AD-A160 202 OUﬁNTITﬂT!VE EVﬁLUﬂTION OF SOFTHRRE HETHODOLOGV(U)
MARYLAND UNLY COLLEGE PRRK DEPT OF COMI PUTER SCIENCE
¥ R BASILI JUL 85 CS-TR-1519 AFOSR-TR-85-08

UNCLASSIFIED F49620-80-C-000.

2 NL




[\.

.
D
’

IS e

Vi

)
.

VIR A A AR SN

opmm [ '
= L P¥ ;_ .

== . :

X B "2.0

.25

a
-
o

|

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 A




TR . p— P B gy L R RN ERWETT VLR

I

Technleal Report TR-1519 Jity 1ass

Quantitative Evaluation of software Nethiodelogs

Vietor R. Basii

Departinent of Computer Selenes
Untversity of Naryiand
at Coilege Park

. . . - . '_-'.---' '. .V.u"-..._.‘_.. . '.4 . - R ) .
T SR T N
A P S S A S U L W U A W L LA L AL




A A LA R £ S L ol O AR S R S TDE AL, SR AMAMCR AN A AN S R A Nt A ik T St AdE ACR A Ak Gt G At g

/

Technlcal Report TR-1519 July 1985
Quantltative Evaluation of Software Methodology

Vietor R. Baslill

Department of Computer Sclence
Unlversity of Maryland
at College Park

[

l Abstract

/ This paper presented a paradigm for evaluating software
development methods and tools. The basic idea is to generate a set of
goals which are refined into quantifiable questions which specify
metrics to be collected on the software development and maintenance
process and product. These metrics can be used to characterize,
evaluate, predict and motivate. They can be used in an active as well
as passive way by learning from analyzing the data and improving the
methods and tools based upon what is learned from that analysis.
Several examples were givenr .2presenting each of t,he different
approaches to evaluation. Sl Aelins, s

-

NS o P

21‘5'\1'.'7-_1.,,' A AL s T (’J!cl/rl. ~ R P:-. r mealols . —

i
i

- D | " FETAE TR ,
’ . : s . NVt sy

1 ECTE
0CT 16 185

This study is funded by NASA grant NSG-5123 and Alr Force Research Grant AFOSR F49620-80-C-001. This paper
will be presented at the First Pan Pacifilc Computer Conference, Melbourne, Australia. September 10-13, 1985.

. "DISTRIBUTION STATEMENT A
- g Approved for public releasel C.
g . Distribution Unlimited

: -\l .':_'.‘\.'._.‘.‘L'.:_‘ W .. N J
L ORVERA LA LS " ‘\.\.\ \.'..\’ N




Quantitative Evaluation of Software Methodology
Victor R. Bastll

Department of Computer Sclence
Unlversity of Maryland

INTRODUCTION

One of the major problems In the development of software 1s the lack of
management’s ability to (1) ind criteria for selecting the appropriate methods and
tools to develop and maintaln software and (2) evaluate the goodness of the software
product or process. In a survey of the software development Industry, {Thayer and
Pyster 1980] listed the twenty malor problems reported by software managers. Of
these twenty, over half (at least thirteen) dellneated the need for management to
find selectlon criteria for the choice of technology or be able to Judge the quality of
the existing software development process or product. In some sense this may have
been a surprise. Management's prlority was not to ask for new technology but they
wanted to find out how to use the existing technology. This is In fact a major aspect
of the technology transfer problem.

For many cases, there does exist a falr amount of technology avallable for
software development. However, 1t 1S not always apparent to the manager which of
these technlques or tools to Invest In, and whether or not they are working as
predicted for the particular project. What 1s needed In almost all cases IS a quantita-
tlve approach to software management and engineering that uses models and metrics
for the software development process and product. There are such models and
metrics avallable. They cover everything from resource estimation and planning to
the complexity of the product.

This quantitatlve methodology 1s needed for understanding, comparing, evaluat-
ing, predicting, motivating, and good management practices. In many cases, It Is
still a primitive technology and should be used by management and englneering as a
tool to augment good judgement, not to replace 1t. Typlecally, we need to establish
the validity of the models and metrics In the Individual environments to be sure that
they capture the appropriate actlvitles.

METHODOLOGY LEVELS

Before I discuss the avallable modeis and metrics for quantitatlve management
and englneering, I will begin with the Issue of methodology. There are varlous levels
at which the software development process can be viewed. At the top most level, we
often will think about a particular technique, some approach to solving a specific
aspect of the software development problem. For example, structured coding Is a
mechanism for developing code In a particular programming language using a select
set of control structures. It is a logically sound approach to code development since
1t allows ease of testing, readabllity, and permlts the use of a checkable standard.

1




o T T TN TS

Unfortunately, 1t was thought of as the solutlon to the software development
problem back In the 1960's. That now appears rather nalve given what we know
about software development. Structured coding Is clearly only one part of the
software development process, attacking only one phase of the process and a single
product, the code. Taken in Isolation it can even cause a problem. Glven an
unstructured design, 1t would be very difficult for the coder to redesign at the code
level. If the project Is not performing inspections or doing reading or writing tests
based upon the structure of the code, then many of the beneflts of structured coding
are lost. Thus, the technique of structured coding, used In isolation can be a draw-
back and even Increase the cost of a project.

The problem 1s that one cannot take a method or tool and place 1t Into a
foreign environment and expect it to work. What Is needed, as we now understand,
1s an Integrated set of methods and tools that work together across the whole life
cycle. The use of structured coding In conjunction with structured deslgn, a struc-
tured process design language, and reading techniques, have been shown to pay off
well. What we want 18 an integrated set of techniques that provide a methodology
for software development across the entlre life cycle. Tools should be provided,
whenever possible to support the methods.

Unfortunately, this is stlll not ‘the solutlon’. An integrated set of methods must
by definition be an abstractlon. These technlques must be englneered for a particu-
lar environment. In this sense, software engineering involves the application of an
integrated set of techniques to a specific projJect, with 1ts unlque problems, con-
stralnts, and environment. This approach requires an understanding of the project
and the environment 1n which it i{s to be developed so that the right set of tech-
niques can be (1) chosen from the Integrated set and (2) reflned for the environment.

The following are examples of both choosing the approprlate techniques and
refining them. An Integrated set of techniques does not mean a standard fixed set.
An Integrated set should mean a set of technlques from which the manager may
choose the most appropriate glven the project characteristics, knowling that whatever
set 1s chosen they will Interface well with one another. For example, suppose the
project 1s one In which the developer has very little experlence, and the requlrements
will be changing on a regular basls. Then one should choocse a subset of technlques
that lend themselves to a changing environment. This calls for an evolutlonary
approach, such as lteratlve enhancement [Basill and Turner 1975], 1n which the
developer bullds subset versions of the product, evaluating each of the subsets as it
1s completed. Clearly, the standard waterfall model would not be effectlve In thils
environment. However, many technlques, such as structured deslgn and codlng
within a version, are useful.

An example of the reflnement of a technlque might be based upon the history of
errors. Knowing the error pattern In a particular environment, e.g. 40% of the
errors are errors of omlssion and 60% errors of commission. then reading the design
without having the requirements document avallable might mlss as much as 40% of
the errors. Thus the reading approach would require that consistency checks
between documents always be done. The error pattern always warns about total

R P A W S I WP O N O A I I
NORCUER TR "f..- " )_‘h ‘.u'\\. )




AR A i St el St St S it B, S fheth Jhas. S i ok ot 2 e B ¢ vy

rellance on a structural testing technique. If it were known that 10% of the errors
were due to fallure to initiallze varlables, then the readers could be advised to check
for the Initiallzatlon of variables In thelr reading.

In elther case, It Is apparent that the more we know about our environment, the
better we can choose and tallor the appropriate technlques for development and
malntenance.

MODELS AND METRICS

In order to evaluate the methods belng used, we must first understand the
software development process and product. This requires hypotheslizing models. A
model 1s simply an abstractlon of a real world process or product. It attempts to
explain what Is going on by making assumptlons and simpiifylng the environment.

It glves a viewpolnt of the software development process or product by classifylng
various phenomena, abstracting from reallty, and Isolating the aspects of interest.
There may be many models of the same thing, each attempting to analyze a different
aspect. The thing belng modeled may then be described as the sum of all the models
or viewpolnts. There are models which take the viewpolnt of resource use, complex-
1ty, rellabllity, change, etc. Based upon the models, there are metrics which are sim-
ply quantitative measures of the extent or degree to which the software possesses
and exhlbits a certaln characteristle, quality, property, or attribute. These metrics
provide us with measurements: numbers with an assoclated unlt of measure which
describe some aspect of the software.

Metrics can be viewed In many ways [Baslll 1981]. They can be thought of as
objective or subjective. Objective metrics are absolute measures taken on the

»::: product or process, e.g. the time for development, the number of lines of code, the
;j- number of errors or changes. Sublectlve metrics are an estimate of the extent or
;}. degree In the appllcation of some technlque, or the classificatlon or qualification of a

problem or experlence, usually done on a relative scale. Here there Is no exact meas-
i urement but an oplnion or consensus of opinions. Examples Include a rating on the

& use of a process design language (PDL) or a rating of the experience of the program-
[+ mers In an appllcation.

L°

s Typlcally a subjectlve metric Is used when we do not know how to quantify an

objectlve metric. For example, it Is difficuit to defilne an objectlve metric for how
well a PDL was used In the development of a project. However, if we are to evalu-
ate the effect of the PDL we need to know whether the technlque was used well or
not, so that Its effect can be Judged appropriately. Even though we cannot come up
with an objectlve rating, we can ask two or three people to rate the use based upon

some rating scale, e.g. l
0 - wasn't used at all, TNTIS 0uE V :
1 - used only partly and as a coding specification DTIC T.% (]

2 - used almost everywhere but as a coding speclficatlon | Unanaoiw:-:d 7]

3 - used at a higher level than as a coding specification : Justiiics . on.

4 - used at multiple levels of speclficatlon with limlted success } ' M‘(‘c

5 - used effectlvely at mulitiple levels of design By.

| Distritution /L

Avanr‘xi_u v Co "'i

3 . A.'. ‘1 w'qu ar
Dist. Spuoial
i
i
! .
l ed
e .' .'_ __ - ﬁ._{. ._J 0 ‘) i 5."- " - s' . ,‘. . .- ..' . -- '.,- ; ‘- - _:k_:;,:.{.:;.;"."_".:_;.i_‘_.:,'_ -‘:':‘."-.’.';‘.-:':':"-,"-:"-:"-:"-:".‘_"-:".-"-T"-t“.'-':'"-i




yoTd

al

R gt D gt SR St S S Bi Jhe K e ks = Sl i, Bet Se ¢ At Ryt hai he b i

Although the rating wiil not be exact, it will provide reasonable subjective Infor-
matlon that could not be avallable otherwise. Sometimes there is an objective
metric we can use, but it 1s less accurate than the subjective Information. For exam-
ple, to evaluate the experlence of a programmer In an appllcation, an objectlve
metric might be years of experience. However, several studles have shown that years
of experience IS not a rellable metrlc past two or three years. A subjective ratl; g by
management and colleagues would probably be a more accurate measure.

Metrics can be measures of the product or the process. A product metric would
be a measure of the actual product developed, e.g. source code, object code, docu-
mentatlon, etc. Sample metrics are llnes of code (an objectlve metric) and readabll-
1ty of the source code (a sub)ectlve metric). A process metric would be a measure of
the process model used for developlng the product. Sample product metrics would
be the use of a methodology (a subjectlve metric) and the effort for development In
staff months (an objJective metric).

Metrics can be used to measure cost or quality. A cost measure Is some expen-
diture of resources In dollars Including capltal investment usually normallzed accord-
Ing to some value component. For example, staff months, computer use, slze per
time silce. A quality measure represents some form of value of the product. For
example, rellablliity, ease of change, correctness, number of errors remalning, amount
of code reusable. Actually cost can be consldered a quallty metric since low cost
mlight be thought of as a valuable quallty. However, we typlcally are trylng to max-
imlize quallty and minimlze cost so It Is Interesting to see them as separate types of
metrics useful In tradeofs.

There are several general uses of metrics. First and most lmportant, metrics
can be used to characterize and understand. A characterizing metric Is one that
helps distinguish the process or product or environment. For example, the use of a
methodology, the number of externally generated changes, or the size. Each of these
tell us something about the project so that we can better understand it. Character-
1zlng metrics can be used for schedule tracking, providing Information on where the
project stands with respect to percent of resource use, with respect to calendar time,
etc. They can be used to help define the model of the process or the product.

Metrics car be used for evaluation. The metric i1s a good evaluative measure If
1t correlates with or shows directly the quallty of the process or product, e.g. the
number of errors reported durlng acceptance testing or work productivity. Where
almost all metrics can be used for charactertzatlon, only a subset can be used for
evaluation. The schedule tracking metrics mentioned above can be used for evalua-
tlon, only If we know the planned schedule 1s reasonable. If 1t Is, we can use confor-
mance to schedule as a means of evaluating the effect of the methods used.

Metries can be used for prediction and estimation. A predlctive metric Is one
that is estimable or calculable at some polnt In time and can be used to predlct some
informatlon at a later point In time. For example, estimating size as a predictor of
effort 1s a standard predictive relationship. It becomes interesting to try to establish
metrics such as the use of a particular methodology as a metric that predicts (corre-
lates) with various aspects of quallty, e.g. ease of modificatlon.




LS e et T Tl T e e T e e N e e L VR R RV R G L RN WY - ¢ R ey [y Jrie- P Boaiiian Joe bagiioy Fuu S ing M llaeyf e Py Yomp e

s ¢ & &l

Metries can be used for motlvation. Letting the developers know what 1s impor-
tant In a quantitative way defines what It is we are looking for. For example, one of
the major Issues in software productlvity Is the need for reusabliity. However,
management does not motivate reusabllity, it actually unknowlingly discourages it.
By using schedule and cost as the primary motivators for success, It discourages a
manager from using extra time or money that might make parts of the product reus-
able. If reusabllity were listed as one of the prime motlvators, to be traded off with
cost and schedule, we might see more reusabllity. For example, we can motlivate a
project manager to try to develop reusable design or code by rewarding him/her for
all code that gets used In another project. This would help encourage the manager
to consider tradeoffs of reuse with time and cost. Another manager might be
motlvated to reuse someone else’s code by rewarding him/her by counting any
reused code as part of thelr total source code count or even adding extra rewards for
reuse. Motivational metrics need to be carefully thought out, l.e. we need to be sure
we want what we are asking for. But even the generation of such metrlcs helps us
better understand what we are telllng managers versus what we should be telllng
managers, l.e. what are the actual goals of the company and the project.

MEASUREMENT AND EVALUATION PARADIGM

The measurement and evaluation process requires a mechanism for determining
. what data 1s to be collected; why It 1s to be collected; and how the collected data Is
to be Interpreted [Baslll & Welss 1084]. The process requires an organized mechan-
Ism for determining the purpose of the measurement; defining that purpose ln a
traceable way Into a quantitative set of questions that deflne a speclfic set of data for
collectlon. The purpose of the measurement and evaluatlon flows from the needs of
the organlzation. These may Include: the need to evaluate some particular technol-
ogy; the need to better understand resource utllizatlon ln order to lmprove cost estl-
» mation; the need to evaluate the quality of the product In order to determine when

to release 1t; or the need to evaluate the benefits and drawbacks of a research pro-

- Ject.

The goals tend to be vague and amblguous, often expressed at an imprecise

N level of abstraction. For example, the words understand, evaluate, quallty, beneflts,

‘ and drawbacks carry different meanings to different people or vary with different

= environments. The need to better understand resource utillzation in order to
Improve the cost estimatlon process explains what I want to do but leaves many
questions about what kind of data needs to be collected. The need to evaluate the

< use of a technology, Ilke deslgn Inspections, requires the perspective of the expecta-

. tlons from the methodology as does the evaluation of a research project. The goals

need to be carefully articulated but also reflned In a quantitative way In order to

glve precislon and to clarify thelr meaning with respect to the particular environ-

ment.

. The data collection process Itself requires a baslc paradigm that traces the goals
- of the collectlon process, l.e. the reasons the data are belng collected, to the actual

A data. It 1s Important to make clear at least In general terms the organlzatlon's needs
and concerns, the focus of the current project and what Is expected from it. The

5

® o 1 & & s e 8

[

..... . - e e e e
L A O L R R R R LRI R, DI R P L D O L (SRR \"- ‘w."’
K ~%




ARSI AN T Nl 25 L5, (TN

.

- .
(be latalnta!

»,

» )
MR

-

RS AACROES

Satefe e

? N ~ . .-
.:.~n -.J'. -(..: .’(..:..-v o

R SR el tar e At Safigls & KRN, Lm0 SRR T e e ke Shde ity Ml n aluitaliy s S i nel afl Sl eIt Sul

formulation of these expectations can go a long way towards focusing the work on
the project and evaluating whether the projJect has achleved those expectations. The
need for Information must be quantified whenever posslible and the quantification
analyzed as to whether or not It satisfles the needs. This quantificatlon of the goals
should then be mapped Into a set of data that can be collected on the product and
the process. The data should then be valldated with respect to how accurate it Is
and then analyzed and the results Interpreted with respect to the goals.

The actual data collectlon paradigm can be visuallzed by a diagram:

Goall Goal?2 Goailn

. .

Questlonl . Question3 Question4 . Questions

. . . . Questiond .

. Question2 . . Questlions . Question?
d1 . . . mo d2 . e . . + . m5

ml m2 m3 m m2 d3 m8 m mé m7

Here there are n goals shown and each goal generates a set of questions that attempt
to define and quantify the specific goal which Is at the root of its goal tree. The goal
Is only as well defined as the questions that 1t generates. Each question generates a
set of metries (ml) or distributions of data (di). Again, the question can only be
answered relatlve to and as completely as the avallable metrics and distributions
allow. As Is shown In the above dlagram, the same questions can be used to deflne
different goals (e.g. Question8) and metrics and distributions can be used to answer
more that one questlon. Thus questions and metrics are used In several contexts.

The paradigm Is Important not just for focusing management, engineering, and
quallty assurance Interests but also for Interpreting the questions and the metrics.
For example, m8 Is collected in two contexts and possibly for two different reasons.
Question6 may ask for the size of the product (mé) as part of the goal to model pro-
ductivity (Goal2). But m8 (size of the product) may also be used as part of a ques-
tion about the complexity of the product (e.g. Questlon?) related to a goal on ease of
modlficatlon (e.g. Goaln).

If a measure cannot be taken but Is part of the defilnltion of the question, It is
Important that 1t be Included In the goal/question/metric paradigm. This Is so that
the other metrics that answer the question can be viewed In the proper context and
the question Interpreted with the appropriate llmitatlons. The same Is true for ques-
tlons belng asked that may not be answerabie with the data avallable. For example,
to determine the effectlveness of a method In reducing errors, I need to know the
total number of faults over the system Iife time. I cannot know thls number durlng
the development phase. I should still Include the metric In the paradigm so that 1
know the information Is Incomplete.

TR (ORI Ay e e RN

PP 80 53 S AR T S A AT SR A S A SR SR O8 1) ;;:l';].\.‘-i



SN T T L LT .'.".T-:l"???'rrr-“zq;g

By
, -
..
W
-
.
.

-
‘e

T

LR
RCRCNTAA

)
oo
« ¢

SRR
PO IS

ARG X 6 A0 G

PCAPRPCIE P P AN

It could then be assumed that although there may be many goals and even
many questions, the metrics do not grow as the same rate as the goals and questlons.
Thus a set of metrics could be collected for characterizing the software process and
product that will allow many questions generated by different goals to be answered.

Glven the above paradigm, the data collectlon process consists of six steps:
1. Generate a set of goals based upon the needs of the organization.

The first step of the process Is to determine what It Is you want to know. This
focuses the work to be done and allows a framework for determining whether or not
you have accomplished what you set out to do. For exampie, the organlzation may
wish to know whether the use of a speclfic method or tool improves the productivity
of the project personne] or the quality of the product. It may wish to deflne a set of
goals for a research project and then determine whether that project has achleved
those goals. The goal may be simpler. It may be to characterize the resource usage
across the project. In any case the goals should be clearly stated. The goals do not
have to be quantifiable. It 1s the next step In the process to take the goal and make
it measurable.

It is difficult to provide an organization with a set of guldellnes for generating
goals. These should be based upon the particular needs and concerns of the organl-
zatlon and its purpose for beginning a data collection activity. The goais can be
management orlented, engineering orlented, quality assurance orlented or even
research orlented. As stated above, many of the questions or metrics may be the
same for the different orlentatlons but they may be combined In different ways and
the Interpretation will have a different focus and Impact.

Management oriented goals will typlcally deal with resource allocatlon and mon-
itoring for the purpose of predictlon and estimation. For example managers may
wish to estimate cost, track resource expendltures, and predict the quality of the
project. An englneering orlentation may be to evaluate the technology belng used in
the development of the project, discover the problems In terms of errors and resource
use In order to Improve the quality of the process or the product. A quallty
assurance orlentation may be to characterize the product or even the process to
Judge adherence to standards, Isolate parts of the product that requlre rework, or
evaluate the product for dellvery. A research orlentatlon may be to focus on the
benefits and drawbacks of the development of a new technology and demonstrate lts
eflectlveness. Each of these orlentations have goals In common. It Is the Interpreta-
tlon that may be different. Many of the questions and metrics (e.g. about resource
allocatlon) will be replicated for different goals so that the same data can answer
many questions and allow for the achlevement of many goals.

The goals to characterlze, evaluate and predlct aspects of the software process
and product cover a large area. We can set goals to characterize the effort expended,
the changes generated, the errors committed, the dimensions of the products such as
slze and complexity at varlous points In time, the methods and tools, the documenta-
tlon, the applicatlon, the experience of the developers, the computer and the con-
stralnts set on the project, and the various executlon time Issues such as perfor-
mance, space utlllzatlon, and test coverage. We can set goals to evaluate the

7

e L T S T Tt et e A e e ATy A T
DAV RO AR PR ;'.J:\n'\n‘:d:i .C\.f:'i.- I '-':‘\ " ‘J'\ " \ \"" -

L CALAREN




DI B2 0 Wi

effectiveness of the tools and methods used, the environment In which the product Is
developed, and even the models for the process and product. We can set goals to
predict the cost, rellability or quality of the product.

2. Derlve a set of questlons of Interest or hypotheses which quantify those
goals.

The goals must now be formallzed by making them quantifiable. This Is the
most difficult step tn the process because 1t often requires the Interpretation of fuzzy
terms llke quallty or productivity within the context of the development environ-
ment. These questions deflne the goals of step 1. The alm Is to satlsfy the Intultive
notion of the goal as completely and consistently as possible. For example with the
above goal of characterlzlng resource usage across the project, questions of interest
mlight be: How much time (In minutes, hours, weeks, months or years) was spent by
all personnel of interest (programmer, librarlan, support stafl, managers, reviewers,
etc.) In total and across subcategorles, In each phase (requirements, specificatlon,
deslgn, code, test, and operatlon) or activity (tralning, reviewing, making changes,
etc.) for each product part (module, subsystem, full system)? riow much computer
time was spent by all personnel of Interest In total and across ail subcategories, for
each phase or actlvity, for each product part? These questions actually generate sets
of questions parameterized by each of the subcategorles above.

After all possible resource usages have been deflned and transposed into ques-
tlons, the questions posed must be evaluated as to whether they provide a complete
definition of the goal. This process Is a heurlstic one and the judgement of whether
or not the goal 1s satisfled by the questions will be subjectlve. The process Is often
1terative and after collecting resource characterization data the collector may dls-
cover new questions that were missed. These could then be added to the question
list for later projects. It might even be possible that the data has been collected to
answer these questions because 1t was collected to answer another question. However
before applylng the data directly, the question/metric paradigm should be developed
to assure proper interpretation of the question.

It wlll often be the case that the set of questions do not fully satisfy the goal.
This may be because we do not know how to phrase a question In a quantifiable way
or because we cannot interpret the fuzzy terms of the goal In a well defined way or
the cost for collecting the data may not be worth it for the achlevement of the goal.
In these cases the missing aspects of the goals should be noted so that later Interpre-
tatlons of the results can be quallfied appropriately.

3. Develop a set of data metrics and distributions which provide the Informa-
tlon needed to answer the questions of Interest.

In this step, the actual data needed to answer the questions are 1dentifled and
assoclated with each of the questlons. In the above example this Is a simple count of
people and computer time by the varlous subcategories. However, the 1dentificatlon
of the data categories IS not always so easy. Sometimes new metrics or data distri-
butlons must be deflned. Other times data items can be deflned to answer only part
of a question. In thls case, the answer to the question must be quallfied and inter-
preted In the context of the missing informatlon. As the data ltems are identifled,




“‘.l

L

3

L

.. '.I

thought should be given to how valld the data ltem will be with respect to accuracy
and how well 1t captures the specific question.

These data items may be objectlve or subjectlve. If they are subjectlve, some
mechanism must be deflned for quantifying the evaluation, e.g. an Integer scale of 0
to 5, and elimlnating varlations In judgement, e.g. a consensus of three people,

4. Deflne a mechanlsm for collecting the data as accurately as possible

The data can be collected via forms, Interviews, or automatically by the com-
puter. If the data Is to be collected via forms, they must be carefully deflned for
ease of understanding by the person fllling out the form and clear Interpretation by
the analyst. An Instruction sheet and glossary of terms should accompany the
forms. Care should be glven to characterizing the accuracy of the data and defining
the allowable error bounds.

5. Perform a valldatlon of the data

The data should always be checked for accuracy. Forms should be reviewed as
they are handed in. They should be read by a data analyst and checked with the
person filling out the form when questions arise. Sample sets should be set to deter-
mine accuracy the data as a whole. As data Is entered Into the data base, validity
checks should be made by the enterlng program. Redundant data should be col-
lected so checks can be made.

The valldity of the data Is a critical Issue. Interpretations will be made that
will effect the entlire organization. One should not assume accuracy without
Justification.

8. Analyze the data collected to answer the questlons posed

The data should be analyzed In the context of the questions and goals with
which they are assoclated. Missing data and missing questions should be accounted
for In the Interpretation.

The process Is top down, l.e before we know what data to collect we must first
defilne the reason for the data collectlon process and make sure the right data Is
being collected, and It can be Interpreted In the right context. To start with a set of
metrics 1s working bottom up and does not provide the collector with the right con-
text for analysls or Interpretation.

EXAMPLE TECHNIQUE EVALUATION

As an example conslder the goal of evaluating the effectlveness of a method such
as design Inspections. This appears to be a clearly stated goal at first but the goal
does not say with respect to what are we to evaluate the technology. Let us heip
deflne this better by asking a set of questions.

Questlon 1: How well were the Inspections performed? Use a subjectlve rating O
to 5.

This questlon provides us with a basls for evaluation. We would not llke to
evaluate the technical benefits of the method If It was not applled well. We may
even wish to rate how well different aspects of the technique were applled. This

R R T T P Tt N U ..
TN RN VN e g et e L e T T e e e B AR ]
. g 3 LNy . . gl T S




ratlng might be dcne by the moderator, a prolect person and the Instructor of the
technlique.

Questlon 2: How many errors were uncovered? Characterize the errors by
different classification categorles.

This might tell us whether the technlque 1s better at finding certaln klnas of
errors and If we have any history of other projects as a basls, 1t can tell us whether
we are dolng better or worse than the norm.

Questlon 3: How much calendar tlme was spent?

This questlon addresses the cost of applylng the technlque. For example we
might wish to analyze the effect on the schedule.

Questlon 4: How many staff hours were spent?

This question addresses the cost and resources spent. We can compare the
number of hours spent finding errors In thls way to the varlous testing technlques
used.

Questlon 5: What percent of the errors were found?

We will not fully be able to answer this question until the product has been In
the fleid for several years but at each mllestone, e.g. acceptance test, one year in the
fleld, etc. We wlill be better able to understand the effectlveness of the technlque.

Questlon 6: What was the cost of error Isolatlon? error flx?

This question allows us to analyze the cost of dlscovering and fixing errors dur-
Ing Inspections as opposed to during testing.

etc.

There are many more questions we might ask based upon what It Is we want to
know. As stated above, these questlons permlt us to better deflne the goals, help us
to specify what data needs to be collected (e.g. subjectlve ratings on how well the
method was applled, error counts and distributlons, effort {n Inspection by person by
actlvity), and how the data should be Interpreted (e.g. we may not be able to Judge
the total effectiveness until the project has been out In the fleld for a while).

METHODOLOGY IMPROVEMENT PARADIGM

All thls leads us to the following basle paradigm for evaluating and !mproving
the methodology used in the software development and malntenance process.

1. Characterize the approach/environment.

This step requlres an understanding of the various factors that will influence the
project development. This Includes the problem factors, e.g. the type of problem,
the newness to the state of the art, the susceptibllity to change, the people factors,
e.g. the number of people working on the project, thelr level of expertise, experl-
ence, the product factors, e.g. the slze, the dellverables, the rellabllity requirements.
portablillty requirements, reusability requirements. the resource factors, e.g. target
and development machine systems, avallablllity, budget, deadlines, the process and
tool factors, e.g. what techniques and tools are avallable, training In them,

10

a7 e T a"% . I R TR TR S S P 4 « ' . hd - * ~ - -
st R R E B TR SO
e e S N TN T S N T S N

et et -t

..... R L.

B . o DN SRS
.

= gte S

RS LT I S

-
L]
Vo YR ATASYS WAL WAL S48



sl

programming languages, code analyzers.

2. Set up the goals, questions, data for successful proJect development and
improvement over previous project developments.

It 1s at this polnt the organlzation and the prolect manager must determine
what the goals are for the project development. Some of these may be specifled from
step 1. Others may be chosen based upon the needs of the organizatlon, e.g. reusa-
bllity of the code on another project, Improvement of the quallty, lower cost.

3. Choose the approprlate methods and tools for the project.

Once It Is clear what Is requlred and avallable, methods and tools should be
chosen and reflned that will maximize the chances of satlsfylng the goals lald out for
the proJect. Tools may be chosen because they facilitate the collection of the data
necessary for evaluation, e.g. configuration management tools not only help project
control but also help with the collectlon and valldation of error and change data.

4. Perform the software development and malntenance, collecting the
prescribed data and valldating it.

This step involves the collectlon of data by forms, Interviews, and automated
collectlon mechanisms. The advantages of using forms to collect data is that a full
set of data can be gathered which gives detalled Insights and provides for good
record keeping. The drawback to forms Is that they can be expensive and unrellable
because people flll them out. Interview can be used to valldate Information from
forms and gather information that Is not easlly obtalnable In a form format.
Automated data collection is rellable and unobtrusive and can be gathered from pro-
gram development llbrarles, program analyzers, et¢c. However, the type of data that
can be collected In thls way is typlecally not very Insightful and one level removed
from the Issue belng studied.

5. Analyze the data to evaluate the current practlces, determine problems,
record the findings and make recommendations for Improvement.

This Is the Key to the mechanism. It requires a post mortem on the project.
Project data should be analyzed to determine how well the project satisfled Its goals,
where the methods were effective, where they were not effectlve, whether they should
be modified and reflned for better appllcation, whether more tralning or different
tralning Is needed, whether tools or standards are needed to help In the appilcation
of the methods, or whether the methods or tools should be dilscarded and new
methods or tools applled on the next project.

8. Proceed to step 1 to start the next project, armed with the knowledge galned
from this and the prevlous projects.

This procedure for developlng software has a corporate learning curve bullt 1n.
The knowledge 1s not hidden 1n the Intultion of first level managers but Is stored In a
corporate data base avallable to new and old managers to help with proJect manage-
ment, method and tool evaluation, and technology transfer.

11

.......

..-. ol

\
-;;' Ax-n.-qt. c':'-"- [ e ) l‘\d'.'

’\.F . -‘ J#



CASE STUDIES OF METHODOLOGY EVALUATION

With all the different methods and tools avallable, we need to better quantita-
tlvely understand and evaluate the benefits and drawbacks of each of them. There
are several different approaches to quantitatively evaluating methods and tools:
blocked subject-project, replicated project, multl-project variation, and single project
case study [Baslll & Selby 84]. The approaches can be characterized by the number
of teams replicating each project and number of different projects analyzed as shown
In Table 1.

o ke 3k ok ok ok e Ak ok ok ok ok ke ok ok ke ok ok ok ok K ok ok ok ok ke sk ok ok ok ok ok K ok ok

x # of projects *

o o sk ke ok 3k ok ok ok Kk ok ok ok ek ok ok ok ok sk ok ok ak kol ok K ok ok ok ok ok ok ok ok ok kK

* one more than *

* one *

ekkk ok kR ok Rk ok ok ok kK kR kokkkok ok kok ko kkkokk kR ke kN kb kR bk kkkkE
* *

# of » one * single project multl-project =
teams * * vartation *
] * *

per * more than =* repllcated blocked *
project one * project subject-project =
* * *

3¢ 2k ok de ok ok ke ok ko ok ol ok ol ok ok ke ok ok ke dk ke ke sk sk ok kR ke sk ok ok ok ok ko ok ok ok ok ok Rk ke kR kR Rk kR R kR &%

TABLE 1

The approaches vary In cost and the level of confidence one can have In the resuit of
the study. Clearly, an analysls of several repllcated projects costs more money but
wlll generate stronger confidence In the conclusion. Unfortunately, since a blocked
subject-project experiment 1s so expensive, the projects studled tend to be small.
The size of the proJects Increase the costs go down so Is possible to study very large
single project experiments and even multl-project variation experlments If the right
environment can be found. In what follows, at least one example of each of these
approaches will be glven as performed by the Laboratory for Software Engineering
Research (LASER) at the University of Maryland.

METHODOLOGY EVALUATION USING BLOCKED SUBJECT-
PROJECT ANALYSIS

This type of analysis allows the examinatlon of several factors within the frame-
work of one study. Each of the technologles to be studled can be applied to a set of
projects by several subjects and each subject applles each of the technologles under
study. It permlits the experimenter to control for differences In the subject popula-
tlon as well as study the effect of the particular projects.

The sample study discussed here 1s a testing strategles comparison [Basill &
Selby 85]. The goal was to compare the effects of code reading, functional and struc-
tural testing with respect to 1) fault detectlon effectlveness, 2) fault detectlon cost,

12




P
L

0
s

YaasyNS]

Fon b WS,

WL L e
.'#.‘-.

Ran ‘.._'_ o .'. _.,_.'._‘-’_) ._‘_ }q 'i'\n RCRURTA “.-'?\" ._.'._.J, _‘-_ ,..;. -..'\ ST \}y'\'_‘.\'-'._\'.\

and 3) classes of faults detected. A secondary goal was to compare the performance
of software type and expertise level but only the first goal will be discussed here.

The experimental approach Involved three replications of the experiment using
74 subjlects on four different prolects. The projects were a text formatter, a plotter,
an abstract data type, and a database program varyling {n length between 145 and
365 lines of code. The programs each contalned software faults (9, 6, 7, 12 respec-
tively) that were elther made durlng the actual development of the program or were
seeded based upon characteristic faults found in the local environment. The experl-
mental design was a fractional factorlal design blocked according to experience level
and the program tested. Each subject used each technlque and tested each program.

Two of the questions generated from thls study were:

Question 1: Which of the valldation technlques detects the greatest number of
faults In the programs?

The data collected for this question Is the number of faults found In each pro-
Ject by each subject. The results of the study were that 4 faults were found on the
average and that code reading was more effective than both testing technlques but
functional testing was more effective than structural testing. Reading found 5.1
faults on the average, functionai testing found 4.5 faults on the average and struc-
tural testing found 3.3 faults on the average.

Questlon 2: Which of the techniques has the highest fault detection rate
(number of faults detected per hour)?

The data collected to answer this question was the number of faults found and
the time spent by the subject In detecting faults. The results were that code reading
was more cost effective than functional and structural testing. Code reading found
3.3 faults per hour on the average while each of the testlng technlques found 1.8
faults on the average.

Because of the experlmental design of this type of analysls there were many
other questlons that were posed and answered by this experiment, e.g. Is the fault
detectlon rate dependent on the type of software? Is the number of faults observed
dependent on the type of software? Do the methods tend to capture different classes
of faults? What classes of faults are observable but go unreported?

The experimental design for this study permits a great amount of statistical
analysis and provide the experlmenter with a fair amount of latitude 1n studying the
different aspects of the project. The drawbacks to the study are that the projects
studled are small module size proJects and the results do not necessarlly scale up to
the acceptance test phase of very large projects. The interpretation Is more accurate
for the unlt test phase. The study does not provide sufflcient insight into how the
techniques might work on larger projects. Thls drawback Is of necessity because the
cost of replication Is too expensive.

METHODOLOGY EVALUATION USING REPLICATED PROJECT
ANALYSIS

13

e o«




v

-

-
-
.

5N

CAR SRENE NS W)

Ky e e e v

The replicated project analysis Involves several replicatlons of the same project
by different subjects. Each of the technologles to be studled Is applled to the project
by several subjects but each subject applles only one of the technologles. It permits
the experimenter to establish control groups.

The goal of the sample study was t0 quantitatively evaluate the effect of a dis-
clplined approach to software development [Basili & Relter 81]. The disciplined
approach included the use of an Integrated set of technlques that Included top down
design, a process design language, walk-throughs, chlef programmer teams, and the
use of a librarian.

The experimental approach involved the replication of the same prolect by 19
teams, Inciuding 7 three person discipiined teams (DT), 6 three-person ad hoc teams
(AT), and 8 ad hoc Indlviduals (AI). The project was to bulld a compliler for a small
language, anticipating about 1200 source llnes of code 1n a high level language. All
the data was collected automatically so that the subjects did not know what was
belng measured. The drawback to this Is that the Informatlon was typlcally one
level removed from what we really wanted to know. The statistical analysis per-
formed were the non-parametric Mann-Whltney U and Kruskal-Wallls H tests.

Specific questions Included:

Questlon 1: Does a disciplincd approach reduce the average cost and complexity
of the process?

The data collected was a count of the (1) number of Job steps, l.e. any aspect of
computer access such as module compllations and program executlons, and (2) pro-
gram changes, l.e. the number of changes to a program that indicated an error or
omlission. Job steps were used to represent effort and program changes were used to
represent errors.

The results of the study showed that for ail categories of Job steps and program
changes, the discipllned teams had statistically less of both than elther the ad hoc
teams or the ad hoc Indlviduals.

Question 2: Does a disciplined team behave more llke an Individual programmer
than a team in terms of the resulting product? This was an attempt tO measure con-
ceptual Integrity.

The data collected here was varlous product measures such as slze (number of
segments, number of llnes of code, number of decislons) and complexity, e.g. a com-
parison of cyclomatic complexity [McCabe] for the top quartlles of modules.

The results of this study showed that the ad hoc Indlvlduals had a smaller
number of segments than elther the disciplined teams or the ad hoc teams. The ad
hoc Indlviduals had less lines of code than the dlsclplined teams which had less lines
of code than the ad hoc teams, and the ad hoc indlviduals and disciplined teams had
less decision than the ad hoc teams. Comparing the cyclomatic complexity of the
modules In the upper quartiles, the results were that the disciplined teams created
the least complex projects and the ad hoc indlviduals the most complex project with
the ad hoc teams lylng in between, depending upon the mechanism for counting
decisions.

14

-------------------
L) .. T IR

ST S T S S B Y e T e T et T e o A T et Tt et e e
3 ST AR St -'."'_- A R I (A N R SR Y

-~

Nt At

- - a tom Yt A‘
AT T




Thus 1t was felt that the questions were both answerable In the affirmative.
The beneflt of the study 1s that the results were soundly supported statistically
because of the number of replications and the projects were of a more reasonable size
than the modules studled In the testing experiment. The drawback to this study
agaln Is that the projects were stlll smaller than many projects one might encounter
and 1t 1s not clear that the results would stlll hold if the project sizes were Increased
by an order of magnitude.

METHODOLOGY EVALUATION USING MULTI-PROJECT VARIA-
TION ANALYSIS

Multl-project variation analysls Involves the measurement of several projects
where controlled factors such as methodology can be varled across simllar projects.
This Is not a controlled experiment as the previous two approaches were, but allows
the experimenter to study the effect of various methods and tools to the extent that
the organlzation allows them to vary on different projects.

The goal of this sample study was to examine the relationshlp between metho-
dology and varlous factors such as productivity and quality. (Balley & Baslill 1981],
(Baslll & Balley 1980], [Baslll 1981]. The study was conducted In the Software
Engineering Laboratory, at jJolnt project between NASA Goddard Space Flight
Center, the Unlversity of Maryland, and Computer Sclences Corporatlon.

The approach was to study a serles of projects that involve ground support
software for satellites. Each proJect was rated with respect to a large set of factors,
covering environment, methodology, experlence, performance, etc. When the metrics
were subjective they were given on 2 sIxX polnt scale, e.g. rating on the basis of the
use of a methodology.

The methodology factors used In the study were very simllar to the methodol-
ogy factors used In the replicated project study discussed above. This allowed us to
see If the methods could work on larger projects than In the controlled study. This
has been a common mechanism In the Laboratory for Software Engineering
Research. We run both controlled experiments on small projects and case studles or
multl-project analysls on large projects to verlfy the effects of the technologlies. The
- combination of both approaches provides us with a deeper confidence that the tech-
E nologles are effectlve as well as allowing us to understand their effects In different

environments.
The three major questions asked in this study were:

::-{ Question 1: Did the projects with a high methodology use come from a different
™ population than those projects with a low or medium methodology use?

Question 2: Do any other factors or sets of factors show a signlficant effect on
productivity?

Data used to answer these questions were Ilnes of source code per staff month

ol for productivity and such factors as customer Interface complexity; customer orl-
glnated program deslgn changes; the complexity of such things as the applicatlion,
the program flow, the Internal communicatlon, the external communlcation, the data

15

BN RSN S T~
> '.;_I_L A_.L{-AL(LSL.L" A_(-_. A.!L A




...... P P

base; constralnts such as I/O capabllity, timing, maln storage; programming group
experience such as machlne famillarity, language famlllarity, application experience;
hardware changes during development.

The approach to answering these first two questions was based upon a simllar
type of study at IBM/FSD [Brooks 1981]. A statistical test was performed to see If
projects with high methodology came from a different environment with respect to
productlvity than projects with a low methodology use. The data used was based
upon a refatlve ranking rather than an absolute rating. The approach was to divide
the ratings for each technlque into 3 categories: low (-1), medium (0), high (1). This
was done to offset differences In scales. The ratings were added to get a cumulatlive
methodology rating. The projects were then divided into groups based upon thelr
rating and analyzed using the Mann-Whltney U test.

In analyzing the relatlonshlp between productivity and varlous factors, no
signlficant relatlonshlp was found between productlvity and size. However there
were statistically significant results In demonstrating that those projects with high
methodology use came from a different (and much higher) productivity population
than those projects with low or even medlum methodology use. So the answer t0 the
first question was yes. The answer to this question was no.

Question 3: What are the factors that predict quality?

The metrics were compressed Into three factors: quallity, methodology and com-
plexity. Methodology and complexity were not significantly correlated. Quallty was
significantly correlated with methodology (r = .87) and complexity (r = -.64) at less
than quallty, we got an R*x2 of .45. Using the methodology and complexity metrics
to predict quallty we got an Rxx2 of .85. Based upon this study, 1t was clear that
quality can be predicted from the use of methodology.

The benefit to this approach Is that 1t does not requlre speclal experimental pro-
Jects but allows for the evaluation of methodology In the normal development
environment. The Improvement algorithm discussed eariler can be applled to the
environment In order to Improve both the productlvity and the quallty of the
software.

However, there are several drawbacks to the approach. First, it requires that
there Is enough differences In the projects use of methodology and there are enough
projects usinz each of the methods, l.e. there must be enough of a sampliing to gen-
erate a statistical resuit. Second, since the experlment i1s not controlled, there is
always the possibility of making mistakes In the Interpretation, l.e. other factors that
have not been controlled for may be causing the differences in productlvity or qual-
1ty. Third, If the methodology improvement paradigm Is belng used, we are losing
our control group of projects where little or no methodology Is belng used.

METHODOLOGY EVALUATION USING SINGLE PROJECT/CASE
STUDY ANALYSIS

Unfortunately, this Is where most methodology evaluation beglns. There Is a
project and the management has declded to make use of some new method or set of
methods and wants to know whether or not the method generates any lmprovement

16

ANPGRS DAIDAICAE N ACUI I SRS AUI PR A R SR S S RS A S N R D R ead AR et ek |




In the productlvity or quality. A great deal depends upon the Indlvidual factors
involved In the project and the methods applled.

This sample study had a set of goals that dealt with the effectlveness of certaln
development technlques; Information hlding, abstract Interfaces, and formal
specificatlons, as well as the effectlveness of the data collectlon process [Baslll &
Welss 1981]. The project involved was the redevelopment of the on-board opera-
tlonal flight program for the A-7 alrcraft. The development was done at the Naval
Research Laboratorles In Washington D.C. The analys!s reported here was done
after the requirements document was baselined with the subgoal of trying to Judge
the effectlveness of the requirements document which was developed uslng a formal
speclflcation technlique, a state machlne model and abstract interfaces.

One of the subgoals was that the requirements document should be easy to
change. Based upon that goal the following questions were generated.

LEI Questlon 1: Is the document easy to change?

f',f Question 2: Is 1t clear where a change has to be made?

' Question 3: Are the changes that are likely to occur, predicted correctly?
E Questlon 4: Are changes conflned to a single sectlon?

The data collected to answer these questions consisted of varlous distributlons

of data such as the types of changes, effort to change, confinement of changes and
changes by sectlon. Given the data distributlons:

Types of Changes:

85% were original error corrections

6% were to complete or correct a previous change

29% were to reorganize

7% were other changes (none of which were more than 1%)

Effort to Change:

68% were trivial (less than 1 hour)

28% were easy (1 hour to 1 day)

5% were medium (1 day to 1 week)

0% were hard (1 week to 1 month)

1% were formidable (more than 1 month)

Conflnement of Changes:
85% were to one sectlon
15% were to more than one sectlon

., 4
A

(g

.

T
'}
L

g

ACALAUALY

-
’
0} 3

T U

af

The following conclusions were drawn:

The document was not very hard to change since most of the changes were
trivial or easy. The only formidable change Involved the change of a coordinate sys-
tem that the developers did not know and the time for the change Included the

Y
: learning of that coordlnate system. It should be noted that that change was
. conflned to one section.

Since most of the changes were confined to a single sectlon of the report one
might argue that the document was organized In a way that the likely changes were

17




predicted correctly, that 1t was clear where a change had to be made, and that the
changes were conflned to a single sectlon.

So the conclusion was drawn that the document was easy to change. However,
that conclusion Is based on comparing the data with experience and Intuitlon. Most
experienced people who have seen the data agree that the requirements document
was a successful development but there Is no statistical evidence and there 1s no solld
basls for comparison. If simllar data had been collected from other similar projects,
and we were able to do a comparison, as we dld with the multl-project analysis, our
confldence level In the results might have been higher.

SUMMARY AND CONCLUSION

This paper has presented a set of quantitative approaches to evaluating
software development methods and tools. The baslc 1dea Is to generate a set of goals
which are reflned into quantifiable questions which specify metrics to be collected on
the software development and malntenance process and product. These metrics can
be used to characterize, evaluate, predlct and motlvate.” They can be used In an
actlve as well as passive way by learning from analyzing the data and improving the
methods and tools based upon what Is learned from that analysls. Several examples
were given representing each of the different approaches to evaluation. The cost of
the approaches varied inversely with the level of confldence 1In the Interpretation of
the results.

It 1s hoped that this paper has demonstrated that there are quantitative
mechanisms for evaluating methodologles. These mechanisms can be used In indus-
try and In the research laboratorles to provide better Insights Into the beneflts and
weaknesses of technology.

ACKNOWLEDGEMENT

This research was supported In part by the Natlonal Aeronautics and Space
Administration Grant NSG-5123 and by the Alr Force Offlce of Sclentific Research
under Contract AFOSR-F49620-80-C-001 to the Unlverslty of Maryland.

REFERENCES

(Balley & Baslll 1981]
John W. Balley and Victor R. Basill, A Meta-Model for Software Development
Resource Expenditures, Proceedings of the Fifth Internatlonal Conference on
Software Englneering, San Dlego, Callfornla, pp 107-116, 1981.

[Basill 1981]
Victor R. Baslil, Evaluating Software Development Characteristics: Assessment
of Software Measures In the Software Englineering Laboratory, Proceedings of
the Sixth Annual Software Engineering Workshop, December 1981.

(Basill & Balley 1980]
Victor R. Baslill and John V. Balley, The Software Englneering Laboratory:
Measuring the Effects of Software Methodologles within the Software Engineer-
ing Laboratory, Proceedings of the Fifth Annual Software Englneering

18




:ﬁ‘i';f\'.ﬁf‘-fﬁ':‘s'f*.ﬂ‘.' ALGE LA GNER S AN A N M A A A e

Workshop, November 1980.

[Basill & Relter 1981])
Victor R. Baslll and Robert W. Relter, Jr., A Controlled Experiment Quantita-
tlvely Comparing Software Development Approaches, IEEE Transactions on
Software Englneering, Vol. SE-7, No. 3, pp 200-320, May 1981.

[Basilt & Selby 1984]
Victor R. Baslll and Rlchard W. Selby, Jr., Data Collection and Analysls In
Software Research and Management, Proceedings of the American Statistical 1
Assoclatlon, pp 21-30, 1084. *

[Basill & Selby 1985]
Victor R. Baslll and Richard W. Seiby, Jr., Comparing the Effectiveness of
Software Testing Strategles, Unlversity of Maryland Technlcal Report TR-1501,
May 1985.

(Baslll & Turner 1975]
Victor R. Baslll and Albert J. Turner, [terative Enhancement: A Practical Tech-
nique for Software Development, IEEE Transactlons on Software Engineering,
pp 390-396, December, 1975.

[Basill & Welss 1981]
Victor R. Basill and David M. Welss, Evaluation of a Software Requirements
Document by Analysis of Change Data, Proceedings of the Fifth International
Conference on Software Englneering, San Dlego Callfornla, pp 314-323, March
9-12, 1981.

[Baslll & Welss 1984]
Victor R. Baslll and David M. Welss, A Methodology for Collecting Valid
Software Engineering Data, IEEE Transactions on Software Engineering, Vol.
SE-10, No. 3, pp 728-738, November 1984.
(Brooks 1981]
W. Douglas Brooks, Software Technology Payofl: Some Statistical Evidence,
Journal of Systems and Software, Volume 2, Number 1, pp 3-10, February 1981.
(McCabe 1976]
Thomas J. McCabe, A Complexity Measure, IEEE Transactions on Software
Englneering, pp 308-320, December 19786.
[Thayer & Pyster 1980)
Richard H. Thayer, Arthur Pyster, and Roger C. Wood, The Challenge of

Software Englineering Project Management, [EEE Computer Magazine, pp 51-
59, August 1980.

19

o LI T T s . - S Y
.l'.\ s Jte %0 % % O .'-". W e .

A TR

. tatlal e et
:L:l..le_':.::.-“':h"'_\ ALY Lt

AT I SN SV R
-



LS M LML Y S

e

10. PROGRAM ELEMENT PROJECT, TASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS
AREA & WORK UNIT NUMBERS

Department of Computer Science

4. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 1S. SECURITY CLASS. (of this report)

University of Maryland GWoar 23041 Qg
College Park, MD 20742
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Math. & Info. Sciences, AFOSR, Bolling AFB July 1985

NASA/Goddard Space Flight Centesasf: D-C.

Greenbelt, Maryland

13. NUMBER OF PAGES

19

UNCLASSIFIED

15¢. OECLASSIFICATION/ DOWNGRADING
SCHEDULE

. OISTRIBUTION STATEMENT (of this Report)

&

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered Iin Block 20, it different from Report)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse gside if necessary and identify by dlock number)

software evaluation, software measurement
software methodology, data collection

20. ABSTRACT (Continue on reverse side If necessary and Identity by block number) This paper presents a
paradigm for evaluating software development methods and tools. The basic idea
is to generate a set of goals which are refined into quantifiable questions which
specify metrics to be collected on the software development and maintenance
process and product. These metrics can be used to characterize, evaluate, pre-
dict and motivate. They can be used in an active as well as passive way by
learning from analyzing the data and improving the methods and tools based upon
what is learned from that analysis. Several examples were given representing
each of the different approaches to evaluation.

DD ,"SR%, 1473  eoimion oF 1 NOV 68 1s omsoLETE

unclassified
SECURITY CLASSIFICATION OF TiIS PAGE (When Data Entered)

S '- -."\'\' >y

'.'. . ._\' .
.A_!:LS.‘J'AS L& I_;L a® 1 ..:l’:fl '.- fa Lg )1

R ELALCLEN SN SN Sl N PR N g B Gl S, il PR R Lo Tl g DA A By |
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE BEFORE COMPLE TG FORM
mm - = 8 ° 3 GOVT ACCESSION NGJ 3. RECIPIENT'S CATALGG NUMBER
o . > 8
TRQERe VArga Gor—
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
QUANTITATIVE EVALUATION OF SOFTWARE METHODOLOGY Technical Report
6. PERFOR 03G. REPORT NUMBER
- RS )59
7. AUTHOR(Ss) 8. CONTRACT OR GRANTY NUMBER(s)
Victor R. Basili - -F49620-80-C-00D\







