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THE LIMITING DISTRIBUTION OF LEAST SQUARES
IN AN ERRORS-IN-VARIABLES LINEAR REGRESSION MODEL

BY LEONJ JAY GLESER 1 RAYMOND J. CARROLL 2, AND PAUL P. GALLO

Purdue University, University of North Carolina, and Lederle Laboratories

It is well-known that the ordinary least squares (OLS) estimator a of the

slope and intercept parameters 6 in a linear regression model with errors of

measurement for some of the independent variables (predictors) is inconsistent.

However, Gallo (1982) has shown that certain linear combinations of 8 are

consistently estimated by the correspoiding linear combinations of e.-In

this paper, it is shown that under reasonable regularity conditions such

linear combinations are (jointly) asymptotically normally distributed. Some

methodological consequences of our results are given in a companion paper

(Carroll, Gallo and Gleser, 1985).
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1. Introduction. There is a substantial literature concerning linear

regression when some of the predictors (independent variables) are measured

with error. Such models are of importance in econometrics (instrumental

variables models), psychometrics (correction for attenuation, models of change),

and in instrumental calibration studies in medicine and industry. Recent

theoretical work concerning maximum likelihood estimation in such models

appears in Healy (1980), Fuller (1980), and Anderson (1984), while Reilly and

Patino-Leal (1981) take a Bayesian approach.

In an applied context,an investigator may either overlook the measurement

errors in the predictors, or choose the classical ordinary least squares (OLS)

estimator of the parameters because of its familiarity and ease of use. Certainly,

the methodology of classical least squares theory (confidence intervals,

multiple comparisons, tests of hypotheses, residual analysis) is considerably

more developed than the corresponding errors-in-variables methodology, particularly

in samples of moderate size. If the OLS estimator is used, what are the

consequences?

Cochran (1968) has given a general discussion of the consequences of

using the OLS estimator in errors-in-variables contexts. For the special

case of the analysis of covariance (ANCOVA), where the covariates are measured

with error, detailed investigations have been done by Lord (1960), De Gracie

and Fuller (1972) and Cronbach (1976). It is by now well-known that the OLS

estimator • of the slope and intercept parameters B in such errors-in-variables

models is inconsistent; that is, 6 does not tend in probability to a as the

sample size n becomes infinitely large. However, in ANCOVA with covariates

measured with error but balanced (in terms of means) across the design, the

OLS estimator of the design effects is known to be consistent. This is shown
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in the two-treatment case by Cochran (1968) and DeGracie and Fuller (1980).

More generally, Gallo (1982) has shown that for general linear errors-in-

variables regression models, certain linear combinations cO of the OLS estimator

are consistent estimators of the corresponding linear combinations of 3. Gallo's

result is reproduced in Section 2 as Theorem 1.

Let the rows of C be a basis for all linear combinations c'a of a that are

consistently estimated by c'1. In the present paper, it is shown that under

a reasonable extension of the regularity conditions given by Gallo (1982),

nk (CO-CO) has a limiting asymptotic multivariate normal distribution (Theorem 2

of Section 2). This result does not require that the random eriors (errors of

measurement, residual errors) are normally distributed, but only that these

errors are sampled from a conmon population with finite second ,,olments. However.

Theorem 2 does assume that all predictors are fixed. In Section 3, Theorem 2

is extended to cases where some of the predictors are random variables.

The nature of the limiting normal distribution of n! (Cb-CB) depends upon

whether the predictors measured with error are random (structural errors-in-

variables models) or fixed (functional errors-in-variables models). In the

former case, the limiting normal distribution has a zero mean vector, while in the

latter case the mean vector need not be zero (and is a function of unknown

parameters). A companion paper (Carroll, Gallo and Gleser, 1985) uses these

results to compare the asymptotic efficiencies of the OLS and maximum likelihood

estimators of CO when the errors-in-variables model is of the structural kind.

2. Asymptotic Theory. Suppose that a dependent scalar variable yi is

related to a vector fli: pxl of observable predictors and a vector f 2 i: qxl of

latent (unobservable) predictors by the model



(2.1) yi =flil + fii2 + ei = 1,2,...,n,

and that f2i is observed with error by xi, where

(2.2) xi = f2i + ui' i = 1,2,.,.,n.

For fixed (f ii f~i it is assumed that

(2.3) 1 < i < n, are i.i.d.

with mean vector 0 and covariance matrix

z =~ ~ ; 22 qxq.
""T12 s22 rm, let

To state the model in vector-matrix form, let

Y :, Fl 1 F2 = ., X ,

Yn (f n (f~n) nn./ei U
I- e:, U= B= 2 .

n, • n)
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Then

(2.4) Y - F181 + F2S 2 + e, X SF2 + U,

where the rows of E = (e,U) are i.i.d. random vectors with mean vector 0 and

covariance matrix r.

Note. It is assumed that all design (dummy) variables are included in F1. This

eliminates the need for separately including an intercept term in the model.

The OLS estimator of o for the model (2.4) is

-1

(2.5)
S•X'F] X'X X'Y

2.1 Asymptotic Consistency. To give asymptotic results about ii, we need

to make some assumptions about the sequence

(2.6) f {(fil' f 1): i = 1,2,...

of fixed predic'or values. These are the following.

Assumption 1.

lir n" [F1F1 F1F2  A11  A12 -> 0.
nm.nln- n FmF F iFi2 A i2 A 2 2



Assumption 2.

n-i

where for any matrix A - ((a.i)), max (A) = max laijl.

We will make extensive use of the following results.

Le_•ma 1. Under (2.4) and Assumptions 1 and 2, for all (q+l)-Oimensional

column vectors t,

n (F1 ,F2 )' (e,U)t ÷ MVN(0,(t'Et)A)

in distribution as n-•. In particular,

(2.7) n-" (fl.F 2 )' (e-U0 2 ) - MVN(O'j(l.-")x:(02 ) ]A)

in distribution as n---.

Proof. This is a direct consequence ot Corollary 3.2 and the discussion following

in Gleser (1965). C

Lemma_2. Under the assumptions of Lemma 1,

n- A12  + O(1).

XFI FX' (Al 22 +22

Proof. From the weak law of large numbers,

(2.) n (e,U)'(e,U) = E + o (1)



while from Lemma 1,

n FjU •0 pn").

From these facts, (2.4) and Assumption 1, the assertion of the lemma directly

follows. E

The following theorem is a restatement of the result of Gallo (1982)

mentioned in Section 1.

Theorem 1. (Gallo, 1982). Under (2.4) and Assumptions 1 and 2,

where Iq is the q-dimensional identity matrix.

Proof. Note from (2.4) that

n LF'Y XIFI X 'X / 'l

1 Fi(e-U02 ) 1
n Fý(e-U "2 ) + U'(e-U., 2 )J
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However, Linma I implies that

Fi
SF' (e-Uo 2 ) --0 (n"),

n (Fj

while it follows from (2.8) that

IU,(e-U• 2 ) ' c12 - E22'2 ÷ 0o(1).

From these facts, (2.5) and Lenmna 2 it foilow.; that

,1 A 12  0~ (
(2.9) 3 +L 22 + 2 221+G

Let

("22 + A2 2 .1) 1 , 22.1 22 a 11 A 1 2 .

Then

S '1"2 (0) L:1 1

"L 2 22 + 22 lq Lq

and it follows from (2.9) that



(2.10) c a -. c'I + c' 11  Q (a12-'22'2)-k q

Thus,

c';_L, c' -c' A121  z•)= 0, all B :

1112
Clearly 

- P C- oq 
(iE2)-0al8'Z

cI =q 0 =C' IqQ(oi2-'.22') =0

for all 3, F. On the other hand, if

E2= -1 F - I(- A-1 , )c'22 22 "i2 22 (-A 2 11' qi

then

0= c' q Q(aC2 -• 2 2 1) C' (Q ) ( 0

c' -I '12) =0,

q

since Q > 0. This completes the proof.

7 ...nU I I I m n m m m m i
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Note that

-A- A 2

co Il l cd , OP A 12], some d.
q Iq

"From this fact, it is easily seen that the rows of

(In 11 12)

, serve as a basis for the linear manifold of all c such that c'o is consistent

for c'.,. This motivates consideration of the limiting distribution of

Tn =0 C(-f).

2.2 Asymptotic Normality of Tn. Rather than state our main result

* (Theorem 2) at once, we first derive a representation for T that leads us to

the extra assumption needed to obtain asymptotic normality of Tn.

Let

( L in ,L 2 n ) C [ IF ( : : l X '

and

.W l n / [ ( FI-Y) ( FiX( A i A 1 2)
W\ n = n (x - VF Vx)x (0 q
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where

""Q(G -)
12 22 2.

Since

"'C ) 0,

• it follows from (2.5) that

S(2.11) n = ng (L nL 2n) W2n

Lemma 3. Under the assumptions of Lemma 1,

"L L-1" + o
I1n -l +

° and

G=n ' Lin(Wln + 1-Fj(F 2 - F1 A11 A 12 )y)

" ----- + MVN(O, 11

in distribution as n-ý-.

Proof. The first assertion is a direct consequence of Lennna 2 and the fact

that



k 11

C ('11 "12 _'=(A- , 0)
A 12 :22 + 2 22

iNote from (2.4) and the definition of Wln that

Win + Fj(F FA' A2(e,U) .- +e.

The second assertion of the lemma now follows from this representation, Lemma 1,

the first assertion of the lemma and Slutzky's Theorem.

Lemma 4. Under the assumptions of Lemma 1,

W2n = -n U'(e-U(o2 +y)) - A2 2 . 1y]

(2.12)

In Fý(F 2 -F1A} 1 2 )-A22 . ]Y + 0 (nd)

, and

L2n 2-(n FFl )-(n F'(Fz.4I A-1AF1))[Q-+0p(1Off + 0 p(n- ).

. Proof. Using (2.4) and the definition of W2 n, we can write W2n as the sum of

the first two terms on the right-hand side of (2.12) plusFý (e-U(o+1 )
•.n' :1 F ( _ 2+ ) n - '(Fl F F2) Y •

Using Lemma 1, this last term can be shown to be 0 (n"), as asserted.
p
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From facts about inverses of partitioned matrices, the definitions of C

and L2n and (2.4),

2n. n n 2- 11 12) (U An
.. 2Ln -( FIF 1) [• FI(F-FI A• 1)

"* where

A = n X'FI (FiFI)' 1 FIX).

Using Lemma 2, it is easily shown that

-'. AnlA = A2 2 1 + T22 + Op(1) = + op (1).

. Using Lemma 1,

I n FiU = 0(n').
P

SSince n- FIF1  A,, + o(I) by Assumption 1, the representation for L2n given by

"- the lemma follows from Slutzky's Theorem. C1

* Using (2.8), Assumption 1 and Lemma 4, it is straightforward to show that

W2n 0 (1). Let

.p

(2.13) zn = n"• Fi(F 2 -F1 AA A12).

It follows from (2.11) and Lemmas 3 and 4 that

(2.14) Tn =Gn (A-1+Op(1)) ZnY - (A-1I+o(0))Z [Q" 1 + o (1)]1-(o (1)) + 0 (1).
np p nnP p
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* A careful look at (2.14) shows that for Tn to converge in distribution

for all a, r it is necessary that Zn be 0(1). Thus, we are led to make the

following assumption

Assumption 3. For every sequence f defined by (2.6),

lim Zn = lim n"u FI(F 2 -FIA 1 1A12) = Z(t)

where the limit Z(f) may depend on

That Assumption 3, tc,ýý'.her with Assumptions 1 and 2, Is sufficient for

STn to have a limiting multivariate normal distribution is clear from (2.13),

. Lemma 3 and Slutzky's Theorem. This is our main result.

Theorem 2. Under Assumptions 1, 2 and 3,

""T = n (C3-Cj;) M 1VN( - ll1

in distribution as n-., where C 1 I lA

"(22 + ",22.1) '1(2 - '2282), n' (,-(82+y)').

3. Discussion and Extensions. Theorems 1 and 2 assume that the sequence

.f defined by (2.6) is a sequence of fixed vectors. If elements of the vectors

(f'if'i) in this sequence are random variables, one can think of these results

as being conditional limit theorems.

When components of each (fivfil), I = 1,2,..., are random, a fairly easy

argument can be used to extend Theorems 1 and 2 to apply unconditionally,

provided that A1 Z "Y, where Zn Z (f) is defined by (2.13), has an asymptotic

distribution.
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Thus, let st represent the random part of (f i,f~i) and let Z ={sti-1,2,...}.

Distributional assumptions about the st yield a probability measure v()) over

the sequences s. Suppose that

" A= {4: lim n1 (FI,F 2 )'(FI,F 2 ) = > > 0, lim n0 (F,F 2 ) = 0}

p.,.

-'. satisfies

(3.1) f du(k) = 1.
A

P. In other words, Assumptions I and 2 are satisfied with probability one. Then
p. -

Theorem 1 shows that for all in A, all r. 0,

lim P([tr(C8-Ca)'(CB-C)] > O's)} = 0.
o-n-.

Thus, by the Lebesgue Dominated Convergence Theorem, for all > 0,

lim Pl[tr(C;-C8)'(C8-C8)]"2 > c}O,
Sn

and hence Ca converges unconditionally in probability to Ca. This shows that

Theorem 1 holds unconditionally (over •).

' In a similar fashion, it can be shown that the representation (2.14) for

Tn holds unconditionally, that Gn in that representation has the limiting

multivariate normal distribution described in Lemma 3, and that G and Znn n-

are asymptotically statistically independent. Consequently, if Al Zn y has a

limiting distribution, the limiting distribution of Tn is the convolution of the
limiting distributions of G and- . Z

n 1

S
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Note: The above discussion is only a sketch of the argwments needed, and skips

over such details as measurability. A more extensive discussion in a similar

context can be found in Gleser (1983).

We will now follow the steps of the above analysis for some special cases

of the model (2.4) which are commonly adopted in practice. Recall that if

f i = 1,2,..., are random vectors, the model (2.4) is called a structural

linear errors-in-variables regression model, while if the f21t i = 1,2,..., are

vectors of constants, the model is that of a functional linear errors-In-variables

regression model. Mixes of these cases, where some elements of f2i are fixed

and some elements are random, are also possible. Further, the elements of fli

(except for the first component, which is always equal to 1 to accomodate an

intercept term) can also be fixed or random. Let

5,= (,+)
We will consider the following cases:

(a) both hi and f2i fixed (functional model),

(b) hi random, f2i fixed (functional model),

(c) hi fixed, f2i random (structural model),

(d) both hi and f2i random (structural model).

3.1 Both ti a1nd4 fixed. Theorems 1 and 2 already summarize what we

can say about this case. Although Theorem 2 has some technical interest, it is

unfortunately rather useless for statistical applications. Unless we are in

the unlikely case where we either know the limit Z(f) or can consistently estimate

this quantity, we cannot use Theorem 2 to construct large-sample confidence regions

- y -
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for Co. Recall that (f2 t' I = 1,2,...} is a sequence of unknown parameters,

and that the individual vectors f21 in this sequence cannot be consistently

estimated. Thus, very strong assumptions are needed to permit us to consistently

estimate Z(f) (or Al Z(Q)y).

3.2. Ni random and f21 fixed. Here, we can assume that the vectors h

are mutually statistically independent, but must consider the possibility that

the distribution of hi depends upon f 21 ' I = 1,2,..... (That is, the hi's

are not identically distributed.) Given the linear form of (2.4), it is natural

to assume that a similar linear model relates hi to f 21V Thus, we assume that

(3.2) hi = a + 0 f21 + ti' i = 1,2,...

where the ti's are i.i.d. with mean vector 0 and covariance matrix A. We also

assume that

lim lim n

n ,!f2i "' lff21ii = 22 0

and that lim n"• f 2 i = 0, all i. By letting f 2i 1 f2 i 2 u, a- c+ tj9,

A22 -"A22 - uu';we can let v 0 without loss of generality.

The strong law of large numbers shows that

lm n 1nJim n • tI = a, limf n t iti = A

1=1 n- P1

with probability one. Using (3.2), (3.3) and Theorem 3 of Chow (1966),
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n ,In

1rm n"k tifii(lf If f)"= 0
nt- i=1 12 1 j

with probability one. Thus (3.1) holds with

I a$ 0
a • aal+O 22&'+A OA22 .

0 A220' A2 2

Note that

A1 2  . [!A '+A2 2  +A 1 l"IA2 2.

Let l' (1,...1) and T' = (t,...,9tn). Then
n

Zn : n' F](F 2 -FI1Al A12)

= ('An +(pF+T' - To)

where

r Iq [1A 22ý '+A]'=

It is apparent that, in general, extra conditions on both F2 and the higher
order moments of the common distribution of the ti's are needed to permit Zn

to have a limiting distribution.
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However, consider the special case 0 = 0. In this case the random parts

hi of flt are i.i.d. random vectors independent of the f2 1 's, and

n A n2nl 1nF2 = n- n 2Y
Al1 Zn y - n"? n 2 + T'FA F

Using Corollary 3.2 and the discussion following in Gleser (1965), it can be

shown that the elements of n VF2 have an asymptotic multivariate normal

distribution:

n T'F2 y* MVN(O,(y'- 22Y)A).

Although we could impose the condition that n'• IF2iy = 0(I), this is a rather

restrictive condition, and still leaves us the problem of estimating the limit

of n In1 e in statistical applications. Instead, we settle for a more restricted

result:

(3.4) n! (OIp_*)(CO-CS) MVN(O,e )

in distribution as n--, where

+ (y#A 22Y )A-I

A1  ( + Y'A22 Y
1 '2*.Y)) F- (B2+y)
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since A- (OI )A-}1 (OIP'. In this context (p=0), it is worth noting

that

(OIp.I) C = (O,Ip-l)(Ip,-AlIA

= (OIp-l ,0),

so that the result concerns the estimates of the slopes (OIp~)0i of the

Yi on the hi (the random part of fli) in (2.4).

3.3 hi fixed and f2i random. In analogy with the discussion in Section

3.2, we assume that

(3.5) f2i f fi + ti I = 1,2,...,

where the t. are i.i.d. with common mean vector 0 and covariance matrix A.

(Here, since the first element of fli is always 1, there is no need for a

separate intercept tern.) Assumption (3.5) is commonly adopted in instrumental

variables approaches to errors in variables models in econometrics, and in

ANCOVA with measurement errors in the covariates.

We also assume that

n
(3.6) /rn 1 f A"l > 0

and that lim n 0 ii = 0, all i. Following steps similar to those used in
n-4.w

Section 3.2, we can show that (3.1) holds with
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( 06¢J11 0.11 l , +A/

Hence,

A11 A12-

Note that

zn n'•k Fj(F2-F-~ lA12) n- FIT,

where T' = (ti,...,tn). Applying Corollary 3.2 and the following discussion

in Gleser (1965),

A-IZ Y -.MVN(O,6A (-yAy))

in distribution as n-+-. Consequently,

(3.7) n'k (CO-CB)-* VN(O,A11 [n'T>n + ('A)])

in distribution as n-. It is worth noting that here

Ch ( I p A = 6 2 2 .1 ' (

When ,p 0, there is a close parallel between (3.4) and (3.7). Note also

that in this case C6 = 6
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Even when p # 0 (the distribution of f2i depends on f 11 ), the result

(3.7) was obtained without the need to make extra assumptions on the higher

moments of the common distribution of the ti, in contrast to our conclusions

in the case of Section 3.2.

3.4 Both hi and f2i random. In this case it is more natural to make

assumptions concerning (h!, f~i), i = 1,2,... .. We assume that these vectors

are i.i.d. with a common mean vector v and a common covariance matrix P. The

strong law of large numbers now shows that (3.1) holds with

Let ,' = (2,2) and

S: ( :11, "12)
12 22

where are the convnon mean vector and covariance matrix of the hi's.

Thus,

1, -

-i'1 "'ll+" l'l12)+ l :

1'M 12 .111 4)1
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Let H' = (h1 ,h2,...,hn). Then

Z n ( " In(H-P'U l ) - 1

The Central Limit Theorem shows that the first row of Zn has an

asymptotic multivariate normal distribution. For the ramaining rows of Zn

to be asymptotically multivariate normally distribited, additional assumptions

on the higher moments of the joint distribution of (h' ,fji) are needed. To

avoid such assumptions, we can assume that

(3.8) f, I -12 1  + 1 + t, 1 = 1,2,..,

where the tiis are i.i.d. with mean vector 0 and covariance matrix

"22.1 T22" 1'2 "11 412

and statistically independent of the hi's. If we condition on the hi's, (3.8)

is the model (3.5) with

S= -.. 1 -I
2-'i2"11, €2€ 1, A 22.1'

We can now use the results of Section 3.2, noting that with probability

one (over sequences hi,h 2 ,... )
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,."lim• FiF1 lim !(lnH)' (ln,H)
n* n• n--n

1, 1

"Thus, conditional on the hi's,

:T(3.9) n' (Cs-Ca) MVN(O -1.,C ,z o2.y])
).-1

in distribution as n-. Using the arguments given at the beginning of this

. section about converting conditional limiting results to unconditional limiting

results, we conclude that (3.9) also holds unconditionally.

3.5 Conclusion. The results (3.4), (3.7), (3.9) can be used to construct

large sample confidence ellipsoids for Co based on the OLS estimator CO provided

that consistent estimators can be found for the covariance matrices of the

"asymptotic normal distributions. It should be noted that in general Cs is a

function not only of 6, but also of A AI2' which need not be a known matrix.
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