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Abstract

The delay of algorithm execution due to memory conflicts in a
16-processor CRAY X-MP extension is considered. The association
between memory access delays of reads and writes, and delays in
the resultant algorithm execution is studied by defining an
incremental algorithm delay sensitivity and relating it to
simulated large-delay and random variations. It is shown that, by
devising algorithms with zero incremental sensitivity, library
software highly resistant to large access delays may be achieved

in a many-processor X-MP,.
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I. ALGORITHM CONFLICT SENSITIVITY.

A, INTRODUCTION
In a companion report [1], the effect of different memory
conflict resolution protocols on delays of memory accesses was

studied. These access delays produce a delay in algorithm

execution or algorithm delay. However, the relationship between

these two delays has not been investigated in the literature, in
part because the hardware cannot measure access delay in general,
and partly because a memory access simulator is far easier to
develop than the full instruction-level timing simulator
necessary to measure algorithm delay.

A priori, it may not seem worth correlating access and
algorithm delays. An architect may be comfortable with the
assumption that there is a general correspondence between the two.
Indeed, it will be one of the purposes of this research to
determine a rule-of-thumb relationship by examining some typical
scientific application codes; the question of whether the code
itself is responsible for enhancing access delays will therefore
be answered. Algorithmically, however, it will be shown that
codes can be designed to exploit local conflict-free memory and
achieve virtual independence of main memory access delays. These

will be termed conflict-resistant algorithms. Their study may

have short term value in the immediate task of developing library
codes for the CRAY family of multiprocessors, and long term value
in establishing an additional application of cache and local
memory in MP supercomputer architectures.

The experimental vehicle for this largely empirical study is

a CRAY X-MP simulator. This instruction-level simulator produces
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numerical and timing results; the latter are accurate to within

4 %

.2% for typical codes executing on a uniprocessor X-MP-2 without

L/
’

interprocessor conflicts. The conflict mechanism of the X-MP-2 is

also simulated and has been found to be exact for large kernels of

" l.l

read and write instructions only. The conflict protocol of the X-

MP-2 has been adopted in extension to 16 processors (even though

v

- the X-MP-4 is known to have some variations), except that

- processors are paired to achieve adequate memory bandwidth for

buffer fetches. More validation is given in an appendix of [1].

r"' B. MEMORY ACCESS VERSUS ALGORITHM DELAYS
1. Critical Path
The X-MP operates by a system of register and functional unit
’. reservations. Instructions begin execution either (1) when
reservations expire on the resources they require, or (2) when
elements of a vector operand become available from a functional
unit ("chaining®). When reads or writes are delayed by conflicts,
the associated register reservations are held and chains are
delayed.
A particular instruction issue and/or execution may or may
;i not influence total execution time. For example, address
formation is often masked by floating point computation in a
v vectorized code. When such influence does exist, the instruction

is on the critical path of execution.

Determining which instructions are on this critical path is
L' difficult even with a simulator. For example, a hold on

instruction issue does not guarantee that the instruction creating

the hold is on the critical path; both of the instructions may be




off the critical path and their issue time superfluous to total
‘ algorithm timing. The critical path is first a global issue,
This critical path can change as access delays lengthens; for
<~ example, a formerly masked read or write may enter the critical
- path when its execution is delayed and no longer masked. An
instruction awaiting two reads, as V3 in the vector sequence (in

CRAY assembly language)

Vo +A0,1 (vector read)

Vi +A0,1 (vector read)

v2 Sti*v1 (vector multiply)
v3 V2+FV0 (vector add)

could be delayed by conflicts on either V0 or V1; thus the
algorithm delay is a function of delays on V0 and V1 reads,
creating a "worst-case® risk situation.

In contrast, a "best-case®™ condition occurs when an
instruction is awaiting availability of alternate identical
resources. In the X-MP, the read port (of two ports) is
chosen during execution. If both ports are busied with delayed

reads, the first available one is used.

2. A Sensitivity Measure

In spite of the above threats to a well-behaved cause-effect
relationship between memory access and algorithm delays, it is
nonetheless possible to develop a meaningful sensitivity measure
relating the two. Only vector access delays will be considered in
the following discussion.

Define

T - algorithm execution time




T - time memory is busied during access
of the ith vector in the critical path

AT - change in Tm
i i

AT . - change in T due to ATm
i

AT - total change in T due to delays in vectors.
where T is VL+3 without conflicts, where VL is the vector
i
length. Then if only the ith instruction is delayed

and the algorithm sensitivity to a delay in the ith access is
g. & fractional change in T (2)
i ractional change 1n T
i
(NTi/T)/(ATmi/Tmi) (3)

=T /T (4)
my

Thus, this normalized sensitivity is not dependent on the fraction
of time a read or write is in the critical path, but, once in the
critical path, on its total vector length.

If m vectors are in the critical path, and if the effects on

T of each vector access delay are independent of other delays (to

be tested by simulation), then

AT = I AT (5)

If all vectors are delayed by a uniform fraction of their lengths

$O that ATm /'rm = D, a constant, then define the global
i i

sensitivity

ot su Y fractionachhange in T (6)
‘ = (AT/T)/D (7)
m y .
= (L Ty )/T (8)
=1 M
; .
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X n
‘ = I 8 (9)
i=1
!; In the limiting case, then, if every vector access has one clock
E - in the critical path in the conflict-free case, the total
{ E' sensitivity would be proportional to the sum of all the read/write
- vector lengths!
p II. SIMULATED SENSITIVITY STUDIES
: A. LARGE-DELAY SENSITIVITY
The relationship of Eq. (9) merely represents the additive
nature of independent delays. The practical issues are the
A effects of (a) large and (b) random access delays on the critical
r path or, equivalently, on the algorithm delay. These two effects
will be measured separately by simulation.
The S, defined in Eq. (6) can be measured, irrespective of
., I whether Eq. (9) applies as a result of independence. By disabling
- the X-MP conflict resolution protocol in the simulator and instead
z artifically delaying all accesses a uniform fraction D of their
] vector lengths, the delay (Du) in algorithm execution can be
; ’ measured as a function of D. This will test the dependence of the
; ) critical path on large but uniform delays.
i ;. The result (Figure 1) shows that, for the three test codes,
L the slope Su remains nearly constant for delays of up to 100% of
.. the vector length. Thus, under the assumption of uniform delays,

- the hazards to the critical path disruption are insignificant for
access delays far greater than likely to be encountered in
practice. The incremental sensitivities §, measured at D = 0 are
%” given in Table 1 for a large number of cases.

It should be noted that Eq. (9) has been verified by

- inspection of clock-level timing of MUL2 and CFD executions.
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Thus, algorithm delay seems likely to be independent of access
delays for even large uniform delays.

B. EFFECTS OF RANDOMNESS

wWith the conflict protocol enabled, the delay in algorithm

execution (Dal) was measured for all processors involved in a
simulation, and the delays averaged (531). The delays of all

accesses were also recorded and averaged (Bac). These delays were
normalized by dividing by the total algorithm execution time and
by VL (=64 for all codes), respectively; this yielded Sal and Sac'
The sensitivity

sal 4 Bal/ﬁac
is then the measure of the random, large-deviation sensitivity
encountered in practice.

Table 1 indicates that S, and S,; are sufficiently different
that the critical path must be moderately altered in some codes.
Since large uniform deviations have been shown to have nominal
effects on sensitivity, one is left to conclude that it is the
randomness which disrupts the critical path. This is consistent
with the previous discussion of how the critical path is altered,
e.g., by masking and by best-case and worst-case events.

It appears that the sensitivity to a single delayed access
should be less than unity; the provision for late chaining avoids
the prospect of a delayed access causing a missed chain-slot time,
as in the CRAY-1. However, it is unclear whether 54, can be
greater than unity. Nonetheless, 5,1 ¢ 1 for all measured

sensitivities (Table 2), with the largest being .939.

. - S S .. - e . . oe L.
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. | Utilizations | Delays x 100 | Sensitivities
K %
o Code Banks | Um Ub ' Dm Da | Sal Su Sal/Um
FFT 256 | .653 .965 | 7.7 3.8 | .493  .417 .755
o 128 .629 .998  16.8 8.1 .482 .417  .766
:':'; “““““ [ = = === == I [= = = = = = = = = - - <
CFD 256 682  .986 6.0 .3 .383  .336 .561
128 | .668 .999 | 12.3 4. | .349  .336 .522
r ——————————————————————————————————
: MUL, 256 | .690 .832 | 5.1 2.5 | .490  .464 710
- 128 | .664 .921 | 16.8 6.5 | .387 .464 .592
: MUL, 256 | 1.51 998 | 5.9 5.1 | .864 .602 .572
128 | 1.1 .998 | 25.4 21.9 | .862 .602 .658
»
: MUL, 256 | .932 .966 | 2.6 4 ] 150 147 160
_ 128 | .925 .989 | 6.5 1.1 | .161 .147 174

- ek e m W B W@ e @ W@ @ @ @ W E W e e W E e e W A e W W s @ = = e -

Table 1. Summary of simulation results for 16 processors.

Sixteen samples were used to determine averages.
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S C. AN EMPIRICAL RELATIONSHIP
‘l Aside from confirming intuition, Table 1 appears to show a
relationship between sensitivity of Fortran codes and their memory
o utilization.
Define

U = average number of memory reads ad writes per processor
m algorithm execution time per processor

Then the ratio Sal/ﬁm is shown in Table 1 to range over a rather
restricted set of values (.552 to .766), across different codes
and in the presence of access delays Bac which vary over a 5:1
range (.051 to .254) as the number of banks is varied. An

r approximate sensitivity determined from

x S, = 65 0

would be within 18% for all cases. The range of this

_ . approximation is limited however, if sal is bounded by unity.
. The relationship between S_, and ﬁm is felt to be indirect;

possibly ié is due to the number of ports rather than Em which

S supply vector operands to the matrix multiply inner loop. If one

of these ports is delayed, a "worst-case" delay is imbosed on the

loop and Sal increases.

- D. CONCLUSIONS

: In this section, two results stand out.

(a) The randomness rather than the size of the access delays
have the greatest effects on the critical path.

; 33 (b) If the memory utilization per processor ﬁh is known, the

algorithm sensitivity to access delays may be estimated

from the rule-of-thumb

*
MUL3 is a specially coded CAL routine (see Section III).




Sa " .65 Un
for conventional Fortran vector codes. This puts the
simpler memory access simulation performed by computer
architects on firm grounds, in so far as their ability
to predict algorithm delay.
The above conclusions are based on three Fortran codes; this
must be acknowledged as a small sample, in spite of the diversity

of their access patterns. Also, the vector length was constant at

64; the above formula could also depend on VL, since for a given
Um' the critical path would likely be more disrupted by short
vectors.
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- III. ALGORITHM DELAY RESULTS

Although the above study of the two components of Bal (= Sac
: g sal) may give insight, the algorithm delay Bal itself is
ultimately of interest. These are depicted in Figures 2 and 3 and

given in Table 2,

Figure 2 gives Sal when Ryp = 16, the most likely situation.

The FFT, MUL, and CFD codes have nearly the same delay between 2%

- and 3% from 1 to 16 processors, corresponding to their simular ﬁm.
o MULZ, with high access delay and large Sal' has nearly a 5% delay.
Their are seemingly no surprises here.

When the number of banks is halved, Figures 3 indicates that

‘.TL'/I ".'-‘ .'-

Sal of the high access HUL2 code increases by the greatest ratio
(4.1:1). Even the small differences been curves in Figure 2 are
- magnified in Figure 3. The implication is that, since sal remains

relatively constant (Table 2) as Rbp increases, Rbp = 16 is the

smallest ratio which avoids the risk of high Ba 's with common ﬁh's.
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IV. CONFLICT~RESISTANT ALGORITHMS

A. INTRODUCTION

Undoubtedly, the greatest benefit of defining an algorithm
sensitivity is in algorithm design., It will be shown possible,
with careful control of the data flow in each processor using
assembly language (CAL), to defeat the normal relationship between
Dac and Dal and ultimately to reduce the small-delay (incremental)
sensitivity to zero. Since asseﬁbly coding is a common practice
for CRAY-1 and CRAY X-MP library programs, it may take a small

additional effort to isolate these workhorse codes from the large

delays possibly associated with many-processor architectures.

B. LOCAL MEMORY UTILIZATION

Two conditions must be met to guarantee code performance
resistant to access delays.

(a) Shared memory access must be off the critical path, and

(b) Vector access must be on data in conflict-free storage.
The vector register set forms such storage on the X-MP; the former
can be achieved‘by pre~fetching operands and post-storing results.

Prefetching is difficult to achieve for general codes, and,
where possible, usually requires loop reordering and other
instruction scheduling beyond commercially-available compilers.
Library programs, which are often built around a small kernel, are
candidates for such coding. Fortunately, CRAY-1 experience has
shown that prefetching can be completely masked by floating point
computation in linear algebra codes without reducing the execution
rate; the vector register set is sufficiently large to act as a

non-conflict buffer ([2].

-14-
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A matrix-vector multiply (MUL3) has been assembly coded with
these features; the resultant sensitivities are shown in Table 1.
The related and S,,'s are a small fraction (20-25%) of those for
the corresponding MUL2 Fortran code, and considerably less than
any other kernel in the table.

C. NON-UNIT STRIDE ACCESS

sal of the inner loop of MUL, has a zero value for small
delays. However, the CAL implementation that yielded the low Sal
of MUL 5 in Tables 1 and 2 for 64 x 16 matrix-vector multiplies
produced quite different results when 64 x 64 matrices were

multiplied, as indicated in Table 3a. The sensitivities Sal

increase with number of banks, although ﬁac and Bal decrease
individually. The orgin of the problem seems worthy of discussion.
It is a convenience in CAL coding of matrix multiplies and

other linear algebra codes to implement

Y « Y + MX

by loading the elements of X in reverse order into a vector
register, and then arranging them as scalars to multply the

columns of M. The related assembly code has the form

Al 64
VL Al
VO 'AO' -1

inner
loop sS1 ., vo, Al

V3 S1*FV2

-15-
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& Banks ﬁac ﬂal Sal
‘ (%) (%)
- Original code

16 19.4 4.84 .249
. 32 5.32 1.64 .309
- 64 1.52 .842 .657
-

Modified Code

- 16 17.6 1.47 .083
32 1.74 3N .224

64 1.53 271 .178
o Table 3. Effect of eliminating counter—grain
- access in 64 x 64 multiply; p = 4.
r
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Figure 4. Effect of negative-stride access
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g 1 processor B, Ba1 Sal Bac B,y Sa1
: (%) (%) (%) (%)
.
R MUL 4.22 2.53  .600
- MUL 3.43 76 .221
= CFD 6.56 1.85 .282
. FPT 4.37 1.72 .393
Average 1,72 R .
;
2 processor
MUL, 26.5 9.25 .349 3.12 2.36 .756
MUL2 29.6 20.0 .675 4.53 3.04 .671
MUL 5 6.87 1.81 .263 6.25 .56 .089
. CFD 15.9 4.68 .294 7.19 2.21 .307
r FFT 17.8 6.66 .374 4.84 2.15 .444
A Average 22.4 . . 4.92 2.44 .
L 4 processor
' B MUL 21.2 6.61 31 6.09 2.61 .429
- HULZ 27.9 19.8 0709 5.62 5.28 .939
: MUL3 5015 1.12 .217 ‘.87 .31 .166
CFD 14.3 5.15 .360 5.93 1.88 317
FFT » 15.0 6.73 .448 5.46 2.7 .496
Average ';.g §.§’ .is: * L] *
=
- 8 processor
MUL, 16.2 6.02 371 4.69 2.27 .484
MULZ 25.6 19.7 769 6.87 6.14 .893
MUL 4 7.34 1.36 .185 1.87 .49 .262
CFD 12.1 4.24 .350 5.00 1.85 .370
FFT 14.0 6.61 .472 6.56 3.48 .530
Average T7.0 . . . . .
;; 16 processor
- MUL, 16.9 6.51 .385 5.00 2.51 .502
A MUL, 25.3 21.9 .865 5.93 5.09 .858
R MUL3 6.56 1.04 .158 2.65 .40 .151
2 CFD 12.3 4.30 .349 6.09 2.29 .376
s FFT 16.9 8.16 .482 7.65 3.83 .500
L‘ Average 17.8 10.2 . 6.17 3.43 .

'MUL3 not included in averages

Table 2.
' two Rbp ratios,

Delay and sensitivity summary for
X-MP-2 protocol.
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A delay in the load of VO may delay the first trip through the
inner loop if VL is sufficiently long, since the load of S1 will
not chain off the read. Worse, the read has a negative unit
stride, whereas all other accesses have positive unit strides.
Figure 4 shows the effects of such an access on the other highly-
regular accesses. Access 23, beginning at clock 5588, intesects
and delays seven other accesses, two of them twice. It is evident
that a window of accesses extending approximately =-VL and +2VL
clocks from the initiation of VO is potentially affected by such a
counter-grain access. The access Z3 itself is delayed by 28
clocks.

When the access is replaced by a positive unit-stride access,
the low sensitivity of the modified code of Table 3 is obtained.
The 5;1 is reduced to insignificant levels (.272%) for a typical
Rbp = 16, and retains these levels (1.47%) when the number of

banks is reduced by a further factor of 4!
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APPENDIX A

EXPERIMENT DESCRIPTION

EXPERIMENTAL PARAMETERS

The codes were produced by the X-MP CFT compiler from Fortran

v

source codes. Vector length (VL) is 64 and stride is 1 for all

cases.

‘e " . . Y.
il

i - Distinct program and data storage was used for each of the 16
| processors. Code executions were initiated at irregular intervals
to further randomize accesses between processors. In general, p

samples were used to produce mean values with p procesors.

T

Two global static measures of memory accesses were made to
monitor their uniformity.
. (a) Memory utilization. This is the fraction

- Total operands and results
m Simulation time (CP's)

AN ’“_v'.'.-'f'.".'
o

s for the average processor; it is a measure of memory traffic for

L pansnan
| |

each code, and has a maximum value of 3, corresponding to the
number of memory ports per processor. Table 1 shows Hm = .67 for
I FFT, CFD, and MUL,.

{b) Bank utilization. Let Nb be the number of banks. There

YF. Ln gt e ar,

is a risk with 64-length unit-stride vectors and Ny > 64 that
banks will not be equally utilized; this would create
uncharacteristic delays in heavily-utilized banks. 1If N

is the average number of accesses per processor across all banks,

AL (MU TR
-
ST

and N is the standard deviation from this average, define the bank

E b utilization

Shea
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EL = 1 indicates uniform accessing; if only 1/2 of the banks are

accessed, ﬁb = 1/2, Table 1 indicates .832 < ﬁb < .998..

CODE DESCRIPTIONS

(a) Fluids kernel (CFD). Taken from the vectorized code of
[7), this is a 32-statement single-loop Fortran kernel with an
average of 3.2 64-length vector-vector operations/statement. Lack
of a repetitive computational structure like FFT and MUL should
make the access pattern the most random. Six buffer fetches occur
in one kernel execution.

(b) FPT kernel (FFT). This code determines multiple 8-point
complex-complex FFT's. Five buffer fetches occur in one kernel
execution,

(c) Matrix-vector multiply kernel (MUL;, MUL,, MULy). The

inner-loop of MUL1 and MUL2 has two vector reads and one write per

execution. MUL; maintains low memory utilization (Up = -69) with
VL = 64 by multiplying 4 small (64 x 3) matrices in one kernel
execution step:; MUL,uses the same code with 512x2 matrices, which
successively exercises the inner-loop 512/64 = 8 times, and
achieves U, = 1.58, a value more characteristic of a large
Fortran-coded matrix multiply on the X-MP. No buffer fetches
occur in consecutive executions of the kernel. The inner loop of

MUL; has one pre-fetched vector read per inner loop execution.

-22-
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