RD-A160 189 CDNSTRUCTION OF EXPONENTIRL HRRTINGRLES FOR CWNT!NQ 1/1
PROCESSES¢U> MASSACHUSETTS UNIY AMHERST DEPT OF
MATHEMATICS AND STATISTICS W A ROSENKRANTZ 03 RPR 05
UNCLASSIFIED RAFOSR-TR-85-8868 AFOSR-82-0167




Ay

o | B RIS )

l.o E 28 2.5

== u L g22
F=—— A
w L 20
“m Il &
=_— 1.8

.25 HWii.4 w6

|

1
|

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS - (963 - A




CTERLS L S TV T TET &S

Unclassified
 SECURMITY CLASSIFICATION OF THIS PAGE

~<PORT DOCUMENTATION PAGE

1. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for Public Release:

AD-A160 189

SN w D .-

4. nﬂﬂm ORGANIZATION REPORT NUMBER(S)
AFOSR 82-0167 Tech. Report No. 10

Distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S!

APOSR-TR- 85-0868

6. NAME OF PERFORAMING ORGANIZATION OFFICE SYMBOL

Ja. NAME OF MONITORING ORGANIZATION

(11 epplicedle) AIRFORCE OFFICE OF SCIENTIFIC RESEARCH
University of Massachusetts T
‘Dept. of Mathematics/statistics "RFUSK/NM BOILDING 410
LEDERLE GRADUATE TOWERS BOLLING AFB, D.C. 20332-6448
AMHERST, MA 01003
So. NAME OF FUNDING/BPONSORING OFFICE SYMBOL 9. PROCUAREMENT INSTRUMENT IDENTIFICATION NUMSER
ORGANIZATION (I appligabie)
AIRFORCE OFFICE OF SCI. RES. l‘.l AFOSR-82-0167
$c. ADDAESS (City, Stete end ZIP Code) 10. SOURCE OF FUNDING NOS.
AFOSR/N.M. BUILDING 410 PROGRAM PROJECT TASK WORK UNIT
BOLLING AFB D.C. 20332-6448 ELEMENT NO. NO. NO. NO.
' 61102F 2304 AS

11. TITL Security
Construction of Exponential Martingales ror C

12. PERSONAL AUTHOR(S)
W. A. ROSENKRANTZ

13a. TYPE OF REPORT

16. SUPPLEMENTARY NOTATION

130, TIME COVERED 4. OATE OF AEPORT (Vr., Mo., Dey)
#ROM 1840 ! April 3

————-r———
18. PAGE COUNT

10

COSATI CODES
GAOUP

SUB. GR.

18. SUBJECT TEAMS (Continue on reverse if necessary and identify by block number)

Let N(t)
dictable process.

it is shown that z(t) =

A(t) < ¢ but did not assume A(t)

nne rice COPY

be a counting process with continuous
If E(exp(2]fIN(t))) < = agd E(exp(2(1 + exp[f])A(t))) < =

t

exp{-J f(u)dN(u) - J (exp(-f(u)) - 11dA(u)} {s a martingale.
0 0

This is a partial extension of a theorem of Kabanov, Liptser, Shiryaev (1980) who assumed

is continuous.

19. ABSTRACT (Continue on reverse if necessary and identify by dlock number)

A(t) and f(t) a bounded pre-
then

y ELECT
o1t o

¥

20 OISTRIBLTION/AVAILABILITY OF ABSTRACT

unCLASS 1P IE0/UNLIMITED (O same as mrr. 3 oric userns O

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified

220 NAME OF RESPONSIBLE INDIVIDUAL
Major Brian W. Woodruff/NM
DD FORM 1473, &3 APR

230 TELEPHONE M UMBER

22¢. OFFICE SYMBOL

EOITION OF 1 JAN 73 18 OBSOLETSE.

tinclude Aree Code:

(202)767-5025 AFOSR/NM

Unclassified
SECUMITY CLASSIFICATION OF THIS PAGE




N T R A o T B

~ KFOSR-TR- 0> -08¢€8

Construction of Exponential Martingales

for Counting Processes

by
Walter A. Rosenkrantz(1)

Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA 01003

Accession For
NTIS GRA&I g

DTIC TAB
Unannounced O
Justification |
By.
Distribution/
LT
Availability Codes
Avail and/or S
Dist Special L]

A-l

Approvas s

O e a

"

; "elrqpg e
ou u;i::d. R ’

P

“istritues

(])Research supported by AFOSR Grant #82-0167

85 10 11 198

..... ‘h‘l
-

- LIPS S R AR I SO RN
A A A



I v S St bt e B oot g il bk Shadl Sl St - Ji s B e 0 o vk a3 ey |

Abstract

‘Let N(t) be a counting process with continuous compensator A(t) and
f(t) a bounded predictable process. If E(exp(2}fIN(t))) < » and
t
E(exp(2(1 + expfff)A(t))) < = then it is shown that z(t) = exp {-J f(u)dN(u) -
T 0

t
J [exp(-f(u)) - 1]JdA(u)} 1is a martingale. This is a partial extension of a
0 .

theorem of Kabanov, Liptser, Shiryaev (1980) who assumed A(t) i ¢ but did

not assume A(t) is continuous. 7 ... e T o e Lo -
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1. Introduction

If p(t) is a standard Poisson process of unit intensity with
P(p(t) = §) = exp(-t)tj/j!- j=0,1,... then it is easy to see that

(1.1) z(t) = exp{-Ap(t) - (e'x-l)t} is a martingale for every X ¢ R.

Formula (1) suggests that if f is bounded and predictable with respect
to the filtration F(t) = o(p(s), 0 <s < t) then

1]du}

t t
(1.2)  2(t) = exp{-Lf(u)dpw) ; L [exp(-f(u))

is a martingale also. Note that by putting f(u)

A in (1.2) we obtain (1.1).
More generally Kabanov-Liptser-Shiryaev (1980) (henceforth abbreviated to
K-L-S) have proved the following theorem.

THEOREM 1: Let N(t) denote a counting process with continuous compen-
sator A(t) satisfying the condition A(t,w) < ¢ and let f(t,u) denote a
bounded predictable process with respect to the filtration F(t)

o(N(s), 0 <s < t).
Then

t t
(1.3)  2(t) = exp{-Lf(u)dN(u) ) L[’exp(-f(u)) - 11dAu)}

is a martingale.

Remarks: (1) K-L-S use the martingale z(t) to give a very nice proof

of a Poisson 1imit theorem for point processes due to T. Brown (1978).
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(1i) If we recall that the compensator of the Poisson process
A(t) = t then we see at once that the condition A(t) < ¢ is too restric-
tive since it excludes the Poisson process! These remarks suggest that a

ﬁore natural condition to impose on A(t) in order for the process z(t)

defined by (1.3) above to be a martingale is the following one:
(1.4)  E(exp(cA(t))) <=, E(exp(dN(t)) <

for non-negative constants ¢ and d which may depend on |f]|.
It is the purpose of this paper to give a statement and proof of just

such an extension to Theorem 1.

THEOREM 2: Let N(t) denote a counting process with continuous com-
pensator A(t) and let f(t,») denote a bounded predictable process.
(i) If A(t) satisfies condition (1.4) with c = 2(1 + exp(|f])) and
d = 2|f| then thelprocess z(t) (defined at (1.3)) is a martingale.
(i) If in addition f(t,w) >0 and A(t) satisfies condition (1.4)

with ¢=1 and d=0 then 2z(t) is a martingale.

When the hypothesis that A(t) be continuous is dropped K-L-S (1980)

have shown that

t t
(1.8) z(t) = exp{-ﬂ) f(u)dN(u) - L) [exp(=f(u)) - 11du - I ¢(exp(f(s)) - 1)aA(s)}

s<t

is a martingale provided A(t) < c where &(x) = 2n(1 + x) - x. We conjec-
ture that (1.6) remains true under the less restrictive condition (1.4); the

proof of this result however has .so far escaped us.
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Outline of the Proof: We first prove Theorem 2 in the special case where
N(t) = p(t). The general case is then reduced to this one via a random time
. change. A similar method is used by lkeda-Watanabe in their proof of a

X Theorem of Novikov's cf. IKEDA-WATANABE (1981) Theorem 5.3 pp 142-144,

NOTATION: Whenever convenient we will drop the w and write f(t) for f(t,w),
o A(t) for A(t,w) etc.

2. Proof of Theorem 2:
Recall the setting of the introduction: p(t) dis a standard Poisson
P. process of unit intensity and F(t) = o(p(s); 0 <s < t).
LEMMA 1: If X(w) 1s F(s) measurable and bounded then

E(exp(-X(w)[p(t) - p(s)]|F(s)) = exp([t - s](exp(-X(w)) - 1)).

This 1s a consequence of the following lemma, the proof of which is left

- to the reader.
b
o
LEMMA 2: Let h(x,y) be a bounded Borel measurable function and suppose
X{w) and Y(w) are random variables such that X(w) is G measurable.
Then
3 E(h(X,Y)|G) = g(X(w),w) where
J g(x,w) = E(h(x,Y)|G).
3
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LEMMA 3: Let f(t,w) be a bounded F(t) adapted process with left

continuous paths (and hence predictable). Then

t t
exp(-L f(u)dp{u) - L [exp(-f(u)) - 1]du) 1is a martingale.

Proof: Assume f 1is a simple function i.e.

n-1 |
(2.1) f(u,w) = 150 f(ti’w)l(ti.tiﬂ](u) where

0= to < ti < 4. < tn. It suffices to show that

t t
(2.2) E(exp(-JS f(u)dp(u) - L [exp(-f(u))- 11du)|F(s)) =1 0 <s <t.

t
Assume t; <s <t <ty so I f(u)dp(u) = f(t;,w)(p(t) - p(s)) and
S

t
f [exp(-f(u)) - 1]du = (t - s)(exp(-f(ti,w))- 1) whichisF(s) measurable.
s

Consequently by Lemma 1

t
E(exp(-J f(u)dp(u))|F(s)) = E(exp(-f(ty.w)(p(t) - p(s))|F(s))
s
= exp{(t - s)[exp(-i’(ti ,w.))- 1]} which yfelds (2.2).

If s < ti+l < t then we can reduce it to the case just considered by
successively conditioning on F(t1+]) and then F(s) etc.

For the next step we invoke Lemma 5.3 on p. 175 of Liptser-Shiryaev
V.1 (1977) which asserts that sample functions of the form (2.1) are dense in
the class of predictible functions satisfying the condition

t 2
(2.3) s([o(f(u.w)) dA(u)) < =.
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Here density is of course understood to be with respect to the norm

t
E(L(f(u.w) - gluw))2dau)) /2,

Bring in the square integrable martingale M(t) = p(t) - t and recall that
the compensator of (M(t))2 is t. Let fn(t,w) denote a sequence of simple

functions of the form (2.1) satisfying the conditions |fn| < |f|] and

t
(2.)  VmE(| (f (u,0) - f(usw))?du) = 0, i.e. set A(u) = u in (2.3);
N> oo

It then follows that

t t 2
(25 mE(][ f (uo)i(u) - [ fueian)(?) - o.
n-> o 0

Applying Schwarz's inequality and (2.4) we see that

t t
(2.6)  1im E(| If (u) - f(u)|du) < /E Tim E(J’ I (u) - £(u){%du) = 0.
ns o e 0

In addition the condition |f | < |f| implies that

t t t
|Lexp(-fn(u))du ; L exp(-f(u))du| < K fo|fn(u) - £(u)|dus

thus

t t
(2.7 1im s(|f0 exp(-f,(u))du - fo exp(-F(u))du[) = 0

N+ oo

t t
Next we observe that ‘L fn(u)dp(u) + J [exp(-fn(u)) - 1]du =
0

t t
L £ (u)dM(u) + Jo exp(-f,(u))du and that

IO SR TSN IO I -..-_~..--.-'.'. AR M A N S TS T R I I
SR e R SR LA N S RSO
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t t
(2.8) |J0 fn(u)dp(u) + L[exp(-fn(u)) - 13du| < |flp(t) + t(1 + exp(|f|) .

Consequently

t t
(2:9)  lewt-| " £, (web(u) + [ Texp(-fy(w) - 1lew] <
exp(|f|p(t) + t(1 +exp|f])

which is obviously an integrable function. It is clear we can now extract

a subsequence fn.(u) such that

t t
J(a) 1im Jofn.(u)dM(u)=L f(u)dM(u) a.s.

n'+oo

(2.10)
) t ot
|(b) Tim fo exp(-fn.(u))du JO exp(-f(u))du a.s.

n>w

On the other hand we've already shown for simple functions fn. that

t
£ (u)dp(u) - L exp(-F_ () - 1)du}[F(s)) = 1.

i (2.11) E(exp{-ft

S

The bound (2.9) and the existence of the limits in (2.10) now permit us to

pass to the 1imit in (2.11) and deduce that (2.2) remains valid for bounded
predictable f. Q.E.D.

LEMMA 4: Let N(t) be a counting process with a continuous strictly
increasing compensator A(t) satisfying condition (1.4) with ¢ = 2() +exp|f])

and d = 2|f] (or c=1,d=0 if f(t) >0). Then

t t
(2.12)  2(t) = exp{-fo f(u)dN(u) - [0 [exp(-f(u)) - 1]dA(u)}

is a martingale.




Proof: Bring in the random time change A'](t) = {nf{u:A(u) > t} and note
that A"(t) is also continuous and strictly increasing. It is easy to
see that N(A'](t)) js again a counting process with compensator

A(A'1(t)) = t and therefore N(A'](t)) = p(t) 1is a Poisson process relative
to the filtration F'(t) = F(A'l(t)). Assume f 1is left continuous which

implies that f(A"(t)) is predictable and therefore by Lemma 3

t t
(2.13) exp{-L FA" T (u))an(A™ " (u) - L [exp(-F(A~1(u)) - 17du} = v(t)

is a martingale. Now A(t) 1is a stopping time relative to the filtration

F'(t) = F(A'](t)) and so Doob's optimal stopping theorem inplies v(tA{s))

. is also a martingale. Let us assume that f(t) > 0 which, combined with

the fact that N(A'l(u)) is monotone increasing, implies the inequality

tAA(

taA(s) _ _
f £~ T (w)an(a™ (u)) - j
0

)
(2.18) - . * Lexp(-£(0" ()} - 17du <@ A A(s).

Consequently 0 < v(t A A(s)) < exp(t A A(s)) < exp(A(s)). He may now apply

the dominated convergence to conclude 1im v(t A A(s)) = v(A(s)) in Ly

t> o

and hence v(A(s)) itself is a martingale. Now

A(s

Als) -1 -1
(2.15)  v(A(s)) exp{-[0 F(A” 1 (u) ) dN(A (u))-j0

)
Lexp(-£(A ' (u) - 1)u)

3 S
exp{-fof(u)dN(u) . fo [exp(~f(u)) - 11dA(u)}

z{s) is a martingale.

We have thus proved (i1) of Theorem 2, at least in the case where f is

continuous and A(t) 1is strictly increasing. It is easy to extend this




result to simple functions of the form (2.1) by means of the following
device: for each 1 construct a sequence of non-negative continuous func- |

tions ¢, ;(t), with compact support, such that 1im ¢, .(t) =1 (t).

Set fk(t) = I f(ti’“)¢k 1(t) and note that we can arrange matters so that
i=0 ’

fk(t) ijs F(t) adapted as well. Clearly Tim fk(t) = f(t) in the sense

k> o

of bounded pointwise convergence and from this it is easy to see that (ii)

of Theorem 2 remains valid for non-negative simple functions of the form (2.1).
The extension to arbitrary non-negative bounded predictable processes via

the methods used in deriving (2.4)-(2.11) is left to the reader.

If we assume that f 1is bounded then inequality (2.14) is replaced
by

AA(s

tAA(s) -1 -1 t ) -
(2.16) |L £(A” (u))dN(A (u))+L [exp(-F(A" (u)) - 1]du] <

|£{p(A(s)) + (1 + exp(|f]))A(s) = |f[N(s) + KA(s).

By Schwarz's inequality a sufficient condition for the integrability of
exp(|fIN(s) + KA(s)) 1is given by condition (1.4) with ¢ = 2K = 2() + exp(|f})

and d = 2|f|. The proof of Theorem 2 is now complete, at least in the

case where A(t) is strictly increasing.

b
.

a
-
.

To complete the proof of Theorem 2 we drop the assumption that A(t)

be strictly increasing. It is still true however that p(t) = N(A'](t))

is a standard Poisson process with the property that p(A(t)) = N(t)

except possibly for an evanescent set and moreover matters can be arranged

SN 4

LN A4\ B SPRINPAFAFATRIY | LN

so that A(t) is independent of p(t) - see T. Brown (1981) Theorem 2 on
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p. 308. Bring in the natural (strictly) increasing process Ae(t) = A(t) + et
and note that Ae(t) decreases to A(t) as ¢ decreases to 0 and

therefore 113 p(AE(t)) = p(A(t)) since p {s right continuous ~ in par-
€

ticular p(AE(t)) converges weakly to p(A(t)). We observe that Ne(t) =
p(Ae(t)) is again a counting process with strictly increasing compensator

A_(t). By Lemma 4 then

(2.17)

z (t)

is a martingale for every e > 0.

we first assume f

tim
€

=

t t
exp(-[o (A ) - [ Texp(-Fu)) - 1308, ()

In order to pass to the limit as e+ 0

is continuous and then use the weak convergence of

p(Ae(u)) to p(A(u)) to conclude

t t
[* trapa ) = [ fluepiatu)
0 0

t
L f(u)dN(u) a.s.

Similarly it is easy to check that

t t
(2.18) 11mf [exp(-F(u)) - 11dA_(u) = f [exp(-f(u)) - 1]dA(u)  a.s.
e+0 /0 0

=

Clearly this implies that 1lim zE(t)
e-»0

z(t) 1is a martingale at least when

f(t)
that z(t)

is continuous. Proceeding as we did just after (2.15) it can be shown
is a martingale for step functions of the form (2.1) and finally the

proof for arbitrary bounded predictable f 1is carried out by means of the

standard approximation procedure used in (2.4)-(2.11). The proof of Theorem 2

L-‘
[

K
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[
i
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]
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is complete.
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