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Summary Using the Perron-Frobenius theorem, it is established that if“(X,Y)

is a random vector of non-negative integer valued components such that be
almost surely and two modified Rao-Rubin conditions hold, then under some mild
assumptions the distribution of (X,Y) is uniquely determined by the conditional
distribution of Y given X. This result extends‘ the recent unpublished work

of Shanbhag and Taillie (1979) on damage models. ka,m,&Os)
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1. INTRODUCTION

Let (X,Y) be a random vector with non-negative integer valued components

such that

P(X=x, Y=y) = g S(y[x), y=0,1,...,%; x=0,1,... (1.1)

where g_= P(X =x), x=0,1,... is the probability distribution of X and S(ylx) =
X
P(Y=y|X=x), y=0,1,...,x, is the conditional probability distribution of Y given

X=x. Rao and Rubin (1964), Shanbhag (1977) and several others have identified,
under certain conditions, either the class of distributions { 8, } or that of the con-

ditional distributions {S(y|x)} for which the following assertion is valid
P(Y=y)=P(Y=y|X=Y), y=0,1,... (1.2)
which is known as the Rao~Rubin condition. In particular, if 80 <1 and

S(y|x) = (;‘)ny(l-n)"‘y, y=0,1,...,x; x=0,1,... (1.3)

then, Rao~Rubin (1964) showed that {gx} is a Poisson distribution. Shanbhag

(1977) eatablished the more general result that if & < 1 and

S(y|x) =« aybn-y’ y=0,1,...,x (1.4)
for each x for some positive sequence {an} and non-negative sequence {bn} with
bo, bl> 0, then (1.2) is satisfied if and only if

sxc cxxxi x-O’l’ooo

for some A, where {cn} is the convolution of {an} and (bn}. Slightly more general
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versions of this result are given by Shanbhag (1983) and Rao and Lau (1982).
A natural question that arises is whether the same results can be obtained by

modifying the condition (1.2) to

P(Y=y) = P(Y=y|X-Y = k), y=0,1,... (1.5)

for any fixed k> 0 such that P(X~-Y = k) ¥ 0, which will be referred to as the RR(k)
condition. [In this notation, the original condition (1.2) will be RR(0),]

Srivastava and Singh (1975) conjectured that the Rao-Rubin (1964) result will
hold even under an RR(k) condition with k> 0. Patil and Taillie (1979) have shown
that the conjecture is false by constructing a counter example. However they have
shown that the result is valid under the damage model (1.3) if RR(k) holds for at
least two values of k. Using the more general damage model (1.4) and arguments simi-
lar to those in Shanbhag (1977), Shanbhag and Taillie (1979, unpublished note)
characterized the distribution of X under two RR(k) conditions. (See also Alzaid
(1983) and Alzaid et al (1985b) for further remarks on this conjecture).

In this paper, we establish a general characterization theorem under two
RR(k) conditions using the Perron-Frobenius theorem concerning primitive matrices given
in Seneta (1973, pp. 1-6). This provides a new proof and an extension of the un-

publsihed result of Shanbhag and Taillie (1979).

2. THE MAIN THEOREM
Let {gx}: x=0,1,...} and for each x>0, {s(y|x): y=0,1,...,x} be probability

distributions, and koz_o and k1> 0 be fixed integers. Define

*
Sy4° sup{S(j+mk, |i+k +nk,): 20, 020, ky< j+mk, < i+kyink, ).
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THEOREM Let the random vector (X,Y) be such that

P(X=x, Y=y)= ng(ylx), y=0,1,...,x; x=0,1,...

where 8y and S(ylx) satisfy the following conditions:

(1) g,> 0 for some x> ko+kl.

(11) S(x+ rk1|x+ ky+ (rH)k)) > 0 for each x=0,1,...,k;-1, 1=0,1 and

r=0,1,..., and S(x|x)> 0 for each x=0,1,...,k;-1 (vhen k;>0).

* *
(11i) The matrix S = (S

1j)’ i,j-O,l,...,kl-l, is irreducible.

Then, under the two RR(k) conditions
P(Y=y)=P(Y=y|X -Y = ko) = P(Y=y|X~-Y = kgtky)s ¥=0,1,..., (2.1)

and for a fixed value A= P(X~Y = k +kl) /P(X-Y-ko),' the family of conditional dis-

0
tributions
{s(y|x): y=0,1,...,x; x=0,1,...}

determines the {gx: x = 0,1,...} uniquely and g,> 0 for x> k.

Proof Using the equation P(Y=y|X-Y= ko)- P(Y=y|X-Y= k0+k1) of the condition (2.1

and the assumption (ii) of the theorem we have

S(y+(b-1)k, | y+(b-1)k, +k,)
8 = g
ybk, +k y+(b-1)k, +ky S(y+(b-1)k,; [y+bkl+k0)

y -0’1,...’k1-l’ b = 1’2’..- .

Hence

b-1 S(y«o-mklly-rkomkl)

g = ) n
bk +e o 3y+ko mo S OHEK, [y ¥k +(mDk,)

-1, b = 1,2,... (2.2) *

': y-O,l,...,kl
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which, in view of the assumption (i), implies that

+oes $ 0.
&, +8ko-:-kl-l

The system of equations P(Y=y) = P(Y=y|X-Y= ko), y =0,1,... implies that

Fy+ak, + s
m) S(Y*mkllyhkl"‘ko) = Z ng(y'anllx) » y,m > 0. (2.3)
x-y-anl

Summing (2.3) over m such that Y'“"kllko and using (2.2), we find
kl-l

l*gy_’_ko = xzogﬂoqu’ y-O,l,...,kl-l (2.4)
where )‘* = [P(X-Y = ko)]-l and qu are certain uniquely determined functions of
{{s(x|y)}}. The irreducibility of S* (assumption (i1i)) implies that the matrix
(qu) arrived at in (2.4) is irreducible. The fact that S(y+mk1|y-01nk1+k0)> 0 for
all m> 0 and y-O,l,...,kl-l :meli.es that 9> 0 in (2.4) for all x-O,l....,kl-l.
Consequently, the matfix Q= (qu) is primitive. Then from the Perron-Frobenius
Theorem (Seneta (1973), pp. 1-2) it follows that A* is the unique eigenvalue of Q
having the largest absolute value and

(g

ge0sy - )
0 3k0+k1 1

*
is the eigenvector of Q associated with A having all its components positive.
Using (2.2) and (2.3) and the fact that S(x|x)> 0 for x< k,, Ve can express

_19+++38y a8 linear combinations of secey
fiy-1 0 %o Breg iy
uniquely determined by {{S(y|x)}}. Using the fact that z g = 1 or that

x=0
o
P(X-Y = ko) = (A) l, we see that {gx} is uniquely determined by

-1 with coefficients which are
an

{{s(y|x): y=0,1,...,x}: x>0}, The remainder of the theorem easily follows.




.~ Remark 1. With appropriate modifications in the assumptions (i1) and (i1ii) of
. *k

* * *k
the theorem, such as replacing S = (Sij) in (i41) by § = (sij

) where
*%

- 4nk ). -
sij sup{S(j-i-mkll:Hko P ®20,n>0, koijmlimin(iﬂomkl,koﬂl 1)}

it is possible to prove the validity of the above theorem with (2.1) replaced by a
somewhat weaker assumption of the type
P(Y=y|X-Y=k0) = P(Y=y|X-Y=k1), y=0,1,...

P(Y=y) = P(Y-y|X—Y-ko), y=0,l,...,k0+kl-1. (2.5)

Several other possibilities exist.

* *
Remark 2. If the matrix § 1is such that 51,1+1 >0, i= 0,1,...,k1-i, and
s: -1,0 >0, then clearly it is ifreducible. Also, if it is such that si.i-l >0,

1
*
i= l,...,kl-l and S0 x _1> 0, then it is irreducible. Using this information one could
»

give a slightly weaker but at the same time simpler versions of the theorem.
3. SHANBHAG-TAILLIE RESULT
The following corollary of our main theorem of Section 2 is indeed the Shanbhag
Taillie (1979) result.
Corollary Let {(ax,bx): x=0,1,...} be a sequence of vectors with non-negative
real components such that a > 0 for all x and b_> 0. Let (X,Y) be a random vector

0

with non-negative real components such that for each x with P(X=x) > 0, we have

P(Y=y|X=x) = aybx-y/cx’ y=0,1,...,x

where {cx} is the convolution of {ax} and {bx}. Assume that P(X—Y=k0)> 0 and
P(X-Y= k0+k1)> 0 with ko,kl as considered earlier. Then the following conditions are

equivalent:

e h "N TE."m " 2" "e T E " e "E " E"r " m" " .
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(1) Y and X-Y are independent.

¢
@,
L4
.
o
.-

(11) P(Y=y) = P(Y-le—Y-ko)'P(Ysle—Y-k0+kl), y=0,1,... .

(111) For some 6> 0 and some periodic sequence {qx: x=0,1,...} with the

5550

largest common divisor (l.c.d.) of the x for which bx> 0 as one of its

periods,
P(X=x) = qxcxex, x=0,1,2,....

Proof We prove the corollary by showing (i) => (ii) => (iii1) => (4{). Except
for the implication (ii) => (ii{i), all the others are easy to establish. To show
e (11) => (iii), let us assume that (ii) is valid. Let 1 denote the l.c.d. of those x
. for which bx> 0. Define {(XI,Y:): i=0,1,...,T-1} to be a sequence of random vec-
.. tors such that the joint distribution of X: and Y: is the same as the conditional
distribution of (X-i)/t and (Y-1i)/t given that Xe {i,i+r,i+2t,...} for each i.
Clearly, assuming without loss of generality P(Xe {{i,i+r,i+21,...})> 0, for each

i=0,1,...,7-1, it follows that for each ie¢ {0,1,...,1-1}

D)

? »
L L A A

AN

*
P(X

* * * * 1
"% Yi'y)'gx(i)ay(i) x_y(_i)/cx(:t.), y=0,1,...,x; x=0,1,...

- * * *
with ar(i) = a0 br(i) - b“, r=0,1,.,.., and {cr(i)} as the convolution of

* *
{at(i)} and {br(i)}, and

g, (1) = P(X= t+rx)e, (1) /e x=0,1,....

i+tx °’

* *

Observe that (ii) is valid also for Xi and Y:I. with ko and kl replaced by kO/r and

kllt respectively. The required result follows if it is established that for some

O

61>0

ally

* * x
sx(i) x cx(i)ei’ x=0,1,...

e
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*
since the form of {gx(i)} implies in view of (ii) that for some y

x % * t/k
- = - 1
b, 1>(xi Yi (k0+k1)/1, Y, y)

0

PN ; T
L (Xi-Yi-ko T, i*y)

01

r T/k
b, P(X-Y=k . +k,, Y= i+yT) 1
0 01

b P(X~-Y=k., Y= i+yT)

+]
| Koty

t/k
Y= 1

[’bkop(x Y= kytk))

- v s i’o,l,...,T-l
L..bk i PX-Y ko)

01

which is clearly independent of i. Consequently, the required result follows if it
* %
is established When t=1; this is so because (xi’Yi) satisfies the requirement of

(X,Y) with t= 1. Suppose

A = P(X-Y= k0+k1)/P(X-Y= ko).

Clearly in that case, the positivity of 84 for x> ko together with the straight-
forward relation (2.2) appearing in the proof of the main theorem implies that

® x/k
¥ cx(l*) lea
x=0

*
where ' = \b, /b .
ko ko+kl

The distribution

N x/k
g, = ¢, () 1 x=0,1,... (3.1)

together with the distributions {S(y|x)} satisfies the requirement of the theorem and
gives P(X-Y= k0+kl) [P(X-Y = ko) = ). The unique determination of {P(X= x)} here implies

that it has to be given by {gx} of (3.1). Consequently, we can conclude that (iii)

.
L)
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<
' is valid when 1= 1 and hence for all T.
- Remark 3. In view of the result of Shanbhag (1983), the above corollary remains
- .
:, valid with (iv) given below included in its statement.
\N
\\
X (iv) P(Y=y) = P(Y=y|X=Y), y=0,1,....
:::' Remark 4. The RR(0) condition may not specify {gx} uniquely for any specified
- set {S(y|x)} even if all its members are positive unless some conditions are satis-
fied. One could give several examples to illustrate this point in view of the Poisson-
Martin representation in the potential theory of Markoff chains. One such example
is as follows.
' Example 1. Let O<7<7n'<1 and c> 1 be fixed. It is shown in Alzaid et al (1985a)
*
that there exist infinitely many distributions {gx} with probability generating
~
S *
o functions G such that
~ * *
X G (1-n+rt)= ¢ G (r't),|e]<1.
: Define
‘ Bx(;)ﬂy(l-n)x-y, y=0,...,x-1, x>1
N S(y|x) = _
i 8 [ -c"1"], y=x, x>0
where Bx = c/[c(l-nx)+ c(n')x-nx], x>0 and
_ B_]_ .
.:;-‘ 8x X gx’ X‘Q,l.‘..._
o If we take {g } and {s(y|x): y=0,1,...,x; x=0,1,...} as above, then P(Y=y) =
P(Y=y|X-Y = 0), y=0,1,..., with P(X-Y = 0} = 1/(l+c) which is fixed.
Remark 5. If {S(ylx)} is as given 1in the corollary and the l.c.d, of x for which
- bx > 0 is unity then, according to the corollary, the class of distributions {gx}
e
..
"
I';;
"" R Gy R N A S SRR SR AR




L m, Y~ T wm T e ™ e T e Y g e e AR e, dhae
R R S P Bl S St A AR S S MO R Mah et Bhen v sy

A Mk B it e e et RASCE S 2t e n e a. |

corresponding to which two RR(k)'s hold is a certain power series family, However,
if we take {S(y|x)} not in the form given in the corollary, then it does not follow

even when all S(x|x) are positive for (0 <x<=) that the class of {g } corres-
x
ponding to which two RR(k)'s hold is a power series family. The follow-

ing is an illustration.

Example 2, Take

S(y|x) = (aybx_y)/cx, y=0,1,...,x; x>2,
S(1|1) = s(of0) = 1,

where {ar} and {br} are positive sequences with {cr} as their convolution. We

choose {ar} and {bx} such that Xcr)\f< © for all Ae [0,a) for some a<~. Define
0

x m
c Al Y e, x>2
x n=g B ﬂ
'S} v..m
gl = albol/ (Z)cmk , Xx=1

m
(aobo+a0bl)\)/ (Z)cm)\ , x=0.

Observe that with{S(y|x)}as defined above, every {3}9)} produces a vector (XO‘)’,Y()‘)‘)

satisfying RR(k) for all k> 2. However, {g}({”} here is not a power series family.
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