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I. INTROWA I1ON- MI SU!4NARY

This final report summarizes work performed on the Adaptive Decentralized

Control project (under contract F4920-81-C-0051) during the period June 1981 -

July 1984. The objective of this research effort was the development of a new

concept for the design of decentralized controllers for large scale systems.

The modeling, analysis and control of large-scale system is an

increasingly important problem in such diverse areas as defense systems,

communication and computer networks and transportation systems. The size and

complexity of many systems make it difficult or impractical to use centralized

control structures. Furthermore, considerations of communication costs,

system reliability, computational requirements and response time provide

strong incentives for the use of distributed control architectures. The basic

focus of our research is on a framework within which decentralized controller

structures can be analyzed and developed. The motivation for our proposed

approach which we named ADCON (for Adaptive Decentralized CONtrol) comes from

the following observations about the current status of control theory.

An important aspect of centralized control has been the study of systems

with unknown or uncertain (time varying, random) parameters. The

investigation of this problem led to an extensive literature on adaptive

control (also called: learning or self-organizing systems). The natural del

progression in developing centralized controllers was from the non-adaptive

case to the more difficult problems addressed by adaptive techniques.

The study of decentralized control seems so far to be almost exclusively

devoted to non-adaptive techniques. A possible explanation of this state of

affairs is the fact that the area of decentralized control of completely known

systems still has many unresolved issues and some basic problems are yet to be

answered. Under these conditions, there seemed to be little incentive to

tackle the more complex adaptive case which deals with partially known

systems. However, this line of thinking is based on the experience gained in

centralized control and it may be inapplicable in the context of the

decentralized problem, which has radically different characteristics. In
.nalfact, adaptive techniques have a central role in decentralized control, which .5..

,.'.
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Is of a somewhat different nature than the role they play in the centralized

problem.

To understand the Interrelation between adaptive and decentralized

control, we have to re-examine the basic issues underlying the need for
decentralized control strategies. The min motivation for considerng such

strategies arises In the context of complex, large-scale systems where a

centralized controller usually requires excessive computational requirements

and excessive Information gathering networks to make such a controller

feasible. In such a system, it is reasonable to assume that the local

controller (i.e., the controller of one subsystem in the large system) has

only partial Information about the rest of the system. Even if the structure

of the whole system (I.e., the state equations of all subsystems and their

Interactions) can be made available to each local controller, the sheer

complexity of the problem often limits the usefulness of this information. In

fact, attempting to use too much information may be one of the principal

stumbling blocks of conventional approaches to decentralized control. Most of

these approaches try to solve the (optimal) centralized problem, and then to

find clever ways of decentralizing the solution. The shortcomings of this

technique and the need for a different point of view are by now widely .,'

recognized.

* The basic Idea underlying our approach is to assume that from the

subsystem's point of view, the rest of the system is not exactly known. Thus,

the subsystem is aware of its own structure, but it has only an approximate

knowledge of the rest of the system, for example, in the form of a reduced

order model. (Different subsystems will use different models of the "outside

world".) The local controller is then designed on the basis of this partial

Information. The modeling uncertainty inherent in this procedure makes it

necessary to consider robust or adaptive control structures. Note that the

uncertainty here is due to the complexity of the system rather than to lack of
knowledge or to random effects, which are the traditional sources of

uncertainty in centralized control. The idea of replacing a complex

deterministic problem by a simple stochastic model is by no means new, and has

been used in a variety of physical problems (e.g., statistical

thermodynamics).

2
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The use of reduced order models and partial information greatly

simplifies the design and implementation of the decentralized controllers. It

raises, however, many difficult questions regarding the conditions under which

such a scheme will lead to satisfactory system behavior. What is needed is a

theory for the control of interconnected subsystems in the presence of model

uncertainties. In an earlier report [12] and in some related papers we made a

preliminary study of some of these issues.

An even more difficult set of questions arises with regard to the

operation of adaptive controllers in the presence of uncertainty. Currently

available adaptive control algorithms have been shown to experience severe
difficulties in the presence of unmodeled plant dynamics. We were able to

derive conditions which guarantee that the adaptive controller will have

specified performance despite plant uncertainty and unmodeled cynamics. These

conditions provide guidelines for the analysis and design of robust adaptive

controllers. A combination of results from robust control and adaptive

control theory was used to prove the main theorem. The main theorem was

applied to a number of well-known adaptive structures: the direct adaptive

controller, an adaptive observer, the indirect adaptive controller, and a

general form of the model reference adaptive controller (4]. We believe that

this work represents a significant advance in the field of adaptive control.

In [13] we presented an input-output approach for analyzing the global

stability and robustness properties of adaptive controllers to unmodeled

dynamics. The concept of a tuned system was introduced, i.e., the control

system that could be obtained if the plant were known. Comparing the adaptive

system with the tuned system results in the development of a generic adaptive

error system. Passivity theory was used to derive conditions which guarantee

global stability of the error system associated with the adaptive controller,

and ensure boundedness of the adaptive gains. Specific bounds are presented

for certain significant signals in the control systems. Limitations of these

global results are discussed, particularly the requirement that a certain

operator be strictly positive real (SPR) -- a condition that is unlikely to

hold due to unmodeled dynamics.

The ADCON concept involves many different issues, as can be seen from the

r.5
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earlier discussion and from [4],[g],[121,[13]. So far we have addressed the

problem of designing a controller for a single subsystem, when the rest of the

system is fixed. This represents only one step in an iterative procedure in

- which each subsystem performs its own controller design. We have done some

investigation extensions of the theory of robust control and adaptive control

to the case of Interconnected subsystems, in which local controllers are

designed sequentially (iteratively) or simultaneously. A number of different

information structures were considered. It seems that by providing each

subsystem with structural information in addition to an aggregate (reduced

order) model of the rest of the systems, it is possible to obtain simpler

design schemes. However, no conclusive results are available at this time.

We have also investigated the application of lattice structures to the

adaptive control problem. Our work in this area seemed to have generated a

considerable amount of interest (cf. [R1]-[R6]). This class of algorithms is

especially well suited for large scale problems of the type considered in this

project.

In the next section we list the publications prepared under this

contract. The key papers are enclosed in the appedices.
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ABSTRACT

An input-output approach is presented for analyzing the global stability
and robustness properties of adaptive controllers to unmodeled dynamics. The
concept of a tuned system is introduced, i.e., the control system that could

. be obtained if the plant were known. Comparing the adaptive system with the

tuned system results in the development of a generic adaotive error system.
l Passivity theory is used to derive conditions which guarantee global stability

of the error system associated with the adaptive controller, and ensure

boundedness of the adaptive gains. Specific bounds are presented for certain
"" significant signals in the control systems. Limitations of these global
1 results are discussed, particularly the requirement that a certain operator be

.-. strictly positive real (SPR) -- a condition that is unlikely to hold due to

unmodeled dynamics.
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1. INTRODUCTION

1.1 Background

The analysis and design of adaptive control systems has been the subject

of extensive research in the past two decades E1]-ClOl. Adaptive techniques

provide a way of handling plant uncertainty by adjusting the controller

parameters on-line to optimize system performance. An alternative method for

handling uncertainty is to use a fixed structure controller designed to

provide acceptable performance for a specified range of plant behavior. In

principle, adaptive controllers can provide improved performance compared to

fixed robust controllers, since they are tuned to the uncertain plant.

However, adaptive controllers sometimes exhibit undesirable behavior during

the tuning or adaptation process. For example, unmodeled dynamics can cause a :4

rapid deterioration in performance and even instability [113,[12J. This

problem is not resolved by increasing the order or complexity of the model.

Since the model of any dynamic system, by definition, is not the actual
system, it can therefore be argued that unmodeled dynamics are always oresent,

ad infinitum.

The main reason for these difficulties with adaptive controllers seems to

be that robustness to unmodeled dynamics was not considered as a design

criterion in the development of the adaptive control algorithm. The design
b.4

objective is global stability of the closed-loop system, e.g., (7), [9) and

various assumptions on the structure of the plant are required to achieve that

objective. In particular, it is necessary to assume that the plant is linear

and time invariant (LTI), that the relative degree of the transfer function is

known as well as the sign of the high frequency gain. Such reouirements are

not practical since real plants are often nonlinear and time-varying and can

be accurately represented only by high order (sometimes infinite order (131)

complicated models.
.. 4

The need for robustness to plant uncertainty is not unique to adaptive

control. The problem of robustness is ubiquitous in control theory and has

been studied in the context of fixed (nonadaptive) control [14J-17]. These

studies rely on the input/output properties of systems, e.g., [.18],[19). The

2
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predominant reason to examine robustness issues In this way is that the

characteritics of unmodeled dynamics, such as uncertain model order, are

easily represented. Lyapunov theory, on the other hand, is not well suited

for this type of uncertainty. Typically, plant uncertainty is characterized

by assuming that the plant belongs to a well defined set. For example, a set

description of an uncertain LTI plant is to define a "ball" in the frequency

domain. The center of the ball is the nominal plant model, and the radius

• " defines the model error. This set model description is one type of a more

- "general set description, referred to as a conic-sector [15]. The uncertainty

in the plant induces an .uncertainty in the input/outDut map of the closed-loop

' "system which can, again be characterized by a conic sector. Performance
requirements for the control system can be translated into statements on the

conic sector which bounds the closed-loop systems, making it possible to check

whether a given design meets specifications, and providing guidelines for

robust controller design.

In this paper we use the input/output approach to analyze the global

I stability and robustness properties of continuous-time adaptive controllers

with respect to unmodeled dynamics (although we consider only continuous-time

algorithms, the input-output formalism can be readily extended to the

discrete-time case). By global we mean that no specific magnitude constraint

(other than boundedness) is placed on any of the external inputs or initial

conditons. We develop an adaptive error system of a general form, by

comparing the actual adaptive system with a tuned system, i.e., the control

,-. system that could be obtained if the plant were known. This error system is
similar to the type used in [7].[8] where the tuned system error output is
zero, due to the assumption of perfect modeling. By relaxing this assumption
we show that the non-zero outputs of the error system are the inputs to a

nonlinear feedback error system consisting of the adaptive algorithm and two
feedback (interconnection) operators,denoted by Hey and Hzv.

. -An important consequence of this structure is that the existence of

solutions (e.g., tuned system performance) is separated from the stabitty
analysis (e.g., stability of the nonlinear error system). In general, the

adaptation law is passive; consequently, if Hey is strictly positive real

(SPR), then application of passivity theory [19]-[21], provides global

. '3
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L2-stability of the map from the tuned system output to the actual adaptive

system output, even though the adaptive parameters may grow beyond all

bounds. We provide other conditions (e.g., Hz stable) to insure the
5\v

L boundedness of the adaptive gains. Similar results are developed to

insure L -stability of the error system by using an exponentially weighted
passivity theory [19). These results are summarized in Theorems 1A and lB.

As a by product of the input/output view we also obtain specific bounds

on the L2 and L norms of significant signals in the adaptive system. The

results are summarized in Corollary 1.

The results in Theorem 1 and Corollary 1 are not essentially new (see

e.g., [7],[8]), although they do provide some extentions to previous

results. The main contribution, however, is the fact that all the results can

be obtained from a generic error system and from the application of nonlinear

stablity theorems based on input-output properties. As a consequence of this

approach, it is to be expected that conditions for robustness will arise in a

*" natural way. Such robustness results are obtained, but unfortunately,they

have a limited practical use. The main limitation is that the global theory

(Theorem 1) requires that Hey E SPR , which in turn places an upper bound on

the size of the unmodeled dynamics in the plant. The details are contained in

Lemmas 4.1 and 5.2. This bound is quite restrictive and is easily violated by

even the most benign model errors, thus, verifying the results obtained in

[11], [12]. To over come this limitation, we construct an SPR compensator,

based on the scheme proposed in (22) in the context of robust (non-adaptive)

control. Although in the adaptive case the supporing arguments are heuristic,

an example simulation shows a positive result.

The input/output analysis presented here provides a generic framework

within which it is possible to analyze the robustness of adaptive robust

controllers. We believe that this framework can be used to develop practical "'.

adaptive control algorithms that can be more readily applied to real systems,

than the class of algorithms currently in use.

Since this paper merges ideas from several areas, it is necessary to -0

Introduce a number of definitions and concepts.

4
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Since this paper merges ideas from several areas, it is necessary to
Introduce a number of definitions and concepts.
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2. SOME PRELIMINARIES

2.1 Notation

The input/output formulation of multivariable systems is the principal

view taken throughout this paper and the notation and terminology used is

standard (see e.g. C183.[19]). The input and output signals are assumed to be

imbedded in either the normed function space

L n . x : [O,-) Rn I IIjllj <.
p p

or its extention

ne - x : [0,T] . Rl IxTp T } (2.1b)

The respective norms II- p and I 1-11Tp are defined as follows:

- Ilx1l - 1,, IlxIITp (2.2a)
T44D

with

T UPax~t~l~d) p C (I.-) P
10

IIXTIITPy*d (2.2b)

(suip W01t). P
tC(O,TJ

where is the Euclidean norm on Rn. Hence L n  is an inner product
nspace, with Inner product <x,Y> T of elements x y c L2e defined by

T

<X,y> T af x(t)'y(t)dt(23
0

* and so IXT 2 U(,X)
1/2 .If T .athen Lnis an inner-product space -

with inner product (x,y> - limx,y),

6-

6 1
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2.2 Stability

Systems considered in this paper are described by input/output equations
-of the tore y * Gu where G:L n is a causal map from u into y, alsoow e pdenoted u + y • The system G is said to be Lp-stable (or simply stable) if G

maps u €Lm into Y gL n  and if there exists finite constants k and b such
that p b , for all T ) 0 and all uCLe . The smallest
tha I1GUrITp IITp pe
k that can be found is referred to as the LP-gain (or simply gain) of G,
denoted y p(G)

Because we often encounter LTI systems it is convenient to introduce the

following notation. Let R(s) and R0 (s) denote the proper and strictly proper
rational functions, respectively. Let S and S denote functions in R(s) and

R (s) , respectively, whose poles all have negative real parts. Thus,

0,. S and SO  are the stable, lumped, ITT systems. Denote mltivariable systems

with transfer function matrices, by R(s)nxm xm  
, etc. For example,

nxm
G cS o  means that all elements of G belong to So , and so on.

nxm
If G £S then the following Lp-gains are obtained,

Y(G) y (G) f - G(t)]dt (2.4)
* - 0

Y U(G) sup iEG(Jw)J (2.5)

* ugR

where V-A) denotes the maximum singular value of the matrix A, defined as the

positive square root of the maximum elgenvalue of A*A, where * is the

conjugate transpose of A. In (2.4), (2.5) G is the operator, G(jW) the

transfer function matrix, and G(t) is the impulse response matrix.

2.3 Passivity

The following definitions follow those in [193,[21]. Let

le * L l e and let u, p be constants with u > 0. Then, V u c L2e

47
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G Is passive ff

u, G u>T ) 9 (2.6)

.. T

G is input strictly passive if,

- u, Gu > P + MOUIT2 (2.7a)

G is output strictly passive if,

u u, Gu >T 2 + UIGuiT2  (2.7b)

(u and are not the same throughout). When G c Smxm satisfies (2.7), G is 4
said to be strictly positive real (SPR), denoted G c SPR . Because SPR

systems play a crucial role in the proof of stability of adaptive systems, we

introduce the following subsets:

U°mx. 1

SPR+- IG c S Wy.f [G(IJ) + G(-io)'] - I) ; 0, VowRI (2.8a)

IN mx. 1
SPR0 a {G c SO  11 (y [G(ja) + G(-Jw)'] - u G(-J.-'G(Jw)) . 0, VwcR} (2.8b)

where _(A) denotes the smallest eigenvalue of A. Thus, whenever G S ,

conditions (2.7) can be tested in the frequency domain. Moreover, SPRm and
U 0i

SPR+ , respectively, separate the strictly proper SPR functions from the .4

proper, but not strictly proper, SPR functions. In the scalar case, the

frequency domain conditions simplify because x[G(jo) + G(-J)']--

2 Re[G(ju)].

Certain unstable systems in R(s) Mx m can be passive by virtue of (2.6).

In particular. GcR(s)m m  is passive if G(s) is positive real. The transfer

function matrix G(s) is positive real if: (I) it has no poles In Re(s) > 0,
(i) poles on the ji axis are simple with a non-negative residue, and (iii) ""

*. for any w c R not a pole of G(jo) + G(-Jw)'

8
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2.4 Model Error

The cornerstone of robust control design is a quantifiable bound on the

error between the model used for control design and the actual plant to be

controlled. In the adaptive control case considered here the model is a

parametric model, where the parameters are not known exactly. The structure

of the parametric model can be obtained analytically from physical laws, but

this invariably results in a complicated model. Often a simple structure is

selected because it is more convenient for analysis and synthesis.

. Let P denote the plant to be controlled. In the broadest sense P is a

relation in Lm e x Ln e i.e., the set of all possible ordered pairs

)L •x L of inputs u e L" and outputs ycLe that could be generated
£7~ (Yl~e ofleu le l

by the plant [18]. The uncertainty in the plant is denoted by (u,y) c P

Let P :LhM . Ln denote a parametric model of the plant P with
a pe k pe

parameters m c R . The parameters can be selected so as to minimize any

discrepancies between the model and the plant, i.e.,

" inf iy-P=~ ui Y-P*Ulpinf Tp * (2.9)
i "-' c Rk

k

We will refer to i as the tuned model parameters and to P P, as the

. tuned parametric model of the plant. In general, P, is dependent on the

i nput/output sequence.

Most of the previous work on adaptive control deals with the case where

for every (u,y) c P there exists a tuned parametric model P*, such that

PUP. In this paper we consider the presence of unmodeled dynamics, thus,

the uncertain plant P cannot be perfectly modeled by any parametric model

P . Since we will deal exclusively with LT! plants P c R(s)nxm , it is

convenient to describe this model error in the frequency-domain. Let

Bs(r) denote a "ballo In S of radius r, defined by

8S(r) :- (Gc S nxml IG(iw)] c r(.), w R1 (2.10)

r
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Let the plant to be controlled be described by

P (I + &)P, (2.11a)

where P € R(s) nxm is the plant, P, c R(s) nxm is the tuned parametric model,

and Snxn denotes the unmodeled dynamics. Further, the only knowledge

available about a is that it is bounded such that

& £ BS(a) (2.llb) 2.

S

where 6(w) is known for all frequencies. In other words, while the operator

A is not precisely known, we do know a bound on its effect. This model

description (2.2) is used throughout the paper to precisely define the plant

to be controlled in an adaptive system. Following Doyle and Stein [16) we

will refer to (2.11b) as an unstructred uncertainty. Note that although A is

stable, P and P* need not be stable. Hence, the parametric model is

implicitly required to capture all unstable poles of the plant. Although this

is not severly restrictive - at least on practical grounds - nonetheless, it

can be eliminated by definng model error as (stable) deviations in (stable)

coprime factors of the plant [23). As the subsequent analysis is not

substantially effected by this choice, we will remain with (2.11) for purposes

of illustration.

2.5 Persistent Excitation

From (31), a regulated function F(.) -R+ Rn is persistently

exciting, denoted F c PE , if there exists finite positive constants

al G and 03such that

2  F(t)F(t)'dt I , V s ( R 2.12)

The usefulness of a persistently exciting signal is in establishing the

exponential stability of the following differential equation which arises in

many adaptive and identification schemes, i.e.,

10 -
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a -BFHF'x + w .x(O) cR (2.13)

It is shown in C31] that if B CR 8 - -B > 0, H c SPRm or SPR , and

F c PE , then (w, x(O)I- x is exponentially stable, i.e., S m, x > 0 such

that

f1(t)1 4 we -,t Ix(Oil + f mTld -(t-r) l(rd -(2.14)

0

We will utilize this latter result in section IV in our proof of stablity of

the adaptive system.

UZ-
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3. ADAPTIVE ERROR MODEL

In this section we develop a generic adaptive error model which will be

used in the subsequent analysis. This requires defining the notions of robust ,

control and tuned control.

* Robust and Tuned Control

Consider, for example, the model reference adaptive control (MRAC)

depicted in Figure 3.1, consisting of the uncertain plant' P, a reference model

* Hr, and an adaptive controller C(e) , where e is the adaptive gain vector, r

*is a reference input, d is a disturbance process, and n is sensor noise.

* Denote by H(e) the closed-loop system relating the external inputs w - (r',

d', n')' to the output error e, as depicted in Figure 3.2.. Also, let w E W

denote the admissable class of input signals.

The objective of the adaptive controller is twofold: (1) adjust e to a

constant e. € Rk such that HIO.) has desireable properties; and (2) during -

* adaptation, as e is adjusted, the error is well behaved. In the usual

* formulations [7) only (1) is considered and further it is assumed that there

exists a matched gain, denoted by R c R such that

H(T) - 0 (3.1) .

-- The presence of uncertain unmodeled dynamics in the plant eliminate the chance

of satisfying the matching condition. Thus, it is more appropriate to define

a tuned gain, denoted by oc c Rk corresponding to each (uy,w) c P x W

such that

H(e.)w c H(e)w , V e c Rk (3.2)

* The error signal e. :- H(e.)w is referred to as the tuned error. Note that

each (uy,w) c P x W engenders a possibly different 9. Also, it is

important to distinguish the tuned gain 9. , from the robust gain 00 Rk

where

ik

sup H(e )w 4 sup H(e)w , V e c R (3.3)
P xW PxW

12 "
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Figure 3.2 Closed-Loop System
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I The error signal e° :- (e )w Is referred to as the robust error. It follows
a 0

from these definitions that the tuned error is always smaller in norm than the

robust error, thus V w W,

I e. - H(o*)w c eo  - H(eo)W , (3.4)

The tuned controller is, unfortunately, unrealizable since it requires prior

knowledge of the actual system H(e) (or equivalently, the plant P) and the

input w. A practical adaptive controller is likely to have a larger error

* . norm.

* Structure of the Adaptive Control

In summary, we consider the multivarlable adaptive system, shown in

Figure 3.2, and described by

e H(e)w .(3.5)

where e(t) e R" is the error signal to be controlled, w(t) c Rq is the-: Rk
external input restricted to some set W, and ;(t) . R is the adaptive

-.gain. The class of adaptive controllers considered here are such that the: Rk
" adaptive gains multiply elements of internal signals z(t) R , referred to

I as the reqressor, to produce the adaptive control siqnals,

ft , z] (3.6)

where 8j and z1 are ki-dimensional subsets of the elements in * and z,

respectively. Thus,

m
k - k1  (3.7)

:* :' =1

- ,Define the adaptive gain error,

e(t) :0 9(t) - 8. (3.8)

where 9* R k is the tuned gain (3.4). Also, define the adaptive control

error signals,

*- , 15

* % fr..''S:.--;>-> * '-- :



. . ... -

v ez , - 1, .. , m (3.9)
-ft

An equivalent expression is,

v = Z'e (3.10a)

where the time-varying matrix Z is defined by

Z = block diag(zl, z2, ... , z ) (3.10b)"

To describe the relations among the signals e, z, v, and w we introduce

the interconnection system H: (w,v) * (ez) , as shown in Figure 3.3. In
Rs)(m+k) xlm+q)

particular, let HI  ( , and where HI is defined by,

e- := :( 3.11)
21z v H-H v :2

.. Hzw zv "

, In effect, this structure serves to isolate the adaptive control error v, from

- the rest of the system. When the adpative control is tuned, e 0 0 and v 0;

, consequently, the tuned error signal (3.4) is,

e:= H(e)w = H w (3.12)

We can also define a tuned regressor siqnal,

z, : H w (3.13)
-~ zw

In general, all the subsystems in HI are dependent on the tuned gains e.

The interconnection system can also be written as,

16
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ce e* H 3.14a)

Z Z* H zvv (3.14b)

with v given by (3.10). To complete the error model requires describing the

adaptative algorithm, i.e., the means by which 9(t) is qenerated. We will

* consider two typical algorithms. A constant gain (gradient) algorithm [7):

a (3.151

*where r c Rkxk, r *r' > 0 , and a similar but nonlinear gain algorithm:

o a r(Ze - P(f)8) (3.16a)

where p : Rk R is a retardation function, whose purpose is to prevent
*from growing too quickly in certain situations. Although many functions
* will suffice we will select the one proposed in (24). namely:

1)2, Ii c :~maxue".

0(8) :=(3.16b)

- The complete adaptive error system, is shown in Figure 3.4. Note that

-the error system is composed of two subsystems: a linear subsystem z L and a
-non-linear subsystem 1 N

188
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4. CONDITIONS FOR GLOBAL STABILITY

The theorems stated below give conditions for which the adaptive error

system (Fig. 3.4) is guaranteed to have certain stability and performance

properties. Proofs are given in Appendix A. Heuristically, however, the

basis for the proofs is application of the Passivity Theorem ([19), pg. 182).

It turns out that the map e + v is passive. Thus, if H is SPRm , then
ev

the map e, + (e,v) is L2-stable even though z and/or e can grow without

bounds. Further restrictions, provided below, cause e and z to be bounded.

(we use the notation "x - 0 (exp.)" to mean that x(t) 0 (exponentially) as

t +,

Theorem A: Global Stability
U-.

For the adaptive error system shown in Figure 3.4, assume that:

(Al) The system is well-posed in the sense that all

inputs w c W produce signals e.vz, e , and

in L e

(4.1a)

(A2) Hv kxm (4.1b)(A21 zv 0

(A3) Hey C SPRm (4.1c)
ev +

Under these conditions:

m k '
" ) If (e., e,) L r)Lm e --PO) and (z. .) then with

algorithm (3.15) or (3.16):

- k. k k - .a
(i-a) (e,e) c L. e c L 2 r) and ; -0. (4.a)

(1-b) e £ LfLm, b £ Lm, and e-e. -i40. 142b1

.

(i-c) v c L mn Lm  c L, and v 40 (4.2c)

22
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(-d) (Z) c , (z-z,, c LrntLk , and z-z-o1O exp.

(4.2d)

(toe) If. in addition, e, * 0 (matched) and z, e PE then
i!! (e,, e-e,, v, z-z,) -- 0 exp.

(4.2e)

(ii) If (e., i.)cL 4 and (z. .) LS then with algorithm (3.15):

(il-a) z c Lk (43)

(i-b) With the addition of either algorithm (3.16) or z c PE it follows
that the elements of e, 4, e, 4, v, 4. and * are in L.

(4.4)

Theorem 1B: Global StabilityI
Replace (A3) in Theorem 1 by

(A3)' H SPR (4.5)

(1) If (e,, 4.) c LnL 1=> e.--o-O) , and (z., 1) e Lk then with
algorithm (3.15) or (3.16)

,o"
- (i-,) c. L) k~ M k, _WO. (4.6a)

(i-b) e cLm rm c L e - e*.. (4.6b)
.2"2

(-c) (v,0) Lm  (4.6c)

(i-d) (z,j) e 1k , (z-zk, k-i.) £ L~r ,
and z-z,.--.0. (4.64)

(i-e) If, in addition, e. * 0 (matched) and zc PE
then (e. v)-O exp. (4.6e)

21



(ii) If (e. .) c L. and (z, E) L OO then with algorithm (3.15):

k

(i-a) z c L. (4.7d1

(il-b) With the addition of either zcPE or algorithm (3.16). the

elements of e, e e, v., and are in L

(4.7b)

Corollary I: Performance Bounds

Suppose z, and e. satisfy the conditions in () of Theroems 1A or 18."

"M Le ev c SPR .e., -, y > 0 such that VwcR .

LH i ) ev y ad 4tHev(jw) + ",(-Jw)'] ) , (4.8).

Then, bounds on iel2 and mliel can be obtained from:
2 -/.-.- (0))1/2]

I e-e, 2 ' j [ne, u + e + 2u e(o)' r(( (4.8b)

me reo e(O)' r e(O) + 2me12ie-e*12/Y (4.8c)

(ii) Let Hey P , I.e., , q, k > 0 such that V w e R

..'. (Hev(Jw) +Hev(-Jw). ;OU Hevf-J'a)- HevlJw) (.a

.{Gev(Jw) + Gev(-Jw)'] k Im  (4.9b)

G ev (S) := (I + qs) Hey(S) (4.9c)

Then, bounds on le i and 1e can be obtained from:
2a

"en2 ( n Ime*q*m + (ne*+ql + 2k e(O)'r' e(O)) (4.9d)

tee rI en c e(O)'r 1e(O) + I Ie,+q&,n 2 1eu2  (4.9c)

*-'. .4
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U Discussion

(1) Theorems 1A and 18 give conditions under which the adaptive error
system is globally stable. Essentially, conditions are imposed on the

interconnection subsystems in H, . In particular, Hey e SPRm and

H . Skxm are direct requirements, whereas the restrictions on the tunedzv 0
signals e, and z* . indirectly impose requirements on H and H . These.- ew zw
latter requirements are dependent on knowledge about w c W . For example, if
w is a constant, then the assumption that e* , 0 (Theorem 1A-i) requires
that the tuned feedback system is a Type-I robust servomechanism, i.e., the

transfer Junction Hew(O) - 0 for all (u,y) c P.

(2) Corollary 1 gives explicit bounds on signals in the error system.
These bounds can be used to evaluate the adaptive system desiqn. Moreover,

the bounds allow a coarse determination as to the efficacy of adaptive control
vs. robust control. By comparing, for example, the adaptive error ue12 from
(4.8) with the robust error eo 12 from (1.5), it is possible to obtain a

U quantifiable measure of performance degradation during adaptation.

(3) Although Theorems 1A and 1B are essentially the same, there are

slight difference worth noting. These differences arise because in IA,
HevcSPR+ 0 Hev(s) is proper but not strictly proper, whereas in 18,
Hev.SPRI- Hei(S) is strictly proper. Thus, comparing part (I) in 1A and

18, we see that in 18, v, ' c L. whereas in IA, v Is additonally in

Lm and v-wO2

(4) The use of persistent excitation or gain retardation is seen in part
(ii) of theorems 1A and 1B to provide the means to guaranty bounded signals.

Other schemes based on signal normalizations or dead-zones can provide similar
results, e.g. C32],C331. The effect of these conditions is to provide an

L.-stability which is not present otherwise. The persistent excitation
condition actually supplies exponential stability, which Is stronger than

L -stability, as provided, for example, by the gain retardation (see proof In
Appendix A).

(5) The persistent excitation requirements in parts (I) and parts (ii)

23
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are different. In parts (I), z.cPE , whereas in parts (ii), zcPE • The

different assumptions arise because in parts (1) we enforce the matched

condition e~z0 . Hence, z~cPE -> zcPE . This follows from (i-d) where

z - z* * 0 expoentially. Also, with e. a 0 , a bounded disturbance added to

the reference can cause z c PE without forcing, e. c L . In parts (M1), _

-* which is more realistic, we disallow the matched condition, and hence,

e* c L.. Thus, z e PE Is the weakest assumption to make. However, since z

is inside the adaptive loop, it is very different to guarantee z e PE by

injecting external signals. Note also (in both parts(|i)) that without

retardation or PE it is possible for the regressor to remain bounded even

though the adaptive parameters may grow unbounded. Similar results have been

reported elsewhere, e.g. £24].

Robustness to Unmodeled Dynamics

Since the theorems impose requriements on the input/output properties of

the interconnection system, it follows that the effect of model error on these

properties determines the stability robustness of the adaptive system. For -

example, both theorems reouire that Hey c SPRm . Suppose, however, that -

H has the form,
ev

Hey (I + Aev)Hev (4.10)

" where ev is the projection onto H of the plant uncertainy operator a

• and H is the nominal transfer function when there is no uncertainty, i.e.,.v
when A a 0 . Thus, H is a function of the tuned parametric model P* and

ev
the tuned controller gains e9.• (See Section V for more specific formulae,

e.g. (5.5).)

Conditions to insure that Hey € SPRm despite uncertainty in Hey is

provided by the following:

Lemma 4.1: Let Hey be given by (4.3). Then Hey c SPR: if the following

conditions hold:

( "I)l H" C SPRm  (4.11a)

ev +

24
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(i) ev S(k) where V , £ R , (4.11b)

k(w) < [( •J) Hev(J(-)'/[e(j)4.1c)

Proof: Define L(.): Cmxm R by

V (A) .(A+A)

where * denotes conjugate transpose. Then, using definition (2.8) with (4.10)
- 4.11) we obtain

X[ {ev(jW)J J( u[evl00) + Rev(jw)H--ev(jW)]

ev -- ev( ev(J.) > o .

Hnece, Hev: SPR•

NComments

(1) In order to apply Lemma 4.1 it is necessary to have a detailed
description of how the plant uncertainty a propagates onto the

* interconnection uncertainty Rev * This type of uncertainty propagation was

explored in depth by Safonov [25) and more sophisticated expressions then
(4.4b) are available to describe the uncertain operator . Section 5

- contains more detail on this issue.

(2) In the scalar case (4.11c) becomes

k(w) < Re[;ev(Jw)]/IWev(Jw)I
(4.12)."-Cos 4 (H evljW)]

Since W ev c SPRm by assumpt-on, k(w) is always positive for w e R ; but
because of the cosine function, k(), 1 . In Section 6 we show that this
limitation on the effect of model error is easily violated by even the most

• .benign type of unmodeled dynamics in the plant. Methods which overcome this

* ,25
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limitation are discussed in Section 7. The requirement that k(w) c 1 also

holds for any multivariable c € SPRm . To see this let IT have the oolarev ,:.

decomposition,

G GW -W G (4.13)
ev t ev ev r

where G Gr are Hermitian and Wev is unitary. Since

'(H ) -VG ) -(G ) , it follows that
ev r

k(w) c -O(WWe(j)] 41 (4.14)

In the case of scalar systems, the condition k(w) < 1 can be interpreted in

terms of a limitation on relative degree of Hev (s) . A necessary condition

for H c SPR is that the relative degree of H (s) does not exceed one
ev AV

i.e., phase limited to t90*. Rohrs, et al. [12) show that this necessitates

precise knowledge of plant order, and hence, is not a feasible requirement in

the presence of an unstructured uncertainty (2.12), where the order is

* unknown. In the multivariable case it is awkward to talk about relative

* degree or phase, however, (4.14) expresses the same limitation.

(3) In several instances, e.g., [9],[26),[27J, it has been reported that

* the SPR condition has been eliminated. In each case, however, it can be

verified that the operator Hev a positive constant , which is SPR. But,

-, these studies do not account for unmodeled dynamics, thus, in the notation of

(4.10), only Wev - positive constant . Lemma 4.1 then provides the means to

evaluate the effect of unmodeled dynamic.

2-
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5. APPLICATION TO MODEL REFERENCE ADAPTIVE CONTROL

Consider the model reference adaptive control (MRAC) system, shown in

Figure 5.1, consisting of: an uncertain scalar plant P c R0 (S) ; a

reference model Hr c S ; and filters with F . S W The plant is
pr 0 0

affected by a disturbance d and a reference command r. The system eauations

are:

e7 y y Yr (5.1a)

':Y r r (5.1b)

y - d + Pu (5.lc)

u - - z= -(e zl + z2 ) (5.1d)

z 1  F u, z2 a F(y-r) (5.1e)

Assume that the adaptive law is given by (3.15), thus,
o ..

6 r z e (5.1f)

Let the plant uncertainty be described by(2.12), i.e.,
P-P

-A := ) 15.1g)

where P, e R (s) is a tuned parametric model for P. Let the filter dynamics

be given by

" F(s) - ( T s- (5.1h)

rriT- r 7srrs7
where L(s) is a stable monic polynomial of degree 1 . Thus,

8 e1(t), 02(t) c Rt and so i(t) c R2t • Using the definition of tuned gain

(3.2) we get,L
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- u - -O'z --(O. O)'z
- e'-(Ol'z + e.2z ) - v , v : e'z from (3.6)

"A. A.
A*1 U *2

" u --- (r-y) - v

Finally,
S

A*2/L 1 1
U +A1/ (r-y) - .C.(r-y) (5.2)

*.' where A. and A.2 are polynomials, each of degree t-1 , whose coefficients are

the elements of the tuned gains 9*1 and e*2 , respectively; and C* denotes

the tuned controller. The tuned system ( e-0 ) is shown in Figure 5.2.

In terms of the uncertain plant P, the adaptive error system (Fig. 3.4)

corresponding to this MRAC system, has tuned signals:

e. -U1 + PC.)- id + [ll+PC.I'IpC.-Hr]r (5.3a)

F1PC*) (c C*)~~

Z . (5.3b)

mt F(1+Pc*)-l(d-r)

• " ,..and i nterconnections:

H ev * (1+PC.)-IP(1+A.1 /L)- (5.3c)

F(1+PC.) -1+A.1/L) 1
H - (5.3d)
zv LF(1-PC *)-( 1+A.1/L) -l

The error system can also be described so as to highlight the model error

a . The following definitions are convenient:

T. : (1+P.C.)'P~C* :U 1 - (5.4a)

.29
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K* ..-. e.- As (+**-I*lA/ - (54b

Thus, the error system (5.3) can be also be expressed as:

e* S*(l+&T*)-ld + (T*(1+4)(l+&T*) -~Hr)r(.a

FS*C*(1.&T*)' r-d)

= I )5.5b)

LF S*(1+4T*) (d-r)J

H ey X*(l+&)(l+&T*)- (5.5Sc)

* .H~ (5.5d)

L F K*(+&)(+&T*)-

* The result that follows in Lemma 5.1 gives conditions under which

H e SPR and H S21li , despite model error; thus conditions (A1)-(A3)ev 0 zY 0
of Theorems 1A and 28 are satisfied. Additional requirements are necessary to

establish the class of tuned signals e and z* as given by (S.5a) and (S.5b),
respectively. These requirements are discussed following Lenmma 5.1.

Lemma 5.1: For the adaptive system (5.3) or (5.5) H ev SPR 0and

H S2Ix if the following conditions are all satisfied:
zv 0

n-i1 5 n-2 ~(.a
(I) +as n 1 +-i +n On-i gN*(s)

dp(ii) N*(s) is a stable monic polynomial (S.6b)

*~ 0ii) g (5.6c)

(iv) K*(s) *gKI(s) c SPR0 where K1(s) and K2(S) are monic stable
12(5
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a,~

polynomi al s.

(5.6d)

(v) t d deg L(s) 3 n + deg K (s) 1 15.6e)

(vi) a C 8 (a) Is such that

6(w) < T(w) := n(w)[n(w)lT*(Jw)I + IS*(Jw)l] "
" ¥ E R,

: n( ) :"COS [K .IJw )] :

(S.6f)

Proof: See ApDendix R.

Discussion

(1) Condition (M)-(v) of Lemma 5.1 are restatements of known results,

but normally they apply to the actual plant P, e.g. [7). In Lemma 5.1,

however, these conditions apply to the parametric model P* -- not to the

actual plant. As such, they are easier to satisfy, since the parametric model

is somewhat arbitrary. This flexibility is penalized by an increase in model

error. For example, if the actual plant has a relative degree of 2, then

choosing a parametric model of relative degree 1 -- as required by condition

Mi) -- incrases the high frequency model error.

(2) Condition (vi) imposes an upper bound T on the model error

associated with the chosen parametric model. This condition simultaneously

insures that H e SPR despite model error, and that the tuned system is

stable (see proof in Appendix B).

(3) It is easily verified that T(,) 1 , as was discussed following

Lemma 4.1. In fact, even the "optimally tight" bound (see [25] for details on

this calculation) given by,

1 2+ (11+1 1 2 + 4n eKT/IK)1/2 (5.7)

is also restricted to be less than 1. This limitation severely restricts the

type of admissable model error. This issue is pursued in Section 6.
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4.a

(4) To guarantee global stability using the adaptive law (5.1f).

property (M) of Theorem 1 requires that e. * 0 and z., 1. c L21 for all r

and d. For example, let r and d be any bounded signals such that

r + constant and d * constant as t .. . Property (i) of Theorem 1 is

qsatisfied if:

6(0) 0 (S.8a)

T.(O) H r(0) 1 (5.8b)

Zero model error at DC (5.8a) is certainly to be expected from even the most

. crude tuned parametric model.

(5) Let r be bounded such that r + constant as t . but let d be

just bounded, i.e., d c L . In this case it is not possible to guarantee

e* 0 , but we can guarantee that e., Lm . To obtain global stability in

* °this case, requires the introduction of the retardation term (3.16) into the

adaptive law (5.lf), see part (ii) of Theorems 1A or 18.

*"- (6) It is possible to obtain versions of Lemma 5.1 for adaptive systems

of different forms, e.g., indirect adaptive [5]. Also, the use of

P multipliers", e.g. [4], can be accounted for as well. The multiplier

effectively makes use of the availability of e as a signal; and this allows

rel deg (P*) " 2 rather than 1 as required by condition () of Lema 5.1.
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6. LIMITATIONS IMPOSED BY THlE SPR CONDITION

The fact that the model error bound given in condition (vi) of Lemma 5.1
can not exceed one has unfortunate consequences.

Example 1

Consider a plant with transfer function,

P(s) P (s) 1sasb (6.1)

where P* is the parametirc model, with two unmiodeled stable poles at -a and
-b. Suppose~also, that b is much greater than a, and that a is muich greater

than the bandwidth of P*(s) . This situation seems benign -- and most likely
a certainty. Comparing (6.1) with (5.1g) gives,

a (W2 (a+b) 2  1/2,
2 22 2(~+a )(W +b)

for all frequencies (ab/2) 1/ 2 , thus, condition (vi) of Lena 5.1 is
violated, and global stability cannot be guaranteed. The following example-
illustrates this point.

Example 2

Consider the example MRAC system (Fig. 5.1) studied by Rohrs et al. [121,

where:

p() 2 229
P~s) S+T(s+15)2 + 4

H (s)3R 5+3

u *-0y +9 2 r
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e1  ye,o1 (0) - .65

82 -r e, 0(0) - 1.14

Let r - constant and d -0. Thus, e * 0 exponentially when the tuned gains
are such that (5.8) is satisfied, i.e.,

- T.(O) 2*2 Hr(O) 1

Even though (9.1, 0.e) exist to satisfy this, Hev(s) is not SPR, and so
global stability is not guaranteed. Simulation runs with r - .4 and r - 4.0

are shown in Figures 6.1 and 6.2, respectively. With the small input (Fig.

6.1) we see a stable response which tracks the reference very well. With the

large input (Fig. 6.2) the response is still stable, but large oscillations

are taking place. Larger inputs will eventually drive the system unstable,

e.g. [123.

In this example, if the tuned model is taken to be P*(s) - 1/(s+l) then

* rit is easily verified that model error 6(w) is greater than one at some

frequency.
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7. SPR COMPENSATION

In this section we heuristically develop a means to obtain global robust

adaptive control. Since the SPR condition is violated whenever model error

exceeds one, a natural scheme is to construct an SPR compensator which

alleivates the problems by "filtering" the plant output; thus, avoiding the

trouble. However, direct filtering does not change the size of model error.

For example, with the plant P z (1+&)p* , let Yw denote the output of the
filtered plant, where

Yw Wy W d + (1+&)WP*u (7.1)

Thus, model error is uneffected. Even filtering H directly by W offers no
ev

help, since the bound (4.4c) is still less than one, i.e.,

IH I c Re(W ITe)/IW WTevI c 1 (7.2)ev ev e

for any stable W. What we seek is in SPR compensator which only effects the

unmodeled dynamics, but leaves the paramtric model intact.

A compensation scheme, which offers some promise as an SPR compensator,

is that proposed in [22], as shown in Figure 7.1. To see the desired result

suppose that P a (1+&)P with A E 8S(6) . Then, the compensator is

equivalent to a plant which maps (ud) into y where

y cWd + Pcu (7.2a)

Ac :" B BS1) (7.2b)

Thus, whenver 6(w) > 1 , select W(s) such that IW(ji).sl)a ( 1 The filter

W acts like a "frequency switch" whose function is to insure condition (vi) of

Lemma 5.1.

There are two ways to implement this compensator in an adaptive system.

The first way is to use a fixed model of the plant for Po, it.e., Pm,
The second way is to replace P with an adaptive observer, i.e., P

mU
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* In either case, to obtain the benefit of the SPR compensator, the signal to be

controlled is the compensator output yc , not the olant output y. Both of

these compensators will now be examined.

Fixed SPR Compensator

Let P a P , a fixed model, and let the actual plant be given by (2.17), ""

P - (1+&)P, with a c 8 (6) . Then the fixed compensator plant equivalent

model error (7.2b) is:

Pc P*
Ac :- c€ BS16 1) (7.3a) .'

"-4

where
PIC. 8) -P.(iwlj

6j(W) :- Iw(Jw)16(w) + I - W(jW)l I P (J, ) (7.3b)

This scheme is motivated by the fact that at low frequencies the tuned

parametric model P* is close to P; thus 6 is small and W - 1 . At high -

frequencies 6 is large but (P- Pi)/P. is small, W - 0 and so 6 is

small. Of course the compensator is limited if there is large model error at

intermediate frequencies.

Example 2

• "Example 1 is modified to include a fixed SPR compsnator with W(s)

1/(s+l) and P s) a 2/(s+1) . Simulation results with the large step command

(r=4) are shown in Figure 7.2. Comparing these to Figure 6.2, without

compensation, it is readily verified that the instability tendencies are

eliminated. Also, direct calculations reveal that Hey c SPR o , thus global

stability is insured.

Adaptive SPR Compensation

An adaptive SPR compensator, together with the adaptive controller, is

shown in Figure 7.3. The adaptive controller is described by,

.t -.

"- 40

°.**



1.6
0.8

0.9

.4

3..
----- Yr

2.2y

0. 1. 2. 3. 4. 5. 6. 7 . 9
T

141



=r z e~,e~uy-Y,.(7. 4b)
ec = rc Zc ec ' ec a Yc "Yr 1.b '

F ls) - (1/Lc(s),... ,s /c(s)) , nc £ deg Lc(s) (7.4c)

and the adaptive observer is described by,

( zo  z; (F; u. -F y) (7.4d)

o oZoe°  , eo= yy (7.4d)
no.1 "-

F(S) = (1/Lo(s), *.., s /1o(s)) , no = deg LOiS) (7.4f)

where L (s) and L (s) are both monic and stable. To generate the error
0 c

system interconnection operators associated with this system, let e * and

e*o denote the tuned parameters with respective gain errors, a and o ; andc 0

let v :- e'z and v :- e'Z be the corresponding adaptive control errors
c c c 0 00

(3.6). By analogy with the procedure used in Section 5 we get,

u = C*(rYc) -*1 (7.5

B* Bi(76
S 81 8-1

y - d 1 - A)P*u + *o
0 0

where

A.2/L c  -i
c* (7.7)

B +*I/Lc  9N

82/0 gN. (7.8)

and where (A*1 , A.21 are polynomials whose coefficients are the parameters in

- c ; 18*1,B*2) are polynomials whose coefficients are the parameters in

0*0 ; and N., P* and g are as defined by (5.6a). The adaptive error model is

given below in terms of T., S., and K. as defined in (5.4). In additon,
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def ine:

0

The tuned signals are:

-S(1.&RT*)'R d + (T(14'aR)(l+&RT*) Hr)r(.la

e-DL (1+&RT*)- d + 0 V1'T*&(1+aRT*)-l (71b

A~*(14.&Kl~RT*)r -Rd)~

1~ x- (7.10c)

L:4Fc ;1KR*(RT*r)
F (1+&RTP'(d+R*-(-d

K*(I+A)(l+&T*)-i-(l-W)S*(l+&RT*)-

*H aJ 
(7.11)

zv LK* (l aR(l+RT * i J+l W T D L- 1 TX

0 0.

*c C * I & ) l & T ) - * - F -:- .;S * .l- W l a * - 1

*-...*... 
S * S *S..~*_j



F oP;K, (1+RT.)-1  FoA.2Ll P.
1 K.(1-W)(1+ART) -1"

H ZV (7.11c)
0 -FoK.(1+&)(+&RT.) 1 -FoT.(l-W)(1+&)(l+ART.)- 1

The factor (1+&RT.) " appears in all the terms above. The transfer

function R (7.9) reduces the effect of unmodeled dynamics; however not exactly

by the amount anticipated, vis a vis (7.2). This is due to additonal model

error introduced by the adaptive observer. Nonetheless, the model error

* attenuation is greater than with the fixed SPR compensator. In particular, at

i low frequencies a - 0 and at high frequencies R - 0 , since

W - 0 and D.Lo 1 - 1 . Without further testing of H (7.11a) it is not
0 ev

. possible to state that H c SPR at intermediate frequencies. Note,
ev 0

however, that the nominal value of H is:
ev

* -(1-W)Sj
Fe (7.121)%
ev 0 1

which is SPRo provided that K. £ SPR and

Re K*(ijw) > .l(1-W(jw))S.(jw)I 2 ,w R (7.13)

Applying (4.11) to (7.11a), a tedious procedure, would give an upper bound on

model error to insure H € SPRev 0

44
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8. CONCLUSIONS

This paper has presented an input/output view of multivariable adaptive

control for uncertain linear time invariant plants. The essence of the

results are captured in Theorems 1A and 28 which provide conditions that

guarantee global stability. Corollary 1 also give specific L2 and L bounds

on significant signals in the adaptive control system. These bounds, for

example, can be used to guarantee that the adaptive system performs as well as

a robust (non-adaptive) system using the same structure, but with fixed

gains. By distinguishing between a tuned system and a robust system, we

establish formulae which can be used to restrict the minimum performance

improvement possible with the same control structure.

Although the stability results (Theorem 1A, 18) are not entirely new (see

e.g., [71,[81), the input/output setting provides the means to directly

determine the system robustness properties with respect to model error. The

type of model error examined can arise from a variety of causes, such as

unmodeled dynamics and reduced order modeling. It is very difficult to treat

this type of "unstructuredm dynamic model error by using Lyapunov theory,

since the system order may not be known -- in fact, it may be infinite.

Although Infinite dimensional (distributed) systems were not considered here,

Theorem 1 can be modified to include them, e.g., [26).

The structure of Theorems 1A and 18 require that a particular subsystem

operator, denoted Hev , is strictly positive real (SPR). This requirement is

not unique to this presentation - passivity requirements, in one form or

another, dominate proofs of global stability for practically all adaptive

control systems, including recursive identification algorithms.

Unfortunately, although Hy c SPR is robust to model error (Lemma 4.1), the

bound on the model error is too small to be of practical use. Even the most

benign neglected dynamics violate the bound.

Although this paper is concerned with continuous-time systems, the

theorems carry over virtually intact to discrete-time systems. This is a

direct consequence of the portable nature of the input/output view. However,

there is an important issue unique to discrete-time systems: plant
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a, uncertainty Is critical to where performance is actually measured, which is in

continuous-time, not at the sampled-data points. As a consequence, it may be

necessary to map the discrete portions of the adaptive system (most likely the

C. controller) into continuous-time, i.e., the L2-gains of the discrete-time

operators in the interconnection map, which are associated with the adaptive

discrete-time controller, would be needed rather the discrete-time t2 -gains

S-"Another area worth pursuing is the adaptive control of non-linear

plants. The plant uncertainty description (2.11) does not exclude non-linear

plants. Note that slowly drifting parameters in an otherwise perfectly known

LTI plant could yield the same uncertainty description as a non-linear plant

approximated by a oarametric LTI model. All that is required is that there

* .exists a (possibly) infinite dimensional LTI system which matches the

input/output behavior of the plant for each possible input/output pair. Of

course, if the plant is truly non-linear, then the tuned control is likely to
- be non-linear, which raises some very interesting issues for further research.

i One final remark: the stability results presented here, as well as other

known results, provide global stability. This is achieved by requiring
H c SPR , a condition which is difficult to maintain in normal
ev

circumstances. On the other hand, this is a sufficient conditon; violation of

* which does not necessarily lead to instability. The simple example presented

here in Figure 6.1-6.2, illustrates the point. Other examples of this

phenomena abound, e.g., [12). It would appear then, that a more valid

approach to providing a system-theoretic setting for adaptive control is to

develop local stability conditions, which, hopefully, do not require that

H c SPR . Preliminary results on local stability supoort this hope, e.g.,ev
[33), [34).
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APPENDIX A

PROOF OF THEOREMS I AND 2

Prel imi nari es

The main ingredient in the proof is to show stability by means of

passivity. Although there are many variations on this theme, a general result

is given by the following.

Theorem A.1 ((21], (35]

Consider the feedback system of Figure A.1 below with causal operators

G1 and G2

E2 +2 2

Figure A.1 Feedback System

Suppose there exists real constants ei, dig =t' 1-1,2 , such that

<X,GIX't " t|i'X + 2G|x% + Qi' Vt 0, V x (A.1)
c1.ut2 61u~xu L2 0,t

for 1-1,2. Then the following holds V t .0,

2 2
,r:, (c2  l)lyllt2 + (cl+62)ly21t2 Iy.I.(IUu4u + 2tu2

1.nu2 .t 2 )

U y~lt2(mu2i2 + 2Ic1Iolullt2) + IC1I..u I't2 +C~ ' * I 2't2

+ =I + I41 (A.2)
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Proofs of both theorems also rely on well known results for systems ;

H C S0x . The results required here are summnarized in the following.

Theorem A-2 Esee E19], Thu. 9, pg. 59]

Let H S 5 xm ; then:
0

(1) If u c Lm , then y a Huc Ln 1", ' y is continuous, and

y(t) * 0 as t* .4

(ii) If u £ m then y Hu n , n and y is uniformly

conti nuous.dtq

(iii) If u c m and u(t) * constant c Rm as t *athen

y(t) - H(0)c exponentially as t .a

In order to simplify notation we drop the superstrict on Lnwhich

indicates vector size.

We will establish Theorem 1A first. Some of the steps will be repeated

for 18. Also, without loss of generality, the matrix r In the adaptation law-

(3.1S),(3.16) is set to identity. Corollary 1 is established as a by-product.

Proof of Theorem 1A

Part (1)

Identify C1, G2 in Figure A.1 with e *v and He, respectively. Also,
*let ul - e*,, u, a 0, el e, y 1 ae 2 av, and y, Hev. Using adaptive

law (3.15) we obtain,

<e,v>T a <e.Z'e>T < Z@,e>T <i (4, T (A.4)

a 1 o(T)i 2 1 u6(0)1 (A.5)

1 780) (A.6)

so



Thus, using (A.1) gives,

1 a 61 0, 1 1 " 18(0)1 2 (A.7

Since G 2  Hey C SPR+ by assumption, , y > 0 such that V x £ L2e'

<X'HevX>T • 'exam2, EHevXIT 2  Yx'T2 . Hence, from (A.1),

2. € 2  z , 2 z 0 (A.8)

Using Lemma A.1, together with (A.4)-(A.8) gives,

I T eT2 + (lej 2 + 2ule(O) (A.g)

T2IC*2T2 2e01'

C le-e*iT2 ( YIVIT2 (A.10)

"--Ie T) 2  2z  (A.11)
.MIe C 1e(0)1 + 21elT2 IvlT2

The bounds shown in (4.8) follow using the assumption e, e L2 . Hence,

e,v c L2 and e c L

Having established that v e L Theorem A-2 • z z-z* e L2flL., z e L2,
0, and i is continuous. Sfnce z., i. e L by assumption, it follows

that z c L and L (=4 z is uniformly continuous). Using v a Z'e with
z, 9' a L. v t L. Using e e*-Hev V with e* L and Hev c S (by

assumption), and v e L e e c I . Hence. 0 - Ze c L wo 9 is uniformly

continuous - v - Ve is uniformly continuous (since z is)O v , 0 since

v c L2 is established. Using v 0 -6, e e.* 0 , and since e* + 0 by

assumption, e + 0 . Furthermore, v * 0 - z + 0 exp. and

. Ze - Ze + Ze 0 , because z and e *0 . Using ; * Z'e + Z' with

", 9, i c c L I c Hence, e x- H e 0 €L , because e. c L by

assumption. Thus, e l e + Zi c La • This establishes properties (f-a)-

(i-d).

To show (i-e) consider (3.15) written as:
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ev (A. 12)

w3-(Z*Hevl + i Hey zI + i Hey ')

Since we have already established that z*0 exp. and 9 c L It follows

that w .0 exp. Since z* c PE by assumption (provided e,* 0) , w F-we is exp.

stabl e by (2. 15). Hence, a ., 0 exp.4 , v + 0 exp. -0 e-e~* 0 exp. This

completes the proof of part (I) with adaptive law (3.1S).

To show that (i-a)-(i-a) hold with adaptive law (3.16) requires showing

that G :e ->v is Passive. Consider the typical time interval,

Is (A.13) .

12 { t C [t19t2 )I *e(t)u ; c maxuo.a}

Hence,

<ev> <e,v> 1 + (e,v 12 (A.14)

Thus,

<ev O>6) 1 16(t h 2  1 19( h2(A.15)

<ev I + (1 - liu/c) 6,01(A.16)
22

12 11 1 2 +(R1 1c 2 8>(A.17)
l e(t 2)1 et) o/)',e

1 2 1 18th2 (A.18)
T 10 (t 2)1 et)

because e;, 0>1 )1 0 from,

25



- .t) • t) -e.]

1;-" 2 e(t)Ic

"e(t)m(me(t)h- c) 0, Vt C 12 . (A.19)

* Thus,

1 2 1 on 2

": <e,v> I 1 ne(t 2 )1 - ne(t) (A.20)

Repeating the above procedure recursively,we eventually conclude that

<evT > -1 2(0)2 as before (A.6), and hence, G e l-.-v is passive. The

results in (1) now repeat for adaptive law (3.16). This completes the proof

- of part(i).

3 Proof of Theorem 1APart (ii)

" Theorem IA, Part (ii) is essentially an L -stability result. The method

" of proof requires the notion of "exponential weighting" which is a means to

m obtain La-stability of a system from the L 2-stability of an exponentially

weighted version of the system (see e.g., [19J, Chapter 9). We require the

following:

Definition: Given a real number a define the exponential weighting operator

- by

,-.x'(t :- €=tx(t) (A.21)

Consider the system y - Gu. An exp. weighted version of this system is

denoted by yO :- G0 u" . Note that if G is a convolution operator with

transfer function G(s) then G is also a convolution operator with transfer

function G(s-a) . Thus, the corresponding exponentialy weighted error system

corresponding is described by
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.

-- o

ev

.a . zd - H Is va  (A. 22)

v*Z

•m N Mae + Zed -

where a > 0 such that

de SPRm and Ha Skxm (A.23)
ev + zy 0

Using Theorem A-1, identify G1 with eP vd and G2 with Ha. Note that it is2 ev
always possible to find some > > 0 such that (A.23) holds. We now examine

the passivity of Gi: e. va . Thus,

-', Ze.-( en
..':<e , v'> - <e' , Z'9'>T < Ze , ed>T."

z <8,' ;' - ded + P(04); >T
1 2aT 21 2 d 2

. £ i0(T)I - e(O) + <P()e, 9%>T"= e 'T2

21 2eT 2  2 2  ,.
> 2 T*0 * T .e(0)u - I T2(

The last line follows from (A.19), hence, (A.24) holds with or without the

retardation term in the adaptive law. At this point there are two

possibilities: either e i L or le(t)I - as t - • If e L then 3

constant c < - such that 391 4 C . Then,
0

.d2'v,>T 1 22 1 2
T C" le(TIm C) - 7 1.(0)-

1 2aT 2 1 eO 2(.5
- C Co " I )

If ae(t)l * - as t . - then it is always possible to select an arbitrarily

large T such that u.(Tm- ieiT.. Hence, for this T, (A.24) becomes,

(eO, VO> 2 C laTr.A(Th 2 lo 2 1 2~~~ T,.o ,Tm -..- T 16(o ,
7£ - 'T.) 7 100)32(A. 26)

" - . 18(0)12 .,
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Thus,for some arbitrarily large T, (A.25) and (A.26) have the general form,

p I.e.,

4" <c, V*> )  c ¢2aT - c2 :- -c(T) (A.27)

where c1, c2 are non-negative constants. Hence,

" 6, 0, al, -c(aT) (A.28)

Since G2  H I SPR+, 3 constants u, y > 0 such that
2 v

S> > 2
ev T MIXIT2

I "" ( A .2 9 )
Hev XIT 2  

Y EXIT 2

Then,

€ C .2 0 (A.30)

Using (A.2). we get

"yG1  2- I'T2 + (,IT 2 
+ Zu c(aT))112] (A.31)

Since e. e L by assumption,

14 iT2 • ¢aT(2*) l/21eI (A.32)

Thus,

OT(2.)-2/2  -2a T 1/2
IV I T2 [ e~j 4 + (ie. + 4a c uaT) ( A.33)

Since HO c S we obtain

Iz(T)l I T Hzv(T-.)v(T)dd (A.34)
o" 2 TeumT ie T r)v'(T)dr (A.35)
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4e Tu~zv.) 1 1 e -*TT2 (A.36)

where Hv (t) is the impulse response matrix associated with HOzv zV
Substituting (A.33) and (A.27) into (A.36) and noting that
e-2mTc(aT) 4 c1 + C2 , we obtain,

__2 1/2
mz(T) (H!. [me.,. + (ae.e. + 4*u(c +c2  (A.37)

Since the right hand side is indeoendent of T. and since T can be selected to

be arbitrarily large, it follows that z e L Assuming there is no

retardation or persistent excitation, this completes the proof of (ti-a) to

(ii-d).

Assume now that z e PE , which is a noncontradictory assumption since we

have already shown that z e L . Hence,

" -- Z Hev Z' e + Ze. (A.38)

Since z e PE, H c SPR+ and z, c. c L , it follows from (2.15) that
ev +

(Ze., e(O)) i-we is exp. stable, thus, 9, L o s The remaining results in

(ii-e) follow immediately.

Suppose now that the adaptive law is given by (3.16). Then, we can

write,

a Z e - P(e)e Z[e.-HevZ'(e-e.)] -P()e

w - Z HeZ' - p(e (A.39)
peev

where w :a Z e* + Z He Z'ev Z c , because z, e* c Lm Consider the

candidate Lyapunov function V:t a-*uet)l 2 Hence,

"2 we -e Z vZ'e - p(eV (A.40)ev

Suppose m*(t)i .- as t - • Then there exists a time T > 0 such that
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_e(T)l - oT V 1/2a c• Hence,

-c 21 . VT 1/ 2 Z+ IZ 2 y.(He - (1- /2/c)2
T/ T ev~ T (A.1

Clearly, there exists a finite constant c1 such that when VcT > CIO T < 0

Therefore, * can not grow beyond all bounds, and hence, a € L • So then is

9 and § , and again the result of (ii-e) follow. This completes the proof of

Theorem IA. Note that in this case we do not obtain specific bounds on e,

because the proof proceeds by contraditlon.

Proof of Theorem 18

Part ()

Since Hev c SPR 0 there exists q > 0 such that G :- (1 + QS)Hev c SPR+ev o c c

. and furthermore, Gev£ S . As a result we can write (3.14a) as,

e a -H y, y a v - + q (A.42)

Referring to Lemma A-i, let G v -e,G = H u, =0 and
1.2 v 1 "

u2 = -Gl(e* + q*) . Using (A.2) together with (A.42) and the passivity

properties of H gives,
S ev

ie'T(I 2IT < 2 16(0)1 2 1/2  (.3
,eliT2 ' .- ,u21T2 + (,u2'T2 + (A.43)

le(T)l c Ie(0)1 + 2 1elT 2 •u 2 1T2  (A.44)

*. where i is defined in (4.9a). Using (4.9b) gives,

lu 2uT2  (1/k)e. + q4'T2 . This together with (A.43), (A.44) and the
assumption e*,, eC L2 gives the bounds shown in (4.9). Hence,

e e L2, e L . However, we can not conclude that v L 2 as in Theorem 1A,
part (M). Fro; (A.42), we can conclude that (1 + qs-1 v 12 • Since

*-"G : (1 + qs)H c S , it follows from Lemma A-2 that.zv Zv o

z :- z-z* e L2  L. , ze L2 and z + 0 . Repeated use of Lemma A-2 and the

error equations (3.14) aives the results (t-a) - (i-d). (i-e) follows from

* the arguments in the proof of Theorem 1A, part (i).
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Part (i

The proof is entirely analgous to that of Theorem 1A, part (ii), where
again we use exponential weighting.

9-'



APPENDIX B

PROOF OF LEMMA 5.1

The proof utilizes the following known results:

P
Definition: Let J denote a subset of S, consisting of functions in S whose

inverse is also in S.

Fact [291: If G is any scalar transfer function in R(s), then G has a coprime

factorization in S, i.e., there exists N, D, A, and B in S such that

G a N/D and AN + 80 a 1.

Lemma B-i: Consider the tuned adaptive system of Figure 5.2. Let

P. c R0(s) and C. R lo(s) have coprime factorizations in S given by

P. - N /D and C. - Nc/Dc , respectively. Then, the elements of the

" transfer matrix from (rd) into (e., z.,y, u) all belong to S, if:

i) Q :- 0 c + NpNc  J , (from [291) (8.1)

-" and

(0 6(w)IT*(Jw) < 1, V £ R , (from [161)

where

• T. := N N /Q :- P.C.(I+P.C.) "1  (8.2)

Using the definition of Q we can write H and H from (5.5) as,ev zv

H ey NpQ- (1+&)(I+&T.) "1  (8.3)

L /
' DDpQ-1(1+aT*)'!

Lzv -L .(B.4,
....
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.1.

From the definition of K* (5.4b), we also obtain '

Q N K;!  (B.3)
p

12- Proof of Lemina 5.1

We first show that (1), (ii), and (iv) -= > € J • Let P* - I/D be a

coprime factorization of P* such that rel deg O(S) 0. Since (i) &> rel deg

P*(s) 1 1, it follows that rel deg Np(s) - 1. Moreover, (iv) ->

rel deg K*(s) - 1, and that KI(s) and K2(s) are stable. This, together with
(ii) and (B.3) establishes that Q e J

H e S0 follows immediately by inspection of (B.2), since: F c So by

assumption; 0 , N e S ; Q £ J; & c S by assumption (vi); and finally (vi)

(ii) of Lemma B-1 ->z) &* S

Conditions (iv) and (vi) => H € SPR . This follows from Lemma 4.1
ev o 0

by letting . - K. and letting 1 + 1 - (1+&)(l+AT,)"1 . Thus, (4.4a) is
e ev

satisfied since K, e SPR from (iv). Also, from (4.4b),

k(w) 'TIev (iw)I Ia(ja)S*(iw)[l-&(iw)T*(iw)]- I (8.4)

The last inequality comes from conditions (vi) and the definition of

r(w) from (4.4b).

The final step in the proof of Lemma 5.1 is to show that there are a

sufficient number of parameters in e* to insure a solution exists. This is

guaranteed by satisfaction of condition (v). To see this combine (B.3) with

the definition of Q from (B.1) to gept

Q : N +0 - NpK. 1  (B.6)

c p p c p*
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From (5.2), let Mc  A*2A and Dc  1 + A,1/A be a coprime factorization of

C*, and let Np - g N*/L and 0p a I + I*/L be a coprime factorization of P*,
where P. Is as defined in (1). With K* given by (iv), (8.6) becomes the

polynomial equation,

A I K1D, + A*2KIN. a LKK 2N-KID .  (8.7)

Since deg(K2M. ) - deg(K1D. ) and Kl. K2, N*, and D, are all monic, it follows
that deg(L(K2N,-K1O.] D deg(L) + deg(K1 ) + deg(D,) - 1 . Then, using known
results on polynomial equations, e.g. (30], it can be shown that (v) implies

that (B.7) has a solution (A 1 , A 2 )

'.1
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PAn efficient algorithm for output-error model reductiont

BOAZ PORATt§ and BENJAMIN FRIEDLANDERI

A new algorithm is presented for reduced-order modelling of linear discrete-time
systems, using an output-error criterion. A closed form expression is developed for
the gradient of the cost function with respect to the model parameters. A computa-
tionally efficient algorithm for computing this gradient is derived. A Pletcher-Powell
optimization procedure utilizes the gradient vector to compute the reduced-order
model parameters. A special initialization procedure is proposed, and the stability of
the reduced-order system is monitored. The performance- of the algorithm in
illustrated by some numerical examples.

1. Introduction
The problem of mathematical modelling of physical phenomena arises in

many scientific disciplines. An important aspect of modelling is the conversion
of complex models into simpler ones. It is usually desirable to use models that
are as simple as possible yet still capable of capturing the salient features of the
underlying phenomena. Model simplification leads to savings in qomputa-

=tional requirements and hardware costs and facilitates the analysis and under-
standing of complex problems. In this paper we consider a technique for the
reduced-order modelling of linear discrete-time systems.

The problem of reduced-order modelling (sometimes called rational approxi-
mation on the unit circle) can be defined as follows: let g°(z) be a rational
Nth-order transfer function

mgo(z) _ b0z) °1 z-1 + ... + byv° i- 'v
b I +az-1+ ... +a.V z- v (

where the polynomial a(z) is assumed to be stable, i.e. to have all its roots
strictly inside the unit circle. Let

g(Z) - !W bz-'+ ... + 1b (2)
a(s)I +atz-1 + ... +a,.z-n (2)

be an nth-order approximation to go(z) (where n <N), in the sense that g(z) is
'close ' to g°(z) under some criterion. The criterion used in this paper is the
L2 norm of the difference on the unit circle, i.e.

V: 1 I jgo (exp (jw))-g (exp (jw))l1 d-

bO I(exp (j4 b (exp (j-u))
*" 2v a° (exp (jw)) a (exp (jw)) i (3)

Received 21 April 1983.
t This work was supported by the Air Force Office of Scientific Research under

Contract No. F4920-81-C.0051.
Systems Control Technology Inc., 1801 Page Mill Road. Palo Alto. California

94304, U.S.A.
I Present addrem : Department of Electrical Engineering, Technion, Israel.
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96 B. Porat and B. Friedlander

Using Parsevai's theorem, the criterion can be alternatively specified in the -j

time domain. Let

98(z) , g z-1 ; gz) g- (4)

Then O
V (g 1 jq)' (5)

i-I

Minimization of V as defined by (3) or (5) over all possible parameter values
{bi, aj: 1 i 4 n), will determine the optimal reduced-order model g(z). We -

will refer to this procedure as the output-error method.

g(z)
v t  e et.-

Figure i. A model for the output error method.

The name 'output-error' comes from the system identification literature
(Landau 1979). Consider the problem depicted in Fig. 1 : two systems g"(z)
(the real system) and g(z) (the model to be estimated) with a common input
process v,, a unit-variance white noise process. It is desired to estimate the
parameters of g(z) so that the mean-square error between the outputs of the two
systems E{e }2) will be minimized. It is a straightforward matter to check that
the mean-square error criterion is identical to V as defined earlier.

The output-error criterion seems to be a good candidate in many applica-
tions. It uses a physically meaningful error criterion and leads to satisfactory
performance in the context of estimation and control problems. The main
difficulties with this method are related to the computation of the reduced-order

" model. First, the error function is a non-quadratic function of the model
parameters (a(z)). Therefore the minimization of this function involves a non-
linear optimization procedure. Such procedures are often complicated and
computationally expensive, especially for high-order systems. Second, the
error function V will generally have multiple local minima, making it difficult
to reach the global minimum.

A number of model-reduction algorithms based on the output error have
been proposed, mainly in the context of filter design. Sanathanan and Koerner
(1963) have proposed an iterative procedure in which a conditional output error is
minimized at each stage, where the conditioning is on the denominator poly-
nomial computed at the previous stage. Steiglitz and McBride (1965) used a

/I.

"., °- * -t t.
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similar idea in a system identification context. Deczky (1972) proposed a

technique for minimizing the p-norm of magnitude error

j (jg (exp (Jw))I - Jge (exp (j-))I) d-

and the p-norm of the phase error

I lPba s e (g (exp (j(-))) - phase (go (exp (jw))) IP d.

The reduced transfer function g(z) is modelled as a cascade connection of
second-order filters. This procedure is extensively used for filter design.
Aplevitch (1973) gave a gradient algorithm based on a state-space formulation.
Recently, Yahagi (1981) proposed a gradient algorithm for minimizing the
output error with respect to a model specified by a finite number of impulse
response terms.

A number of alternative procedures have been proposed in the literature,
apparently stimulated by the difficulties in computing the output-error
reduced-order model parameters. Perhaps the most popular of these is the

"so-called equaiox-error method which uses an error function of the form

V=I- a(exp (j-))go (exp (j,))-b (exp (j-))' dcu

l(exp (j-))121g'0(exp (jw)) -g (exp (jw))I' dw 6

Note that this cost function involves a filtered version of the output error. The
equation-error method has the advantage of being quadratic in both the a(z)
and the b(z) coefficients; hence the minimization procedure is fairly straight-
forward. On the other hand, the error function tends to put a small weight on
frequencies where the magnitude of the response is large, yielding poor
approximations for systems with poles near the unit circle. Even more
problematic is the fact that a(z) resulting from minimizing V is not guaranteed

Sto be stable.
Many model-reduction methods that are not based on the output-error

technique have been proposed in the literature. We mention in particular the
relatively recent development of the balanced realization method (Moore 1978)
and the optimal Hankel-norm method (Kung 1980). Other well-established
techniques include: dominant mode approximation, aggregation, sigular
perturbation, Routh approximation and Padd approximation. Here we

*i consider only the output-error method, which appears to work well in various
control and signal processing applications.

In this paper we present a new algorithm for the direct minimization of the
-- output error function (3), (5). Through a detailed analysis of the error function

V we were able to develop a closed-form expression for the gradient vector (i.e.
the derivatives of V(g) with respect to the parameters aj, be). This gradient

. vector is then used in a Fletcher-Powell minimization algorithm to compute the
parameters of the reduced-order model. Using some facts from the theory of
discrete Lyapunov equations and Toeplitz matrices we were able to develop an
efficient algorithm for computing the gradient vector, requiring of the order of

' multiplications and additions. This seems to be by far more efficient than
any other existing schemes for computing the gradient. A special initialization

D2
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procedure based on some properties of orthogonal polynomials is proposed.
This procedure seems to provide a good starting point for the subsequent
minimization algorithm, leading with high probability to the global minimum. Ac.
A unique feature of the complete algorithm is that it guarantees stability of the
reduced-order model (i.e. of a(z)) at each step.

We believe that the technique proposed in this paper provides for the first
time a satisfactory solution to the output-error reduced-order modelling
problem. The algorithm has a number of properties that distinguish it from
previous attempts in this direction : (i) exact closed-form computation of the
gradient; (ii) computational efficiency; (iii) improved initialization; and
(iv) guaranteed stability of the model. These features make it a viable and
practically implementable technique. Our limited computational experience
with the algorithm has been very favourable.

The outline of the paper is as follows. In § 2 we derive the closed-form
expression for the gradient. In § 3 we discuss the implementation of the
method, in particular the efficient computation of the gradient. In § 4 we
extend the method to multivariable discrete systems. In § 5 we illustrate the
performance of the algorithm with some examples.

2. Computation of the gradient vector
In this section we derive explicit expressions for the cost function V and its

gradient vector with respect to the coefficients of the polynomials a(z) and b(z).
We first express the cost function in terms of three matrices, each of which
satisfying a certain matrix Lyapunov equation. These Lyapunov equations
are shown to admit closed-form solutions, involving differences of products of
triangular Toeplitz matrices. Then we use these expressions to derive a
formula for the gradient vector.

2.1. The cost /unction
Let e(z) be the z-transform of the error between the impulse response of the

given transfer function and that of the reduced-order approximate model, i.e.

elz)fbO(z) b(z) (
a°(z) a(z) (7) -

Let {ho, 0 <i < o} and {h, 0 i < oo} be the impulse-response sequences of
I/a°(z) and I/a(z) respectively, i.e.

I Go I cc
(-- 1 hioz-,. ;-- , ,z -' (8)

(Z -0 aZ) .. O

Using these sequences, we can write (7) in a matrix form. We shall use
semi-open brackets to denote semi-infinite vectors and matrices, so that

e. ~ A ? K
bI 4.,h_,.... b,

A [0 it, 'h.
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or more compactly as
e = HOW -Hb (10)

P where HO has dimensions oo x N and H is oo x n. Assuming that both aO(z)
and a(z) are stable, all semi-infinite entities in (10) have finite norms. There-
fore, we can express the squared norm of a as

r*. V(a, b) A eTo = bTRb - 2b°TQb + bOTSb (11)
where

RAfrH; QAHrH ; SAHOrHO (12)

The dimensions of R, Q and S are n x n, NVx n and N x N respectively. Let
p(z) be a monic polynomial of degree m, where

.'..p(z) + p'LZ-1 + +..•:p~--

We define C(p) as the companion matrix of p(z), i.e.

PI -Pt- -Pr"

1 0

,. C(p)= [f] (13)

L " 0 _j

The matrices R, Q and 8 can be characterized in terms of the companion
matrices of a(z) and a0 (z) as follows.

Lemma 1
Each of the matrices R, Q and S is the unique solution of a matrix Lyapunov

equation
R -C(a)RCT(a) Ex 3  (14 a)

SQ- C(a°)QC'(a) = E.vx. (14 b)

8- C(aO)SC'(a ° ) = EvXXN (14 c)

E9× 1 is a matrix of dimension k x I having I in its (1, I)th entry and zeros
elsewhere.

The proof is by a direct substitution using the defining relationships (8).
Existence and uniqueness of the solutions are guaranteed by the stability of
a(z) and aO(z) (Lancaster 1969).

The next lemma gives an explicit expression for the solution to a matrix
Lyapunov equation of the type appearing in Lemma 1.

_' Lemma 2
Let p(z) and q(z) be two stable monic polynomials of degree m, and let X

* .. satisfy the matrix Lyapunov equation

* X - C(p)XC T (q) = E.XM (15)

L

-°............

°- %~ . . * -
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Then:

% (1) X is a Toeplitz matrix (in general, non-symmetric);

(2) X-1 is equal to Q1PT - P2QtIT, defined as

IP ... PM .'
0E q-' iPi

0

M.. . 0 * . -.I
PM-1 Pm q , q,,-1

The lemma can be proved by rather tedious algebraic manipulations or,
more easily, by using results from the theory of bi-orthoqonal polynomials on the
unit circle-see, for example, Kailath et al. (1978) for a detailed disoussion.

To use Lemma 2 for eqn. (15 b), a slight modification of this equation is
necessary, since n=dega<degaG= N. We redefine a(z) as

d(z) ffi I + atz- 1 + ... + a,z- + Oz-- + ... + Oz- 'V  (17)

The polynomial d(z) is only formally different from a(z), i.e. d(z) a(z) for all
numerical values of z. Let Q be the N x N matrix satisfying the matrix
Lyapunov equation

Q - C(a°)QCr(d) = (18)

Then it can be verified that Q and Q coincide in their n leftmost columns, or in

other word. Q is a Toeplitz extension of Q to a square matrix.

2.2. The gradient
We now have all the necessary relationships for computing ? VIFa and

a V/ab. The computation proceeds as follows.

a V aR Q R a-- fb b2~ bffbT b-2b~r - (19)
aaj aa, Pa aa, oaj

where 6 is an extension of b to dimension N by adding N - n zeros. Next recall
the following relationships between derivatives of matrices and of their inverses

aR aR-I a-
-= R ~R Q- (20)

af - a R a i aa,

We now use Lemma 2 to express R- 1 and ,-' as

R- I -- AAI T - A1 A2 T (21 a)

"-1 i .41' A T - As ° .'T (21 b)
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I '" ~ where AI, .-- , A 0 and A 02 are defined in an obvious manner. Differen-

tiating with respect to ai we get

aR-1 AA 1T aA2 A aA 2 TAl --- A T + A t  - 'In T -A.,-z- (22 a)
aa1  aa, a1  iaa

- - aa (22 b)

Substituting (20) and (22) into (21), we get

aV-=2bTR 
_ A T -A 2 T Rb

Ta aa, aa,

+ 2bTQ A A1
0 Q - 2 6TQT LA2 A2 0°T QTbO (23)

aai aa,

It is convenient to introduce the following vectors

r=QTbO; s=Qf=Qb; t=Rb

v,=AJT Rb; v,=A2 
T Rb (24)

wffA,0Q6; w2 =AO QTbO
and then

av 6 A, ___, aA, )1--2A-tZv,+t T  v+r T  T (25)
ccvG +t -a +r - 1

oa o, --- zca, o w,

3 Finally we need an expression for the derivatives of the matrices A,, A._,
and A 2. Define an m x m matrix Z,k by

I1 i-j=k
;10 otherwise

U Then it can be easily verified that

i. "" ,,---7 z n' ;  L l,--'/ ' ' ; N (27)

Using these expressions in (25) for I < i < n and stacking the results in a column
vector gives the desired expression for a Vl/a as

n"-I ." ." ""

2 v, +2 • • V 2

,. I' "

0 I ............ ti _t in -
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*r ..................... rN 0 " (28)

0
+2 L. 1.-2 L

3.liplnena°.no de".to

Lr ,,,+... rN  0 N-,,+l...2 -8 N- 8 0V...4 ""

Finally. iab can easily a computed to a pf

2Rb - 2QTb O = 2t- 2 (29).

rIn the next section we show how the computation be implemented in an
efficient manner and describe other components of the output error algorithm.

3. Implementation of the method mseo. ' In this section we discuss several issues pertaining to the implementation .'

,. of the proposed model-reduction procedure. First we consider the initialization
otproblem and show how to obtain a stable reduced-order initial denominatorpolynomial. Then we discuss a fast computational procedure for the gradient ,

vector. Next we consider the problem of stability monitoring and finally
" describe the gradient search procedure.

.. 3. 1. Initialization "

The error surface corresponding to the output-error rational approximation
method has, in general, several local minima. s any gradient method is only-

noguaranteed to converge to a local minimum, it is imperative to choose an initial. condition which is sufficiently close to the global minimum. Furthermore, it is

necessary to choose a table initial condition for a(z) and to keep monitoring the-" stability as the search proeds.
" It has been suggested in the past to use an equation-error approximation of

the given model as an initial condition (Sanathanan and Koerner 1963). -
Unfortunately, equation-error approximations are not guaranteed to be stable.
A trivial stable initial condition is a(z) - 1, but this may be too far from the-"

global minimum to guarantee convergence to this minimum.
We propose choosing the initial a(z) as the nth-order orthogonal polynomial

of the given aO(z) on the unit circle (Szeg6 1967). In other words, a(z) is
defined as the unique solution of the normal equation

S.+1 al (30)

ai 0

where S.,t is the (n+ ])x (n+ 1) principal minor of the Toeplitz matrix S
defined in (12). The polynomial a(z) thus defined has the following properties
(Szegd 1967)

SPQ

,%7
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(1) it is guaranteed to be stable;
(2) it is an optimal nth-order approximation to a0(z) in the sense that it

minimizes the prediction error

I * I a (exp (j-)) I'.. ca
-~a (exp(j)

(3) it can be efficiently computed using Levinson's algorithm, requiring
about n: operations (Kailath 1974).

These properties make a(z) given by (30) an especially attractive choice for an
initial condition, even though there is no guarantee this will lead to a global
minimum.

As we shall now describe, the polynomial b(z) is determined at each iteration
by forcing 6'V/ab to zero. Hence no initial condition for b(z) is required here.

3.2. Elficient computation o/ the gradient
As we have shown, both the cost function and the gradient vector require the

solution of matrix Lyapunov equations of the form of (15). Specifically, (14 c)
needs to be solved only once, while (14 a) and (18) need to be solved at each

ga.. iteration. Consider (15) and the explicit formula (16) for the inverse of its
solution. The matrix X can be obtained by a direct inversion of the right-hand
side of (16), but this would require m operations. A more efficient method for
inverting this matrix is by the so-called inverse Levinson algorithm. This
algorithm computes the UDL decomposition of X - I in about 2m2 operations (an
operation is defined here as one multiplication and one addition). As X isa Toeplitz, it is fully determined by its first and last columns, and those can be
readily computed from the L-D-U factors of X-. We give below a summary
of the inverse Levinson algorithm, skipping the proof (see, for example, Vieira
and Kailath (1977) for the symmetric case).

'9tep 1. Set
-. "p".Nffpj, q,..jffqj, O-<i-m ;dm=l (31)

. Step 2. Fori=mdowntoi 1, do

[0 pf-a.ijj ... pt.I]
'..° • p a - . ,I ... -qj., -- i= (32 b)

"p - - ..-.. .. p ". -

-- ' ; ~ ~IJL I q,. .. ,._ ].

" ." -rd (32 c)

. ....

....................................
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Step 3. Solve the following equations for x, and x., the first and last columns
of X respectively

F.P--I.,-..-, I L

(33)

L ~ [ doJJ

In counting the number of operations for solving the two Lyapunov
equations (14 a) and (18), we note the following:

(1) Equation (14 a) is symmetric; hence pij -qi.j, pi -- j and x, is sufficient
to determine X. Thus the total count of operation for this equation is
1.5 .

(2) Equation (18), while non-symmetric, is 'sparse' in the sense that the
corresponding q(z) polynomial is of degree n, rather than N. The total
count of operations taking advantage of this sparseness is about
1.5N2 + 1.5n 2 .

The gradient search procedure can be improved by forcing the component
8Vlab to zero at each iteration. This has the effect of conditionally optimizing
V with respect to b at each iteration (where tne conditioning is on the current
value of a), thus reducing the number of free parameters from 2n to n. As we
see from (29), this achieved by setting b to

b - R-QTbO = R-' (34)

The computation of r takes Y2 operations and the solution of (34) takes 2n'
operations (e.g. by substituting for R-I its expression given in (16)). The
computation of t is then saved, since now t = [r, ... r.]T.

The total count of operations can now be computed to be about
4.5N2 + 2Nn + 6n. This can certainly be considered as efficient; by com-
parison, a more conventional solution (say of the form used by Yahagi (1981))
would require a number of operations proportional to nN s.

3.3. Stability monitoring
Stability monitoring can be done, in principle, by solving for the roots of

a(z) and checking that they are all inside the unit circle. This, however, is an
undesirable approach, since it significantly increases the computational burden
if the degree of a(z) is relatively large. Alternatively. the stability of a(z) can

,\9
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be tested by the Schur-Cohn test (Jury 1974), which does not require a factori-
zation of the polynomial. An interesting feature of our algorithm is that it, in
fact, includes a stability test. The solution of (14 a) via the algorithm (31)-(33)
is equivalent to the Schur-Cohn test in the symmetric case (Vieira and Kailath
1977). The condition

is necessary and sufficient for stability of the given polynomial. Thus our

algorithm provides stability monitoring at no extra computational cost.

S. " 3.4. The gradient search procedure

Once a closed-form expression for the gradient is available, one of many
existing gradient methods can be used for minimizing the error function V(a, b).
-We have chosen to use the Fletcher-Powell method (Luenberger 1973), known
for its excellent convergence rate and relative ease of implementation. An
important part of this method (as well as of virtually all gradient methods) is
the line search procedure, namely, a search for a local minimum of the cost
function at the direction used at each iteration, as a function of the step size.
In our case, a certain difficulty occurs due to the fact that the a vector is
constrained to be in the open set 1 = {a : a(z) is stable). On the boundary of
this set the error V(a, b) approaches infinity, and it is not defined outside the
set. Thus, whenever the poles of aO(z) are near the unit circle, great care is
needed in performing the line search to stay within the permitted region il.
We have found the golden saction search procedure (Luenberger 1973) very
useful in this case, since it uses the values of the cost function only for magnitude
comparisons and makes no use of derivatives. Thus, by assigning very high
cost to an unstable a (say near the value of the computer overflow) the line
search can be forced to yield only stable values of a.

4. Model reduction of maltivariable systems
In this section we consider the case where both g0(z) and g(z) are p x m

transfer-function matrices, rather than scalars. A natural rational description
*of such matrices is in terms of so-called matrix fraction descriptions (MFD)

(Kailath 1980). Formulating the output-error model-reduction problem in
terms of MFDs leads to Lyapunov equations in block-companion form. Unfor-
tunately, such equations do not appear to admit closed-form solutions of the

*- type shown in (16). (It is worth noting that substituting matrices for scalars
in (16) does not lead to a correct solution of (15) in the matrix case.) Therefore
we have chosen not to use MFD representations here but take a different
approach.

Let ao(z) be the characteristic polynomial of the system whose transfer-
function matrix is g°(z). Then g°(z) can be written as

BOW(z) (- B  z-'+ ... + B v° Z- (
a°(z) 1 + a1

0 z- 1 + ... + aNO z -v  (35)

where {B10, .... BN°} are p x m matrices. As before, g0(z) is assumed to be
stable and strictly proper.

L

*d ai**d**ili.a l*. i. ld * al i-- l l ' . . : -. . - . , .
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We wish to approximate g0(z) by the nth-order p x m transfer-function
matrix

9 = B(z) Blz -1 + ... + Bz-' (36)

a(z) 1 +alz-'+ ... +az--

We proceed as in § 2.1, expressing the error as a semi-infinite vector and
then expressing V as the 1. norm of this vector. It will be convenient to
introduce the following notation: let B, be a row vector of dimension pm,
obtained from Bi° by stacking its rows in their natural order. BS is defined in a
similar manner. Using these definitions, we can express the error vector asL h* 0 [B7]

k1 .... ... A ...... [Be

or more compactly as
e=HOB° -HB (38)

The element e, of e is now a row vector of dimension pm whose entries are the
pm components of the impulse response at time i. The cost function V is now
given by

V(a, B) Atr {oTe)= tr {BTRB- 2BwrQB + BOrSBo} (39)

where tr {. } denotes the trace operator and R, Q and S are defined as in § 2. 1.
The rest of the procedure is similar to the one given in § 2, with some minor

modifications. In particular: -

(1) the matrices R, Q and 8 are obtained exactly as before;
(2) the gradient component a V/laB is now given by

a VIaM = 2B - 2QT1Bo (40)
By setting

B R-IQTBO (41)

at each iteration, the dimensionality of the problem decreases from
(mp + 1)n to n. This entails a considerable saving in the amount of
operations; therefore it is highly recommended here.

(3) The expression (25) for a V/M basically remains the same, except for
the need to take the trace of the right-hand side. This causes some
difficulty in obtaining an expression of the form (28) for a V/2a. How-
ever, such an expression is not really needed for practical implementation
of the method. It is sufficient to compute the 0 Vlaf individually.
and then stack them in a column vector of dimension n.

5. Numerical results
In this section we demonstrate the performance of the algorithm by some

numerical examples. We have chosen to test transfer functions which have
poles near the unit circle, as these cases are usually quite difficult to handle.
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The first ease uses the 8th-order transfer function whose denominator and
numerator polynomials are

aO(z) =-1- 4-082z-1 + 7.2269z-2 - 6-4408z-3 + 1-8193z-4

+ 2-0443z-5 - 2.4197z-l + 1-0356Z-7 - O-1516Z-8 (42 a)

b(z) -z- 1 - 0357z-2+ -2036z-- 0-0848z-4- 0-493z- O192r' (42 b)

The poles of this system are at - 0-7, 0-9274 ± j03015, 0-7883 ±jO*5730, 0-3,
and 0-3827 ±jO-7867.

The order taken for the reduced model was n = 4. Figure 2 shows the
impulse response of the approximation corresponding to the initial choice of
a(z) as described in § 3.1, against the impulse response of the full model. Figure
3 shows the corresponding frequency responses. The poles of the initial
reduced-order model are at 0-9205 ±jO.32 13 and 0-7754 ±jO.8058. We see

9. 40. 8. 12,9. 1"- ag6.

15.6 15.6

10.6 10.6

0.0- 6.6

5.0 -5.0

0 . 46. s6. 126. 16. 260.
- FULL
- REDUCED

Fi'gure 2. Example I -Almpu~e response of initial approximation.

0.666 0.166 0.200 0.306 S. 4ff S.566

40.0- 46.6

-36.6- -30.0

-86.6 20.6

S. 06 0.100 6.290 6.36M 6. 466 S.S0
- FULL
-REDUCED

Figure 3. Example 1-Frequency response of initial approximation.
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that, even though the poles are rather close to the dominant poles of the full-
order model, this approximation is nevertheless poor. The squared error of this
approximation is 728.6, or about 251% of the squared impulse response of the
full model, which is 2865.2. Figures 4 and 5 show the impulse and frequency
responses respectively of the approximation obtained after eight iterations of
the algorithm. The transfer function of this approximation is

b(z) - 0.3945z- 1 + 4.8318z- 2 - 4-8169z -3 + 0-9268z-4

Na(z) - 3-4301z' + 4.8228z-2- 32599Z-3 + 0*903lz 4 (43)

The poles are at 0.9271 ±j0.3099 and 0.7879 ± jO-5741. The squared error is
8.48, i.e. about l% of its initial value! The match of the impulse responses is
excellent. The match of the frequency responses is excellent down to 20 dB
and then starts deteriorating. This is an obvious result of the fact that the
output-error method weighs the error linearly, while the frequency response is

0. 40. S0. 120. 160. 200.

19.0 15.0

5.0 S.O

0).0 0.O

.".5.0 -5.0

-15.0 Me

S. 40. 80. 120. 160. 200.
FULL
REDUCED

Figure 4. Example I- [mpulse response of final approximation.

0.0. 0 0.100 0.200 0.3o0 0.408 0.500 -.

40.0- 40.0

30.0 30.0

20.0 20.0

10.0 -10.0

-I0.0 0 t.0

-10s.0 -10.0

-20.0 -20 .6

0.000 0.100 0.200 0.300 0.400 0.500
- FULL

REDUCED

Figure 5. Example I-Frequency response of final approximation.
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shown on a logarithmic scale. Thus one should not expect a good match of the
frequency responses at frequencies where the energy density is low.

The second example uses the 10th-order transfer function when denominator
and numerator polynomials are

a°(z) I- - 4-4158z- 1 + 8"4582z- B - 8.2398z-3
+ 2.5658z"4 + 3.2817z - 6 - 4.2475z-4 + 1.5203z- 7

+068197z--0-.83162z-9+025151z - 10  (44 a)

b°(z) = - 0.31272z- 1 - 0.39268z-2 + 2"3363z-3
- 2-0318z- 4 + 0.80763z-4 - 0.6027z-6 - 0-86225z-7

+ 1.6256z-8 + 0.03142z- - 0-64554z -10 (44 b)

This example is taken from Kung and Lin (1980). The poles of this system are
at 0.9561±j02721, 0-3827_jO7867, -0"6349±jO1454, 0"8711±j0.4517,
and 0-6329 ± jO.6430. The reduced order was taken to be n = 6.

0. 40. go. 120. 160. 2g0.p00 ° I°

6.0- G.o

4.00 4.W

2.•:" .0- 2.wo

0.00

S-4.90

. 40. 80. 120. 160. 200.
. FULL

- REDUCED

Figure 6. Example 21-Impulse rewponse of initial approximation.

S.0.0 0.100 0.200 0.300 G. 4W 0.60

0.0 0.0

-20.0-W

O.O 0.1 0 S. 2"0 0.300 0.400 0.60W

- FULL
- REDUCED

Figure 7. Example 2-Frequency rm-ix..ie of initial approximation.
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Figures 6 and 7 show the impulse and frequency responses of the initial
approximation. The squared error of this approximation is 295.5, while the
energy of the full model is 778-9. Again, the initial approximation is definitely
poor in this case.

Iterating the algorithm 22 times gave rise to the approximation

- 0-11 1z-1 - 1-4974-2 + 3-8578z-3
b(z) - 4.3248z-4 + 4.9636-6 - 3011 9Z6

*a(z) I - 3-7473z1 + 6-6845z2 - 7.2682z-3
+ 5.0934z-4 - 2-21 15z'f + 0-4930z4

The poles are at 0.9560±jO.2722, O5922±jO*6391, O3254±j0-7425. Some- *

what surprisingly, four of the poles are not very close to the dominant poles of
the full-order system. Trhe approximation is still very good, as is shown in
Figs. 8 and 9. The squared error of the approximation is 23-7, or about 9% of
its initial value.

0. 40. Be. 120. 166. 200.

8.00 0e

6.00 - 6.S6

4.00- 4.60

2.00 - e r

-6.04-

-4.00 -40

-6 s - -. 0
0. 40. B0. le0. is*. 200.

FULL
EDUCED

Figure 8. Example 2-Impulse response of final approxiniation.

.0 0. 1" 0.200 9. 3" 0.400 *.SO@

29.9.

20.0 20.6

-20.0 20.0

0.000 0.100 0.00 0. 300 0.400 0. SOO
FULL

- REDUCED

Figure 9. Example 2-Frequency response of final approximation.

S...



* .* ~OtdpWJ-erro model reduction11

* The last example again uses the model (44) but takes the reduced order as
n - 4. The initial approximation is shown in Figs. 10 and 11, and the final5 approximation in Figs. 12 and 13. The initial and final squared errors are

-. 498.9 and 52-5 respectively. The number of iterations needed to reach
convergence was eleven. The resulting approximate model ib

* '.b(s) 2-6489-1-I0-968Sz-2+ 155205z3- 7-2175z-4
(46)a(s) 1 -3. 1856zf + 4.26 16s- 286 l5Z-3+ 08285z-4

The poles are at 0-9561 ± j02724 and 0-6367 +aO-6 5 7 9 .
The reader is referred to Kung and Lin (1980) for a comparison with other

approximation methods (singular-value decomposition, 1-ankel-norm approxi-
mation, and dominant-mode approximation).

a?~. 9. Lee. isp. eel.

B.."

4.90 4.00

2.00 2.0

.80-40

0. 40. so. to. 160. 206.
FULL

-REDUCED

* Figure 10. Example 3-Impulse response of initial approximation.

G.1 0.6 Le0 0.10 62" .9 0.30 .409 6.5Se
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110100 0.1W0 4.16 0.300 S. 4690. 4.5
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* Figure 11. Example 3-Frequency response of initial approximation.
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4.60 4.00

0.00

*. 40. go. 120. 160. 2m.
- FULL
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Figure 12. Example 3- Impulse response of final approximation

9.00 @.IN 0.800 6.36 0.40 e.Sm

40.6- 40.0

6. 2d00.0
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Figure 1. Example 3-requne response of final approximation .n
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employs a special initialization procedure and the stability of the algorithm is
guaranteed by a built-in stability test.

The method can easily be extended to model reduction of multi-input-
multi-output systems. Somewhat surprisingly, this is achieved without the use
of matrix fraction descriptions, by dealing with the characteristic polynomials
directly.

The new algorithm has potential applications to filter design, System
identification and control systems. Our particular motivation in developing
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the algorithm was for possible application to adaptive control of large-scale
systems. Some results obtained in this specific application are reported in
Friedlander and Porat (1982).
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Technical Notes and Correspondence

An 111WErro Mehd for Reduced Order IL COMATION OF THE COST FUNCTION AND THEt GOADIENT

Controler Desgu Recall that the error between the transfer functions of the reference

* BOAZ PORAT AND BENJAMIN FRIEL.ANDER model and the closed-loop system is given by

Ak~rut-An efficient cOmPuadOua tecialquir is presented for the(-)-wzl z -cz dz.(6

RLdesign of reu'a-ed ordlseroitisIen for Ibm discrte-tm syslls. Tbe The Polynomials c(z) and d(z) arm of degrees ,i + N -I mid N * X.
taclaiqa is bo'g on th mirsimzstieg of the ouWjW erm between Ife respectively. wh Iie w(z) and u(z) are of degrees Ml -1I and M,. respec-
dosed-loo sytem aui a specified reference model lively. It is convenient to multiply both w(z) and u(z) by "o N-" and

redefine
1 . INTRODUCTIONN+

* - This note is concerned with the problem of designing reduced order u()-:~ + E NMi ~ ) (7)
controllers for discrete control system using a least squares error crite- t -1
non with respect to agiven reference model. Let the plant under consider- Let (h?,: 0 4i co) and (h,; 0 4 < o) be defiled by
ation be represented by the transfer function

v . V \ 'I~u(z) - h~z-'; zN"I/d(z)~ h,z-'. (8)

Then we can write (6) in the form
ralso let the reference model be represented by the transfer functiona-Ho -H(9

W(: (:M+ W, Z. (2) where t is the semi-infinite vector [kt. 2 ... M0 and If are lower
1/ k -i / trapezoidal semi-imiite Toeplitz matrices of width N + or whose first

columns are [hoa o h... jr and ',ho~h1<- ...I respectively. iw I A...
Both the plant and the reference model are assumed to be strictly proper. w.,.,T and cii- (cl ... c IT. Assuming that both u(z) and d(:) are
The reference mord is assumed to be asymptotically stable. Denote by stable. all semi-infinite entities in (9) have finite norms, Therefore. we can
H(:) the transfer function of the desired vth order cascade compensator. express the square norm of c as

* where
V - tre - .cTHrHc -2wrIforHc + w'rH 0TIf w

where the definition of It. Q, S is clear from (10). Introduce the notation
The closed-loop transfer function G,(.-) is given by C(p) for the top-row companion matrix of the poiynomWa p(:):

Let c(:) denote the difference between the transfer functions of the I *(*f]
reference model and the actual closed-loop system. i.e.. t(:) -Gt(:)- LI 0

* G,:).Thecos funtio tobe inimzedis ive byThe matnices R. Q. S can be expressed in term of the companion

I' matrices C(d) and CQu) as follows.
1 01 ...a. bo b..) It (eJ)I12 dwa E (. (5) Lew 1: Each of the matrices RQ, and Sis the unique solution of

I - Ia matrix Lyapunsov, equation:

The aim is to rind a cascade compensator h(:)/a(.-) that will minimize R - C(d) RCT (d) - E
V. It will be assumed that n <A N+M. so that V -0 is impossible in
general. Previous work on this problem includes (11-(31. The contibution Q - C( U)QCT(d) - E
of the present work is an efficient computational scheme for the gradient S- C(u aaSCr( ) _ E (1
vector of V with respect to the coefficients of a(z) and b(:). Using some
facts from theory of discrete Lyapunov equations and Toeplitz matrices, where E is a matrix having I in its (1. 1) position and zeros elsewhere. The
we derive an algorithm for computing the gradient vector in a number of proof is by a direct substitution of tke definitions of R, Q, and S into
operations proportional to (N +s otiZ. The gradient is then used in a (11). Uniqueness of the solution is guaranteed by the stability of uf :) and
fletcher-Powell minimization algorithm to optimize the controller d(:). Ali algorithm for solving these equations in a number of operations
parameters. proportional to (,V + a J2 is given. e.g.. in (4). T'he followting lemma gives

an explicit expression for the solution to a matrix Lyapunov equation of
'I Nantisl rneeied Match i1. 1953 This papa is haftd oun a prior *uhmisn of ~ the type appearing in Lemma 1.

Ags 11"2. This wc Pork a upnd bv fl US. Air Form Office nf Socrinutw Lemma 2: Let p(:) and q(:) be two stable polynomials of degree mt.
Researcht unide Contract F4920.iut.C.U0ii

8i P(Waiis with the Depainmiern of Electical Envpmeoiia. Techwoi,- k raei iftiiiuge or and let X %atisfy the matrix Lvapunov equation
Techrinili. Haifa. Israirl

&. Fnedlaie is with Systems Couiil Techaooy. iS01 Page Mill Rd. Palo Alto. CA X - (p) XCr(q) -E. (12)
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0. .0

0.100- . I.300

0.0 5.0 1.0o 5.0' 10.o 3.0

Act"I

Tom
Pig 2. -MPmt I ao.dE .ba tlw d ap 1

Then1) Xis aTeplimmatrixand2) X isiven by D,-A1G1+5,F; D2-A 2G2 3F 2  (15)

X-,._Q1 p-Q RDD- D Q-DUr-L DT S, -U,,14-U-4h.

1 0 1 p( 16.-( )

q1  1 1 I We now have all the necessary relationships for computin (OV/aa,.
0 Pm' a~) and ( au/5Ib. 0 4i i). The comiputation proceeds. asol-

" q1  1 " ]lows:

PM 0 q- -- A -CTMRC-2WrN (17)
q]Vb rC+ -Bb -r r,- -

0av q-, - ArM2,+2(erR T-. G. (18) ,..

* (13) Recall that

*This lemma can be proven using results from the theory of biorthqonal a- -R-; a~- IQ(9
polynomials on the nit-circle 15). It will be used here to write down To, Ra, R;ad, ab,
explicit expressions for R- . Q- 1. and S- I foa ows For a polynomial
p(:)ofdegree mN, letdie(N+)x(n)matrices P, and P2  and similarly forhe derivatives with respect to b,. Hence• . be delned by

.(P,),,- A-; o,±v-R .c+
2 wQaVQ' (

(0. otherwise A~.TD
Z7-j,, Gb, r- (21)

,(P,), - (SO.0: otherwise.

To et explicit expressions for the derivatives of the inverse, let us define
With these derunons we have he k-shift matrixof dimesions (N + t)x(N m) by

" . ... ,. ...... . ,. .- - -- .,, ,- -......... . .. "..-... "- , ..-.. "..'." .. "
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1 o i-j-k (22) controlless was-peee1Wd The algaidim am. input/oulit 1
0; n rho ism. ~ ~ hancto) desciptionsof the plant. the 1 11, c -model ma ne otot

rathe than the mor commonly wed sWWaemodeqslM T w
Uni i ise tochck otdesipimn an muhenmadcmlly equivali but lead to dketcompula.

__~;"'m - aa1  r- M -ro.~ (23) TI ltv opsioi efndmcjrg of the prped a pens
as, - 0 - . b, Ob, di. way for using itas put of -n adaptive I-- P P Ide ontrolsr whsee

the design cd ob e et 1iabwvti
Uat(MS (16) a(23) we get ousd the soap. ofWent

aa-'(V,) (2T (TT 1) W. S. Levn% T. L onm m LAW
, Z'F,Dr+ D1Fr(Z)r - F2  -0 F () () ,, i. A1p 7-9.

121 L. L 3mot. SmIdim mood 4W bmam wa..ii Usimo aft .m w u

rQ-ZGIUr _ CGflZaO) r __1Z - 7m. 1W . Am. Cam.. WAL AC-IS. P06 $57-563. On.

18@11111111W 7Urf AW. Caw.. %vL AC-2&. pp 584-586. Am&. 1979
* ' 1,"-IjFT( Za,)T (2 ) L L 1* 'md &Pilt ashalm of *2 41dlima Lypmv Uu 1m SWWNi

rab, (7 Kakw-Yauabwic aqrmam." ICU 7bo Am. Caw-. %v AC-26. pp.

151 T. Ka~. A. Vii.mi N. IL't. .Tem*uPleoen m ad
* - Finally. Oc/ab, is given by anbepud poymo.' SIAN Asv. %v. 2. pp.106-110. Jw z9?L

161 A. Vidi aid T Kaloh. 'On ann*w appini. wU dktlo-Caft amua. IEEE
ac ~ T Ti... Cka'm $tn.. %vL CAS.24. pp. 2W2-m Ap. 197.

___ f I~ D. Linb W .Iae M w p.. w .W ~M&
ab, j dm.u~ 91

* Equations (20). (21),.(24H28= form a complete algorithm for the gradient
* vecto. i a be checked that tea e of operations involved in the
* computaton is proportional to (N + a)2.

IML [MPIWFA1 Or int ALOOWIIRi Noupmeunnl, Algoithm for Inpot Signals
£The algauthm descrbed above was implemented on a VAX 780, in Identllcatlo in Stakl Dlurbtd-Punmeter

Forra 77. The Lyapunov, equation (11) wer solved win anomoym- Sysmms
metric version of the'taveres Levusson alginithms (6t. Ths algosith. wusEAYTRFJO l
also used for momtonag the stability of the 4(z) polynotnial at ecutRYTRFALWC
aterso. The opmaifaton method used was Flethr-Powell (71 with a
golden section ine sescl. Th eson for tho particular combination was -4kmttw-hk fs 8umnd~m mpmreas h for Wed-
tha it requs only one gradient compuwdton per iteration. tine helping, Ifiedwe Input ipals inla. st atic 60l110 n -n -ow rift= Is

* to ed i te overall n'brof computatons. 1 1 ad iervesia lateral mem-sine en e ea; of the @a-
itia i prvedfar- h imedereipoinememmis e the symU

IV. ANe&algasaw T isa a e 'erie of the on aes*d Pup R
by Rodiwili 14% for mutp Im muts fiding. an Ina como

The following mxaple will sawe to ilustrate the performance of the ws, the preaatd uft i 11 3ml~m
algorithm:

G()-z'6/(:3 -3.5:' +4.6kz' 2.921zZ-+0.8263z-0.0S5) (29) 1. Imu~ooucnoe
Mwam of this correspodmmce as to propose and invesflgate an

G,:)~02SZ/z -. 2: 05.(30) alotim for identification of an-unknown input sgal or an c tation

Mhe order R' Of fte cascade coumen al as I Aniita of a static. linear distibulded-amete system (DPS) from point owa-
stability compensator. found by.* tra -.W ero. akna surements of its state Problem of this type auise in the aea of wWe and

air pollution. electromiagnetic heating, vibratoion isolation. etc-. and have
H()-(1.3:2 - 2: + 0.825)/:2. (31) been treated by several authon (mainly froms a compuitational point of

view) 131-161.
Fig. I shows the impuls esonse1 of the initial dosed-loop system Theoretical analysis of such problems is a difficult tak sance Oey am
compared to that of the reference model. The optimal controller, obtained Utl-posed in the sense pf Hadaaad 12b. (M This difficulty is usually

* after 25 iterations of the alsorithim, was found to be avoided by aswMasln a pio~n that the unkam ex citation belongs to a
certain parametric class an only its parametert; are estimsated [1).

H(r) -(0.248:2 -0.47: +0.234)/(: +0.116: -0055). (1.2) In this corresponsdence, no asaqmptions of this type are made. and thus.
1~g. 2the proposed algorithms is a nonparametaic one. Its main advantage is

Fi.2shows the inmpulse tespoase of the final dlosed-loop system Corn- asymptotic optiiity (AO). understood as the integral mean-square
ptated to that of the refelpre model. In this cunple- the total square comvergence (IMSC) as the number of measurements approaches to
error of the optimal solutin was about 0.05 percent of the tfrsaice infinity.
model impulse respo neto It sbould be marked that the proposd algorithm is 4 moodified

V. CoPIcLusaoNS Manuenpt omud JulyIt 1"3CR; ruvsi OWbwo 17. 1963.
Tb. amdkba a itlf absta at I; mae Cyboaum TthwMl Unveruty of

A computationally efficient algorithm for the design of reduced order wu a . p-..flA.
r
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Lattice implementation of some recursive parmeter-.stimation
algor t s

BENJAMIN FRIEDLANDER++

Lames dynartuc models. of plant.. am usuully pammretrised by the eueffiriuta of
difference equations. Lattice structures and their reflection coeffitient,. Provide an
alternative paramnetrization that offers sevearal advantages. ineltwhang nurnenca
rohustnem. computational efficiency~ andl a. of lharilware implemoentation. Tim-
recursivec .qaae-roof normsnaIia lattice versions. of the following well-known
paamotor-eutimation algonthm, ame Presented; recursive lesmt-Mq4sa res. rwcuflOve
instrumental variabl-. extentimd li-ant -ouarra.. andl re mrxive masximum-hikAhahlonml.

The need for real-time system identification led to the development of
numerous recursive parameter-estimation algorithms. The most commonly
used algorithms are related to linear input-output models dlescribed by
difference equations of the type

NA N

where u~, y, denote the input and output of the plant and e, denotes a distur-
bance process. Parametrizing the plant by the coefficients jai, bi) of the
difference equation seems to be a natural cIhoice, resulting in an estimation
problem of the type encountered in regression analysis. The regression3 variables in this case are simply the input {ut, - HI-NU and output

.......... ......!a-..} variables. Other parametrizations are, of course. possible.
To see this. rewrite (1) in the form

(2)
%%here

3 -[ a,.. ap 6X.4 b..bV4I

The parameter vector 1) and the vector of regression variables 01 can be replacedI
by 0,..88, J181t where S is an arbitrary (possibly time-varying) non-
singular matrix, since clearly

y#_0t T ~eJT Jp.,(3)

a~a This leads to an infinite number of possibilities for parametrizing the plant.
An interesting choice is to pick S so that the regression variables will be uan-
correlated. This can be done by letting 8 be the lower-triangular square-root

Received 31 August 1982.
t This %vork was supported in part by the Air Force Office of Scientific Research

unider Contract No. F4962-I.-81.C.MJ6I. -The United States Government is authorized
to reproduce and distribute reprints for governmental purposes notwithstanding any
copyright notation thereof.
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* 662 B. Friedlauder
of the covarience matrix of 41, i.e. ..

in this ca (4)

( -5)

In other words, the original set of regression variables is replaced by a Gram-
Schmidt orthogonalized net. Square-root procedures in linear least-squares
estimation are known to have good numerical properties and to be more robust
than techniques involving the covariance matrix itself (Bierman 1977, Lawson
and Hanson 1974). Note that the least-squares estimate of the parameter
vector 0 is given by

9=(EL~a['E~y,) E{i,}(6)

In other words, the parameters can be interpreted as the cross-correlation
between the data !y, and the regression variables. Such parameters have been
used for quite some time under the name of PARtial CORrelation (PARCOR)
coefficients in the analysis of time-series, especially in speech applications
(Markel and Gray 1976). This parametrization is related to lattice structures
instead of the tapped delay-line structure inherent in the difference equation (1).

Lattice forms are widely used in signal-processing applications involving
linear filtering and prediction. They are known to have a number of attractive
features including: (i) good numerical behaviour on finite-word-length
processors; (ii) an orthogonality (decoupling) property: the signals pro-
pagating in a lattice filter are uncorrelated. (One manifestation of this property
is the fact that when the filter order is increased, one has to add an additional
section to the filter without changing the previous sections. In other words the
(N + I )th-order lattice predictor is the same as the Nth-order predictor except
for the last section. This feature is very useful in handling the problem of
model-order determination and reduced-order modelling); (iii) a cascaded
structure of the lattice filter (consisting of identical sections) which is very con-
venient for implementation using special purpose hardware, microprocessors
or LSI : (iv) in normalized versions of the lattice filter all the variables are
automatically scaled, making it possible to use fixed-point computations.
(However, normalization sometimes has an adverse effect on the numerical
behaviour of the algorithm (see Samson and Reddy 1982).)

While square-root techniques are sometimes applied to system identification
(Strejc 1980), lattice structures are apparently not used. One possible reason
is that efficient recursive algorithms for estimating lattice parameters were
developed only recently. Another reason is that earlier work on lattice forms
was limited to all-pole models, while most realistic plants have both poles and
zeros. The work (Mod et al. 1977, Lee 1980. Le et al. 1981, Friedlander 1982.
Porat et al. 1981) on recursive lattice forms provides an elegant solution to the
lattice modelling problem for both all-pole and pole-zero plants. This develop-
ment should encourage the use of lattice forms in system identification and
adaptive control.

The purpose of this paper is to present lattice implementations of the follow-
ing commonly used recursive parameter-estimation algorithms: recursive
least-squares (RLS). recursive instrumental variables (R IV). extended least-
squares (ELS), and recursive maximum-likelihood (RML) (Soderstrim t al.

A-.
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1978, Goodwin and Payne 1977). The idea of using recursive lattice forms for
system identification was previously proposed in Morf d at. (1977). However,
the lattice implementations of these four algorithms were not discussed in full
detail. In particular, the normalized lattice RIV and the lattice recursions
for arbitrary model orders are believed to be presented here for the first time.

The structure of the paper is as follows. In each section we present one
of the lattice algorithms and discuss its properties. Owing to space limitations,
only brief derivations are included. These derivations assume some familiarity
with the projection framework for developing recursive lattice forms which is
described in greater detail in Lee (1980), Lee ei at. (1981), Friedlander (1982)
and Porat edal. (1981). We have attempted to make this paper self-contained,
but some of the background material has been deferred to the references. The
results in this paper are presented in the normalized case only. Unnormalized
versions of these algorithms can be similarly derived.

2. The lattice recursive least-squares algorithm

In this section we consider models of the type depicted in (I). Given a
set of measurements (yo ... , Mr) we can write

X.vA. , X'g. Yo:" (7)
C where

MIA. r il
"-. 8

ST-... H. U -"..

6T= the estimate of the parameter vector 6 (eqa. (2))

* Y .:T m lY .... Ie

The least-squares estimate of the parameter vector is given by (indicel are
U omitted for notational convenience)

6T &(- ' X- ) -X !I.:r

The associated error vector is given by

where

The last entry Er of the error vector is given by

'r = ir'l _ X(XX)-'X LQ:r (10)
where

................................ (1, IIeK . Note that Px = X(X'X)-'X ' is a projection operator on the space spanned by
the columns of X., i.e. P.\P.x- P.. In Lee (1980). Lee el at. (1981), Fried-

lander (1982). and Porat 4i al. (1981) it was shown that projection operators of
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this type can be recursively updated as the projection space X is changed by
the addition of columns z. More specifically, the following update formula
can be derived

U'PP. V UPcX V U 1px" 4Z'PX -'Pxc F' (11)
where I!, V, x are vectors (or matrices) of compatible dimensions and P' A I - P.

.9 By proper choices of the projection space X and the vectors U, V, r, the un-
normalized lattice recursions are obtained (Lee et at. 1981, Friedlander 1982).
A normalized lattice form is similarly derived by considering normalized
projections

px( ', V)&[U'Px e IJ-*.'"Pxe VfV'PxV VI-rit  (12)

which obey the following update formula

Px+(U, V) = fi - px( ,. x)p(x, U)I-'1 [p.-U, V)

-px((,x)p.x(X, V)][f-p.-(V,x)px(x, V)I-r "  (13)

To avoid repeating this expression we will find it convenient to define the
% functions

,_. F(u,, v, ar) h (I - ,rr' 1 1 [u - irv][I - v'vJV-r)
' (14)'"

"I"'-(u, v, r) A( [- ,ir' 1 2 [I -. vv]TIS. (14)

Using the update formula (13) we can derive a large number of lattice algorithms
by proper choices of X, x, U, V and proper definitions of variables. Table I
summarizes the variables involved in the LATTICE RLS algorithm. The
quantities xo:r and xo:r-'T appearing in the table are defined by

Y's 1,'*'[ 0 00

0 0I
. 'r xo:r'"" = Yo:r'" (i),€* .:0:'o (1')

L Y r r, L'Y"-m Tr, Y'

p8(U, V) 8 U I' Comments

" C*P. Xp.oT~ i uo:rXprry U. Joint.procees
A-t Xv.e.r Yo:r' lattice

K;I+,.7  Xp.e. r Yo:r Ye:r P+ ,
KNP+i,r xp, o.7+i Ue:r Yo:r P+ I

f r X..P. r Ze:r V Two-channel
rv.r-i X,.P.T  XO:TM1+ &' PD1  Vr lattice

.K+. r  Xmp.r  zo:r  mANA- B+p

Table I. Definitions of lattice RLS variables.

77
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As will be shown shortly, these variables define the lattice structure depicted

in Fig. 1. where O(K) is an operator acting on the input vector [c'. r'1. defined by

O(K) ] -[ I I (;)

UTT

YT Joint ProNT

(a)

j~y -1,T0~ -

.T F(Kl.T rl T =N

roy.,4- .11-1.r

(b)

* . FigureCl I h L atc om (a)T --eal lTtc tuc14-1. Tb jntrelac,

rvt two-chanel Ttie

These lattice recursions are obtained by making the substitutions inl (13)
as depicted in Table 2.

The following facts are useful in interpreting the entries of this table

(i) order opdate
Am.. 1 ~1 M'IT ,,r.or~" (17)

(ii) order and time uupdate

Xm -i. it.T = "-m. n.Tr +.ro:T 18
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I.o
p.a

(iii) time upea,-

(19) WL
0  

............... 01

x z V I" PX.l, V) px(U, V) px(z, V" pVx(U, z)

X.7T Y;i P  Y O+T T 4P.r rlp.T-i K1'Jp LT
X, e. T Yo: Yo:r, r,;. r'*. r,. K'",. "

X.LT YO:7P+l f: E"P+.t 1P. X',T- K 1,.7

xp..,T Vi Yo:T P+1 pI.T KY+.T ry.T-i VP.L

X r T : rZ O:T n" rp+I.T TP. T-1 ep,. ..

X .. T r"+ O:r X. Kp. T-1 K+|, r. - 4P. T

m=NA-NB+p; n=p.

Table 2. Derivation of the lattice RLS.

Another point that requires some attention is the interface between the
joint-process lattice and the two-channel lattice in Fig. 1. Note that

EO?PxiA-NR.o.r(Xo:7 '
, Vt)

(20) -

r.T-1 PX .MA -vIu .o.T "0. T I.

If we assume that the projection operator projects first on ys and then on as
(i.e. the square roots in the update formula and the definition of p are all lower
triangular), then we note the following:

(i) projecting .r0:r on X.-.4_- ... involves the projection of ,,n:T 011

(ii) projecting Xo:T - "*A- . + ' on X. 4. -.. or involves the projection of
u:r on XvA_,vn+i T .

Therefore we can conclude that

Co. = [r. .-. ,,.-,I • ..s-,'..-i I-N'."
We can now summarize the lattice RL. algorithm by reading off the proper
entries of Table 2.

Lattice RLS algorithm
The algorithm is presented here for the case NA > NB. If NA <NB.

simply interchange y and i and NA and NB.

S
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Input parameters

NA, NB - model orders

A - exponential weighting factor

- prior covariance

Yr, ur - data sequence

Variab/es
a R1' Re =estimated convariance of y. is

K#UI.T, Ku. w reflection coefficients

Kv.= reflection coefficients

top. T ,. , . T - forward prediction errors
(dim (y}, dim {u}, dim {fy', u']'})

rwx., rl,. = backward prediction errors

(dim {y}, dim fly'. '11)

Initialization
R-18= 0, R_-14= a1

;.- ~~KIF'._z=r#_ 0, pffi 1, .. ,N\A -NVB
*:-" K',._ fi 0, p=L ... , SA - NB +

Kp._= r,._ o0, p= i. ... , X B

U Main loop

At each time step do the following:

•.. (i) set

RTY = ART-,T ' + Y/TYT

SRT = ABRIu + uTu'

do. rip = re. T I (R T)- 1 /2yT

CO. TU (RT)-I'ZT

(i4 update joint-process lattice

For p-0 ... , min {NA -,VB, T)

omit this for

-E',.T =F(EV,° rM .- ' K p=min {NA -VB, T}

-- r , - F(rep, T-,, ell,.7, K'p,* I. r)
Ky,,.*7  F-'(Ku,,.,. -, rV p.T'

•~I r. P.T u t't "o)

1.tt* . = &'(oU,, T' rp. KuI. 7 )

'4.

t ,;;?:? ':- 2? -:. :" -- ,--'--.-. : ''2''"2':::":'1 -.--- ": . '"' .. .:."':'" ' .: .:.:.: 2 :.:,:- --- ' .:.'.'. ,'.'
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(iii) set

rerIr -N11. 7- -tW

(iv) update two-channel lattice

For p=O to min {XB, T-NA +\B}- I
K',,. 1. 7= F-'(K , r,' ',a'

j,-. r=  ,. r,,. -1, 'K,,iL ) 0

r,_-.r F(r,. r-I, E. r. K',u+i. r)

Rewmar: vi'

As the lattice recursions are started they may involve division by zero.
It can be shown that the proper procedure is to set to zero the result of such
division in the scalar case, or to use pseudo-inverses in the matrix case. (See
Porat et al. (1981) for details.) For coding purposes it is convenient to make
F(-) and F-'( - , ., .) into subroutine calls. The lattice algorithm then
consists of repeated calls of these subroutines.

Running the lattice RLS on data will provide a set of reflection coefficients
parametrizing the plant transfer function. In some applications it may be
desired to recover the estimates of the jai, bj} parameters, rather than to con-
tinue with a lattice structure. Assuming that the lattice parameters have
converged, this can be done by looking at the impulse response of the filter
depicted in Fig. 1. Recall that this filter computes the normalized prediction
error sequence 4, where

I d-O 1:6, =O(2

where {, bi) are the normalized versions of (a,, b,}. Note that the impulse
response from the y input to the e output will be {do, ,. } while the
impulse response from u to e will be {be, b .....'. The unnormalized para-
meters can be obtained by setting

a1=a-Idi, i= ,... NA

h1= ib , ,O ..... . B J (23)

This method of computing tai, bi} from the reflection coefficients does not
give the exact least-squares estimates of these parameters. However, if the
reflection coefficients have converged 'sufficiently' these estimates will be
very close to the optimal estimates. A slightly more complicated lattice
filter is available for computing the exact least-squares estimates of (ai, b}.,
from the information provided by the lattice RLS: see Friedlander (1982)
and Porat et al. (1981) for a more detailed discussion.

The lattice RL8 differs from the standard RLS algorithm in several
respects:

(i) Initialization. The order recursive nature of- the lattice RLS makes it
possible to eliminate transient phenomena caused by incorrect initial conditions.
leading to faster startup.

-.-7
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(ii) Normalization. All quantities the lattice RL/ (with the exception of
R r , RT) have magnitudes less than one.

(iii) Computational requirements. The lattice RLS is computationally
efficient, requiring O(N) operations per time step, where N = NA + XB. The
usual implementation of the RLS requires O(N 2) operations per time step.
Since square-roots are time-consuming operations on general-purpose com-
puters, the efficiency of the lattice forms becomes apparent only for fairly large
values of N. However, implementations on special-purpose hardware designed
to take advantage of the lattice structure, can be very efficient. Note that
the computation of the {ai, b} parameters from the reflection coefficients
requires 0(. 2) operations. This computation can be avoided, however, by
reformulating the problem for which the parameters were estimated so that itit will use directly the reflection coefficients.

(iv) Order-recursive. The lattice RL ; is not only time-recursive, but is

also order-recursive. This makes it possible initially to overdetermine the
plant order and to choose a lower-order model after the parameter estimates are
computed.

"Finally we note that the lattice algorithm presented in this section was
only one of many different lattice forms (the so-called normalized pre-windowed
form). The unnormalized lattice recursion and the convariance lattice form

7 - are presented in Lee et al. (1981) and Porat et al. (1981). The pre-windowed
form is simpler than the covariance form and is probably better suited for
system identification applications.

3. The lattice recursive instrumental variable algorithm
The RLS algorithm provides biased estimates when the disturbance process

. et (see eqn. (1)) is non-white. The intrumental variables method (Young 1970.
Soderstr6m and Stoica 1981, Wong and Polak 1967) was derived to eliminate
this problem. The parameter estimate #T is given by

." (Z'X)-Z'oT (24)

where Z is an instrumental variable matrix

M "oo ,, ,

DYr-i 9'T-m 11
4

-I 6r.

Trhe instrumental variables ~ ,tcan be chosen in different ways. A
t y v pical choice is to set i it, and to be the output of a filter driven by ti,
for example

•1. .1

"-I ,-.a

"'.. .. h - T.d.,,+.6, _ ( -.. . . .
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Note that the projection formula (10) is replaced in this case by

4r - Z(X'Z)-1 X' 1 (27)

which involves the non-symmetric 'projection operator" Pzx. By analogy
with the derivation outlined in § 3, we define a normalized projection operator
pzx by PZ.\.(l', V) A['P V JJ-/(PXV "z, 7- (28),

In Appendix A we prove the following update formula for this operator
" ~~PZ ..\"ZW -zl",V { z.(I, z)pzx -,(X. Z)pz.\.(x, I)-I

X pzx(', V)- Pzx(U. Z)pzXI(X, Z)Pzx(.r, V)

x (1 -zx(1 % z)pzv-'(rz)pzx(x, V)
- r ""

To avoid repeating this complicated expression we will find it convenient to
define

F(u, v. is-, q, r, .)= )f 8-qa-'rl-1u -q8 -v]-I _u..- IV-r / (30)

and its inverse
". " F-I(u. v, W, q, r, ) .[!- qs-Il u( ],-{ _ .S-1 IT,, + q8-t IV[

Using the update formula (29) we can derive several versions of the lattice
RIV by proper choices of Z, X. z. x, U. V. To simplify the presentation we

pzX(U, V) Z X U " Comments

- P.7 ZP. T XP. r Xo:

ZZo:' " Prediction
. ZP. ' X,. r -o:7 errors
"p.r-i Zp. T XP. T ZO:T

ix X. Xe:?T ZP." Zo:r
Auxiliar";"P. r-i XP.T  Z ,.T *0:2 T  prediction

. ,. r Xr. Z. T ZO: errors
X. Z,. X ZO:r

K"" z tp~ t, r Zp. r X P. T Z e r XO:7
p~

• tKzf:,t.T ZP. T XP,. T ZO:7 ZO:r A  ..41

K-+ Zp. T Xv . T "0:T ':T

SK-fzvt.r T Z. T XP. r *o:r2' + zo:r Reflection
Kfp+I.T r. r XP. 7 zo:.r+

a  ZO:T ooefficientm
X,,*,. Z. XP. r?'". 30:2

, •:.2. Xe:

Kxs ,. .  Zp. T XP. r *0:+ ZO:TK"+I T, ZP. T Xp.7 T z:rp ~ ZO:T *

Table 3. Definitions of the normalized lattice RIV.

II'.
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consider in this paper only the case wiere A - ,VB. The more general case
can be derived in a straightforward manner following the steps outlined in
§ 2. Table 3 summarizes the variables involved in the recursions. We will
also use the following definitions

.\,,.r XPp.r Zp.r,1Z..r

I: 1T

LY t, L Y "

The recursions are obtained by making the substitutions depicted in Table 4.
in the update formula (29).

The following facts are useful in interpreting the entries of this table:

(i) order update

(ii) time and order updates

X1.-. 2. 1 =:AIT=+ z:T -, i =ZT Z:

(iii) i te 

"pdate 
.

X10.f 01

Note also that pz bt ie, V) m 'utto( V, U),
iWe can now summarize the lattice R IV algorithm by reading off the proper
entries of Table 4.

Lattice RI V algorithm
We denote here M -dim {Ivr, usr').

Inpist parameters
N - model order

A -exponential weighting factor

a - prior eovariance

iii #ie mdata sequence

r, ia
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* ~~a. A. A. ~ . a
06

S b*1~4*14* -777~
T

%"c+ 3 4 4 +L 4L ' I

4.~~j i%. .4

f- . . 4

sq 1. 6.4 t.S 4 . t. 1
*4. *. .4 ;

46.

:0 44 N4b

Itr 14-hm N44 4. 111 4 .. 11
' aA . A4 i a j a

N4 '.Q N4 m -b N NNKMN
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* .* Variable.

Re, RT7 -estimated covariance of WYT, WTJ, W TI'' (0/ x M1)
K"Z, K"~, Kxft, K", Kit, K's, Kx", KA2 - reflection coefficients (M3 x 31)

4. To 010. 7 , r'1 , g. r - prediction errors (M x 1)
*~PP r', p. , Pp. r, Pp 7,, - auxiliary prediction errors (1! x 1)

Initialization

* Reflection coefficients and backward prediction errors are all initialized
to zero.

At each time step do the following:

* (i) Set
Re- ARr-iy + IY'r' W 11JY'. (IT I

Rz- F-(z,, 1 +, 7 . 1 ['p.7-i Wp*7 Y[PIT. 1)

Co _ro g.pTz i_ -l' T .T-12[ IT U'p,,4,*,

.4 ~ ~ ~ F 49. Ts - P g.f~i~ 2-- (RT, E"'1, Wr Y'r 1 ,

(ii) 1 4 Fo p" ?1 0,p+ min (N.,T).-,1,"do

K-s+1 P 1( 2P+-. r-i' Fin r--re+1.7ep.1v1071

'p-1. F-(K12+1. TW q r,,, e,,. , KR:,T K"r 1 )

.! Z .r .P- . rz,, 7-1' izo K,-p ,"', T-1 F. K", *1)

al r~~~K'1 ,. 4 .r',,-F,. r, - , , r,, K0 91 1', K",,i ,

Kz#p.,r7-1, i~. 4p' ep.!., e ,? p41.)

K *2,. 4(K 1 + . -v1

ep4 ,r,.T 1 ,,..r Jx +.T " +.r

kr-~ m ~ -~ ~ Pf#, ,F m ,K 'p ir t'~ ~ -K .P1T
,~ ~,,.* * 4 .4, - :.- .* ~ r* .x r - .F .4.i K z#+ .t K ~x *r * &+ . - .- )4 '.. '

P~r.,,.T-19 6'xrt V',#.rq K' ',i. 4.pT K 'PIr
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As can be seen from these equations, the normalized lattice RIV is fairly
complex. This is due to the more complicated projection update formula and
to the fact that various identities which were true for the symmetric projection
operator, no longer hold (e.g. pzx(L', V)9p'z..(V, I')). The unnormalized
version of the lattice RIV turns out to be considerably simpler than the
normalized recursions presented above (see Appendix B). This is different
from the situation in the lattice RIS where the normalized version is the simpler
one. The {at, bi} parameters can be recovered by computing the impulse
response of the variance normalized lattice R IV.

Finally we note that the unnormalized lattice RIV has been developed
independently by several authors (see, for example, Samson 1982, Cadzow and
Moses 1981). An approximate lattice R[V was presented by Prevosto e at.
(1982).

4. The lattice extended least-squares algorithm
In this section we consider the following ARMAX model

NA XI aNSt

yo- a. adi_+ I bill._.+ i, _+ v (31)
i. 0-1

where v, is an unmeasurable white-noise disturbance process. If it were

possible to measure v,, this would have been a standard linear regression
problem, and the RLM algorithm could be applied. The ELS method is based
on the idea of replacing v, by its estimate, the prediction error c (, 4derstrom e at.
1978, Panuska 1969, ,Solo 1979). The lattice EL will, therefore, consist of
two steps: (i) use the lattice form as a prediction filter to compute et; (ii) use
the lattice RLM for the known input case (with y,, u , v, - c) to update the
parameter estimates.

To describe the lattice EL for the model presented above we must first
present the basic update formula of the lattice RLS for ARMAX models.

Lattice RLS (A RI.4X) algorithm
We assume that NA a NB .VC. For other cases we simply have to reorder

the inputs y,, u,, v, so that the corresponding model orders appear in decreasing
order.

Ky. K', Kr, g, Kv, K - reflection coefficients

S.. . C. i, , - forward prediction errors (dim {y), dim (u, dim (v}.
dim ([y', i']). dim (v}, dim {[y', it', V'l)

ro, F. r-backward prediction errors (dim ly}. dim {y'. i'lI.
dim {([y', '', r])

(i) for p-O .... , X\A - XB (or up to T, during start-up)
i~ i  K'# " T an -1(K*'#'1"T-t, r# P'r-I' 110P.0'

s,,-.r F(s 2T.T, ri,. -t1 , K,,.IT ) skip for p -NA - XVB

.

*.o

• "."- "-'....-."
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1%'

l'';'Kwp+,.r F-'lK8,j Lr_,, r"'o.r, doo.r)
,KP L r= -l'( o. r-i, r"i., .. 0

,+L.rF flw.r, r.r, KwO e.T)
1°-. r" ( r- i',. r, K lv ,. 0}!i! (ii, set ~+?- ~ ,t,~ ~ 1

'O.r" .. -. IT, 4"'X.4-N.+.TI °

r* r DD [r.. _ lo,('\A-.Vf,'i rr

(iii) for p - 0 to XB -,C (or up to T - IVA +,VB during start-up)

i,,.r flip. rir- .ri iT) skip for p NB-N\C

f i, . r (PP, r, P'.r, R',1. 0

(iv) set
"~at r DD it a r, 4V '.x -x. &.si '

(v) for p-0 to N'C- I (or up to T- .4+X C- I during start-up)3 K,. j- F-I(Kp+, Tr-1, r,,, r-,, t,r)

". ,, . r F (4. , r .T- i, A + . 0
ii ".':"" , i.r F(r,,.T-,, "p.r, K'P ,.T)

The corresponding lattice structure is depicted in Fig. 2. The detailed structure
of the various sections is similar to that of the lattice RLS of Fig. 1, with some

i" obvious modifications.
* .

rr

Joint Process TW-Chennel Thre-Cbmna
Lattice Joint Process Lattice

Lattice

Figure 2. The ARMAX RIS lattice.

- t,.

p, .

El
Si "..

* . ~ *. ~ ~ ~
"1 5Ii,!** -a ,' % -a
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The lattice ELS algorithm can now be summarized. The RLS lattice

update described above will be used in two modes. One is a prediction mode,

in which all the reflection coefficient updates are skipped and the old values of

the state variables (rep.T. , r1'T,,rT-, r',r-i, .- r-w.r-i are retained. The

second is a regular upd;te mode in which both reflection coefficients and state

variables are updated.

Lattice RL algoritnh-
All matrix square-roots are lower triangular.

I nitializati
". R -1g R -1' R -11* -.. ,'

All reflection coefficients and backward prediction errors are initialized

to zero.

.lain loop
At each time step do the following:

(i) compute prediction errors

RT - ARr-T' + YrY'r

CTV " re. TVM (RrVI'%yr

(R m 1 1 u..

('all lattice RLS update (ARMAX), in prediction mode

(ii) set

tr - last entry of N(•. r

(iii) update lattice variables

- ART-' r .

Call lattice RJI' (ARMIAX) in update mode.

As before, the parameter estimates {a, 1), b j can be recovered by looking at

the impulse response of the lattice form depicted in Fig. 2, from the inputs

Y. t, v to the prediction error output. For a more detailed discussion of the

lattice EL.' for the case of ARMA (X, X) models (i.e. .'A = \C. •B= 0), see

Lee et al. (1981)). An approximate lattice EL algorithm for general ARMA

processes was presented in Benveniste and Chaure (1981).

S. The lattlee recursive maximum-ikellhood algorithm

The RML algorithm has improved asymptotic convergence properties

compared with the E1.4 algorithm presented above. To simplify the

! -4

* ? - . ,. . . .. .. ,,. . .. . . ',, . ._. .. . . . ...- . -~ ,..*. .. ..,,.-,,, . . * . % ,, .. ,.., - * *.: -.,, '*.,,..., , *.. - ?' ,



laiter impkmexiatio o/ alOorit hma 677

presentation we consider in this section ARMA models rather than the more
general ARMAX model. i.e.

= - ayl, + i V 1 (32)
i-I '-I

where v, is a white-noise proess. The RML algorithm (.WderstrOm deat. 1978.
Sderstr6m 1973. Ljung 1977. 1981) can be summarized as follows. Let

8=1a1 . CI ... , rM.v' sparameter vector

I h- . e,.... e_.v,.IT - data vector

# ," I -,- ..... ,-x.h- It- .... 'tC IT._ filtered data vector

where ... r,. 4, will be defined later. The update equations are

9-.. (33)
P, ',_I - " #,#,T

CThe filtered quantities are obtained by

(34)

it PC, , (Z) ly
where

4,(z)= I +4()-'+ ... +N..V(t)z- . "  (35)

where :' is the unit delay operator. Note that (33) can be rewritten as
,p,-, 0,t. pr- it_, + Ole, p,_1-n 1- #I,(&E+ OrT #1_,1 (36)

- Let us define

.1 Ol e$+ Or 61,_ (37)

* and sum up the difference equation (36) to get

I

r ,." orr
r C.A.J ix (39)

Equation (39) can be recognized as the solution to the problem of estimating
the process x, from the components of the vector Ol. Thus, given the variables
.X1, il, 0, we can apply the recursive least-squares algorithm to estimate the
parameter vector 6. The joint estimation problem described above can be
solved by the following joint-process lattice form.

Joint-proress tro-rhannel lattice
W e assume here NA - N(' = N.

-g%~J
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eial.Ados IRe"

40.0 r.t m. 0, 49-49 0

K0.o0 , Ko'-0 for p .

r
r~ r

Mlain kop

R r - ARTI + ZrZ-T Re - AR-ri + XrX"r (40 a)
L' **.r-Prr " R r - "'Z T  4% %e=(Re:)-"'Xr (40 b) ,

For p. ) to S. do
.KP+Lr- P-I(K, .r-i, r'j#.r-t, 4Pr) (41 as)

Kzp Lr--I(K r,r. , r) (41 b) .

C"t *r" fle. r- rv. r-j. K L r) (41 c)
r, +r-- F(rK.+L.. r, K',. t.r) (41 d)

4 o" - r" F(ejp.r, rpr, Kzp.,.r) (41 e)

The algorithm described above will both update the parameter estimates
(reflection coefficients K, K) and filter incoming data to compute a met of
prediction errors. Sometimes we want to use this lattice structure for filtering
only. In this camne only (40 b), (41 c), (41 d) and (41 e) need to be used. To
distinguish between these two caes we will call LATUP the algorithm that
performs the full computation (40)-(41) and LATFIL the algorithm that does
filtering only.

The lattice structure described above can now be used to implement the
RML algorithm (Friedlander d al. 1981). This will require several steps of
filtering and parameter updating. The following set of equations summarizes
the RML algorithm in non-lattice form -

X A VC

-IJr=i+ T- l)ir-i - F. M(T- 017ri (42 b)

xr-.r+ r ; perform least-squares parameter update (42 r)
N 'A x'"

r + - dim(y)r, em ' (42 d).-

-I i(4

6C.

b ~-I

.-V
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Cal Y C X t Equation

LATFIL (2) 0 19-1 0 (42 b)
LATUP (2) ,-t- ,a (42 c)
LATFIL (I) el-i -a., (42 d)
LATFIL (3) 0 (42 e)
LATFIL (4) 0 ea_, e, (42t)

Table 5. The RML lattice.

This set of equations can be implemented by repeated calls of the lattice
form described above. The input and output for each lattice call are summarized
in Table 5. Note that four different ' state vectors' need to be stored core-
sponding to 9, and the pre-filters for y and e. These four cases are
distinguished in Table 5 by the index of the lattice call (for example, LATFIL (1)
represents the filters with !IT, T as inputs, while LATFIL (2) has iT, Ir as
ifputs).

6. Condmios
The lattice equivalents of several system identification algorithms were

presented. These algorithms provide a computationally efficient recursive
solution of linear least-squares estimation problems. In the area of digital
signal processing lattice filters are often preferred over their tapped-delay-line
equivalents because of their relative insensitivity to roundoff errors. In
adaptive processing applications. lattice filters have shown improved con-
vergence behaviour compared to the popular Widrow-Hoff LSIS algorithm.
lAttice structures also lead to processing architectures that are quite different
from those related to the RL.4 and similar algorithms. This modular pipe-
lined architecture has potential advantages in hardware and VLSI imple-
mentations of the algorithms.

*Relatively little work has been done in the application of lattice forms to
system identification and adaptive control. Considerably more analysis and
simulation studies are needed to assess the usefulness of the techniques pre-
sented in this paper. Of special interest would be tests performed on finite
word length machines and plants with high order dynamics. These conditions
often lead to numerical problems in standard recursive parameter estimation
algorithms. It is hoped that this paper will stimulate research in this area.

Appeudix A.

Derivation of t. update lormala for non-sytometric projection operators

IDefrsitioas
- PZ.." £Z(X'Z)-'X'

PZ." A I - Pzx

Z+zafZ 1 Xl.+-r&IX .rl

F'

* .' .
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Update forPmua /or Pe

'czZ.X. '3 'ZX_ Pox x Zpzx 3l-'X'P 5 xV (A 1)

P ofPZ r. x *, IZ 'I X ' X(A 2)
LX'Z X'z

* Use the following matrix identity

A T]-[C ' 0]+[V78I]~D (A 3)

to invert the piatrix in (A 2) to get

Pz+" x+. = Z(X'Z)-'X' + (I - Z(X'Z)',X')z l'.r'(I - Z(X'Z)-'X')
(A 4)

A=x'I - Z(X'Z)-'X'jzJ

Equation (A 1) follows directly from (A 4) and the definitionm.

Normalization

PzX(.,' V) &[IUIpczx~ U1,,-i,2.',pLzx V, 'p V1-ra2-

uipzx(U' V)...Pzx(U. Z)P-'x(x, z)Pzx(X', V)
Set V =.V

iI -PZx((X Z)pzx'(Z, X)pzx(X, U')
Set U-= VT

=- -Pz(V. z)pzX-'(Z, Z)pzX(X, V)
Normalizing U'Pl~zx V' by the square-roots of the last two equations gives

Pz+.X.&(U, V) - I-pzXL' Z)pzx 1 ,(X, Z)pzx(x, ()-I

)C fZX(I? V)-PZX(f'. Z)Pzx 1 (X, Z)pz~y(X, V)j

xIjpzX(V,Z)piC'(.rz)pz* (x. V-it

Appeodix 8
rhe unnaorrnalized lattice RI V

The unnormalized lattice RIV~ consists of two RLS-type lattice filters, s
depicted in Fig. 3. The input to the upper lattice is the data sequence x, and
to the lower lattice the instrumental variable sequence zi. The reflection
coefficients of the two filters are determined by a common set of coefficients:
K"t. KR2, K", Kzs. Table 6i summarizes the definitions of all the variables in
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o*1.~ T NJl

IO,T- 1

rO.T I .. Tl IS -I ,T

.k~T(K") M.

[I -K7 AZ-

O.T *OT- rj

* L~ KX K~(Kx

U~~-x z UV xPz~

I K~z
2 .:? 'p.?

X,* x ,,~ u v K"p

zxT Xp T -':-T:?

4. T . Tp zo: r P+1 T K

Z. Xp. Xe:? Zn:r KSz, 4 *1 2r

* *Z,,. 7' X, T i Yp-I.r-I

Ta bie 6. Definitionst of variables.
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the lattice RIV. Making the proper substitutions in the update formula for
I"P'zx V gives the set of lattice recursions. The necessary substitutions areS summarized in Table 7. Reading off the entries of this table gives the following

equations

a.T - ItIjT -r,, (B 1)
lattice I

, ,-1.(K -1.)T ,,..T (B "2)

. (/ " ,-I•T jr ,,.r-u (B 3)
- . lattice 2

r:I* . T - r: P.T-1-/ K -X (K!.)%,r( 4)

K +ir K =Ax,1 K -, . T - I + e, rr:'. r-I/( I - '",-i. T i) (B 5)

A'."',,' =AK'.". , 1.T - + rr . T-1 r p.T-1/(I - 7,,-1,i-) (B 6)
K': .i:time updates

K K +1*t,Tr-E ',T/( - Y,.-tr-t) (B 7)

.. K:",,.T= KX",,.-- 1 +ET E,,.TI( I - ,,--) J(B 8)

7+E ,,.P(/ =, .a)I,,. time and (B 9)
order

= K."- /, +I " +- I.T J update (B 10)

K =p.. K Z. I4 1 , T +T zf, I. a T' Di.,1 ,T)'P (B--l.'[
' °Ji" --Iorder update

U yi,.T:1=V-,t.T+r*.T-t(K p,-.?)
1

.T-i J(B 12)

Note that we have introduced the exponential weighting factor A into the
time update equations (B 5)-(B 8).

The complete RIV algorithm can be implemented in several ways using
these equations. For starting up the algorithm it is necessary to use the order

(or time and order) update equations (B I0) and (B 12) for K-. K";. After-

U wards the time update equations (B 6) and (B 8) will be u.el instead. The
initial conditions for the algorithm at time step T are

-"' l. T , " = "rT

T= TCI. r rel 27

V~~ - .

Before start-up all the reflection coefficients and state variables are set to
zero. A complete description of the unnormalized lattice RLS can be found in
Lee (1980), Lee et a. (1981) and Friedlander (1982). A comparison with
eqns. (B I )-(B 12) leads to one possible implementation of the lattice R V.

. !7.
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