
I!R-A" 15 TIME SCLE DECOMPOSITION: THE ROLE OF SCALING IN LINEAR 1/1
SYSTEMS AND TRANS.. (U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR INFO:RTION AND D.. X C LOU ET AL.

UNCLASSIFIED 21 MAR 85 LID-P- 445 FOSR-RR-95-0933 F/G 12/1 ML



1.0 160

1.4i 11.6

.Mm9

MICROCOPY RESOLUTION TEST CHART
NATIO AL BUREAU OF SjANAO- iB6- A

0 -. . .- - .. - .. . . .. .

,# ' # .
,* * .* ..* *,. , . , ,.- ,- 

*. .- . . . . . . . .' . - . . . : . -, , . , . . - ... - , . - . ' . , - . ." - . , . . . .. - . ' . - .- . - .



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1b. RESTRICTIVE MARKINGS

AD-A 160 185 3 DISTRIBUTIONAVAILABILITY OF REPORT

JLE Approved for public releaS s

..PER .OR MIN.. ORGANI. ATION. REPO T N B E distr ibuti on un lim ited.

4. PERFORMING ORGANIZATION REPORT NUMBERS) 5. MONITORING ORGANIZATION REPORT NUJMBER(S)NI/A

6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NA OF MONITORING ORGANIZATION

(If applicable)

rassachusets Institute of T h. AFOSR
6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Laboratory for Info. and Decision Sys. Bldg. 410
Cambridge, MA 02139 Bolling AFB, D.C. 20332-6448

B. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AFOSR 1NM AFOSR-82-0135
BeS. ADDRESS (City. Stale and ZIP Code) 10. SOURCE OF FUNDING NOS.

Bldg. 410 PROGRAM PROJECT TASK WORK UNIT

Bolling AFB, D.C. 20332-6448 ELEMENTNO N. j NO. NO.

61102F 2304 A]
11. TITLE (lnclude Security Clasufication)

Time Scale Decomposition: The role of scal ng in linearlsystems transient states12. PERSONAL AUTHOR(S) in f'nt e - p "Iu It v p11 u,1:5,:7,

X.-C Lou, R. Rohlcek, P. G. Coxson, 6. C. Verghese, A. S. Willsky
13& TYPE OF REPORT 13b. TIME COVERED 14DATE OF REPORT (Yr. Mo., Day 15 PAGE COUNT

Interim FROM TO 21 March 1985 1
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse ifnecear, and identify by block number)

FIELD GROUP SUB GR. decomposition & Aggregation of large scale
XXXXXXX X linear systems

19. ABSTRACT iConinaue on reverse if nessceary and identify by block numbero

Slw this paper e report5on some oour-'recent work on time ;cale decomposition and
aggregation of larLgskIe linear systems containing weak 4ouplings and finite-state
Markov processes (FSRP's) containing rare transitions. 0kr work builds on that of
Coderch, et. al.. The focus of the work is on the asymptotic approximation of the
linear system.

%.'1C FILE COPY-
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO KJ SAME AS RPT, X3 DTIC USERS [3 Unclassified
22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

(include Area Code)

Dr. Marc Q. Jacobs (202)767-5027 NM
DO FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE 1hc ass llied

SECURITY CLASSIFICATION OF THIS PAGE

"-"



"C ' -..' '' .
'  

. , . ;"C - . . -' .. - , ; .. H -. .. '2U'_ . . ..- _ r.. d2, _ . . .....

Grant AFOSR 82-0351

Title

TIME SCALE DECOMPOSITION: THE ROLE OF SCALING IN LINEAR SYSTEMS AND
TRANSIENT STATES IN FINITE-STATE MARKOV PROCESSES

Principal Investigator

X.-C Lou

Laboratory for Information and Decision Systems -
Massachusetts Institute of Technology

-Cambridge, Mass, 02139

..

85 10 11 060



MXarch 1985 LIDS-P-1445

=I

Time Scale Decomposition: The Role of Scaling in Linear Systems and
Transient States in Finite-State Markov Processes

X.-C. Lou*, J.R. Rohlicek*, P.G. Coxson , G.C. Verghese!o A.S. Willsky'

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
77 Mass. Ave., Cambridge, MR. 02139

* I. Introduction Furthermore, by making clear the role of invariant
In this paper we report on some of our recent factors in time scale decompositions, we were able

work on time scale decomposition and aggregation of to formulate and solve a "time scale control" oro-
large-scale linear systems containing weak coupl- blem. This algebraic approach also allows us to
inqs and finite-state Markov processes (FSMP's) con- consider and solve several other importnt problems
tamning rare transitions. Cur work builds o- th.hat which we report on in Section II. In particular,
of Coderch. et. al. 11,21. The focus of the work we have been able to obtain a complete characteri-
in (1 is on the asymptotic approximation of the zation of the relationship between the eijenvalues
linear system of A(e), its invariant factors, and a condition

introduced in (11 in a complicated way but to which
" W A A(e)xtW (1.1) we can now give a far clearer interpretation. This

characterization is then used to develop (a) a pro-
To set the stage for our work, consider a second cedure for computing the invariant factors (and
system thus determining the number of modes at each time

Sk(t) - B(c)z(t). (1.2) scale) from the gcd's of principal minors of A(W),
and (b) a method for scaling the system (1.1) when

We say that (1.2) is asymptotically equivalent to it does not have a uniform time scale approximation
(1.1) if to obtain a system that does.

A(C)t B(e)tj The work in [21 applies the method of [11 to
li0 SUB le - N e 0 (1.3) FSMP's with rare transitions (as parametrized by

- ). In such a case x(t) in (1.1) is a vector of
* The focus of (11 is on the construction of a system state probabilities and A(W) is a stochastic matrix

as in (1.2) where (offdiagonal elements j_ 0 and column sums " 0).
r What is done in [21 is to interpret the results of

B(s) = T diag(A 0, CA1.,.£rAr)T (1.4) (11 as defining a succession of stochastically dis-
continuous processes representing the evolution of

so that A captures the order 1 time scale, cAl ,  x at successively slower time scales (t, t/ ,...)
the 0(1/e? scale, etc. What is accomplished in so that at each stage transitions that occur at a
EI] is the development of a procedure which deter- faster rate appear to occur instantaneously. This
mines if such a complete time scale decomposition led naturally to an aggregation at each stage that
is possible and, if so, computes the A .  In our had the effect of removing these discontinuous

• opinion, this is a very important resuit, but (11 transitions. While this is an extremely important
left much to do, for example in "peeling back" the result, it does have some drawbacks. In parti-cu-

. mathematics of (11 to allow us to obtain a far lar, the directapolication of the results of l
clearer and deeper understanding of time scale de- involves a procedure whose probabilistic inter-re-
compositions. tation is, at best, obscure. Furthermore, the

In (3) we presented some of our first results computational feasibility of this approach is dubi-
on an algebraic approach to the problem of time ous. This is in marked contrast to other work in
scale decomposition of (1.1) based on viewing A(€) this area, such as (81, in which an intuitively

* as a matrix over the ring W of functions of e that appealing approach to aggregation is described for
are analytic at e-0. This work allowed us to re- the special class of models devoid of transient
late the general result of (ll to earlier work as states at any time scale: to obtain an aggregate
in (41 on special cases for which the form of the description of the FSMP at the slower time scale,
time scale decomposition is intuitively clear, we lump together the states in each separate er-
'_ _ _godic class at the faster time scale (i.e. with

M - 0) and compute an average transition rate be-. he work of these authors was supported in part tween these ergodic classes to be used to describe
* by the Air Force of Scientific Research under

Grant AFOSR-82-0258 and in part by the Army Re- evol the sloeri e cale.
" search Office under Grant DAAG 29-84-K-0005. is esireable. the limitations of methods as'-in

(81 are both the absence of proofs of uniform

asymptotic equivalence of the approximations pro-The work of this author was supported by the duced and their inability to handle transient
. Bunting Institute Science Scholars Program. states. In our recent work, described in Section

III, we have been working to bridge the gap
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between the methods of E1] and '81. In particu- tion. Another condition on A(e) that will be of

lar, we have developed an understanding of the role considerable interest to us here, though it plays
of transient states and, in particular. of what we only a subsidiary role in [51 and (1), is

call *splitting transient states." This under- the multiple semi-simple null structure" (NSSNS)
standing has allowed us to formulate an approach condition.
to aggregation and asymptotic approximation that The proofs of all the results that follow are
in essence follows the procedure of (11 but does so in [or may be readily deduced from) [5,61

by modifying the FSNP at each stage so that the Theorem 1: The following are equivalent:
computations involved are essentially those of the (a) A(E) in (1.1) satisfies the MSSNS condition
extension of the methods of (81 to allow for trans- of [1].
ient (but non-splitting) states. The procedure we (b) The orders of the eigenvalues of A(e) are
describe and illustrate in Section III is computa- identical to the orders of its invariant fac-
tionally feasible for the analysis of very complex tors.
systems. (c) f(e)A in (2.2) satisfies MSSNS.
11. Algebraic Methods for Time Scale Analysis Cd) A.., i - I to m, are defined and nonsingu-

The perturbed matrix A(C) from (1.1) can be lar.
expressed in the Smith-decomposed form A(C) - P(M) Although our focus here is on MSSNS, we note that the
D(E)Q(E], where P(¢) and QCE) are unimodular (i.e. statements in Theorem 1 have analogs valid for MST.
IP(0) J00 and JQ(0) j1o) and If we replace MSSNS by MSST and replace nonsinoular

, .¢m$ by Hurwitz in ld, then the following implications
D(C) - block diagonal le I...c I , hold: (a) < - (c) ,- (d).

1 nm Theorem 2: If ACE) satisfied MSSNS, the eiqen-

values of A(e) and DCE)A are clustered in m
0 il*"<Im groups, with those in the k-th group lying

(€3k*1) k.
The diagonal elements of DW) are the invariant within 0Cc 

o f the eigenvalues of c 3k

factors of A(E). Since P(W) and its inverse are
well defined in a neighborhood of e - 0, we can It is eviden from Theorem l(b) and Theorem 2

make the change of variables x(t) - P(C)z(t) in that the MSSNS condition i of value in freuendi

C1.1), which results in a description that we call sca e aoproximation, a topic traditionally studied

exalicit form: in the context of root loci, see for example (71.
The frequency scales of (1.1) are ecual to its in-

z(t) - D()Q()P(]C)z(t) - D(E)A(¢)z(t). variant factors precisely under the MSSNS condition,
CE) unimodular. (. which is directly checked via Theorem l(d). The

(2.1) eigenvalues of ACE) at the different frequency scales

What we term a reduced exlicit form for (1.1) is are then approximated, according to Theorem 2, via
then obtained by replacing the unimodular matrix the iii.
X(e)-Q(E)P() by the constant matrix A()-Q()P(0), In general, the invariant factors of ACE) are
which we shall from now on simply denote by A, to obtained from the gcd a(i) of all ixi minors for
form the system each i, while the eiqenvalues of Ac) are determined

"I solely by its principal minors. By (b) of Theorem
d tl n.. 1. it must be true that, when AC() satisfies MSSNS,

TT.1 1 the invariant facotrs are also determined by the

(.) 0_e .... principal minors alone -- in fact, by the acd's of
m " i ml...A i y(t) the ixi principal minors for each i, as described inm I2 the next theorem. For the statement of the theorem,

The partitioning in (2.2) is that induced by the denote the orders of the ard's of the ixi princial

block sizes in D(). minors by p(i), i = I to n. and define p(0) - 9.

A key role in our theorems is played by a set Now let b(i) be the slopes of the line segments
of matrices derived from A in (2.2). To obtain forming the lower (boundary of the convex) hull in
this set, we first write the graph of p(i) versus i.Theorem 3: (a) If A(e) satisfies MSSNS. then

(
1

)  
11 2.3a) the orders of its invariant factors are ecual

1 1to b(i), i - 1 to n.

Now let A dinote the Schur complement of All in Cb) If A(e) has invariant factor orders eual
A

) 
and A denote the nxn2 leading principal to the b(i) of the explicit form, then A()sband 2 A dnt he cmleang pricat satisfies MSSNS.

--submatrix this Schur complement, so that Such "Newton polyvon" constructions are to be ex-

A22 - 22 - C21(A 11A12 (2.3b) pected in the context of the present problem. cf.(71. However, we have not encountered a statement

Thus A 2 is defined iff A is nonsinaular. Contin- as simple as that of the above theorem in the liter-
uing tais, we define A.. 11 a I to m, as the ature. The result will be useful in the discussion
n.xn. leading principaiisubmatrix of the Schur com- of scaling (11.3). Another use is illustrated in

.* piemint, A(i), of A in A0-1 ); again, it is example 1.
-defined iffAi is nonsinqular. Example 1: Suppose n-4, and suppose pl)-

3
. o(21-2,

i-l'i-l
A. Connections to Results of (1,51 p(3)-2 and p(4)-3. Then Figure 2.1 shows that the

It was shown in [51 that the necessary and b(i) are 2/3, 2/3. 2/3 and I. Since invariant fac-sufficient condition for (1.1 to have a complete tors of A(¢) cannot be of fractional order, the only

*" time-scale decomposition is that ACE) satisfy a Mpossible conclusion is that A() does not satisfy
so-called "multiple semi-stability" (MSST) condi-

S - •., - - -. ,- - . " .. . - " . - .". ".'.". •"-'%
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B. Scaling and the result is still in explicit form. This re-
A matrix A(M) that does not satisfy MSSNS -- ordering of variables is the third stem of our pro-

and that therefore has eiqenvalue orders different cedure.
from invariant factor orders, see Theorem l(b) -- The following description now takes A (c) to
can often be transformed by non-unimodular simi- have a skeleton corresponding to a single canoni-
larity transformations to a matrix that does sat- cal circulant block. We denote the order of the
isfy MSSNS. An important reason for trying to in- skeleton element in the i-th row by a(i) -- note

" duce tSSNS like this is to enable the application that these are just the orders of the invariant
of decomposition results such as Theorem 2 to as- factors. We make three further assumptions. The
timatinq the natural frequencies of (1.1). first of these is that the orders of the diagonal

We restrict ourselves to C-dependent scaling entries in the matrix are in nondecreasing order:
of variables, i.e. to non-unimodular diaconal simi- this assumptions is also lifted in [61. We have,
larity transformations. This enables us to build however, been unable to relax the remaining two
directly on Theorem 3(b), because such transfor- assumptions-
mations leave both eiqenvalues and principal minor% Assumption I: b(i) > a(J) for i0j - 1 to n-1. To
unchanged, while they still permit some modifi- visualize what the assumption states, plot both
cation of invariant factors. Before stating the p(i) and q(i) versus i, as in Fiaure 2.2. Then the
procedure in a general way, we consider an example, slopes of the (solid) line segments making up the
Exapl 2 A(€) -, C i-C 1 1 01[ 1+6

Examle 2 A~e 11=l+~j loer hull of the p~i) curve are assumed to be not
- : 1  ] 1 less than the slopes of those makinq up the q(i)

curve (the dotted lines), except at the last step
The explicit form and reduced explicit form of A(C) (from n-l to n).
are then Assumption 2: In any principal submatrix of A (c),

[1-2e [1 020 1] the order of any term formed by taking the proauct
Ae(e) 1 02]1 J'Ar(c) of precisely one element from every row and column

0 10 of the submatrix is not less than the order of the

Since A - 0, it is evident from Theorem l(d) that correspondinq principal minor.
A(c) doli not satisfy MSSNS. If we let S(c) - With all the above assumptions, the following
diagonal [€,l1, and transform the explicit form to scaling can be shown to transform the matrix to

* S(c)D()A(c]S-l(C) the resulting matrix satisfies one that satisfies MSSNS:
- both MSSNS and MSST. Below, we outline a systema- sl S2 Sn-l

tic approach for generating appropriate scaling S(e) - diagonal [E , C C .... ¢ 11 , (2. 5a)

* matrices SM(). where
The first teo of our general scaling proce- . - . b(i) - a&i), s - 0. (2.5b)

dure, again driven by Theorem 3(b), is to trans- L 1il n
*i form A(-) to its explicit form, A (W)-D(¢)A¢)T,

see (2.1). The second stem then Involves marking The arguments, even for tre special cas e are
whatwe erm skleto in 0 exlict fom- re- considering, are rather intricate, and are pre-

what we term a skeleton in the explicit fom: pre- sented in [6]. They show that, under Assumotions% cisely one element from each row and colun of I and 2, the above scaling produces invariant fac-
A (c), with the additional constraint that no other t and e ao sainv
element in a row have lower order (in ) than the tor orders equal to b(i).
skeleton element. Since AO) is nonsinqular, the
skeleton element in the i-th row has order equal The following example illustrates the process.

to the order of the i-th entry of D(). (The choice Example 3: Suppose

of skeleton may not be unique, but see Remark 1 3 4 £.
below.) a 3

Now identify the skeleton above with the nxn A(e) - £ C , where the circled
permutation matrix that has l's at the locations 3 2 27 elements constitute
of the skeleton elements and O's elsewhere. Recall 6 - a skeleton.
that any permutation can be uniquely expressed as C6  . C C

a product of disjoint cycles. It follows that, t is easy to see that A(-) is already in -xlizit
perhaps after some re-ordering of the variables ot iasy t thasCo alreay i e

form. similarity transformation by a permutationassociated with our system, the elements of the matri. correspondina to a re-orderinq of var-
skeleton can be brought to the positions occupied ablex, brings it to the form

by l's in a block diagonal canonical circulant
matrix, whose diagonal blocks take the form: 2 3 7

0 00"0 1Ae) 3 3
1 0 . 0 (or simply 1 for a scalar block) e 5 4 3
00 . .'0 16 8 6 7

•~ 0 . .0

We shall restrict ourselves here to the case of It is evident that a(i)-l, a(2)-l, a(3)-O, a4)-6.while some computation shows that b(i)-2 for iul
only a single block; the extension of the follow- whiTeso omation h a biaz fito 4. This informat~ion can be visualized via
ing results to the multiple block case is deicribed
in (6). Note that the required re-orderina of Figure 2.3. From (2.5b) we have s-2, s2 and

s4. Similarity transforming A t-) byS(e) de-
variables corresponds to using a permutation matrix "kned in C2.a), we get the matrix

for similarity transformation of the explicit form,

", ', "_ " " -' " . - ", -% " ' " . '. " " " " -' % " * " " " - . . , " " .... -.,.S'' .- .' ,' °
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o 2 2 5 11 we conjecture is a good bit stronger. Specifically
2 3 2 4 we claim that A() and P(O)BPCO) together provide

C2 C C C a uniform approximation to the original FSMP that
S3 3 3 €2I' is that A(e) = A+CB can be replaced by A(e)-

i 2 A+CP(0)BP(0). Note that in this approach all that
Le £ C C is required is P(0), which is nothing more than the

ergodic projection matrix associated with A(0)-A.
It is easy to check that this matrix satisfies An example illustrating this is shown in Figure

" MSSNS. 3.1. The original process is shown in (a), for
" Remark 1: While the validity of Assumptions I and this process.

* 2 is independent of which particular skeleton is
chosen (when the choice is not unique), it may be 1/2 1/2 0 0
that one choice leads to a simpler procedure than P(W - 1/2 1/2 0 0 (3.2)another choice. -
Remark 2% Our scaling procedure involves (in S 0 0 2/3 2/3

(W1) and may produce matrices whose entries are 0 0 1/3 2/3outside the ring W. However, by changing the time 0 1/3 1/3
scale (i.e. redefining c), one can always bring the The process corresponding to A(M) is shown in (b).

" result of the scaling to a form that our theorems While this process may appear to be more complex,
- apply to. what we have in fact done is to maintain the

Remark 3: See 161 for application of this scaling equilibrium of the fast dynamics after rare transi-
procedure to cases treated in (101. tions. Further, since A and P(O)BP(O) commute
Remark 4: Other scalings are possible, even when i(e)t At P(O)BP(O)ct
our assumptions are violated, and further work in a = • e (3.3)
this direction will be worthwhile.
UT!. A-aregation and Time-scale Decomcosition of As in (21, we can write P(0) as

Finite-state arkov Processes 1/2 0 1 (3
In this section we describe our recent work P(0) 1 (3.4)

on aggregation of finite-state Markov processes. 1/2 0 0 1
In order to provide some perspective on the key [ J
ideas underlying our approach, we begin by review- 2/
inq the case of "nearly completely decomposable 0 1/3
systems" and contrasting what the approaches of(1) nd 81 aveto sy i ths cse.where the columns of U represent the two possible
* .1 Nan y (S ohave tesay incthis ae. Sergodic probability vectors of A, and V lumps the
A. Nearly Completely Decomosable Systems states in each ergodic class.

Consider a FSMP whose probabilistic evolution
is described by (1.1) with A(e) a A * cS, where A Combining (3.3) and (3.4) we have that

describes a FSMP with several ergodic classes and (e()t . At aefr
no transient states. The precise structure of the a Ue V (3.5)

transitions between these classes for c 30 is where
specified by the matrix B. Such a procesi can be a~ - -1/2 1].6
shown to have only two fundamental time scales B' . V U (3.6)
(t and t/c) due to the combination of the irreduci- L 1/2 0

ble structure of A and the restriction to linear Figure 3.1(c) provides the interpretation of (3.5):
perturbations of the form ea. the matrix 3' describes the evolution of the slow,

If we follow the approach of [l], (21, the aggregated process, while the matrix A specifies
"slow" dynamics of the FSMP are captured by the the faster evolution within either of the two
generator B(0)-P()A()P(£] where P(e) is the aggreaate classes.
oblique projection onto the eigenspace of A(,) of This procedure can be extended in a straiht-
all the l(1) eigenvalues along the space of 0(l) forward fashion to systems exhibiting multiple
eigenvalues. More precisely, the fast dynamics, time scales when there are no transient states at
represented by AM0) (which capture the behavior of the first time scale. In such cases the cenerator
(1.1) over intervals of the form [0,T 1 ], T1  ) has the form A(0)-A+CB(c) where A generates no
and the slow dynamics eD(O), where transient states. In this case, we again conec-

PIe)AWP(cp( )  ture that A(E) and A(-.')-A+sP(0)B(c)P(0) are asymp-

D(0-) - (3.1) totically equivalent. One can then proceed as in

(which capture (1.1) over intervals of the form the example to aggregate B(e); one may then repeat
this procedure several times as in the procedures

-- T ' 0) together provide a uniform approx- of (21 and (91.
imation to he original FSMP. A natural question that arises at tius point

An issue here is whether it is really nece- concerns the role and effect of transient states.
.ssary to calculate P(). In particular, inter- This topic is taken up in the next subsection.
pretation of the reduction performed by Courtois 3. Transient States

Though indecomposable structure of A(O) is a
(81 on nearly completely decomposable chains is sufficient condition for using the simplified pro-
thMarkov process whose probability transition un- cedure described above, a less restrictive condi-
tion is an approximation of the original function tion is available. In particular, we can allow

with bounded error on an interval t-.T(-.) for A(0) to possess "non-splitting transient states.
some T(c) that grows without bound as c=-0. What i.e. transient states that may have 0(1)transitions

* "..

* . . . . . . *



into more than one A(0)-ergodic class but do not Though the reduction algorithm as outlined
have direct transitions into other such classes above has produced the same uniform approximation
with states of any higher order. If such splitting as the methods of 12] and 19] in all the examples
transient rates are present, then the FSW may we have considered, the proof that this is
exhibit implicit time scales that can't be captured necessarily true has not yet been established.
directly by our simplified procedure. As an Explicitly, two fundamental conjectures form the
example, consider the FSM shown in Figure 3.2. basis of the result.
Though this chain has only linear perturbation
terms, the eiqenvalues are 0, 0(1), and 0(e ). The 1) A(c)uA(0) B(Q): Markov generator with A(0)
generator P(O)A(C)P(0) - 0, obviously does not irreducible
capture the t/e2 time scale behavior. An intuitive F()-P(O)A(M)P(O) - P(O)B(e)P(O)
explanation of this is that using this reduction conjecture
process implicitly assumes that the "fast"
components equilibrate between rare(0(c) rate) lim sup Iexp(A(e)t)-exp(F(e)t)JI - 0 (3-7)
transitions. In this example, the t/e2 behavior £40 et>0
is associated with a sequence of two consecutive
rare transitions (state I to 2 followed by 2 to 3). lim sup Iexp(A(E)t)-exp(A(0)t) exp (B () t):':- 0
Beginning in state 2, there is an 0(1) probability E40 tZO (3-8)
of entering state 1 next and an 0(e) probability of
entering 3. Effectively, this 0(c) probability is 2) Conjecture 1 is also true if A(O) has no
lost in the reduction procedure. splitting transient states, that is under

Transient states which do not exhibit such the following condition. Let T denote the
W0() probabilities of entering various recurrent set of transient states of A() and let

classes do not cause this problem. Consider the R ,...,R denote its ergodic classes. Let
related FSMP shown in Figure 3.3. Both states 2a pit) denote the sample path of the FS.P
and 2b are transient at C-0, but neither of them (with C included). Then for all x 0T and

splits as state 2 does in the previous example. all il,...m
The 0(E2) rate is explicit and P(0)A(c)P(0)
successfully captures the t/c2 behavior. This Pr(tI)¢Rilt 1inf(t.P(t;OT),P(0)-xo)- 0 or(1)
chain is derived from the first by "splitting" (300 )
the transient state 2 into the nonsplitting
transient states 2a and 2b, depending on the
first recurrent class entered. If we imagine Proving this second result allows us yo consider

having an observation mechanism for this process the transient class T into m copies, T l . .. iTt
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