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y 'ON THE OPTIMALITY OF DATA PROCESSORS FOR SIGNAL DETECTION OVER A CLASS OF
CONTAMINATED NOISES :

D. R. HALVERSON

Department of Electrical Engineering
Texas ASM University

College Station, Texas 77843

and

G. L. WISE

Departments of Electrical and Computer Engineering and Mathematics
University of Texas at Austin

Austin, Texas 78712

ABSTRACT

We consider the effect induced on the data processor of a signal
detection system when the underlying noise distribution functions are
varied about their nominal values. We first consider the detection of a
time varying deterministic signal in additive noise, and then extend our
results to a more general situation in which the signal possesses a
random amplitude. Our results characterize a class of contaminants of an
arbitrary nominal distribution over which the data processor can be
designed using the nominal distribution, and it is seen, for example,
that such a class can contain distribution functions which can differ
greatly from the nominal distribution.

I. INTRODUCTION

Consider the discrete time detection of 2 signal in corrupting noise.
It is well known that a typical corresponding detector consists of a data
processor followed by a threshold comparator. In fact, it is also well
known that under a variety of fidelity criteria the data processor is
characterized in terms of the relevant likelihood ratio. We note that it
is often convenient in practice to employ an appropriate function of the
likelihood ratio for the data processor. However, in order to present
specific results about the general situation we will focus attention on
the 1ikelihood ratio itself.

An important factor which often limits the employment of the
likelihood ratio within the data processor is inexact knowledge of the
underlying statistical distributions. One way of resolving this difficulty
is to employ a robust detector, such as the kind obtained from Huber's
results (e.g. see [1]). Numerous authors have investigated various aspects
of robust detection [2-6]. While robustness approaches can achieve the >
desired goal of desensitizing the data processors to inexact statistical 4
knowledge, the would-be user of such detectors quickly becomes aware of :
their inherent limitations (for example, the extension of Huber's results
to account for realistic forms of dependency and effects of nonstationar- - ¢
ity, the question of the loss in performance occasioned by the robustness, .
etc.). For this reason, it is beneficial to consider situations where a §
simpler approach can be employed. In this paper we consider two commonly
encountered situations; the first consists of the detection of a time
varying deterministic signal in additive (not necessarily Gaussian) noise,
whereas the second generalizes this situation to include a time varying
signal with random amplitude. Our results allow determining when the
1ikelihood ratio is invariant to perturbations in the underlying distri-
butions from their nominal values, thus admitting the employment of the
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‘nominal distributions to design the data processor.

I1. DEVELOPMENT

The situation under consideration can be modeled as a choice between
Ho® ¥g
H.lz u]
where Mo and uy are finite measures defined on the Borel sets of R". Let
J\ be a o-finite dominating measure for Mo and ¥y» €.9. we could take A =

2 (u0+u]) Consider first the detection of a time varying deterministic
signal; that is, for a fixed element 6 of R" we set

u](B) UO(B"{G})

for all Borel sets B of R". Note that the time varying signal o is

represented as a point in g!". We defin(e’ the real, nonnegative, Borel
W u
measurable functions f0 = TAQ and f] = ?Al » and note that f (+) = fo(--e)
a.e. with respect to A. We also let S = {xeR": f (x)f (x) >0}, and note
that the likelihood ratio A{<) given by '
A(x) f](x)
x =
?olxi

exists and is positive for all xeS. Note that S contains those elements of

R" for which we obtain a nondegenerate test; the cases where A(x) =0 or
A(x) == are easily checked.
Let ¥ denote the class of all real, nonnegative, Borel measurable

functions defined on R"; we will call an element of G a density. We then
note that a wide class € of variations in the nominal density f ( ) is

enerated by considering all densities f: R" +R such that f(- )
1-e)fy (- ) +eg(+), where ge® and € is a real number satisfying 0<e <1

(cf. the e-contamination class of [1]). In this case the actual density
under Ho is not necessarily the nominal density fo(-) but rather an

arbitrary element of €, with an associated ge®% and ce[0,1). In the
following we consider only those g belonging to ¥. We thus are actually
testing between

HO: (1-¢) g +€Tgs

where for each Borel set B in R",

To(®) = [ sth and T(B) = 1y(B-(o1).
Equivalently, we test between the densities
Hy: (1-€) fo(e) +eg(*)

H]: (1‘5) f0(°-9)+€g(°-9).
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‘We are interested in the relevant likelihood ratio Ag.e(') given by, for
xeS,

L) A fo(x-e)+e[9(x-9)-f0(x-9)]
goe™ T T (x) +elglx)-fo(x)]

Note that Ag (x) exists for all xeS via our restrictions on €. Note also
that, for xeS

ahg () [fg(x) +elg(x)-Fo(x)1 [g(x-5)-fy(x-6)]
B [fo(x) +e(g(x)-f0(xm?
_ [fg(x-0) +elg(x-6)-5(x-6))][g(x)-f4(x)]
[fy(x) +elalx)-Fgl1Z
We therefore have, for xeS,
(x)

/ o a(x-6) _ g(x)
=0 if and only if o(x-e) o(x) .

This is true if and only if there exists a Borel measurable function p: R"
+ R such that for all xeS we have g(x) = p(x)f (x) and p(x) =p(x-6). Since

the above equivalence is true for all ee[0, 1), we have established the
following result:
Theorem 1: Let A be a nonempty open subset of [0,1) under the induced

topology, and let ge%. We then have Ag (x) = A(x for all xeS and for

all ceA if and only if there exists a Borel measurable function p: R" +R
such that for all xeS,

g(x) = p(x)fy(x) and p(x) = p(x-6).
Note that the above result characterizes the subclass of contaminants
g(+) for which the likelihood ratio Ag (x) is invariant for each xeS as ¢

ranges over nonempty subsets which are open in [0,1). This is true
N regardless of the nonempty open set A and in particular we can simply let €
-; be any number in [0,1). The data processor of the detector could then be
2 designed based on the nominal density with no degradation in performance
2 for such contaminants g.
More generally, let us consider the extended situation where H] is

nominally governed by the (Borel measurable) density ?1(-) given by
fo = [ fltidite),
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where for a fixed subset C of the nonzero integers the finite measure p is
defined on the Borel sets of R" and is purely atomic with atoms
{{c6}:ceC}. Let S = {xem":fo(x)?'](x) >0}. This case includes the

previous one and extends it to the situation where the signal is allowed
to possess a certain form of random amplitude. As before, we consider
variations in the nominal density fo( which 1ie in €. In particular,

let ge¥ be such that there exists a Borel measurable function p: R"+R
’ with g(x) = p(x)f,(x) and
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'p(x) = p(x-8) for xeS. We then note that the likelihood ratioc which
corresponds to the nominal density f0(°) is given on § by

: . ¥,(x)
a A(X).?;‘?—:'y,

whereas the one which corresponds to the variation f(-) =(1-e)f0(-) +eg(°)
is given, for all xeS and for all €e[0,1), by

fix) e [ Talxet)-fo(x-t)ai(t)

Ay, (x) =
fo(x) +ela(x)-f4(x)]

. fo(x—ce) +e[g(x-ca)-f0(x-ce)] )
: ceC fo(x) +elg(x)-f,(x)] ¢

for some countable collection of.real constants kc which depend only on c,
8, and u. Note that it then follows from Theorem 1 that for each xeS,
7\9 (x) = A(x) for a1l ce[0,1). We have therefore established the

: : following result:
f Theorem 2: Suppose ge¥ and that there exists a Borel measurable function

p: R" >R with g(x) = p(x)fo(x) and p(x) = p(x-8) for a1l xeS. It then
follows that

T\g (%) = A(x) for all xe$ and for all ee[0,1).

The above result is thus an extension of Theorem 1 to a more general
situation; however, we retain only the sufficiency condition. This, of
course, is the condition we often might want to employ in practice.

Note that a key element in both Theorem 1 and Theorem 2 is that a
contaminant which is a periodic multiple (with period equal to the signal)
of the nominal density leads to an unperturbed likelihood ratio. The
results of Theorem 1 and Theorem 2 provide us with an easily used tool to
construct remarkedly unintuitive examples of noise contaminants, all of
which employ the same optimal data processor for a wide variety of fidelity
criteria. For example, let n=1 and 6=0.1. If

%— if xe[-1,1]

‘ fo(x) = %’ I[_]’]](x) = { ’

0 otherwise

i.e. the associated random variable is uniform on [-1,1], and if the
perturbation of fo is given by

-9 -9
4.5x107 +5x1072 if xe({-d - -’92—, 1% + ‘—"f—]n[-z,u
for 1 =-10,-9,...,10

fx) = 0 if xe(-=,-1) U(1,=) ’
5x10~2 otherwise
I then the resultant likelfhood ratios are the same over S =[-0.9,1], even

though the two densities are very dissimilar. Notice in this example that
f(x) 1s nowhere equal to fo(x) on the interval [-1,1].

For another example, let n=1, 6 =2, and

r “.-n.':.'..._'."‘ ., ._\’-‘ LA S T SR ‘:.\', \"-':.-.'..-_:.\_:.q_:.\ :' :. -. P T N A T NI
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' ' 0.05 if xe[-10,10]
. folx) f 0.05 It 10 107(%) * { 0 otherwise .
: Let D be a Cantor set (see, for example, [7]) in [0,1] with Lebesgue
! measure Ae(0,1). If the perturbation of fo is given by
o5 A xeD+ {21} for i=-5,-4,...,4
f(x) =¢{ 0 if xe(-=,-10)uU(10,») ,

355%5T otherwise

then the resultant likelihood ratios are the same over S =[-8,10], even
though the Cantor set results in a perturbation of f which is obviously
very dissimilar to fo. Notice that the maximum of the perturbation f can

be made to exceed any preassigned real number.
ITI. CONCLUSION

We have considered the effect induced on the data processor of a
signal detection system when the underlying distribution functions are
varied about their nominal values. Having noted the crucial role played
by the likelihood ratio in the detection system, we have therefore focused
attention on the variation in the 1ikelihood ratio itself. When testing
first for the presence of a time varying deterministic signal, and then in
a more general situation, we showed that the likelihood ratio is invariant
over a class of perturbations of the nominal noise distribution.
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