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1. Introduction

Exploratory data analysis can be characterized as a search for regularity or
structure among objects in an environment, and the subsequent interpretation of
discovered regularity. At this level of abstraction, many Artificial Intelligence (AI)
methods for machine learning qualify as techniques for exploratory data analysis,
even though they differ markedly from the statistical methods generally connoted
by the term.

In the traditional (statistical) form of exploratory data analysis, numeric sum-
maries of data are the most common means of representing structure in the data.
Hartwig and Dearing [HART79] assert that when operating within an exploratory
mode of data analysis, the analyst must be open to the possibility of several alter-
native, but equally legitimate, structures in the data. They argue that this openess
is best facilitated when the analyst does not place excessive trust in numeric sum-
maries of data, but utilizes visual displays of data as well. AI is also biased against
numeric summaries as the only means of data representation, albeit much more so
than Hartwig and Dearing. Symbolic representations play the predominant role of
data representation in AI generally and in machine learning specifically.

Thus one difference between statistical exploratory data analysis and machine
learning lies in the representational systems each field uses for representing data
and structure within data (numeric vs. symbolic). We shall explore this difference
within a limited framework. The bulk of our paper is devoted to the explication of
conceptual clustering, originally motivated and defined as an extension to methods
of numerical taxonomy [MICH80]. The purpose of both numerical taxonomy and
conceptual clustering methods is to form classification schemes over an initially
unclassified set of data. Our explication of conceptual clustering will include de-
scriptions of five conceptual clustering programs, and will mainly serve to illustrate
how data and structure within data are represented in machine learning processes,
and how search for structure is controlled within the body of a machine learning

4program.

2. Numerical Taxonomy and Conceptual Clustering

The task of both numerical taxonomy and conceptual clustering methods (ie.
any clustering algorithm) is to construct a classification scheme over some set of
objects. To this end, a clustering algorithm utilizes a function which measures the
similarity between objects and/or groups of objects. The abstract clustering task
may be defined as follows:

.



The Abstract Clustering Task

Given: A set of objects, 0.

Goal: Distinguish clusters (i.e., subsets of 0) s ,..., ,, such that intra-cluster object
similarity of each si tends to be maximized, and the inter-cluster object
similarity over all s's tends to be minimized. A collection of clusters is termed
a clustering.

Michalski [MICH80] distinguishes methods of conceptual clustering and numerical
taxonomy within the above abstraction based on the form of their respective simi-
larity functions. Our development and definition of conceptual clustering to follow
draws significantly upon discussion by Michaski [MICH80].

2.1 Numerical Taxonomy

In methods of numerical taxonomy [EVER80], the similarity between two ob-
* jects is the value of a numeric function applied to the descriptions of the two objects.

The description of an object is a vector of variable values, where quantitative, nom-
inal (categorical), and binary-valued variables may be allowed. A data analyst is
typically responsible for computing the pair-wise similarity of all objects in a data
set and for inputing a matrix of these similarities to a numerical taxonomy program.
The similarity matrix is then used by the program to group objects which tend to
be most similar, and distinguish objects which are least similar. Intra-cluster and
inter-cluster similarity axe computed by a function of the pair-wise similarities of
the objects in each cluster. Given two objects, A and B, with descriptions, A' and
B', a typical similarity measure between A and B has the form

Similarity(A, B) = f(A', B')

Such a similarity measure is termed context-free, since the similarity between A
and B is independent of A's and B's relationship to other objects being clustered.
Context-sensitive measures of similarity have also been developed, in which the
similarity of two objects is dependent on their relation to additional objects. That
is, within a set of objects, 0, with a set of symbolic descriptions, 0', the similarity
of two objects, A and B, has the form

Similarity(A, B) = f(A', B', 0')

If we assume integers are 'objects', then using a context-sensitive similarity measure,
the integers 1 and 9 would be considered more similar when considered within the
range 1 to 100 than when considered within the range 1 to 10.

Using a numerical taxonomy program, the data analyst may guide the search
for useful classification schemes by standardizing the raw data in a number of ways,

2
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and/or by using different similarity functions to build the similarity matrix input
to the program.

Within the literature on numerical taxonomy, several classes of techniques
have been identified, three of which we shall briefly discuss here:

Optimization techniques attempt to form an optimal K-partition over an ob-
ject set (i.e., divide the object set into K mutually-exclusive clusters) where
K is supplied by the user. Optimization techniques make an extensive search
for an optimal K-partition, making them computationally expensive and con-
straining their use to small data sets and/or small values of K.

Hierarchiea techniques form binary classification trees, termed dendograma,
over object sets. Leaves of the tree represent individual objects, and inter-
nal nodes represent object clusters. Hierarchical techniques can be further
divided into agglomerative and divisive techniques, which contiuct the den-
dogram bottom-up and top-down, respectively. Hierarchical techniques are
computationally cheaper than optimization techniques.

Clumping techniques return clusterings in which constituent clusters may
overlap. The possibility of overlap stems from independently considering
some number of clusters as possible hosts for an object. A problem with
some clumping techniques is that several renditions of the same object set
may be obtained.

2.2 Conceptual Clustering

Despite the usefulness of numerical taxonomy techniques, any such method
(whether it uses context-free or context-sensitive measures) suffers from a major
limitation - the resultant clusters may not be easily characterized in a generalized
conceptual language. This limitation can be of concern to a data analyst (or learn-
ing program) who (which) wishes to abstract the underlying conceptual structure
of object clusters in order to hypothesis about future observations. In conceptual
clustering, we do not want to represent a cluster as simply an extensional enumer-
ation of objects, but intensionally, by rules which define membership. We term a
collection of these rules, a concept. Conceptual clustering is a process abstraction
defined by Michalski [MICH80], which addresses the problem of determining con-
ceptual representations of object clusters. Given a set of concepts, C, which may be
used to describe structures within an object set, 0, Michalski defines the similarity
between two objects, A and B, as

Similarity(A, B) = f(A', B#, 0 1, C)

3
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In other words, the similarity between two objects is dependent on the quality of

concepts used to describe the two objects. Extending this idea, the quality of an
object cluster is dependent on the quality of concepts which describe the cluster.
Definitions of concept quality will vary from program to program and in the second
half of the paper we will formalize the notion of quality for individual programs.
For now however, to clarify the distinction between methods of numerical taxonomy
and conceptual clustering, consider the object set given in figure 1. Each object is
defined along two variables, V and V2, each with values ranging from 0 to 1.

1 In

:..

0, 0
" V2

FIGURE 1 - Object Set Displayed in 2 Dimensions

In methods of numerical taxonony, a reasonable similarity measure would
employ the inverse of the spatial distance between objects as represented in 2-space.
A group of object clusters which maximize some function of intra-cluster similarity
and inter-cluster similarity would then be chosen as a clustering. In conceptual
clustering, objects are grouped so as to maximize the quality of concepts used to
describe clusters. For this example we will assume that concepts have the form

ri < V(' - CI) 2 + (V2 - 2 < r2

Graphically interpreted, we assume the conceptual clustering algorithm groups
objects into clusters which form rings. To do so, the algorithm must identify

*. appropriate constants, rl, r2, c 1 , and c2, so as to maximize the quality of derived

4

. . . . . o7*- ~ -* ° o -. m *- ." -



Wq Ii I o - 11 1-F

concepts.' In this example we might assume a concept quality function which
measure several factors, one of which is the difference between ri and r2 (i.e., the

" ,width of a ring). Possible clusterings obtained by a numerical taxonomy method

and a conceptual clustering method are given in figure 2.2

V, ,

01 01

0 1 0 1
V2  V2

Numerical Taxonomy Conceptual Cluptering

FIGURE 2 - Possible Clusterings Obtained by a Numerical Taxonomy
Method and a Conceptual Clustering Method

It should be clear from the example, that by restricting the possible concepts
that a conceptual clustering algorithm can manipulate, we also restrict the set of
possible clusterings which can be constructed. Ideally, we would like to endow a
conceptual clustering program with a significant body of possible concepts, and
allow the program to perform the search necessary to extract conceptual structure

- from a set of objects. We will discuss the search process next.

1 So as not to mislead the reader, we should note that present conceptual clustering algorithms can-

not manipulate conceptual forms as complex as our example, though current research is addressing
this limitation. In section 3.0 we will discuss the form of concepts handled by present techniques.
2 Michalski and Stepp IMIcS3A] present further examples contrasting their conceptual clustering

method with specific methods of numerical taxonomy.
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2.2.1 Two Processes in Conceptual Clustering

In conceptual clustering, we are not only interested in identifying object groups
(clusters) as in numerical taxonomy, but in identifying higher level characterizations
(conceptual descriptions) of object groups, and using these characterizations to
guide the search for a set of 'best' object groups. Thus, two problems must be
addressed in conceptual clustering.

e The aggregation problem involves determining useful subsets of an object set.
Thus, it consists of identifying a set of object classes, each defined as an
extensionally enumerated set of objects.

e The characterization problem involves determining a useful characterization
(concept) for some (extensionally defined) object class, or for each of multiple
object classes.

A natural approach to solving the conceptual clustering problem is to first solve theaggregation problem, and then the characterization problem. In machine learning,

the characterization problem has been extensively addressed, and is known as the
problem of learning from examples. Given a number of object sets, the task of
learning from examples involves identifying one or more conceptual descriptions for
each object set. Methods for learning from examples may be viewed as conducting a
search through a space of concepts for each object set [M1ITc82]. For each concept
reached in the search, one must evaluate the concept as to whether it usefully
describes the object set under consideration.

Most of the current conceptual clustering methods exploit well-understood
methods for learning from examples, by making such a process subordinate to a
higher-level aggregation process. That is, one searches through a space of cluster-
ings by first generating some number of possible clusterings. For each clustering
generated, one calls a learning from examples subroutine, which generates a number
of possible conceptual descriptions for the clustering. The 'quality' of each of these
conceptual descriptions is then evaluated, and one (or more) 'best' description(s)
is returned by the learning from examples subroutine. The conceptual description
of each clustering, passed up from the learning from examples subroutine, is then
used in the evaluation of the quality of each clustering, and a 'best' clustering may
then be selected. We illustrate this two-tiered search process in figures 3 and 4.

6



Begin with an object set, 0.

Generate a number, k,
of competing clusterings.

Clustering 1 Clustering k
[C11, C12, ..., Clm1 ] [Ckl,ck2...,Ckmkl

Begin with a clustering

Generate a number of competing
conceptual descriptions for the clustering

FIGURE 3 - Generation Phase of the Conceptual Clustering
Search Process

In describing a number of conceptual clustering techniques, we will focus our
discussion on how each technique generates and evaluates object clusterings. This
will entail describing the form of concepts which can be used to describe object
clusters (section 3.0), but we will not discuss how such concepts are derived. For
explication of processes of concept derivation, the interested reader is directed to
the literature on machine learning from examples. A very readable account is given
by Mitchell IM1TC82).

2.2.2 Types of Conceptual Clustering Techniques

One cani impose a classification scheme over methods for conceptual clustering
similar to that given for numerical taxonomy techniques. Specifically, in surveying
conceptual clustering techniques, we will consider optimization, hierarchical, and
clumping methods for conceptual clustering.

Optimization techniques of conceptual clustering attempt to construct an
optimal K-partition (i.e., K mutually-exclusive clusters) over an object set, where K
is supplied by the user. In optimization methods of conceptual clustering, as with
methods of numerical taxonomy, the clusters of a constructed partition must be
mutually-disjoint with respect to the observed objects. Further, concepts used to
describe object clusters must themselves imply object classes which are mutually-
disjoint (i.e., disjoint with respect to unobserved or theoretically possible objects).
Figures 3 and 4 (above), illustrate how the search for possible partitions and the
subordinate search for concepts might interact in an optimization technique of
conceptual clustering. We will discuss one optimization technique of conceptual
clustering in section 4.0.

7
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Evaluate the
clusterings and*
return 'best'.

ij

Clustering 1 and (Description 1) Clustering k and (Description k)[c,,, ..., Ic,,,, ([ch,11...,I C1,,]) ... [ckl,,.., Ck,,,] ([ckl,...-, ck,,,,]"T
Evaluate descriptions
and return 'best'.

FIGURE 4- Evaluation Phase of Conceptual Clustering
Search Process

Hierarchical techniques of conceptual clustering form classification trees over
an object set. Each node in the classification tree, including leaves, represents an
object class. Arcs in the tree are labelled by concepts describing these classes. We
will present three conceptual clustering hierarchical techniques in section 4.0. Each
of these methods constructs a classification tree top-down; in other words, each is a

divisive technique (this does not exclude the possibility of agglomerative conceptual
clustering methods). In constructing a classification tree, each of our example tech-
niques must partition object classes representing nodes in the classification tree,
and ascribe concepts to partition elements. In divisive hierarchical techniques, the
division of a node can be framed as a search for partitions combined with a subor-
dinate search for concepts describing clusters of competing partitions, just as with
optimization methods. Division of individual nodes occurs within the larger process
of classification tree construction, leading us to describe hierarchical techniques as
conducting a three-tiered search: a search through a space of hierarchies; a search
through a space of partitions; and a search through a space of concepts.

Clumping techniques of conceptual clustering construct classification schemes
in which the concepts derived for describing clusters imply possibly overlapping

object classes. In section 4.0 we will discuss one conceptual clumping technique
which constructs hierarchical, graph-structured classifications.

8
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Before we begin our survey of conceptual clustering methods, we will discuss
the general form of objects and concepts used by present conceptual chistering
techniques. For readers not familiar with AI representations, this will serve to in-
troduce one restricted form of object and concept representation, and will introduce
terminology we use in the remainder of the paper.

3. More on Objects and Concepts

Conceptual clustering programs to date have represented objects as sets of
variable-value3 pairs. All of the conceptual clustering methods we will examine
allow objects to be described in terms of nominal or categorical variables, the
domains of which are a finite set of discrete values.4 We present some examples of
variables and their domains in table 1; we will be using these variables in examples
throughout this section.

Variables Domains

Color {blue, red, green}

Size (large, medium, small}

Shape {sphere, block, wedge)

TABLE 1 - Some Example Variables and Domains

As we have seen, one of the main components of the conceptual clustering
process involves characterizing object clusters. A conceptual clustering program
is given a set rules or operators which can be used to generate concepts from a
set of object descriptions. To ease the process of generating concepts from objects,
concept and object representations are typically defined within the same formalism.
This implies that all object representations are concept representations, but not vice
versa. For the programs we examine, a concept is equivalent to a set of varible-
value set pairs.5 An object is a concept in which the value set of each variable is a
singleton.

3 Variable is synonymous with attribute.
' In addition, two methods by Michalski and Stepp [M1C83A, MIC83C allow integer-valued vari-
ables and structured variables, the domains of which are tree-structured. That is, a classification
hierarchy is defined over the values of a structured variable.
5 Many machine learning programs use more complex concept representation languages. Relational
or structured representations [NILS80] allow one to describe relations between variables. An instance
of a relational representation is the concept form given in conjunction with figure 1.

9



Consider the following concept.

( [Color = {blue,red)l, [Size = {large)], [Shape = {sphere,block)] }

This concept is a 'generalization of' any set of objects which are blue or red in
color, and are large in size, and have a block or sphere shape. We will say that
a concept is a generalization of an object set if the value set of each variable in
the concept includes each object's value for that variable.6 Similarly, we say an
object is a member of a concept if the object's values along each variable are in the
concept's value set for that variable. Implicit in these definitions is the assumption
that all concepts and objects are defined by the same variables. Knowing this, a
'short-hand' representation for a concept is to omit a variable from the concept
if the variable's value set in -).hat concept is the domain of the variable. In other
words, if a variable is not explicitly given in a concept representation, then this
ommision is interpreted as meaning that a member of this concept may possess any
value of the ommitted variable. Thus, we are dropping conditions which are not
relevent to defining concept membership. This definition of concept is similar to,
but more general than, the definition of a conjunctive concept found in [BRUN56].

Given the concept language presented, one can generate concepts which are
generalizations of an object set by generating value sets which include the values
of all objects along each variable. For the variable Color, whose domain is given in
table 1, consider the possible generalizations over the value sets of table 2.

Value Sets More General Value Sets

(blue, red}
{blue},{red} or

{blue, red, green)

TABLE 2 - Possible Generalized Value Sets

One may obtain concepts by combining appropriate value sets for distinct variables.
Consider the object set in table 3 along with three concepts which are generaliza-
tions of this set.

- 6 When we state that a concept is a generalization of an object set, we are refering to a property of

the concept, and not to the process which generated the concept. Concept generation may employ
specialization operators, as well as generalization operators.

10
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Object Set

I [Color={blue}],[Size= {large)], [Shape={sphere)]}
{[Color=(blue)], [Size={medium)],[Shape={sphere)]}

{[Color= {blue)],[Siz-={small)],[Shape={block)]}

Three Generalizations of the Object Set

1) ( [Colorff(blue}], [Size=(large,medium,smallf], [Shape=(sphere,block)] )
or

2) ( [Color=(blue}], [Size={iarge,mediumsmall)], [Shape=(sphere,block,wedge}j }
or

3) ( [Color=(bluered,green)1, [Size= (large,medium,small)], [Shape={sphere,block,wedge)] }

TABLE 3 - An Object Set and Three Generalizations of the Set

By dropping conditions we can reexpress the concepts of table 3 in the following
equivalent forms.

1) f [Color={blue)],[Shape= {sphere,block)}

2) { [Color={blue]

3) {

Notice that although each concept is a generalization of the object set, concept 3
is 'more general than' concepts 1 and 2, and similarly, concept 2 is 'more general
than' concept 1. It is apparent that concepts can be characterized by their degree
of generality with respect to the object sets they describe. That is, concepts are
partially ordered by the relation more general than.

Definition 1

A concept, Ci is more general than a concept, Cj, if all variable value sets of C,
are proper subsets of the corresponding value sets of C,. If this is the case, then we
can also say that C. is less general than Ci.

At the bottom end of the generality scale are those concepts of least generality or
maximal-specificty.

Definition 2
A concept, C,, is a maximally-specific concept of an object set, if Ci is a generaliza-
tion of the object set, and there is no other generalization of the object set which
is less general than Ci.

11



In the concept language we have been discussing, there is exactly one maximally-
specific concept for any object set.7 For example, the only maximally-specific
concept of the set of objects given in table 3 is

{ [Color={blue}i, [Shape= {sphere,block}] }

Means of controlling the generality of concepts describing object clusters are
required if useful concepts are to be obtained. For instance, a concept in which all
'conditions' have been 'dropped' does not enlighten us as to the logical correlations
which exist among values over an object set. Clumping techniques, which allow
concepts which imply overlapping object classes, must especially guard against
overly general concepts.8 On the otherhand, concepts formed by techniques which
insist on mutually-disjoint clusters (i.e., optimization and hierarchical techniques),
are bounded in terms of their degree of generality. Optimization and hierarchical
methods must devise concepts which discriminate the objects of one cluster from
objects of every other cluster. These methods must form diacriminant concepts.
A concept is a diacriminant concept of an object set, 0, with respect to another
object set, Q, if all objects of 0 are members of the concept, and no member of Q
is a member of the concept.

Concepts formed by hierarchical and optimization techniques are bounded
above in their generality by mazimally-general diacriminant concept8.

Definition 3
A concept, C, is a maximally-general diacriminant concept of an object set, 0, with
respect to a set, Q, iff C is a discriminant concept of 0 with respect to Q, and there
is no other discriminant concept of 0 with respect to Q, which is more general than
C.

Consider the following example of two object classes and associated maximally-
general discriminant concepts.

Class 1
{ { [Color={blue}], [Size={large}], [Shape={sphere}] } }

Class 2
{ { [Color={red}], [Size={large}], [Shape={block}J },
{ [Color={red}], [Size={large}], [Shape={wedge}] } }

' Concept languages less restrictive than the one we have assumed (eg. relational concepts) will
allow multiple maximally-specific concepts per object set.
. Recall that a problem with clumping techniques of numerical taxonomy was that object classes
could be multiply defined. An analogous problem with conceptual clumping methods might be the
construction of concepts which imply the same object classes.

12



Two maximally-general discriminant concepts of Class 1 with respect to Class 2 are
given below.

1) { [Color={blue,green)] }

2) { [Shape={sphere}] }

Additionally, we can give two maximally-general discriminant concepts of Class 2
with respect to Class 1.

1) { [Color={red,green}] }

2) { [Shape={blockwedge}] }

Given maximally-general discriminant descriptions of Class 1 with respect to Class
2, and vice versa, there are 4 ways to assign maximally-general discriminant con-
cepts to classes 1 and 2.

Class I Concepts Class 2 Concepts

Combination implying 1) {[Shape={sphere}] [Shape={block,wedge)] }
mutually-disjoint classes

2) {[Color=(blue,green}I [Color={red,green}] }

Combinations implying 3) {Coor={blue,green)) IShape={block,wedge}] }
overlapping classes

4) {[Shape={sphere)] [Color={red,green] }

TABLE 4 - Combinations of Maximally-General
Discriminant Concepts

Notice that although each of the above combinations perfectly distinguish the
objects of class 1 from class 2, and vice versa, only the first combination implies a
partition over the set of theoretically possible objects. The first combination implies
2 mutually-disjoint clusters, because membership in both clusters is based on non-
overlapping values along the same variable. In general, non-overlapping value sets
of the same variable will imply non-overlapping clusters, and each value set (when
interpreted as a concept with all other value sets dropped out) will constitute a
maximally-general discriminant concept of the object group it implies, with respect
to all object groups implied by other value sets. This observation is central to the
processing of two hierarchical systems, DISCON and RUMMAGE, discussed in the
next section. The latter three combinations of table 4 imply overlap with respect to
unobserved objects (e.g., consider any green object, a blue block, and a red sphere).

13



Typically, it will be the case that for some number of object classes, there will be no
assignment of maximally-general discriminant concepts to each object class, with
respect to the remaining object classes, in a way that completely avoids overlap.
This point has ramifications for the processing of the CLUSTER/2 system, which
is discussed in the next section.

We have now developed the necessary ideas and terminology for discussing a
number of conceptual clustering systems.

4. Some Conceptual Clustering Algorithms

In this section we survey a number of conceptual clustering algorithms. This
survey includes one optimization technique, three hierarchical techniques, and a
clumping technique. In discussing these techniques we stress how each technique
solves the aggregation problem and how each method evaluates clustering quality.
Given our discussion in section 3.0, we will abstract out most of the detail concerning
how each method solves the characterization problem, that is, the process they use
to obtain concepts for describing object clusters.

4.1 The Partitioning Module of CLUSTER/2

The Partitioning Module of CLUSTER/2 by Michalski and Stepp [MIc83A,
Mi(83c] is an optimization technique of conceptual clustering. Given an object
set and a user-supplied value, K, the Partitioning Module attempts to construct an
optimal K-partition over the object set. CLUSTER/2 allows objects and concepts
to be defined in terms of nominal, integer, and structured variables. For the sake of
clarity, we will assume only nominal variables, in considering examples. Given an
object set, 0, and a partition size, K, the CLUSTER/2 algorithm may be outlined

as follows.

1) Construct a number of initial clusterings, each with K clusters. Each
of these alternative clusterings may possess overlapping clusters.

2) Make each initial clustering disjoint and identify concepts for each
clustering.

3) Evaluate the quality of each clustering and select a 'best' initial
clustering.

4) Continue the search for an optimal clustering by 'modifying' the best
initial clustering.

14
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4.1.1 Constructing Initial Clusterings

Given the task of forming a K-partition over an object set, the Partitioning
module intially selects K seed objects at random. Intuitively, each seed will act as a
cluster center. The system treats each seed as a member of a singleton object class
(i.e., there are K object classes with one member each). The program then derives
maximally-general discriminant concepts for each seed class with respect to all
other seed classes. The result is that for each seed, a number of maximally-general
concepts are derived which cover that seed and no other seed. Each concept of
each seed class also covers some number of non-seed objects. That is, each concept
implies an object class which contains one seed and multiple non-seed objects. We
illustrate the above process in figure 5.

object set

'" selectK seeds

seed 1 seed 2 . . . seed k

derive discriminant
concepts, Dj

D 11, I9 12, ... 1DlaIn& 211 22,..., D 2n2

classify non-seed
objects, obtaining
classes, Cq

C11I, C12, ..., Clni C21,s C22 9 ..--, C22 •

FIGURE 5- Creating Initial Clusterings in CLUSTER/2

By combining object classes, Cli, implied by maximally-general concepts de-
scribing distinct seeds, Dii, we obtain a clustering which is guarenteed to classify all
objects (seed and non-seed). At termination, the process described above has con-
structed a number of possible clusterings, each having the form C1i,, C21 , ... , Cki,.
However, each of the possible clusterings may possess overlapping clusters, with
respect to non-seed objects. The following process seeks to make these clusters
mutually-disjoint and assign conceptual descriptions to the non-overlapping clus-
ters.
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4.1.2 Describing Object Classes

The construction of maximally-general discriminant concepts for each seed
object serves to identify object classes (over both seed and non-seed objects), from
which a number of competing clusterings are derived. Each of the clusterings may
possess overlapping clusters. Each of the competing clusterings is made disjoint
by removing objects which are in more than one cluster. These removed objects
are placed in an exceptions list, and maximally-specific characteristic concepts
are derived for the now disjoint clustering. The derivation of maximally-specific
concepts serves to reduce the possibility of overlapping clusters with respect to

.* future, as yet unobserved, objects. Objects on the exceptions list are added back
into the clustering one at a time. This is done by creating K different versions of
the clustering, and incorporating the exceptional object into a different cluster (of
which there are K in number) of each version. The K versions are then evaluated
(according to criteria discussed shortly) and a 'best' clustering which incorporates
the exceptional object is selected. The above process is performed for each of the
competing clusterings. At termination a number of competing partitions (with
associated exceptions which could not be added without resulting in overlap) have
been generated. These competing partitions can now be evaluated and a 'best'
partition selected.

4.1.3 Evaluating Quality of Clusterings

CLUSTER/2 uses a number of criteria for measuring clustering quality. Each
of these criteria is a function of the maximally-specific concepts which describe the
clusters of a clustering. We will briefly discuss three of these criteria.

The fit of a set of concepts with respect to the set of clusters they describe
is one criterion for evaluating clustering quality. Fit is the ratio of the number of
observed objects from which the concepts were derived (i.e., the number of actual
objects in the applicable clustering) and the number of theoretically possible objects
(observed plus unobserved) which are covered by the concepts. Fit is an example
of a criterion which is a function of the map between a set of concepts and the
clusters they describe, and is analogous to measures of intra-cluster similarity used
in numerical taxonomy.

The simplicity of a set of concepts is the total number of variables used in

each concept (after dropping conditions). Simplicity is an example of a criterion
which is only a function of concepts, and not the clusters they describe.

The disjointness between two concepts is a function of the number of variables
in the two concepts whose values do not intersect. The inter-cluster difference of
a set of concepts is the sum of the disjointness of all pairs of concepts. This is
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a criterion which is analogous to a measure of inter-cluster dissimilarity used in
numerical taxonomy.

The user is responsible for ordering the criteria in terms of their importance,
and for specifying a minimal value that a clustering must possess for each criterion.

4.1.4 Searching for Optimal Partitions

After selecting a 'best' partition by the steps above, the search for an optimal
partition continues. This is done by selecting one seed object from each cluster of
the selected partition and iteratively applying the above steps to these new seeds.
If partition quality is improving from step to step, seeds which represent the central
tendency of each cluster are selected. If partition quality does not improve from
one step to the next, seeds are drawn from the 'edge' of each cluster. This process
of selecting seeds and devising a partition continues for a user-specified number of
iterations. The 'best' partition (which may be sub-optimal) found over all iterations
is returned by the Partitioning Module. We will illustrate CLUSTER/2's behavior
with a simple example. 9

Table 5 gives a number of variables and their respective domains that are used
to describe animals.

Variables Variable Domains

Body Covering hair, feathers, cornified skin(corn.skin),

moist skin

Heart Chambers 4, imperfect 4(imp.4), 3

Body Temp. regulated, unregulated

Fertilization internal, external

TABLE 5 - Variables Describing Animals

A set of animals (objects) is given in table 6.

Assume the task is to construct an optimal 2-Partition over the 5 objects
of table 6, in one iteration. Inter-cluster difference is to be the most important
criterion in evaluating clustering quality.

This example is 'hand' executed, and is based on our reconstruction of the algorithm from
published reports.

17
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Body Heart Body
Covering Chambers Tempeture Fertilization

mammal hair 4 regulated internal

bird feathers 4 regulated internal
objects reptile corn. skin imp. 4 unregulated internal

amphibian-1 moist skin 3 unregulated internal
amphibian-2 moist skin 3 unregulated external

TABLE 6 - An Object Set

The first step is to pick two seeds, which we assume will be mammal and
reptile from table 6.

Body Covering Heart Chambers Body Temp. Fertilization

seed 1) (hair) (4) (reg) (internal)
seed 2) (corn. skin) {imp. 4) (unregulated) (internal)

TABLE 7 - Two Seed Objects Initially Selected by CLUSTER/2

For each seed, CLUSTER/2 derives maximally-general discriminant concepts,
with respect to the other seed, as shown in table 8.

- seed 1 concepts seed 2 concepts

([Body Cover=(hair,feathers,moist skin)]) ([Body Cover={corn. skin, feathers,moist skin)])

([Heart Chambers=(4, 3)]) ([Heart Chambers={imp.4, 3)])

([Body Temp.= (regulated)]) ([Body Temp.= (unregulated)])

TABLE 8 - Maximally-General Discriminant Concepts
Discriminating 'mammal' and 'reptile'

As the table shows, there are 9 ways to combine these maximally-general
discriminant concepts, so as to imply 9 clusterings, whose 2 clusters may overlap.
CLUSTER/2 attempts to make each of these clusterings disjoint. We will consider
the clustering (over seed and non-seed objects) implied by the following pair of
concepts.
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seed 1 concept seed 2 concept
{[Heart Chambers={4,3}]} {[Heart Chambers={imp.4, 3}]}

{mammal,birdamphibian-l ,amphibian2} {reptile,amphibian-l,amphibian-2}

Amphibian-1 and amphibian-2 occur in both clusters. These two objects axe

removed and placed on an exceptions list. Maximally-specific concepts are derived
for each of the now disjoint clusters.

Cluster 1 {mammalbird} Cluster 2 {reptile)

{[Body Cover=-hair,feathers}], {[Body Cover={corn.. skin)],
maximally- [Heart Chambers={4}1, [Heart Chambers-{imp.4)],
specific [Body Temp.={regulated)], [Body Temp.={unregulated}],
concepts [Fertilization={internal}]} [Fertilisation= {internal}[}

TABLE 9 - Maximally-Specific Concepts of Two Disjoint Clusters

Amphibian-1 is now added back into the clustering. This is done by adding
amphibian-1 to cluster 1 and generating a maximally-specific concept describing the
new cluster. This new cluster, along with the unchanged cluster 2, constitutes one
possible clustering which incorporates amphibian-1. A second possible clustering is

obtained by adding amphibian-1 to cluster 2, deriving a maximally-specific concept
for the new cluster, and considering it along with the original cluster 1. The two
possible clusterings, each of which incorporates amphibian-I, are given in table 10.

Clustering A (adding amphibian-1 Clustering B (adding amphibian-1
to first cluster) to second cluster)

{[Body Cover={hair,feathers,moist skin)], {[Body Cover= (hair,feathers}],
cluster 1 [Heart Chambers={4,3}], [Heart Chambers-{4)],

[Body Temp.={regulated,unregulated}], [Body Temp.= {regulated} ,
[Fertilization={internal)] I [Fertilization={internal}] }

{[Body Cover={corn. skin)], {[Body Cover=(corn.skin,moist skinfl,
cluster 2 [Heart Chambers={imp.4}], [Heart Chambers={imp.4,3},

[Body Temp.={unregulatedJ, [Body Temp.={unregulated}],
[Fertiliuation={internal}] } [Fertilization= (internal)] }

TABLE 10 - Two Possible Clusterings Which Incorporate Amphibian-i

These two competing clusterings are now evaluated in terms of some criteria.

If simplicity were of highest importance, then Clustering A of table 10 would

be selected to incorporate amphibian-i, since we can drop the variable, 'Body
Tempeture' from the concept representing cluster 1 of this clustering. Since we
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have stated inter-cluster difference is of highest importance, however, Clustering B
would be selected to incorporate amphibian-1.

Next, amphibian-2 is removed from the exceptions list and incorporated into
Clustering B, above. A process similar to the one described for amphibian-1 incor-
poration would be followed, and the clustering selected for incorporating amphibian-
2 follows in figure 6.

{mammal, bird, reptile, amphibian-I, amphibian-2}

{[Body Cover={hair,feathers}], {[Body Cover={corn.skin,moist skin}],
[Heart Chambers={411, [Heart Chambers={imp. 4, 3}],
[Body Temp.={regulated}], [Body Temp.={unregulated}],
[Fertilization= {internal}l], [Fertilization= {internal,external}] }

{mammal, bird} {reptile,amphibian- 1,amphibian-2}

FIGURE 6 - A Partition Formed by CLUSTER/2 Over Objects
Given in Table 6

Recall that the process we have just described must be performed for all 9
combinations of maximally-general discriminant concepts given in table 8. In theory
each combination could yield a different clustering, and these unique clusterings
would then have to be evaluated as to which constituted the 'best' initial 2-partition
of the object set. New seed objects would be selected from each cluster of the
best partition, thus continuing the search for an optimal partition. However, in
our example each of the 9 combinations results in the same clustering, which
is illustrated in figure 6, and since we stated we would 'hand' execute only one
iteration, this is the final clustering.

As is perhaps evident, the Partitioning Module extensively searches the space
of possible partitions, and is computationally quite expensive as a result. Michalski
and Stepp report a number of heuristics used to prune the search, but even with
these, the Partitioning Module appears to run in time proportional to MK, where
K is the desired partition size, and M is a linear function of the number of defining
variables and the average size of all variable domains. CLUSTER/2's extensive
search also seems to enable it to effectively handle exceptional objects, and to
discover relatively good clusterings, even in ill-structured data.
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4.2 The Hierarchy-Building Module of CL US TER/2

The Hierarchy-Building Module of CLUSTER/2 [MIc83A, MIC83C] contructs
a classification tree over an object set. Arc labels in the resultant tree define
object classes in terms of multiple variables (ie. the classification is polythetic).
Tree construction proceeds top-down. The Hierarchy-Building Module employs
the Partitioning Module as a subroutine for dividing nodes representing object
classes during tree construction. The Hierarchy-Building Module divides an object
class, 0, (represented by a node in the classification tree), by iteratively calling the
Partitioning Module for several small partition sizes (eg. 2,3, and 4), thus producing
several partitions of varying sizes. The constituent clusters of the 'best' of these
partitions are selected as children of 0. The criteria used to compare partitions of
equal size in the Partitioning Module are modified to compare partitions of varying
sizes in the Hierarchy-building Module. The Hierarchy-building Module constructs
a classification tree one level at a time, and tree construction terminates when the
clustering represented by the current tree level does not represent an improvement
over the clustering representing the previous tree level.

An example classification tree constructed by the Hierarchy-building Module
of CLUSTER/2 10 the CLUSTER/2 algorithm based is given in figure 7. The tree
was constructed over the data in table 1111, which represents the 9 animal phyla in
terms of 11 variables. The tree was constructed assuming a maximum branching
factor of 2.

The Hierarchy-buiding Module calls upon the Partitioning Module to make
an extensive search through the space of possible partitions for each node in the
classification tree. As a consequence, it inherits the computational expense of
the Partitioning Module and thus, for a given maximum branching factor, F, the
Hierarchy-building module appears to run in polynomial time of degree F. The
Hierarchy-Building Module constructs a single classification tree, and thus does
not extensively search the space of trees, but rather depends upon a single good
tree emerging from judicious division of individual nodes.

4.3 RUMMAGE

RUMMAGE [FISH84] represents a hierarchical conceptual clustering tech-
nique. Like the Hierarchy-building Module of CLUSTER/2, RUMMAGE con-
structs a classification tree top-down. Unlike trees constructed by CLUSTER/2,
the arc-labelling rules of trees constructed by RUMMAGE define object classes
in terms of a single variable (i.e., RUMMAGE forms monothetic classifications).
RUMMAGE allows objects to be defined only in terms of nominal variables.

10 This tree is the result of 'hand' executing the CLUSTER/2 algorithm as reconstructed from

4,' published reports.
" This table is taken from [ORAM 731
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9 animal phyla

{[Locomotion=non,fe-io ing, f{[Locomotionm(cilia,muscles,vascular system)],
[Symznetrisu(nonem,radial)], [Symmtry={bilateral)],
[Coll Layus-{2)J [Cail Layers=(3)j)

(Porifora, {Platyhelminthes,NematodaAnneliclia,
Coelenterata) Moilusca,Art iooaEchinodermata,

Chordatal 7
((Food Getting={(filter)J[Food Getting=(chunkfJ, {[Respiratory System= ([Respiratory System=

(none)], (presentl]

4:(oiera) (Coelenteratal {Platyhelninthea, (Mollusca,
Nematoda,Annelida) Arthropoda,Chordata,

Echinodermata)

FIGURE 7 - Classification Tree Constructed by CLUSTER/2
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TABLE 11 - Animal Phyla Represented Along 11 Variables
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Input to RUMMAGE includes aset of objects, 0, and a set of variables, V, over
which objects are defined. RUMMAGE selects that variable, vi, whose values 'best'
partition 0 into mutually-exclusive subsets, o through om. RUMMAGE is then
recursively called for each object class, o. Recursion terminates when RUMMAGE
decides there is no variable which produces a partition of user-specified minimal
quality. A high-level description of RUMMAGE is given in table 12.

FUNCTION RUMMAGE(O, V)
BEGIN

select a variable, vi, for which there exists a
partitioning of the domain of vi, ri through rm,
which implies a 'best' partitioning of 0, cl
through cm.

IF no vi is selected THEN RETURN 0
ELSE RETURN

0

rl rm

RUMMAGE. . . RUMMAGE
(cv, -{v,}) (cm, Vv})

END

TABLE 12 - A High Level Description of RUMMAGE

RUMMAGE solves the aggregation problem by forming a number oi" possible
partitions, each of which is implied by the values of a distinct variable. For
each partition, pi, implied by the values of a variable, vi, RUMMAGE derives a
maximally-specific characteristic concept for each cluster of pi over the remaining
variables (ie. all defining variables excluding vi). Each competing partition is
then evaluated in terms of the concepts describing partition clusters. The criteria
used for evaluating partition quality are a criterion of simplicity and a criterion of
inter-cluster difference. These criteria are similar in intent to two criteria used by
CLUSTER/2, but differ in their details.

An example tree constructed by RUMMAGE over the data of table 11 is given
in figure 8.
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9 anima phyla

[Locomotion=_ [Locomotion= [Locomotion= [Locomotion= [Locomotion=
(none) {free floating}] (celia}] (vascular system)] {muscle)]

(Poriera) (Coelenterata) (Platyhelminthes) (Echinodermata)

[Skeletal System= [Skeletal System=

(hard shell,external, {none}]
internal))

{Mullusca,Chordata,
Arthropoda)

[Circulatory= [Circulatory=
{none)] (present)]

{Nematoda) (Annelida)

FIGURE 8 - Classification Tree Constructed by RUMMAGE

RUMMAGE is computationally cheaper than the Hierarchy-buiding Module
of CLUSTER/2. Like the Hierarchy-building Module of CLUSTER/2, RUMMAGE
builds a single tree, and thus depends on a good classification tree emerging from
judicial division of individual nodes of the classification tree. However, in dividing

an individual node, RUMMAGE searches a much smaller space of possible partitions
than does CLUSTER/2. This yields cheaper computation, but also reduces its
ability to discover good clusterings in ill-structured data. RUMMAGE is capable
of discovering 'good' clusterings implied by single variable values, but in general,

it is incapable of discovering good clusterings implied only by a conjunction of
values. The 'flattened' top level of the example tree constructed by RUMMAGE

is indicative of this limitation. However, one could imagine an extended version
of RUMMAGE, in which rather than expanding a node one level at a time, nodes
are expanded (some constant) F levels at a time. This extension would require a
larger search of possible node divisions (i.e. a search of all subtrees of F levels)
which would require polynomial time of degree F (as opposed to linear time for the

present implementation). However, the proposed extension would most probably

alleviate many of the problems with RUMMAGE discussed above.
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'4.4 DISCON

Like RUMMAGE, Langley and Sage's DISCON system [LAN84c], employs
a top-down, monothetic technique which only allows objects defined over nominal
variables. - DISCON solves the aggregation problem in the same way as does
RUMMAGE by considering all partitions implied by values of each variable. Unlike
RUMMAGE (and CLUSTER/2), DISCON does not derive concepts for object
classes and use evaluations of these concepts to guide the search through the
space of classification trees. Instead, DISCON constructs all possible monothetic
classification trees and selects a tree with a minimal number of nodes. An example
of a partial classification tree constructed by DISCON over the data of table 11 is
given in figure 9.

9 animal phyla

[Body Openings=(one}] [Body Openings=(two}j

{ Polifera,Coelenterata, {Nematoda,Annelida,Mollusca,
Platyhelminthes) Arthropoda,EchinodermataChordata}

[Cell Layers=(2}] [Cell Layers=(3)] [Skeletal=[Skletal= [Skeletal= [Skeeti [Skeletal

(noe)](had sell]{external)] (mineral)] (internal)]

(Porifera, (Platyhelminthes) (Nematoda, (Mollusca) (Arthropoda} (Echinodermata) {Chordata)
Coelenteratal An efida}

FIGURE 9 - Classification Tree Constructed by DISCON

DISCON carries out a near exhaustive search of the space of possible clas-
sification trees for an 'optimal' tree. This makes DISCON computationally quite
expensive. The addition of heuristics to DISCON would serve to significantly re-
duce DISCON's computational requirements. One might, in fact, view RUMMAGE
as a heuristic version of DISCON, in which only one tree is built. Recalling our
proposed extension of RUMMAGE, in dividing each node of a classification tree,
DISCON searches through all divisions (subtrees) of maximal depth.
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4.5 UNIMEM

We consider the UNIMEM system by Lebowitz [LEBO82] to be an example of
a conceptual clumping program, which (unlike the programs discussed above) con-
structs clusterings composed of clusters which may overlap. UNIMEM also differs
from the above programs in two other important respects. First, UNIMEM expects
objects to be presented incrementally, as opposed to the other programs discussed,
which require an entire object set to be present at the outset of execution. Second,
UNIMEM was not explicitly framed by Lebowitz as a conceptual clustering algo-
rithm. Rather, Lebowitz intended UNIMEM to represent a program for concept
formation,12 with an intent that the program should represent a reasonable model
of human concept formation. UNIMEM was abstracted from an earlier program
by Lebowitz, IPP [LEB83A], which has the of task of reading and 'understanding'
news stories on international terrorism by building and using a memory of reported
terrorist events. Despite Lebowitz' intent, we will present UNIMEM as a concep-
tual clumping program, and without loss of significant information, impose our
terminology for objects and concepts in characterizing its processing.

Objects and concepts are represented identically in UNIMEM, that is, each
is represented as sets of variable-value pairs, or in keeping strictly with previously
used terminology, sets of variable-value set pairs, where all value sets are single-
tons. Using this formalism for representing concepts, there is only one means for
generating concepts: replace a singleton value set of a variable by the domain of
the variable, and employ the previously discussed dropping conditions rule. Using
concepts of this form, UNIMEM builds a hierarchical clustering in which objects
may multiply occur as leaves of the hierarchy. The hierarchical clusterings built
by UNIMEM differ from those constructed by CLUSTER/2, RUMMAGE, and
DISCON, not only because they allow an object to occur in multiple clusters, but
also because UNIMEM distinguishes variable values which label arcs of the hierar-
chy (as with hierarchical classifications produced by other systems) from variable
values which label nodes of the hierarchy. We discuss this distinction next.

UNIMEM labels arcs of the hierarchy with single variable values, which are
termed predictive. In a clustering, a variable value is predictive of a particular object
cluster if the value is shared by all cluster objects and is shared by the objects of
very few other clusters. As such, the presence of a predictive value in an object can
be used to predict which clusters might incorporate the object. Predictive values
are used to constrain the search for clusters which might incorporate an object.
UNIMEM considers values as ceasing to be predictive of any cluster if they index
more than some user-specified number of clusters. Thus, we may view UNIMEM as
using a measure of 'inter-cluster' difference which is a function only of the predictive
values over a group of clusters.

12 In the machine learning literature, conceptual clustering is viewed as a form of concept formation.
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In contrast to arc-labelling values, nodes (representing clusters) are labelled
by all values (predictive and otherwise) common to cluster members. Node labelling
values are termed predictable values, since their presence in a concept can be
predicted from the presence of predictive values of the concept. Note that all
predictive values are predictable, but not vice versa. UNIMEM also uses a measure
of 'simplicity' which is a function of the predictable values of a cluster. If there are
too few predictable values of a cluster, then the cluster is deemed not to represent
an important class of objects and it is removed from the clustering.

Last, UNIMEM is given a facility for dealing with exceptional objects. Every
predictable value of a cluster has an associated integer weight. The weight of a
predictable value of a cluster is decremented when it is not present in an object

possessing a predictive value of the cluster. The weight of a predictable value of a
cluster is incremented when it is present in an object possessing a predictive value
of the cluster. A value is 'dropped' from the concept definition of a cluster if its
weight falls below a user-defined threshold, indicating that the value cannot be
reasonably predicted from the presence of predictive values.13

We will now summarize the discussion above, by outlining the process by which
an object is incorporated into a hierarchical clustering. A high-level description of
the UNIMEM algorithm is given in table 12. Before any objects are clustered, the
clustering is initialized to a single cluster which contains no predictable values.

We now consider an example of UNIMEM's behavior on a simple example.
We 'hand' execute UNIMEM (based on our reconstruction) on the object set given
in table 6. Assume the constant specifying the maximum number of clusters a
predictive value may index is 2. The constant specifying the minimum acceptable
weight in order for a variable to be considered predictable is 0 (that is, a value is
dropped when its weight reaches -1). The constant specifying the minimum accept-
able number of values in a concept is 2. To acquire a clustering of much interest
will require that UNIMEM make several iterations through the small number of
example objects. For this example, we will iterate through the data set 2 times, a
different ordering of the data for each iteration. For the first iteration we assume
that the order of object presentation is (amphibian-2, amphibian-i, reptile, bird,
mammal). For this example, assume that weights of predictable values are given
as superscripts. 14

13 In certain circumstances UNIMEM may circumvent this conservative generalization policy and
generalize over a concept description and an object if the two share sufficiently many (user-specified)
number of values in common. However, we will not detail this process in the discussion to follow.

14 To simplify this example, we will not consider recursive calls to UNIMEM as specified in step 3b
of the UNIMEM algorithm.
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Step 1) An object is presented to be incorporated into a hierarchical clustering. UNIMEM first
considers what children of the root (Le., the top node) of the clustering might serve to

incorporate the object.

Step 2) A collection is made of all children of the root node which are indexed (predicted) by at least
1 value of the object. Recall that arcs are only labelled by predictive values of clusters.

Step 3) The object is incorporated into the clustering based one of the following rules:

a) If no children of the root were collected in step 2, then make the
object a child of the root. This involves directing arcs from
the root to the object, each arc labelled by a variable value of
the object. All variable values of the object are considered
predictive of the object in this situation. This may cause some
values to be predictive of more than an acceptable number of clusters,
thus causing these values to be removed as predictive of any cluster.

b) If some number of children of the root were collected in
step 2, then for each child perform the following:

- Increment all of the child's predictable values which
are present in the object.

- If the object has a different value than the child
along any variable,

* THEN do each of the following:

- Decrement the weight of each predictable value
which is not present in the object.

* - If the weight of a decremented value falls below
a user-specified threshold, then drop this value
from the set of predictable values and remove this
value as a predictive value of the cluster, if the value
is in fact, predictive. Removing predictive values of a
cluster (and thus the arcs labelled by these predictive
values), may cause a cluster to be removed from the
clustering if all such predictive values are removed.

- If dropping values results in a concept of too
few values (according to some user-specified threshold)
then remove the concept from the hierarchy, by removing
arcs to it from its parent.

ELSE attempt to incorporate the object into one of the
children of the cluster by treating each child as the root

of a subordinate clustering and recursively applying steps
1 through 3.

c) If the object could not be incorporated into any cluster in
steps a or b above, then make the object a child of the root
by the same process as given in step a.

TABLE 13 - The UNIMEM Algorithm
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We begin by incorporating amphibian-2 into the initialized clustering. Since
there are no children of the root node which might classify amphibian-2, it is simply
made a child of the root resulting in the following structure.

root

(moist skin) or (3)
or (unregulated) or (external)

(-owttakin)1, (3) 1, (unregulated) 1 , (external) I

{amphibian-2)

Next amphibian-1 is added to the clustering. Since amphibian-i has three
values which are considered predictive of amphibian-2, amphibian-i is compared
with the values of the concept describing amphibian-2. It is found that amphibian-
I and the concept representing amphibian-2 differ in value along the variable,
'Fertilization', and the weight of the concept's 'Fertilization' value is decremented,
while the remaining values are incremented. A concept representing amphibian-i
is then added to the clustering, resulting in the following structure.

root

(moist skin) or (3) or (unregulated) (moist skin) or (3) or (unregulated)
or (external) / or (internal)

(-noistkin)2 , (3)2, (unregulated)2 , (external)o (moi.stekn)1, (3)1, (unregulated)1, (internal)

(amphibian-2} {amphibian-l)

Reptile is now incorporated into the clustering and is compared with the
concepts representing both clusters, since reptile contains at least one value which
is predictive of each. Appropriate value weights are decremented, since some of
reptile's values differ from predictable values of each cluster, while the remaining
values of each cluster are incremented. After decrementing values of the concept
representing amphibian-2, the weight of the 'Fertilization' value is -1, necessitating
that it be dropped as a predictable value of this cluster and that it be removed as a
predictive value of the cluster. A concept representing reptile is then added to the
clustering. This addition causes 3 clusters to be indexed by the value (unregulated),
and it is removed as a predictive value of each cluster. The resultant hierarchy
follows.
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root

(moist skin) or (3) (moist skin) or (3) or (internal) (corn.skin) or (imp. 4) or (internal)

(moistakin)', (3)', (moistskin)° , (3)0, (unregulated)2 , (corn.akin)', (imp.4)', (unregulated)',
(,,regulated)3  (internal)2  (internal)

{amphibian-2} (amphibian-I) {reptile)

Next, the object bird is added to the clustering. This object has the value (in-
ternal) which is predictive of the clusters corresponding to amphibian-1 and reptile.
Appropriate values of these two clusters are incremented and decremented and two
predictable values, (moist skin) and (3), of the amphibian-1 cluster are dropped
as both predictable and predictive values, as a result. A cluster corresponding to
bird is then added to the clustering. The result of this is that (internal) indexes
3 clusters and is thus deleted as a predictive value of any cluster. This, in turn,
leaves the cluster corresponding to amphibian-1 with no predictive values and it is
removed from the clustering.

- root

(moist skin) or (3) (corn.skin) or (imp.4) (feathers) or (4) or (regulated)

(moistskin)', (3) 1, (corn.skin)° , (imp.4)0 , (feathers)', (4)', (regulated) 1,
(unregulated)3  (unreglated)° , (internal)2  (internal)'

(amphibian-2) (reptile) (bird}

Next we incorporate 'mammal' which possesses predictive values of the cluster
containing 'bird'. The weight of the (feathers) value is decremented, while its
remaining values are incremented and mammal is added as a cluster.

root

(moist or(3)(corn.skin)or(imp.4) thers)or(4) (hair)or(4)or (re l regulated) or (internal)

(moituinY), (corn.ein)o, (imp.4)0, (feathers)o, (4)2, (hair)', (4)',
(3) ', (unregulated)-(unregulated)o , (regulated)', (regulated)', (internal)

(internal)2  (internal)2

(amphibian-2) (reptile) (bird) (mammal)

-0
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If we now iterate through the input a second time, say in the order (amphibian-
1,mammal,reptile,bird,amphibian-2), we obtain a.clustering of the formi s

(moist skin)or(3 ( )or(imp.4) (4)or(regulated)

(moists kin)3 , (3)3, (corn.skin)1, (imp.4)1, (4)4, (regulated)4,
(unregulated)s (unregulated)', (internal)3  (internal)4

(amphibian-i, amphibian-2 } {reptile} {mammal,bird)

As the example indicates, the clustering evolves slowly over a stream of input.
Values which were previously deleted as predictive might be added back at a later
time. UNIMEM assumes that the clustering will converge on a 'natural' structure
after a large set of input. This property is not provable, and in general, UNIMEM's
behavior appears difficult to characterize in any formal way.

5. Concluding Remarks

In the preceeding pages we have discussed methods of conceptual clustering as
extensions to those of numerical taxonomy. The two approaches differ primarily in
the way each class of methods represents similarity between objects and/or object
groups. Methods of numerical taxonomy express similarity as a numeric value
and these methods appear to implicitly assume that objects can be represented
naturally in terms of continuously valued variables. We do not believe that the use
of numeric representations of similarity can generally be used to naturally represent
similarity between objects which are defined primarily in terms of categorical (i.e.,
discrete-valued) variables. In contrast to techniques of numerical taxonomy, the
conceptual clustering methods we have discussed express the similarity between
objects as a set of values common to all objects of an object group. In keeping
with a long standing tradition in AI, methods of conceptual clustering assume that
objects are represented only in terms of categorical variables. We cannot presume
to know whether the particular methods of conceptual clustering presented in this
paper would have great utility to researchers in data analysis - these methods, after
all, represent initial work in the area of conceptual clustering. However, we feel
that viewed as a process abstraction, conceptual clustering could envelop future
techniques of considerable utility. In particular, concepts need not be restricted to

s Actually, after this second iteration through the input, a fourth node corresponding to 'mammal'
would also be present. We would expect this fourth node to be eliminated after further iterations
through the input.
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sets of variable values common to all objects of some group. A number of alternative
concept forms have been suggested.

In existing conceptual clustering techniques, objects are represented as veri-
able value pairs, so that relationships between object values cannot be naturally
represented. Work is presently underway [MIC83B, LEB83B] to devise conceptal
clustering methods which permit clustering of structured objects. A structured ob-
ject representation is one which explicitly represents the relationships which exist
among values of an object. Languages suitable for structured object and concept
representation include first-order predicate calculus and graphical representations

- such as semantic networks [QUIL68].

A second direction for extending present concept representations has been
suggested by Michalski and Stepp [MIc83c]. They suggest including implication
and equivalence as possible logical connectives used in concept representation.
Lebowitz [LEB83A] discusses the relationship between 'predictiveness', as utilized in
UNIMEM, and logical implication. UNIMEM attempts to construct clusters whose
constituent members share a subset of (predictive) values which imply the presence
of the shared remaining (predictable) values. UNIMEM's method of clustering is
used in a program, IPP, which accumulates knowledge of terrorist events from news-
wire reports. The clustering obtained over an initial stream of reports is used to infer
properties of future reported events, given only partial (predictive) information. By
allowing implication and equivalence, a conceptual clustering technique can derive
concepts which explicitly represent hypotheses or beliefs which can be tested on
future observations.

Finally, concej.s employed by present conceptual clustering techniques are
roughly equivalent to sets of necessary and sufficient conditions,'6 which must be
satisfied by all concept members. Existing conceptual clustering methods would
probably have difficulty in identifying exceptional objects (i.e., outliers) or in dealing
effectively with noisy data. This is probably due to the restrictions imposed
by representing concepts as sets of necessary and sufficient conditions. Medin
and Smith [MEDI81] discuss a probabilistic approach to concept representation
in which probabilities or weights are associated with certain modal values of a
concept. These measurements reflect the degree to which concept membership is
dependent on each variable value. This form of concept representation subsumes

2, representations equivalent to necessary and sufficient value sets, and we believe the
increased flexibility of such a representation would allow conceptual clustering to
more effectively deal with noise and exceptional objects. We believe this is an area
in which statistical and probability theory can be brought to bear in order to insure
methods which are theoretically sound.

%I
16 The use of variable-value set pairs instead of variable value pairs makes concept representations

used by present systems somewhat more general than sets of necessary and sufficient conditions.
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