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ABSTRACT

We discuss an adaptive mesh moving technique that can be used
with a finite difference or finite element scheme to solve initial-boundary
value problems for vector systems of partial differential equations in two
space dimensions and time. The mesh moving technique is based on an
algebraic node movement function determined from the geometry and
propagation of regions having significant discretization error indicators.
Our procedure is designed to be flexible, so that it can be used with
many existing finite difference and finite element methods. To test the
mesh moving algorithm, we implemented it in a system code with an initial
mesh generator and a MacCormack finite difference scheme on
quadrilateral cells for hyperbolic vector systems of conservation laws.
Results are presented for several computational examples. The moving
mesh scheme reduces dispersive errors near shocks and wave fronts and

thereby reduces the grid requirements necessary to compute accurate

solutions while increasing computational efficiency.




1. INTRODUCTION

Mesh moving is an adaptive technique that has been used
successfully to improve the accuracy of both finite element and finite
difference schemes for a variety of time dependent problems in one (cf.,
e.9., [1,2,3,12,13,15,19,22,25,31]) and two (cf., e.g., [10,30,31,33])
space dimensions. Tho'essential idea is to move the mesh either to
minimize some quantity, such as the discretization error, or to follow
some local nonuniformity, such as a wave front. This generally reduces

dispersive errors and Courant number restrictions.

In one dimension Hyman [25] described a mesh moving scheme that
minimized the time variation of the solution at the nodes. This scheme
used finite difference approximations for solving hyperbolic conservation
laws. Davis and Flaherty [12] and Adjerid and Flaherty [1] developed
finite element codes for parabolic systems that moved a mesh so as to
equidistribute the spatial component of the discretization error. Miller et
al. [19,27,28] simultaneously determined the numerical solution and the
node positions using a finite element method that minimized the residual
for parabolic problems. Bell and Shubin [3] solved the Euler-Lagrange
equations of an extremizing functional and used a finite difference
scheme to solve hyperbolic conservation laws. All of these schemes have
successfully demonstrated that mesh moving .can reduce discretization
error and provide improvements in computational efficiency for

one-dimensional problems.

With some modification the methods of Adjerid and Flaherty [1],
Hyman [25], and Miller et al. [19,27,28]), can be extended to higher

Approved for public release H
distridbutionunlimited,
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dimensions; however, many other mesh moving techniques are not
directly applicable to two- and three-dimensional problems. One difficulty
is that equidistribution strategies fail to produce unique solutions.
Brackbill and Saltzman [10,33] have overcome this problem by adding the
constraints of mesh smoothness and orthogonality to a variational

problem. -

A successful mesh moving scheme for higher dimensional problems
that is somewhat similar to the method presented here és the algorithm of
Rai and Anderson [30,31,32]. Their algorithm is based on a gravitational
principle and calculates the velocity of a node based on summing the
differences between the errors at other nodes and the mean error
divided by the distance between the node and the other nodes. Since
each node affects all other nodes, a global calculation is necessary to

determine each node's speed in a computational grid.

Local mesh refinement is a different adaptive technique that
consists of dividing or refining elements in regions where the solution is
not adequately resolved. The advantage of this technique relative to
mesh moving is that enough fine grids can be added to resolve the small
scale structures of the solution and provide solutions to within user
prescribed error tolerances. The local mesh refinement schemes of
Berger [5,6,7], Flaherty and Moore [17], Gannon [20] and Bieterman
and Babuska [8,9], have successfully satisfied prescribed error
tolerances for different problems using finite element or finite difference

schemes. The methods of Berger [5,6,7] and Gannon [20] have also been

applied to two-dimensional problems.
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The most pro_mising algorithms appear to be those that combine
both mesh moving and local mesh refinement. While neither techn.i-que nor
their combination is likely to be optimal for all problems, a combination
can accurately solve for the solution in regions where it varies rapidly
and devote little effort in rcgioni where it varies slowly. It is our
intention to consider such schemes; however, the computational

procedures discussed here do not as yet contain local refinement.

The mesh moving technique that we have developed is simple,
efficient, and independent of the numerical method being employed to
discretize the partial differential equations. At each time step it uses the
current node locations and the nodal values of a mesh movement
indicator. We use local error estimates or the solution gradients as mesh
movement indicators. Nodes with "statistically significant error” (cf.
Section 2) are grouped into rectangular error ciusters. This clustering
separates spatially distinct phenomena of the solution. As time evolves
the clusters can move, change size, change orientation, collide,
separate, reflect off boundaries, or pass through boundaries. At each
time step new clusters can be created, and old ones can vanish. The
clustering algorithms we use are briefly described in Section 2 and were
developed by Berger [5,6] for a mesh refinement scheme'for solving

hyperbolic problems.

Mesh movement is determined by a node's relationship to the error
clusters. Movement is done in two steps, each in a direction along a
principal axis of a cluster rectangle. The amount of movement in each
direction is determined by a movement function which insures that the

center of error of the cluster moves according to a differential equation

PRI G TAr e .‘. \ NN L




suggested by Coyle et al. [11]. Additionally, the movement function
smoothes mesh motion, reduces distortion and mesh tangling, and

prevents nodes from moving outside the domain boundaries.

in Section 2 we discuss error clustering, movement of the center
of mass of the error cluster, the node movement function, and the initial
mesh generator used inA the computational examples. In Section 3 we
discuss the MacCormack finite difference scheme for hyperbolic equations
and the error indicators used in the computational examples. The results
of the computational examples are given in Section 4, and Section 5
contains a discussion of the results of the experiments and the status of

our algorithm.
2. MESH MOVING SCHEME AND INITIAL MESH GENERATION

We discuss a mesh moving scheme and an initial mesh generator
that can be used in conjunction with a numerical procedure to solve time
dependent partial differential systems on a rectangular domain. Suppose
that the domain is to be discretized into a moving mesh of quadrilateral
cells having vertices (or nodes), (xi(t), yi(t)), i =1,2,...,N, that are
numbered in a row sequential fashion. A sample mesh and a
representative cell are shown in Figures 1 and 4, respectively. We
further suppose that an approximate solution vo:ctor ui(t), i=1,2,...,N,
of the partial differential system and a non-negative scalar error
indicator, ei(t), i =1,2,...,N, are to be calculated at each node at time
t > 0. The error indicator can be related to the local discretization error

at a node; however, quantities proportional to the solution gradient,

curvature, etc., can also be used. The error indicator serves to attract
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nodes, and thus, it shouid be large where the mesh should be fine and
small where the mesh should be coarse. The mesh moving scheme is
discussed first in Section 2.1 and the discussion of the initial mesh

generator follows in Section 2.2.
2.1. MESH MOVING SCHEME

Suppose the mesh, solution, and error indicator described above
have been calculated up to a time t > 0. We scan the mesh at time t and
flag "significantly high error nodes” as nodes having error indicators
greater than twice the mean nodal error indicator and also greater than a
user supplied error indication tolerance. If there are no significant error
nodes, computation is performed on a stationary mesh. The nearest
neighbor clustering algorithm of Berger [5,6] is used next to ciuster the
flagged error nodes. In this iterative algorithm, a cluster is first
defined to consist of one arbitrary significantly high error nocde. Other
significantly high error nodes are added to the cluster if they are within
a specified minimum intercluster distance from the nearest node in the
cluster. New clusters are established for nodes that do not belong to
any existing cluster. Clusters are united when a node is determined to
belong to more than one of them. Upon completion of the algorithm, (i)
nodes in different clusters will be separated by at least the minimum
intercluster distance, and (ii) no node in a cluster with more than one
node will be further than the minimum intercluster distance from its

nearest neighbor in the cluster.

Berger [5,6] shows that near minimum area rectangles that contain

a cluster can be easily generated. The principal axes of such a rectangle
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are the major and minor axes of an enclosed ellipse with the same first
and second moments as the clustered nodes. Thus, if X and Ym 37 the
mean coordinates of the clustered nodes, then the axes of the rectangle

are in the directions of the eigenvectors of the symmetric (2x2) matrix

T (x2 - x2)

i T Xm)  DOxy-x

mym)
(2.1)

Elxy, - xo ¥, I (viz - vﬁ,)

(o ——— e e —y
e e e e s e o =

The summations range over all nodes in the cluster.

For problems with significant error nodes located on a long curved
arc, the entire region may belong to one unacceptably large cluster. In
order to prevent this inefficieny and provide better alignment with
curved fronts, the rectangular clusters are checked for efficiency by
determining the percentage of significant error nodes in the cluster. If a
50 percent efficiency is not achieved, the rectangle is iteratively bisected
in the direction of the major axis. This is repeated until all clusters
have a 50 percent efficiency or more. This nearest neighbor clustering
separates spatially distinct phenomena as shown by the dashed line error
clusters on the two dimensional mesh of Figure 14 and provides some
linear alignment with long curved error regions as shown by the clusters

in Figure 1.

We determine node movement from the velocity of propagation, the

orientation, and the size of the error clusters. Thus, our approach

differs from that of Hyman [25] and Harten and Hyman [22] who move




nodes so as to minimize the time variation of the solution components.

~ .

For hyperbolic systems their approach allows the mesh to move at a
weighted average of the characteristic speeds along a shock. Front

tracking schemes also move the mesh so that isolated discontinuities are

A e

stationary in reference to the mesh. Since clustering significantly high
error nodes and tracking the propagation of these clusters is possible
- for all time dependent problems, our approach is more general and
y approximates these other algorithms for hyperbolic problems. We do not,
however, follow or track surfaces of discontinuities exactly. We assume
that nodes in the same cluster have related solution characteristics, so

that we can determine individual node movement from the propagation of

1, e, .

the center of mass of the error cluster.

BACA
'-'-‘-'ﬂ"

In the Harten and Hyman [22] algorithm, when there is multiple
wave interaction in a vector system, mesh speed is a weighted average of

the characteristic velocities. The same principle applies to our algorithm

B
"%

when multiple error clusters have merged due to, e.g., wave interaction.
The mesh moves with a velocity given by a weighted average of the
velocities of the intersecting error clusters. Comparisons between the
center of mass propagation of an error cluster and the characteristic H

path of the center of the cluster are given in Example 4.2.

We first attempted to move nodes using a procedure that was based

- on extrapolation of the positions of the previous center of error masses:
| ' however, this produced some oscillatory effects. Indeed, Coyle et
al. [11] showed that node movement based on extrapolation is unstable

in certain situations. Following one of their suggestions, we stablize the

movement by solving the differential equation




.
e e

rerr=0, ' Q2

where r(t) is the position vector of the center of mass of an error
cluster and ( .) := d{ )/dt. Equation (2.2) is conditionally stable (cf.
o Coyle et al. [11]), and when solved numerically with reasonable choices

of A > O oscillations in the mesh motion were no longer present.

We solve (2.2) from t_ . to t, and then for each cluster determine
'(tn’l) and the vector r(tn’l) - r(tn) which is projected onto the two
principal axial directions of the rectangular cluster at tn. These
projected distances are the amount by which the center of mass of the
= error cluster moves in each principal direction. Let Ar-1 and Arz denote
A these projections, respectively, and let CM denote the center of mass of

the error cluster. We create a one-dimensional mesh movement function to
move the nodes of the mesh along the two axial directions of the error
clusters. A profile of the movement function that we use is shown in
Figure 2; however, the algorithm is designed to be used with any one
dimensional movement function. The slope of the movement function
depends on the length of the side of the cluster which is denoted as w

in Figures 2 and 3.

As shown in Figure 2, nodes inside the range of the cluster

(shaded in Figure 3) are moved a distance d.

i,inside’ i = 1,2, in each

principal direction given by
Ari(3/2-x/w) if w/2 € x s 3w/2
. di,inside = q &r; if ~-w/2 < x < w/2
N Ari(3/2’x/w) if -3w/2 S x £ -w/2,

i=1,2. (2.3)

T T T T T
PN D L N RN - - .
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- distance z is used in Equation (2.4) to determine the amount of movement
.: for this node.
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Here x is the projected distance in a principal direction of .a node
relative to the center of mass of the error cluster. In order to provide
smooth node movement throughout the domain, nodes outside the range of

the cluster move in a reduced amount as determined by

d d [ 1-(2z/D)] , 2.49)

i,outside = i,inside
where z is the shortest distance to the range of the cluster (cf. Figure
3) and D is the diagonal distance of the entire domain. Node movement

and d.

i, outside are reduced near boundaries in order

distances di,inside
to prevent nodes from leaving the domain. In particular, for nodes
moving towards the edge of the domain, we recalculate di,j as di,j
[min(1,b/¢)}, i = 1,2, j = inside, outside, where b is the distance of the
node to the boundary and c is twice the length of a cell diagonal on a
uniform mesh having the same number of cells as the moving mesh.
Nodes on domain boundaries, except corner nodes which are not moved,

are restrained to move along the boundary.
2.2. INITIAL MESH GENERATION

The generation of a proper initial mesh is critical to the success of
the mesh moving scheme. Without refinement the mesh moving algorithm
cannot provide suitable error control unless the initial mesh spacing
properly resolves initial data. An initial error measure appropriate for
the finite difference scheme on quadrilateral cells of Section 3 is the
error in interpolating the prescribed initial condition uo(x,y) on each
cell by a bilinear polynomial. The error on each cell is determined as the

difference between the value of the initial function and its bilinear

interpolant at the center of each cell. Therefore, the initial mesh must

12
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be generated so that the condition
l1/4{uo(xi,vi)‘uo(xi,yi)'uo(xk.vk)‘uo(x,,y,))-uo(;,;)| <TOL (2.5)

holds on each cell when using the vertex and center point labelling as
shown for a general cell in Figure 4. TOL is a user supplied error
tolerance. We satisfy condition (2.5) using an iterative scheme that
begins by generating a uniform mesh and computing an initial error
estimate from the left side of (2.5), we cluster nodes of high error and
move them toward centers of the clusters, and recompute the initial
error. Then we iteratively add rows and columns to the mesh wherever
the error tolerance is exceeded, smooth the mesh by the scheme of
Brackbill and Saltzman [10], and recompute the error until the user

tolerance is satisfied.

Initial meshes generated with this algorithm are shown in Figures
5, 7, 14, and 18 for the initial conditions of the computational examples
of Section 4. Any initial mesh generator that satisfies condition (2.5)
could be used in this scheme, and several such algorithms can be found

in Thompson [34].
3. MacCORMACK FINITE DIFFERENCE SOLVER AND ERROR INDICATION

In order to test our mesh moving sch.emo, we used the explicit
finite difference MacCormack scheme on nonuniform quadrilateral grids

for hyperbolic vector systems of conservation laws having the form

u, * f (x,y,ut) ¢ By(x,y.u,t) = 0, 3.1)

u(x,y,0) = uo(x.v). 3.2)

13
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with appropriate well posed boundary conditions.

In order to discretize (3.1) we introduce a transformation
£ = §(x,y,1), n = n(x,y,t), T =t (3.3)

from the physical (x,y,t) domain to a computational (£,n,t) domain where

A a uniform rectangular grid will be used. Under this transformation (3.1)
. becomes
ut'uzzt‘u“nt*fzzx’fnnx°ggzy*gnny,=0. (3.4)

The transformation metrics (;x, Ey’ Ct, Ner Nye nt) are related to

Y
the metrics (";' Xpr Xoo Yg' Yo yt) of the inverse mapping of the

computational domain to the physical domain by the identities

. £x=yn/J, £y=-xn/J, £t=(ytxn-xtv“)/J,

(3.5)
nx=-yE/J, “Y=XE/J' ﬂt=(Y£xt'xEY.‘)/J'
: I g% v

Using (3.5) in (3.4) gives

g *Up (yg Xy = X y)) /vy xp - y) /)

8.4 1

’fzyn/J’fn(-yg/J)’gz (-x"/J)"g“xE/J=0. (3.6)

We discretized (3.6) by the MacCormack scheme using first order forward
difference approximations in the predictor and first order backward
differences in the corrector step. It was shown by Hindman [23,24) that

y this differencing of Equations (3.4) or (3.6) produces consistent and

NESE RS
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conservative approximations. We automatically adjust the time step so as

to satisfy the Couranf. Friedrichs, Lewy Theorem.

Accurate error estimation is important to insure that user
tolerances are achieved and to refine proper regions when doing local
mesh refinement. However, mesh moving techniques are not as sensitive
as refinement techniques to error estimation. As long as the &ror
indicator shows the important error features and propagation
characteristic, proper error magnitudes are not necessary. Therefore, in
the computational examples of Section 4, we were able to use either the
solution gradients or the difference between the predicted solution and
the corrected solution as the error or movement indicator. This error
indication is actually an error estimation for the first order predicted
solution and not the second order corrected solution; however, it does
have the proper propagation characteristics. Other more reliable error
estimates will be needed when local mesh refinement is introduced. Error
estimators that we are investigating are based on combining extrapolation
and the difference between the predicted and corrected solutions.
Results of this method will be reported in Arney [38]. Other possibilities
are to use hierarchical approximations as done by, e.g., Adjerid and

Flaherty [1] and Zienkiewicz et al. [37].
4. COMPUTATIONAL EXAMPLES

The following hyperbolic equations were solved using the initial
mesh generator of Section 2 and the integrator of Section 3 as tests of

our mesh moving technique. Plots of the grids show significant error

nodes marked with an asterisk and the rectanglar error clusters outlined

16
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with dashed lines.

Example 4.1. Consider the linear scalar hyperbolic differential

equation

u’ux’0.25uy=0, t>0,0.2<sx<1.2,0sy<1, (4.1)

t
with initial conditions
0, if y <-4x *+ 1.2
u(x,y,0) =<0.8 , ify>-4x * 1.6 (4.2)
-8x - 2y *+ 3.2, otherwise,
and with Dirichlet boundary conditions
(
0. ify - 025t < -4(x - t) + 1.2

u(x,y,t) =< 0.8, ify - 0.25t > -4(x - t) *+ 1.6 (4.3)

-8(x - t) - 2(y - 0.25t) *+ 3.2 , otherwise.

The solution of this problem is an oblique front that moves at an
angle of 14 degrees across the domain. We selected this problem to show
the concentration of nodes of the initial mesh within the front, the
partial alignment of the initial mesh with the front, the propagation of
the refined region of the mesh with the moving front, and the reduction
of dispersive errors with a moving mesh. The movement indicator used in

this example is the magnitude of the gradient of the solution.

..
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Figure 5. Meshes of Example 4.1 at t = 0.0 (top) and at t = 0.4 (bottom)
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Figure 6. Surface plots of the solution of Example 4.1 at t = 0.4 using a
stationary uniform mesh (top) and a moving mesh (bottom). The moving

mesh reduces the numerical oscillations behind the propagating wave.
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The computational meshes at t = 0 and t = 0.4 are shown in Figure
5. A value of .01 was used for TOL in Eq. (2.5). At each timestep the
nodes are moving with the wave front at near the characteristic speed.
This reduces dispersive errors as shown in the surface plots of Figure 6
which compare the solution calculated on the moving mesh to one
calculated on a stationary uniform mesh having the same number of
nodes. Observe that node movement occurs without severe distortion of
cells or nodes accumulating near, or passiné thrbugh, the outflow

boundaries.
Example 4.2. Consider the initial-boundary value problem

u, - yu, * xu, =0, t>0, -1.2<x51.2, -1.2sys 12, (4.4)

0, if (x-172)2 + 1.5 y2 2 1/16
u(x,y,0) = (4.5)
1 - 16((x-172)2 + 1.5y2), otherwise ,

and
N u(1.2,y,t) = u(-1.2,y,t) = u(x,-1.2,t) = u(x,1.2,t) =0 . (4.6)
The exact solution of this problem is
0, ifC<0
u(x,y,t) = 4.7)

,. C, if C 20,

where

C = 1 - 16((xcostysint-1/2)2 + 1.5(ycost-xsint)2). (4.8)




21

Equations (4.7) and (4.8) represent a moving elliptical cone rotating
counterclockwise aro&.md the origin with period 2. This problem was
proposed as a test problem by Gottlieb and Orszag [17] and we selected
it because the rotational quality of the error region is a good test of a

mesh moving scheme.

The initial mesh generated for this problem is shown in Figure 7.
This mesh has an initial interpolation error less than 0.08. Figures 8 and
9 show the mesh at t = 1.6 and t = 3.2, respectively. The nodes follow

the moving cone and keep it within the refined region. Figures 10 and

at t = 3.2 on the moving mesh with one on a 32 x 32 uniform stationary

-
E 11 compare the contour and surface plots, respectively, of the solution
I

‘ mesh. The dispersive error distorts the cone and leaves a wake behind

it. These errors are significantly reduced by the mesh moving solution.

Figure 12 compares the path of the center of mass of the single
error cluster using (2.2) and the real characteristic path of the peak of
- the cone. As expected for this scalar hyperbolic problem, the movement
N of the center of error mass determined by (2.2) closely approximates the
characteristic path of the peak of the cone with a maximum difference of

4 percent in length and direction.

Example 4.3. This probiem is similiar to Example 4.2 except there
are now two symmetric cones rotating counterclockwise about the origin.

The problem is given by Equations (4.4), (4.6), and new initial

X conditions provided by
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Figure 7. Initial mesh for the rotating cone of Example 4.2.
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Figure 9. Mesh of Exampie 4.2 at t = 3.2. Nodes continue to move with

the rotating cone with some node crowding near the boundary.
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1 - 16((x-1/2)2 + 1.5y2), if (x-172)2 + 1.5y < 1/16
2 2, . 2., .2
ulx,y,0) = 1 - 16((x*1/2)° + 1.5y"), if (x*1/2) 1.5y* £ 1/16 (4.9)
0, otherwise.

Figure 13 shows the mesh at t = 1.05, which has poor aspectlratios
and severe mesh distortion caused by the rotation of the error regions.
The mesh tangles as the cones rotate further. When such mesh tangling
occurs a static rezone is necessary to create a new mesh. The rezoning
can use an algorithm similar to the one that generated the initial mesh.
The data at the new mesh nodes must be obtained by interpolation from
the calculated solution at the old nodes by a conservative rezoning as

presented in Dukowicz [14]. We are exploring this possibility.

Example 4.4. Consider the uncoupled system

t>0, -1sxs1, -1syst, (4.10)

vix,y,0) =

‘1 - 160(x*1/2)2 + 1.5y2), if (x*1/2)2 + 1.5y2 <'1/16
l (4.113)

0, other\;viu,

1 - 16((x-1/2)2 + 1.5v2), if (x-1/2)2 + 1.5y2 < 1/16
u(x,y,0) = (4.11b)

0, otherwise,

and
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Figure 13. Distorted mesh of Example 4.3 at t = 1.05 showing the need

for static rezoning.




Jia " &

R

s F

u(x,y,t) = v(x,y,t) = 0 on all boundaries of the domain. (4.12)

The solution of this problem is two moving cones that pass through
one another. This causes the error clusters to collide and merge, and
then later separate. Figure 14 shows the initial mesh for this problem,
and Figure 15 shows the mesh at t = 0.35, the time at which the clusters
collided and merged. Fr§m t =035 tot =0.9, the single cluster stays
centered at the origin so the mesh does not move during this time. At
t = 0.9 the cones have passed completely through one another, and
Figure 16 shows the separation of the error clusters and the movement of
the mesh toward the boundaries at that time. Figure 17 shows the mesh
at t = 1.3. The cones and error clusters have reached the domain
boundary and no further movement of the mesh will take place as the

cones exit the domain.

Example 4.5. Consider the Euler equations for a perfect inviscid

fluid

Q * E * Fy =0 (4.13a)
where
- P - - pU - - PV
pu puz *p puv
Q= E = F= | (4.13b)
PV puv pvz *P
Le- L(e’p)uJ L(O‘P)vi-

In the above equations, u and v are the velocity components in the x

and y directions, p is the density, e is the total energy per unit

volume, and p is the pressure which is given by

30
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neighbor clustering algorithm for the initial mesh of Example 4.4
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Figure 15. Mesh of Example 4.4 at t = 0.35. The two initial clusters
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have merged into single cluster centered at the origin.
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Pp=(¥-1)[e - p(u2 . vz)/2]. ' .-{4.13¢)

We solve a problem where a Mach 10 shock moves down a channel
containing a wedge. The computational domain is -0.3 < x < 1.9,
0 s y S 1, which is oriented along the wedge so that the wedge
lies on the bottom boundary in the regiony = 0, 1/6 s x < 1.9.

The initial conditions

p =80, p=116.5 e=563.5 u=4.1253, v = -4.125,
ify < v3 x - /3/6 , (4.14a)
and
p=1.4,p=1.0, e=25 u=0.0, v=0.0,
ify 2 v3 x - v3/6 , (4.14b)

represent a Mach 10 shock in air (¥ = 1.4), which initially makes a 60
degree angle with the reflecting wall and moves into undisturbed air.
Along the left boundary (x = -0.3) and the bottom boundary to the left
of the wedge (y = 0, -0.3 < x < 1/6) we prescribe Dirichlet
boundary conditions according to (4.14); along the top boundary
(y = 1) values are set to describe the exact motion of an undisturbed
Mach 10 shock flow; along the right boundary (x = 1.9) all normal
derivatives are set to O0; and along the wedge (y = 0,

1/6 € x < 1.,9) reflecting boundary conditions are used.

This problem was used as a test problem by Woodward and Collela
[36] to compare several finite difference schemes on uniform grids for

the Euler Equations.
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: The MacCormack finite difference scheme needs artificial viscosity
to 'capture’ the sho;:ks of this problem. We used the artificial viscosity
developed by Lapidus [26] which is fluid velocity dependent and was
used with the MacCormack scheme by Woodward and Collela [36].

The initial mesh used for this problem is 45 X 30, and is shown in
Figure 18 (top). We used the magnitude of the density gradient as the
mesh movement indicator. From t = 0 to t = 0.01 one error cluster is
formed that includes both the Mach 10 shock and the smaller reflected
shock region. The resulting mesh at t = 0.01 is shown in Figure 18
(center). This single error cluster is inefficient since it includes
different structures of the solution with different propagation velocities.

At t = 0.02 the clustering aligorithm has recognized two different

RPN

structures and clusters the error nodes as shown in Figure 18 (bottom).
At t = 0.04 three different structures, the Mach 10 shock, the reflected
shock, and a Mach stem region, are recognized by the error clustering
algorithm as shown in Figure 19 (top). The nodes of the mesh are now
able to move with the different velocities of these structures. However,
by t = 0.08 it is evident from the mesh of Figure 19 (bottom) that there
are not enough nodes to resolve the continuing elongation of the 1
reflected shock region. Mesh refinement is necessary to céntinue the

effective computation of the solution for t > 0.08.

Contour plots of the density at t = 0.08 using the moving mesh
and using a uniform stationary mesh with the same number of nodes are

compared in Figure 20. The moving mesh reduces the numerical

»
le®e e’

oscillations and provides finer resolution of the shocks and the first

contact discontinuity. However, neither calculation was able to resolve
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- the fine structures of the second Mach stem and contact discontinuity.
S. CONCLUDING REMARKS

We have described a general two-dimensional mesh moving
technique that enables a mesh to follow the propagation of given error
indicators. Mesh motion ' is determined from the movement of clusters of
nodes with significantly high error. This procedure was tested on

hyperbolic problems having solutions with large gradients.

Even though mesh moving in two dimensions is difficult, we are
3 encouraged by our initial results. The mesh moving algorithm was able to
move with the wave and shock fronts of Examples 4.1 and 4.5, was able
to control the error rotation of the rotating cone in Example 4.2, and
was able to handle the merging and separation of error regions in
Example 4.4. The distortion of the mesh in Example 4.3 shows the need
for static rezoning when such severe distortions occur. The elongation of
the reflected region of Example 4.5 demonstates the need for local mesh

refinement in the algorithm.

We are investigating ways to improve the efficiency, reliability,
and robustness of the mesh moving algorithm. Possible improvements
include (i) not clustering at every time step and letting the mesh move
at a constant velocity for several time steps,l (ii) efficiently testing for
mesh tangling or distortion, and (iii) using a better solver for
hyperbolic equations such as the total variation diminishing schemes of
Osher [29], van Leer [35], or Engquist [16]. We also hope to show the
flexibility of the mesh mover by implementing it with a finite element

solver for parabolic problems. Finally, we intend to include local mesh

Ot
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refinement in the solution algorithm. This combination of mesh moving

and refinement should enhance efficiency, accuracy, and robustness.
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Figure 1. Three clﬁoton of significant error aligned with a curved

significant error region.
Figure 2. Profile of the node movement function (cf. Eq. (2.3)).

Figure 3. A node shown outside the range of an error cluster. The
distance z is used in Equation (2.4) to determine the amount of movement

for this node.
Figure 4. Node labelling of an arbitrary quadrilateral cell.

Figure 5. Meshes of Example 4.1 at t = 0.0 (top) and at t = 0.4
(bottom).

Figure 6. Surface plots of the solution of Example 4.1 at t = 0.4 using a
stationary uniform mesh (top) and a moving mesh (bottom). The moving

mesh reduces the numerical oscillations behind the propagating wave.
Figure 7. Initial mesh for the rotating cone of Example 4.2.

Figure 8. Mesh of Example 4.2 at t = 1.6. Nodes are moving with the

rotating cone.

Figure 9. Mesh of Example 4.2 at t = 3.2. Nodes continue to move with
the rotating cone with some node crowding near the boundary.

Figure 10. Contour plots of solutions of Example 4.2 on a moving mesh

(top) and on a stationary uniform mesh (bottom) at t = 3.2,

Figure 11. Surface plots of solutions of Example 4.2 on a moving mesh

(top) and on a stationary uniform mesh (bottom) at t = 3.2,
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Figure 12. Comparison of the characteristic path of thé peak of the cone
and the path of the center of error mass as determined by Equation
(2.2) for Example 4.2.

Figure 13. Distorted mesh of Example 4.3 at t = 1.05 showing the need

for static rezoni ng.

Figure 14. Two spatially distinct error clusters formed by the nearest

neighbor clustering algorithm for the initial mesh of Example 4.4.

Figure 15. Mesh of Example 4.4 at t = 0.35. The two initial clusters

have merged into single cluster centered at the origin.

Figure 16. Mesh of Example 4.4 at t = 0.9. The single cluster separated
into two clusters. The two clusters are moving toward the domain

boundaries.

Figure 17. Mesh of Example 4.4 at t = 1.4, The two clusters have

reached the domain boundariss.

Figure 18. Mesh of Example 4.5 at t = 0.0 (top), at t = 0.01 (center),
and at t = 0.02 (bottom)

Figure 19. Mesh of Example 4.5 at t = 0.04 (top) and at t = 0.08
(bottom).

Figure 20. Contour plots of density from the calculated solutions of
Example 4.5 at t = 0.08 on a stationary uniform mesh (top) and on the

moving mesh as shown in Figures 18 and 19 (bottom).
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. LIST OF SYMBOLS

n := eota

:= tau

-y

e := rho

A := lambda

I := upper case sigma, summation symbol
U := bold face u

f := bold face f

@ := bold face g
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