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Abstract

The delay of algorithm execution due to memory conflicts in a

16-processor CRAY X-MP extension is considered. The association

between memory access delays of reads and writes, and delays in

the resultant algorithm execution is studied by defining an

incremental algorithm delay sensitivity and relating it to

simulated large-delay and random variations. It is shown that, by

devising algorithms with zero incremental sensitivity, library

- software highly resistant to large access delays may be achieved

in a many-processor X-MP.
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I. ALGORITHM CONFLICT SENSITIVITY.

A. INTRODUCTION

IIn a companion report [1], the effect of different memory

conflict resolution protocols on delays of memory accesses was

studied. These access delays produce a delay in algorithm

execution or algorithm delay. However, the relationship between

these two delays has not been investigated in the literature, in

part because the hardware cannot measure access delay in general,

and partly because a memory access simulator is far easier to

develop than the full instruction-level timing simulator

necessary to measure algorithm delay.

A priori, it may not seem worth correlating access and

algorithm delays. An architect may be comfortable with the

assumption that there is a general correspondence between the two.

UIndeed, it will be one of the purposes of this research to
.- determine a rule-of-thumb relationship by examining some typical

scientific application codes; the question of whether the code

m itself is responsible for enhancing access delays will therefore

be answered. Algorithmically, however, it will be shown that

codes can be designed to exploit local conflict-free memory and

achieve virtual independence of main memory access delays. These

will be termed conflict-resistant algorithms. Their study may

have short term value in the immediate task of developing library

codes for the CRAY family of multiprocessors, and long term value

* in establishing an additional application of cache and local

memory in MP supercomputer architectures.

The experimental vehicle for this largely empirical study is

a CRAY X-MP simulator. This instruction-level simulator produces

a.-
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numerical and timing results; the latter are accurate to within

.2% for typical codes executing on a uniprocessor X-MP-2 without

interprocessor conflicts. The conflict mechanism of the X-MP-2 is

also simulated and has been found to be exact for large kernels of

read and write instructions only. The conflict protocol of the X-

*; MP-2 has been adopted in extension to 16 processors (even though

the X-MP-4 is known to have some variations), except that

processors are paired to achieve adequate memory bandwidth for

buffer fetches. More validation is given in an appendix of [1].

rB. MEMORY ACCESS VERSUS ALGORITHM DELAYS

1. Critical Path

The X-MP operates by a system of register and functional unit

reservations. Instructions begin execution either (1) when

reservations expire on the resources they require, or (2) when

" elements of a vector operand become available from a functional

unit (*chaining"). When reads or writes are delayed by conflicts,

the associated register reservations are held and chains are

" delayed.

A particular instruction issue and/or execution may or may

not influence total execution time. For example, address

formation is often masked by floating point computation in a

vectorized code. When such influence does exist, the instruction

is on the critical path of execution.

Determining which instructions are on this critical path is

L. difficult even with a simulator. For example, a hold on

instruction issue does not guarantee that the instruction creating

,° the hold is on the critical path; both of the instructions may be

-2-



off the critical path and their issue time superfluous to total

algorithm timing. The critical path is first a global issue.

This critical path can change as access delays lengthens; for

example, a formerly masked read or write may enter the critical

path when its execution is delayed and no longer masked. An

instruction awaiting two reads, as V3 in the vector sequence (in

CRAY assembly language)

VO ,AO,l (vector read)

VI ,AO,l (vector read)

V2 Si*V1 (vector multiply)

V3 V2+FVO (vector add)

could be delayed by conflicts on either VO or VI; thus the

algorithm delay is a function of delays on VO and VI reads,

creating a "worst-case" risk situation.

In contrast, a "best-case" condition occurs when an

- instruction is awaiting availability of alternate identical

resources. In the X-MP, the read port (of two ports) is

chosen during execution. If both ports are busied with delayed

reads, the first available one is used.

2. A Sensitivity Measure

In spite of the above threats to a well-behaved cause-effect

relationship between memory access and algorithm delays, it is

nonetheless possible to develop a meaningful sensitivity measure

relating the two. Only vector access delays will be considered in

the following discussion.

Define

T - algorithm execution time

-3-



Tm. - time memory is busied during access
1 of the ith vector in the critical path

ATm - change in Tm.

* 1
AT i - change in T due to ATm

AT - total change in T due to delays in vectors.

where Tm. is VL+3 without conflicts, where VL is the vector
1

length. Then if only the ith instruction is delayed

AT i A Tm (1)

and the algorithm sensitivity to a delay in the ith access is

si_ fractional change in T (2)
1 tractional change in T-

- (ATi/T)/(ATmi/Tm) (3)
1 1

STM i/T (4)

Thus, this normalized sensitivity is not dependent on the fraction

-'. of time a read or write is in the critical path, but, once in the

critical path, on its total vector length.

" If m vectors are in the critical path, and if the effects on

T of each vector access delay are independent of other delays (to

be tested by simulation), then

mAT= ATm '  (5)

If all vectors are delayed by a uniform fraction of their lengths

so that ATm /Tm - D, a constant, then define the global

sensitivity

S fractional change in T (6)
u

- (AT/T)/D (7)

m
( T M)/T (8)

-4-
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..- m

= - S i  (9)
i-1 I

In the limiting case, then, if every vector access has one clock

. in the critical path in the conflict-free case, the total

sensitivity would be proportional to the sum of all the read/write

vector lengthsl

II. SIMULATED SENSITIVITY STUDIES

A. LARGE-DELAY SENSITIVITY

The relationship of Eq. (9) merely represents the additive

- nature of independent delays. The practical issues are the

effects of (a) large and (b) random access delays on the critical

path or, equivalently, on the algorithm delay. These two effects

will be measured separately by simulation.

The Su defined in Eq. (6) can be measured, irrespective of

whether Eq. (9) applies as a result of independence. By disabling

the X-MP conflict resolution protocol in the simulator and instead

artifically delaying all accesses a uniform fraction D of their

i. vector lengths, the delay (Du) in algorithm execution can be

measured as a function of D. This will test the dependence of the

critical path on large but uniform delays.

The result (Figure 1) shows that, for the three test codes,

the slope Su remains nearly constant for delays of up to 100% of

the vector length. Thus, under the assumption of uniform delays,

- the hazards to the critical path disruption are insignificant for

access delays far greater than likely to be encountered in

practice. The incremental sensitivities S. measured at D = 0 are

r 0given in Table 1 for a large number of cases.

It should be noted that Eq. (9) has been verified by

-. inspection of clock-level timing of MUL2 and CFD executions.

* ** -5-
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Fig. 1. Algorithm delay due to
uniform access delay
VL = 64 for all vectors
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*2 Thus, algorithm delay seems likely to be independent of access

delays for even large uniform delays.

B. EFFECTS OF RANDOMNESS

With the conflict protocol enabled, the delay in algorithm

execution (Dal) was measured for all processors involved in a

simulation, and the delays averaged (5al). The delays of all

accesses were also recorded and averaged (ac). These delays were

-- normalized by dividing by the total algorithm execution time and

by VL (=64 for all codes), respectively; this yielded 5al and 5c"

The sensitivity

Sal Dal //Dac

is then the measure of the random, large-deviation sensitivity

• -encountered in practice.

Table 1 indicates that Su and Sal are sufficiently different

that the critical path must be moderately altered in some codes.

. Since large uniform deviations have been shown to have nominal

effects on sensitivity, one is left to conclude that it is the

* -randomness which disrupts the critical path. This is consistent

with the previous discussion of how the critical path is altered,

e.g., by masking and by best-case and worst-case events.

It appears that the sensitivity to a single delayed access

should be less than unity; the provision for late chaining avoids

the prospect of a delayed access causing a missed chain-slot time,
I"

as in the CRAY-I. However, it is unclear whether Sal can be

,. greater than unity. Nonetheless, Sal ' 1 for all measured

sensitivities (Table 2), with the largest being .939.

-7-
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I Utilizations I Delays x 100 I Sensitivities

- Code Banks 7m Ub I D a I Sal S S al/

FFT 256 I .653 .965 I 7.7 3.8 I .493 .417 .755

128 .629 .998 16.8 8.1 .482 .417 .766

* CFD 256 .682 .986 6.0 2.3 .383 .336 .561

128 I .668 .999 I 12.3 4.3 .349 .336 .522

MUL 256 I .690 .832 I 5.1 2.5 .490 .464 .710

128 .664 .921 I 16.8 6.5 I .387 .464 .592

*

MUL 2  256 I 1.51 .998 I 5.9 5.1 I .864 .602 .572

128 1.31 .998 1 25.4 21.9 I .862 .602 .658
U

* MUL 3  256 I .932 .966 I 2.6 .4 I .150 .147 .160

128 I .925 .989 I 6.5 1.1 I .161 .147 .174

I"

Table 1. Summary of simulation results for 16 processors.

Sixteen samples were used to determine averages.

L
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C. AN EMPIRICAL RELATIONSHIP

a Aside from confirming intuition, Table 1 appears to show a

relationship between sensitivity of Fortran codes and their memory

S,,utilization.

Define

, u. average number of memory reads ad writes per processor
U m algorithm execution time per processor

Then the ratio Sal/U m is shown in Table I to range over a rather

restricted set of values (.552 to .766), across different codes

and in the presence of access delays Dac which vary over a 5:1

range (.051 to .254) as the number of banks is varied. An

*approximate sensitivity determined from

Sal = .6511

would be within 18% for all cases. The range of this

N approximation is limited however, if Sal is bounded by unity.

, The relationship between Sal and Um is felt to be indirect;

* possibly it is due to the number of ports rather than U m which

supply vector operands to the matrix multiply inner loop. If one

• .of these ports is delayed, a "worst-case" delay is imposed on the

loop and Sal increases.

D. CONCLUSIONS

In this section, two results stand out.

(a) The randomness rather than the size of the access delays

have the greatest effects on the critical path.

(b) If the memory utilization per processor T is known, the
m

algorithm sensitivity to access delays may be estimated

from the rule-of-thumb

MUL3 is a specially coded CAL routine (see Section III).

_ _ 9-
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o Sal =.65 Um

for conventional Fortran vector codes. This puts the

simpler memory access simulation performed by computer
.1

architects on firm grounds, in so.far as their ability

to predict algorithm delay.

* -The above conclusions are based on three Fortran codes; this

must be acknowledged as a small sample, in spite of the diversity

of their access patterns. Also, the vector length was constant at

64; the above formula could also depend on VL, since for a given

Sm' the critical path would likely be more disrupted by short

vectors.

I10
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III. ALGORITHM DELAY RESULTS

Although the above study of the two components of Dal ( Dac

* .. Sal) may give insight, the algorithm delay Dal itself is

ultimately of interest. These are depicted in Figures 2 and 3 and

given in Table 2.

Figure 2 gives Dal when RbP = 16, the most likely situation.

The FFT, MUL, and CFD codes have nearly the same delay between 2%

* -and 3% from I to 16 processors, corresponding to their simular Um.

MUL 2, with high access delay and large Sal' has nearly a 5% delay.

Their are seemingly no surprises here.

When the number of banks is halved, Figures 3 indicates that

Sal of the high access MUL 2 code increases by the greatest ratio

(4.1:1). Even the small differences been curves in Figure 2 are

magnified in Figure 3. The implication is that, since Sal remains

*relatively constant (Table 2) as Rbp increases, Rbp = 16 is the

smallest ratio which avoids the risk of high D's with common U's.
ac m

'J -1 1-
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10 Figure 2. Algorithm delays for R bp 16
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IV. CONFLICT-RESISTANT ALGORITHMS

A. INTRODUCTION

Undoubtedly, the greatest benefit of defining an algorithm

sensitivity is in algorithm design. It will be shown possible,

with careful control of the data flow in each processor using

assembly language (CAL), to defeat the normal relationship between

Dac and Dal and ultimately to reduce the small-delay (incremental)

sensitivity to zero. Since assembly coding is a common practice

for CRAY-i and CRAY X-MP library programs, it may take a small

additional effort to isolate these workhorse codes from the large

r4 delays possibly associated with many-processor architectures.

B. LOCAL MEMORY UTILIZATION

Two conditions must be met to guarantee code performance

*resistant to access delays.

(a) Shared memory access must be off the critical path, and

(b) Vector access must be on data in conflict-free storage.

* The vector register set forms such storage on the X-MP; the former

can be achieved by pre-fetching operands and post-storing results.

Prefetching is difficult to achieve for general codes, and,

where possible, usually requires loop reordering and other

instruction scheduling beyond commercially-available compilers.

Library programs, which are often built around a small kernel, are

candidates for such coding. Fortunately, CRAY-i experience has

shown that prefetching can be completely masked by floating point

computation in linear algebra codes without reducing the execution

Lrate; the vector register set is sufficiently large to act as a

non-conflict buffer [2].

-14-



.- A matrix-vector multiply (MUL3 1 has been assembly coded with

these features; the resultant sensitivities are shown in Table 1.

"' The related and Sal's are a small fraction (20-25%) of those for

the corresponding MUL2 Fortran code, and considerably less than

any other kernel in the table.

C. NON-UNIT STRIDE ACCESS

Sal of the inner loop of MUL3 has a zero value for small

delays. However, the CAL implementation that yielded the low Sal

*. of MUL 3 in Tables I and 2 for 64 x 16 matrix-vector multiplies

produced quite different results when 64 x 64 matrices were

multiplied, as indicated in Table 3a. The sensitivities Sal

increase with number of banks, although Vac and Val decrease

individually. The orgin of the problem seems worthy of discussion.

It is a convenience in CAL coding of matrix multiplies and

other linear algebra codes to implement

Y + Y + MX

by loading the elements of X in reverse order into a vector

register, and then arranging them as scalars to multply the

columns of M. The related assembly code has the form

Al 64
VL Al
VO ,AO, -1

-* a

inner
loop S1. VO, Al

V3 SI*FV2

-15-
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Banks Bac Ial1 Sal

Original code
16 19.4 4.84 .249
32 5.32 1.64 .309
64 1.52 .842 .657

Modified Code
16 17.6 1.47 .083
32 1.74 .391 .224
64 1.53 .271 .178

Table 3. Effect of eliminating counter-grain
-access in 64 x 64 multiply; p =4.

L -16-
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Rpb 8  Rpb 16

1 processor flac 5al Sal bac Bal Sal

(%) (%) (%) (%)
M MM

MUL 4.22 2.53 .600
MUL 1 3.75 2.19 .584
MUL2 3.43 .76 .221
CFD 6.56 1.85 .282
FFT 4.37 1.72 .393
Average 47 [

2 processor

MUL1  26.5 9.25 .349 3.12 2.36 .756
MUL I  29.6 20.0 .675 4.53 3.04 .671
MUL2  6.87 1.81 .263 6.25 .56 .089
CFD- 15.9 4.68 .294 7.19 2.21 .307

FFT 17.8 6.66 .374 4.84 2.15 .444
Average 7 =r TU7 7 TTM T 4 3n

4 processor
MUL I  21.2 6.61 .311 6.09 2.61 .429
MUL 27.9 19.8 .709 5.62 5.28 .939

MUL 2  5.15 1.12 .217 1.87 .31 .166CFD 3  14.3 5.15 .360 5.93 1.88 .317

FFT . 15.0 6.73 .448 5.46 2.71 .496
Average T:.T ".7 T.M 33z

8 processor

- MUL 1  16.2 6.02 .371 4.69 2.27 .484MUL 2  25.6 19.7 .769 6.87 6.14 .893" MUL2  7.34 1.36 .185 1.87 .49 .262
CFD- 12.1 4.24 .350 5.00 1.85 .370

FFT , 14.0 6.61 .472 6.56 3.48 .530
v . Average 7. -.77 37 n 73nw

16 processorr
MUL 16.9 6.51 .385 5.00 2.51 .502
MUL2  25.3 21.9 .865 5.93 5.09 .858
MUL 2  6.56 1.04 .158 2.65 .40 .151
CFD3  12.3 4.30 .349 6.09 2.29 .376

FF"T , 16.9 8.16 .482 7.65 3.83 .500
Average -T T .- -f T .-

MUL3 not included in averages
~3

aTable 2. Delay and sensitivity summary for
two Rbp ratios. X-MP-2 protocol.



A delay in the load of VO may delay the first trip through the

inner loop if VL is sufficiently long, since the load of S1 will

not chain off the read. Worse, the read has a negative unit

stride, whereas all other accesses have positive unit strides.

Figure 4 shows the effects of such an access on the other highly-

regular accesses. Access Z3, beginning at clock 5588, intesects

and delays seven other accesses, two of them twice. It is evident

that a window of accesses extending approximately -VL and +2VL

clocks from the initiation of VO is potentially affected by such a

counter-grain access. The access Z3 itself is delayed by 28

clocks.

When the access is replaced by a positive unit-stride access,

- the low sensitivity of the modified code of Table 3 is obtained.

The Dal is reduced to insignificant levels (.272%) for a typical

Rbp = 16, and retains these levels (1.47%) when the number of

banks is reduced by a further factor of 4!

.16
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APPENDIX A

EXPERIMENT DESCRIPTION

EXPERIMENTAL PARAMETERS

The codes were produced by the X-MP CFT compiler from Fortran

source codes. Vector length (VL) is 64 and stride is 1 for all

cases.

Distinct program and data storage was used for each of the 16

processors. Code executions were initiated at irregular intervals

to further randomize accesses between processors. In general, p

L- samples were used to produce mean values with p procesors.

Two global static measures of memory accesses were made to

monitor their uniformity.

(a) Memory utilization. This is the fraction

= Total operands and results
m Simulation time (CP's)

for the average processor; it is a measure of memory traffic for

each code, and has a maximum value of 3, corresponding to the

number of memory ports per processor. Table 1 shows Um .67 for

FFT, CFD, and MUL1 .

(b) Bank utilization. Let Nb be the number of banks. There

is a risk with 64-length unit-stride vectors and Nb > 64 that

banks will not be equally utilized; this would create

* i" uncharacteristic delays in heavily-utilized banks. If

* is the average number of accesses per processor across all banks,

and N is the standard deviation from this average, define the bank

utilization

Ub N

-21-



* Ub = I indicates uniform accessing; if only 1/2 of the banks are

accessed, Ub = 1/2. Table 1 indicates .832 4 Ub 4 .998..

CODE DESCRIPTIONS

(a) Fluids kernel (CFD). Taken from the vectorized code of

[7), this is a 32-statement single-loop Fortran kernel with an

average of 3.2 64-length vector-vector operations/statement. Lack

of a repetitive computational structure like FFT and MUL should

make the access pattern the most random. Six buffer fetches occur

cin one kernel execution.

(b) FFT kernel (FFT). This code determines multiple 8-point

* complex-complex FFT's. Five buffer fetches occur in one kernel

p execution.

(c) Matrix-vector multiply kernel (MUL1 , MUL2, MUL3 ). The

inner-loop of MULI and MUL 2 has two vector reads and one write per

execution. MULI maintains low memory utilization (Um = .69) with

VL = 64 by multiplying 4 small (64 x 3) matrices in one kernel

" -. execution step; MUL2uses the same code with 512x2 matrices, which

successively exercises the inner-loop 512/64 - 8 times, and

achieves m - 1.58, a value more characteristic of a large

Fortran-coded matrix multiply on the X-MP. No buffer fetches

occur in consecutive executions of the kernel. The inner loop of

MUL3 has one pre-fetched vector read per inner loop execution.

Z -22-
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