
AD-RI60 292 QUANTITATIVE EVALUATION OF SOFTMARE METHODOLOGY(U) 1/1
NARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE
V R BASILI JUL 85 CS-TR-1519 RFOSR-TR-85-0803

UNCLASSIFIED F49626-8S-C-0SO± F/G 912 N

EEEEEmmomoEsIE

Lm flllllfmll

1.04t

V32

M ,M

1.2

III,

.711
.4. ~ ~ ~ ~ ~ : %11 .5 111. .

4,-
--. a Not

,* 1

A.l

100

'.-

Technical Report TR-1519 July 1985

Quantitative Evaluation of Software Methodology

Victor R. Basill

Department of Computer Science
University of Maryland

at College Park

: Abstract

This paper presented a paradigm for evaluating software
development methods and tools. The basic idea is to generate a set of
goals which are refined into quantifiable questions which specify
metrics to be collected on the software development and maintenance
process and product. These metrics can be used to characterize,
evaluate, predict and motivate. They can be used in an active as well
as passive way by learning from analyzing the data and improving the
methods and tools based upon what is learned from that analysis.
Several examples were given .epresenting each of the different
approaches to evaluation.- ', ,,..-

DTIC- . .

-OCT 16 1985

B Chie., .

This study is funded by NASA grant NSG-5123 and Air Force Research Grant AFOSR F49020-8.C-001. This paper
will be presented at the First Pan Paciflc Computer Conference. Melbourne. Austraiia, September 10-13. 1986.

DISThIBITI t TATEMENT A

Approved lot PubC MOQGI
Distribution Unlimited

,% " ,' .- '- '" ' .% ,' "'. , " - '."."% '.-' ". '.-'. -'.'.-' -. " : .''... . "" .':. Q...' "- .- "• .. '. ". .. ".j " ' " " - % -L-.

Quantitative Evaluation of Software Methodology

Victor R. BasIll

Department of Computer Science
University of Maryland

INTRODUCTION

One of the major problems In the development of software Is the lack of
management's ability to (1) find criteria for selecting the appropriate methods and
tools to develop and maintain software and (2) evaluate the goodness of the software
product or process. In a survey of the software development Industry, (Thayer and
Pyster 1980] listed the twenty major problems reported by software managers. Of
these twenty, over half (at least thirteen) delineated the need for management to
find selection criteria for the choice of technology or be able to judge the quality of
the existing software development process or product. In some sense this may have
been a surprise. Management's priority was not to ask for new technology but they
wanted to find out how to use the existing technology. This Is in fact a major aspect
or the technology transfer problem.

For many cases, there does exist a fair amount of technology available for
software development. However, It Is not always apparent to the manager which of
these techniques or tools to Invest In, and whether or not they are working as
predicted for the particular project. What Is needed In almost all cases Is a quantita-
tive approach to software management and engineering that uses models and metrics

*' for the software development process and product. There are such models and
metrics available. They cover everything from resource estimation and planning to
the complexity of the product.

This quantitative methodology Is needed for understanding, comparing, evaluat-
Ing, predicting, motivating, and good management practices. In many cases, It Is
still a primitive technology and should be used by management and engineering as a
tool to augment good judgement, not to replace It. Typically, we need to establish
the validity of the models and metrics In the Individual environments to be sure that
they capture the appropriate activities.

METHODOLOGY LEVELS

Before I discuss the available models and metrics for quantitative management
and engineering, I will begin with the Issue of methodology. There are various levels
at which the software development process can be viewed. At the top most level, we
often will think about a particular technique, some approach to solving a specific
aspect of the software development problem. For example, structured coding Is a
mechanism for developing code In a particular programming language using a select
set of control structures. It Is a logically sound approach to code development since
It allows ease of testing, readability, and permits the use of a checkable standard.

* 1

...................................... o

Unfortunately, It was thought of as the solution to the software development
problem back in the 1960's. That now appears rather naive given what we know
about software development. Structured coding Is clearly only one part of the

.software development process, attacking only one phase of the process and a single
product, the code. Taken In Isolation It can even cause a problem. Given an
unstructured design, it would be very difficult for the coder to redesign at the code
level. If the project Is not performing inspections or doing reading or writing tests

* based upon the structure of the code, then many of the benefits of structured coding
are lost. Thus, the technique of structured coding, used In isolation can be a draw-
back and even increase the cost of a project.

The problem is that one cannot take a method or tool and place It Into a
foreign environment and expect It to work. What Is needed, as we now understand,
Is an integrated set of methods and tools that work together across the whole life
cycle. The use of structured coding In conjunction with structured design, a struc-
tured process design language, and reading techniques, have been shown to pay off
well. What we want Is an integrated set of techniques that provide a methodology
for software development across the entire life cycle. Tools should be provided,
whenever possible to support the methods.

Unfortunately, this is still not 'the solution'. An integrated set of methods must
by definition be an abstraction. These techniques must be engineered for a particu-
lar environment. In this sense, software engineering involves the application of an
integrated set of techniques to a specific project, with its unique problems, con-
straints, and environment. This approach requires an understanding of the project
and the environment In which It is to be developed so that the right set of tech-
niques can be (1) chosen from the Integrated set and (2) refined for the environment.

The following are examples of both choosing the appropriate techniques and
refining them. An integrated set of techniques does not mean a standard fixed set.
An integrated set should mean a set of techniques from which the manager may
choose the most appropriate given the project characteristics, knowing that whatever
set is chosen they will Interface well with one another. For example, suppose the
project Is one in which the developer has very little experience, and the requirements
will be changing on a regular basis. Then one should choose a subset of techniques
that lend themselves to a changing environment. This calls for an evolutionary
approach, such as Iterative enhancement [Basill and Turner 1975], in which the
developer builds subset versions of the product, evaluating each of the subsets as It
Is completed. Clearly, the standard waterfall model would not be effective In this
environment. However, many techniques, such as structured design and coding
within a version, are useful.

An example of the refinement of a technique might be based upon the history of
errors. Knowing the error pattern In a particular environment, e.g. 40% of the
errors are errors of omission and 60% errors of commission, then reading the design
without having the requirements document available might miss as much as 40% of
the errors. Thus the reading approach would require that consistency checks
between documents always be done. The error pattern always warns about total

2

"..- *...... -.. %r -"'. ',.

04m 1 V - •U 6 '- .I-,W -,F -!-- ; - "_ - R., ".. -Z-- :.,- *T , . .

reliance on a structural testing technique. If It were known that 10% of the errors
were due to failure to Initialize variables, then the readers could be advised to check

for the Initialization of variables In their reading.

% .In either case, It Is apparent that the more we know about our environment, the
better we can choose and tailor the appropriate techniques for development and
maintenance.

MODELS AND METRICS
In order to evaluate the methods being used, we must first understand the

software development process and product. This requires hypothesizing models. A
model Is simply an abstraction of a real world process or product. It attempts to
explain what Is going on by making assumptions and simplifying the environment.
It gives a viewpoint of the software development process or product by classifying
various phenomena, abstracting from reality, and Isolating the aspects of Interest.

There may be many models of the same thing, each attempting to analyze a different
aspect. The thing being modeled may then be described as the sum of all the models
or viewpoints. There are models which take the viewpoint of resource use, complex-
Ity, reliability, change, etc. Based upon the models, there are metrics which are sim-
ply quantitative measures of the extent or degree to which the software possesses
and exhibits a certain characteristic, quality, property, or attribute. These metrics
provide us with measurements: numbers with an associated unit of measure which

A "describe some aspect of the software.

Metrics can be viewed In many ways [Basill 1081]. They can be thought of as
objective or subjective. Objective metrics are absolute measures taken on the
product or process, e.g. the time for development, the number of lines of code, the
number of errors or changes. Subjective metrics are an estimate of the extent or
degree In the application of some technique, or the classification or qualification of a
problem or experience, usually done on a relative scale. Here there is no exact meas-
urement but an opinion or consensus of opinions. Examples Include a rating on the
use of a process design language (PDL) or a rating of the experience of the program-
mers In an application.

Typically a subjective metric Is used when we do not know how to quantify an
objective metric. For example, It Is difficult to define an objective metric for how
well a PDL was used in the development of a project. However, If we are to evalu-

ate the effect of the PDL we need to know whether the technique was used well or
not, so that Its effect can be judged appropriately. Even though we cannot come up
with an objective rating, we can ask two or three people to rate the use based upon
some rating scale, e.g.
0 - wasn't used at all, N,-l! ' S
2 -used only partly and as a coding spe sefication nInIC ,;'
2 -used almost everywhere but as a coding specifcaton UnT1 a .,:'.
3 - used at a higher level than as a coding specification Just

4 - used at multiple levels of specification with limited success -i

5 - used effectively at multiple levels of design !Distri.)-u!, Aor./

V1i ,it7 Cs"'aa'u

,.tox'•-" Av~1 ~a

..*,,.i',.,e ,,, ...,'. ...,-....-. .:..,.-.. A.h i.....,

Although the rating will not be exact, it will provide reasonable subjective infor-
mation that could not be available otherwise. Sometimes there Is an objective
metric we can use, but It Is less accurate than the subjective Information. For exam-
ple, to evaluate the experience of a programmer In an application, an objective
metric might be years of experience. However, several studies have shown that years
of experience is not a reliable metric past two or three years. A subjective rat: ig by
management and colleagues would probably be a more accurate measure.

Metrics can be measures of the product or the process. A product metric would
be a measure of the actual product developed, e.g. source code, object code, docu-
mentation, etc. Sample metrics are lines of code (an objective metric) and readabil-
Ity of the source code (a subjective metric). A process metric would be a measure of
the process model used for developing the product. Sample product metrics would
be the use of a methodology (a subjective metric) and the effort for development in
staff months (an objective metric).

Metrics can be used to measure cost or quality. A cost measure Is some expen-
diture of resources In dollars Including capital Investment usually normalized accord-
Ing to some value component. For example, staff months, computer use, size per
time slice. A quality measure represents some form of value of the product. For
example, reliability, ease of change, correctness, number of errors remaining, amount
of code reusable. Actually cost can be considered a quality metric since low cost
might be thought of as a valuable quality. However, we typically are trying to max-
Imize quality and minimize cost so it Is Interesting to see them as separate types of
metrics useful In tradeoffs.

There are several general uses of metrics. First and most important, metrics
can be used to characterize and understand. A characterizing metric Is one that
helps distinguish the process or product or environment. For example, the use of a
methodology, the number of externally generated changes, or the size. Each of these
tell us something about the project so that we can better understand It. Character-
izlng metrics can be used for schedule tracking, providing Information on where the
project stands with respect to percent of resource use, with respect to calendar time,
etc. They can be used to help define the model of the process or the product.

Metrics can be used for evaluation. The metric Is a good evaluative measure if
It correlates with or shows directly the quality or the process or product, e.g. the
number or errors reported during acceptance testing or work productivity. Where
almost all metrics can be used for characterization, only a subset can be used for
evaluation. The schedule tracklng metrics mentioned above can be used for evalua-
tion, only If we know the planned schedule Is reasonable. If It Is, we can use confor-
mance to schedule as a means of evaluating the effect or the methods used.

Metrics can be used for prediction and estimation. A predictive metric Is one
that Is estimable or calculable at some point In time and can be used to predict some
Information at a later point In time. For example, estimating size as a predictor of
effort Is a standard predictive relationship. It becomes Interesting to try to establish
metrics such as the use of a particular methodology as a metric that predicts (corre-
lates) with various aspects of quality, e.g. ease of modification.

4

%.~*.*.~~ % .N N N,. *

Metrics can be used for motivation. Letting the developers know what is impor-
tant In a quantitative way defines what it is we are looking for. For example, one of
the major issues in software productivity is the need for reusability. However,
management does not motivate reusability, It actually unknowingly discourages It.
By using schedule and cost as the primary motivators for success, It discourages a
manager from using extra time or money that might make parts of the product reus-
able. If reusability were listed as one of the prime motivators, to be traded off with
cost and schedule, we might see more reusability. For example, we can motivate a
project manager to try to develop reusable design or code by rewarding him/her for
all code that gets used In another project. This would help encourage the manager
to consider tradeoffs of reuse with time and cost. Another manager might be
motivated to reuse someone else's code by rewarding him/her by counting any
reused code as part of their total source code count or even adding extra rewards for
reuse. Motivational metrics need to be carefully thought out, i.e. we need to be sure
we want what we are asking for. But even the generation of such metrics helps us
better understand what we are telling managers versus what we should be telling
managers, i.e. what are the actual goals of the company and the project.

MEASUREMENT AND EVALUATION PARADIGM

The measurement and evaluation process requires a mechanism for determining
what data Is to be collected; why it Is to be collected; and how the collected data Is
to be interpreted [BasIli & Weiss 10841. The process requires an organized mechan-
Ism for determining the purpose of the measurement; defining that purpose In a
traceable way Into a quantitative set of questions that define a specific set of data for
collection. The purpose of the measurement and evaluation flows from the needs of
the organization. These may Include: the need to evaluate some particular technol-
ogy; the need to better understand resource utilization in order to Improve cost esti-
matlon; the need to evaluate the quality of the product in order to determine when
to release It; or the need to evaluate the benefits and drawbacks of a research pro-
ject.

The goals tend to be vague and ambiguous, often expressed at an imprecise
level of abstraction. For example, the words understand, evaluate, quality, benefits,
and drawbacks carry different meanings to different people or vary with different
environments. The need to better understand resource utilization in order to
Improve the cost estimation process explains what I want to do but leaves many
questions about what kind of data needs to be collected. The need to evaluate the
use of a technology, like design Inspections, requires the perspective of the expecta-
tions from the methodology as does the evaluation of a research project. The goals
need to be carefully articulated but also refined In a quantitative way in order to
give precision and to clarify their meaning with respect to the particular environ-
ment.

The data collection process Itself requires a basic paradigm that traces the goals
of the collection process, i.e. the reasons the data are being collected, to the actual
data. It is important to make clear at least in general terms the organization's needs
and concerns, the focus of the current project and what Is expected from it. The

5

formulation of these expectations can go a long way towards focusing the work on
the project and evaluating whether the project has achieved those expectations. The
need for Information must be quantified whenever possible and the quantification
analyzed as to whether or not It satisfies the needs. This quantification of the goals
should then be mapped Into a set of data that can be collected on the product and
the process. The data should then be validated with respect to how accurate It is
and then analyzed and the results Interpreted with respect to the goals.

The actual data collection paradigm can be visualized by a diagram:

Goall Goal2 ... Goaln

Questioni . Question3 Question4 . Question8

Quest lon8
QuestIon2 Question5 QuestIon7

dl... Ing d2n5

ml m2 m3 m4 m2 d3 M6 ml m M7

Here there are n goals shown and each goal generates a set of questions that attempt
to define and quantify the specific goal which Is at the root of Its goal tree. The goal
Is only as well defined as the questions that it generates. Each question generates a
set of metrics (ml) or distributions of data (di). Again, the question can only be
answered relative to and as completely as the available metrics and distributions
allow. As Is shown In the above diagram, the same questions can be used to define
different goals (e.g. Questlone) and metrics and distributions can be used to answer
more that one question. Thus questions and metrics are used In several contexts.

The paradigm Is Important not just for focusing management, engineering, and
quality assurance interests but also for interpreting the questions and the metrics.
For example, mO Is collected in two contexts and possibly for two different reasons.
QuestlonO may ask for the size of the product (mS) as part of the goal to model pro-
ductivity (Goal2). But mO (size of the product) may also be used as part of a ques-
tion about the complexity of the product (e.g. Question7) related to a goal on ease of
modification (e.g. Goaln).

If a measure cannot be taken but Is part of the definition of the question, It Is
Important that It be Included In the goal/question/metric paradigm. This Is so that
the other metrics that answer the question can be viewed In the proper context and
the question Interpreted with the appropriate limitations. The same Is true for ques-
tons being asked that may not be answerable with the data available. For example,
to determine the effectlveness of a method In reducing errors, I need to know the
total number of faults over the system life time. I cannot know this number during
the development phase. I should still Include the metric In the paradigm so that I
know the Information Is Incomplete.

Ie

,- ,- .-,- ... -. - . ,- , - - .- ,. -: € .- .-. . -.- .-. . .. -,-. , .• . ., . .- .

It could then be assumed that although there may be many goals and even
many questions, the metrics do not grow as the same rate as the goals and questions.
Thus a set of metrics could be collected for characterizing the software process and
product that will allow many questions generated by different goals to be answered.

Given the above paradigm, the data collection process consists of six steps:

1. Generate a set of goals based upon the needs of the organization.

The first step of the process Is to determine what It Is you want to know. This
focuses the work to be done and allows a framework for determining whether or not
you have accomplished what you set out to do. For example, the organization may
wish to know whether the use of a specific method or tool Improves the productivity
of the project personnel or the quality of the product. It may wish to define a set of
goals for a research project and then determine whether that project has achieved
those goals. The goal may be simpler. It may be to characterize the resource usage
across the project. In any case the goals should be clearly stated. The goals do not
have to be quantifiable. It Is the next step In the process to take the goal and make
It measurable.

It Is difficult to provide an organization with a set of guidelines for generating
goals. These shbuld be based upon the particular needs and concerns of the organl-
zation and its purpose for beginning a data collection activity. The goals can be
management oriented, engineering oriented, quality assurance oriented or even
research oriented. As stated above, many of the questions or metrics may be the
same for the different orientations but they may be combined In different ways and
the Interpretation will have a different focus and Impact.

Management oriented goals will typically deal with resource allocation and mon-
itoring for the purpose of prediction and estimation. For example managers may
wish to estimate cost, track resource expenditures, and predict the quality of the
project. An engineering orientation may be to evaluate the technology being used In
the development of the project, discover the problems In terms of errors and resource
use In order to Improve the quality of the process or the product. A quality
assurance orientation may be to characterize the product or even the process to
Judge adherence to standards, Isolate parts of the product that require rework, or
evaluate the product for delivery. A research orientation may be to focus on the
benefits and drawbacks of the development of a new technology and demonstrate Its
effectiveness. Each of these orientations have goals In common. It Is the Interpreta-
tion that may be different. Many of the questions and metrics (e.g. about resource
allocation) will be replicated for different goals so that the same data can answer
many questions and allow for the achievement of many goals.

The goals to characterize, evaluate and predict aspects of the software process
and product cover a large area. We can set goals to characterize the effort expended,
the changes generated, the errors committed, the dimensions of the products such as
size and complexity at various points In time, the methods and tools, the documenta-
tion, the application, the experience of the developers, the computer and the con-
straints set on the project, and the various execution time Issues such as perfor-
mance, space utilization, and test coverage. We can set goals to evaluate the

7

' effectiveness of the tools and methods used, the environment In which the product Is
developed, and even the models for the process and product. We can set goals to

'-" predict the cost, reliability or quality of the product.

" 2. Derive a set of questions of Interest or hypotheses which quantify those
:" goals.

~The goals must now be formalized by making them quantifiable. This Is the
• most difficult step in the process because It often requires the Interpretation of fuzzy

terms like quality or productivity within the context of the development environ-
ment. These questions define the goals of step 1. The aim Is to satisfy the Intuitive

notion of the goal as completely and consistently as possible. For example with the
above goal of characterizing resource usage across the project. questions of Interest
might be: How much time (In minutes hours, weeks, months or years) was spent by

~all personnel of Interest (programmer, librarian, support staff, managers. reviewers,
' etc.) In total and across subcategories, In each phase (requirements, specification,

design, code, test, and operation) or activity (training, reviewing. making changes,
etc.) for each product part (module, subsystem. full system)? H o-w much computer
time was setby all personnel of Interest In total and across ail subcategories, for

each phase or activity, for each product part? These questions actually generate sets
of questions parameterized by each of the subcategories above.

After all possible resource usages have been defined and transposed Into ques-
Mions, the questions posed must be evaluated as to whether they provide a complete

~definition of the goal. This process Is a heuristic one and the judgement of whether
--. or not the goal Is satisfied by the questions will be subjlective. The process is often
-- iterative and after collecting resource characterization data the collector may dls-
J cover new questions that were missed. These could then be added to the question

P'.t

.J list for later projects. It might even be possible that the data has been collected to
• 4 answer these questions because It was collected to answer another question. However
| before applying the data directly, the question/metric paradigm should be developed

Q... to assure proper Interpretation of the question.

a.

-. It will often be the case that the set of questions do not fully satisfy the goal.
• This may be because we do not know how to phrase a question In a quantifiable way

,.,- or because we cannot Interpret the fuzzy terms of the goal In a well defined way or
j the cost for collecting the data may not be worth It for the achievement of the goal.

In these cases the missing aspects of the goals should be noted so that later Interpre-
tations of the results can be qualified appropriately.

3. Develop a set of data metrics and distributions which provide the Informa-
ton needed to answer the questions of Interest.

In this step, the actual data needed to answer the questons are Identified and
assoc2ated with each of the questions. In the above example this Is a smple count of

people and computer time by the various subcategories. However, the Identificatlon
of he data categories Is not always so easy. Sometimes new metrics or data distrl-
butions must be defined. Oter tbmes data Items can be defined to answer only part
of a queston. In this case. the answer to the question must be qualified and Inter-

preted In the context of the mlssang Information. As the data Items are Identified,

aeeq

thought should be given to how valid the data Item will be with respect to accuracy
and how well It captures the specific question.

These data Items may be objective or subjective. If they are subjective, some
mechanism must be defined for quantifying the evaluation. e.g. an Integer scale of 0
to 5, and eliminating variations In judgement, e.g. a consensus of three people.

4. Define a mechanism for collecting the data as accurately as possible

The data can be collected via forms, Interviews, or automatically by the com-
puter. If the data Is to be collected via forms, they must be carefully defined for
ease of understanding by the person filling out the form and clear Interpretation by
the analyst. An Instruction sheet and glossary of terms should accompany the
forms. Care should be given to characterizing the accuracy of the data and defining
the allowable error bounds.

5. Perform a validation of the data

The data should always be checked for accuracy. Forms should be reviewed as
they are handed In. They should be read by a data analyst and checked with the
person filling out the form when questions arise. Sample sets should be set to deter-
mine accuracy the data as a whole. As data Is entered Into the data base, validity
checks should be made by the entering program. Redundant data should be col-
lected so checks can be made.

The validity of the data Is a critical Issue. Interpretations will be made that
will effect the entire organization. One should not assume accuracy without
justification.

6. Analyze the data collected to answer the questions posed

The data should be analyzed In the context of the questions and goals with
which they are associated. Missing data and missing questions should be accounted

for In the Interpretation.

The process Is top down, i.e before we know what data to collect we must first
define the reason for the data collection process and make sure the right data Is
being collected, and It can be Interpreted in the right context. To start with a set of
metrics Is working bottom up and does not provide the collector with the right con-
text for analysis or Interpretation.

EXAMPLE TECHNIQUE EVALUATION

As an example consider the goal of evaluating the effectiveness of a method such
*, as design Inspections. This appears to be a clearly stated goal at first but the goal

does not say with respect to what are we to evaluate the technology. Let us help
,, define this better by asking a set of questions.

Question 1: How well were the Inspections performed? Use a subjective rating 0

to 5.

This question provides us with a basis for evaluation. We would not like to
evaluate the technical benefits of the method If It was not applied well. We may
even wish to rate how well different aspects of the technique were applied. This

9

** % .A.. ". .
C '*.* ... * **,'t K

rating might be done by the moderator, a project person and the Instructor of the
technique.

Question 2: How many errors were uncovered? Characterize the errors by
different classification categories.

This might tell us whether the technique Is better at finding certain kinas of
errors and If we have any history of other projects as a basis, it can tell us whether
we are doing better or worse than the norm.

Question 3: How much calendar time was spent?

This question addresses the cost of applying the technique. For example we
might wish to analyze the effect on the schedule.

Question 4: How many staff hours were spent?

This question addresses the cost and resources spent. We can compare the
number of hours spent finding errors In this way to the various testing techniques
used.

Question 5: What percent of the errors were found?

We will not fully be able to answer this question until the product has been In
the field for several years but at each milestone, e.g. acceptance test. one year In the
field, etc. We will be better able to understand the effectiveness of the technique.

Question 6: What was the cost of error Isolation? error fix?

This question allows us to analyze the cost of discovering and fixing errors dur-
Ing Inspections as opposed to during testing.

etc.

There are many more questions we might ask based upon what It Is we want to
know. As stated above, these questions permit us to better define the goals, help us
to specify what data needs to be collected (e.g. subjective ratings on how well the
method was applied, error counts and distributions, effort In Inspection by person by
activity), and how the data should be Interpreted (e.g. we may not be able to judge
the total effectiveness until the project has been out In the field for a while).

METHODOLOGY IMPROVEMENT PARADIGM

All this leads us to the following basic paradigm for evaluating and Improving
the methodology used In the software development and maintenance process.

1. Characterize the approach/environment.

This step requires an understanding of the various factors that will Influence the
project development. This Includes the problem factors, e.g. the type of problem,
the newness to the state of the art, the susceptibility to change, the people factors.

a-, e.g. the number or people working on the project, their level of expertise, exper-
ence, the product factors, e.g. the size, the dellverables, the reliability requirements.
portability requirements, reusability requirements, the resource factors, e.g. target
and development machine systems, availability, budget, deadlines, the process and
tool factors, e.g. what techniques and tools are available, training In them,

10

programming languages, code analyzers.

2. Set up the goals, questions, data for successful project development and
improvement over previous project developments.

It Is at this point the organization and the project manager must determine
what the goals are for the project development. Some of these may be specified from
step 1. Others may be chosen based upon the needs of the organization, e.g. reusa-
bIllty of the code on another project, Improvement or the quality, lower cost.

3. Choose the appropriate methods and tools for the project.

Once It Is clear what Is required and available, methods and tools should be
chosen and refined that will maximize the chances or satisfying the goals laid out for
the project. Tools may be chosen because they facilitate the collection of the data
necessary for evaluation, e.g. configuration management tools not only help project
control but also help with the collection and validation of error and change data.

4. Perform the software development and maintenance, collecting the
prescribed data and validating it.

This step involves the collection of data by forms, Interviews, and automated
collection mechanisms. The advantages of using forms to collect .data Is that a full
set of data can be gathered which gives detailed Insights and provides for good
record keeping. The drawback to forms Is that they can be expensive and unreliable
because people fill them out. Interview can be used to validate information from
forms and gather information that Is not easily obtainable In a form format.
Automated data collection Is reliable and unobtrusive and can be gathered from pro-
gram development libraries, program analyzers, etc. However, the type of data that
can be collected In this way is typically not very Insightful and one level removed
from the issue being studied.

5. Analyze the data to evaluate the current practices, determine problems,
record the findings and make recommendations for improvement.

This Is the key to the mechanism. It requires a post mortem on the project.
Project data should be analyzed to determine how well the project satisfied Its goals,
where the methods were effective, where they were not effective, whether they should
be modified and refined for better application, whether more training or different
training Is needed, whether tools or standards are needed to help In the application
of the methods, or whether the methods or tools should be discarded and new
methods or tools applied on the next project.

B. Proceed to step I to start the next project, armed with the knowledge gained
from this and the previous projects.

This procedure for developing software has a corporate learning curve built In.
The knowledge Is not hidden in the Intuition of first level managers but Is stored In a
corporate data base available to new and old managers to help with project manage-
ment, method and tool evaluation, and technology transfer.

S% 11

tfl!L ,. .~ . * . ,*.i .. , .- _ -. - - * *. . *.. , , * '.- *, - --. o - -. ' ° - ; %

CASE STUDIES OF METHODOLOGY EVALUATION
With all the different methods and tools available, we need to better quantita-

tively understand and evaluate the benefits and drawbacks of each of them. There
are several different approaches to quantitatively evaluating methods and tools:
blocked subject-project, replicated project, multi-project variation, and single project
case study [BasllI & Selby 84). The approaches can be characterized by the number
of teams replicating each project and number of different projects analyzed as shown
In Table 1.

************** **************************

* # of projects •

, one more than •
• one •

* **** ***** **

of * one * single project multi-project *

teams • • variation •

per • more than • replicated blocked ,
project • one • project subject-project •

TABLE 1

The approaches vary In cost and the level of confidence one can have in the result of
the study. Clearly, an analysis of several replicated projects costs more money but
will generate stronger confidence In the conclusion. Unfortunately, since a blocked
subject-project experiment Is so expensive, the projects studied tend to be small.
The size of the projects Increase the costs go down so Is possible to study very large
single project experiments and even multi-project variation experiments If the right
environment can be found. In what follows, at least one example of each of these
approaches will be given as performed by the Laboratory for Software Engineering
Research (LASER) at the University of Maryland.

METHODOLOGY EVALUATION USING BLOCKED SUBJECT-
PROJECT ANALYSIS

This type of analysis allows the examination of several factors within the frame-
work of one study. Each of the technologies to be studied can be applied to a set of
projects by several subjects and each subject applies each of the technologies under
study. It permits the experimenter to control for differences In the subject popula-
tion as well as study the effect of the particular projects.

The sample study discussed here Is a testing strategies comparison [Baslll &
Selby 851. The goal was to compare the effects of code reading, functional and struc-
tural testing with respect to 1) fault detection effectiveness, 2) fault detection cost,

12

O . -- p . - .' - ,'* .: , *'.*.*,'.: " . - . - ' . . ' . -' - ' . . . , ' , ' . . " ."
4U t.' , , * . , . " , . " .. ,

and 3) classes of faults detected. A secondary goal was to compare the performance
of software type and expertise level but only the first goal will be discussed here.

The experimental approach Involved three replications of the experiment using
74 subjects on four different projects. The projects were a text formatter, a plotter,
an abstract data type, and a database program varying In length between 145 and
385 lines of code. The programs each contained software faults (g, 8, 7, 12 respec-
tively) that were either made during the actual development of the program or were
seeded based upon characteristic faults found In the local environment. The experi-
mental design was a fractional factorial design blocked according to experience level
and the program tested. Each subject used each technique and tested each program.

Two of the questions generated from this study were:

Question 1: Which of the validation techniques detects the greatest number of
faults in the programs?

The data collected for this question is the number of faults found In each pro-
ject by each subject. The results of the study were that 4 faults were found on the
average and that code reading was more effective than both testing techniques but
functional testing was more effective than structural testing. Reading found 5.1
faults on the average, functional testing found 4.5 faults on the average and struc-
tural testing found 3.3 faults on the average.

Question 2: Which of the techniques has the highest fault detection rate
(number of faults detected per hour)?

The data collected to answer this question was the number of faults found and
the time spent by the subject In detecting faults. The results were that code reading
was more cost effective than functional and structural testing. Code reading found
3.3 faults per hour on the average while each of the testing techniques found 1.8
faults on the average.

Because of the experimental design of this type of analysis there were many
other questions that were posed and answered by this experiment, e.g. Is the fault
detection rate dependent on the type of software? Is the number of faults observed
dependent on the type of software? Do the methods tend to capture different classes
of faults? What classes of faults are observable but go unreported?

The experimental design for this study permits a great amount of statistical
analysis and provide the experimenter with a fair amount of latitude in studying the
different aspects of the project. The drawbacks to the study are that the projects
studied are small module size projects and the results do not necessarily scale up to
the acceptance test phase of very large projects. The interpretation is more accurate
for the unit test phase. The study does not provide sufficient Insight Into how the
techniques might work on larger projects. This drawback Is of necessity because the
cost of replication Is too expensive.

METHODOLOGY EVALUATION USING REPLICATED PROJECT
ANALYSIS

13

The replicated project analysis Involves several replications of the same project
by different subjects. Each of the technologies to be studied Is applied to the project
by several subjects but each subject applies only one of the technologies. It permits
the experimenter to establish control groups.

Tho goal of the sample study was to quantitatively evaluate the effect of a dis-
clplined approach to software development [BasilI & Reliter 811. The disciplined
approach included the use of an Integrated set of techniques that included top down
design, a process design language, walk-throughs, chief programmer teams, and the
use of a librarian.

The experimental approach Involved the replication of the same project by 19
teams, Including 7 three person disciplined teams (DT), a three-person ad hoc teams
(AT), and 8 ad hoc Individuals (AI). The project was to build a compiler for a small
language, anticipating about 1200 source lines of code In a high level language. All
the data was collected automatically so that the subjects did not know what was
being measured. The drawback to this Is that the Information was typically one
level removed from what we really wanted to know. The statistical analysis per-
formed were the non-parametric Mann-Whitney U and KruskaI-Walls H tests.

Specific questions included:

Question 1: Does a dlsclpLlncl approach reduce the average cost and complexity
of the process?

The data collected was a count of the (1) number of job steps, i.e. any aspect of
computer access such as module compilations and program executions, and (2) pro-
gram changes, I.e. the number of changes to a program that indicated an error or
omission. Job steps were used to represent effort and program changes were used to
represent errors.

The results of the study showed that for all categories of job steps and program
changes, the disciplined teams had statistically less of both than either the ad hoc
teams or the ad hoc individuals.

Question 2: Does a disciplined team behave more like an individual programmer
than a team in terms of the resulting product? This was an attempt to measure con-
ceptual Integrity.

The data collected here was various product measures such as size (number of
segments, number of lines or code, number of decisions) and complexity, e.g. a com-
parison of cyclomatic complexity [McCabe] for the top quartiles of modules.

The results of this study showed that the ad hoc Individuals had a smaller
number of segments than either the disciplined teams or the ad hoc teams. The ad
hoc individuals had less lines of code than the disciplined teams which had less lines
of code than the ad hoc teams, and the ad hoc Individuals and disciplined teams had
less decision than the ad hoc teams. Comparing the cyclomatic complexity of the
modules in the upper quartlles, the results were that the disciplined teams created
the least complex projects and the ad hoc Individuals the most complex project with
the ad hoc teams lying in between, depending upon the mechanism for counting
decisions.

14

-" ~~~............. . .'...

, W . . S| |S

Thus It was felt that the questions were both answerable In the affirmative.
The benefit of the study Is that the results were soundly supported statistically
because of the number of replications and the projects were of a more reasonable size
than the modules studied in the testing experiment. The drawback to this study
again is that the projects were still smaller than many projects one might encounter
and It Is not clear that the results would still hold If the project sizes were Increased
by an order of magnitude.

METHODOLOGY EVALUATION USING MULTI-PROJECT VARIA-
TION ANALYSIS

Multi-project variation analysis Involves the measurement of several projects
where controlled factors such as methodology can be varied across similar projects.
This is not a controlled experiment as the previous two approaches were, but allows
the experimenter to study the effect of various methods and tools to the extent that
the organization allows them to vary on different projects.

The goal of this sample study was to examine the relationship between metho-
dology and various factors such as productivity and quality. [Bailey & Basill 10811,
[Basill & Bailey 10801, [Basill 19811. The study was conducted In the Software
Engineering Laboratory, at joint project between NASA Goddard Space Flight
Center, the University of Maryland, and Computer Sciences Corporation.

The approach was to study a series of projects that Involve ground support
software for satellites. Each project was rated with respect to a large set of factors,
covering environment, methodology, experience, performance, etc. When the metrics
were subjective they were given on a six point scale, e.g. rating on the basis of the
use of a methodology.

The methodology factors used In the study were very similar to the methodol-
ogy factors used in the replicated project study discussed above. This allowed us to
see if the methods could work on larger projects than In the controlled study. This
has been a common mechanism In the Laboratory for Software Engineering
Research. We run both controlled experiments on small projects and case studies or
multi-project analysis on large projects to verify the effects of the technologies. The
combination of both approaches provides us with a deeper confidence that the tech-
nologles are effective as well as allowing us to understand their effects In different
environments.

The three major questions asked In this study were:

Question 1: Did the projects with a high methodology use come from a different
population than those projects with a low or medium methodology use?

Question 2: Do any other factors or sets of factors show a significant effect on
productivity?

Data used to answer these questions were lines of source code per staff month
for productivity and such factors as customer Interface complexity; customer orl-
ginated program design changes; the complexity of such things as the application,
the program flow, the Internal communication, the external communication, the data

'I., 1,5

,. ,.........,

base; constraints such as I/O capability, timing, main storage; programming group
experience such as machine familiarity, language familiarity, application experience;
hardware changes during development.

The approach to answering these first two questions was based upon a similar
type of study at IBM/FSD (Brooks 19811. A statistical test was performed to see if
projects with high methodology came from a different environment with respect to
productivity than projects with a low methodology use. The data used was based
upon a relative ranking rather than an absolute rating. The approach was to divide
the ratings for each technique into 3 categories: low (-1), medium (0), high (1). This
was done to offset differences in scales. The ratings were added to get a cumulative
methodology rating. The projects were then divided into groups based upon their
rating and analyzed using the Mann-Whitney U test.

In analyzing the relationship between productivity and various factors, no

significant relationship was found between productivity and size. However there
were statistically significant results in demonstrating that those projects with high
methodology use came from a different (and much higher) productivity population
than those projects with low or even medium methodology use. So the answer to the
first question was yes. The answer to this question was no.

Question 3: What are the factors that predict quality?

The metrics were compressed Into three factors: quality, methodology and com-
plexity. Methodology and complexity were not significantly correlated. Quality was
significantly correlated with methodology (r = .87) and complexity (r = -. 04) at less
than quality, we got an R**2 of .45. Using the methodology and complexity metrics
to predict quality we got an R**2 of .05. Based upon this study, it was clear that
quality can be predicted from the use of methodology.

The benefit to this approach Is that It does not require special experimental pro-
jects but allows for the evaluation of methodology In the normal development
environment. The Improvement algorithm discussed earlier can be applied to the
environment in order to Improve both the productivity and the quality of the
software.

However, there are several drawbacks to the approach. First, it requires that
there is enough differences In the projects use of methodology and there are enough

projects using each of the methods, i.e. there must be enough of a sampling to gen-
erate a statistical result. Second, since the experiment Is not controlled, there Is
always the possibility of making mistakes in the Interpretation, i.e. other factors that
have not been controlled for may be causing the differences in productivity or qual-
ity. Third, if the methodology Improvement paradigm is being used, we are losing
our control group of projects where little or no methodology is being used.

METHODOLOGY EVALUATION USING SINGLE PROJECT/CASE
STUDY ANALYSIS

Unfortunately, this Is where most methodology evaluation begins. There Is a
project and the management has decided to make use of some new method or set of
methods and wants to know whether or not the method generates any Improvement

18

' , -" • . " '.P • -: •* . * .. *- .. *% 4- I . . . "

In the productivity or quality. A great deal depends upon the individual factors
involved in the project and the methods applied.

This sample study had a set of goals that dealt with the effectiveness of certain
development techniques; information hiding, abstract interfaces, and formal
specifications, as well as the effectiveness of the data collection process [Basill &
Weiss 19811. The project involved was the redevelopment of the on-board opera-
tional flight program for the A-7 aircraft. The development was done at the Naval
Research Laboratories In Washington D.C. The analysis reported here was done
after the requirements document was basellned with the subgoal of trying to judge
the effectiveness of the requirements document which was developed using a formal
specification technique, a state machine model and abstract interfaces.

One of the subgoals was that the requirements document should be easy to
change. Based upon that goal the following questions were generated.

Question 1: Is the document easy to change?

Question 2: Is It clear where a change has to be made?

Question 3: Are the changes that are likely to occur, predicted correctly?

Question 4: Are changes confined to a single section?

The data collected to answer these questions consisted of various distributions
of data such as the types of changes, effort to change, confinement of changes and
changes by section. Given the data distributions:

Types of Changes:
85% were original error corrections

were to complete or correct a previous change
2% were to reorganize
7o were other changes (none of which were more than 1%)

Effort to Change:
68% were trivial (less than 1 hour)
28% were easy (1 hour to 1 day)

75% were medium (1 day to 1 week)
70% were hard (1 week to 1 month)

1% were formidable (more than 1 month)

Confinement of Changes:
85% were to one section
15% were to more than one section

The following conclusions were drawn:
The document was not very hard to change since most of the changes were

trivial or easy. The only formidable change Involved the change of a coordinate sys-
tem that the developers did not know and the time for the change included the

learning of that coordinate system. It should be noted that that change was
confined to one section.

Since most of the changes were confined to a single section of the report one
might argue that the document was organized In a way that the likely changes were

17

%%

predicted correctly, that It was clear where a change had to be made, and that the
changes were confined to a single section.

So the conclusion was drawn that the document was easy to change. However,
that conclusion is based on comparing the data with experience and intuition. Most

.-5 experienced people who have seen the data agree that the requirements document
was a successful development but there is no statistical evidence and there is no solid
basis for comparison. If similar data had been collected from other similar projects,
and we were able to do a comparison, as we did with the multi-project analysis, our
confidence level In the results might have been higher.

SUMMARY AND CONCLUSION

This paper has presented a set of quantitative approaches to evaluating
.software development methods and tools. The basic idea is to generate a set of goals

which are refined into quantifiable questions which specify metrics to be collected on
the software development and maintenance process and product. These metrics can
be used to characterize, evaluate, predict and motivate. They can be used in an
active as well as passive way by learning from analyzing the data and improving the
methods and tools based upon what is learned from that analysis. Several examples
were given representing each of the different approaches to evaluation. The cost of
the approaches varied inversely with the level of confidence in the Interpretation of
the results.

It is hoped that this paper has demonstrated that there are quantitative
mechanisms for evaluating methodologies. These mechanisms can be used in Indus-
try and in the research laboratories to provide better insights into the benefits and
weaknesses of technology.

ACKNOWLEDGEMENT

This research was supported in part by the National Aeronautics and Space
Administration Grant NSG-5123 and by the Air Force Office of Scientific Research
under Contract AFOSR-F49820-80-C-001 to the University of Maryland.

REFERENCES
[Bailey & Basill 1981]

John W. Bailey and Victor R. Basili, A Meta-Model for Software Development
Resource Expenditures, Proceedings of the Fifth International Conference on
Software Engineering, San Diego, California, pp 107-118, 1981.

[Basiln 1981]
Victor R. Basili, Evaluating Software Development Characteristics: Assessment
of Software Measures in the Software Engineering Laboratory, Proceedings of
the Sixth Annual Software Engineering Workshop, December 1981.

(Basill & Bailey 1980]
Victor R. Basill and John V. Bailey, The Software Engineering Laboratory:

Measuring the Effects of Software Methodologies within the Software Engineer-
Ing Laboratory, Proceedings of the Fifth Annual Software Engineering

" 18

-S

'1

m iI *St* S-,... .~~S .%- ~ %%

1

Workshop, November 1980.

[BasIlI & Reliter 1981]
Victor R. Basill and Robert W. Reliter, Jr., A Controlled Experiment Quantita-
tively Comparing Software Development Approaches, IEEE Transactions on
Software Engineering, Vol. SE-7, No. 3, pp 290-320, May 1081.

[BasilI & Selby 1984]
Victor R. Basill and Richard W. Selby, Jr., Data Collection and Analysis In
Software Research and Management, Proceedings of the American Statistical
Assoclatlon, pp 21-30, 1984.

[Baslll & Selby 1985]
Victor R. Basil) and Richard W. Selby, Jr., Comparing the Effectiveness of
Software Testing Strategies, University of Maryland Technical Report TR-1501,
May 1985.

[BasIll & Turner 19751
Victor R. Basill and Albert J. Turner, Iterative Enhancement: A Practical Tech-
nique for Software Development, IEEE Transactions on Software Engineering,
pp 390-396, December, 1975.

[BasIli k Weiss 10811

Victor R. Basill and David M. Weiss, Evaluation of a Software Requirements
Document by Analysis of Change Data, Proceedings of the Fifth International
Conference on Software Engineering, San Diego California, pp 314-323, March
9-12, 1981.

[BasIli & Weiss 19841
Victor R. Basill and David M. Weiss, A Methodology for Collecting Valid
Software Engineering Data, IEEE Transactions on Software Engineering, Vol.

SE-10, No. 3, pp 728-738, November 1984.

[Brooks 19811
W. Douglas Brooks, Software Technology Payoff: Some Statistical Evidence,
Journal of Systems and Software, Volume 2, Number 1, pp 3-10, February 1981.

[McCabe 1978]
Thomas J. McCabe, A Complexity Measure, IEEE Transactions on Software
Engineering, pp 308-320, December 1070.

[Thayer & Pyster 1980]
Richard H. Thayer, Arthur Pyster, and Roger C. Wood, The Challenge of
Software Engineering Project Management, IEEE Computer Magazine, pp 51-
59, August 1980.

19

"a-.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When DateEntered)

REPORT DOCUMENTATION PAGE READ ISTRUCTIONS

I - ,a' 8 -'. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
" l/ -,4/66 __ _ _ __ _ _ _

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

QUANTITATIVE EVALUATION OF SOFTWARE METHODOLOGY Technical Report

6. PERFORJ i O4G. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(#)

Victor R. Basili -F49620-80-C-00D%

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science AREAI WORK UNIT NUMBERS

University of Maryland GC)\o 930,A P'.a
College Park, MD 20742

1I. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATEMath. & Info. Sciences, AFOSR, Bolling AFB July 1985
Wash. D.C.I.NUERPAS

NASA/Goddard Space Flight Center 13. NUMBER OF PAGES

Greenbelt, Maryland 19
14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

aIS. OECLASSIFICATION/DOWNGRAOING

SCHEOULE

16. DISTRIBUTION STATEMENT (of thl Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, it different from Report)

" IS. SUPPLEMENTARY NOTES

I. KEY WORDS (Continue on reverse side if necessery and Identify by block number)

software evaluation, software measurement
software methodology, data collection

20. ABSTRACT (Continue on roverse aide If neceeary end Identify by block number) This paper presents a

paradigm for evaluating software development methods and tools. The basic idea
is to generate a set of goals which are refined into quantifiable questions whict
specify metrics to be collected on the software development and maintenance
process and product. These metrics can be used to characterize, evaluate, pre-

dict and motivate. They can be used in an active as well as passive way by
learning from analyzing the data and improving the methods and tools based upon
what is learned from that analysis. Several examples were given representing
each of the different approaches to evaluation.

DD 1.O 1473 £D1TION OF I NOV 65 IS OBSOLETEDO ,J*N.unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

r~..- I- - . e_. _'. ._. ..* _ v. e.. *-",.. "* - • .'. ".' .'.'.. ¢. "'-. ."' .".", -" ---- .-- ' ' ' ' ""

%&ZL =------ - - - '- - -I . -

FILMED

11-85

DTIC

