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Foreword

This report was prepared by the University of California in fulfill-

ment of the requirements of Contract F49620-84-C-0090 with the Air Force

Office of Scientific Research. The project manager for this contract was

Capt. John Thomas of AFOSR.

The technical work was performed during the period August 1984 through

July 1985. The technical efford involved development of simple and block

.4 Lanczos algorithms at the University of California and testing of these

algorithms for modal analysis of typical structural analysis problems at

Lockheed Missiles and Space Company, Inc. Work at the University of

California was carried out by Drs. T. Ericsson, B. Nour-Omid and Professor

B.N. Parlett under the direction of Prof. Parlett. Work at Lockheed Missiles

and Space Company was carried out by Paul S. Jensen under contract to the

University of California.

One report i s being prepared as a result of this research for pub-

lication in Math. Comp. It is entitled "How to Implement the Spectral

Transformation," by all four participants in this project.

The contract was approved too late to provide support for Dr. Nour-Omid

who left the Center for Pure and Applied Math, in April 1984. The surplus

funds went in partial support of Dr. Ericsson.
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INTRODUCTION

B.N. Parlett

Aug. 6, 1985

Research over the past 9 years at the University of California has

resulted in a number of reports.

[1-10] on the general theory of the Lanczos algorithm for large symmetric
, ( f, si e

eigenproblems. This work was extended 4nLENto apply to the large general-

* ized symmetric eigenanalysis problem. The-.pppe"ee this effor-tw"a- im-

plementsthe results of the past research for application to large generalized

problems arising in structural analysis. -' - C
1.0 Simple Lanczos

The first implementation developed was a simple Lanczos algorithm based

on selective orthogonalization [3 and 9] and a new technique [11] for moni-

toring eigenvalues of the intermediate tridiagonal matrices Tj.

These are our approximate eigenvalues. At the same time we get error

4bounds. By monitoring at every step the Lanczos run may be terminated as

early as possible. This poses the challenge of carrying out this monitoring

so effectively that it increases the cost of a Lanczos step by less than 5%,

preferably by less than 1%. This, in turn, means updating a few eigenvalues

of a j x J tridiagonal in 0(j) arithmetic operations. For comparisons we

2note that the EISPACK program IMTQL1 requires about 9j to compute all

eigenvalues. Our solution is given in 111]

[-°
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. After considerable testing on the local VAX/UNIX system this simple

Lanczos implementation LANSO was sent to Lockheed and was up and running

by Sept. 1984 (See Sec.2). By October troubles became apparent. For short

runs of 20/25 steps, picking up 7 or 8 eigenvalues, all seemed well. However

the code regularly malfunctioned a little later, certainly before Step 50.
.5

A serious tactical error in the code was the decision to monitor not

more than 8 unconverged elgenvalues per step. This value seemed effective

in the tests at Berkeley. It was only in June 1985 that we realized that

this ceiling was provoking most of the difficulties with LANSO. The easy

change from 8 to 16 permitted runs of up to 100 steps. It so happened that

6 slowly converging elgenvalues blocked from view eigenvalues that were con-

verging rapidly.

Here is the great value of this collaborative research effort. With-

out Lockheed's difficult problems this design defect would not have been

uncovered.

1.1 Blcok Lanczos

The block Lanczos implementation BLANSO was sent to Lockheed in

October 1984 and was running by January, 1985.

All but one aspect of the simple Lanczos program generalize readily,

but expensively, to the block case. The intermediate matrix T is now block

tridiagonal and it is proving difficult to generalize the program ANALYZET

for monitoring the convergence of T's eigenvalues. As an interim measure

we are using EISPACK codes but these are too general and too expensive for

long runs. Not only are eigenvalues needed but the last section of the

associated eigenvectors.

Our research on this topic is described by Dr. T. Ericsson in Section 3.



1.2 Singular M.

Our Investigations revealed an interesting problem to which no attention

has been given ir the literature. What happens when the inertia Matrix N

is positive semi-definite but deficient in rank? This feature of N occurs

quite frequently, especially in the analysis of structures intended for

service in space. We had assumed that no difficulties'would arise. Indeed

if all vectors are projected onto the subspace associated with the

finite eigenvalues then no difficulties do arise. What we realized, albeit

gradually, is that every vector is contaminated by components in the null

space of M and these components grow steadily. One reason that this phe-

nomenon may have lain dormant for so long is that it is difficult to detect.

All our usual measures involve N and look fine because N blanks out these

unwanted components. A consequence of this feature is that computed results

turn out to be less accurate than expected. The phenomenon is not special

to our codes. It will affect all implementations based on direct iteration.

There is a simple way to cure this misbehavior but it is very expensive.

One simply orthogonalizes the computed eigenvectors against the null space

of M but using the K-inner product.

However we have found a very inexpensive procedure and it seems to be

satisfactory. At each step there is a residual vector that is not used ex-

plicitly in the Lanczos process. This vector will become the next Lanczos

vector. It turns out that a modification used by Ruhe and Ericsson for

another purpose does, indirectly, suppress the unwanted components in the

computed Ritz vecotrs. The block version is mentioned in Ml.2 of Section 2

(ty P.S, Jensen).

P. All this is a somewhat unexpected dividend of our investigations.



1.3. . . --.

1.3 Termination Criteria.

As we began to make longer Lanczos runs we found that the convergence

rate, on our cases, was remarkably good. In one run of 100 Lanczos steps

68 elgenvalues converged to working (double) precision. We had previously

* .thought that a 2:1 ratio was impressive.

This perception brings to the fore a difficult decision that users must

make. For how many steps should a Lanczos iteration be continued before a

new shift is chosenard a new factorization of K-(shift) M is made?

Ericsson and Ruhe [ 5 ] favored many short runs (of length 20) but our in-

vestigations suggest the opposite. It is cost effective to keep goinC while-

ever Ritz values are stabilizing at a good rate. More work is needed here.

I-. . . - . . . ' . . . . -**. * * * -
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Section 2. TEST RESULTS FOR THE LAICZOS ALGORITHM STUDY

Paul S. Jensen 29 July 1985

This study concerns two computer implementations of the Lanczos
algorithm developed under AFOSR contract F49620-84-C-0090 at the
University of California. The first implementation, called LANSO.
carries out a simple, single vector Lanczos iteration. The second
implementation. called BLANSO. earries out block Lanczos iteration.

* The objective of this study was to modify these implementations as
*needed in order to adapt them to the basic eigenanalysis system BES

used at Lockheed Missiles and Space Company for general eigen-
* analysis of large structural models. The resulting computer

programs were then to be used to calculate eigenpairs for several
structural engineering models in order to evaluate LANSO and BLAUSO.

Both LANSO and BLAIISO were adapted to BES and test studies
were carried out on both VAX 11/780 and Cray IS computers. The
tests on the VAX computer were used primarily to determine, develop
and check the required modifications of the various codes. The test
problems used on the VAX were relatively small (under 500 equations)
and are not discussed extensively in this report. All calculations
in this study were done in single precision.

1. CODE MODIFICATIONS.
The basic eigenanalysis system BES is a collection of programs

and subroutines that interface with several structural analysis
programs for modal and buckling analysis. The interface is through
a general global database GAL as shown in Fig. 1. Besides the

Strutual Amalyis ~." ES'?) ttr u s

Mas wid Stiffness Matrices Ei ewlues w eige rwetars

/ Global Database - GAL

Figure 1. B3ES Intrface System

• ***. . .. *.*%*. % .' ,'] .......- .... , ', ,'..2.. ...-.....



global database. BES also uses a local working database VMSYST which
is based on a virtual memory concept. The fundamental eigen-
analysis algorithm used in BES is a block Lanczos implementation
originally developed by Prof. David Scott of the University of
Texas. This implementation is combined with a spectral shifting
algorithm developed by Paul Jensen of Lockheed.

For the present study, BES was divided into three program
modules: (1) Root code. (2) Kernel code, and (3) Interface code. as
shown in Fig. 2. The largest module, the root code, contains all

S RootS.j'......
-BES-Scott. BE S- KlIean :BES- LANSO

........
S~ot'sCod KLAN LANSO

Fig. 2. Partition of BES for Adaptation

utility software for data management. sparse matrix processing.
spectral shift processes. error bound calculations and miscellaneous
processes not directly associated with Lanczos iteration. The
kernel code contains all software developed specifically for Lanczos
iteration and the interface code provides the interface between the
root code and the kernel code. With this arrangement. a new kernel
and interface could readily be constructed for the simple Lanczos

. program LAJNSO from the University of California. In addition, a new
block Lanczos implementation called KLEAN (Kernel for Lanczos Eigen
Analysis) was also adapted to BES. KLEAJ is a modification of the
BLANSO code developed by Dr. Nour-Omid for this study.

1.1 KER14EL MODIFICATIONS.
A fundamental limitation of both LANSO and BLANSO is the

assumption that all of the calculated eigenvectors can be held in

3
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9.

RAM (random access main storage.) This assumption restricts the
size of problems that can be solved and can result in unnecessarily
early termination due to exhausted RA4 space. It can also adversly
affect analysis costs levied by some computer billing algorithms
that penalize excessive use of RAM.

Elimination of this restriction from LAIJSO would be rather
involved and was not attempted in this effort. The difficulty stems
from the use of selective orthogonalization. which requires periodic
determination of eigenvectors (Ritz vectors) during the iteration.
BLANSO. on the other hand. uses partial reorthogonlization on the

,. Lanczos vectors, and calculates 'the eigenvectors only once at the
end. Modifications Included slim- ination of the final eigenvectors
calculation, relegating this post iteration task to utility programs

-. already available in BES. The resulting code. called KLEAU.
produces only eigenvalues with error bounds. eigenvectors of the

- reduced (projected) problem, and Lanczos vectors.

Even with these modifications, the RAM requirements of KLEAN
are considerably greater than those of Scott's code. A major
contributor to this problem is the desire to have space for all of
the reduced eigenvectors. This requirement can readily be reduced
to sufficient space for the maximum number of solution vectors

*" requested for a given analysis. This reduction, which would require
a different solver for the reduced problem, was not implemented in
this study.

BES is designed to determine eigenvalues in a specified section
- of the problem spectrum. This imposes additional requirements on
* the termination criteria used by LANSO and KLEAN. The iteration

should terminate when one or more of the following conditions are
satisfied:

1. The number of Lanczos steps reaches a specified limit
2. The number of converged eigenvectors reaches a specified limit
3. All of the eigenpairs with eigenvalues in the specified range

have converged.
In cases 1. and 2.. the "completed section" of the eigenvalue spectum
for which all eigenpairs have converged should be returned. This
section. of course, will be a subsection of the one specified

. initially.

There is no fool-proof, practical method for specifying the
* completed section or determining that case 3 has been satisfied.

Fortunately. the method does not have to be fool-proof because BES
has other checks, based on spectral shifting, that insure that the

. requested eigenpairs are found. The cost for failure to terminate
the iteration properly according to the above specifications is
e-tra computing time. Therefore. we need an efficient termination

4



- method that works most of the time.

The natural order for eigenpairs to converge in BES. using
either Lanczos or subspace iteration, is to start near the center of
the specified section and work outward toward the ends. We
currently terminate iteration under criterion 3 above when two
eigenpairs outside of the specified section have converged. This
heuristic is also used for specifying the completed subsection under
termination conditions 1 and 2. The ends of the completed section
are the averages of the extreme pairs of converged eigenvalues.

There is a problem when an extreme eigenvalue (near an end of
the specified section) is a multiple root. It is not generally cost
effective to terminate an iteration (e.g. due to condition 2 above)
before all edgenvectors of that eigenvalue are determined. In its
generic form. BES utilizes both a "hard" limit, as in 2. and a "soft"
limit which occasionally is exceeded when appropriate. This
innovation was not incorporated in LA]]SO or KLEAI.

* 1.2 INTERFACE MODIFICATIONS.
Most of the interface code development was routine and tedious

in nature. The primary interface routines that are called by the
kernel code are matrix utilities and vector storage and retrieval
routines. These are simple relative to the routines that establish
operating parmeter values, and monitor and control iteration progress.
For small problems this is not difficult but for large problems.
certain trade-off decisions between available RAM and working
storage allocation must be made that have a substantial effect on
the results. The interface code developed for LANSO and KLEAN in

* this study was adequate for this work but should be extended for
production analysis.

Additional interface software required for this work is con-
cerned with postprocessing the results from the kernel code. The

". exact nature of this code varies, depending upon the nature of the
kernel code used. The most dependable postprocessing scheme appears
to be one step of inverse iteration followed by an astutely ordered.
modified Gram-Schmidt orthonormalization. This, however, is rather
expensive. An alternative postprocessing scheme is derived from

-1 T
K MQ -Q T *Q B E (1)

J J j j*1 j41 j

which is the jth step of the Lantzos interation process. Post-
multiplying (1) by the matrix S of converged etigenvectors for T
yields a simple expression for one step of inverse iteration applied
to the Ritz vectors

."
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Tests in which the inverse iteration post-processing step was
carried out using the right side of (1) indicate that this is an
effective approach.

"* 2. TEST PROBLEMS
Three problems from typical engineering studies carried out at

", Lockheed Missiles and Space Company were used for this study. The
'- nature of the structures represented in these problems is not

material and we view them simply as sparse matrices for which
eigenvalues are required. All ok thee are of the for=

Kx - M X

where K and M are non-negative definite and M is diagonal with rank
ranging from less than half to about two-thirds of its size. All
tests on these problems were run on a Cray IS computer in single
precision. The distribution of the eigenvalues over a small portion
of a generalized spectrum is illustrated in Fig. 3. The ordinate

Figure 3. Spectral Distribution for Problem 3
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for each eigenvalue indicates the number of smaller elgenvalues that
exist. Thus. the sharp rises in the curve in Fig. 3 correspond to
multiple or clustered elgenvalues. The results of the numerical
tests are summarized in Table 1.

Unfortunately. no results for the large problems using LANSO
were obtained. The code would function very well for 20 to 30
iterations and then fail. The problem turned out to be that more

* eigenvalues would converge simultaneously than the code was prepared
to handle. This determination was made so late in the study that it
was not possible to include test results in this report.

Note that the CPU time for Oroble= 3 (indicated in Table lb
by *) is not available because it represents a subsection analyzed

-%as a part of a larger problem. The subsections for different
algorithms were identical. however. maring the comparisons valid.

The relatively small rank of these problems appears to be
typical of engineering structural analysis. This factor tends to
favor a symmetric formulation of the Lanczos iteration matrix as
used in Scott's code. but the recorded CPU times do not indicate a
significant benefit. In fact. the iteration time per Lanczos step
(It/L) tends to be smaller for the new algorithm. The factorization

, and solve times for the two methods, of course, are about the same
because they use the same sparse matriy processing utilities. This
result is probably due to the relatively large amount of
reorthogonalization done in Scott's code.

Table lb also includes some results comparing the automatic
spectral shifting algorithm in BES with a hand selected shift
strategy. The hand selection of shift points requires that the
solution be already known. The results are encouraging from the
standpoint that the hand selected set reduced the total processing
time by only 21%. However. there is presently no basis to claim
that the automatic shifting algorithm used is optimal.

The new algorithm KLEAN tends to iterate longer for each set of
-eigenvalues. The stopping criteria appears to be too strict and

probably can be relaxed. This and the question of when and where to
do a spectral shift remain to be settled in future research.

Problem 2 and some smaller problems were run using both the
*standard inverse iteration post-processing step and technique de-

scribed in Sec. 1.2 with the KLEAN kernel. The accuracy of the
*i results were similar and the savings in overhead time for problem 2
- was 3 seconds or 6%.

".7
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Table Ia. Legend for Table lb Column Readings

P - Problem: 1. 2 or 3
M - Method: S - Scott's code. K - KLEAII. L - LAIISO
Size - Number of degrees of freedom in the problem
Rank - Rank of the M matrix
Fac. - Time in seconds to factor (K - (shift)*M)
E - Number of converged eigenpairs found
Iter. - Time in seconds required for the Lanczos iteration
L - Number of Lanczos steps taken
3 - Block size used for the Lanczos iteration
It/L - Iteration time per La'nczos step (Iter./L)
BL/E - Matrix-vector multiplies per converged eigenpair (BL/E)
Total - Total CPU seconds required for the analysis
OH - Percentage of the total time used for processing other

than factoring or iterating (Overhead)

Table lb. Summary of Numerical Results

P M Size Rank Fac. E Iter. L B It/L BL/E Total OH

1 S 3116 2236 7.86 25 10.58 16 3 0.66 1.92 29.54 37
1 K 3116 2236 7.87 25 8.67 18 3 0.48 2.16 23.65 30

2 S 4338 2217 16.72 18 15.41 16 3 0.96 2.67 42.77 25
2 K 4338 2217 16.64 18 17.42 19 3 0.92 3.17 43.70 22

- 2 S 4338 2217 16.74 9 9.65 11 3 0.88 3.67 35.21 25
2 K 4338 2217 16.70 9 12.65 14 3 0.90 4.67 34.84 16

3 S 4614 1927 10.40 16 8.92 15 3 0.59 2.81 *
3 K 4614 1927 10.33 16 9.75 16 3 0.61 3.00 *
3 S 4614 1927 10.42 13 9.74 16 3 0.61 3.69 *

" 3 K 4614 1927 10.31 13 13.69 22 3 0.62 5.08 *

3 S 4614 1927 10.42 19 41.11 49 3 0.84 7.74 179.60 22
10.40 17 16.29 23 3 0.71 4.05

Auto. spectral 10.39 13 12.60 21 3 0.60 4.84
shifting 10.42 17 10.89 18 3 0.60 3.18

10.37 5 7.04 13 3 0.54 7.80

3 S 4614 1927 10.39 14 10.18 17 3 0.60 3.64 141.00 26
10.40 16 8.92 15 3 0.59 2.81

Hand specified 10.42 13 9.74 16 3 0.61 3.69
spectral shift 10.40 13 9.74 16 3 0.61 3.69

10.41 14 11.74 19 3 0.62 4.07
.
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Block Tridiagonal Matrix Analysis for the Lanczos AlgorithL

1. Background.
We are interested in computing some of the elgenpairs of the generalised

* magenrohtem
' Kz = A~z ()

Here Jr and M are real and symmetric matrices, of order n. Usually the
matrices are large and sparse. M is at least positive semidefinite. The eigen-
values of interest usually lie in some interval [a. b], specified by the user.

The problem may be transformed into

(K-MM)M7'z = ((.A-iz)
provided the shift, i, has been chosen so that K-sM is nonsingular. One
efficient way to solve our problem is to apply a Lanczos algorithm to the shifted
and inverted problem ("). Let us for a moment consider the simple Lanczos

-* algorithm (not a block version). The Lanczos algorithm will produce vectors
"t C R" and real numbers a, Pt (the Pt are positive), such that in exact arith-
metic:

V, ... ). with VjMV =I

and

1  1
Sa2

7j

d_1 -1 aJ

such that

(K-=M)-MVj VT,+pjv 3 ,1 sJ
(Here ej is column number j in the identity matrix.)

Usually j<<n. typically n = 1000-5000 with j = 50-100. Now, some of the
eigenvalues of Tj will be close to some eigenvalues of problem ("). Usually the
end-eigenvalues of Tj have the best approximation properties. If (s, v) is an
eigenpair of T, then

II(K-sM)-'MVs-vljs IIA = IsI

(Here I~u Il = (u 'Mu) .)

If P Is, I is small, then (v, Vs) will be a good approximation to an eigenpair
of ( ). Usually the product is small because Isj I is small, and not because Pj is.
Since we are really interested in problem (0), we can transform the v-
eigenvalues back to the corresponding A-eigenvalues. It is easy to see that the
transformation is given by u+ 1/ v. We said above, that extreme eigenvalues of
* have the best approximation properties, and so they correspond to X-
eigenvalues relatively close to 1i.

a- -. -..-. -. - ..-. . -. .. , . -- . - .,..-,-. .,-. . . . . ... - - - + .. . . . - , . -
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To know when to stop a Lanczos Tun (j is not usually determined before-
hand, but should be computed during the iteration, taking into account the
rate of convergence. cost of another Lanczos step. number of requested eigen-
pairs etc.). it is essential to know which eigenpairs of j are good approxima-
tions. We would, thus. like to have an efficient and reliable algorithm that com-

* putes the interesting (v. #)-pairs in each iteration of the Lanczos algorithm.
Such an algorithm should not start from scratch for each T. but it is desir-

able to update the spectral information computed for T I-. The following figure
illustrates this idea:

I interesting eigenvalue (i.e. good approximation)
+ = uninteresting eigenvalue
X,(T) - eigenvalues of T

---- I---....-+--+--+-++--+---+---+ .-I.- -- ,(T_)

~~~~~-- --------- l--- ----------- +-------. ---.. - ?,(T;)

In this example the three extreme eigenvalues, at each end, have not changed
- much, and should therefore be easy to update. There is one new eigenvalue

(there must of course be one new eigenvalue. since the order of T has increased
by one), which in this case is an interesting one (marked -). The new eigenvalue
need not, of course, be interesting. If it comes in the middle, for example, it is
not likely a good approximation.

This problem has been attacked by B. Parlett and B. Nour-Omid, resulting
in an algorithm, analyze T.

2. The Block Case.
B. Parlett and myself have now looked into the similar problem arising from

a run of a block Lanczos algorithm. So instead of producing vectors Vs and
" numbers a5 . P, the block Lanczos algorithm will produce blocks of vectors

V c R" ' , and square matrices A , B E EP P (At is symmetric and B is lower tri-
*angular). Let p be a fixed integer, called the block-size. It is supplied by the

user, or is set by the program. Typical values are 3-7. Note that p = I gives us
*: the simple Lanczos described above. Instead of the tridiagonal matrix, in the
. simple Lanczos, a block tridiagonal matrix

"" A, B,

Br A

will result. (We use the same notation for this new matrix. Note that the order of
71 is 1p.) Since the A. are lower triangular, T, is a bandmatrix having half
bandwidth p. A residual bound can be computed as the norm of the product of
the last block and the bottom segment of the eigenvector (this corresponds to
Pl Is, I whenp = 1).
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Te are looking for a new algorithm that solves essentially the same problem
as In the simple case, I.e. it should monitor the behaviour of the extreme eigen-
values of 7j. now being a block tridiagonal matrix. As before we have a
sequence of matrices Tg. T1. .... but for each block Lanczos iteration, the order
of ? increases by p.

S. Some Reasons Why the Block Case is Harder to Deal With
This change, from p = I to p > 1. may not seem very dramatic, but it gives

rise to several new difficulties, of which some will be presented below.

If p = I (the Pt are assumed to be positive, i.e. Tj is unreduced (the Lanc-
zos algorithm would have been stopped if a very small Pj had occurred)) T
has distinfct eigenvalues. T may, of course, have very close eigenvalues
(even if not any P is small, compare Wilkinson's famous example (The Alge-
braic Eigenvalue Problem, page 309)). When p > 1, Tj may have truly multi-
ple eigenvalues. This is. in fact, one reason why the block algorithm is supe-
rior for handling multiple eigenvalues in the original problem ().

If p = 1 the elgenvalues of T7 and T1,1 strictly interlace each other. This
property gives rise to several useful results:
(1) It is easy to find the new eigenvalues of T7+,. since there can only be

one between two eigenvalues of T7 (and we know most of the interest-
ing eigenvalues of W.

(2) We can estimate gaps between eigenvalues (which implies that we can
use more powerful error bounds).

These two properties fail when p > 1. Going from T to T+l we may have
several new eigenvalues between two of Tj . In fact, using Cauchy's interlace
theorem, we can only say that between two eigenvalues of Tj there may be
p eigenvalues of T11 I. These new ones can be grouped together, coincide
with eigenvalues of T (even though the A are nonsingular). Since p may
be rather large, the spectrum may have undergone large changes between
two consecutive calls of the analyse routine. Consider the following, little
example.

o.1

Assume p 2, and let A3 I A2 1[ 01 and let BThen T, has

eigenvalues -1 and 1. and T2 has eigenvalues _I /2 , 2 .

One way to simulate this interlace property, for the bandmatrix, is the fol-
lowing: Let 71.1 denote the leading principal submatrix, of order k, of T.1. Then
the eigenvalues of T and TI." must interlace each other (though not neces-
s sarily strictly). The same is true for all pairs 7 g. TI. , lick p -1. It would
be possible to use this idea when trying to locate eigenvalues.

Y'j'. Yet another problem is the fact that p is not fixed (p depends on the problem
.4
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()). If the problem has eigenvalues of high multiplicity, or if I/0 is expensive, it
may pay to use a larger value on p. A good algorithm should try to take into
account varying values of p. To be specific, suppose that inverse Iteration is
used in the analyse routine. We could consider an inverse iteration of the form:

Given a starting vector Ifs and first shift u

For k : 1. 2. 3 ... until convergence do
| factor T-of

For i = I to Y% do
| solve (T -ol)s =b
6=a/Ifl
p-p(b) (p(b) is the Rayleigh quotient) t

_ -,= b

Taking 'n* = 1. for all k. gives the standard Rayleigh quotient iteration. It
... may be advantageous to vary in5 . If, for example, yj is not too close to the

requested egenvector, the first shift may be rather poor, and it may give faster
overall convergence, if the next shift is refined by using several solves.

*. In this example some output. from ara algorithm like the one above, is
presented. T = danig( 0, 2, 2. 2. 3. 6.5, 7. B. 9, 10 ). The frst shift was 3.5 (a
rather poor shift). The starting vector was:

3.7796447e-01 3.7796447e-01 3.7796447e-09
3.7796447e-09 3.7796447e-01 3.7796447e-01
3.7796447e-09 3.7796447e-01 3.7796447e-01
3.7796447e-0 1

One should interpret this V, in the following way: 2. 2, and 7 are known eigen-
values, and we have orthogonalised the starting vector against the known eigen-
vectors. We have the same components in the other eigenvectors.

What follows below is a printout, for a sequence of runs, where in5 was 1, 2.
3, etc. Note that mi did not vary with k. The first column indicates what factor-
isation is being used. Repeated values means that we make several solves, using
the same factorisation. The second column contains 1/ lie rl. The third is the
Rayleigh quotient formed after each solve. The last column contains rho-
lambda, the difference between the Rayleigh quotient and the requested eigen-
value (which is 3). The termination criterion was abs(rho-lambda) 9 le-16 (in
this special case we knew A).

,.
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1/IIII p error
1 1.4718494e+00 3.1520465e+00 -1.8204650e-01
2 1.7475323e-01 2.9997320e+00 2.6801401e-04
3 2.6808211e-04 3.0000000e+00 9.9601993e-12
4 9.9601993e-12 3.0000000e+O0 0. e+00

#lfsolves / step = 1
factorisations = 4 (total number of factorisations)
solves = 4 (total number of solves)

1/11911 p error
1 1.4716494e+00 3.1620465e+00 -1.6204650e-01
I 6.4527501e-01 3.0016009e+00 -1.8008833e-03
2 1.6056911e-03 3.0000000e+00 2.673050le-09
2 1.6008833e-03 3.OOOOe+00 2.2204460e-15
3 2.2204460e-15 3.0000000e+00 0. e+00

#solves / step = 2
factorisations = 3
solves = 5

1/1111 P error
I.' 1.4716494e+00 3.1620465e+00 -1.6204650e-01
I 6.4527501e-01 3.0016009e+00 -1.6008833e-03

1 6.0172374e-01 2.9999564e+00 4.3632258e-05
2 4.3637928e-05 3.0000000e+00 1.1146639e-13
2 4.3632256e-05 3.0000000e+00 0. e+00

#solves / step = 3
* factorisations = 2

solves = 5

1/ll p error
I 1.4716494e+00 3.1620465e+00 -1.6204650e-01
1 6.4527501e-01 3.0016009e+00 -1.6008833e-03
1 6.0172374e-01 2.9999564e+00 4.3632258e-05
1 6.0007432e-01 2.9999947e+00 5.3417704e-06
2 5.3418028e-06 3.0000000e+00 1.1102230e-16
2 5.3417704e-06 3.0000000e+00 0. e+00

#solves / step = 4
factorisations = 2
solves = B

. . .
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1I;s II error
1 1.4716494e+00 3.1620465e+00 -1.6204650e-01
1 6.4527501e-01 3.0016009e+00 -1.6008833e-03
1 S.0172374e-01 2.9999564e+00 4.3632258e-05
1 6.0007432e-01 2.9999947e+00 5.3417704e-06
1 6.000034?e-01 2.9999996e+00 3.9003350e-07
2 3.9003362e-07 3.0000000e+00 0. e+00

#solves / step = 5
factorisations = 2
solves = 6

1/h li p error
1 1.4716494e+00 3.1620465e+00 -1.6204650e-01
1 6.4527501e-01 3.0016009e+00 -1.600BB33e-03
1 6.0172374e-01 2.9999564e+00 4.3632258e-05
1 6.0007432e-01 2.9999947e+00 5.3417704e-06
1 6.0000347e-01 2.9999996e+00 3.9003350e-07
1 6.0000017e-01 3.0000000e+00 2.5234880e-08
2 2.5234881e-08 3.0000000e+0O0 0. e+00

#solves / step = 6
factorisations = 2
solves = 7

1/1l1CI P error
1 1.4716494e+00 3.1620465e+00 -1.6204650e-01
1 6.4527501e-01 3.0016009e+00 -1.6008833e-03
I 1 6.0172374e-01 2.9999564e+00 4.3632258e-05
1 6.0007432e-01 2.9999947e+00 5.3417704e-06
1 6.0000347e-01 2.9999996e+00 3.9003350e-07
I 6.0000017e-01 3.0000000e+00 2.52348SOe-08
1 6.000000le-01 3.0000000e+00 1.5419104e-09
2 1.5419184e-09 3.0000000e+00 0. e+00

". #solves / step = 7
factorisations = 2
solves = 8

Which of these runs is optimal? Well, it depends on the cost ratio between
factor and solve. If n is the order of T1 , i.e. n jp. then the costs (or rather.
the operation counts) are:

...



ki l .~ -v- -

34

factor '! - 3 + 3 n, 3

solve n(2p+1) -p + 3nft 2n(p+2)

The extra 3n-term in solve comes from normalising the solution, and computing
the Rayleigh quotient. (There are other ways to measure convergence, not using

- the Rayleigh quotient. but we will not discuss that here.) Below follows a table
over the ratio, factor/solve, for varying p.

p factor / solve

1 0.33332 0.6250

3 0.9000
4 1.1667
5 1.4286
6 1.6875
7 1.9444
6 2.2000
9 2.4545

10 2.7083
11 2.9615
12 3.2143
13 3.4667
14 3.7188

15 3.9706
20 5.2273
25 6.4815
30 7.7344

For large values of p. the quotient behaves like p/ 4 .

Depending on p. different mk will be optimal. If. for example, factor is more
expensive than solve. 3 solves/factor is optimal (since it minimises the total
cost in this example). Ifp = 1. usual RQI is the optimal choice.

I have done some tests letting mn vary during one run, but the results are
too preliminary to be included here.

3.1. Algorithm 1.
The first algorithm was a try to generalise analyse T (for p = 1) to p > 1. To

avoid the wealth of detail necessary to specify the algorithm in an algorithmic
language, we will only present the basic strategy using a few figures.

.h
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• 1 = elgenvalue converged to working accuracy
"" S = cigenvalue on the way to converge
-+ = unconverged eigenvalue (these eigenvalues may move around

quite a bit, and they need not settle down)
(T = eigenvalues of T

------.... +--+--+-++--4~.+---+---..-- 1-(T_
" -1--1----+ - -+ + -+-- - 1 ... I ... -- , )

We keep information about the eigenvalues (and corresponding eigenvectors)
marked I and ", but to information about the + eigenvalues. This is a reason-
able approach, since we expect the end-eigenvalues to be good approximations.

"- The ones in the middle are quite useless for our purposes. We also keep informa-
tion about the bounds for the eigenvalues (this is what gives the ],-
classification).

Starting at the left end of the spectrum of T _j (we do not know the spec-
• trum of Tj. That is what we would like to find out.). march through the I and *
.- eigenvalues. and update (i.e. refine the eigenvalue and eigenvector using

inverse iteration) the "-eigenvalues. We do not have to refine the I-eigenvalues,
since they are fully converged. In this process some "-eigenvalues can become
-eigenvalues (but not the other way). In the example, the one marked - has
undergone this transformation. Having finished with the left side, we do the
same thing on the right side (but in the reverse order). To be able to continue

-: this process, we must probe into the unknown region in the middle of the spec-
trum, since, if do not get any new *-candidates. we would end up with a fixed
number of I-eigenvalues. The eigenvalue marked - is such a new candidate. The
actual algorithm starts at the innermost * or I-eigenvalue (at each side) and
adds new eigenvalues as long as they qualify as O-eigenvalues.

S3.1.1. Intruders.
There is one important case which we have not treated so far. It is illus-

trated in the following figure:

-5", ... "'"....-- ......----------------- +--+-- .. ( j

%- In this case we have a new eigenvalue (marked -) between two known ones. We
would detect this situation using the eigenvalue count we get from the factori-

"" sation (when doing the inverse iteration). This new eigenvalue must be located
(we only know an interval in which it lies), and we use a combination of bisection

" and inverse iteration.
One algorithmic detail: To get a clearer code, we represent the eigenvalues

at the right end, as the left end eigenvalues of the matrix -T. So. we deal with
two left ends.

Now, when p > 1, we can get clusters of eigenvalues, multiple eigenvalues,
and several intruders between a new pair. I did write a FORTRAN program fol-
lowing the principles above. It worked quite well for distinct eigenvalues. but not
so for clusters. We have not given up this algorithm yet. but several problems

*need to be solved to get a working program. Due to these problems we con-
sidered:



: 2Since we are dealing with clusters it is reasonable to used a method which

." determines higher order subspaces, instead of simple eigenvectors. One such
* method is subspace iteration. In this second algorithm (which I will not discuss),

we replaced simple inverse iteration by subspace iteration. A cluster would be
defined by having overlapping bounds, as in the following figure, where the two
end-eigenvalues are isolated, and the three in the middle form a cluster.

..... F[--...]-[--.-[]---.--[-]-.-.-] - ----- ----

[..,] marks the interval X± bound.

One worry at this point, was that the code was becoming quite long. In par-
ticular we had problems with the part finding intruders. It is, in fact, the com-

* pletely general problem: Given an interval [a, b] compute a known number of
eigenvalues in the interval. This lead us to look at yet another algorithm:

3.3. Algorithm 3.
This is the simplest algorithm we have considered, and it is quite expensive.

The idea is to first reduce T. to tridiagonal form. This can be made using
orthogonal rotations. (Starting with the first row, zero the right-most element,
this will give rise to a new element, outside the band. This new element is chased

* over the edge with a sequence of rotations. Then zero the next element in the
first row etc. Continue this process row-wise.) It is quite an expensive algorithm,
the operation count is !5 n2(p-1)(4+13/2p), where n = jp as usual. (Note that
it is a nap process, factor and solve are np 2 and np processes.)

Having made the reduction, we compute all the eigenvalues of the tridiago-
nal matrix. This is considerable cheaper than the initial reduction (at least on
computers with standard architecture. According to B. Nour-Omid, House-
holder reduction on a full matrix, on a CRAY, is comparable in time to finding
the eigenvalues of the tridiagonal). We would save the eigenvalues from the pre-
vious step (so h(Tj_) and X(Tj), are available). Now we would make a com-
parison between the two sets of eigenvalues. If an eigenvalue of Tj is close to
any of Tj-., we would compute the corresponding eigenvector using inverse
iteration. If the eigenpair is a good one (we compute a bound using B. and the
eigenvector) it is saved, otherwise it is discarded. Sometimes we would already
have an approximation of the eigenpair, and it would suffice to update the
eigenvector. To make this strategy work well in presence of clusters and multi-
ple eigenvalues, we would need a carefully coded inverse iteration. (It could, for
example. orthogonalise the starting vector against known eigenvectors (having
eigenvalues close by), and it might check the orthogonality of the resulting
eigenvector to the previously computed.)

* 4. Other Alternatives.
We have also considered some other alternatives. One that does not work

(unfortunately) is the following: Given T- in tridiagonal form (and the transfor-
mation matrix giving the reduction), perform a few operations to get Tj+, (given
Bj+l and Aj,,) in tridiagonal form. The cost of doing this seems to be equal to
starting from scratch with Tj + .

Another alternative, not very cheap, is to perform the reduction in each
step (from scratch), and then feed the resulting tridiagonal (starting at step
jp +1) to analyze T. The main advantage is the extreme simplicity, essentially
two subroutine calls.

%

................................................................ *.. . .

• • • , . . o . . -° . o. . o, .. o .. oo . -.. _._ . .. ,. . . .. . .. . .. ., .. . .,. . . , . .. . ... . .- '.'...*... . ' ... '*'**.:.*.',...'....'.*



-10-

'Other solutions would be to use the Lanczos algorithm, and preferably the
block algorithm, to solve the subproblem but it tends to give a lot of code (or
demand recursion).

We are presently working on ways to change algorithm No. I to cope with
clusters and other problems, and we hope that these efforts will result in a fast
and reliable algorithm.
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