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THE LIMITING DISTRIBUTION OF LEAST SQUARES
IN AN ERRORS-IN-VARIABLES LINEAR REGRESSION MODEL

BY LEON JAY GLESER‘, RAYMOND J. CARROLLZ, AND PAUL P. GALLO

Purdue University, University of North Carolina, and Lederle Laboratories
. It is well-known that the ordinary least squares (OLS) estimator é of the

siope and intercept parameters 6 in a linear regression model with error# of
measurement for some of the independent variables (predictors) is inconsistent.
However, Gallo (1982) has shown that certain linear combinations of g are
consistently estimated by the corresponding linear combinations of é.:iln

this paper, it is shown that under reasonable regularity conditions such

linear combinations are (jointly) asymptotically normally distributed. _Some
methodological consequences of our results are given in a companion paée; T

\ (Carroll, Gallo and Gleser, 1985).
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1. Introduction. There is a substantial literature concerning linear

regression when some of the predictors (independent variables) are measured
with error. Such models are of importance in econometrics (instrumental
variables models), psychometrics (correction for attenuation, models of chanrge),
and in instrumental calibration studies in medicine and industry. Recent
theoretical work concerning maximum 1ikelihocd estimation in such models

appears in Healy (1980), Fuiler (1980), and Anderson (1984), while Reilly and
Patino-Leal (1981) take a Bayesian approach.

In an applied context,an investigator may either overlook the measurement
errors in the predictors, or choose the classical ordinary least squares (OLS)
estimator of the parameters because of jts familiarity and ease of use. Qertain]y,
the methodology of classical least squares theory (confidence intervals,
multiple comparisons, tests of hypotheses, residual analysis) is considerably
more developed than fhe corresponding errors-in-variables methodology, particularly

in samples of moderate size. - If the OLS estimator is used, what are the

consequences? ) ~e Cae—

Cochran (1968) has given a general discussion of the consequences of
using the OLS estimator in errors-in-variables contexts. For the special
case of the analysis of covariance (ANCOVA), where the covariates are measured
with error, detailed investigations have been done'by Lord (1960), De Gracie
and Fuller (1972) and Cronbach (1976). It is by now well-known that the OLS
estimator é of the slope and intercept parameters g8 in such errors-in-variables
models is inconsistent; that isc, é does not tend in probability to g as the
sample size n becomes infinitely large. However, in ANCOVA with covariates
measured with error but balanced (in terms of means) across the design, the

OLS estimator of the design effects is known to be consistent. This is shown




b ——

in the two-treatment case by Cochran (1968) and DeGracie and Fuller (1980).

More generally, Gallo (1982) has shown that for general linear errors-in-
variablés regression models, certain linear combinations c'é of the OLS estimator
are consistent estimators of the corresponding linecar combinations of 8. Gallo's
result is reproduced in Section 2 as Theorem 1.

Let the rows of C be a basis for all linear combinations c's of g that are
consistently estimated by c'é. In the present paper, it is shown that under
a reasonable extension of the regularity conditions given by Gallo (1982),

n”'l (C&-CB) has a limiting asymptotic multivariate normal distribution (Theorem 2
of Section 2). This result does not require that the random errors {(errors of
measurement, residual errors) are normally distributed, but only that these
errors are sampled from a conmon population with finite second moments. However,
Theorem 2 does assume that all predictors are fixed. In Section 3, Theorem 2

is extended to cases where some of the predictors are random variables.

The nature of the limiting normal distribution of n; (CQ-CB) depends upon
whether the predictors measured with error are random (structural errors-in-
variables models) or fixed (functional errors-in-variables models). In the
former case, the limiting normal distribution has a zero mean vector, while in the
latter case the mearn vector need not be zero (and is a function of unknown
parameters). A companion paper (Carroll, Gallo and Gleser, 1985) uses these
results to compare the asymptotic efficiencies of the OLS and maximum likelihood

estimators of Cg when the errors-in-variables model is of the structural kind.

2. Asymptotic Theory. Suppose that a dependent scalar variable ¥; is

related to a vector fli: px1 of observable predictors and a vector fZi: gxl of

latent (unobservable) nredictors by the model




(2.]) y.i = fii‘s] + féisz + ei’ i = ],2,-..’"’

and that f2i is observed with error by Xis where

(2.2) x. = f

.+
i 2i T U

i’ i =],2,...,n.

For fixed (fii’ féi) it is assumed that

u.

e\,
(2.3) ( ) » 1 <i<n,arei.i.d.
i

with mean vector 0 and covariance matrix

N “12
z ={ , T L,st QxQ.
12 T2 22

To state the model in vector-matrix form, let

Y A

Y = N F]= , F2=
yn fln
& U1

2




(2.4) Y=Figy +Fte, X=F,+U,

where the rows of E = (e,U) are f.i.d. random vectors with mean vector 0 and
covariance matrix §.
Note. It is assumed that all design (dummy) variables are included in F]. This
eliminates the need for separately including an intercept term in the model.

The OLS estimator of g for the model (2.4) is

' -1
] ]
F]F] F‘X FiY

(2.5) B =

2.1 Asymptotic Consistency. To give asymptotic results about é, we need

to make some assumptions about the sequence
(2.6) f= {(fii’ féi): i=1,2,...}

of fixed predicior values. These are the following.

Assumption 1.
FiF.  F3F A A
Tim n'] P 12 = n 12 = A, > 0.
o FIF,  FUF

v Fafp Mg M2




Assumption 2.

Y | .
1im n~ % max [F],Fz] = 0,

N-»co

where for any matrix A = ((aij))’ max (A) = max Iaijl'

We will make extensive use of the following results.

Lemma 1. Under (2.4) and Assumptions 1 and 2, for all (q+1)-dimensional

column vectors t,

n

[ ¥

(F],FZ)’ (e,U)t -+ MVN(O,(t'zt)a)

in distribution as n-.. In particular,

) .2 1

(2.7) T~ (£1.F,)" (e-Ug,) - MVN(O,[(l.-Bé)X(_Bz) 1a)

in distribution as n»-,

Proof. This is a direct consequence of Corollary 3.2 and the discussion following

in Gleser (1965). [

Lemma 2. Under the assumptions of Lemma 1,

Proof. From the weak law of large numbers,

(2.3) n"eu) (eU) = 1+ 0,(1)




while from Lemma 1,

-1 ey = "‘3‘
n FZU Op(n ).

From these facts, (2.4) and Assumption 1, the assertion of the lemma directly
follows. W]

The following theorem is a restatement of the result of Gallo {1982)

mentioned in Section 1.

Theorem 1 (Gallo, 1982). Urder (2.4) and Assumptions 1 and 2,

-1
“Ayq A
R 11 %12
c's £ c's © c' = 0,
q

where Iq is the q-dimensional identity matrix.

Proof. Note from (2.4) that

1] H [} .
] (F]Y> (F,F] r]x> ( a]>
H L} - ] [} ‘.

Fi(e’uﬁz)

I|—-

'Fé(e-Uﬂz) + U'(e-Uaz)




However, Lomma 1 implies that

1 (R -3
a (e-Us,) = 0,(n"),
3

while it follows from (2.8) that

p-1

1 = ot

From these facts, (2.5) and Lenma 2 it foilow: that

-1 \
T M2 ] 0 \
(2.9)  e=3+ .. J iy +c (1),
L2 %22t T2 %12 T2 b)) P
Let
Q= (7, * Ay 1) A - . Ay a7
22 T M2t iR B+ B PIL

Then

A \ -1 - -1
MoM2 0 M1 42

= Q
A]Z AZZ + l0o 1 I

and it follows from (2.9) that

U N . o el




e Pari Tt A el g Mgt gk gl ) P SR
- P N A L IO B el S [N e I e

-~

(2.10) c's P— c'g+c'

Thus,
-1
) i M2
c'e 2 c'g o ¢' Q(oi2~£228) =0, all g, ¢.
I
Clearly
-1 -1
. 41 42 A M2 : )
¢ =0 o c' Qosr,~2,,8) = 0O
i I 12 22
q q

for all 3, . On the other hand, if

U Tt T
By = Iy 995 = Tpp (=A1p Aqps Tde,

then

-1 , -1 -1
. My M2 My M2 A 4y
= ¢! Qloi,-Z,,8) » ¢’ Q c =0

I 127522 { I
q q q

-] .

M1 S
o C' = 0’
L

This completes the proof.

since Q > 0.




' s~ < . T Tall Wl - > e e BT AN LR BRSSP S BL B W8
R VA I R I A T e T A N B T R T e e L R i R T N R Ny T ) . N

9

Note that
-1
M2 . 1
c =0 e c=d [Ip. Ay A12]’ some d.

Iy

From this fact, it is easily seen that the rows of

. A
C = (1 27y Ayp)

serve as a basis for the linear manifold of all ¢ such that c'g is consistent

for c‘é. This motivates consideration of the limiting distribution of

_.J -
Tn = n=C(B-8).

2.2 Asymptotic Normality of In. Rather than state our'main result

(Theorem 2) at once, we first derive a representation for Tn that leads us to

the extra assumption needed to obtain asymptotic normality of Tn.

( ) : (FiF] F]'X>
L, ,L =C |-
In*"2n n \yxf XX

Let

and
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where
Y= Q(o;2 Iy 82)-
Since
-1
N 42
= 0’
Iq
it follows from (2.5) tﬁat
2 N]n
= o
(2.11) Tn n (Lln’LZn) oy .

Lemma 3. Under the assumptions of Lemma 1,

.
Lln All * op(])’

and

- i , [} ‘]
G = = LWy * 7 PR = Fy Ay a90)y)

1 ' ] -1
T "VN(O’ﬁ[-(ez+v)] ” [-(32+y)]€ )

in distribution as nw.

Proof. The first assertion is a d?rect consequence of Lemma 2 and the fact

that




o et Y e o e s e n e s L R T R IV W N SRR TN TN, LMk wa e v ae e se sacun.oan ey e

A A -1
no 4
-1
C [] =(A L] 0)
<A12 82 * zzz) 1

Note from (2.4) and the definition of w]n that

] N "] - ]_ [] ]

The second assertion of the lemma now follows from this representation, Lemma 1,

the first assertion of the lemma and Slutzky's Theorem. O

Lemma 4. Under the assumptions of Lemma 1,
=7l
wzn = [n U'(e‘u(32+Y)) - 522.]Y]
- 0 R FaT e ),y 1y + 0 (n7%)
n 2V 2 1Nt/ 02.0 4 p
and

Leir )'](‘ﬁ F1(F,-F, A;}A]Z))[Q"wp(l)]" + Op(n"i).

L2n =-(n 11

Proof. Using (2.4) and the definition of Wp,» We can write W, as the sum of

the first two terms on the rﬁght-hand side of (2.12) plus

-1
, ] M 42
ﬁ'FZl(e'U(l)'2+'!))‘ HU'(F])FZ) I Y .
P

!
Using Lemma 1, this last term can be shown to be Op(n =), as asserted.
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From facts about inverses of partitioned matrices, the definitions of C

and LZn and (2.4),
L, e Fir )V [ Ri(F-F a7 8y + LT A
2n n 11 n 1V 271 %1 M2 n 1 n
where
At = Lew xR (Rie)) R
n n 1YV | I
Using Lemma 2, it is easily shown that
A'] = A +3,, +0 (1) = Q'] +0.(1)
n 22.1  “22 p pt
Using Lemma 1,

N -2
n F]U Op(n ).

Since n'] FiF] =M + 0o(1) by Assumption 1, the representaticn for LZn given by
the lemma follows from Slutzky's Theorem. O
Using (2.8), Assumption 1 and Lemma 4, it is straightforward to shcw that
= 1).
op( ). Let

“2n

] = -2 ’ "]
It follows from (2.11) and Lemmas 3 and 4 that

(2.14) T =6 - (A{}+op(1)) Zy - (A{}+0(1))Zn[0'] + op(l)]'l(op(1)) +op(1).
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A careful look at (2.14) shows that for Tn to converge in distribution
for all g, £ it is necessary that Zn be 0(1). Thus, we are led to make the

following assumption

Assumption 3. For every sequence f defined by (2.6),

. . )
Tim Z_ = lim "% F3(F,-Fiatla;,) = 2(f)

N N>

where the 1imit Z(f) may depend on f.
That Assumption 3, tc.>“her with Assumptions 1 and 2, {s sufficient for

Tn to have a limiting multivariate normal distribution is clear from (2.13),

‘Lemna 3 and Slutzky's Theorem. This is our main result.

Theorem 2. Under Assumptions 1, 2 and 3,

$o -1 roy =1
T, =n* (C3-Ci) ~» MVN(-A]] Z(f)y, (n xn)A]])

. . . . _ -1
in distribution as n-w, where C = (Ip’A]]AIZ)’
P = (:22 + -322'])-](”]'2 - xzzez): 'l. = (]"(82+'().)°

3. Discussion and Extensions. Theorems 1 and 2 assume that the sequence

f defined by (2.6) is a sequence of fixed vectors. If elements of the vectors

(F1;

as being conditional limit theorems.

’féi) in this sequence are random variables, one can think of these results

When components of each (fii’féi)’ i=1,2,..., are random, a fairly easy
argument can be used to extend Theorems 1 and 2 to apply unconditionally,
provided that A;} Zi, where 7 = Zn(z) is defined by (2.13), has an asymptotic

distribution.
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Thus, let S represent the random part of (fii’féi) and let e {si,i=l,2,...}.

Distributional assumptions about the S4 yield a probability measure "(i) over
the sequences $- Suppose that

A = {é: ]im n-1(F],F2).(F])F2) = A > 0’ ]im ﬂ-é (F]QFz) = 0}
o

N

satisfies
(3.1) { du(i) =1,

In other words, Assumptions 1 and 2 are satisfied with probability one. Then

Theorem 1 shows that for all 3 inA, all ¢ > 0,

- - 2
Tim P{[tr(CB-C8)*(C8-C8)]1= > c|s} = 0.
N0

Thus, by the Lebesgue Dominated Convergence Theorem, for all ¢ > 0,

Tim P{Ltr(CA-C8) '(C3-C8) 1% > c) =0,

Mo
and hence Cé converges unconditionally in probability to C8. This shows that
Theorem 1 holds unconditionally (over a).

In a similar fashion, it can be shown that the representation (2.14) for

Tn holds unconditionally, that Gn in that representation has the limiting
multivariate normal distribution described in Lemma 3, and that Gn and Z_
are asymptotically statistically independent. Consequently, if A;} Z, v has a
limiting distribution, the limiting distribution of Tn is the convolution of the
-1

.

limiting distributions of Gn and eA]] 0
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Note: The above discussion is only a sketch of the arguments needed, and skips

over such details as measurability. A more extensive discussion in a similar
context can be found in Gleser (1983).

We will now follow the steps of the above analysis for some special cases
of the modal (2.4) which are commonly adopted in practice. Recall that if
foi i=1,2,..., are random vectors, the model (2.4) is called a structural
linear errors-in-variables regression model, while if the f21. i=1,2,..., are
vectors of constants, the model is that of a functional linear errors-in-variables
regression model. Mixes of these cases, where some elements of f2i are fived
and some elements are ranqom, are also possible. Further, the elements of fli
(except for the first component, which is always equal to 1 to accomodate an

intercept term) can also be fixed or random. Let

(] >
f.. =
11 hi

We will consider the following cases:
(a) both h; and f2i fixed (functiona] model),
(b) hi random, fZi fixed (functional model),
(c) h, fixed, f,; random (structural model),

(d) both h; and fZi random (structural model).

3.1 gg;g_gi and f,. fixed. Theorems 1 and 2 already summarize what we
can say about this case. Although Theorem 2 has some technical interest, it is
unfortunately rather useless for statistical applications. Unless we are in-
the unlikely case where we either know the limit Z(Z) or can consistently estimate

this quantity, we cannot use Theorem 2 to construct large-sample confidence regions




for C8. Recall that {fZi’ i=1,2,...} is a sequence of unknown parameters,

and that the individual vectors fZi in this sequence cannot be consistently
estimated. Thus, very strong assumptions are needed to permit us to consistently

estimate Z({) (or A;} Z(f)v).

3.2. hy; random and f21 fixed. Here, we can assume that the vectors hy

are mutually statistically independent, but must consider the possibility that
the distribution of h, depends upon f,., 1 = 1,2,... . (That is, the hy's
are not identically distributed.) Given the linear form of (2.4), it is natural

to assume that a similar linear model relates hi to fZi' Thus, we assume that
(3.2) hi=a"'|bf2i+ti,i=],2,...

where the ti's are f.i.d. with mean vector 0 and covariance matrix A. We also

assume that

(3.3) fZi =y, lim

i=1 Mo

>0

He~133

1
n

Iz

17 \
n L f2if2 = 222
i=]
-2
and that li: n = fZi = 0, all 1. By letting fz1 - f21 - u, a*at Yu,

By > By = uu';We can let u = 0 without loss of generality.

The strong law of large numbers shows that

1
t = 0, ‘Iim‘_
1 i noe "

He~123

: tity = A

with probability one. Using (3.2), (3.3) and Theorem 3 of Chow (1966),




2 n
m "% oty
2] i=1

n ' .3
2i'\n jzlejfzj) 2=

with probability one. Thus (3.1) holds with

] al 0
A s a aa'+¢A22w'+A ¥89o
0 v 822

Note that

'] = '(!. ] ‘1
My 892 [Ip_]] Luagae'+r1 "vagy-

Let 1' = {1,1,...1) and T' = (t],...,tn). Then
n

- -1
o= Fr(Fa-Fiagg 84p)

o'
n “ , (Fzr - Tﬂ)
u‘n +wF2+T

~N
n

where
- ) - ] ‘]
ro=1-v'u W= [wAzzw +A] 7Y%
1t is apparent that, in general, extra conditions on both F2 and the higher

order moments of the common distribution of the ti's are needed to permit Zn

to have a limiting distribution.




However, consider the special case ¢y = 0. In this case the random parts

hy of fH are {.1.d. randem vectors independent of the fZi‘s, and
1'F 1'Fy
A—l 1y n-i A-l n2 - n-{ n2
11 *n 11 al'F. + T'F -1
n2 2 A T'sz

Using Corollary 3.2 and the discussion following in Gleser (1965), it can be

--1
shown that the elements of n = T'Fzy have an asymptotic multivariate normal

distribution:

-2 .
n = T.FZY d MVN(Oy(Y AZZY)A)'

22
Although we could impose the condition that n = IQFZY = 0(1), this is a rather

restrictive condition, and still leaves us the problem of estimating the limit

.
ofn % IAFZY in statistical applications. Instead, we settle for a more restricted

result:
(3.4) n% (0,1 _;)(C3-CB) » MVN(0,6 )

in distribution as n+», where

1 ' Z 1 o1 )A_] (0 )
-(82+Y) -(82+Y) et Ip-l

+ (y'Azzy)A-]

| A
At )‘.( > + Y'A22Y ,
'(82+Y) “‘Bz*y)

@
]



since A'] = (O,Ip_])A;}(O,Ip_])'. In this context (y=0), it is worth noting

that

- -1
(O’Ip_]) €= (O:Ip_])(lpt'AnAlz)

(O’Ip-] ’o)l

so that the resuit concerns the estimates of the slopes (O,Ip_l)s] of the

y; on the h, (the random part of fli) in (2.4).

3.3 hy fixed and f,. random. In analogy with the discussion in Section

21
3.2, we assume that

{ = =
\3-5) fz,i ‘vf]_i + ti’ i ]’2'.--’
where the ti are i.i.d. with common mean vector 0 and covariance matrix A}

(Here, since the first element of fli is always 1, there is no need for a

separate intercept term.) Assumption (3.5) is commonly adopted in instrumental

variables approaches to errors in variables models in econometrics, and in
ANCOVA with measurement errors in the covariates.

We also assume that

(3.6) lim 2 £ > 0

n
o fyfyy 7 e
AUV FA TR

and that lim n”* fi; = 0, all i. Following steps similar to those used in

N-oo

Section 3.2, we can show that (3.1) holds with




)

r

-}

a1y wdyqutHA

Hence,
Mibz = v
Note that
'i ' -1 = -i'

where T' = (tl""’tn)' Applying Corollary 3.2 and the following discussion
in Gleser (1965),

S]1Z,y > MVN(0,87 (y"Ay))
in distribution as ns~. Consequently,
(3.7) n* (C3-CB) + MVH(0,43] [n'En + v'av])
in distribution as n+. It is worth noting that here

1
= (Ip"l’)r A= A22.~‘9 n =<-(32+Y)>.

0, there is a close parallel between (3.4) and (3.7). Note also

(]
[

When ]

that in this case Cg = B].




Even when ¢ # 0 (the distribution of f,; depends on fli)’ the result

(3.7) was obtained without the need to make extra assumptions on the higher
moments of the common distribution of the ti’ in contrast to our conclusions

in the case of Section 3.2.

3.4 Both h, and iZi fgndom. In this case it is more natural to make
assumptions concerning (h;, féi)’ i=1,2,... . We assume that these vectors

are i.i.d. with a common mean vector u and a common covariance matrix ¢. The

strong law of large numbers now shows that (3.1) holds with

1 u'
A=
N LTI

Let ..' = (ui,ué) and
<'*11 *12:)
M2 22

where ., iy, are the common mean vector and covariance matrix of the hi's.

' ‘] ]
I P < 1oy > (j“z
112 | .
e 1p *uqp

g T Ty 2

Thus,

1




Let H' = (hl’hZ"°"hn)‘ Then

ST n . _ute”) - ns-)
Lh=n (,1.) (Fp = Taluguieqyyg) - Hopyoy,) -

The Central Limit Theorem shows that the first row of Z has an
asymptotic multivariate normal distribution, For the reamaining rows of Zn
to be asymptotically multivariate normally distribrted, additional assumptions *
on the higher moments of the joint distribution of (h%,féi) are needed. To
avoid such assumpticns, we can assume that

= ] "l '1 s

where the ti's are 1.i.d. with mean vector 0 and covariance matrix

. -
%2217 %2 " %1211 %2

and statistically independent of the hi's. 1f we condition on the hi’s, (3.8)
is the model (3.5) with

- ; 1 "] [] '] =
b= (ipmopp®yquys 0750)s 1= 0y, 4.

We can now use the results of Section 3.2, noting that with probability

one {over sequences h],hz,... )
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N 1
N N
1 u.i
- ik
Mo At
Thus, conditional on the hi‘s.
e -1 ' '
(3.9) n= (Cs-Ca) » MVN(O,A]][n'£n+Y ¢22.]7])

in distribution as n-. Using the arguments given at the beginning of this
section about converting conditional limiting results to unconditional limiting

reéults, we conclude that (3.9) also holds unconditionally.

3.5 Conclusion. The results (3.4), (3.7), (3.9) can be used to construct
large sample confidence ellipsoids for C8 based on the OLS estimator Cé provided
that consistent estimators can be found for the covariance matrices of the
asymptotic normal distributions. It should be noted that in general C8 is a

function not only of 8, but also of A;}Alz, which need not be a known matrix.
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