r and small T (but not for large r and all t), (6.2b)

. reduces to .
2

29 _ %0 g% (6.5) 3

3T 2 2 y "

ar dr .

which, apart from the term dz?/drz, is formally identical to field-free -

-

diffusion in (r,t)-space. Provided,

, (b e

as at large r and all t, then(6.2¢c) reduces to

3, 9% n =
22 5 Y= (557 (6.7) =
T ar

which is formally identical with field-free diffusion in (?,?)-space.
The exact solutions of (6.5) and (6.7) appropriate to the above <.

initial and boundary conditions (3.9) in (?,?) space are then

$(Fo1) = (f+1) + (e /arg) Lexp(2ax) exp G erfc(x+Q) - erfc Q] , (6.8) “
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gy
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where the pair (x,2) of functions are defined as

S0 =2, A5 = (o a ) (dFdr) i 2, = (opy/a,)(S/S)

Xs, 4,

(6.9)
a,(r,1) = r/2/%; 9 (F,1) = F/2/8

with subscript 4 appropriate to the exact solution o at short times and all r,
and with subscript % appropriate to the exact solution ¢2 for all times and
large r.

These approximate solutions ¢ of the basic eq. (6.1) are exactly those

8,2
(3.29) - (3.31) previously derived via the Laplace Transform technique which
procedure is however required to show that the solution ¢£ for large r and all t is

identical with that for all r and long t. Direct differentiation of (6.8) yields

(3¢,/3F) = 1 + (apn/a) (d?/dr)" (s, - (F*1) + (a_/agy) erfc 2.1  (6.10a)
= (s ) a - r a /a erftc . a
y.) RN/ " (d?"/dr) S o’ TR S
and
(a¢z/a?) =1+ (GRN/GQ) (¢2 - (F+1) + (a /atg) erfc 91] (6.10b)

which assume their largest values [a4 z(r)/am] at the sink (cf. Fig. 2) where

RBC, Eq. (6.3b) is of course satisfied. Also, differentiation of (6.8) yields

- 2. y 2
{a%’z(r,r)/ar) = as,z[%,z' (r-+1)+(a“/aTR){erfan,2-exp(-96’£)/(/;xb’z)}]
(6.11)
which can be used to provide 82¢4/3r2 or 32¢2/a?z via (6.5) or (6.7),

respectively.

IR B I

PIVIF) SRR

. e e e
L4 . v
* JLL'.AJ'J.I

»,
)




Fig. lc, which illustrates the variation for Coulomb attraction of
(d??dr) with r for various sink radii shows that the terms of (6.2d) and
(6.2c) which are omitted in (6.5) and (6.7), respectively, are largest at the

sink. At the sink,
8, 4(0:7) = 1+ (a/arg) Lexpx’ erfc x-1] (6.12a)

= (a,/uRN)[8¢A,1(0,r)/8?] = ag ) ()/opy
and

9, 0.0/t = (a5 Jogy) [, (D) = ag ) (v=)] (6.12b)

where GS,L(T*Q) are the long-time asymptotic transients,
ag  (to=) =a_ [1 + (apy/agp)/x, ,77] {6.13)
of the basic rates,
“S,L(T) = agyil + ("',./“TR) [exp xi’z erfc Xg.g " 11} (6.14a)
=a_ [1+ (“RN/“TR) exp xf,z erfc xb’l] (6.14b)
At long times,
05 o (Farme) = (1) - (a fagg)s (20, ,/30) + 0 (6.15)

and at short times,




.......................................................................

#(F,0) = (*+1); (3, ,/37) » - (agp/ag) (d¥/dr) exp(-r74T)/ /it (6.16)

T

With the aid of (6.10a) and (6.11), the key criteria (6.4) for validity of

)
o .
ol

the short-time solution ¢4 for all r is,

(opn/al) 8, = (F¥1) + (a fagg)lerfc o, - exp(-2,2)/x, /7 1|

'f‘r-‘r
Rt}
4" .

i 27 2

g . s> —{AP/AT) 0 L (K1) + (a_/fagg) erfc g, (6.17a)
- (df/dr) (d¥/dr) ®

&f which specifically excludes long times (t+=) since then 2, > 0 and both

sides vanish, with the aid of (6.15). This condition becomes more transparent

at the sink where (6.4) reduces, with the aid of (6.12a,b) to,

(/e ) (dF7dr) 2 [ag(t) - ag(t+=)1 > (a%¥2/dr?) ) [ag(t) - a_ I (6.17b)

'| which also specifically excludes long times since ag tends to as(t+@), the long-time
transient, faster than ag tends to a_» the steady-state asymptote. Moreover the ]

validity of this "short time" solution extends into longer times both for the

transport controlled regime when (GRN/“Q) >> 1, and for larger sinks when i
e (d?-'/dr)0 becomes larger so that (dz?zldrz)0 becomes smaller (cf. Fig. lc). ]
]

This systematic trend is indeed confirmed by Figs. 3-5.

The key criteria (6.6) for validity of the solution ¢, of (6.7) is
o satisfied for large R (cf. Fig. 1 and Table 1) at all times. As shown by the
) Laplace Transform method ¢z is also the exact solution for all R at long times.
&
| .
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6.1 Effective Transient

Although aS’L(t) yield the exact transients at the respective short (S)
and long (L) times, cs(r*w) does not tend to the correct long-time transient
Gﬁl)(f) of (3.36), and a (t+0) does not tend to the correct short-time transient
agl) of (3.35) since, a,
radii (cf. Figs. 3(a) - 5(a)) when (dP7dr) + (S/g). The appropriate

and azin (6.9) are not equal, except at large sink

asymptotic limits apy 2t zero tand o at infinite t are however reproduced by
both ag and @ via the functional dependence (6.14), an asset worth
exploitation,

Expand the solution,
N N N
o (ry1) = ¢,(r,7) exp - o(x) + ¢,(F,7) [1 - exp -0(1)], (6.18)

of the basic Eq. (6.1) in terms of the known functions ¢A,2. The exact
short-time and long-time transients are ensured by insisting that the unknown
function o(t) is such that o(t - 0) > 0 and o(T + ») + =, Also ¢A(?*°,T) >
(¥+l),irrespective of o(t). The radiation boundary condition in (6.3b) is

satisfied provided o is a function only of . This restriction precludes

(6.18) from tending to the exact solution ¢z(?,r) at large r. The
combination (6.18) is therefore expected to provide an improved transient in
the vicinity of the sink where the transient rates a(t) = N ¢(0,1) are
determined. N

According to Figs. 3-5, ag departs most from the exact rate at
intermediate times T 2 10, and o departs most at short times < < 1.
Plausible combinations consistent with (6.18) are therefore

G(-)( ‘1/2)

) = o) (1) exp(-t *+ ag(t) [1 - exp(-t'l/z)] (6.19)
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and
| !l a(+)(1) =a (1) - exp(-tl/z] +ag(r) exp(- 4/2) (6.20)
i -
b In Table 2 are displayed the maximum percentage errors 5
fl 3
R -]
i 4
between the exact numerical rates ag and the analytical rates a =ac, GL and ]
RS '
{; a{*) over all . The above combinations for a(t) provide considerable improvement over ]

- the individual % | particularly in the transport limited regime o - %re for
»

r the extreme case of smaller S~ 0.25. The combination (6.20) provides rates y
fee within 7% lower than the exact rates over the full t-range. Other trial B
v combinations involving rtl instead of rtl/z in (6.20) and (6.19) were adopted o
‘l with similar but somewhat less accurate results. As Cols. 2 and 3 of Table 2 :
- show, the greatest error occurs for those cases with the largest differences E
= between a, and a, in (6.9). Also o, involves less error in general than oy over the i
'! full T-range. :
- Another possibility is retention of the basic functional forms,(6.8) for i
ézf ¢ and (6.14) for a, but to allow xr'l/z to vary continuously froma,, the §
- exact short-time value (6.9) toa,, the exact long-time value (6.9). The .
< forms (6.8) and (6.14) ensure automatic satisfaction of both boundary 3

conditions (radiation and asymptotic) for well behaved (x,2) and provide the

"‘r.-
7
P
iate

correct limits ap, and o at zero and infinite times, respectively. Since

maximum error in the previous analytical expression for a's occurred for

those cases with the largest constants (xz - xb) 1'1/2, direct approximation 1

r to X, under the constraints that x * Xy a8 T > 0 and X * Xp as T * =, is 4
..‘

o therefore indicated. %
i Figs. 6(a) - 6(c) illustrate the variation of xf’g 7l » where q
L. 4
. 2




'"/z)xz e 1 - exp(™H)T g, 30 =1, 2 (6.22)

x,f')(r) = exp(-t

S between the exact short-time and long-time constant limits, as compared with
the numerical solution Xg of (3.32) with a taken as the exact numerical rates N

ag- Since X, X _<__x2 ,» then @, L ag g_az, as illustrated already by Figs. -
3-5. The more gradual variation of x{') is much closer to Xg than is the more .
abrupt variation of Xg;)- even for those transport limited cases which
involved the largest difference (x2 - XA)'

Figs. 7(a) - 7(c) demonstrate the close agreement of the resulting rates
a[x{-)] with the exact numerical rate over the full range of t for the worst
cases (transport-limited and small sinks). Although the percentage errors
(Table 2) associated with @ and ag are here as large as -33% and 68%,

5' respectively, use of xg') in (6.14) involves errors less than 4%, as
ii indicated in Column 9 of Table 2. Inspection of Figs. 6 and 7 shows that a is :f

not too sensitive to variation in x e.g., a 10% variation in x in Fig. 6 results in

. little variation of a. Also the fact that xi intersects xp twice (XI < xg at
short times, XI > xg at intermediate times, xi < xg at long times) results in

a corresponding but Tess of a variation in a.

46




N (.‘- ',‘:',. "" I',i '_.' l‘!'n' ‘s e T

[N

Y
b} D)
v

7. Summary and Conclusions

By operating at a level more basic than the macroscopic Debye-
Smoluchowski Equation (DSE), the present treatment {§ 2), has exposed the
following assumptions intrinsic to DSE: (1) the densities n and associated
net current J in eq. (1) refer to paifs in the combined blocks C (of fully
dissociated states) and E (at highly excited states) as in eq. (2.11);

(2) steady-state conditions for all pairs in each energy level of block E and
(3) steady-state for all pairs with R f-Rs and all energies in blocks C and E
as in eq. (2.30). Also (4) DSE is mainly limited to cases of high non-
equilibrium.

In addition, the microscopic treatment has also provided the appropriate
modification (2.14) of DSE, which was applicable only to regions R Z-Rs
external to the sink, to description of the kinetics within (R < R.) the sink.

The microscopic treatment has also indicated that the actual rate (2.20)
is determined by the self-consistent solution5 of the two simultaneous
equations (2.7) and (2.10) each of which couple transport and collisions.

The local rate @5 of reaction in (2.23) thus remains an integral and
internal part of the treatment by being determined from the self consistent
solutions.

This local rate 83 (or “RN) is externally assigned in DSE which therefore
describes via (2.9) in (2.24a), the transport portion of the problem
consistent with this external choice for 33. Under the provisor that the
transport and reaction rates %R and apN are fully uncoupled, the
DSE-prescription is valuable for investigation of that particular
time-dependent combination of SN and @ involved in the process as time
evolves.

12

N
In § 3, a nonlinear transformation ~ into tilda-space R(R), has
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facilitated the search for simple analytical time-dependent solutions of DSE
for general interactions V(R). Expressions have been obtained for the time
dependent probability density n(R,t), that the pair AB has separation R, and
for reaction rates a(t) which are exact (a) at all times and large R, (b) at
long times and all R and (c) at short times and all R. In particular, the
solutions for cases (a) and (b) are identical. The transformation technique
is, in itself, quite general and can be applied to a variety of problems. For

12 of this strategy, recently

example, Cukier19 by following previous reports
used this tilda space representation to successfully study concentration
dependent fluorescent quenching.

By comparison in § 5.1 with exact numerical transient rates ag of § 5,
the rates as(t) and aL(t), (3.32) with (3.31) and (3.30), are the exact DSE
transients at short and long times, and are, respectively, higher and lower
than ap at intermediate times. Over the full time-range, uL(t) is, in

general, closer to ag than is ag. Retention of only the first t'l/2

172

-term

in the t~ "/ “-expansion of aL(t) provides aél)(t) in (3.36), which is identical

1l previously from a perturbation-type

with the asymptotic transient derived

10

method. The present expression (3.32) with (3.30), for aL(t) provides

l' "
considerable improvement over aél) which, up to now, has been (to the author's C)

knowledge) the only simple analytical rute available., Similar expansions

- -~
ij (3.35) for short times are also provided. R
EE Not only is ac the exact transient at short times but a¢ tends to the o
i correct steady state asymptote o at long times, albeit with an incorrect =

transience; and @, not only is the exact long time transient but tends (with

an incorrect transience) at short times to the correct rate apy At t = 0. The

varations of both °L,S(t) with t are therefore bounded, unlike the previous :ﬂ

rate a{}). This asset is the essential reason that extensions of @ )

...............................................
......................................
- %

..............



proposed in § 4 to cover intermediate times are not as effective over the full
time-range.

By exploitation of this asset,which is based on the unique functional

T M T T

dependence of a(t) in (3.32) on x(t), a time-dependent combination of x,(t)

and xz(t) for x(t) provides, in § 6.1, rates highly accurate (to within 4% for

-
":_r

the worst case) over several decades of time!
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i? Table 1. Values of R and ?i, in natural units (R, = ezlkT).
! and of (dR/dR) for Coulombic Attraction.
% R R  (dR/R)
’ 0 1 0
F 0.25 1.0187 0.3041
| E 0.5 1.1565 0.7241

: 0.75 1.3580 0.8642
{ 1.0 1.5820 0.9207
N 1.5 2.0552 0.9638
k 2.0 2.5415 0.9794
i 3.0 3.5277 0.9908
¢ 6.0 | 6.5139 | 0.9977
h 10 10.5083 0.9992
i :

R R+0.5 1.0
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Table 2: Largest Percentage Errors A = 100(a- aE)/aE associated with various

levels of approximation. ?
A . 2
_ (afarg) s a al g e N R B =
:
- 0.1 1 0.647 0.702 0.15 0.13 0.03 0.04 0.03 0.06 3
| 0.1 0.75 0.530 0.614 0.29 0.22 0.05 0.08 0.05 0.09 )
;& 0.1 0.50 0.348 0.480 0.69 0.45 0.07 0.21 0.07 0.16 ::
- 0.1 0.25 0.083 0.273 2.98 1.24 -0.24 0.93  -0.43  0.85 =
oo
0.5 1 1.164 1.264 0.93 0.96 0.26 0.21 0.26 0.45 o
0.5 0.75 0.955 1.106 1,75 1.62 0.42 0.41 0.39 0.72 "
0.5 0.50 0.626 0.865 4.33 3.24 0.68 1.09 0.61 1.25 fj
0. 0.25 0.149 0.491 20.63 8.92 1.33 5.67 -2.64 -5.43 -
0.9 1 5.820 6.322 2.25 3.63 1.23 0.17 1.20 1.77 ;_
0.9 0.75 4,773 5.523 4,32 6.14 2.17 0.33 2.05 3.16 -
0.9 0.50 3.130 4,323 11.24 12.32 4,62 0.87 3.88 6.69 s&

0.9 0.25 0.746 2.454 68.29 32,70 15.06 6.43 3.65 11,24

GS’L(T): Eq. (3.32) with (3.31) or (3.30);a[x{'g]z Eq. (3.32) with (6.22)

for x1,2'

o)) = exp(-x1 /%) g + (1 - exp(- ) dag;

172 1/2)]°L;

c(+)(r) = exp(-r Jag + [1- exp(-7
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Figure Captions

'I Fig. 1. Variation of (dﬁ/dR) with E(n.u.) for (a) the attractive interactions
-‘.. "’

V(R) = - (Re/R)", n=1,2,4and 6. R is in units of Re’ the natural

Ef unit (n.u.). The variation for pure Coulomb attraction (n =1,

. Re = ez/kT) is amplified in (b) where (X) denote the values selected
F: as sink radii S.(c) Variation of scaled derivative (dg/dr) with

L’ scaled distance I for the selected sink radii (S = 1, 0.75, 0.5 and

0.25 n.u.).

L

Fig. 2. Exact numerical solutions for the fractional departure p = n/N, exp(-V/kT)

of the probability density n from Boltzmann equilibrium as

oy,
L&Y

a function of reduced distance F = (E/g)-l at scaled sequential

?} times t = (Dt/Sz) = 0.05, 0.5, 1, 2, 5, 10, 20, 30, 100, 200, 500

) up to infinity (). Assigned parameters: a /arp = 0.5, 5 =0.5 (n.u.).
‘. Fig. 3. Comparison with exact numerical rates of various short-time (a)-(d)

and of various long-time (e)-(h) analytical rates over several decades

b= e
e

of scaled time t = Dt/SZ, for various sink radii S(n.u.). Assigned

parameter: a /arp = 0.1.

i‘ '."

Fig. 4. As in Fig. 3,but with aw/“TR = 0.5.

Fig. 5. As in Fig. 3,but with e /ap = 0.9.

Fig. 6. Variation of x(t) 1'1/2 with scaled time t = (Dt/Sz) for extreme case
of small sink radius § = 0.25 n.u. and for «_/ayp taken as (a) 0.1, (b) 0.5
and (c) 0.9. Curve E is obtained from exact solution of eq. (3.22)
for exact numerical rate,and curves 1 and 2 are obtained from eq. (6.22)
of text with n = 1 and 2, respectively. Long-time and short-time exact

/2

limits X, A(t) L are illustrated.
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($)]
w




A O A I i A A % 4R BN J-n e Jing= ey ~ i =R tal

Fig. 7. Comparison over scaled time t = (Dt/Sz) between exact numerical rate

ag and various analytical rates: a[xl(')] obtained from eq. (6.22) f:

for Xl- in eq. (3.22) for a. The exact long-time and short-time

transients are @ and ag, respectively. Assigned Parameters: (“m/aTR) =3

= (a) 0.1, (b) 0.5, (c) 0.9; and S = 0.25 n.u. an extreme case for -

validity of basic assumptions. &
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Ion-Ion Recombination at High Ion Density
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Ion-Ion Recombination at High Ion Density

M. R. Flannery
School of Physics
Georgia Institute of Technology
Atlanta, Georgia 30332, U.S.A.

Abstract. By appeal to a Thomson-type treatment of recombination, it is shown

that the rate for recombination of ions generated with uniform frequency

within a reaction volume is a factor of (9/4) times greater than the rate for
recombination of ions which approach each other from infinite separation. A
valuable relationship connecting the two problems is uncovered. The analysis

is pertinent to recombination involving dilute and high degrees of ionization.

Physics Abstracts Classification Numbers: 3410, 3450L, 8220, 8240

2 » 4 A Valae &




For (X*-Y~) ion-ion recombination in an ambient gas Z (neutral or ion),

the following important distinctions between the cases of low and high fon

densities Nt are evident:

(A)

(8)

(C)

(D)

For dilute fonization with ion densities Nf g 108 am3,
recombination can be based on consideration of the flow of positive
fons X* (say) towards a central stationary negative ion Y-, Steady-
state conditions are then maintained by a source of ionization at
infinity. For high fonization with Nt 3 2 x 10'% (7/300)3/2 cm3,
when the Debye-Huckel shielding distance R < R,, the natural unit
(e2/kT) of length characteristic of ion-ion recombination in a low
density gas at temperature T, the positive ions xt already exist in
a pre-assigned configuration with respect to Y-, and the steady-
state source is then distributed uniformly throughout the volume
(Bates 1981).

Recombination results not only from ion-neutral gas collisions but
also from ton-ion (X*-x*), (Y--¥7), (X*-Y~) collisions which tend to
increase the rate (Bates 1982).

The interaction between the ions may no longer be considered as pure
Coulomb at Tow gas densities N but will involve some appropriate
measure of screening as determined by the self-consistent Poisson-
Boltzmann treatment (Flannery 1981, 1982a,b).

There are no longer isolated sinks, as for low NE, but cooperative
and competitive effects can arise between the closely spaced sinks

distributed throughout the region.

Bates (1981) has reasoned that screening (C) does not affect the

recombination at high gas densities N, on the basis that ions which are

initial nearest neighbours remain nearest neighbours, and drift towards one

L ". "]
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another until recombination occurs, with the result that the usual Langevin-

Harper rate at high N is not affected by increase of ion-densities NE,
Flannery (1981, 1982a) has shown that the recombination rate a is, in general,

determined as a function of N and NX by the self-consistent solution of the

Boltzmann equation for the two particle distribution function and of Poisson's
equation for the interaction between the ifons. Calculation (Flannery 1981)

3 causes some reduction

indicates that increase in ion density up to 1014 cm-
to a only at low and intermediate N. A molecular dynamics simulation (Morgan
et al 1982) which incorporates this self-consistent idea (Flannery 1981)
illustrates that the reduction can become quite significant when higher
densities Nf 1019 at gas pressures < 1 atm are reached. Bates (1982)
demonstfated that the effect of ion-ion collisions in (B) then tends to oppose
the decrease resulting from (C) particularly at lower temperatures T and

Nt 1013 cm'3. The isolated effects of (A) and (D) have not yet been
addressed.

The present goal is to investigate the effect of distinction (A) above,
in isolation from (C) and (D). Since a detailed treatment based on
microscopic principles (Elannery 1982a) would couple (A)-(D), and would
therefore tend to obscure the key issue, it is worthwhile to illustrate the
general trend by appeal to a Thomson-style treatment (constant speed, full
absorption upon suitable collision). In so doing, a valuable connection
between two distinct problems becomes apparent.

In the following analysis, diffusional drift which influences the
approach of the ions at intermediate gas densities N is ignored so that the
present treatment is appropriate to iow N ¢ 1017 - 1018 em=3, At higher
N 2 1020 - 1021 cm"3, the distinction A loses 1ts significance since the

radius Ry of the reaction sphere, within which recombination occurs, becomes
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very small in comparison with both the Debye-Hiickel radius Rg and the natural
unit Ry, so that fons are generated well outside the reaction volume. -
Let the positive ions x* be born isotropically with frequency F. at a o
point r from the central negative ion Y~. The flux (number of ions per sec) ij
which escapes in all directions ?E through a convex surface of area S :j
enclosing a volume V (Figure 1a) is ﬁf
FE(D) = (F/dn) [ R7exp(RAA) (@g-n)ds = (Fo/an) [ exp(-R/a)dag (1) :

E

where R is the length from the internal point source r to the exit point on S
in the direction ?E’ where A is the mean free path of the ion Xt in the gas, i;
and where dnE is the solid angle (QE'Q)dS/Rz subtended at r by elemental area A
dS with outward normal n . The probability for escape through $ of ions born <
at r is therefore o
- -4
. () = Fel0/F = (1) | exp(-R2)dag (2) E{E;‘

and provided the production frequency F. is the same constant at all points

within V, the averaged probability for escape is

<P> =3 [ P(c)de = (1/8aV) [ dV [ exp(-R/A)dag (3) =
v v QE -
Subdivide V into tubes with axes directed along @, as fn Figure 1(b), 2
such that the elemental volume at r is,
dV = (n, *a;)dSdR (4)

e e e e e e e e e e e e e e e e
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where R is the distance along 2 of r from elemental area dS with normal n,
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pointing inward. On integration over R between zero and the maximum chord

':‘

length Rm(gE’Qi) consistent with the specified directions 2 and 0y the

' 4,

averaged escape-probability is

A

P> = = (V) g ds {z dag (g0, )[1-exp(-R /1)] (5)
E

where the region of integration is such that gE°Qi > 0.

The averaged probability for absorption within V is therefore

n"'a;‘ 1,',",' |.:"

b 3P

<l;> =1= <1E> (6) j

M B
P

so that, the rate ay (cm3s'1) of volume recombination (absorption) within V

A B W NN

ii is,
\: ay * <PA>Sv (7) 4
. 3
where v is speed of the jons across surface S. This rate holds for fons j
E! generated with constant frequency F. at all points within any volume V i
§: enclosed by any convex surface of area S. Under steady-state conditions, the %
r source frequency is ﬂ
- -
Fr = ay<p> (8) ¥
. ;i
s where <p> is the averaged density (1/V)f p(r)dr within volume V in terms of ;
ﬁ; the density distribution p(r) of ions w¥th1n V. ;
- For a sphere of radfus Ry, in particular, Ry s 2(95-Q1)RT. so that the §
E? absorption probabflity obtained via (6) is §

”, r\
[¢4]
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<h>=1 - (3A/4RT)H(RT/A) (9)

where
W(X) = 1 - (1/2x2)[1 - (1 + 2X)exp(-2X)] (10)
» @00 -3+ B -5, X0
»1 - (1/2x3) , -

is the well-known Thomson probability (Thomson 1924, Loeb 1955), the relevance
of which to the present problem will become apparent below. The recombination
rate (8) for fons distributed with uniform frequency within the reaction

sphere is therefore,

ay * 4:RT2v[1 - (3A/4R;H(RL/A)] (11)

which tends at low gas densities (where A >> RT) to
ay = )G R (/) (12)

which is a factor of (9/4) higher than the corresponding Thomson rate for
recombination of ions approaching from infinite separation (Thomson 1924,
Loeb,1955), rather than from the pre-assigned configuration.

For dilute ionization, the number of ifons per sec which travel (still in
the absence of diffusional drift) from infinity and enter the volume V through

S from all directions Q_ is

~0
dNey 1
R G ol 08, s o

0
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where n is the outward-pointing normal to surface area dS. The density within
V is
p(g) = [ o(r,Q)da (14)

where the angular density at the internal point r in direction Q is
p(r,8) = -(p v/4x)[dS[ K(r,2:r,,8,)(2,-n)da, (15)

in terms of K(g,g;co,go) which is the angular density of ions at r travelling
in direction @ which originate from a source radfating with a unit (flux) rate
at Co in direction g, at surface S. This propagator satisfies the principle
of microreversibility,

£.-8) (16)

which is such that the angular density at r in direction g which originates
from a unit source radiating at o in direction no. is equivalent to the
angular density generated at Lo in direction -no by a unit source radiating at
r in direction -@. In terms of this propagator, the probability of escape of

ions born at r is, by definition,
Pe(r) = (v/8x)[dS] K(r,,9,:0.8)(g,°n)da, (17)
the ratio (2) of the frequency at which ifons emerge (with g,°n > 0) through

surface S in directions go to the frequency of their internal production at

r. Upon use of (16) in (15), and upon reversal of signs of 2, and @ in

................

PR P Y -\-\-._.-_-

eI I R NI N N

al




the resulting expression for (14), the internal density (14) is simply
o(r) = Pe(r)a, : (18) '
The average escape probability is then

<> = [f el0)dcl/e, = w>/e, (19) .
v

for any surface geometry.

This expression (19) therefore provides the unique link common to the two

-~

distinct problems addressed here i.e., between the escape probability for ions b

generated isotropically at constant frequency within a confined volume V and

the averaged density of ions injected into V from an external bath extending =

b to infinity.

Since the rate of ion entry into V from the bath is given by (13), and

(-

1

o since the number of fons which exit per second from V back into the bath is :i

dNEx -2
. (pwv/4w)def exp(-Rm/x)(go'Q)dn° (20) -

the number of ions which are absorbed per second within V is

dN
T = 35 Ny - Ngy) = (o v/4n)fds] (g,"n)[1-exp(-R /A)1da = a0,  (21)

where a p s the frequency of generation of ions at infinity. i

4+ s
SSAaN]
Sttt

The treatment assumes that absorption (recombination) occurs following

,..
A

collision at constant speed v so that the absorption frequency is also
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:
dNA v X
aT (Nov) 6 p(g)dv = (-x)<9>v (22) i
!‘ )
¥ where o s the cross section for collisions with the third bodies Z of density ?
N N. With the equivalence of (21) and (22) in (19), the escape probability}(lQ) )
- is then i
L "
P> a =1 en)[1-exp( - :
t? <k <p>/p, 4' (a/V) £ ds é dszo(g0 n)[1-exp( Rm/x)] (23) :
v (o} : K
- |
gl which is precisely the relation (6) previously derived ab-initio without the )
Lot \
) connection (19). The fraction of ions that are absorbed within V is ]
} 4
1
‘ = = P R
- f (dNA/dNEN) (4v/Sa)< £ (24) :
ii which, for a sphere of radius Ry, reduces to %
f = (4RT/3A)< PE> z w(RT/A) (25)
. 1
e which is, as expected, simply the Thomson probability (10) for collision,
within the trapping sphere, of ions which enter the sphere from an external :
bath. 4

The connection of <7E> to the rates of both problems is demonstrated by

comparison of the rate g

t-
- 3
e S22 yYy . Py -1 X
a, o V(A) < E’v(x) 3 fSv (26)
‘. ' ]
! obtained from (21) and (22) for recombination of ions entering S from infinity j

with the rate (7),
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ay = [1-<PpIsv = [1-(35) F1sv (27) -

for recombination of ions generated isotropically within V at a uniform o
frequency. The appearance of f (= the Thomson probability W for a sphere) in
both problems is now evident.

Moreover, the averaged density <p> within the reaction volume follows
from (19) directly or from (26) where the frequency a_p_ of ion production at

infinity is set equal to the frequency (v/A)<p>V of absorption within V to

give
<p> = a_p (A/vV) (28)
irrespective of the mode of transport from inifinity to S. When a_ is -
controlled by reaction alone (i.e. a 15-% fSv), then, for a spherical volume -
<p> = [(3/4x)W(x)Ip_ (29) .
which tends at low gas densities N (where X = RT/A << 1) to p¢[1-3RT/A L S -
The linear dependance on N(~1/1) of a_ in (28) therefore arises from the -
constant term p_ in this expansion of <p> so that the recombination rate at T:
low N follows directly by taking either <p> = p_ in (28) or <PE> =1 in (26) )
to give :f
A >> Ry 3 iﬁ
a, — V(v/1) = (4/3)1rRT(v/A) (30) :
thereby providing a one-line derivation (from (28)) of the Thomson N-1inear
10
ey N e e o e o e S




E; rate at low N. Nonlinear variation of a_with N arises from the departure
of <PE> from unity.
‘!! In the presence of diffusional drift, the above Thomson rates (26) and -
gg (27) can be regarded as reaction rates (Flannery 1982a,b). As the gas density
; ) N increases then, for a sphere, the ratio (av/an) increases from 2.25 to 4 ﬁ
jr. when ) < RT‘ The factor 4 is simply the relative measure of flux for both '
problems. This enhancement will favor an earlier onset with N of diffusional- :
= drift which will eventually become the rate limiting step. S

In summary, the partial recombination rate arising from (X+-Z) collisions
for the (dilute-ionization) case of (X+-Y') approach from infinite separation

at speed vy, is the Thomson rate, 2]

— -
A

2 ARy g4 3,23
ar = "'RT VIZH(RT/X) E——— ('§ 'Re )8 (Vlz/x) ’ g=3/2 , (31)

(which incidentally identifies Re as the natural unit (ez/kT) for volume
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ay = 4nRT v12[1 - (3A/4RT)H(RT/X)] (32)
A>>R
T 9 4 3,.-3 _9
> 7 (3 R)BT(vp/A) = Fag
for the present (dense ionization) case where a steady-state distribution of
- fons X* is maintained by constant-frequency isotopic sources (8) distributed
uniformly within the reactive sphere centered at Y~. The full rate is the sum
of the partial rates based on X*-Z and Y~-Z collisions. So as to account for
3 the inefficiency of energy transfer between dissimilar masses, the Thomson-
. rate (31) can be multiplied by a mass-dependent efficiency factor designed to
v
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reproduce the highly accurate rates (cf Flannery 1982b) obtained from solution
of the conventional collisional input-output Master Equation at low gas
densities. This overall normalization should not affect the basic connection
between (31) and (32), or the basic prediction that the effect of the
distinction (A) between the cases of dilute and high degrees of ionization is
to increase the recombination rate (by a factor ~ 9/4).

| The effect of ion-ion collisions (B) can now be incorporated directly
within (32) by regarding (Bates 1982) third bodies Z as ions X*(or Y7).
Thomson- recombination between ions of separation R < Ry = (2/3)e2/kT occurs
upon any collision which is assumed to transfer energy AE > (3/2)kT. For ion-
jon Coulomb scattering between equal masses at relative energy (3/2)kT, this
energy is transferred provided the (CM) scattering angle is greater than
(v/2). The cross section for such collisions, after a straightforward
exercise, is

o = (1/9)m 2 (33)
In a gas of electrons of mass m and density N, (33) in (31) yields

aT(e) - (4n2/27s3)(8kr/nm)l/zkesn‘ (34)

9.-4.5, -

= 3.5 1077745\ (en¥s7))

for the rate of electron-ion collisional recombination which, remarkably, is
92% of the identical collisional rates (Mansbach and Keck 1967, Stevefelt et
al. 1975) based on the detailed Master Equation. Generalization of (34) to
cover ion-ion recombination in an ion gas may be deduced as in Bates (1982).

Incorporation of ion-ion collisions within (32) will also increase the
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-3 and lower

recombination rate, particularly for ion-densities Nf bd 1015 em
temperatures (Bates 1982).

In conclusion, the rate for recombination of ions distributed uniformly
within a reaction volume V has been shown to be a factor of (9/4) greater than
the rate for ions which approach the reaction sphere from infinity. These two
sitqations are respectively appropriate to the present examination of the
effect of distinctions A and B (in isolation from C and D) on the cases of
high and dilute fonization, respectively. In so doing, a valuable
relationship (19) which connects the two distinct problems of approach from

infinity and of escape from a confined volume of generation has been

uncovered.
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Figure 1: (a) Ions borns at point r within volume V enclosed
g by surface S escape within solid angle dQp through elemental area
¢ with outward normal n. (b) Elemental volume dV = (gE-Qi)deR of

re tubes with axis along Q¢ at angle to inward normal n; of surface
e element dS. R is maximum chord length for specified directions
’ ny and Q.
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