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SFoundations of Knowledge for Distributed
Systems

Michael J. Fischer* and Neil Immermant

Computer Science Department
Yale University

New Haven, CT 06520

September 19, 1985

1 Introduction
In [HM841,-4alpern and Morn present an interesting discumion of knowledge
and common knowledge for distributed system. They argue that while common
knowledge is desirable, it is unattainable in certain settings. They suggest a
hierarchy of weakened versions of common knowledge and discuss when these
can be achieved.

One difficulty with the Halpern and Moses paper is that it is informal and
the concepts dealt with are not rigorously defined. Given one interpretation,
their theorems are true as claimed, but given another, the opposite occurs, as we
show with appropriate counterexamples. Thus, their theorems are not wrong in
spirit, but the concepts .. . be more carefully defined.

.- 4m-eh~mui~b4-d~hi p, *& givqs.quite general and preciselF eiwon
of distributed protocol, knowledge and common knowledge.lf also provides I 4[ ,4
precise settings and rigorous proofs for many of the results in fR e
proposeome alternate definitions in which the same results become false. -, 4
)-G desir~to develop a way to design clear distributed algorithms and '

write clear proofs about them.a We believe we have provided a solid base for
future work in this area.
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2 Definitions

Def Iltlon 2.1 A distributed protocol,

'j (n, Q, 1, ,'),

consist o a umber n of ptsiciasnts, a act Q of toed states, a set I Q Q% of
1* ~initiel globul Oates., and sa mov'e relation r! Q (* x Q%' on. Ilobal *tat"e.

Our definition of protocol is certainly simple and precise. Let us first argue
that it in sufficiently general. Anything we would be willing to call a distributed
system can be broken up into a finite number of logical entities. Each such entity
must be in some total configuration that we are calling its state. Furthermore
the states of all the components combined should determine the entire state of
the system and thus which global states can be next entered.

It is easy to see for example that our model of distributed system is a gen-
eralization of the shared variable model of Lynch and Fischer [LF8lJ. In that
model the components consist of shared variables and processors. Each action
involves exactly one processor and one shared variable.

Similarly our model includes synchronous protocols in which every processor
sends a message to every other during each round. One way to model this is to
specify that the set of possible states is of the form Q = M* , i.e. each processor's
total configuration consists of an n-tuple. We can specify that the 1 h entry of

"" j's state is the value of the message sent from i toj during the previous round.
This can be done as follows: for all processors i, j, and for all global states p,
q, r, s, if (p, q) and (r, a) are in r and if processor i has the same state in p as

" . in r, then the i'b component of processor i's state is the same in q as in a.
The sense in which our model could be too general is that we allow any

transition relation r. Of course for certain applications we can make appro-
priate restrictions. We have already seen that we can restrict our attention to
processors which communicate with shared variables, or to synchronous mes-
sage passing protocols. Similarly, instead of letting each processor's transitions
be perfectly general, we can restrict our attention to processors with specified
computing power, e.g. finite automaton, polynomial time Turing machine, etc.

For any protocol P, let Rp be the r-reachable global states of P, that is, the
% set of all global states we can reach by starting in I and taking any number of
%. r steps. For p E Q" a global state and I :_ i <_ n, we write (p), to denote the
rih component of p.

For any two states p, q e Rp and any participant i, we will use the notation
p 2. q to mean that (p). = (q)j, i.e. they are indistinguishable from i's point
of view. Obviously each 2 is an equivalence relation. For any reachable global
state p, define the i.nighborhood of p as follows:

S( I q p}

2
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If we are in state p, then all / "knows' is that we are in Ni (p). Therefore,
for any sentence a,' it is natural to make the following definition of Kia, which
we read as "i knows a':

(P,p)I=14a m VqEN,(p)((P,q)Ima)

Intuitively i knows a just if a is true in all the worlds which are indistinguishable
by i from the current world.

It is convenient to picture a protocol P as a graph with nodes consisting of
all the elements of Rp. There is a directed edge labelled r from p to q just if
(p, q) E r. Furthermore there is an undirected edge labelled 'i' between p and q

just if p 4 q.
Let G g {,...,n} be a group of participants in a protocol. For any p E Rp,

define the G-neighborAood of p as follows:

NG(p) = (q I (3r > 0)(3i,...,i E G, pP2..-'-' qJ}

This generalizes our previous definition since N(p) = N{ }(p).
Analogously to our definition of Ka, we define CGa, which we read, "it is

common knowledge among the members of G that a':

(P,pfl=Caa =- Vq4ENG(P)((P,qfl--a)

We write C for CG and N for NG in the special case that G includes all partic-
ipants.

The next result shows that Ca coincides with the intuitive definition current
in the literature. (See for example [HM84J.)

Theorem 2.2 The following two statements are equivalent:
1. (P, P) = ¢ .
2. (yr 2: O)(Vil,, i, e G)((P, p) z Ki, Ki, ... Ki,,).

Proof
, (1 =P 2): For any 0, we have CC# -, 6 since p E NG(p). Thus, it suffices to

show that for any d, if (P, p) = CGO, then for all i E G, (P, p) CKj. This is
clear because if q E NG(p) and q' e N(q) then q' C NG(p); hence (P,q) Ki.
Since KO holds for all q C NG(p), it is common knowledge in G at p, as desired.

(2 z1 1): Suppose that (P,p) 0 Ca. It follows that there is a q E NG(p)
such that (P, q) --a. Let i, G be such that there exists P,...,Pr-i

with p Pt 2 P2-.Pr- q. It follows that (P,p) z-',K K, ... K,,a. I

'We have intentionally left the logical language unspeciied from which the sentence a is
drawn, for all that we require is that it be possible to interpret a at the pair (P,p).

3
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a.

We conclude this section with two nontrivial examples of protocols, one
asynchronous and the other synchronous. These protocols will be frequently
referred to in the remainder of the paper.

Let A - (n, QA,IA,r A) be an asynchronous message passing protocol de-
fined as follows: The first n participants of A are the processors al, ...,gas; the
remaining (n - l)n participants are buffers. For a global state p, we abuse our
previous notation slightly and write (p)., to denote the component correspond-
ing to aj and (p)&,., to denote the component corresponding to buffer bi.

The set of possible local states of a buffer bi,i, i 0 j, is MU (A), where M is
a set of possible messages and A is a special symbol denoting the null message.

=b, = m E M indicates that the single message m was sent by i but not yet
delivered to j. bi, = A indicates that no message is waiting.

The set of possible local states of a processor aj is (D x MO- ' x N). State
(d,mi,...,mi-.,mi+,...,m,,r) indicates that the processor is in internal
state d at round r with pending messages in 1 ,.. ,m _.,mf i,...,mR. If r
is even, then the processor is in a 'send' state, waiting to place each mi $ A
into buffer b6.. If r is odd, then the processor is in a 'receive' state waiting to
fetch a message from 6,; for each " such that m. = A.

Thus, the complete set of local states QA is (Mu {A)) u (D x M" - x N).
The transitions making up rA are of four kinds:

1. (p, q) E Send, if

* p q for all c (a,b,.3 };
* (4).. ff A;
* (q),.* ffi A

• (p), = (d,...,mi-1,,...,2k);

2. (p, q) E Receivej., if

- p q for all c (ai,b.i,;
" •* (p)., = m3.# A;

. (q) ., f A;
* (p)., = (d,...,m..,A,...,2k+ 1);

= (q). 4 =(d,.... m,-1, m,...,2k+ i).

3. (p, q) e Stop, if

c pZqfor all c 0 a;

e (p)., = (d, A,...,\,2k);
= (q).4=(d,,\,.., , 2k + 1).

4
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4. (p, q) e Start if"p ~'p q for al c 96 aj;

(p), =(d, m,..., mn, 2k + 1), where my 9 A for all jV i;

( = (d',m',..., m,2k + 2), where m'. 6 Ai fora all#i, andf '
and Y .ae functions of (d,M, 2k + 1).

Now we let r. consist of all the above transitions:

rT = U Sendi U Receime, U Stopi U Start

Finally let 1 be some nonempty set of global states in which the state of
every processor a. has the form (d, mi,...,m.,O) with my # A for all j O i,
and all the buffers are empty.

Our second example of a protocol is a synchronous version of A. Let 8 -
(n2' Qj, rS, I1), where

Qs = {A u (D xw-- x (2r I re NJ)

Thus in B all buffers are empty and the local states of the a 's are the corre-
sponding states from A at the beginning of a send phase. Let the transitions rs
consist of all pairs (p, q) such that there exists a rA path in A from p to q such
that none of the intermediate steps go through global states of B. Finally let
Is IA.

It is not hard to see that B is a synchronous version of A such that in each
round all processes send n - I messages and then receive n - I messages.

3 Common Knowledge in Asynchronous Sys-
tems

Defnition 3.1 We will call a protocol, P = (n, Q, 1,r), totally asynchronous
if for all (p, q) e r, p and q differ on at most two components.

The following theorem shows that in a totally asynchronous protocol, no
new common knowledge can be acheived.

Theorem 3.2 Let P be a totally asynchronous protocol and G a set of at least
three participants. Let p be any global state of P and let po be an intial state
from which p is reachable by a sequence of r steps. Let a be any sentence in a
logic for P. If (P, p) I Cca then (P,po) := CGa

Proof We first show that if p is reachable from po by a sequence of r steps
then NG(p) Nc(po). It suffices to consider the case where (po,p) E r. By

i 5
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the definition of a totally asynchronous protocol, p and po must agree on all
but at most two components. Thus, there exists a participant j e G with the
same local state in o as in p, i.e. po j p. It follows that p E NG(po) and
thus NG(p) - NG(po). The theorem now follows from the definition of common
knowledge in G. I

As an example, consider the protocol A discussed at the end of the last
section. It is easy to check that A satisfies the definition of totally asynchronous
and thus no new common knowledge can arise in A. By way of contrast, if we
look at A's cousin B, then one observes that all reachable global states in B
have all processors in the same round. Thus, if two reachable global states are

equivalent for some i, I :5 i :5 n, then they are both in the same round. It
follows that if we let G = {ai, ... 'a.) be the set of processors-i.e. we don't
care what the buffers know-then at any round r, 'Cc(we're at round r)' holds,
i.e. it is common knowledge in G that all processors are at round r.2

It would seem at first glance that the difficulty in achieving common knowl-
edge has to do with the problem of reaching an arbitrary depth of K's with only
finitely many messages. We conclude this section with a look at finite state
protocols where common knowledge is equivalent to a finite stack of K's.

Theorem 3.3 Let P = (n, Q, 1, r) be a finite state protocol, i.e. IQI < oo. For
each i, let

Q = ((q) I qE R,}

Thus each processor is a IQ1I state automaton. Let r - min{lQ, I I 1 i : n).
Let p be any global state and let a be any formula. Then the following are
equivalent:

1. (,p) Ca.
2 - . For all il, i2, .... isr- 1, ((P, p) Kj, .. K,,, a).

Proof
(1 2): By definition of C.
(2 1): Suppose that (P, p) 0 Ca. Then there must exist q E N(p) such

that (P, q) -'a. Consider a minimum length ,, chain from p to q:

p pPo p, p2 P... p,-I s = "q

Note that no nonconsecutive pair p,,pk can agree on some component be-
cause if they did the chain could be shortened. It follows that in any given
component each state appears at most twice. Therefore s :_ 2r - 1. It follows
that

(P, p) - K, K, ... K, 2 ,_, a
2 This auum of counie that our logical language is powerful enough to express the property

'we're at round r'.

6
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Example 3.4 Consider the protocol P = (2, {i, r + 1), ((1, 1)), rr) where,
r, as {((i, i), (i + 1, i)) 1 : <_ i :5 r) U {((i + 1, i), (i + 1, i + 1)) 1 1 <_ i < r) .

This protocol ha the unique computation chain:
(1 1L), (2,1), (2,2), (3,2),....,(r,r- , ( r,(+ ,

Furthermore, for all global states p and q we have N(p) = N(q). Thus, for any

(P,, p) Ca * for all q e R,, (P, q) a.

Let a say that processor I is not in state 1. Then (Pr, (1, 1)) 0 a, so
(P,, (r + 1, r)) 0 Ca. On the other hand, it is easily seen that

(A., (r + 1, r)) =K, KK K2 K ... K2KIa
2r-2

It follow. that for all il, i2.... 9ir-I C {1, 2},

(,(r+ 1,r)) I K,, ... K,,,cfa,

showing that the bound in Theorem 3.3 cannot be improved.

4 Alternate Definitions of Knowledge

According to Halpern and Moses, "If Cp is to be attained, all processors must
start supporting it simultaneously."3 Unfortunately the notion of two distant
events occuring simultaneously has no meaning in modem physics. Do Halpern
and Moses plus Einstein imply that no real distributed system ever achieves new
common knowledge? A corollary would be that no real, synchronous distributed
system can exist.

A look at our example protocols A and 8 reveals that they are realistic.
Recall that new common knowledge among the n processors is attainable in B
but not in A. This is all the more confusing because in a very strong sense A
and B are isomorphic protocols (cf. [CM851).'

The difference between protocols A and 8 concerns the granularity at which
processors in the two protocols may introspect. In B, processors are only allowed

5[HM1I4, Lemm 2.
4We will call a pair of protocols such as A and 8, all of whose interactions are accomplished

by a series of meesages, immorphic if the set of mesage sequences they generate is identical
up to permutations which do not switch the order of a send and a receive by the same
participant, nor the order of a send and its corresponding receive.

o7



to think about what they know at the start of each write phase. When two
isomorphic structures differ on some property, we become very suspicious about
whether or not that property is well defined. In the present case we must
reexamine our definitions of knowledge and common knowledge.

Let P be any protocol and let S C Rp be any subset of reachable global
states. For each i, let 4s be the restriction of L to S x S. We can now generalize
our previous definition of neighborhood. Let C .... , n) be a group of the
participants in a protocol. For any p E S, define the G-neigl6orhood of p with
respect to S as follows:

NG(p) = {q I (3r > 0)(3ij,... , 4E G)(3pi,...p,- r= S)
(P "S P1 "S P2 p... N- s"S qj}

Intuitively, i knows only about the global states in S. We thus define Kcar

as follows: for p 6 S,

(P,p) = K'a = Vq e Ni(p)((P,q) a).

Similarly, we can define common knowledge in G with respect to S:

(,P,p) =C'a =- Vq EN(p) ((P,q)I= a).

It is easy to see that the following generalization of Theorem 2.2 holds:

Theorem 4.1 Let S C R and let G n) {1,....n. For p G S the followving
two statements are eqwivalent:

. 1. (P,p) c',.
%"-' ~. (Yr > ) z. . i, E G ) ((P , p) K $ ... K$ )

The following theorem shows that for any protocol P and any nonempty
S g Rp, the operators Ks and CS satisfy the standard S5 axioms for knowledge
operators. It follows that if we consider the protocol A with S = R9 , then
we get a quite reasonable definition of knowledge and common knowledge for
which the asynchronous protocol A does attain new common knowledge. This
contradicts Theorem 3 of JHM841. More importantly, these observations show
the definitions of knowledge and common knowledge needed to make useful
progress in the understanding of distributed protocols are much more subtle
than one might have at first thought.

Theorem 4.2 For any protocol P, any nonempty S C_ Rp, and G C I, .... n},
the operators Ks and CS satisfy the standard S5 axioms for modal operators.

Proof This is immediate from the fact that each -S is an equivalence relation.

8
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5 Conclusions

We have given precise formulations of distributed protocols. For any subset
S of the reachable states, we have given a precise definition of knowledge and
common knowledge with respect to S. We have presented theorems outlining
some cases where new common knowledge can be attained and some cases where
it cannot. Most strikingly, we have shown that in some situations two plausible
choices for S can give completely different results.

One can now ask the question, "For which sets of protocols is there a 'best'
choice for S?" and thus a 'best' definition for knowledge and common knowl-
edge. We suspect that in at least certain situations there may be such a best
S, and that in this case knowledge and common knowledge with respect to S
may be valuable tools.

Many arguments in distributed systems are first formulated at the intuitive
level of what certain processors 'know' at certain points in the computation.
With precise definitions for these concepts, it may be easier to formulate clear
and correct proofs. We believe that considerable work is needed in order to
develop logical tools and demonstrate their usefulness on problems of interest
in distributed systems.
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