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ABSTRACT

We discuss an adaptive mesh moving technique that can be used

with a finite difference or finite element scheme to solve initial-boundary

value problems for vector systems of partial differential equations in two

space dimensions and time. The mesh moving technique is based on an

algebraic node movement function determined from the geometry and

*. propagation of regions having significant discretization error indicators.

* Our procedure is designed to be flexible, so that it can be used with

many existing finite difference and finite element methods. To test the

. mesh moving algorithm, we implemented it in a system code with an initial

mesh generator and a MacCormack finite difference scheme on

"" quadrilateral cells for hyperbolic vector systems of conservation laws.

Results are presented for several computational examples. The moving

mesh scheme reduces dispersive errors near shocks and wave fronts and

thereby reduces the grid requirements necessary to compute accurate

solutions while increasing computational efficiency.

* . . . n e t ~- - .
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1. INTRODUCTION

Mesh moving is an adaptive technique that has been used

.4successfully to improve the accuracy of both finite element and finite

difference schemes for a variety of time dependent problems in one (cf.,

*. e.g., [1,2,3,12,13,15,19,22,25,311) and two (cf., e.g., [10,30,31,331)

* space dimensions. The essential idea is to move the mesh either to

' minimize some quantity, such as the discretization error, or to follow

some local nonuniformity, such as a wave front. This generally reduces

dispersive errors and Courant number restrictions.

In one dimension Hyman [25] described a mesh moving scheme that

minimized the time variation of the solution at the nodes. This scheme

used finite difference approximations for solving hyperbolic conservation
laws. Davis and Flaherty [12] and Adjerid and Flaherty [1] developed

finite element codes for parabolic systems that moved a mesh so as to

- equidistribute the spatial component of the discretization error. Miller et

al. [19,27,28] simultaneously determined the numerical solution and the

"" node positions using a finite element method that minimized the residual

for parabolic problems. Bell and Shubin [3] solved the Euler-Lagrange

equations of an extremizing functional and used a finite difference

scheme to solve hyperbolic conservation laws. All of these schemes have

successfully demonstrated that mesh moving .can reduce discretization

error and provide improvements in computational efficiency for

one-dimensional problems.

With some modification the methods of Adjerid and Flaherty [1],

Hyman [25], and Miller et al. [19,27,28], can be extended to higher

Approved for publIo release;
distribution unlimited.
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dimensions; however, many other mesh moving techniques are not

directly applicable to two- and three-dimensional problems. One difficulty

is that equidistribution strategies fail to produce unique solutions.

Brackbill and Saltzman [10,33] have overcome ths problem by adding the

constraints of mesh smoothness and orthogonarlity to a variational

- problem.

A successful mesh moving scheme for higher dimensional problems

that is somewhat similar to the method presented here is the algorithm of

Rai and Anderson [30,31,32]. Their algorithm is based on a gravitational

"" principle and calculates the velocity of a node based on summing the

. differences between the errors at other nodes and the mean error

- divided by the distance between the node and the other nodes. Since

-. each node affects all other nodes, a global calculation is necessary to

-. determine each node's speed in a computational grid.

Local mesh refinement is a different adaptive technique that

consists of dividing or refining elements in regions where the solution is

not adequately resolved. The advantage of this technique relative to

mesh moving is that enough fine grids can be added to resolve the small

scale structures of the solution and provide solutions to within user

*. prescribed error tolerances. The local mesh refinement schemes of

Berger [5,6,7], Flaherty and Moore [17], Gannon [20] and Bieterman
and Babuska [8,9], have successfully satisfied prescribed error

*- tolerances for different problems using finite element or finite difference

- schemes. The methods of Berger [5,6,7] and Gannon [20] have also been

- applied to two-dimensional problems.

... ~ . j~ *~~'* . *...,...'.,'.,'..-'.. .4,-...... -... . ....:,. -..-. . . . . -. ,..:.
;ll_,,l.. ,. .,i~~l " . . . . . . *. . . . . .* • ,. *, .... • . .
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The most promising algorithms appear to be those that combine

both mesh moving and local mesh refinement. While neither technique nor

their combination is likely to be optimal for all problems, a combination

can accurately solve for the solution in regions where it varies rapidly

and devote little effort in regions where it varies slowly. It is our

• intention to consider such schemes; however, the computational

procedures discussed here do not as yet contain local refinement.

The mesh moving technique that we have developed is simple,

efficient, and independent of the numerical method being employed to

discretize the partial differential equations. At each time step it uses the

*current nod* locations and the nodal values of a mesh movement

indicator. We use local error estimates or the solution gradients as mesh

movement indicators. Nodes with "statistically significant error" (cf.

Section 2) are grouped into rectangular error clusters. This clustering

Sseparates spatially distinct phenomena of the solution. As time evolves

.. the clusters can move, change size, change orientation, collide,

separate, reflect off boundaries, or pass through boundaries. At each

* otime step new clusters can be created, and old ones can vanish. The

clustering algorithms we use are briefly described in Section 2 and were

developed by Berger [5,6] for a mesh refinement scheme for solving

hyperbolic problems.

Mesh movement is determined by a node's relationship to the error

clusters. Movement is done in two steps, each in a direction along a

principal axis of a cluster rectangle. The amount of movement in each

direction is determined by a movement function which insures that the

center of error of the cluster moves according to a differential equation

-. -.. ' .. * .. . * * ** * * . - . . % . . .. *

." . . .. . . . . . . . . . . . . ..*f.*.*..*..... *..* . *.
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suggested by Coyle et al. (11]. Additionally, the movement function

smoothes mesh motion, reduces distortion and mesh tangling, and

' prevents nodes from moving outside the domain boundaries.

In Section 2 we discuss error clustering, movement of the center

of mass of the error cluster, the node movement function, and the initial

mesh generator used in the computational examples. In Section 3 we

discuss the MacCormack finite difference scheme for hyperbolic equations

and the error indicators used in the computational examples. The results

* of the computational examples are given in Section 4, and Section 5

,' contains a discussion of the results of the experiments and the status of

our algorithm.

2. MESH MOVING SCHEME AND INITIAL MESH GENERATION

We discuss a mesh moving scheme and an initial mesh generator

that can be used in conjunction with a numerical procedure to solve time

dependent partial differential systems on a rectangular domain. Suppose

that the domain is to be discretized into a moving mesh of quadrilateral

cells having vertices (or nodes), (xi(t), yi(t)), i = 1,2,...,N, that are

numbered in a row sequential fashion. A sample mesh and a

representative cell are shown in Figures 1 and 4, respectively. We

further suppose that an approximate solution vector ui(t), i 1,2,...,N,

of the partial differential system and a non-negative scalar error

P indicator, e(t), i = 1,2,...,N, are to be calculated at each node at time

t > 0. The error indicator can be related to the local discretization error

at a node; however, quantities proportional to the solution gradient,

curvature, etc., can also be used. The error indicator serves to attract
4.

* - -..- - .*
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nodes, and thus, it should be large where the mesh should be fine and

small whore the mesh should be coarse. The mesh moving scheme is

discussed first in Section 2.1 and the discussion of the initial mesh

generator follows in Section 2.2.

2.1. MESH MOVING SCHEME

Suppose the mesh, solution, and error indicator described above

have been calculated up to a time t > 0. We scan the mesh at time t and

. flag "significantly high error nodes" as nodes having error indicators

greater than twice the mean nodal error indicator and also greater than a

*user supplied error indication tolerance. If there ar& no significant error

* nodes, computation is performed on a stationary mesh. The nearest

neighbor clustering algorithm of Berger [5,6] is used next to cluster the

i flagged error nodes. In this iterative algorithm, a cluster is first

defined to consist of one arbitrary significantly high error node. Other

- significantly high error nodes are added to the cluster if they are within

a specified minimum intercluster distance from the nearest node in the

*" cluster. New clusters are established for nodes that do not belong to

"- any existing cluster. Clusters are united when a node is determined to

*: belong to more than one of them. Upon completion of the algorithm, (i)

nodes in different clusters will be separated by at least the minimum

intercluster distance, and (ii) no node in a cluster with more than one

node will be further than the minimum intercluster distance from its

*nearest neighbor in the cluster.

Berger [5,6] shows that near minimum area rectangles that contain

a cluster can be easily generated. The principal axes of such a rectangle

p"
I,

I.

'C



7, 6' V W VT .

7

are the major and minor axes of an enclosed ellipse with the same first

and second moments as the clustered nodes. Thus, if xm and ym are the

mean coordinates of the clustered nodes, then the axes of the rectangle

-are in the directions of the eigenvectors of the symmetric (2x2) matrix

r
2 _ 2

S(xi X )  Z (x i Yi " xmym)

(2.1)
2 2I- (xiyi" xm Ym) (Yi " m

The summations range over all nodes in the cluster.

For problems with significant error nodes located on a long curved

arc, the entire region may belong to one unacceptably large cluster. In

order to prevent this inefficieny and provide better alignment with

curved fronts, the rectangular clusters are checked for efficiency by

, determining the percentage of significant error nodes in the cluster. If a
50 percent efficiency is not achieved, the rectangle is iteratively bisected

in the direction of the major axis. This is repeated until all clusters

have a 50 percent efficiency or more. This nearest neighbor clustering

-separates spatially distinct phenomena as shown by the dashed line error

* clusters on the two dimensional mesh of Figure 14 and provides some

. linear alignment with long curved error regions as shown by the clusters

- in Figure 1.

We determine node movement from the velocity of propagation, the

"" orientation, and the size of the error clusters. Thus, our approach

differs from that of Hyman [25] and Harten and Hyman (22] who move

-o. • . . 2 ° .. .•.• - °.*. • . oo .wl °..*. o .° .° o *• .. •-. * .. . ,, *. - .w °... . *-,-.-..- .o, .% .
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nodes so as to minimize the time variation of the solution components.

For hyperbolic systems their approach allows the mesh to move at a

weighted average of the characteristic speeds along a shock. Front

tracking schemes also move the mesh so that isolated discontinuities are

stationary in reference to the mesh. Since clustering significantly high

error nodes and tracking the propagation of these clusters is possible

for all time dependent problems, our approach is more general and

approximates these other algorithms for hyperbolic problems. We do not,

* however, follow or track surfaces of discontinuities exactly. We assume

.- that nodes in the same cluster have related solution characteristics, so

that we can determine individual node movement from the propagation of

the center of mass of the error cluster.

In the Harten and Hyman [22] algorithm, when there is multiple

wave interaction in a vector system, mesh speed is a weighted average of

the characteristic velocities. The same principle applies to our algorithm

when multiple error clusters have merged due to, e.g., wave interaction.

* The mesh moves with a velocity given by a weighted average of the

velocities of the intersecting error clusters. Comparisons between the

center of mass propagation of an error cluster and the characteristic

path of the center of the cluster are given in Example 4.2.

We first attempted to move nodes using a procedure that was based

on extrapolation of the positions of the previous center of error masses;

however, this produced some oscillatory effects. Indeed, Coyle et

l. (11] showed that node movement based on extrapolation is unstable

in certain situations. Following one of their suggestions, we stablize the

movement by solving the differential equation

a* 
4 ' -- * * .
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r * ) r , (2.2)

where r(t) is the position vector of the center of mass of an error

cluster and ( ) 2 d( )/dt. Equation (2.2) is conditionally stable (cf.

Coyle et al. [11]), and when solved numerically with reasonable choices

of ) > 0 oscillations in the mesh motion were no longer present.

We solve (2.2) from tn- 1 to tn and then for each cluster determine

r(tn I) and the vector r(tn 1) - r(tn) which is projected onto the two

principal axial directions of the rectangular cluster at tn. These

projected distances are the amount by which the center of mass of the

error cluster moves in each principal direction. Let Ar1 and Ar2 denote

these projections, respectively, and let CM denote the center of mass of

the error cluster. We create a one-dimensional mesh movement function to

move the nodes of the mesh along the two axial directions of the error

clusters. A profile of the movement function that we use is shown in

Figure 2; however, the algorithm is designed to be used with any one

* dimensional movement function. The slope of the movement function

depends on the length of the side of the cluster which is denoted as w

in Figures 2 and 3.

As shown in Figure 2, nodes inside the range of the cluster

(shaded in Figure 3) are moved a distance diinside, i = 1,2, in each

principal direction given by

(Ar (3/2-x/w) if w/2 < x S 3w/2

di,inside = Ari  if -w/2 < x < w/2

"Ari(3/2*x/w) if -3w/2 S x S -w/2,

i 1,2. (2.3)



dinside

-3w/2 -w2 CM1 w/2 3w/2X

-- CLUSTER--

Figure 2. Profile of the node movement function (cf. Eq. (2.3))



* node

moemn

direction

* Figure 3. A node shown outside the range of an error cluster. The

* distance z is used in Equation (2.4) to determine the amount of movement

for this node.
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Here x is the projected distance in a principal direction of.a node

relative to the center of mass of the error cluster. In order to provide

smooth node movement throughout the domain, nodes outside the range of

the cluster move in a reduced amount as determined by

di,outside =d inside[ 1-(2z/D)i (2.4)

where z is the shortest distance to the range of the cluster (cf. Figure

3) and D is the diagonal distance of the entire domain. Node movement

distances d and d are reduced near boundaries in orderi,inside i,outside

to prevent nodes from leaving the domain. In particular, for nodes

moving towards the edge of the domain, we recalculate di, j as di' j

' [min(1,b/c)], i = 1,2, j = inside, outside, where b is the distance of the

*- node to the boundary and c is twice the length of a cell diagonal on a

uniform mesh having the same number of cells as the moving mesh.

Nodes on domain boundaries, except corner nodes which are not moved,

are restrained to move along the boundary.

2.2. INITIAL MESH GENERATION

The generation of a proper initial mesh is critical to the success of

the mesh moving scheme. Without refinement the mesh moving algorithm

cannot provide suitable error control unless the initial mesh spacing

properly resolves initial data. An initial error measure appropriate for

the finite difference scheme on quadrilateral cells of Section 3 is the

. error in interpolating the prescribed initial condition u0 (x,y) on each

cell by a bilinear polynomial. The error on each cell is determined as the

difference between the value of the initial function and its bilinear

interpolant at the center of each cell. Therefore, the initial mesh must

,-*

"."*. -':-..,'.--.,::
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be generated so that the condition

I1/4(uo(xi,i)*uo(xjyj)*Uo(xkYk)uo(x,Yl))-Uo(x,y)l < TOL (2.5)

holds on each cell when using the vertex and center point labelling as

shown for a general cell in Figure 4. TOL is a user supplied error

tolerance. We satisfy condition (2.5) using an iterative scheme that

begins by generating a uniform mesh and computing an initial error

estimate from the left side of (2.5), we cluster nodes of high error and

move them toward centers of the clusters, and recompute the initial

error. Then we iteratively add rows and columns to the mesh wherever

the error tolerance is exceeded, smooth the mesh by the scheme of

Brackbill and Saltzman (10], and recompute the error until the user

tolerance is satisfied.

Initial meshes generated with this algorithm are shown in Figures

5, 7, 14, and 18 for the initial conditions of the computational examples

of Section 4. Any initial mesh generator that satisfies condition (2.5)

could be used in this scheme, and several such algorithms can be found

*- in Thompson [34].

3. MacCORMACK FINITE DIFFERENCE SOLVER AND ERROR INDICATION

In order to test our mesh moving scheme, we used the explicit

finite difference MacCormack scheme on nonuniform quadrilateral grids

for hyperbolic vector systems of conservation laws having the form

.t + f x(xy,u,t) gy(x,yoult) = 0, (3.1)

Su(x,y,0) u0 (xy), (3.2)
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with appropriate well posed boundary conditions.

In order to discretize (3.1) we introduce a transformation

= E(x,y,t), 11 = i(x,y,t), t = t, (3.3)

from the physical (xy,t) domain to a computational (Q,Yi,) domain where

a uniform rectangular grid will be used. Under this transformation (3.1)

becomes

u ut u t + u 1t f x + f inx g y 1 g ly. = 0. (3.4)

The transformation metrics ( x , y I 4t, S x 1' , t) are related to

the metrics (x, xl1' xtJ yt, Y,, Yd of the inverse mapping of the

computational domain to the physical domain by the identities

y = Yn /YJ ' -x /J, t (Y x - x y / J,

(3.5)

1x = "Y /J 
/ J y x , nt = (y x xt yT)IJ,

iJ = in Xx -X YC[

*: Using (3.5) in (3.4) gives

ut u C (Yt x1 - x t y / +J uin (yC xt x4 y)/ J

f4 y fY / J + f (-y& / J) gC (-x / J)g x / J = 0. (3.6)

We discretized (3.6) by the MacCormack scheme using first order forward

difference approximations in the predictor and first order backward

- differences in the corrector step. It was shown by Hindman [23,24] that

,* this differencing of Equations (3.4) or (3.6) produces consistent and

,3

.o
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conservative approximations. We automatically adjust the time step so as

to satisfy the Courant, Friedrichs, Lewy Theorem.

Accurate error estimation is important to insure that user

tolerances are achieved and to refine proper regions when doing local

mesh refinement. However, mesh moving techniques are not as sensitive

" as refinement techniques to error estimation. As long as the error

indicator shows the important error features and propagation

- characteristic, proper error magnitudes are not necessary. Therefore, in

" the computational examples of Section 4, we were able to use either the

solution gradients or the difference between the predicted solution and

*the corrected solution as the error or movement indicator. This error

- indication is actually an error estimation for the first order predicted

solution and not the second order corrected solution; however, it does

have the proper propagation characteristics. Other more reliable error

*i estimates will be needed when local mesh refinement is introduced. Error

estimators that we are investigating are based on combining extrapolation

.- and the difference between the predicted and corrected solutions.

-" Results of this method will be reported in Arney [38). Other possibilities

. are to use hierarchical approximations as done by, e.g., Adjerid and

Flaherty (1] and Zienkiewicz et al. [37).

1 4. COMPUTATIONAL EXAMPLES

The following hyperbolic equations were solved using the initial

*. mesh generator of Section 2 and the integrator of Section 3 as tests of

*our mesh moving technique. Plots of the grids show significant error

nodes marked with an asterisk and the rectanglar error clusters outlined

• " *S - ,., " , . " ° . " • " J o " • . - , " . . • ' ' ' ' ' " " ' b • " ' ' " ' -
..S . ... , . " . . , , . , . . ' , , ., -' , . .. . , '. . ' . . ',.", ' . ., . , . ,' , ., ., .. , . ., .. , - , - , # , ", ,
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with dashed lines.

Example 4.1. Consider the linear scalar hyperbolic differential

equation

ut * u x + 0.25u y 0, t > 0 , n.2 s x < 1.2 , 0 S y S 1, (4.1)

with initial conditions

0, if y < -4x + 1.2

u(x,y,O) = 0.8 , if y > -4x * 1.6 (4.2)

-8x - 2y 3.2 , otherwise,

and with Dirichlet boundary conditions

0 , if y - 0.25t < -4(x - t) + 1.2

u(x,y,t) 0.8, if y - 0.25t > -4(x - t) * 1.6 (4.3)

-8(x - t) 2(y - 0.25t) * 3.2 , otherwise.

The solution of this problem is an oblique front that moves at an

angle of 14 degrees across the domain. We selected this problem to show

the concentration of nodes of the initial mesh within the front, the

partial alignment of the initial mesh with the front, the propagation of

the refined region of the mesh with the moving front, and the reduction

of dispersive errors with a moving mesh. The movement indicator used in

. this example is the magnitude of the gradient of the solution.

.. ...



.- - 17 

.

-. 4

I I

W11

Figure ~ ~ ~ ~ ~ ~~11M I. MehI ofIape41a . tp tt*04(otm

....... ~ ~ ~ ~ ~ ~ ~ ~ Ilm I.. 
.

I.-. 
. . . . . . . I . . . * . . .,

.if l I I I



,. . .. .. ,,i.. ,,. . -...- .;-. .. .,. -. .

19

Figure 6. Surface plots of the solution of Example 4.1 at t *0.4 using a

stationary uniform mesh (top) and a moving mesh (bottom). The moving

mesh reduces the numerical oscillations behind the propagating wave.

;I

.i* .
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The computational meshes at t 0 and t =0.4 are shown in Figure

5. A value of .01 was used for TOL in Eq. (2.5). At each timestep the

nodes are moving with the wave front at near the characteristic speed.

This reduce$ dispersive errors as shown in the surface plots of Figure 6

which compare the solution calculated on the moving mesh to one

calculated on a stationary uniform mesh having the same number of

nodes. Observe that node movement occurs without severe distortion of

cells or nodes accumulating near, or passing thr ough, the outflow

boundaries.

Example 4.2. Consider the initial -boundary value problem

u t- Yux * XUY = 0, t > 0 ,-1.2 S x 5 1.2, -1.2 y S 1.2, (4.4)

0oi if (X-1/2) 2 1. 5 y2 k1/16

U(x'yO) =(4.5)

(1 - 16((x-1/2) 2 .1.5y 2) otherwise

and

u(1 .2,y,t) = u(-1 .2,y,t) = u(x,-1 .2,t) =u(x,1 .2,t) =0 . (4.6)

The exact solution of this problem is

(o. if C <0

u(xy,t) (4.7)

4 C, if C z 0,

where

C 1 -16((xcost~ysint-1/2) 
2 . 5(ycost-xsint) 2 (4.8)
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" Equations (4.7) and (4.8) represent a moving elliptical cone rotating

counterclockwise around the origin with period 2w. This problem was

proposed as a test problem by Gottlieb and Orszag [17] and we selected

it because the rotational quality of the error region is a good test of a

mesh moving scheme.

The initial mesh generated for this problem is shown in Figure 7.

This mesh has an initial interpolation error less than 0.08. Figures 8 and

9 show the mesh at t = 1.6 and t = 3.2, respectively. The nodes follow

the moving cone and keep it within the refined region. Figures 10 and

- 11 compare the contour and surface plots, respectively, of the solution

at t = 3.2 on the moving mesh with one on a 32 x 32 uniform stationary

mesh. The dispersive error distorts the cone and leaves a wake behind

it. These errors are significantly reduced by the mesh moving solution.

Figure 12 compares the path of the center of mass of the single

. error cluster using (2.2) and the real characteristic path of the peak of

the cone. As expected for this scalar hyperbolic problem, the movement

of the center of error mass determined by (2.2) closely approximates the

characteristic path of the peak of the cone with a maximum difference of

4 percent in length and direction.

Example 4.3. This problem is similiar to Example 4.2 except there

- are now two symmetric cones rotating counterclockwise about the origin.

The problem is given by Equations (4.4), (4.6), and new initial

conditions provided by

S.f

I-
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I j

Figure 7. Initial mesh for the rotating cone of Example 4.2.
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Figure 8. Mesh of Example 4.2 at t =1.6. Nodes are moving with the

* rotating cone.
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*Figure 10. Contour plots of solutions of Example 4.2 on a moving mesh

*(top) and on a stationary uniform mesh (bottom) at t =3.2.
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Figure 11. Surface Plots of solutions of Example 4.2 on a moving mesh

.1~*(top) and on a stationary uniform mesh (bottom) at t 3.2.
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3 PATH OF CENTER OF ERROR CLUSTER
aPATH OF CENTER OF CONE -----

3i

ca

II

'-.0 -0.40 -0.20 -0.00 0.20 0.40 0.60x

* Figure 12. Comparison of the characteristic path of the peak of the cone

and the path of the center of error mass as determined by Equation

(2.2) for Example 4.2.
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1 - 16((x-1/2)2 + 1.5y 2), if (x-1/2)2  1.5y2 S 1/16

u(x,y,O) 1 - 16((x'1/2)2  1.5y2 ), if (x*1/2)2  1.5y 2 s 1/16 (4.9)

0, otherwise.

Figure 13 shows the mesh at t = 1.05, which has poor aspect ratios

and severe mesh distortion caused by the rotation of the error regions.

The mesh tangles as the cones rotate further. When such mesh tangling

occurs a static rezone is necessary to create a new mesh. The rezoning

, can use an algorithm similar to the one that generated the initial mesh.

The data at the new mesh nodes must be obtained by interpolation from

*! the calculated solution at the old nodes by a conservative rezoning as

presented in Dukowicz [14]. We are exploring this possibility.

Example 4.4. Consider the uncoupled system

ut u
t  Ux

t > 0, -1 S x S 1, -1 5 y S 1, (4.10)

Sv t V = 0,

1 - 16((x'1/2)2  1.5y 2), if (x-1/2)2  1.5y2 S'1/16

v(x,y,O) (4.lla)

0, otherwise,

I 16((x-1/2)2  1.5y2 )' if (x-1/2) 2  1.5y 2 5 1/16

u(X,Y,0) Z(4.11b)

0, otherwise,

and
).
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u(x,y,t) z v(x,y,t) z 0 on all boundaries of the domain. (4.12)

The solution of this problem is two moving cones that pass through

one another. This causes the error clusters to collide and merge, and

then later separate. Figure 14 shows the initial mesh for this problem,

and Figure 15 shows the mesh at t z 0.35, the time at which the clusters

collided and merged. From t = 0.35 to t z 0.9, the single cluster stays

centered at the origin so the mesh does not move during this time. At

t = 0.9 the cones have passed completely through one another, and

Figure 16 shows the separation of the error clusters and the movement of

the mesh toward the boundaries at that time. Figure 17 shows the mesh

at t = 1.3. The cones and error clusters have reached the domain

boundary and no further movement of the mesh will take place as the

- cones exit the domain.

Example 4.5. Consider the Euler equations for a perfect inviscid

fluid

Qt Ex + Fy = 0 (4.13a)

where
J

p pu pv
pu pu2  p puv

.Q S E 2 F = (4.13b)

2pv pUV p p

S(e p)u (i + p)v

In the above equations, u and v are the velocity components in the x

and y directions, p is the density, e is the total energy per unit

volume, and p is the pressure which is given by
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We solve a problem where a Mach 10 shock moves down a channel

containing a wedge. The computational domain is -0.3 S x S 1.9,

0 :S y S 1, which is oriented along the wedge so that the wedge

lies on the bottom boundary in the region y = 0, 1/6 x s 1.9.

- The initial conditions

p =8.0, p =116.5, ae563.5, u =4.125/3, v =-4.125,

if y < 43 x - Z3/6 ,(4. 14a)

- and

p= 1.4, p =1.0, e =2.5, u =0.0, v 0.0,

if y a /3 x - /3/6 (4.14b)

represent a Mach 10 shock in air (1 1.4), which initially makes a 60

degree angle with the reflecting wall and moves into undisturbed air.

SAlong the left boundary cx = -0.3) and the bottom boundary to the left

of the wedge (y = 0, -0.3 hx 1/6) we prescribe Dirichlet

- boundary conditions according to (4.14); along the top boundary

* (y = 1) values are set to describe the exact motion of an undisturbed

Mach 10 shock flow; along the right boundary (x = 1 .9) all normal

derivatives are set to 0; and along the wedge (y 0,

h1/6 S x 1.9) reflecting boundary conditions are used.

This problem was used as a test problem by Woodward and Collela

[36] to compare several finite difference schemes on uniform grids for

the Euler Equations.

.......... f y <. *.x .*.....,.(4.14a)

and..~.. * *. . *. ** ... . .
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The MacCormack finite difference scheme needs artificial viscosity

to 'capture' the shocks of this problem. We used the artificial viscosity

*. developed by Lapidus [26] which is fluid velocity dependent and was

used with the MacCormack scheme by Woodward and Collela [36].

The initial mesh used for this problem is 45 X 30, and is shown in

Figure 18 (top). We used the magnitude of the density gradient as the

mesh movement indicator. From t = 0 to t = 0.01 one error cluster is
formed that includes both the Mach 10 shock and the smaller reflected

shock region. The resulting mesh at t = 0.01 is shown in Figure 18

(center). This single error cluster is inefficient since it includes

different structures of the solution with different propagation velocities.

At t = 0.02 the clustering algorithm has recognized two different

structures and clusters the error nodes as shown in Figure 18 (bottom).

At t = 0.04 three different structures, the Mach 10 shock, the reflected

shock, and a Mach stem region, are recognized by the error clustering

algorithm as shown in Figure 19 (top). The nodes of the mesh are now

- able to move with the different velocities of these structures. However,

by t = 0.08 it is evident from the mesh of Figure 19 (bottom) that there

are not enough nodes to resolve the continuing elongation of the

reflected shock region. Mesh refinement is necessary to continue the

effective computation of the solution for t > 0.08.

Contour plots of the density at t 0.08 using the moving mesh

and using a uniform stationary mesh with the same number of nodes are

compared in Figure 20. The moving mesh reduces the numerical

oscillations and provides finer resolution of the shocks and the first

*contact discontinuity. However, neither calculation was able to resolve

m.
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Figure 19. Mesh of Example 4.5 at t *0.04 (top) and at t =0.08

* (bottom)
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Figure 20. Contour plots of density from the calculated solutions of

* Example 4.5 at t 2 0.08 on a stationary uniform mesh (top) and on the

moving mesh as shown in Figures 18 and 19 (bottom).
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the fine structures of the second Mach stem and contact discontinuity.

5. CONCLUDING REMARKS

We have described a general two-dimensional mesh moving

technique that enables a mesh to follow the propagation of given error

indicators. Mesh motion is determined from the movement of clusters of

nodes with significantly high error. This procedure was tested on

hyperbolic problems having solutions with large gradients.

Even though mesh moving in two dimensions is difficult, we are

encouraged by our initial results. The mesh moving algorithm was able to

move with the wave and shock fronts of Examples 4.1 and 4.5, was able

. to control the error rotation of the rotating cone in Example 4.2, and

was able to handle the merging and separation of error regions in

* Example 4.4. The distortion of the mesh in Example 4.3 shows the need

for static rezoning when such severe distortions occur. The elongation of

-the reflected region of Example 4.5 demonstates the need for local mesh

refinement in the algorithm.

We are investigating ways to improve the efficiency, reliability,

and robustness of the mesh moving algorithm. Possible improvements

" include (i) not clustering at every time step and letting the mesh move

at a constant velocity for several time steps, (ii) efficiently testing for

mesh tangling or distortion, and (iii) using a better solver for

", hyperbolic equations such as the total variation diminishing schemes of

Osher [291, van Leer (35], or Engquist [16]. We also hope to show the

flexibility of the mesh mover by implementing it with a finite element

*solver for parabolic problems. Finally, we intend to include local mesh
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refinement in the solution algorithm. This combination of mesh moving

and refinement should enhance efficiency, accuracy, and robustness.
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mesh reduces the numerical oscillations behind the propagating wave.

Figure 7. Initial mesh for the rotating cone of Example 4.2.

• .Figure 8. Mesh of Example 4.2 at t = 1.6. Nodes are moving with the

.* rotating cone.

Figure 9. Mesh of Example 4.2 at t * 3.2. Nodes continue to move with

the rotating cone with some node crowding near the boundary.

Figure 10. Contour plots of solutions of Example 4.2 on a moving mesh

(top) and on a stationary uniform mesh (bottom) at t 3.2.

Figure 11. Surface plots of solutions of Example 4.2 on a moving mesh

(top) and on a stationary uniform mesh (bottom) at t * 3.2.
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" Figure 12. Comparison of the characteristic path of the peak of the cone

and the path of the center of error mass as determined by Equation

(2.2) for Example 4.2.

Figure 13. Distorted mesh of Example 4.3 at t a 1.05 showing the need

for static rezoning.

Figure 14. Two spatially distinct error clusters formed by the nearest

neighbor clustering algorithm for the initial mesh of Example 4.4.

Figure 15. Mesh of Example 4.4 at t = 0.35. The two initial clusters

have merged into single cluster centered at the origin.

* Figure 16. Mesh of Example 4.4 at t = 0.9. The single cluster separated

- into two clusters. The two clusters are moving toward the domain

boundaries.

Figure 17. Mesh of Example 4.4 at t = 1.4. The two clusters have

reached the domain boundaries.

Figure 18. Mesh of Example 4.5 at t = 0.0 (top), at t = 0.01 (center),

-" and at t = 0.02 (bottom)

Figure 19. Mesh of Example 4.5 at t = 0.04 (top) and at t = 0.08

(bottom).

Figure 20. Contour plots of density from the calculated solutions of

Example 4.5 at t = 0.08 on a stationary uniform mesh (top) and on the

moving mesh as shown in Figures 18 and 19 (bottom).
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LIST OF SYMBOLS

qI :2 etaix

tau

p :: rho

~ := lambda

* :=upper case sigma, summation symbol

U : bold face u

f :bold face f

9g: bold face g
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