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I. INTROBUCTION- AND. SUMMARY .. =
Ceevilion
This final report summarizes work performed on the Adaptive Decentralized

Control project (under contract F4920-81-C-0051) during the period June 1981 -
July 1984. The objective of this research effort was the development of a new
concept for the design of decentralized controllers for large scale systems.

The modeling, analysis and control of large-scale systems is an
increasingly important problem in such diverse areas as defense systems,
communication and computer networks and transportation systems. The size and
complexity of many systems make it difficult or impractical to use centralized
control structures. Furthermore, considerations of communication costs,
system reliability, computational requirements and response time provide
strong incentives for the use of distributed control architectures. The basic
focus of our research is on a framework within which decentralized controller
structures can be analyzed and developed. The motivation for our proposed
approach which we named ADCON (for Adaptive Decentralized Eg!;rol) comes from
the following observations about the current status of control theory.

An important aspect of centralized control has been the study of systems
with unknown or uncertain (time varying, random) parameters. The
investigation of this problem led to an extensive literature on adaptive
control (also called: Tlearning or self-organizing systems). The natural
progression in developing centralized controllers was from the non-adaptive
case to the more difficult problems addressed by adaptive techniques.

The study of decentralized control seems so far to be almost exclusively
devoted to non-adaptive techniques. A possible explanation of this state of
affairs is the fact that the area of decentralized control of completely known
systems still has many unresolved issues and some basic problems are yet to be
answered. Under these conditions, there seemed to be 1ittle incentive to
tackle the more complex adaptive case which deals with partially known
systems. However, this 1ine of thinking is based on the experience gained in
centralized control and it may be inapplicable in the context of the
decentralized problem, which has radically different characteristics. In
fact, adaptive techniques have a central role in decentralized control, which
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is of a somewhat different nature than the role they play in the centralized
problem.

To understand the interrelation between adaptive and decentralized
control, we have to re-examine the basic issues underlying the need for
decentralized control strategies. The main motivation for considering such
strategies arises in the context of complex, large-scale systems where a
centralized controller usually requires excessive computational requirements
and excessive information gathering networks to make such a controller
feasible. In such a system, it is reasonable to assume that the local
controller (i.e., the controller of one subsystem in the large system) has
only partial information about the rest of the system. Even if the structure
of the whole system (i.e., the state equations of all subsystems and their
interactions) can be made available to each local controller, the sheer
complexity of the problem often limits the usefulness of this information. In
fact, attempting to use too much information may be one of the principal
stumbling blocks of conventional approaches to decentralized control. Most of
these approaches try to solve the (optimal) centralized problem, and then to
find clever ways of decentralizing the solution. The shortcomings of this
technique and the need for a different point of view are by now widely
recognized.

The basic idea underlying our approach is to assume that from the
subsystem's point of view, the rest of the system is not exactly known. Thus,
the subsystem is aware of its own structure, but it has only an approximate
knowledge of the rest of the system, for example, in the form of a reduced
- order model. (Different subsystems will use different models of the “outside
g world".) The local controller {s then designed on the basis of this partial
. information. The modeling uncertainty inherent in this procedure makes it
necessary to consider robust or adaptive control structures. Note that the
uncertainty here i{s due to the complexity of the system rather than to lack of
knowledge or to random effects, which are the traditional sources of
uncertainty in centralized control. The idea of replacing a complex
deterministic problem by a simple stochastic model is by no means new, and has .-
been used in a variety of physical problems (e.g., statistical
thermodynamics).
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The use of reduced order models and partial information greatly
simplifies the design and implementation of the decentralized controllers. It
raises, however, many difficult questions regarding the conditions under which
such a scheme will lead to satisfactory system behavior. What is needed is a
theory for the control of interconnected subsystems in the presence of model
uncertainties. In an earlier report [12] and in some related papers we made a
preliminary study of some of these issues.

An even more difficult set of questions arises with regard to the
operation of adaptive controllers in the presence of uncertainty. Currently
available adaptive control algorithms have been shown to experience severe
difficulties in the presence of unmodeled plant dynamics. We were able to
derive conditions which guarantee that the adaptive controller will have
specified performance despite plant uncertainty and unmodeled dynamics. These
conditions provide guidelines for the analysis and design of robust adaptive
controllers. A combination of results from robust control and adaptive
control theory was used to prove the main theorem. The main theorem was
applied to a number of well-known adaptive structures: the direct adaptive
controller, an adaptive observer, the indirect adaptive controller, and a
general form of the model reference adaptive controller [4]. We believe that
this work represents a significant advance in the field of adaptive control.

In [13] we presented an input-output approach for analyzing the global
stability and robustness properties of adaptive controllers to unmodeled
dynamics. The concept of a tuned system was introduced, i.e., the control
system that could be obtained 1f the plant were known. Comparing the adaptive
system with the tuned system results in the development of a generic adaptive
error system. Passivity theory was used to derive conditions which guarantee
global stability of the error system associated with the adaptive controller,
and ensure boundedness of the adaptive gains. Specific bounds are presented
for certain significant signals in the control systems. Limitations of these
global results are discussed, particularly the requirement that a certain
operator be strictly positive real (SPR) -- a condition that is unlikely to
hold due to unmodeled dynamics.

The ADCON concept involves many different issues, as can be seen from the
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earlier discussion and from [4],[9],[12],(13]. So far we have addressed the
problem of designing a controller for a single subsystem, when the rest of the
system is fixed. This represents only one step in an iterative procedure in
which each subsystem performs its own controller design. We have done some
investigation extensions of the theory of robust control and adaptive control
to the case of interconnected subsystems, in which local controllers are
designed sequentially (iteratively) or simultaneously. A number of different
information structures were considered. It seems that by providing each
subsystem with structural information in addition to an aggregate (reduced
order) model of the rest of the systems, it is possible to obtain simpler
design schemes. However, no conclusive results are available at this time.

We have also investigated the application of lattice structures to the
adaptive control problem. Our work in this area seemed to have generated a
considerable amount of interest (cf. [R1]-[R6]). This class of algorithms is

especially well suited for large scale problems of the type considered in this
project.

In the next section we 1ist the publications prepared under this
contract. The key papers are enclosed in the appedices.
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ROBUST ADAPTIVE CONTROL: CONDITIONS FOR GLOBAL STABILITY
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ABSTRACT

An input-output approach is presented for analyzing the global stability
and robustness properties of adaptive controllers to ummodeled dynamics. The
concept of a tuned system is introduced, i.e., the control system that could
be obtained if the plant were known. Comparing the adaptive system with the
tuned system results in the development of a generic adaptive error system.
Passivity theory is used to derive conditions which guarantee global stability
of the error system assocfated with the adaptive controller, and ensure
boundedness of the adaptive gains. Specific bounds are presented for certain
significant signals in the control systems. Limitations of these global
results are discussed, particularly the requirement that a certain operator be

strictly positive real (SPR) -- a condition that is unlikely to hold due to
unmodeled dynamics.

This work was supported by the Afr Force Office of Scientific Research (AFSC),
under contract F4920-81-C-0051. The United States government {s authorized to

reproduce and distribute reprint for governmental purposes notwtthstanding any
copyright notation thereon.
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1. INTRODUCTION

1.1 Background

RN

The analysis and design of adaptive control systems has been the subject
of extensive research in the past two decades (1]-[10]. Adaptive techniques
provide a way of handling plant uncertainty by adjusting the controller
parameters on-line to optimize system performance. An alternative method for
handling uncertainty is to use a fixed structure controller designed to
provide acceptable performance for a specified range of plant behavior. In
principle, adaptive controllers can provide improved performance compared to
fixed robust controllers, since they are tuned to the uncertain plant.

2 However, adaptive controllers sometimes exhibit undesirable behavior during
the tuning or adaptation process. For example, unmodeled dynamics can cause a
rapid deterioration in performance and even instability [11],[12]. This

- problem is not resolved by increasing the order or complexity of the model.

pas Since the model of any dynamic system, by definfition, is not the actual
system, it can therefore be argued that unmodeled dynamics are always oresent,
Y ad infinitum.

The main reason for these difficulties with adaptive controllers seems to

o be that robustness to unmodeled dynamics was not considered as a design

< criterion in the development of the adaptive control algorithm. The design )
. objective is global stabilfty of the closed-loop system, e.g., (7], [9] and jgr
5 various assumptions on the structure of the plant are required to achieve that

objective. In particular, it {s necessary to assume that the plant is linear f?
and time invariant (LTI), that the relative degree of the transfer function f{s :
known as well as the sign of the high freauency gain. Such reauirements are
not practical since real plants are often nonlinear and time-varying and can ;}
- be accurately represented only by high order (sometimes infinite order [13])
- complicated models.

The need for robustness to plant uncertafnty is not unique to adaptive }q

) control. The problem of robustness is ubiquitous in control theory and has -
: been studied in the context of fixed (nonadaptive) control [14]-[17]. These e
studies rely on the input/output properties of systems, e.g., [18],[19]. The 0
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predominant reason to examine robustness issues in this way is that the
characteritics of unmodeled dynamics, such as uncertain model order, are
easily represented. Lyapunov theory, on the other hand, is not well suited
for this type of uncertainty. Typically, plant uncertainty is characterized
by assuming that the plant belongs to a well defined set. For example, a set
description of an uncertain LTI plant is to define a "ball" in the frequency
domain. The center of the ball is the nominal plant model, and the radius
defines the model error. This set model description is one type of a more
general set description, referred to as a conic-sector [15]. The uncertainty
in the plant induces an uncertainty in the input/outout map of the closed-loop
system which can, again be characterized by a conic sector. Performance
requirements for the control system can be translated into statements on the
conic sector which bounds the closed-1o00op systems, making it possible to check
whether a given design meets specifications, and providing guidelines for
robust controller design.

In this paper we use the input/output approach to analyze the global
stability and robustness properties of continuous-time adaptive controllers
with respect to unmodeled dynamics (although we consider only continuous-time
algorithms, the input-output formalism can be readily extended to the
discrete-time case). By global we mean that no specific magnitude constraint
(other than boundedness) fs placed on any of the external inputs or initial
conditons. We develop an adaptive error system of a general form, by
comparing the actual adaptive system with a tuned system, {.e., the control
system that could be obtained i{f the plant were known. This error system is
similar to the type used in [7],[8] where the tuned system error output is
zero, due to the assumption of perfect modeling. By relaxing this assumption
we show that the non-zero outputs of the error system are the fnputs to a
nonlinear feedback error system consisting of the adaptive algorithm and two
feedback (1interconnection) operators,denoted by "ev and sz .

An important consequence of this structure is that the existence of
solutions (e.g., tuned system performance) {s separated from the stabiity
analysis (e.g., stability of the nonlinear error system). In general, the
adaptation law fs passive; consequently, if Hey is strictly posftive real
(SPR), then application of passivity theory [19]-[21], provides global
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Lz-stability of the map from the tuned system output to the actual adaptive

system output, even though the adaptive parameters may grow beyond all
bounds. We provide other conditfons (e.g., .y stable) to insure the

L_ boundedness of the adaptive gains. Similar results are developed to
fnsure L_-stability of the error system by using an exponentially weighted

passivity theory [19]. These results are summarized in Theorems 1A and 1B.

As a by product of the input/output view we also obtain specific bounds
on the L2 and L norms of significant signals in the adaptive system. The
results are summarized in Corollary 1.

The results in Theorem 1 and Corollary 1 are not essentially new (see
e.g., [71,(8]), although they do provide some extentions to previous
results. The main contribution, however, is the fact that all the results can
be obtained from a generic error system and from the application of nonlinear
stablity theorems based on input-output properties. As a consequence of this
approach, it is to be expected that conditions for robustness will arise in a
natural way. Such robustness results are obtained, but unfortunately, they
have a limited practical use. The main limitation is that the global theory
(Theorem 1) requires that Hev e SPR , which in turn places an upper bound on
the size of the unmodeled dynamics in the plant. The details are contained in
Lemmas 4.1 and 5.2. This bound ts quite restrictive and is easily violated by
even the most benign model errors, thus, verifying the results obtained in
{111, [(12]. To over come this limitation, we construct an SPR compensator,
based on the scheme proposed in [22] in the context of robust (non-adaptive)
control. Although in the adaptive case the supporing arguments are heuristic,
an example simulation shows a positive result.

The input/output analysis presented here provides a generic framework
within which 1t {s possible to analyze the robustness of adaptive robust
controllers. We believe that this framework can be used to develop practical
adaptive control algorithms that can be more readily appiied to real systems,
than the class of algoritmms currently in use.

Since this paper merges fdeas from several areas, it {s necessary to
introduce A number of definitions and concepts.
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2. SOME PRELIMINARIES

3 2.1 Notation :.-
The input/output formulation of multivariable systems is the principal =
view taken throughout this paper and the notation and terminology used is o
standard (see e.q. (18],[19]). The input and output signals are assumed to be
imbedded in either the normed function space
n n g o,
L = {X : [0,.) + R l |'x|| < .} (2.12) ‘e
p P v
or its extention ~.
- &
n n
Loe * {x : [0,T] « R} ”"”Tp <o, T <a} (2.1b)
) The respective norms ||.||p and “'”Tp are defined as follows:
" - (2.2a) -
: lIxlly = 1im Ixily,
& g‘
- 8
- with Nt
) ! Pyey1/P -
([ Ix(e)|Pdt)*’'P | p ¢ [1,0) -
o
sup x(t)], p= = P
_ fo,T1] '~
! where |.| s the Euclidean norm on R", Hence, L;e ifs an inner product -
space, with fnner product <x,y>; of elements x, y ¢ "'Z'e defined by T
@y = [ x(t)'y(t)de (2.2)
0 ~.
and so ”"“Tz . (<x.x>T)1/2 « If T+« then Lg is an inner-product space -~
with inner product <x,y> = 11m<x.y>1. . f
Tom ‘
]
g
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' g 2.2 Stability

i Systems considered in this paper are described by {tnput/output equations
;E of the form y = Gu where G:Lme - L"e fs a causal map from u into y, also
denoted u » y . The system G is said to be Lo-stable (or simply stable) 1f G
maps u ¢ L™ into Ye L" and 1f there exists finite constants k and b such
that ||(;ur|Tp <k ||u||Tp +b, for all T > 0 and all "‘Lme . The smallest
k that can be found is referred to as the Lp-gain (or simply gain) of G,
denoted yp(G) .

.
» s

e s
N

Because we often encounter LTl systems it is convenient to introduce the
following notation. Let R(s) and Ro(s) denote the proper and strictly proper
- rational functions, respectively. Let S and So denote functions in R(s) and
= Ro(s) , respectively, whose poles all have negative real parts. Thus,

. S and S° are the stable, lumped, LTI systems. Denote multivariable systems
with transfer function matrices, by R(s)™™, s™™ , etc. For example,

TR T T
.. C ey
, e
r . N

Ge ng means that all elements of G belong to S, , and so on.

1If Ge¢ $™™ then the following Lp-ga1ns are obtained,

v (6) < v_(6) = ] Sla(t)lat (2.4)
® - 0
| Y,(6) = sup FT6(Ju)] (2.5)
weR

where G{A) denotes the maximum singular value of the matrix A, defined as the
L positive square root of the maximum eigenvalue of A*A, where * {s the
' conjugate transpose of A. In (2.4), (2.5) G {s the operator, G(jw) the
transfer function matrix, and G(t) is the impulse response matrix.

2.3 Passivity

The following definitions follow those in [19],[21]. Let
G:LTe - LTe and let y, p be constants with y > 0. Then, V ucg¢ L;e :

re 7

&1
"
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G fs passive if,

<u, 6 wyop (2.6)

G is input strictly passive {f,

&j <u, Gu >3 tutulg, (2.7a)
=

g 6 is output strictly passive if,

L

- <u, Gu>pop *uibuly, (2.7b)

(u and p are not the same throughout). When G ¢ s™M catisfies (2.7), G is
said to be strictly positive real (SPR), denoted G ¢ sPR™ . Because SPR
systems play a crucial role in the proof of stability of adaptive systems, we
introduce the following subsets:

PR} = {6 ¢ S""“"Iu% [6(Jw) + 6(-3u)'] - uI) > 0, VueR} (2.8a)
SPR = (6 ¢ SpIa(F (6(du) + Gl-Ju)'] - u G(-Ju)'G(Jw)) > O, VueR} (2.8b)

where A(A) denotes the smallest eigenvalue of A. Thus, whenever G ¢ S™ " ,
conditions (2.7) can be tested in the frequency domain. Moreover, SPR: and
spgf , respectively, separate the strictly proper SPR functions from the
proper, but not strictly proper, SPR functions. In the scalar case, the
frequency domain cond{tions simplify because A[(G(Juw) + G(-ju)'l= —
2 Re(G(Jw)]. 3

Certain unstable systems in R(s)™™ can be passive by virtue of (2.6). f%
In particular, GeR(s)™™ 15 passive {f G(s) is positive real. The transfer -
functfon matrix G(s) is positive real 1f: (i) it has no poles in Re(s) > O, 3
(11) poles on the ju axis are simple with a non-negative residue, and ({i{) =
for any w ¢ R not a pole of G(Jju) + G(-Jw)' > . s




n 2.4 Model Error

The cornerstone of robust control design is a quantifiable bound on the
LY error between the model used for control design and the actual plant to be
controlled. In the adaptive control case considered here the model is a

. F? parametric model, where the parameters are not known exactly. The structure
of the parametric model can be obtained analytically from physical laws, but
this tnvariably results in a complicated model. Often a simple structure {is
selected because it is more convenient for analysis and synthesis.

: :i Let P denote the plant to be controlled. In the broadest sense P {s a

N relation in L'“e X L?e , f.e., the set of all possible ordered pairs
E; (u,y)eLTe x Ly, Of fnouts u e LTe and outputs ygL?e that could be generated
by the plant [18]. The uncertainty in the plant {s denoted by (u,y) ¢ P .
E - Let PG:L:'e - L:e denote a parametric model of the plant P with
T - parameters 4 ¢ Rk . The parameters can be selected so as to minimize any
ll discrepancies between the model and the plant, {.e.,
infkly-PauITp = |y-P*ulTp (2.9)
aelR
=
N We will refer to q*ng as the tuned model parameters and to P = P _ as the
Qw
. tuned parametric model of the plant. In general, P, {s dependent on the
L input/output sequence.
ad
: Most of the previous work on adaptive control deals with the case where
for every (u,y) ¢ P there exists a tuned parametric model P«, such that
- P,=P. In this paper we consider the presence of urmodeled dynamics, thus,
- the uncertain plant P cannot be perfectly modeled by any parametric model
_ P_ . Since we will deal exclusively with LTI plants P ¢ R(s)™™ , it fs
~2 convenient to describe this model error in the frequency-domafn. Let
- Bs(r) denote a "ball” in S of radius r, defined by
l: nxm
; B5(r) = (G e S™"| 3[G(Ju)] < u), w ¢ R} (2.10)
‘ L'.
r 9
s
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Let the plant to be controlled be described by

P = (1+a)P, (2.11a)

where P ¢ R(s)"xm is the plant, P, ¢ R(s)"xm is the tuned parametric model,
and 5 ¢ S™" denotes the unmodeled dynamics. Further, the only knowledge
available about a is that it is bounded such that

Ae Bs(&) (2.11b)

where §(w) is known for all frequencies. In other words, while the operator
a is not precisely known, we do know a bound on its effect. This model
description (2.2) is used throughout the paper to precisely define the plant
to be controlled in an adaptive system. Following Doyle and Stein [16] we
will refer to (2.11b) as an unstructred uncertainty. Note that although a fis
stable, P and P« need not be stable. Hence, the parametric model {s
implicitly required to capture all unstable poles of the plant. Although this
is not severly restrictive - at least on practical grounds - nonetheless, it
can be eliminated by definng model error as (stable) deviations in (stable)
coprime factors of the plant [23]; As the subsequent analysis is not
substantially effected by this choice, we will remafn with (2.11) for purposes
of illustration.

2.5 Persistent Excitation

From (31], a regulated function F(.) = R, » R™" fs persistently
exciting, denoted F ¢ PE , if there exists finite positive constants

ays ags and ag such that
S"Gg
' .
In > s[ F(t)F(t)'dt > a ln . ¥se R* (2.12)

®2 1

The usefulness of a persistently exciting signal is in establishing the
exponential stability of the following differential equation which arises in
many adaptive and identification schemes, {.e., -@
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X = -BFHF'x + w , x(0) ¢ R" (2.13)

It is shown in [31] that 1f B¢ R™™, B =8'>0, H¢ spR: or sPR}, and
FecPE, then (w, x(0) |- x {s exponentially stable, i.e., 3 m, 1 > 0 such

that

t
Ix(e)] < me>t (x(0)] + [ me™ %" fuie)lde - (2.14)

0
We will utilize this latter result in section IV in our proof of stablity of

the adaptive system.

BC A




3. ADAPTIVE ERROR MODEL
In this section we develop a generic adaptive error model which will be
used in the subsequent analysis. This requires defining the notions of robust
control and tuned control.

Robust and Tuned Control

Consider, for example, the model reference adaptive control (MRAC)
depicted in Figure 3.1, consisting of the uncertain plant P, a reference model
H., and an adaptive controller C(a) , where 3 is the adaptive gain vector, r
is a reference input, d is a disturbance process, and n is sensor noise.
Denote by H(a) the closed-loop system relating the external inputs w = (r',
d', n')' to the output error e, as depicted in Figure 3.2.. Also, let we W
denote the admissable class of input signals.

The objective of the adaptive controller is twofold: (1) adjust & to a
constant g, ¢ RK such that H(e,) has desireable properties; and (2) during
adaptation, as g is adjusted, the error is well behaved. In the usual
formulations [7] only (1) is considered and further it {s assumed that there
exists a matched gain, denoted by ¥ ¢ rK » Such that

11

H(F) = 0 (3.1) ™

The presence of uncertain unmodeled dynamics in the plant eliminate the chance
of satisfying the matching condftion. Thus, it {s more appropriate to define

a tuned gain, denoted by o, ¢ R , corresponding to each (u,y,w) ¢ P x W , ~
such that e
Hle,)w < Hlelw , ¥ 8 ¢ RK (3.2) -
The error signal e, := H(e, )w is referred to as the tuned error. Note that Ei
each (u,y,w) ¢ P x W engenders a possibly different g, . Also, it is -
important to distinguish the tuned gain o, , from the robust gain 0, € rK , &
where -
sup H(eo)w < sup Hlelw, ¥ o ¢ Rk _ (3.3) gf
P x W PxW

12 -




G AT AORE pNEN

sy
s
e

»

| EAN
A

A

+
-~ +
c(e) -‘-----<§:>----- n

C

ADAPTIVE LAW:

Figure 3.1 A Model Reference Adaptive Controller

PR wh Eiai PO Sl A A Pl WalAT A D A 000 T S i i il B 2l S o Sl -l E Pl T T T .v




AN B e A w18 au A

- ADAPTIVE
LAW

Figure 3.2 Closed-Loop System

14

- . DR T I S L R Tt e At e en T Tl
RN NN NI P N3 NI RTINS RSN

S e e
- A -
a%s® PR PN PP O P

R L S S C L R o

PR
TR . -

~

R A TSI S T A Dol S A W T S -,

~ [}
.
.
b,




R T Wy s

The error signal e, " H(eo)w 1s referred to as the robust error. It follows
from these definitions that the tuned error is always smaller in norm than the
robust error, thus ¥ we W,

e, = Hle,dw < e = Hlo w, (3.4)

The tuned controller {s, unfortunately, unrealizable since it requires prior
knowledge of the actual system H(a) (or equivalently, the plant P) and the
input w. A practical adaptive controller is likely to have a larger error
norm.

Structure of the Adaptive Control

In summary, we consider the multivariable adaptive system, shown in
Figure 3.2, and described by

e = H(g)w . (3.5)

where e(t) ¢ Rm is the error signal to be controlled, w(t) ¢ RY is the
external input restricted to some set W, and E(t) € Rk is the adaptive

gain. The class of adaptive controllers considered here are such that the
adaptive gains multiply elements of internal signals z(t) ¢ Rk , referred to
as the regressor, to produce the adaptive control signals,

foo0y2 , 1ellnl (3.6)

where 81 and 2y are k1-d1mensiona1 subsets of the elements in 8 and 2z,
respectively. Thus,

k= ¢ k (3.7

Define the adaptive gain error,

alt) := alt) - 8, (3.8)

where g, ¢ Rk fs the tuned gain (3.4). Also, define the adaptive control
error signals,

T, .-




29! 2 i=1, ..., m (3.9)

Yy 1%

An equivalent expression fis,
v=1' (3.10a)
where the time-varying matrix Z is defined by
Z = block diaglzy, z2, . . ., Zg) (3.100)
To describe the relations among the signals e, 2, v, and w we introduce

the interconnection system HI : (w,v ) » (e,2) , as shown in Figure 3.3. In
(m+k ) x(m+q)

particular, let Hy e R(s) , and where Hp is defined by,

e w H -H w
= H = (3.11)

r4 zv

In effect, this structure serves to {solate the adaptive control error v, from
the rest of the system. When the adpative control is tuned, o =0 and v = 0;
consequently, the tuned error signal (3.4) {s,

e, := Hlg )w = Heww (3.12)

*
We can also define a tuned regressor signal,

z, = H_w (3.13)
In general, all the subsystems in H; are dependent on the tuned gains o, .

The interconnection system can also be written as,

16
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ese, - H, v (3.14a) -

2=2,-H, v (3.14b) e
with v given by (3.10). To complete the error model requires describing the
adaptative algorithm, i.e., the means by which a(t) is generated. We will
consider two typical algorithms. A constant gain (gradient) algoritmm (7]:

e=rle (3.15)

where [ ¢ Rk“k, r=p'>0, and a similar but nonlinear gain algorithm:

8 = r(Ze - pla)e) (3.16a) <

where , : RK . R, is a retardation function, whose purpose is to prevent
g from growing too quickly in certain situations. Although many functions

will suffice we will select the one proposed in [24], namely: -
(1817 - 1)2, 181 > ¢ := maxig,i .
p(;) = (3.16b) :.':

0 , 181 < ¢

The complete adaptive error system, is shown in Figure 3.4. Note that
the error system {s composed of two subsystems: a linear subsystem :L and a
non-1inear subsystem ¢
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4, CONDITIONS FOR GLOBAL STABILITY

The theorems stated below give conditions for which the adaptive error
system (Fig. 3.4) is guaranteed to have certain stability and performance
properties. Proofs are given in Appendix A. Heuristically, however, the
basis for the proofs {s application of the Passivity Theorem ([19], pg. 182).
- It turns out that the map e + v is passive. Thus, if H, is SPR™ , then
the map e, » (e,v) is Lo-stable even though z and/or ¢ can grow without
bounds. Further restrictions, provided below, cause 9 and z to be bounded.
(We use the notation "x » O (exp.)" to mean that x(t) - O (exponentially) as

t+e )

Theorem A: Global Stability

For the adaptive error system shown in Figure 3.4, assume that:

(Al) The system is well-posed in the sense that all
inputs w ¢ W produce signals e.v,z, 8 , and

: g in L-e .
- (4.1a)
; kxm
(A2) sz € S° (4.1d)
(A3)  H,, c SPR (4.1c)

3 Under these conditions:

’ (1) If (e,, &) ¢ L) NL" i e, =0) and (z,, 2,) c L¥ tnen with
: algorithm (3.15) or (3.16):
- k ° k k [
(1-a) (e,@)ecl_,8eclyNL, , ands 0. (4.2)
. M-, M m i
. (1-b) €€ LNL_, e L], and e-e, > 0. (4.2b)
(1) velygnt), vell,andv >0, (4.2¢) -

20 x




(1-d)  (2,8) ¢ LK, (2-z,, 3-2,) ¢ L3NLX | and z-z, =0 exp.

(4.2d)

(1-e) If, in addition, e, = 0 (matched) and 2z, ¢ PE then
(e, 8, e-e,, v, z-2,) = 0 exp.

(4.2e)
(1) If (e,, &.)eL] and (z,, 2,) ¢ Lf , then with algorithm (3.15):
(fi-a) 2z ¢ LK e
(11-b) With the addition of either algorithm (3.16) or 2 ¢ PE it follows
that the elements of g, §, e, &, v, v, and 2 are in L, -
(4.4)
Theorem 1B: Global Stability
Replace (A3) in Theorem 1 by
(A3)' H,, e SPRQ (4.5)

(i)

It lew, &) c LNL] (=> ¢, —=0) , and (z,, 3,) ¢ LK then with
algorithm (3.15) or (3.16)

(i-a) (e, ;)e L: .8 ¢ L;ﬁL: , 80 (4.6a)
(i-b) ¢ ngﬁ L:' , 8¢ LT » @ = .0 (4.6b)
(i-c)  (v,0) ¢ L7 (4.6c)

(1-d) (2,%) ¢ LE v (z-2,, 2-3,) ¢ L;h Lf '
and z-z2 —»0 , (4.6d)

(1-e) If, in additfon, e, = 0 (matched) and 2,c PE ,
then (o, v)— 0 exp. (4.6e)
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(11) If (e,, &) ¢ L: and (z,, 2,) ¢ L: , then with algorithm (3.15):
(11-a) z¢ X (4.7d)
(§1-b) With the addition of either ze¢PE or algorithm (3.16), the

elements of o, 5, e, & v, Vv, and Z are in L_.
(4.7b)

Corollary 1: Performance Bounds

Suppose 2z, and e, satisfy the conditions in (i) of Theroems 1A or 1B.

(1) Let H,, ¢ SPRY , f.e., 3y, vy > 0 such that VueR ,

alH,,(Ju)] < v and L{H_ (5u) + M (-5u)'] > u I (4.8a)

Then, bounds on |e|2 and |s|_ can be abtained from:

teeaty < 3 (1o, + (1ewd + 2 0(0)' r7ha(0) 2] (4.80)

16l‘ < 8(0)' r7la(0) + 2rer ne-e,1,/y (4.8¢c)

1e'c
(11) Let Hay € SPRg , foe., Ju, g, k> 0 such that ¥ 4 ¢ R,

1

z[Hev(Ju) +Hev(-jm)'] > Hev(-Jw)' Hev“"’) (4.9a) -
HGgyldu) + Gy (-Ju)'] > k 1, (4.9b)
Gev(s) = (1 + qs) Hev(s) (4.9¢)
Then, bounds on |ez| and |e|. can be obtained from: R
11, < p{1etata + (1ey4akas + AFus(0) T a(0)) /2 (4.94) :
1

18'r- on_ < e(O)'r'le(O) + El- |e.+q§.|2|e|2 (4.9¢)
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Discusston

(1) Theorems 1A and 1B give conditions under which the adaptive error
system is globally stable. Essentially, conditions are imposed on the
interconnection subsystems in "I . In particular, Hev ¢ SPR™ and

sz € sgxm are direct requirements, whereas the restrictions on the tuned
signals e, and z,  , indirectly impose requirements on Heu and sz . These
latter requirements are dependent on knowledge about w ¢ W . For example, if
w is a constant, then the assumption that e, + 0 (Theorem 1A-i) requires
that the tuned feedback system is a Type-I robust servomechanism, i.e., the
transfer junction H_ (0) = 0 for ail (u,y) e P .

(2) Corollary 1 gives explicit bounds on signals in the error system.
These bounds can be used to evaluate the adaptive system design. Moreover,
the bounds allow a coarse determination as to the efficacy of adaptive control
vs. robust control. B8y comparing, for example, the adaptive error 1er, from
(4.8) with the robust error e 1, from (1.5), it is possible to obtain a
quantifiable measure of performance degradation during adaptation.

(3) Although Theorems 1A and 1B are essentially the same, there are
slight difference worth noting. These differences arise because in 1A,
Hev;SPRT=-o "ev(S) is proper but not strictly proper, whereas in 1B,
HengPRgi-. Hey(s) is strictly proper. Thus, comparing part (1) fn 1A and
18, we see that in 18, vy, V¢ Lf whereas in 1A, v {s additonally in
L'; and v-»0 .

(4) The use of persistent excitation or gain retardation is seen ir part
(i1) of theorems 1A and 1B to provide the means to quaranty bounded signals.
Other schemes based on signal normalizations or dead-zones can provide similar
results, e.g. (32],033]. The effect of these conditions fs to provide an

L_-stability which {s not present otherwise. The persistent excitation
condition actually supplies exponentfal stability, which {s stronger than

L_-stab111ty. as provided, for example, by the gatn retardation (see proof in
Appendix A).

(S) The persistent excitatfon requirements in parts ({) and parts (11)
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are different. In parts (1), z,ePE , whereas in parts (11}, 2¢PE . The
different assumptions arise because in parts (1) we enforce the matched
condition e,=0 . Hence, 2z,ePE => zcPE . This follows from (i-d) where

z -2, + 0 expoentially. Also, with e =0, a bounded disturbance added to
the reference can cause z ¢ PE without forcing, e, el . In parts (i1),
which is more realistic, we disallow the matched condition, and hence,

e, el _. Thus, Ze PE 1{s the weakest assumption to make. However, since 2z
is inside the adaptive loop, it is very different to guarantee 2z ¢ PE by
injecting external signals. Note also (in both parts{ii)) that without
retardation or PE it is possible for the regressor to remain bounded even
though the adaptive parameters may grow unbounded. Similar results have been
reported elsewhere, e.g. [24].

Robustness to Unmodeled Dynamics

Since the theorems impose requriements on the input/output properties of
the interconnection system, it follows that the effect of model error on these
properties determines the stability robustness of the adaptive system. For
example, both theorems require that "ev € sPR™ . Suppose, however, that
Hev has the form,

Hev = (] + Rev)Hev (4.10)
where ﬁev fs the projection onto “ev of the plant uncertainy operator 4 ;
and ﬁ;v is the nominal transfer function when there is no uncertainty, f{.e.,
when 5 = 0 . Thus, ﬁ;v is a function of the tuned parametric model P, and
the tuned controller gains o, . (See Section V for more specific formulae,
e.g. (5.5).)

Conditions to insure that "ev € SPRT despite uncertainty in Hy, 1is
provided by the following:

Lemma 4.1: Let Hgy be given by (4.3). Then M, e SPR, if the following
conditions hold:

(1 i;v ¢ spaf (4.11a)
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(1) “ev‘ Bg(k) where ¥ w ¢ R, (4.11b)
Klw) < 5 a[Hgy () + gy (~Ju)'] /a[ Ry, (Ju)] (4.11¢c)
Proof: Define ple): cmxm + R by
1 *
B (A) = 'Z'L(A"'A )

where * denotes conjugate transpose. Then, using definition (2.8) with (4.10)
- (4.11) we obtain

g_[Hev(jw)] = y_[Hev(Jm) + “ev(ju)ﬂev(ju)]
> wf,(Jo)] - o(A_, (Ju)]oTH, (Ju)] > O .

m
Hnece, “ev‘ SPR+ .
Comments

(1) In order to apply Lemma 4.1 it is necessary to have a detailed
description of how the plant uncertainty 4 propagates onto the
interconnection uncertainty Hev . This type of uncertainty propagation was
explored in depth by Safonov [25] and more sophisticated expressions then
(4.4b) are available to describe the uncertain operator “ev . Section 5
contains more detail on this {ssue.

(2) In the scalar case (4.11c) becomes

klw) < Re[ﬁev(ju)]”iev(ju)‘
_ (4.12)
= cos 3 (H, (Ju)]

Since ﬁ;v ¢ SPR™ by assumption, k(w) fs always positive for w ¢ R ; but

because of the cosine function, k{w) < 1 . In Section 6 we show that this
limitation on the effect of model error is easily violated by even the most
benign type of unmodeled dynamics in the plant. Methods which overcome this
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l1imitation are discussed in Section 7. The requirement that k{w) < 1 also
holds for any multivariable ﬁev ¢ SPR™ . To see this let H;v have the polar
decomposition,

Hev = Gg“ev = uever (4.13)

where Gz » G, are Hermitian and Wey is unitary. Since
F(iev) = F(G'.) 2 E(Gr) , it follows that

klw) < o[W, (Ju)] <1 (4.14)

In the case of scalar systems, the condition k(w) < 1 can be interpreted in
terms of a limitation on relative degree of Hev(s) . A necessary condition
for Hev e SPR §s that the relative degree of Hev(s) does not exceed one
i.e., phase limited to +90°. Rohrs, et al. [12] show that this necessitates
precise knowledge of plant order, and hence, is not a feasible requirement in
the presence of an unstructured uncertainty (2.12), where the order f{s
unknown. In the multivariable case it is awkward to talk about relative
degree or phase, however, (4.14) expresses the same 1fimitation.

(3) In several instances, e.g., [9],[26],[27], it has been reported that
the SPR condition has been eliminated. In each case, however, it can be
verified that the operator Hev = positive constant , which is SPR. But,
these studies do not account for ummodeled dynamics, thus, in the notation of
(4.10), only H;v = positive constant . Lemma 4.1 then provides the means to
evaluate the effect of ummodeled dynamic.
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S. APPLICATION TO MODEL REFERENCE ADAPTIVE CONTROL

Consider the model reference adaptive control (MRAC) system, shown in
Figure 5.1, consisting of: an uncertain scalar plant P ¢ Ro(s) ;A
reference model Hr € S, ; and filters with F ¢ Saxl . The plant is

0
affected by a disturbance d and a reference comnand r. The system equations

are:
e =y-y, (5.1a)
y.=H.r (5.1b)
y =d+Pu (5.1¢c)
u o= -8'z = -(8)zy + 852, (5.1d)
2, = F u, z, = Fly-r) (S.1le)

Assume that the adaptive law is given by (3.15), thus,

Y

e =rze (5.1F)

Let the plant uncertainty be described by(2.12), i.e.,

PPy
A = ¢ BS(G) (5.1g)

where P_ ¢ Ro(s) is a tuned parametric model for P. Let the filter dynamics
be given by

F(s) = tTlT' r?‘r f;:; ' (5.1h)
s ( S ’ 3 p ooy s ) »

where L(s) is a stable monic polynomial of degree ¢ . Thus,
;1(t). ;2(t) e R* and so a(t) ¢ R2L . Using the definfition of tuned gain
(3.2) we get,
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= -g'z s -(g,%0)'2

= -(6*121 + e*zzz) -v, v:=g'z from (3.6)
3 Aey *2
: i e el A

re,r

Finally,
"
Avp/L 1 1
= - - M - - v (5.2)
v @ ) s v Gy -
where A, and As, are polynomials, each of degree ¢-1 , whose coefficients are
- the elements of the tuned gains 8x and 84y , respectively; and C« denotes
f: the tuned controller. The tuned system ( g=0 ) is shown in Figure 5.2.
In terms of the uncertain plant P, the adaptive error system (Fig. 3.4)
corresponding to this MRAC system, has tuned signals:
| e, = (1 +pc,)"1d + [(1+pc,) tPC, 4 |r (5.3a)
= F(1+pC,)"1c (r-d)
z, = (5.3b)
K F(1+pC,) "1 (d-r)
and {nterconnections:
Mo = (1+pC,) tp(14a, /L)1 (5.3¢)
a= ev * *]

2 F(1+pc, ) e1en, 7!

- H = (5-3d)
v -1 -1

: FIL4PC,) " 'P(14A,, /L)

_ The error system can also be described so as to highlight the model error
[f A . The following definitions are convenient:

T, = (1ep,c0)"tp,C, =1 -,

................
............

.....................
..............................................
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p Ke :® Hevl

o (140,07 0P (14n, /)7 (5.4b)

Thus, the error system (5.3) can be also be expressed as:

ceoe,e

- e = Sy(1+aT, )7 d + (T, (1+a)(14aT,) " H e (5.5a)
F S,C.(1+aT, )" (r-q)
2, = )5.5b)
= -1
s F Se(1+aT,) " (d-r)
Lo H = K*(1+A)(1+AT*)°1 (5.5¢)
: ev
t
F K PoH(14aT, )Y
N My = (5.5d)
| F Ko(14a)(14aT,)

The result that follows in Lemma 5.1 gives conditions under which
Hoy € SPR, and H o, € S%’-"l , despite model error; thus conditions (Al)-(A3)
X of Theorems 1A and 2B are satisfied. Additional requirements are necessary to
- establish the class of tuned signals ex and z» as given by (5.5a) and (5.5b),
respectively. These requirements are discussed following Lemma 5.1.

.I'.

<

’ Lemma 5.1: For the adaptive system (5.3) or (5.5) Hev € SPRO and

o Hy € sg“l if the following conditions are all satisfied:

" -1 n-2

(1) Puls) = — s T (5.6a)
"' Sn*q,lsn 1+ eo e + an * S

5';3 (1§)  N_(s) is a stable monic polynomial (5.6b)
" (111) g>0 (5.6¢)

Ky(s)
(1v) Kels) = gﬂﬁﬂ_c SPR, where Ky{s) and K(s) are monic stable

L 7 N J
PR

r k)|
:




« ¢
.

polynomials. e
s
(v) 2 = deg L(s) > n + deg K,(s) - 1 (5.6e) e
(vi) Ac Bs(c) is such that -
. slw) < Tlw) = alw)[nlw) ITaldu)] + IS,050)1]72 e
nlw) = cos ¥ [K*(Jw)]
(5.6¢) ‘
Proof: See Appendix B,

Discussion &5
(1) Condition (i)=(v) of Lemma 5.1 are restatements of known results, =

but normally they apply to the actual plant P, e.g. [7]. In Lemma 5.1,
however, these conditions 2pply to the parametric model P« .- not to the -
actual plant. As such, they are easfer to satisfy, since the parametric model -
fs somewhat arbitrary. This flexibility is penalized by an increase in model S
error. For example, if the actual plant has a relative degree of 2, then b
choosing a parametric model of relative degree 1 -- as required by condition "
(1) -~ incrases the high frequency model error. "';
(2) Condition (vi) imposes an upper bound T on the model error v
associated with the chosen parametric model. This condition simultaneocusly =
{nsures that “ev 3 SP&° despite model error, and that the tuned system {s -
stable (see proof in Appendix B). o
(3) It is easily verified that T{w) < 1 , as was discussed following Eﬁ

Lemma 4.1. In fact, even the "optimally tight" bound (see [25) for details on
this calculation) given by,

L

. 1 2 1/2 .

T e (1171 + (124712 ¢ 4 getxr/ I M2 (5.7) [

is also restricted to be less than 1. This limitation severely restricts the .-
type of admissable model error. This fssue {s pursued in Section 6. o
32 _
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(4) To guarantee global stability using the adaptive law (5.1f),
property (1) of Theorem 1 requires that e, + 0 and 2z, 2, ¢ Lf‘ for all r
and d. For example, let r and d be any bounded signals such that

r + constant and d + constant as t + « . Property (i) of Theorem 1 {s
satisfied if:

§(0) = 0 (5.8a)
T,00) = H _(0) = 1 (5.8b)

lero model error at OC (5.8a) is certainly to be expected from even the most
crude tuned parametric model.

(5) Let r be bounded such that r » constant as t » « , but let d be
Just bounded, i.e., deg L . In this case it is not possible to guarantee
e, » 0, but we can guara;tee that e e L . To obtain global stability in
this case, requires the fntroduction of the.retardation term (3.16) {into the
adaptive law (5.1f), see part (1i) of Theorems 1A or 18B.

(6) It is possible to obtain versions of Lemma 5.1 for adaptive systems
of different forms, e.g., indirect adaptive {5]. Also, the use of
"multipliers”, e.g. [4], can be accounted for as well. The multiplier
effectively makes use of the availability of ; as a signal; and this allows
rel deg (P«) = 2 rather than 1 as required by condition (i) of Lemma 5.1.
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6. LIMITATIONS IMPOSED BY THE SPR CONDITION

The fact that the model error bound given in condition (vi) of Lemma 5.1
can not exceed one has unfortunate consequences.

Example 1
Consider a plant with transfer function,

ab
P(s) = P*(S) Ts*aJ(s+bT (6.1)
where Px is the parametirc model, with two unmodeled stable poles at -a and
-b. Suppose,also, that b is much greater than a, and that a is much greater
than the bandwidth of P,(s) . This situation seems benign -- and most likely
a certainty. Comparing (6.1) with (5.1g) gives,

2 2
ot (a0)° 172 -

(w2+a2) (2 +b2)

§(w) = u[

for all frequencies  » (abs2)Y/2 , thus, condition (vi) of Lemma 5.1 is
violated, and global stability cannot be guaranteed. The following example
illustrates this point.

Example 2 ;j

Consider the example MRAC system (Fig. 5.1) studied by Rohrs et al. [12], -
where: A

2 229
SH (501602 + 4

P(s) =

3
HR(S) = sT!'

u "61"'82!‘
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N = ye, 01(0) = .65
02 ® -r e, 92(0) = 1.14

Let r = constant and d = 0. Thus, e, -~ 0 exponentially when the tuned gains
are such that (5.8) is satisfied, {.e.,

2,,
T*(o) = an?l-' "r(O) =1 ‘

Even though (6*1. °*2) exist to satisfy this, Hev(S) fs not SPR, and so
global stability is not guaranteed. Simulation runs with r = .4 and r = 4.0
are shown in Figures 6.1 and 6.2, respectively. With the small input (Fig.
6.1) we see a stable response which tracks the reference very well. With the
large input (Fig. 6.2) the response is still stable, but large oscillations
are taking place. Larger inputs will eventually drive the system unstable,
e.g. [12].

In this example, {f the tuned model is taken to be P_(s) = 1/(s+l) then
it is easily verified that model error &(w) is greater than one at some

frequency.
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Response to r = .4
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7. SPR COMPENSATION

r x 5
*

In this section we heurfstically develop a means to obtain global robust
adaptive control. Since the SPR condition is violated whenever model error
exceeds one, a natural scheme is to construct an SPR compensator which
alleivates the problems by “filtering” the plant output; thus, avoiding the
trouble. However, direct filtering does not change the size of model error.
For example, with the plant p = (1+43)P. . Vet y, denote the output of the
filtered plant, where

LT TP P

'H

AN

y, i Wy 2 Wd 4 (l1ea)WPu (7.1)

+

Thus, model error is uneffected. Even filtering Hev directly by W offers no
help, since the bound {4.4c) is still less than one, i.e.,

'“evl < Re(w H;v)/lu Hévl <1 (7.2)

~ for any stable W. What we seek is zn SPR compensator which only effects the
unmodeled dynamics, but leaves the paramtric model intact.

A compensation scheme, which offers some promise as an SPR compensator,
is that proposed in [22]), as shown in Figure 7.1. To see the desired result
suppose that P = (1+A)Pm with 3 ¢ Bs(c) . Then, the compensator is
equivalent to a plant which maps (u,d) into Y. where

.
"
AN

L)

g yc = Wd + pcu (7.2&)

P.-P

8, :*® -;..ﬂ e Bg(Ws) (7.2v)
m

R Thus, whenver 4(w) > 1 , select W(s) such that |W(jw)ls(w) <1 . The filter
W acts 1ike a "frequency switch" whose function is to fnsure condition (vi) of
Lemma 5.1.

There are two ways to implement this compensator in an adaptive system. -
-

- The first way fs to use a fixed model of the plant for Py, 1.e., P =P .
.- The second way {s to replace Pm with an adaptive observer, §.e., Pm =P .
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SPR Compensation
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In efther case, to obtain the benefit of the SPR compensator, the signal to be

<)
controlled is the compensator output Yo o not the plant output y. Both of ~
these compensators will now be examined.

Fixed SPR Compensator i
; 2
Let Pm = P , a fixed model, and let the actual plant be given by (2.17), 1

P = (1+4)P, witha ¢ Bs(s) . Then the fixed compensator plant equivalent
model error (7.2b) is: e

PC-P* (7 ) .
Ac o= _pT € Bs(sl, -3a ::-:
where oy
Pliw)-P, (Ju) =
61(“') 1= |W(Jw)slw) + 11 - W(jw)| - W (7.3b) |

.
N

T
[}

This scheme is motivated by the fact that at low freaquencies the tuned
parametric model! P« is close to P; thus & is small and W ~ 1 . At high
frequencies § 1s large but (7 - P )/P, 1{s small, W « 0 and so 84 is "l
small. Of course the compensator is limited {f there is large model error at
intermediate frequencies.

2 Example 2 SE

Example 1 is modified to fnclude a fixed SPR compsnator with W(s) = R
- 1/(s+1) and P(s) = 2/(s+l) . Simulation results with the large step command
(rs4) are shown in Figure 7.2. Comparing these to Figure 6.2, without

;ﬁ compensation, it is readily verified that the instability tendencies are -
N eliminated. Also, direct calculations reveal that Hay € SPR, , thus global -
= stability is insured. =
- Adaptive SPR Compensation -
’.

" An adaptive SPR compensator, together with the adaptive controller, s v,
Y shown in Figure 7.3. The adaptive controller is described by, )
!

" -~
. "
.vl
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Figure 7.2 MRAC with SPR Compensator, r = 4.0
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u = -8z, .,z % (Fau , Flly-r)) (7.4a)

cZe
9 (7.4b)
8¢ "TeZ2c 8+ & Y Yy .

, . nc-l
Fc(s) (1/Lc(s).....s /Lc(s)) . N = deg Lc(s) (7.4c)

and the adaptive observer is described by,

Yo mehzy . oz = (Fyu. Foy) (7.44)
5 g (7.4d)
eo = I‘ozoe° , eo =y -y .

' Mo~ (7.4f)
Fo(s) = (1/L°(s), ceey S /Lo(s)) ' Ny ® deg Lo(s) .

where Lo(s) and Lc(s) are both monic and stable. To generate the error
system interconnection operators associated with this system, let LT and

e*o denote the tuned parameters with respective gain errors, ec and so ; and
let vc e e::zc and v° = e;zo be the corresponding adaptive control errors
(3.6). By analogy with the procedure used in Section 5 we get,

u = C*(r-yc) - IT&].?TVC (7.5)
(o
- 3*1 3*1
y = - t;_ d+ (1 - —t;-A)P*u * v, (7.6)
where
A*z/Lc
C, = (7.7)
Bugfly | M (7.8) <

Al ey wullin Y

and where (As;, Axp) are polynomials whose coefficients are the parameters fin .
L (8*1'8*2) are polynomials whose coefficients are the parameters in

Bag * and N., P+ and g are as defined by (5.6a). The adaptive error model is -
gfven below in terms of T , S, and K_ as defined fn (5.4). In additon,
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ev

define:

De
R:=s1+ (H"l)r
0

The tuned signals are:

= 0,0 1earr, )7t

-1p-1
Fehugte PaKal

 Fosu(1earT,) "

-l5-1

F Tal14aRT,) !

The interconnections are:

K, (1+aR)(1+aRT, )7L
KuD L7 a(14aRT,) !

FCP;IK*(1+ART,)'1

FCK,(1+aR)(1+ART,)’1

= S, (14aRT,17IR @ + (T,(14aR)(14aRT,) " Tot )

d + D*LSIT*A(1+ART*)-1r

-1 T
14aRT, )" *(r-Rd)

(Rd-r)

-

1+aRT, )L (r-Rd)

(d - (1+a)r)

~(1-W)S, (1+aRT,) 1

1+(1-07,0,0 L (1+arT, )

FehuplolPalKy (1-0)(144RT,) )

-F S, (1-W)(1+aRT,) !

43

(7.9)

(7.10a)

(7.100)

(7.10¢)

(7.10d)

(7.11a)

(7.11b)




[ -1 -1,-1 1|
FoP, K.(1+aRT,) FOA*ch P K (1-W){1+aRT,)
H = (7.11C)
ZoV -1 -1
-FOK,(1+A)(1+ART.) -FOT,(I-H)(1+A)(1+ART,)

The factor (1+ART,)'1 appears in all the terms above. The transfer
function R (7.9) reduces the effect of unmodeled dynamics; however not exactly
by the amount anticipated, vis a vis (7.2). This is due to additonal model
error introduced by the adaptive observer. Nonetheless, the model error
attenuation is greater than with the fixed SPR compensator. In particular, at

i)

low frequencies A = 0 and at high frequencies R « 0 , since

W0 and D,L;1 = 1 . Without further testing of Hev (7.11a) it is not
possible to state that Hev € SPRo at intermediate frequencies. Note,
however, that the nominal value of Hev is:

K* '(l'w)S*
F = (7.12)
ev 0 1 .

which is SPR, provided that K, ¢ SPR and
Re Ky (du) > H(1W(j0))Suliu) 1% , w e R (7.13)

Applying (4.11) to (7.11a), a tedious procedure, would give an upper bound on
model error to {nsure Hev £ SPR° .
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8. CONCLUSIONS

P

This paper has presented an input/output view of multivariable adaptive

et

»»

controi for uncertain linear time invariant plants. The essence of the
results are captured in Theorems 1A and 2B which provide conditions that

- guarantee global stability. Corollary 1 also give specific Lz and L_ bounds
;j on significant signals in the adaptive control system. These bounds, for

example, can be used to guarantee that the adaptive system performs as well as
a robust (non-adaptive) system using the same structure, but with fixed

gains. By distinguishing between a tuned system and a robust system, we

- establish formulae which can be used to restrict the minimum performance

-il improvement possible with the same control structure. )

- Although the stability results (Theorem 1A, 18) are not entirely new (see
'f e.g., [71,[8]), the input/output setting provides the means to directly

< determine the system robustness properties with respect to model error. The
type of model error examined can arise from a variety of causes, such as

unmodelied dynamics and reduced order modeling. It is very difficult to treat
this type of “unstructured” dynamic model error by using Lyapunov theory,

since the system order may not be known -- in fact, it may be infinite.

~y Although infinite dimensional (distributed) systems were not considered here,
f Theorem 1 can be modified to include them, e.g., [26].

The structure of Theorems 1A and 1B require that a particular subsystem
operator, denoted Hev , Is strictly positive real (SPR). This requirement f{s
not unique to this presentation - passivity requirements, in one form or
another, dominate proofs of global stability for practically all adaptive
control systems, including recursive identification algorithms.

- Unfortunately, although "ev ¢ SPR is robust to model error (Lemma 4.1), the
bound on the model error {s too small to be of practical use. Even the most
benign neglected dynamics violate the bound.

A
I8
s
2f Although this paper {s concerned with continuous-time systems, the
- .

’ theorems carry over virtually intact to discrete-time systems. This is a ii
:§ direct consequence of the portable nature of the input/output view. However,
:2 there is an important {ssue unigue to discrete-time systems: plant 4
Y 3
~
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uncertainty ts critical to where performance {s actually measured, which iIs in
continuous-time, not at the sampled-data points. As a consequence, it may be
necessary to map the discrete portions of the adaptive system (most likely the
controller) nto continuous-time, i.e., the Lp-9ains of the discrete-time
operators in the interconnection map, which are associated with the adaptive
discrete-time controller, would be needed rather the discrete-time zz-gains .

Another area worth pursuing is the adaptive control of non-linear
plants. The plant uncertainty description (2.11) does not exclude non-linear
plants. Note that slowly drifting parameters in an otherwise perfectly known
LTI plant could yield the same uncertainty description as a non-linear plant
approximated by a parametric LTI model. All that is required {s that there
exists a (possibly) infinite dimensional LTI system which matches the
input/output behavior of the plant for each possible input/output pair. Of
course, if the plant is truly non-linear, then the tuned control is likely to
be non-1inear, which raises some very interesting fssues for further research.

One final remark: the stability results presented here, as well as other
known results, provide global stability. This is achieved by requiring
Hev e SPR , a condition which is difficult to maintain in normal
circumstances. On the other hand, this is a sufficient conditon; violation of
which does not necessarily lead to instability. The simple example presented
here in Figure 6.1-6.2, illustrates the point. Other examples of this
phenomena abound, e.g., [12]. It would appear then, that a more valid
approach to providing a system-theoretic setting for adaptive control is to
develop local stability conditions, which, hopefully, do not require that
"ev ¢ SPR . Preliminary results on local stability supvort this hope, e.g.,
(33], (34].
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APPENDIX A

PROOF OF THEOREMS 1 AND 2

Preliminaries

The main ingredient in the proof is to show stability by means of
passivity. Although there are many variations on this theme, a general result
is given by the following.

Theorem A.1 ({211, [35]

Consider the feedback system of Figure A.l below with causal operators
G1 and G2 .

Figure A.1 Feedback System

Suppose there exists real constants €4 ] i=1,2 , such that

‘n “1'
<X,Gyx>, > e'IXliz + 6'|G'x|§2 tag, ¥t>0, ¥ xe Lz[o,t] (A.1)

for i=1,2. Then the following holds ¥ t > O,

(c2+61)|y1|22 + (¢1+62)|y2|§2 < 10 pp(1Ugtyp + 2epleruny,)

* 1yt p(1uptep + 2eqlenugy,) + "1"'“1':2 + eyl - 102122

+ ‘cll + |cz| (A.2)
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Proofs of both theorems also rely on well known results for systems
He S:x" . The results required here are summarized in the following.

Theorem A-2 [(see [19], Thm. 9, pg. 59]
Let H¢ sg‘“ ; then:

(1) 1f ue Lg , then y = Hu ¢ Lg L2 v Ve Lg , y is continuous, and
y(t) s 0as t + = ,

(i1) If ue Lf , then y = Hu ¢ L: v YyeL", and y is uniformly
continuous.

(if1) If wue Lf and u(t) » constant c ¢ RMas t + = , then
y(t) » H(0)c exponentially as t + = .

In order to simplify notation we drop the superstrict on L: which
indicates vector size.

We will establish Theorem 1A first. Some of the steps will be repeated
for 18. Also, without loss of generality, the matrix r in the adaptation law

(3.15),(3.16) is set to identity. Corollary 1 is established as a by-product.

Proof of Theorem 1A

Part (1)
Identify Gl' G2 in Figure A.l with e + v and Hev respectively. Also,
let u1 =e., u2 = 0, e1 = @, yl = e2 = v, and yz = Hevv' . Using adaptive

law (3.15) we obtain,

<e,v>p = <e,l'e>y = <le, 07 ® <5, 8>y (A.4)
= 3 10(h? - 510(0n? (A.S)
> - 3 1e(0n? | (A.6)
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n Thus, using (A.1) gives,
{ 1 2
: - Cl = 61 = 0, Gl s - 2' IO(O)l (A°7)
&
’I ) Since G2 = "ev € SPR§ by assumption, 3u, v > 0 such that ¥ x ¢ LZe'
: .- <X HgyX>p > ulXtgys tH XUoo < yIXEL, © Hence, from (A.1),
.

ezsu. 62"0230 (A.8)

Using Lemma A.1, together with (A.4)-(A.8) gives,

3 1 2 2,172
Wiy < ga{reay, + (1eay, + :16(0)]1%)""%) (A.9)
- 1e-e,ly, < YIViq, (A.10)
= le(m12 < 16(0)12 + 2101y, 1w (a.11)
- T2 T2 *
i The bounds shown in (4.8) follow using the assumption e, e L, . Hence,
. e.VeLzandeeL_.

N Having Sstablished that vel, ., Theorem A-2 ==b 7:= 2-z, ¢ L,OL,, ; e Ly,
2+ 0, and z is continuous. Since z,, z, ¢ L_ by assumption, it follows

" that z¢l_and 3¢ L (=> 2 is uniformly continuous). Using v = Z'g with
z,8' el _=dvel . Using es= e,H, v with e, cL_ and H e S (by
assumption), and v ¢ L_-) ec L_ « Hence, § = Ze ¢ L => o is uniformly
continuous =» v = Z'g is uniformly continuous (since z is)=d v + 0 since

= Ve L2 is established. Using v » 0=b e - e s 0, and since e, + O by

N assumption, e + 0 . Furthermore, v - 0= z » 0 exp. and

B-Ze-ie+2,eo0 , because z and e » 0 . Using G-i'e+z‘§ with

2,9,0cl _=» ;Ie..l.. . Hence, e* =8 ~H, ¥cl_,becausee, el by

assumption. Thus, ¢ = %e + Ze ¢ L, - This establishes properties ({-a)-

o (i-d).

To show (f-e) consider (3.15) written as:




o=-Z,H, 1,0 +w

wim <(Z,H 2" ¢+ T Hy, o+ T H,, 2')0

(A.12)

Since we have already established that 2 + 0 exp. and g ¢ L, » 1t follows

that w + 0 exp. Since 2z, ¢ PE by assumption (provided e, = 0) ,
stable by (2.15). Hence, g— 0 exp.=> 8, v » 0 exp.=> e-e, + 0 exp.

completes the proof of part (i) with adaptive law (3.15).

w >0 {s exp.
This

To show that (i-a)-(i-a) hold with adaptive law (3.16) requires showing

that G,:e -> v is passive. Consider the typical time interval,

1

1, = {te [tg,t)) ralth <]

I =
I, = {te [t;.ty)] 18(th > ¢ > maxiou}
Hence,
<e,v> = <e,v>_ + <e,V
Thus,
<e.v>11 = <4, e>11 = %’le(tl)lz - %-le(to)l2

<e,v>; = < + (1 - |3|/c)2 3. 8>y
2 2

= %- |e(t2)|2 -%-le(t:l)l2 + (1 - |3|/c)2<§. o>Iz

> v}le(tz)lz - % |e(1:1)|2

because <g, 6>y » 0 from,
2
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(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
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8(t)' alt) = a(t)'[alt)-0,]

= valen? - alt)'e,
> |;(t)|2 - |5(t)|c

= je(thilrelt)hi- ¢) > 0, Vtel, . (A.19)
Thus,
<e,v>; > %‘Ie(tz)lz - %-le(to)lz (A.20)
Repeating the above procedure recursively,we eventually conclude that
e,V > - -;_- |e(0)|2 as before (A.6), and hence, Gie v is passive. The
results in (i) now repeat for adaptive law (3.16). This completes the proof

of part(i).

Proof of Theorem 1A,Part ({1)

Theorem 1A, Part (1) is essentially an L_-stability resuit. The method
of proof requires the notion of "exponential weighting” which is a means to

obtatin L.-stability of a system from the Lz-stability of an exponentially
weighted version of the system (see e.g., [19], Chapter 9). We require the

following:

Definition: Given a real number o define the exponential weighting operator

by

(1) = 2x(t) (A.21)

Consider the system y = Gu. An exp. wefghted version of this system {s
denoted by y® := G y® . Note that 1f G {s a convolution operator with
transfer function G(s) then G* {s also a convolution operator with transfer
function G(s-a) . Thus, the corresponding exponentialy weighted error system
corresponding is described by




..................

a2

ev

G . .8 .y S .
- 2 zo - W, v (A.22)
. e
:- va = zlea

8% = g0% + 2e% - pl0)e®
‘ where o > 0 such that

m " ckxm
":v e SPR] and H:v ¢ S, (A.23)

Using Theorem A-1, fdentify Gl with e + v* and G2 with H:v. Note that it is
: always possiblie to find some o > 0 such that (A.23) holds. We now examine
the passivity of G;: e+ v® . Thus,

«e®, v*>. = <%, Z‘e"‘>T = < 2e%, e°>T

a ea a Syoa
=<% ,8 -a8 +opl8)e>g

- 1 T 2 1 2 A 2

2 = ?eza 18(T)e - y 100} + <(8)e”, °Q>T""°G'T2

Y > %-ez"rle(ﬂlz - %— te(on? - a|e°l$z (A.24)
L "

',EZ The last line follows from (A.19), hence, (A.24) holds with or without the

g retardation term in the adaptive law. At this point there are two

- possibilities: efther o cL_or flo(t)| + mas t+ . If o8¢ L_ then 3

. constant co < =» such that 101 < ¢:o . Then, -
e, v %-czaT(le(T)lz c%) - % ta(ohi?
. (a.25) !
; > - %—ez"rcz - é- |e(0)|2 -
If Jo(t)| » = as t + » then it is always possible to select an arbitrarily _-ZE‘_
Ej large T such that yo(Tli= 181 . Hence, for this T, (A.24) becomes, T
). <, o5+ B2 - 1aid) - § re0n? -
:: (A.26) -
: « - 31s(on? 8
", 5‘ S
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Thus,for some ardbitrarily large T, (A.25) and (A.26) have the general form,

n if.e.,

«, 5 ¢ BT oo, i clal) (A.27)
where Cl. Cz are non-negative constants. Hence,

€; * §;s = 0, a; = ~clal) (A.28)

Since G, = 3 ¢ SPR,, 3 constants y, y > 0 such that

2 e
<x, H:V X>T > ule%z
tHey Xipp € Y 1Xp,
Then,
€y U, 62 *a,*® 0 (A.30)
Using (A.2), we get
lVasz ‘%{lengz + (I#I%z + 2 C(aT))I/Z] (A.31)
U
Since e, e L_by assumption,
lelez < e“T(Za)'llzle,l_ (A.32)
Thus,
al -1/2 -
vy, ¢ S (2a) (18 + (le,lf +4 ¢ 2°Tuc(aT))1/2] (A.33)
kxm
Since H:v € Sy . we obtain
. T
lz(T)] = | f Moyl T-oIvto )| (A.34)
-al T a
= |e H2 (Te1)v®(x)de| (A.35)
2v
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-aT a
< ey ( Ny - vy, (A.36)
where H‘;v(t) is the impulse response matrix assoctfated with H‘z"v .
Substituting (A.33) and (A.27) into (A.36) and noting that
e Tclal) < ¢, + ¢, , we obtain,
12T < 1321-—-—- (1 - [rewg + (1ol + daulcyre,) P (A3T)

Since the right hand side is independent of T, and since T can be selected to
be arbitrarily large, it follows that z ¢ L_ . Assuming there is no
retardation or persistent excitation, this completes the proof of (ii-a) to
(ii-d).

Assume now that 2z ¢ PE , which is a noncontradictory assumption since we
have already shown that 2z ¢ L_ . Hence,

§ = -THy, 7' 0+ e, (A.38)
Since z¢ PE, H e SPR_and 2, ¢, e L_ , it follows from (2.15) that

(Ze,, 8(0)) 0o is exp. stable, thus, 9, 8 ¢ L_ . The remaining results in
(ii-e) follow immediately.

Suppose now that the adaptive law is given by (3.16). Then, we can
write,

8=Ze-0(8)d = 2 e,H, 2 (6-8,)] - o(d)

-t
- - a (A.39) o

=W~ HevZ 8 -ple)de
)
where w :=Ze +1 H Z 8, ¢ L because z, e, ¢ L . Consider the -
candidate Lyapunov function v: t».g(z). . Hence, N
' &3

Ve2ws -0'ZH,2' - ola) (A.40) |

Suppose 19(t)s » » as t + = . Then there exists a time T > O such that
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172,

. a(T)y = |e|T = V5 ¢ . Hence,
\
- 1/2 1/2, .2
Vi< am VT/ + |z| T (Hey Wy - (1 - VT/ /e)™V; (A.41)
“
T .
R Clearly, there exists a finite constant < such that when VT > cl, VT <0.
- Therefore, 8 can not grow beyond all bounds, and hence, 5 el, - So then is

9 and § . and again the result of (ifi-e) follow. This completes the proof of
Theorem 1A. Note that in this case we do not obtain specific bounds on e,
because the proof proceeds by contradition.

Proof of Theorem 1B

- Part (i)
o8
Since H € SPR , there exists q > 0 such that Gev = (1 + os)l—lev e SPR_,
and furthermore, G 1 e S . As a result we can write (3.14a) as,
i = = -1 8
. e= -Hy, ¥,y =v-G,le, +qké,) (A.42)
Referring to Lemma A-1, let G1 T Ve, 62 = Hev , u1 =0, and
o u, = -Ggs(e, + q&,) . Using (A.2) together with (A.42) and the passivity
properties of H gives,
. ey
' tetyy < %;{IUZITZ + (|u2.$2 + 2ule(0)] )1/2] (A.43)
h fe(T)| < la(0)] + 21ery, « tuyiy, (A.44)
-
. where , s defined in (4.9a). Using (4.9bd) gives,
. VUl pp < (1/x)1e, + qé*'TZ . This together with (A.43), (A.44) and the
- assumption e, &, ¢ L, gives the bounds shown in (4.9). Hence,
—t

eec Lz. e L_ . However, we can not conclude that v ¢ L2 as in Theorem 1A,
" part (1). From (A.42), we can conclude that (1 + qs)‘l vel, - Since
- sz = (1 + qs)Hz € S K it follows from Lemma A-2 that

2 2= z-2, e LN, z c L, and z+ 0 . Repeated use of Lemma A-2 and the
L error equations (3.14) afves the results (f-a) - (§-d). (fi-e) follows from

the arguments in the proof of Theorem 1A, part (1).




Part (i{)

The proof is entirely analgous to that of Theorem 1A, part (i1), where
again we use exponential weighting.

Ty
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APPENDIX B

PROOF OF LEMMA 5.1
The proof utilizes the following known results:

Definition: Let J denote a subset of S, consisting of functions in S whose
inverse 1s also in S.

Fact [29): If G is any scalar transfer function in R(s), then G has a cogrfme
factorization in S, i.e., there exists N, D, A, and B in S such that
G = N/D and AN + BD = 1,

Lemma B-1: Consider the tuned adabtive system of Figure 5.2. Let

Pe € R (s) and C, ¢ Ry(s) have coprime factorizations in S given by
P, = Np/Dp and ¢, = N./D. » respectively. Then, the elements of the
transfer matrix from (r,d) into (e,, z,,y, u) all belong to S, if:

(i) Q := DpDc + Nch ed , (from [29]) (8.1)
and

(11) 6(u)|To(Ju)] <1, ¥ue R, (from [161)
where

T, = NN/Q 3= L (199,007 (8.2)
Using the definition of Q we can write "ev and sz from (5.5) as,
M., = NQ (148 (14aT,) ) (8.3)
ev P *

FDDQ'1(1+AT,)'1

H = (8.4)
v ano'1(1+A)(1+AT,)°l
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From the definition of K, (5.4b), we also obtain

Q= npx;‘ (8.3)

Proof of Lemma 5.1

(i1) and (B.3) establishes that Qe J .

We first show that (i), (1i), and (iv) => Q¢ J . Let P =N /D be a
coprime factorization of P+ such that rel deg Dp(s) = 0. Since (i) => rel deg

Px(s) = 1, it follows that rel deg Np(s) = 1. Moreover, (iv) =
rel deg K«(s) = 1, and that Ki(s) and Kp(s) are stable. This, together with

sz € So follows immediately by inspection of (B.2), since: F ¢ S° by
assumption; Dp. ND €S; Qed; ae S by assumption (vi); and finally (vi)

= (11) of Lemma B-1 » (1+aT,) " ¢ s .

Conditfons (iv) and (vi) = Hev € SPR° . This follows from Lemma 4.1}
by letting H;v = K, and letting 1 + Hev = (1+A)(1+AT*)'1 . Thus, (4.4a) is
satisfied since K ¢ SPR0 from (iv). Also, from (4.4b),

Klw) = gy ldu)l = laldu)Seldu){1-aldu)Teldu)] 2] (8.4)

6(@)!5*(:’0)'

= A\
T-6{w ) Teldull < Klw) nle} (8.5)

<

The Yast inequality comes from conditions (vi) and the definition of
¥(w) from (4.4b).

The final step in the proof of Lemma 5.1 s to show that there are a

sufficient number of parameters in ¢, to insure a solution exists. This {s :
guaranteed by satisfaction of condition (v). To see this combine (B.3) with O

the definition of Q from (B.1) to get

Q = NN 400, = upx;l (8.6)

"" :.';.‘
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From (5.2), let N = A*Z/L and 0, =] + A*l/L be a coprime factorization of

Cx, and let Np = g N«/L and Dp = 1 + Da/L be a coprime factorization of P,

where P, {s as defined in (1). With K« given by (iv), (B.6) becomes the
polynomial equation,

s
[

A, 1 KID + A*ZKIN* = L(KZN* KlD ) (8.7)
Since deg(KZN,) = deg(KID*) and K,, K,, N,, and D, are all monic, it follows
that deg[L(KZN.-KID*] = deg(L) + deg(Kl) + deg(D,) - 1 . Then, using known
results on polynomial equations, e.g. [30], it can be shown that (v) implies
that (B.7) has a solution (Aeqs Avo)
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APPENDIX B

AN EFFICIENT ALGORITHM FOR
OUTPUT ERROR MODEL REDUCTION
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An efficient algorithm for output-error model reductiont
BOAZ PORAT}§ and BENJAMIN FRIEDLANDER}

A new algorithm is presented for reduced-order modelling of linear discrete-time
syatems, using an output-error criterion. A closed form expression is developed for
the gradient of the cost function with respect to the model parameters. A computa.
tionally efficient algorithm for computing this gradient is derived. A Fletcher-Powell
optimization procedure utilizes the gradient vector to compute the reduced-order
model parameters. A special initialization procedure is proposed, and the stability of
the reduced-order system is monitored. The performance of the algorithm is
illustrated by some numerical examples.

1. Introduction

The problem of mathematical modelling of physical phenomena arises in
many scientific disciplines. An important aspect of modelling is the conversion
of complex models into simpler ones. It is usually desirable to use models that
are ag simple as possible yet still capable of capturing the salient features of the
underlying phenomena. Model simplification leads to savings in ¢omputa-
tional requirements and hardware costs and facilitates the analysis and under-
standing of complex problems. In this paper we consider a technique for the
reduced-order modelling of linear discrete-time aystems.

The problem of reduced-order modelling (sometimes called rational approxi-
mation on the unit circle) can be defined as follows : let ¢g°(z) be a rational
Nth-order transfer function

0 0 5~1 0 4-N
@)= :"::; =1 f—la:" z: + '. +g-\:1:° =
where the polynomial a(z) is assumed to be stable, i.e. to have all its roots
strictly inside the unit circle. Let

b(z) biz7'4+ ... +b,z"
a(z) l+a,z27 4+ ... +a,z7"

(1

9(z)= (2)
be an nth-order approximation to g%z) (where n <.N'), in the sense that g(z) is
‘ close ’ to ¢g°(z) under some criterion. The criterion used in this paper is the
L, norm of the difference on the unit circle, i.e.

1
V=5 _I I9° (exp (jw)) g (exp (jw))|? dw

il' 5 (exp (jw)) _b (exp (ju)) |?

= 3
27 2. | a® (exp (jw)) a (exp (jw)) @
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Using Parseval’s theorem, the criterion can be alternatively specified in the
time domain. Let

9z)= .Zl gz gl2)= .Z‘ gz~ )
Then «
V=¥ @°~a) (3)

=l

Minimization of V as defined by (3) or (5) over all possible parameter values
{b;, @, : 1<i<n}, will determine the optimal reduced-order model g(z). We
will refer to this procedure as the output-error method.

go(z)

3(2)

Figure I. A model for the output error method.

The name ‘ output-error ' comes from the system identification literature
(Landau 1979). Consider the problem depicted in Fig. 1 : two systems g%(z)
(the real system) and g(z) (the model to be estimated) with a common input
process ¥, a unit-variance white noise process. It is desired to estimate the
purameters of g(z) so that the mean-square error between the outputs of the two
systems E{e 2} will be minimized. It is a straightforward matter to check that
the mean-square error criterion is identical to V' as defined earlier.

The output-error criterion seems to be a good candidate in many applica-
tions. It uses a physically meaningful error criterion and leads to satisfactory
performance in the context of estimation and control problems. The main
difficulties with this method are related to the computation of the reduced-order
model. First, the error function is a non-quadratic function of the model
parameters (a(z)). Therefore the minimization of this function involves a non-
linear optimization procedure. Such procedures are often complicated and
computationally expensive, especially for high-order systems. Second, the
error function V will generally have multiple local minima. making it difficult
to reach the global minimum.

A number of model-reduction algorithms based on the output error have
been proposed, mainly in the context of filter design. Sanathanan and Koerner
(1963) have proposed an iterative procedure in which a conditional output error is
minimized at each stage, where the conditioning is on the denominator poly-
nomial computed at the previous stage. Steiglitz and McBride (1965) used a
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Output-error model reduction 97

similar idea in a system identification context. Deczky (1972) proposed a
technique for minimizing the p-norm of magnitude error

§ (lg (exp (jw))| ~ |9° (exp (jw))|)? dw
and the p-norm of the phase error

§ |phase (g (exp (jw))) — phase (g° (exp (jw)))|? dw

The reduced transfer function g(z) is modelled as a cascade connection of
second-order filters. This procedure is extensively used for filter design.
Aplevitch (1973) gave a gradient algorithm based on a state-space formulation.
Recently, Yahagi (1981) proposed a gradient algorithm for minimizing the
output error with respect to a model specified by a finite number of impulse
response terms.

A number of alternative procedures have been proposed in the literature,
apparently stimulated by the difficulties in computing the output-error
reduced-order model parameters. Perhaps the most popular of these is the
so-called equation-error method which uses an error function of the form

)
V"‘z';_f |a (exp (jw)) g° (exp (jw))—b (exp (jw))|?* dw

l »
=§! |a (exp (jw))[*|g° (exp (jw)) —g (exp (jw))|* dw (6)

Note that this cost function involves a filtered version of the output error. The
equation-error method has the advantage of being quadratic in both the a(z)
and the b(z) coefficients ; hence the minimization procedure is fairly straight-
forward. On the other hand, the error function tends to put a small weight on
frequencies where the magnitude of the response is large, yielding poor
approximations for systems with poles near the unit circle. Even more
problematic is the fact that a(z) resulting from minimizing ¥ is not guaranteed
to be stable.

Many model-reduction methods that are not based on the output-error
technique have been proposed in the literature. We mention in particular the
relatively recent development of the balanced realization method (Moore 1978)
and the optimal Hankel-norm method (Kung 1980). Other well-established
techniques include : dominant mode approximation, aggregation, singular
perturbation, Routh approximation and Padé approximation. Here we
consider only the output-error method, which appears to work well in various
control and signal processing applications.

In this paper we present a new algorithm for the direct minimization of the
output error function (3), (5). Through a detailed analysis of the error function
I we were able to develop a closed-form expression for the gradient vector (i.e.
the derivatives of V(g) with respect to the parameters a,, b;). This gradient
vector is then used in a Fletcher-Fowell minimization algorithm to compute the
parameters of the reduced-order model. Using some facts from the theory of
discrete Lyapunov equations and Toeplitz matrices we were able to develop an
efficient algorithm for computing the gradient vector, requiring of the order of
N2 multiplications and additions. This seems to be by far more efficient than
any other existing schemes for computing the gradient. A special initialization

D2
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procedure based on some properties of orthogonal polynomials is proposed.
This procedure seems to provide a good starting point for the subsequent
minimization algorithm, leading with high probability to the global minimum.
A unique feature of the complete algorithm is that it guarantees stability of the
reduced-order model (i.e. of a(z)) at each step.

We believe that the technique proposed in this paper provides for the first
time a satisfactory solution to the output-error reduced-order modeiling
problem. The algorithm has a number of properties that distinguish it from
previous attempts in this direction : (i) exact closed-form computation of the
gradient ; (ii) computational efficiency ; (iiil) improved initialization ; and
(iv) guaranteed stability of the model. These features make it a viable and
practically implementable technique. Our limited computational experience
with the algorithm has been very favourable.

The outline of the paper is as follows. In §2 we derive the closed-form
expression for the gradient. In §3 we discuss the implementation of the
method, in particular the efficient computation of the gradient. In §4 we
extend the method to mullivariable discrete systems. In § 5 we illustrate the
performance of the algorithm with some examples.

2, Computation of the gradient vector

In this section we derive explicit expressions for the cost function ¥ and its
gradient vector with respect to the coefficients of the polynomials a(z) and b(z).
We first express the cost function in terms of three matrices, each of which
satisfying a certain matrix Lyapunov equation. These Lyapunov equations
are shown to admit closed-form solutions, involving differences of products of
triangular Toeplitz matrices. Then we use these expressions to derive a
formula for the gradient vector.

2.1. The cost function

Let e(2) be the z-transform of the error between the impulse response of the
given transfer function and that of the reduced-order approximate model, i.e.

b%(z) b(z)
Ta%z) a@)
Let {h? 0<i <0} and {k,, 0<i< 0} be the impulse-response sequences of
1/a%z) and 1/a(z) respectively, i.e.
1 o 0 omi 1 o )
ms 'Z h‘ S aT—- Z k‘z (8)

i=0 z)  eo

e(2) N

Using these sequences, we can write (7) in a matrix form. We shall use
semi-open brackets to denote semi-infinite vectors and matrices, so that
A hy h,
b,° by
MR o
"N'-1° Ry g0 Re° [L DA h,,._, h,,_,...h.., b,

€g

N
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or more compactly as
e=Hh° - Hb (10)

where H® has dimensions oo x N and H is o0 xn. Assuming that both a%(z)
and a(z) are stable, all semi-infinite entities in (10) have finite norms. There-
fore, we can express the squared norm of e as

V(a, b) & eTe =bT Rb — 2b°TQb + bOTSb° (1)
where
RAHTH, Q2H'TH;, SAHOTHO (12)

The dimensions of R, Q and S are nxn, N xn and N x .V respectively. Let
p(z) be a monic polynomial of degree m, where

plR)=1+p2'+ ... +p, 2"

\We define C(p) as the companion matrix of p(z), i.e.

[ =Py —Ps--—Dm|
1 0
C(p)= (13)
1
[ o 1

The matrices R, Q and S can be characterized in terms of the companion
matrices of a(z) and a%(z) as follows.

Lemma 1|

Each of the matrices R, Q and S is the unique solution of a matrix Lyapunov
equation

R-C(@)RCTa)=E,,, (14 a)
Q-C(aQCT(a)=Ey,, (14 5)
S - C(a®)SC™(a%) = Eyun (14 ¢)

Eiyx is a matrix of dimension kx! having ! in its (1, 1)th entry and zeros
elsewhere.

The proof is by a direct substitution using the defining relationships (8).
Existence and uniqueness of the solutions are guaranteed by the stability of
a(z) and a%z) (Lancaster 1969).

The next lemma gives an explicit expression for the solution to a matrix
Lyapunov equation of the type appearing in Lemma 1.

Lemma 2

Let p(z) and ¢(z) be two stable monic polynomials of degree m, and let X'
satisfy the matrix Lyapunov equation

X -C(p)XC™(q) = Eppym (15)
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N ‘.'
5 Then : "
: (1) X is a Toeplitz matrix (in general, non-symmetric) ; _
(2) X-!is equal to @, P,T — P,Q,T, defined as _
.; 1 1 Py -Pm-1
b O o e
Y LI b P -
., R O .
om0y 1 1 -—
< Pm n Gmor @
. O ol .
:‘ - pn!—l' Pm . In . Im—1 (lb)
. R I S S I
. The lemma can be proved by rather tedious algebraic manipulations or, T
- more easily, by using results from the theory of bi-orthogonal polynomials on the =
- unit circle—see, for example, Kailath et al. (1978) for a detailed diseussion.
- To use Lemma 2 for eqn. (15 &), a slight modification of this equation is .
< necessary, since n=deg a <deg a®=.N. We redefine a(z) as o
- f
; d@Z)=14+a;z7 1+ ... +a,27"+0z"""14+ ... +0z7% (17)
The polynomial d(z) is only formally different from a(z), i.e. d(z) =a(z) for all -
. numerical values of z. Let ¢ be the N x N matrix satisfying the matrix
J Lyapunov equation )
~ @-C@)QCT(@) = Eyun (18) -~
5 Then it can be verified that ¢ and @ coincide in their n leftmost columns, or in ..4_
" other words § is a Toeplitz extension of Q to a square matrix.
- 2.2. The gradient
" We now have all the necessary relationships for computing ¢V/¢a and
dV/cb. The computation proceeds as follows. =
’ v oR ¢Q oR @
- e =BT o b —2b0T X b =bT —— b~ 2HoT ¥ 19
: %, b 5, b-2b oy b=b Y b~ 2b . b (19) g
‘ where b is an extension of b to dimension X" by adding N —n zeros. Next recall .
the following relationships between derivatives of matrices and of their inverses -
3R 3R o) Qg
— =R R: —m=-0Q — 20
- R B 5o =950 (20)
. We now use Lemma 2 to express R-! and {-! as :::-'
~ R'=A,A,T - Apd,T (21 a)
:; Q-1=d,4,0T- 4,0 4,7 (21 b) -
L
4
o :\‘

g
e h
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where A, 4,, A}, d,, 4,°and 4,° are defined in an obvious manner. Differen-
tiating with respect to a; we get

.ﬂ OR _3d, . 24," 84, , . 64,7

- = _—L 2 q,T 22
Ba ca, A+ 4, da; oa, As" -4, éa; (22a)

i“ -1 T

a? M‘ 4,97 - 4,0 a4, (22 b)
ca; Oa, da;

" Substituting (20) and (22) into (21), we get

- cV

= —2bTR (6’1‘ 4,T- &, A,T) Rb
oa Qa, a;

T

aa
Zb“"'Q 4, A ° Qb - QBTQT 3d, A oT QThe  (23)

o It is convenient to introduce the following vectors
r=QT™h°; s=Qb=Qb; t=Rb
- vw=ATRb; vy=A," Rb (24)
wi=dA,°Q8; wy=A,°Q

and then
ay b4, od, od 4.
3 i | 3 nint ] T lw T2 25
oa 2{ t %a, v+t 7a, Yo+ r 3a, w,~s 5a, w,} (25) .
. Finally we need an expression for the derivatives of the matrices 4,, 4,, 4,
and 4,. Define an m x m matrix Z,* by
--‘. (ka)ij é (26)
0; otherwise
! Then it can be easily verified that
ed, od, ooedy o 8d, N o
o AR ek N il S it Y 7

Using these expressions in (25) for 1 <i < n and stacking the results in a column

L vector gives the desired expression for ¢1'/da as

[ty o tyy £, O] [ ¢, ) )
. t_, tus
: av_ T ER

Funie vw+2 4 v,
t,

Lo ] R tay by
o
..

AR Y A o \"‘f AR -"}"}' ATy \' I TR A - .
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[ Ty e Py .0' " sy ] o (28)
. O
: . . Sva
+2] w, -2 ;e ws
| Faegeenty 0 | [S3mer- 852 8y 0..0] |

Finally. 0V /ob can easily be computed to be

14 n
%; =2Rb—2QTho =2t -2 : (29)
rn

In the next section we show how the computation can be implemented in an
efficient manner and describe other components of the output error algorithm.

3. Implementation of the method

In this section we discuss several issues pertaining to the implementation
of the proposed model-reduction procedure. First we consider the initialization
problem and show how to obtain a stable reduced-order initial denominator
polynomial. Then we discuss a fast computational procedure for the gradient
vector. Next we consider the problem of stability monitoring and finally
describe the gradient search procedure.

3.1. Initialization

The error surface corresponding to the output-error rational approximation
method has, in general, several local minima. As any gradient method is only
guaranteed to converge to a local minimum, it is imperative to choose an initial
condition which is sufficiently close to the global minimum. Furthermore, it is
necessary to choose a stable initial condition for a(z) and to keep monitoring the
stability as the search proceeds. .

It has been suggested in the past to use an equation-error approximation of
the given model as an initial condition {Sanathanan and Koerner 1963).
Unfortunately, equation-error approximations are not guaranteed to be stable.
A trivial stable initial condition is @(z) = I, but this may be too far from the
global minimum to guarantee convergence to this minimum.

We propose choosing the initial a(z) as the nth-order orthogonal polynomial
of the given a°z) on the unit circle (Szegé 1967). In other words, a(z) is
defined as the unique solution of the normal equation

1 R,
Spi1 “'1 = (30)
a, 0

where §,,, is the (n+1)x (n+1) principal minor of the Toeplitz matrix S
defined in (12). The polynomial a(z) thus defined has the following properties
(Szegd 1967)

»
-
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(1) it is guaranteed to be stable ;

(2) it is an optimal nth-order approximation to a°z) in the sense that it
minimizes the prediction error

Lt |, _alexp o |t
27 2. a® (exp (jw))

(3) it can be efficiently computed using Levinson’s algorithm, requiring
about n2 operations (Kailath 1974).

These properties make a(z) given by (30) an especially attractive choice for an
initial condition, even though there is no guarantee this will lead to a global
minimum.

As we shall now describe, the polynomial h(z) is determined at each iteration
by forcing oV /cb to zero. Hence no initial condition for b(z) is required here.

3.2. Efficient computation of the gradient

As we have shown, both the cost function aund the gradient vector require the
solution of matrix Lyapunov equations of the form of (15). Specifically, (14 ¢)
needs to be solved only once, while (14 a) and (18) need to be solved at each
iteration. Consider (15) and the explicit formula (16) for the inverse of its
solution. The matrix X can be obtained by a direct inversion of the right-hand
side of (16), but this would require m3 operations. A more efficient method for
inverting this matrix is by the so-called inverse Levinson algorithm. This
algorithm computes the UDL decomposition of X! in about 2m? operations (an
operation is defined here as one multiplication and one addition). As X is
Toeplitz, it is fully determined by its first and last columns, and those can be
readily computed from the L-D-U factors of X-1. e give below a summary
of the inverse Levinson algorithm, skipping the proof (see, for example, Vieira
and Kailath (1977) for the symmetric case).

Step 1. Set

Pmi=Pi» m,i=% O0<is<m; d,=1 (31)
Step 2. Fori=mdowntoi=l, do
= e R - . = 32
Pi=—DPiv Oy Qiis Ti T=pw, (32 a)

[0 Pi-ri-1 -+ Pi-pn lJ
I Qg o Qa0 O

‘1 | P Prioi - Pin 1
o 1 1 T - Qi1 i

(32¢)

TL.® as S e % LT
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Step 3. Solve the following equations for x, and x,, the first and last columns Ny
of X respectively
Sl
1 dy] | —
Py 1O 0 ”
: : X, = : -~
pm-l.m-l"'pm-l.l 1 0 -
‘ ! (33)
1 CIm-11 - Imermet 0 i
O 0
1 dy ]
In counting the number of operations for solving the two Lyapunov :-_:
equations (14 a) and (18), we note the following : -
(1) Equation (14 a) is symmetric ; hence p; ; =q, ;, p; =0, and x, is sufficient .,
to determine X. Thus the total count of operation for this equation is -
1-5n2. -—
(2) Equation (18), while non-symmetric, is ‘ sparse ' in the sense that the .
corresponding g(z) polynomial is of degree n, rather than N. The total
count of operations taking advantage of this sparseness is about
1-582 4+ 1-5n2.
The gradient search procedure can be improved by forcing the component -
oV [ob to zero at each iteration. This has the effect of conditionally optimizing )
V with respect to b at each iteration (where tne conditioning is on the current
value of a), thus reducing the number of free parameters from 2z to n. As we =,
see from (29), this achieved by setting b to E -
"
b=R-1QTb%=R-1| : (34) -
s : o
The computation of r takes N2 operations and the solution of (34) takes 2n?
operations (e.g. by substituting for R-! its expression given in (16)). The .
computation of t is then saved, since now t=[r, ... r]JT. o
The total count of operations can now be computed to be about
4+5N%+2Nn+6n% This can certainly be considered as efficient; by com- -
parison, a more conventional solution (say of the form used by Yahagi (1981))
would require a number of operations proportional to n.V'®. W
P
3.3. Stability monitoring e
Stability monitoring can be done, in principle, by solving for the roots of -
a(z) and checking that they are all inside the unit circle. This, however, is an .
undesirable approach, since it significantly increases the computational burden o~
if the degree of a(z) is relatively large. Alternatively, the stability of a(z) can A
~
O S R S T T v Sty
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'l-o

0 be tested by the Schur—Cohn test (Jury 1974), which does not require & factori-
zation of the polynomial. An interesting feature of our algorithm is that it, in

fact, includes a stability test. The solution of (14 @) via the algorithm (31)-(33)

" is equivalent to the Schur—~Cohn test in the symmetric case (Vieira and Kailath

1977). The condition

NG lpg| <1, t=1,..,n

is necessary and sufficient for stability of the given polynomial. Thus our
algorithm provides stability monitoring at no extra computational cost.

v 3.4. The gradient search procedure

Once a closed-form expression for the gradient is available, one of many
existing gradient methods can be used for minimizing the error function V(a, b).
We have chosen to use the Fletcher-Powell method (Luenberger 1973), known
for its excellent convergence rate and relative ease of implementation. An
important part of this method (as well as of virtually all gradient methods) is
the line search procedure, namely, a search for a local minimum of the cost
function at the direction used at each iteration, as a function of the step size.
In our case, a certain difficulty occurs due to the fact that the a vector is
constrained to be in the open set ()={a: a(z) is stable}. On the boundary of
this set the error V(a, b) approaches infinity, and it is not defined outside the
set. Thus, whenever the poles of a%z) are near the unit circle, great care is
needed in performing the line search to stay within the permitted region Q.
We have found the golden section search procedure (Luenberger 1973) very
useful in this case, since it uses the values of the cost function only for magnitude
comparisons and makes no use of derivatives. Thus, by assigning very high
cost to an unstable a (say near the value of the computer overflow) the line
search can be forced to yield only stable values of a.

4. Model reduction of multivariable systems

In this section we consider the case where both g°z) and g(z) are pxm
transfer-function matrices, rather than scalars. A natural rational description
of such matrices is in terms of so-called matrix fraction descriptions (MFD)
(Kailath 1980). Formulating the output-error model-reduction problem in
terms of MFDs leads to Lyapunov equations in block-companion form. Unfor-
tunately, such equations do not appear to admit closed-form solutions of the
type shown in (16). (It is worth noting that substituting matrices for scalars
in (18) does not lead to a correct solution of (15) in the matrix case.) Therefore
we have chosen not to use MFD representations here but take a different
approach.

Let a%z) be the characteristic polynomial of the system whose transfer-
function matrix is g%z). Then g%z) can be written as

B°(z) B0z 4 .. + Bz
a%z) l+a,° 274 L fapy Y

gYz) = (35)

where {B,% ..., By% are px m matrices. As before, g%(z) is assumed to be
stable and strictly proper.
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|
w

We wish to approximate g%z) by the nth-order p x m transfer-function

matrix .
B(z) Byz'+ .. +Bz ~
9(z)= a(z) l+azt+ ... +a,2" (36) DY
:: We proceed as in § 2.1, expressing the error as a semi-infinite vector and G
= then expressing V as thc /, norm of this vector. It will be convenient to .
B introduce the following notation : let B,> be a row vector of dimension pm, )
1 obtained from B.° by stacking its rows in their natural order. B, is defined in a -
similar manner. Using these definitions, we can express the error vector as =
g e] [ ho B8] 4 078, B
. 0 : P : -
ef=| i S R - an
: hy_(0..... k0 | BN Ry ko | B,
:'_ or more compactly as g
X e=H'B°-HB (38)
The element e; of e is now a row vector of dimension pm whose entries are the ::'.;
pm components of the impulse response at time ¢. The cost function V is now =
. given by
= V(a, B)2tr {eTe} =tr (BT RB - 2B°TQB + BOTSBY} (39) -
::: where tr {-} denotes the trace operator and R, Q and S are defined as in § 2.1. .
B The rest of the procedure is similar to the one given in § 2, with some minor -
. modifications. In particular : -
(1) the matrices R, § and § are obtained exactly as before ; =
(2) the gradient component ¢ V/oB is now given by
- 3V/3B =2RB - 2QTB° (40) ~:-T
o By setting
8 = R-'QTB? (41) -
)
. at each iteration, the dimensionality of the problem decreases from ot
. (mp+1)n to n. This entails a considerable saving in the amount of
: operations ; therefore it is highly recommended here. -
1 (3) The expression (25) for 3V /da; basically remains the same, except for
the need to take the trace of the right-hand side. This causes some
difficulty in obtaining an expression of the form (28) for 3V/da. How- —

ever, such an expression is not really needed for practical implementation
of the method. It is sufficient to compute the JV/da; individually,
and then stack them in a column vector of dimension n.

5. Numerical results -

In this section we demonstrate the performance of the algorithm by some
numerical examples. We have chosen to test transfer functions which have
poles near the unit circle, as these cases are usually quite difficult to handle.
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The first case uses the Sth-order transfer function whose denominator and
numerator polynomials are

a%z) = 1 — 4-082z1 + 7-2269z~1 — 6-44082-3 + 1-81932—
+2:04432-5 — 2-41972-% + 1:0356z-7—0-1516z-* (42 q)
b9(z) =24 — 0-357z~2 + 0-20362~3 — 0-08482—4 — 0-0493z-5 — 0-1922~% (42 b)

The poles of this system are at —0-7, 0-9274 + j0-3015, 0-7883 + 50-5730, 0-3,
and 0-3827 £ jO-7867.

The order taken for the reduced model was n=4. Figure 2 shows the
impulse response of the approximation corresponding to the initial choice of
a(z) as described in § 3.1, against the impulse response of the full model. Figure
3 shows the corresponding frequency responses. The poles of the initial
reduced-order model are at 0-9205 1 j0-3213 and 0-7754 + j0-6058. We see

0. . g9. 120 1e0. 209
15.0 L A— - 15.0
10.0 - ~ 10.0
5.0 - 5.0
o.oﬂ - 0.0
5.0 L 5.0
-10.04 L -10.0
-15.0 4 L -15.0
0. 0.
Fuu-
REDUCED

Figure 2. Example 1--Impulse response of initial approximatiou.

0.000 0.10. 200 Q. 300 Oﬂ 0.50
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20.0 4 [ 20.8
10.0 = 10.0°
@.0 - 9.0

'10-07 --10.0
-20.0 e

1 T 1 T
0.000 0.100 0.200 9.300 0.400 .500

——— FULL
REDUCED

Figure 3. Example 1 —Frequency response of initial approximation.
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that, even though the poles are rather close to the dominant poles of the full-
order model, this approximation is nevertheless poor. The squared error of this
approximation is 728-6, or about 25%; of the squared impulse response of the
full model, which is 2865-2. Figures 4 and 5 show the impulse and frequency
responses respectively of the approximation obtained after eight iterations of
the algorithm. The transfer function of this approximation is

b(z)  —0-39452-1+4-83182-2 — 4-81692-3 + 0-92682~4
a(z) 1—3-4301z71 + 4-8228z-% — 3-25992-3 + 0-903 1z~

(43)

The poles are at 0-9271 + j0-3099 and 0-7879 + j0-5741. The squared error is
8:48, i.e. about 19 of its initial value! The match of the impulse responses is
excellent. The match of the frequency responses is excellent down to 20 dB
and then starts deteriorating. This is an obvious result of the fact that the
output-error method weighs the error linearly, while the frequency response is

9. 0. ge.  12e.  160.  200.
. { L 1 1
15.0 - 15.0
10.0 - 10.0
5.9 - 5.9
0.0~ L 0.0
-5.0 - - -5.0
-10.0 - -10.9
-15.0 1 L -15.0
L RN U L
o. “. 8e.  120.  160.  200.
FULL
REDUCED

Figure 4. Example 1—Impulse response of final approximation.

.000 0.100 0.200 0.300 0.400  0.500 ~
49,0~ L 0.0
30.0{ - 20.0 '.".-'_
20.0 - - 20.0 '
10.0 - 10.0 -
9.0 ~ 9.9 '.:
-10.0 --10.9
-20.9 - / -20.9 :',"'
0.000 0.100 0.200 0.300 0.408 0.500

FuLL '
REDUCED -

Figure 5. Example | —Frequency response of final approximation.
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v
(%]
" shown on a logarithmic scale. Thus one should not expect a good match of the
frequency responses at frequencies where the energy density is low.
g The second example uses the 10th-order transfer function when denominator
and numerator polynomials are
. a%(z) = | — 4-41582~1 4 8-45822-% — 82398z~
o +2-56582—4 + 3-28172-5 — 4-24752~% + 1-520327
+0-681972z~% — 0-831622-% + 0-251512z-° (44 a)
ho(2) = - 03127221 - 0-392682-% + 2:33632~3

! . =2:03182~¢40-8076327% — 0:6027z-% — (-862252~7
: +1-62562~8 + 0-031422-° — 0-645542-1° (44 b)
e This example is taken from Kung and Lin (1980). The poles of this system are
v at 09561 + j0-2721, 0-3827 + j0-7867, —0-6340 + jO-1454, 0-8711 + j0-4517,
b and 0-6329 + j0-6430. The reduced order was taken to be n =6.
5 0. 0. 8. 129. 160 200,

.00 - - 8.00

£.99 - 6.00

4.90 &- 4.9

2.90 - - 2.00

.. - 0.00
. -2.00 - y --2.00
. -4.90 - - -4.00

T b L L
) % 0. ge. 120. 169, 200,

=Y — FULL
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Figure 6. Example 2—Impulse response of initial approximation.
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Figure 7. Example 2—Frequency respunse of initial approximation.
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: %
. Figures 6 and 7 show the impulse and frequency responses of the initial o
y approximation. The squared error of this approximation is 295-5, while the
. energy of the full model is 778-9. Again, the initial approximation is definitely -
poor in this case.
Iterating the algorithm 22 times gave rise to the approximation T
Y
v ~0-1112-1 - 1-49742-2 + 3-85782-3
; b(z) —4:324824 + 4-96362~5 — 3-01 192~ (45) i
—— 1] -
A a(z) 1-3-7473z~1+ 6-68452~% - 7-2682z3
: +5-09342—4 — 2:21152-5+ 0:4930z—¢ -
The poles are at 0-9560 + j0-2722, 0-5922 + j0-6391, 0-3254 + jO-7425. Some- -
. what surprisingly, four of the poles are not very close to the dominant poles of )
% the full-order system. The approximation is still very good, as is shown in .
5 Figs. 8 and 9. The squared error of the approximation is 23-7, or about 8°, of L
\ its initial value.
°. “0. se.  120.  160.  2o9.
3 8.00 - 8.00 e
- 6.90 - 6.00
A 4.00 - 4.00 wl
N
2.00 \ L 2.00 rd
.00 - o.00 .
-2.90 --2.00 :..:;
- -4.00 - -4.00
. -6.00 . v ; ' 6.00 b
- 0. 0. ge. 126. 166, 200, —
. FuLL
- ————  REDUCED
. Figure 8. Example 2—Impulse response of final approximation. .
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- Output-error model reduction i
o The last example again uses the model (44) but takes the reduced order as

n=4. The initial approximation is shown in Figs. 10 and 11, and the final
' approximation in Figs. 12 and 13. The initial and final squared errors are

498-9 and 52-5 respectively. The number of iterations needed to reach
convergence was eleven. The resulting approximate model is

e b(z) 2-6489z-! — 10-9680z-2 + 15-52052=3 — 7-21752~4
a(z) 1-3-1856z-1+4-2616z-2 — 2-8615z-2 + 0-8285z—%

(46)

The poles are at 0-9561 + j0-2724 and 0-8367 + j0-6579.

The reader is referred to Kung and Lin (1980) for a comparison with other
approximation methods (singular-value decomposition, Hankel-norm approxi-
mation, and dominant-mode approximation).

o. 4. 8. 120. 169. 290.
8.00 8.00
.00 - .00
4.00 - - 4.00
2.00 - F 2.00
e.00 1 r 0.00
-2.00 }-z.oo
-4.00 4 L~4.00
L
9. “0. ge. 120. 160. 200.
FuLL
REDUCED

Figure 10. Example 3— Impulse response of initial approximation.
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. Figure 11. Example 3—Frequency response of initial approximation.
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- Figure 12. Example 3—Impulse response of final approximation
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. Figure 13. Example 3—Frequency response of final approximation.

6. Conclusions

We have presented an efficient algorithm for output-error model reduction
of linear discrete systems. The key step was the development of a closed-form
expression for the gradient. Furthermore, this expression was shown to be
efficiently computable, requiring a number of operations proportional to N2,
where .V is the order of the given model. The proposed optimization technique
employs a special initialization procedure and the stability of the algorithm is e
guaranteed by a built-in stability test.

The method can easily be extended to model reduction of multi-input-
multi-output systems. Somewhat surprisingly, this is achieved without the use
of matrix fraction descriptions, by dealing with the characteristic polynomials
directly. <t

The new algorithm has potential applications to filter design, systen
identification and control systems. Our particular motivation in developing
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the algorithm was for possible application to adaptive control of large-scale
systems. Some results obtained in this specific application are reported in
Friedlander and Porat (1982).
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Technical Notes and Correspondence

An Output Error Method for Reduced Order
Controller Design

BOAZ PORAT anp BENJAMIN FRIEDLANDER

Abstract —An clficient computational technique is presented for the
design of reduced order controllers for linear discrete-time systems, The
technique is based on the minimization of the output error between the
closed-loop system and a specified reference model.

I. INTRODUCTION

This note is concerned with the problem of designing reduced order
controllers for discrete control systems using a least squares error crite-
rion with respect to a given reference model. Let the plant under consider-
ation be represented by the transfer function

N ~
G()=f(=)/8(z) = ( Zl/,-:N")/(:Nv- Zlg,z‘v"): )

also let the reference model be represented by the transfer function

M L
Gr(z)=w(2)u(z)= ( Z w,z"'")/(:’"+ Z u,:‘""). )

im] t=l

Both the plant and the reference model are assumed 0 be strictly proper.
The reference model is assumed to be asymptotically stable. Denote by
H(:) the transfer function of the desired nth order cascade compensator,
where

H(-')'b(:)/a(Z)'( z b,:"")/(:”+ Za,:""). (3

im0 r=]

The closed-loop transfer function G (=) is given by
G(2)=b(=2)f(2)/(a(2)g(2)+b(2)[(2)) de(2)/d(2). (4)

Let ¢(:z) denote the difference between the transfer functions of the
reference model and the actual closed-loop system, i.c.. ¢(2)=Gy(z2)-
G, (2). The cost function to be minimized is given by

Vap-apboob) =35 [ le(em)du= Tt (5)

The aim is to find a cascade compensator h(:)/a(z) that will minimize
. It will be assumed that # < N + M, so that ¥ =0 is impossible in
general. Previous work on this problem includes [1]-{3]. The contribution
of the present work is an efficient computational scheme for the gradient
vector of ¥ with respect to the coefficients of a(z) and 4(z). Using some
facts from theory of discrete Lyapunov equations and Toeplitz matrices,
we derive an algorithm for computing the gradient vector in a number of
operations proportional to (N +n)%. The gradient is then used in a
Fletcher-Powell minimization algorithm (o optimize the controlier
parameters.

Manusnpt received March 21, 198). This paper v based on a pror submission of
August 2. 192 This work was supported by the US. Aur Force Office »~f Saenufic
Revearch under Contract F4920-81.C-0081,

8 Porat 1s with the Department of El
Technology. Haifa. israel

B. Fricdlsnder is with Sysiems Control Technology, 1801 Page Milt Rd.. Palo Allo. CA
9434
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IL.  COMPUTATION OF THE COST FUNCTION AND THE GRADIENT

Recail that the error between the transfer functions of the reference
model and the closed-loop system is given by

«(z) =w(z)/u(z)=c(2)/d(z). (6)

The poiynomials c(z) and d(z) are of degrees n+ N ~1 and N +a,
respectively, while w(z) and u(z) are of degrees M —1 and M, respec-
tively. [t is convenient to multiply both w(z) and u(z) by z**"~™ and
redefine

N+n N+n

u(z)=z¥* e Y uzVn w(z)= L oweNT (D)

1wl =]

Let {h?: 0 gi<oo) and {h,; 0 €i <o) be defined by

N u(z)= Y R%2T 2Md(z)= Y Rz (8)
imQ imQ

Then we can write (6) in the form

«=H% - He %
where ¢ is the semi-infinite vector [¢;.¢; )7, H® and H are lower
trapezoidal semi-infinite Toeplitz matrices of width N + n whose first
columns are (43,4)---]7 and [hq.hy ---]7. respectively, we={w, ---
Ween)  and c={c, - cy,n]7. Assuming that both u(z) and d(z) are

stabie, all semi-infinite entities in (9) have finite norms. Therefore, we can
express the square norm of ¢ as

Veddem=cTHTHe - 2w HTHe + wTHOTH  w
= c’Re - 2wTQc + w'Sw (10)
where the definition of R, Q, S is clear from (10). Introduce the notation
C( p) for the top-row companion matrix of the poiynomial p(:):

P ~P2 ' T Pm
1 0
L 1 o
The matrices R,Q,S can be expressed in terms of the companion
matrices C(d) and C(u) as follows.

Lemma |: Each of the matrices R, Q, and § is the unique solution of
2 matrix Lyapunov equation:

c(p)=

R-C(d)RCT(d)=E;
Q-C(u)QC™(a)=E:;
S-=C(u)SCT(u)=E an

where £ is a matnix having 1 in its (1,1) position and zeros elsewhere. The
proof is by a direct substitution of t*e definitions of R, Q, and S inte
(11). Uniqueness of the solution is guaranteed by the stability of u(:) and
d(z). An algorithm for soiving these equations in a number of operations
proportional to (N + n)? is ziven, e.g., in (4}. The following lemma gives
an explicit expression for the solution to a matnix Lyapunov equation of
the type appearing in Lemma 1.

Lemma ) Let p(2) and g( =) be two stable polynomials of degree m.
and let X satisfy the matrix Lyapunov equation

X-C(p)XCT(q)=E. (12)
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Then 1) X is a Toeplitz matrix and 2) X! is given by
x-l-QlPIr-P‘lQ{

1 0 1 p Pm-1
1 .
al @ ) ! :
: ‘. 0 14
-1 o 1 1
P 0 Qn Qm-1 T
Pm-1 K .
.. 0 . . Im-1
14 t Pm=t Pm m

(13)

This lemma can be proven using results from the theory of biorthogonal
polynomisls on the unit-circle {5]. It will be used here to write down
explicit expressions for R™*, 0™, and S~ as [ollows. For a polynomial
p(2) of degree m ¢ N + n, let the (N + n)x(N + n) matrices P; and P,

be defined by
Pi-yi 0gi~j&m
P )= / H
(P {0: otherwise
Pm=ye;: 0gi~j&m
Py - 4
( 2)1/ {0: ot ise.

With these definitions we have

L_...- ~v e ) .
.
'a
[ %]
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Fig. 1. Impulse response of the initial clossd-loop sysem.
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Fig . Impuise responst of the final closed-loop sysuem.

D= AG\ + B\Fy; Dy=AGy+ B Fy (15)
R'=D\D{ = D,Df; Q@ '=DWI -0, D]: S~'=UU - LUy
(16)

We now have all the necessary relationships (or computing ( 3V/da;,
1€ign) and (Jv/3h, 0 <€ i< n). The computation proceeds as fol-
lows:

2, "¢ 7a, %, a7
v 3R 3 de
a—bi-crmc-ZVr“iu-Z(ch-wrQ)a—b,. (18)
Recall that
IR iR~ 3Q Q!
e TR T @)
and similarly for the derivatives with respect to 4,. Hence
v __ rpdR”! rn9Q7!
73, e'R P Re+2w'Q da, Qc (20)
ﬂ-_ T JR" T, 9 =1 T T, de
F T R 75, Re +2w Q_Q_ab, Qc+2e R-wQ)a—bl. (21)

To get explicit expressions for the derivatives of the inverse, let us define
the k-shilt matrix of dimensions (N + n)x(N + n) by

_—-We B e W _ Tl Rl W, L Tl BB P, WA TR TSI
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z._{l; i-jek @ controllers was-presented. The algorithe uses input/output (transfer
0: otherwise. - function) descriptions of the plant, the reference model and the controlier,
. rather than the more commonly used state-space: descriptions. The two
Thea it is easy 10 check that . descriptions are mathematically equivalent, but lead to different compute-
A A s, PN Uoaal procedures. )
74-2'; -a-l-z-'-'; a_b‘--z-; Ty =2 (D) The relative computational efficiency of the proposed algorithes opens
o e s d the way for using it as part of &n adaptive reduced order controller where
Using (15). (16). and (23) we get :mm@:mumm.mm.u
ak-' »=1 -t _
Se =260 + DG(Z) - 26 D] - DGI(2*) T (24) . _
ar-t - - 1) W.S Levine, T. L. Johmeon, and M. Athans, “Opiimal lissited stais vasiable fesdbeck
S = TR0+ BF(Z)” - 2RO - DN (Z)T (29) ") comamts o e ELE T, Ao Comr o AC 0.9 85- 9
121 R L Xosst. “Suhoptimel costrol of inser tme invariant systems subject o coatrol
& -Z’G,U,'-U,GI(Z"") (26) wm" IEEE Trans. Awomen. Coner.. vol. AC-13. pp. 557-363. Oct.
da, (3] G. C. Goodwin and P. Z Ramadge. “Design of restricied cOmplexicy
- regulatons.” /EEE Trans. Awemar. Conwr., vol. AC-24. pp. 534-388. Aug. 1979.
Q—-Z'FU ol G M (27) ™ R R Dlamend. “Expicit soimtons of the diacrese-mms Lyapunov macrs squation aad
o, W -G R ( KaimenYakubovich equasons.” [EEE Trws. Awomer. Cour. o AC-26. pp.
) (8 T. Kailoth. A. Vieira, and M. Mort. “laverses of Torpliz operators, innovesons. and
Finally, dc/ 3}, is given by orthogonal polynomiale.” SIAM Rev.. vol. 20, pp. 106-110. Jas. 1978.
16} A Vieira and T. Kailath, “On-anotper approach 10 the Schur-Cobn crisenion,” /EEE
r,- cm.s:-,ntmu.nm-mm 1977,
ab, [0 o/l /N'o 0 (28) m L—b;:ymn“d Programnung. Reading, MA:

i N R=i

Equations (20), (21), (24)~(28) form a complete algorithm for the gradient
vector. It can be checked that the number of operations involved in the
computation is proportional to (N + n)2.

[Il. IMPLEMENTATION OF THE ALGORITHM

The algorithm described above was implemented on a VAX 780, in
Forzan 77. The Lyapunov equations (11) were solved using a nonsym-
metric version of the inverse Levinson algorithm (6] This algorithm was
also used for monitoring the siability of the d(z) polynomial at each
iteration. The optimization method used was Fletcher-Powell (7, with 2
goiden section line search. The reason for this particular combination was
that it requires only one gradient computation per iteration. thus helping
10 reduce the overall number of computations.

IV. AnExaeru
The following example will serve 1o illustrate the performance of the
algorithm:
G(2)=2%/(=% ~3.52% +4.682% ~2.9212% +0.8263z - 0.085) (29)
G,(2) =02573/(22 ~1.252 +0.5). (30)

The order n of the cascade compensator was chosen as 2. An initial
stability compensator, found by trial and error, was taken as

H(z)=(1.3:2-2:+0.829)/22. (31)
Fig. 1 shows the impulse response of the initial closed-loop system

compared 10 that of the reference model. The optimal controiler, obtained
after 29 iterations of the algorithm, was {ound to be

H(z) = (0.2482% ~0.47 +0.234) /(2? +0.1162 ~0.085). (32)

Fig. 2 shows the impulse response of the final closed-loop system com-
puted to that of the reference model. In this example, the total square
error of the optimal solution was about 0.05 percent of the reference

model impulse response energy.

V. CONCLUSIONS
A computationally efficient algorithm for the design of reduced order

Nonparametric Algorithm for Input Signals
Identification in Static Distributed-Parameter

Systems
EWARYST RAFAILOWICZ

Alx_ract —[n this correspondencs, 3 nonperametric algorithm lor idepti-
fication of input signals in linesr, static distributed-paramseter systems is
proposed and investigated. Integral mean-square convergence of the algo-
rithme is proved for an infinite number of point measurements of the system
state. The aigorithm is s generalized version of the one recemtly proposed
by Rutkowski {10] for nonparametric function fitting, and in 3 common
area, the presesicd results are compjementary.

L. INTRODUCTION

The aim of this correspondence is to propose and investigate an
algorithm for identification of an unknown input signal or an excitation
of a static, linear distributed-parameter system (DPS) from point mea-
surements of its state. Problems of this type arise in the areas of wager and
air pollution, electromagnetic beating, vibrations isolation, etc.. and have
been treated by several authors (mainly from a computational point of
view) {3]-{6].

Theoretical analysis of such problems is a difficult task since they are
ill-posed in the sense of Hadamard (2], {7) This difficulty is usually
avoided by assuming a priori that the unknown excitation belongs to a
certain parametric class and only its parameters are esumated (1).

In this correspondence, no assumptions of this type are made, and thus,

the proposed algorithm is a nonparametric one. [ts main advantage is
asymplotic optimality (AO), undersiood as the integral mean-square
convergence (IMSC) as the number of measurements approaches to
infinity.
It should be remarked that the proposed aigorithm is & modified
Mmmuv‘ldv 19, 199); revised October 17, 198).

The suthor 1 with the [mtituse of Eagingening Cyberaetics, Techmeal Univernity of
Wreociaw. Wrodlaw, Poland.
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APPENDIX D

LATTICE IMPLEMENTATION OF SOME RECURSIVE
PARAMETER ESTIMATION ALGORITHMS
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Lattice implementation of some recursive parameter-estimation
algorithmst
BENJAMIN FRIEDLANDER}

Linear dynamic modeis of plants are ususlly perametrized by the coefficionts of
difference equations. lattice structures sl their reflection voeffivienta provide an
sltornative parametrization that offers several advantages, including numerical
robustnews, computational efficiency and cawe of hariware implemontation. The
recursive square-root normalized lattice versions of the following well-known
parametcr-estimation aigorithms are presentod ; recursive least-sguares, recursive
instrumental variahle. exterdmd least-squarcs. and recursive maximum-liketihood.

1. Introduction

The need for real-time system identification led to the development of
numerous recursive parameter-estimation algorithms. The most commonly
used algorithms are related to linear input-output models described by
difference equations of the type .

Na N8
Yi=-— Z Byt 'zo bty +e, m

where u,, y, denote the input and output of the plant and e, denotes a distur-
bance process. Parametrizing the plant by the coefficients {a, b;} of the
difference equation seems to be a natural choice, resulting in an estimation
problem of the type encountered in regression analysis. The regression
variables in this case are simply the input {u, ..., ¥,_y;} and output
{Y¢-1+ ---2 Ys_x.} variables. Other parametrizations are. of course. possible.
To see this. rewrite (1) in the form

Yi=pT O+e, (2)
where
Sr=ml =Yg =Yoo Uy g ]!
O=(ay. ....ax 4 by ... byy]"

The parameter vector 8 and the vector of regression variables ¢, can be replaced
by 8,=86, §,=S-14, where S is an arbitrary (possibly time-varving) non-
singular matrix. since clearly

Yi=$T O+e=gT G+, 3
This leads to an infinite number of possibilities for parametrizing the plant.

An interesting choice is to pick § so that the regression variables will be un-
correlated. This can be done by letting S be the lower-triangular square-rvot

Received 31 August 1982.

t Thisx work was supported in part by the Air Force Office of Scientific Research
under Contract No. F49620.81-C-0051. The United States Government ix authorized
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v
of the covarience matrix of ¢,, i.e. 5
S57 = E{$$/T) (4) :
in this case B
E{$d}=81E{$$T}ST=1 (5) =
In other words, the original set of regression variables is replaced by a Gram- o~
Schmidt orthogonalized set. Square-root procedures in linear least-squares o
estimation are known to have good numerical properties and to be more robust b
than techniques involving the covariance matrix itself (Bierman 1977, Lawson
and Hanson 1974). Note that the least-squares estimate of the parameter 2
vector 4 is given by ~
0={E{$ S} E{dwy}=E{dus) (6)
In other words, the parameters can be interpreted as the cross-correlation
between the data y, and the regression variables. NSuch parameters have been =
used for quite some time under the name of PARtial CORrelation (PARCOR)
coefficients in the analysis of time-series, especially in speech applications
(Markel and Gray 1976). This parametrization is related to lattice structures >
instead of the tapped delay-line structure inherent in the difference equation (1).

Lattice forms are widely used in signal-processing applications involving e
linear filtering and prediction. They are known to have a number of attractive L
features including: (i) good numerical behaviour on finite-word-length =
processors ; (ii) an orthogonality (decoupling) property : the signals pro-
pagating in a lattice filter are uncorrelated. (One manifestation of this property o
is the fact that when the filter order is increased, one has to add an additional o
section to the filter without changing the previous sections. In other words the
(N + 1)th-order lattice predictor is the same as the \N'th-order predictor except -
for the last section. This feature is very useful in handling the problem of -
model-order determination and reduced-order modelling); (iii) a cascaded -
structure of the lattice filter (consisting of identical sections) which is very con- i
venient for implementation using special purpose hardware, microprocessors -
or LN[: (iv) in normalized versions of the lattice filter all the variables are O
automatically scaled, making it possible to use fixed-point computations.

(However, normalization sometimes has an adverse effect on the numerical L
behaviour of the algorithm (see Samson and Reddy 1982).) -

While square-root techniques are sometimes applied to system identification
(Strejc 1980), lattice structures are apparently not used. One possible reason .
is that efficient recursive algorithms for estimating lattice parameters were ‘
developed only recently. Another reason is that earlier work on lattice forms T
was limited to all-pole models, while most realistic plants have both poles and
zeros. The work (Morf et al. 1977, Lee 1980, Lee et al. 1981, Friedlander 1982. iy
Porat et al. 1981) on recursive lattice forms provides an elegant solution to the -
lattice modelling problem for both all-pole and pole-zero plants. This develop- .
ment should encourage the use of lattice forms in system identification and .
adaptive control.

The purpose of this paper is to present lattice implementations of the follow- .
ing commonly used recursive parameter-estimation algorithms: recursive
least-squares (RLS). recursive instrumental variables (RIV), extended least- , e
squares (ELS), and recursive maximum-likelihood (RML) (Soderstrom ot al. v

M
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1978, Goodwin and Payne 1977). The idea of using recursive lattice forms for
: system identification was previously proposed in Morf et al. (1977). However,
p the lattice implementations of these four algorithms were not discussed in full
- detail. In particular, the normalized lattice RIV and the lattice recursions
for arbitrary model orders are believed to be presented here for the first time.
The structure of the paper is as follows. In each section we present one
of the lattice algorithms and discuss its properties. Owing to space limitations,
only brief derivations are included. These derivations assume some familiarity
with the projection framework for developing recursive lattice forms which is
- described in greater detail in Lee (1980), Lee et al. (1981), Friedlander (1982)
and Porat ef al. (1981). We have attempted to make this paper self-contained,
but some of the background material has been deferred to the references. The
results in this paper are presented in the normalized case only. Unnormalized
versions of these algorithms can be similarly derived.

<
Y

L4
-

e
0
»

cw o
DA

o 2. The lattice recarsive least-squares algorithm
o In this section we consider models of the type depicted in (I). Given a
set of measurements {y,, ..., ¥y} we can write

L Xyvasnrbr=yor o)
< where

[ 0 00 0

.'l-'o . "_'u .
‘\'M.A.TA , . . .
Yo S "o

-l (¥ pat o ¥rom ‘U'py .. ]

01 = the estimate of the parameter vector 8 (eqa. (2))

-
>

e Yo:r =Y -+ YoV’
The least-squares estimate of the parameter vector is given by (indices are
- omitted for notational convenience)
078X N) "N yyur 8)
The associated error vector is given by
4 ~‘: ‘0:1' =!’°:r—.\'01-='l - .\'(4\"4\')-.-\” Iyo:f (9)
where
: ‘0:1'"‘0-""‘1"'
The last entry ¢, of the error vector is given by
. (1.==1r'“— .\'(.\".\')".\' Iy,,:,- (10)
" where
- n=|0, ... 0,1
,:_- Note that P, = X(X'X)-\X"’ is a projection operator on the space spanned by
e the columns of X, i.e. Py P = P,. In Lee (1980). Lee et al. (1981), Fried-
- lander (1982), and Porat #f al. (1981) it was shown that projection operators of

.......
RO OACNG
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this type can be recursively updated as the projection space X is changed by
the addition of columns r. More specifically, the following update formula

can be derived

L"Pex“ V = U'l’ex V — l'"P‘\'l' I[z'P‘\'c .t]“'z"P_\-" V (ll)
where U, V, z are vectors (or matrices) of compatible dimensionsand Pc &/ - P. =
By proper choices of the projection space X and the vectors U, ¥, x, the un- +J

normalized lattice recursions are obtained (Lee ef al. 1981, Friedlander 1982).
A normalized lattice form is similarly derived by considering normalized

projections b
px(U, VYR[U P U|PVHIPye V[V Pye V17T (12) T
which obey the following update formula 5
px+dU, V)=[I = px(U, 2)pxlx, U)I"¥p (U, V) 4
=px(U, 2)pxlx, M =pxlV, t)pxlx, V)T (13) .
To avoid repeating this expression we will find it convenient to define the -
functions -

Flu, v, w)y & = s’ 7V u - wv][l —v'v]-T/? } _
(14) o

F-Yu, v, w) &1 - ' V2l ~v'v]T' 4 wr

Using the update formula (13) we can derive a large number of lattice algorithms

by proper choices of X, z, U/, V and proper definitions of variables. Table | )
summarizes the variables involved in the LATTICE RLS algorithm. The e
quantities z,.p and x,.,™* appearing in the table are defined by
[¥'o o] [ 0 0 7 C 0 s
. . -
0 ] 0
Lo:7= B Lo.p™ " = v Yo:x™ = (15) :‘ﬁ
: : Ye "'y Yo .j
by"l' ”'1'.1 ;_3/'1'—-» "'T-uJ -y'T—nJ -
-~
pslU, V) S v v Comments
7 Xsor Yorr il )
<“pr Xoorn Uo:r n” .
571 Xpor Yo:r"*! 4 Jo";:;?ice ™ g
Kopur Xsor Yo:7 Yo:r"* Col
K .pu g X P.0.T+1 Ug: 7 .'/021'”'l
O
%1 Xppr Zo:r ” Two-channel s
"‘ T-1 x.. »T Zy: r"*""‘ ” lattice -
ANA-N
Kpnr Xopr Tor ” mANA-NB+p 1.
, BN
Table 1. Definitions of lattice RLS variables. -
&
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, Lattice implementation of algorithms 663

¥ As will be shown shortly, these variables define the lattice structure depicted
in Fig. 1. where §(K) is an operator acting on the input vector [¢'. r’]. defined by

| F € Fle.r. K)

o &K = (16)
i r F(r.e. K')
I,
o o
' I Joint Process ‘
Lattice (MA-N8) Teo Channal b g

9,7 1,1 M-1,7

. (cg'r.c;‘Tl L me eH,T
: 3K, o) §(ky,p)
) ('5,7-'3,7‘ —d 77} man b— e - ) . b 1

"o.7 0,11 R
. 0,T . a1 11 M=NB

(c)

- Figure 1. The RLS luttice form : (a) overall lattice structure. (b) joint-process lattice,
{r) two-channel lattice.
I These lattice recursions are obtained by making the substitutions in (13)

as depicted in Table 2.
The following facts are useful in interpreting the entries of this table :

- (i) order update

b ‘\’m*l.n*l.'l'= ‘\’m.n.T""rli:T'm‘l'".I (17)
- (ii) order and time update
o Xoctmerra=Xpnr+tor (18)
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r.
'-
(iii) time update
:. PC.\_ -, T=1 v
‘ [,c-Yn.u.T"s E (l9) (=3
| T 0 -
L ‘.'A
: X z v v px+z(U, V) px(U, V) oyl V) px(U,7) :.
X0t Yo:r"* Yo:r " “prr €pr ot Ky
xp.o.f Yo:r Yo:r"* ” o1 -1 “or p+LT :_
- X,orer  Yo:r™! Ug:r n o1 "or ot K'prr -
:'. X;.0r1 i Yo:1 Yor"*! Kpura Kpur 7 pra €ur
¢ Xoora ™ Ug:y Yo:g"+? K irre1 K%z or  €€or -
Xpnr  Zop™t™ Zop L €4, .7 o1 Kpur '
Xonr  Zor Top™ o Tp+rT Tp.7-1 5.1 K'pirr . ..
Xonr 7 Zo:r Lop™ ot Kpura  Kpwr  Pora Gr =
: m=NA-NB+p; n=p.
. Table 2. Derivation of the lattice RLS. :':
kg
. Another point that requires some attention is the interface between the
: joint-process lattice and the two-channel lattice in Fig. I. Note that
- €7 =PXua-ns.o.r(To:rrs T)
. (20) —
T0.T-1=PXua-vmorlo ¥4 VB A ) -
:: If we assume that the projection operator projects first on ys and then on us
s (i.e. the square roots in the update formula and the definition of p are all lower
N triangular), then we note the following :
: (i) projecting z4.p On Xy _vpor involves the projection of w,.r on
Xya-xnero,r -—
(ii) projecting zo.p¥4~V#+Lt on X\, \yor involves the projection of '
: ug.r on Xy _vpsr, 1
. Therefore we can conclude that :
: .7 =¥ v oxu1 @ xa-vnrl
v (20 -
. ro.r—1=[" v a—xm -1 € va-nper.r1l ‘:;Z
X We can now summarize the lattice RLS algorithm by reading off the proper
2 entries of Table 2. .
Lattice RLS algorithm
The algorithm is presented here for the case YA 2 N8, If Yd<VA. .
. simply interchange y and v and VA and VB. -
. -~
v -
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Lattice implementation of algorithms

Input parameters
N4, VB =model orders

A=exponential weighting factor
o= prior covariance

Yy Uy =data sequence

Varsables
Ry, Rp*=estimated convariance of y. v
Kv, ., . K*,., r=reflection coefficients
K., r=reflection coefficients

e, r. €, 1, ¢, r=forward prediction errors
(dim {y}, dim {u}, dim {{y", «’]'})

Y, 7 I, r=backward prediction errors
(dim {y}, dim {[y", «’]'})

Instialization
R_‘-,,,[' R_r=al
Kv, ,=r, =0,p=1,..,Nd-NB
Kv, ,=0,p=1,.. . Nd-NB+1
K

pet=ry =0, p=1,..., VB

Main loop

At each time step do the following :
(i) set
Ry¥= ARy Y +yr¥'r
Rp*=ARp_*+upu'p
0.7’ =1 7' = (Rp¥)"V2y;
€, T. - (RTI)—I/!uT
(is} update joint-process lattice
For p=0, ..., min {NA -NB, T}
KV o= PN Ky rois ™y rot 1)

omit this for

"lt*l-T = F(Gvn.f' r'n.T—l' KI""-T) p= min {ANA —NB, T}

»y
r',,¢|.r- F(f””. T-1 "p.T: K ':-hl‘T)
lv’p-ﬁl."= F—l(l\',nl. r-1r r »T "n.T)

. .
‘.n' L.7T= ¥ ("p. ™ ’”n. T K ',H» I.T)

et e tara . .
- - - - . = . N = - S .
P P A A AN A AR AP ORI

. o . .
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668 B. Friediander
(iii) set
.7 =€ vioxur @ va-xusrrl
for =l yacxmt € xa-xpar,rl
(iv) update two-channel lattice
For p=0to min {VB, T-NA+\NB}-I
Kyor=F'K, o ro0 Py €ur)
Corr=Fle, v ry v Kpir,7)
ru-rr=Flr, ron e r K yiy 1)

Remarks

As the lattice recursions are started they may involve division by zero.
It can be shown that the proper procedure is to set to zero the result of such
division in the scalar case, or to use pseudo-inverses in the matrix case. (See
Porat et al. (1981) for details.) For coding purposes it is convenient to make

F(-.-,-)and F-Y-, -, -) into subroutine calls. The lattice algorithm then
cons-sts of repeated ca.lls of these subroutines.

Running the lattice RLS on data will provide a set of reflection coefficients
parametrizing the plant transfer function. I[n some applications it may be
desired to recover the estimates of the /a;, b;} parameters, rather than to con-
tinue with a lattice structure. Assuming that the lattice parameters have
converged, this can be done by looking at the impulse response of the filter
depicted in Fig. 1. Recall that this filter computes the normalized prediction

error sequence ¢, where
N4

Na
€= ¥ Ay~ Zo beu (22)
where |G, b;} are the normalized versions of {a,, b;}. Note that the impulse
response from the y input to the ¢ outgut will be {@,, a,. ..., @y} while the
impulse response from u to € will be {Bg. by, ... byy,}. The unnormallzed para-
meters can be obtained by setting

a;=3,'q, i=1,...Nd
(23)
h =@, b, i=0,..,NB

This method of computing {a,, b;} from the reflection coefficients does not
give the exact least-squares estimates of these parameters. However, if the
reflection coefficients have converged * sufficiently ' these estimates will be
very close to the optimal estimates. A shghtlv more complicated lattice
filter is available for computing the exact least-squares estimates of {a;, b:},
from the information provided by the lattice RLS : see Friedlander (1982)
and Porat et al. (1981) for a more detailed discussion.

The lattice RLS differs from the standard RLN algorithm in several
respects :

(i) Initialization. The order recursive nature of the lattice RLS makes it
possible to eliminate transient phenomena caused by incorrect initial conditions.
leacling to faster startup.

\‘\ RN .-. o
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(ii) Normalization. All quantities the lattice RLS (with the exception of
Rv,, R*y) have magnitudes less than one.

(iii) Computational requirements. The lattice RLS is computationally
efficient, requiring O(.V) operations per time step, where N'=NA + N B. The
usual implementation of the RLS requires O(N?) operations per time step.
Since square-roots are time-consuming operations on general-purpose com-
puters, the efficiency of the lattice forms becomes apparent only for fairly large
values of . However, implementations on special-purpose hardware designed
to take advantage of the lattice structure, can be very efficient. Note that
the computation of the {a,, b,} parameters from the reflection coefficients
requires O(.\'?) operations. This computation can be avoided, however, by
reformulating the problem for which the parameters were estimated so that it
it will use directly the reflection coefficients.

(iv) Order-recursive. The lattice RLS is not only time-recursive, but is
also order-recursive. This makes it possible initially to overdetermine the
plant order and to choose a lower-order model after the parameter estimates are
computed.

Finally we note that the lattice algorithm presented in this section was
only one of many different lattice forms (the so-called normalized pre-windowed
form). The unnormalized lattice recursion and the convariance lattice form
are presented in Lee et al. (1981) and Porat ef al. (1981). The pre-windowed
form is simpler than the covariance form and is probably better suited for
system identification applications.

3. The lattice recursive instrumental variable algorithm

The RLS algorithm provides biased estimates when the disturbance process
¢, (see eqn. (1)) is non-white. The intrumental variables method (Young 1970.
Noderstrom and Stoica 1981, Wong and Polak 1967) was derived to eliminate
this problem. The parameter estimate 8, is given by

07 =(2'X)12"yy.1 (24)

where Z is an instrumental variable matrix

Zpnr=]| - I (25)

.'- -’. .
LT 21 = Y rm By o U,

The instrumental variables j, %, can be chosen in different ways. A
tyvpical choice is to set @,=u, and 7, to be the output of a filter driven by «,,
for example

X Na Nu
Y=~ Z G+ 20 6.’“1—.’ (26)
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670 B. Friedlander

Note that the projection formula (10) is replaced in this case by
ep=yopll - Z(X'Z)1X'|n (27)

which involves the non-symmetric * projection operator * pzy. By analogy
with the derivation outlined in § 3, we define a normalized projection operator

pzx by
pzxll, V)B(U Pyt UIFVAU Pyye V[V Pyyc V-T2 (28)

In Appendix A we prove the following update formuia for this operator
Pzeex ool V)=l = pg (U, 2)pzx M. 2)pzx (. U)]-V2
x {pzx(U's V) =pzx(U. 2)pzx~H(x, 2)pzxix, V)
x [ =pzx(V.2)pzx~(x. 2)pzx(x, V)]~T2

To avoid repeating this complicated expression we will find it convenient to
define
Flu, v, w,q.r, 8)={1 —qs~'r}|"V*u —qs~So|{[ — uws~lp]-T" (30)

and its ‘ inverse
FYu,v, i, q.r, 8)=[l —qa—'r|V2u[] — ws— |72 + qs~'v

Using the update formula (29) we can derive several versions of the lattice
RIV by proper choices of Z, X.z. z, . V. To simplify the presentation we

pzx(U, V) Z X r r Comments
o1 Zp. T X »T To:r L
T Z,r X, r Zo:p P} i Prediction
2z -
€pr Zpr X,.r Zo:r " errors
= ]
T Z, 1 X,.r zg:0P* ™
-x
€pr X1 Z,r Zo:r L Auxili
7 1 Auxiliary
P o1 X, r Z,r Zo:p’* " uars
;2 prediction
€o.r X, r Z,r Zo:7 i errors
r+1
.11 X,.r Z,r 2o’ w
£ 4 4 1
K= r 2, X,.r Zo:y Zo:p"
't [ 2]
K# 1 Z,r X, r Zoir 2z
t [ 23]
K=, 0.1 Z,r X,.r To:r 2g:p?
K*pr Z,r X, r Zo:p?*! Zy:r Reflection
K*r Z,r Xp.r z:p?*! Zo:r ooefficients
rL 1
K% r Zor Xor Lo:p?* Zo:r
22
K p+LT Zyr X, r To:r 207
" 1 P+l
K¥ o r Zyr X, r Zo:p"* Zo:r T
Table 3. Definitions of the normalized lattice RIV.
'n"-.': 'n‘.'-. '-'.' --.--. .'--.‘-‘.'~ e ..“...".: ".:"..“.. - ‘;'.’.‘- = Wt '.'-.-'. e '.'.'-‘..-'.'.'. - ‘.-.“...'.‘. ~ - .-"n: ‘-A.‘-.. ':‘\'.“.-'f.'-‘.'."‘- .‘:".-.' _~.:-. .—'..‘ SR
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Lattice implementation of algorithms 871

consider in this paper only the case where N d =N B. The more general case
can be derived in a straightforward manner following the steps outlined in
§2. Table 3 summarizes the variables involved in the recursions. We will
also use the following definitions

“':).TA‘\'M.p.T zn.f Azll-#.f

-.'I.'o ".'o .'7:9 17..'.
To. 7 = : ’ Zq:r = _3 _i
| y'r Wy Yr ¥r

LR R B el SN SR Sl i g M- 5} o DAn 8 G e g o

) 0 ] [ 0 0
0 0 0 0
Lo ph = Zg.p¥ = - .
Yo “'o .’I.o u_o
LY r—p Ur_p] L‘Tr-,. @ pop ]

‘.-...'..._ -..u.- R PR O R N
NIRRT R S L LA A A AR S AL R LY,

The recursions are obtained by making the substitutions depicted in Table 4,

in the update formula (29).
The following facts are useful in interpreting the entries of this table :

(i) order updates
Xprr=Xpr+2er*™t Zyar=2,r+2.0""
(ii) time and order updates
Xpawra=X, r+ter Ly ra=2Zur+20r

(iii) téme npdate
P"Z.,r+-..\',.f*n‘[

Note also that Pz.\'(l', V)=P'_\'z( V, l")-
We can now summarize the lattice RIV algorithm by reading off the proper
entries of Table 4.

Lattice R1V algorithm
\We denote here M =dim {[y'y, u'p|'}.

Input parameters
' = model order

A=exponential weighting factor
o = prior covariance
¥p. up=data sequence

#¢. fip = instrumental variable sequence

e e, ';.' _'u{\‘_'..._- ; Seate e e e T
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Lattice implementation of algorithms 673
Variables
Rz*, Ry*=estimated covariance of [y'y, u'p ), [#p &p) (Mx )
K=*, K2, K=t, K*<, K*: K% K=, K* = reflection coefficients (.} x /)
o0 €, 100 I¥,, . 1*, ¢ =prediction errors (M x 1)

&p 10 €, 00 7, r, ¥, r=auxiliary prediction errors (.Jf x 1)

Initialization

R_*=R_j*=al.

Reflection coefficients and backward prediction errors are all initialized
to zero.

Main loop

At each time step do the following :
(i) Set
Re*= ARy _*+(y'p w'p[ly'r ')
Re*= ARy ¢ +[§'p, W r)[§ . ¥ p)
€o,7° =To 1" = 1° = Tg 77 = (Rp*)V¥y' s, u'p)
€o.7°=To, 1 =&y p* =Ty r* = (Rp*) VA p, W'Y
(ii) For p=0, ..., min {V, T}~1, do :
Kot = FY K™ s P 1y Pty € €pr 1)
K r= P UK s B et €410 Eppn 1)

K p+, P P-I(K”nﬂ. T-1 ’-‘u. T-0 "m'l—v “p-T' ‘.n- ™ I
'1:+l.1'= F-l(Khm-l.T’ Fp.?! “p.T’ "p.r-l! Fp. -1 l)
K

x32
Kz
Koy = P UKy p oty &g €00 P pys By )
Ai:n-ﬂ.?" F_l(thﬂ. T~ FP-T’ ‘gp.l" "n. -1 '-‘n.l'-l' l)
-z:,n-l.r" F—l(Knyn-l.T-lv “‘p.f! ¢=,»,1'9 ‘Jp,f’ E:':.T’ l)
I‘”u»l.!" F-l(Knm-l. T-b» Fp. T=1r r‘p. -1 rty.l'-l' Fp. T-1 l)
e =P, p, 1%, 1y,

rtp-l. T= F("p. T~ “n. b o]

.

- > g1
T~ K‘!p*l. f o l‘hp-ﬂ.rv K p+l.1')

]

‘ ¢S €3] " xz
m T K p+L T K= p+1, T K= u*l.T)

€;u-l.Ta F(‘:,:.Tv "l'- r~1r T »,T—11 K”n-‘-l.T’ Khu-o-l.r' Kﬂpo—l.f)
Fuorr= P, ry, €, 0 &0 K, 1, K=y 0 K=y, 1)
‘-‘pél.T- F(‘?u. T F:p.T-l' r“p.T—l’ Kix';n—l.rv Kx"no-l.f' KH'/H»I.T)
thl.‘l" F('-“u.r-v Fn.!" ".mT' Kh'uﬂ. T Ki:.m-l.f' Knluﬂof)
{:n*l.‘l" F(F"'r. Fn.T-l' r"p.1'~l' Kj:ln«l.‘l" K“'p#l.r' K”.'H-I.T)

=

== - 4 v oe’ ga’ L
r.lﬁl.‘l': F(f",_ T-1 ‘.p. T « T I\ = pel.T l\ = p=~1,T ’\‘“ nel, T)

-
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: 674 B. Friedlander ;‘
; As can be seen from these equations, the normalized lattice R1V is fairly =i
2, complex. This is due to the more complicated projection update formula and
o to the fact that various identities which were true for the symmetric projection =]

operator, no longer hold (e.g. pzy(L’, V)#p'z(V, U')). The unnormalized et

N version of the lattice RIV turns out to be considerably simpler than the -
“~ normalized recursions presented above (see Appendix B). This is different -
N from the situation in the lattice RLS where the normalized version is the simpler "
L~ one. The {a, b;} parameters can be recovered by computing the impulse w
™ response of the variance normalized lattice RIV.

Finally we note that the unnormalized lattice RIV has been developed jov|
g independently by several authors (see, for example, Samson 1982, Cadzow and ‘f
: Moses 1981). An approximate lattice RIV was presented by Prevosto ¢ al.
- (1982). -
x 3
4. The lattice extended least-squares algorithm )
2y In this section we consider the following ARMAX model -,
™ Na NB e ;.-
. Yi=— ZI Y-t Z bouy_;+ Z‘ ¥+ Yy @n )
8 in =y i=
\ where v, is an unmeasurable white-nvise disturbance process. (f it were -d_
* possible to measure v, this would have been a standard linear regression s
problem, and the RLS algorithm could be applied. The ELS method is based )
- on the idea of replacing v, by its estimate, the prediction error ¢, (Soderstrom et al. o

oy 1978, Panuska 1949, Solo 1979). The lattice ELS will, therefore, consist of o
L two steps : (i) use the lattice form as a prediction filter to compute ¢, ; (ii) use

: the lattice RLS for the known input case (with y,, «, v,=¢,) to update the -
- parameter estimates. -~
To describe the lattice ELS for the model presented above we must first -
! present the basic update formula of the lattice RLS for ARMAX models. _
5 %
- Lattice RLS (ARM AX) algorithm X
N We assume that NA > VB> NC. For other cases we simply have to reorder

the inputs y,, u,, v, s0 that the corresponding model orders appear in decreasing :

- order. ’ NE

; Kv. K*, K*, K, K*, K = reflection coefficients
::: €. ¢* €. ¢ &, e=forward prediction errors (dim {y}, dim {u}, dim {v}. _‘
= dim {(y’, «’]}, dim {v}, dim {[y’, u’, v']}) -

: rv, 7, r=backward prediction errors (dim {y}. dim {{y". «’|}. -

dim {([y’. »’, v']}) "l
(i) for p=0,...,Nd - NB (or up to T, during start-up)
." K'gﬁ-l.r- F_l(K'pq»l.T—l' ”.p.f-l' "n.T) :::t
-
v & r=Fle, 1Y, 1 Ky 1) skip forp=Nd-NB
:;: r'p-bl.T’ F(r.n.T-h "p.T’ K',..l.r) ::':
2
. 1
A

o, -
A i
g

~

e N
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Lattice implementation of algorithms 878

K¥yor o= F YUKy 1y 7 10 €%, 1)
K",.,Lr" F"(K';»l.r-l' "'u.l" <,.1)
e r= F("...r' v, K‘»-ﬂ.f,
e =F(y 0.7 7 Kty 1)
(ii) set
b= v inm € xa-vper )
For=[r" xaoxmr € yacxnorrl
Cor=€y i Nuet, T
(iii) for p=0 to NB~ NC (or up to T— N4 + N B during start-up)

K)H-I.T- F-l(KpQ\l,T—h i’p,"—ll iy,f)
Ger,r=Flé, pq, Tp 11 R,,ﬂ.r) skip for p=NB-NC

Fuorr=FFp o dpr K'pur 1)
K'nﬂ.r - F—l(x'pﬂ.r-n 7"».1% L))
Tporr= P&, 0. P, 0, K%,y 1)
(iv) set
. r={€q 1. & yyyenl
ro.r= o & np-xonl
(v) for p=0 to NC~1 (or up to 7'— Nd + NC - | during start-up)
Ky g=FYKpyr17p, 010 5, 17)
€™ F(ﬁ..r, L =T K,m.r)
Tprr e = F(ry 11 €0 K yyy 1)

The corresponding lattice structure is depicted in Fig. 2. The detailed structure
of the various sections is similar to that of the lattice RLS of Fig. 1, with some
obvious modifications.

, g &
T —E "4
‘. | 3 K
3
!\ T ]
....... 7
Cu = r-
- “ ¢
o | ———
T P .
. . K' " :dj‘ —— T
T Lo =
" (m-18) (ne-xc) ")
= Joint Process Two-Channe!
Lattice Joint Process Lattice
Lattice -
.. Figure 2. The ARMAX RLS lattice.
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476 B. Friediander

The lattice ELS algorithm can now be summarized. The RLS lattice
update described above will be used in two modes. One is a prediction mode,
in which all the reflection coefficient updates are skipped and the old values of
the state variables {r¥, r_y, 7%, r-1s "p, vt Tp.1-1s ro.r-1) are retained. The
second is & regular update mode in which both reflection coefficients and state
variables are updated.

Lattice ELS algorithm
All matrix square-roots are lower triangular.

Initialization
R_,v= R_|*= [\’_l'sal

All reflection coefficients and backward prediction errors are initialized
to zero.

Main loop
At each time step do the following :

(i) compute prediction errors
Re¥= ARy ' +Y1Y'r
Rp*=ARp_\"+ug’y

G r'=ly "= (Re%)"Vyy
‘. = (Rf')-'/"“r
7" ="
(‘all lattice RLS update (ARMAX), in prediction mode
(ii) set
iy =last entry of ey 7
(iii) update lattice variables
Rer= ARy "+ 05 ¢
0.7 = (Rs) V%7
Call lattice RLS (ARMAX) in update mode.

As before, the parameter estimates {a,, b;, ¢;} can be recovered by looking at
the impulse response of the lattice form depicted in Fig. 2, from the inputs
y. 1, v to the prediction error output. For a more detailed discussion of the
lattice ELS for the case of ARMA (Y, V') models (i.e. Nd =NC. NB=0), see
Lee ¢t al. (1980). An approximate lattice ELS algorithm for general ARMA
processes was presented in Benveniste and Chaure (1981).

5. The lattice recursive maximum-likelihood algorithm

The RML algorithm has improved asymptotic convergence properties

compared with the ELS algorithm presented above. To simplify the

e NN e .’ .!‘.Q<-l. A BT S W
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.. Lattice implementation of algorithms 677
',
)
o presentation we consider in this section ARMA models rather than the more
\ general ARMAX models, i.e.
F Nd NE
- Y= = Z' aYi+ zl CO+T, (32)
- where v, is 8 white-noise process. The RML algorithm (Soderstrom et al. 1978,
W Noderstrom 1973, Ljung 1977, 1981) can be summarized as follows. Let
LN
O={a,. ....ay ¢, ..., ¢y.|" = parameter vector
H $i=l=Yi1e - =Yy €11 - €y [T = data vector
N il =g oo =Feenae €1t -0 E_ne |V =filtered data vector
. where ¢, é,. §, will be defined later. The update equations are
:.: “@=y~d" 0:-1
o =0, ,+ Prge,
L r (33)
" Pt 4T
f - =y~ b,
c The filtered quantities are obtained by
4= 1/C(2) e,
) (34)
- ge=[1/C(2)ly,
- where
I . Cz)ml +&{)12"" + ... +&ylt)z—NC (35)
where z-! is the unit delay operator. Note that (33) can be rewritten as
’ oo Pt =Prrb  +dey= Py 0+ dfe+ 4,7 6,) (36)
3 :-:: Let us define
[ rime+h 0, 37
I [ ] and sum up the difference equation (36) to get
b t
: Pyt Gy 'Zl bt (38)
r -
- or
e R
Y 0:‘[ & ¢'t¢tT] ,Zl $ex (39)
[
- Equation (39) can be recognized as the solution to the problem of estimating
T the process x, from the components of the vector .. Thus, given the variables
£y, §p &, we can apply the recursive least-squares algorithm to estimate the
e parameter vector §. The joint estimation problem described above can be
& solved by the following joint-process lattice form.

;

b

3

h

J

b

)

by
3

EE‘:‘

|

4

’

!

b

P

Joint-process two-channel lattice
We assume here Vd = V("= .\,

6.
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478 B. Friedlander
.
Initialization tr‘:
Rymol, Rf=a
[ -]
Go=Tq o= ¢ =0 -
K,o=0, K, j#=0forpul,...N "
Y b
Ze= T b,
'y -
Main loop N
Rr- AR1_|+ZfZ.r Rr‘- AR"'_|+¢Y1«Y'1~ (40 a) -
G r=ror= Rp-'* 7y "= (Rpr)"V2X (40 b) ‘s
For p=0to N. do -5
Ky o=FYK, .\ 000" ppe1s p. 1) (41 a) -
K% = FYKE iV €, 1) (41 %) ;'.
Lot r™ p(‘ﬂ.f' o, 710 KAH»I. T) (41 ¢) )
Tper,r™ F('ﬂ-f-l' A% K'pﬂ. r) (41d) .;
(4l e) =

“perr=Flet, 2,1, 1. K5y 1)

The algorithm described above will both update the parameter estimates o
(reflection coefficients K, X*) and filter incoming dats to compute a set of .
prediction errors. Sometimes we want to use this lattice structure for filtering

only. In this case only (40b), (41 ¢), (41 d) and (41 ¢) need to be used. To =
distinguish between these two cases we will call LATUP the algorithm that
performs the full computation (40)—(41) and LATFIL the algorithm that does .~
filtering only.
The lattice structure described above can now be used to implement the
RML algorithm (Friedlander ef al. 1981). This will require several steps of
filtering and parameter updating. The following set of equations summarizes
) the RML algorithm in non-lattice form —
: 54 e =
b r=vr+ L &T=llgr = T &T-ller, (42 a) B
?;:: N4 RYe o
E ~Epmi+ ¥ d{T-)gp— ¥ &(T-1)es_; (42 b)
ia} iw)
;:f rp=mep+ £y perform least-squares parameter update (42r) -
- N4 s¢ o
« ﬂr - y'r + .z| “(T)yr_‘ - 2. C‘( Tkr_‘ ("2 d) '
. Ne ]
] jr=yr+0- T 4THy, (2e) =
el
: irmepto- T 4(TIp (42 f) o
b im} .\"_
v -
»
P %
| N

'"'-.._--".‘-".‘" I I Nt T P
‘)}.",-.'.'L.\i'vl\'.\ﬁ‘f-.{\'f-.!' PR RN A AR RRE |
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Lattice implementation of algorithms 679

Call Y U X & Equation
LATFIL () Yo ey Y P 42a)
LATFIL (2) i & 0 -£ (420)
LATCUP (2) e és z, ¢ (42¢)
LATFIL (1) Y € Y * (424d)
LATFIL (3) 0 Yoo % ¥ “2e¢)
LATFIL (4) 0 &y e, é 42/

Table 5. The RML lattice.

This set of equations can be implemented by repeated calls of the lattice
form described above. The input and output for each lattice call are summarized
in Table 5. Note that four different ‘ state vectors ' need to be stored corre-
sponding to 8, ¢ and the pre-filters for y and e. These four cases are
distinguished in Table 5 by the index of the lattice call (for example, LATFIL (1)
represents the filters with yp, ¢, as inputs. while LATFIL (2) has jp, é5 as
izputs).

6. Conclusions

The lattice equivalents of several system identification algorithms were
presented. These algorithms provide a computationally efficient recursive
solution of linear least-squares estimation problems. In the area of digital
signal processing lattice filters are often preferred over their tapped-delay-line
equivalents because of their relative insensitivity to roundoff errors. In
adaptive processing applications. lattice filters have shown improved con-
vergence behaviour compared to the popular Widrow-Hoff LMS algorithm.
Lattice structures also lead to processing architectures that are quite different
from thoee refated to the RLS and similar algorithms. This modular pipe-
lined architecture has potential advantages in hardware and VLSI imple-
mentations of the algorithms.

Relatively little work has been done in the application of lattice forms to
system identification and adaptive control. Considerably more analysis and
simulation studies are needed to assess the usefulness of the techniques pre-
sented in this paper. Of special interest would be tests performed on finite
word length machines and plants with high order dynamics. These conditions
often lead to numerical problems in standard recursive parameter estimation
algorithms. Tt is hoped that this paper will stimulate research in this area.

Appendix A,
Derivation of the update formula for non-symmetric projection operators
Definitiona

Py 8Z(X'Z)'X’
Pegx@l- Py |
Z+28(Z:2] X+r&(XN r|

PR R T L T
MWWV A .p:‘:n\i\:a\:n\;\)'!:ﬂ-
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480 B. Friedlander
{"pdate formula for Pc
Pogesxiz=Pigx~Pogy 22’ Prgy 2] 2’ Py AD
Proof
XZ X::1"'7T X’
Pl»:.pr'lz z] (A 2)
rZ 'z x'

Use the following matrix identity

A4 B} [4- 0] [-4B
= + ApH-Cd-t 1] (A 3)
C D o o0 1

An A D _(J'A—IB
to invert the matrix in (A 2) to get
Py xer=2(X'2)'\X"'+ (I - Z(X'Z) ' X" )2A" (I - Z( ) "Z)".\")}
(A 4)

A=r'[I-Z(X'Z)' X'}z
Equation (A 1) follows directly from (A 4) and the definitions.
Normalization
pzx(U, VYA[U ' Peyy UV Pegy VIV Py, V-T2
[ Pegy UTVU Pegyy xop VIV Pegx V-
=pgx(l, V)= pzx(U!. 2)p~tzx(z, 2)pzx(x, V)
Set Val
(O Pegy UTVHPegyy xop UHT Pegy )T
=] - pzx(U, 2)pzx~" (2, X)pzxlx, U')
Net U=V
[VPogx VITVAV Pogoy xue VIV Pegy VT2
=1-pzx(V.2)pzx~"z 2)pzx(x, V)
Normalizing {""Pz V' by the square-roots of the last two equations gives
Pzrs, x+U, V)= [l = pzx(U, 2)pzx~ Yz, 2)pz x(x, U)]V2
 [pgx(U) V)= pzx(U, 2)pzx Yz, 2)pzx(x, V))
x [I = pzx(V, 2)pzx~Yx. 2)pzx (. V)~T7

Appendix B
The unnormalized lattice RIV

The unnormalized lattice RIV consists of two RLS-type lattice filters, as
depicted in Fig. 3. The input to the upper lattice is the data sequence z, and
to the lower lattice the instrumental variable sequence z,. The reflection
coefficients of the two filters are determined by a common set of coefficients :
K=, K*, K*, K=. Table 6 summarizes the definitions of all the variables in
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x
€ x x
q,7 1,7 CN-] T X
| - o o eope—t————r €
E {ypsuy) . n‘ = N,T
~ R | N, T .
l-l o] ——w aew ! = e "N, T
- X x
r
[ X r Nel,T
f"-: 0,1-1 LT
»
2z z
l - 9,1 1,1 N-1,7 z
“ [}7.31,] o > - - . | IR
{ "L T
- 2
:_:‘ z-] L.. r— - - ——g— l-] Pl r—» rN,f
U z 2 4
b ro'T r;.l’-\ l" 'T r"" ‘T
.
e [ AT (7T -1 ]
! 5,15, 1!
- l =
" : "p.7 - \
XZ AT ¢~
- 1
[.'.' i ‘D.T(“D.T) _J
NS B = = ]
- T K2yt
- z ! %, 1%, 1)
s "o, 1"
L -
L OE Rzl -1 I
p. T 0,7
| 8 ]
3 . " . . .
L Figure 3. The unnormalized lattice R1V.
h ~.-
o ‘.‘
L
!_ Z X v vV UPey Vv
g
; -, Z,r X, r Zo:T " “pr
o Z,r X, r Zy:p?* ” o r-1
X,.r Z). T 20:1 i “or
b= X,.r Zy.r 2p? ow P11
- Z,r X,.r Zo:1 2p:p"? K* 07
- Z,r X, r Tg:p”* PR K*,,, »
s Zyr X,.r Lo:p"H So:r K*, . r
—
Z,r X1 Zor Zo:r K* g\ r
s Zor X1 hd 4 l=Ypt,7

Table 8. Definitions of variables.
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. the lattice RIV. Making the proper substitutions in the update formula for
[ Pr, . V gives the set of lattice recursions. The necessary substitutions are
‘ summarized in Table 7. Reading off the entries of this table gives the following
: equations
:‘: “,ul.r“‘p.r - Kxe[:-o-l. T(Kj=':~ul.1')-lr’p.1'—l (B | )
~. lattice 1
"I"l-f = r‘n.‘r—l - l"j:n*l.T(K':r»*l,T)_l“n.’r (B 2)
."- ‘:/:‘1.1':“:/5.1'_ [\'i: .IH l.T( ["“',»l.r)"’".p.r-l (B 3)
e lattice 2
r:;u-l.T = r:p. Tr-1- ,\’xt n=1, 1'(1‘-"‘= nol.T)_lE:u. T (B 4)
‘:.:l 1\"2;:4-!.1': Aszll*l,T°l +€‘u. Tr:vp.T—l/(l - yll-l.T—l) ] (B 5)
K= . p=AK%  p 4, ra Pl =y 720 (B 6)
. - time updates
.':‘ Ki:u‘l.T= /\Kizn*l.r-l + ’Ju.T—IE: u.T/“ - y'n-l‘T-l) (B 7)
e Kx:[:‘l.T=l\Kx=Il-‘-l.T—l+€‘l:.1'€:-ll.1'/(l _yl'-l-T'l) (B 8)
I" Y,,,T=Y,.-I.T—l +€:.lh T(K‘:"‘l.r)—'ft"'r ti'“e a“d (B 9)
order
:' I\’Hp-»t. T+«1= Ki:p-‘-l. rt+ Ki:u-o»l. T(l""lnl.r)_ll"x:/n L7 “Pdatf‘ (B 10)
K",.+z.1‘ = K"IH-I.T + l\'ﬂuH.T(Kﬂnﬂ. T)—IK'""-I.T (B 11
order update
. Y;:.T—l=7p-l.1'+r: n.T—I(Kﬁln-l.T)—lr’n.T-l (B l'.))
Note that we have introduced the exponential weighting factor A into the
- time update equations (B 5)-(B 8).
. The complete RIV algorithm can be implemented in several ways using
these equations. For starting up the algorithm it is necessary to use the order

(or time and order) update equations (B 10) and (B 12) for K==, K**.  After-
. wards the time update equations (B 6) and (B 8) will be used instead. The
initial conditions for the algorithm at time step 7 are

or= r’,,_ r=ry

€o 7= Py p=2p

[ =
: y_l'raﬂ
r
22 ¢ - SLENY A 1 o ot
- Ky r=K¥,p= Y rpd'p=K*yp+072,
- it
-

Before start-up all the reflection coefficients and state variables are set to
zero. A complete description of the unnormalized lattice RLS can be found in
Lee (1980), Lee et al. (1981) and Friedlander (1982). A comparison with
cqns. (B 1)-(B 12) leads to one possible implementation of the lattice RIV.
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