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Time Scale Decomposition: The Role of Scaling in Linear Systems and
Transient States in Finite-State Markov Processes

+
X.-C. Lou*, J.R. Rohlicek*, P.G, Coxson , G.C. Verghese® A.S. Willsky*

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
77 Mass. Ave., Cambridge, MA. 02139

I. Introduction
In this paper we report on some of our recent

work on time scale decomposition and aggregation of
large-scale linear systems containing weak coupl-
ings and finite-state Markov processes (FSMP’'s) con-
taining rare transitions. Cur work builds o= that
of Coderch, et. al. f1,2]. The focus of the work

in (1) is on the asymptotic approximation of the
linear system

x(t) = Ale)x(e). (1.1)

To set the stage for our work, consider a second
system

E(t) = B(e)z(r). (1.2}

We say that (1.2) is asymptotically equivalent to
(1.1) it
; Ale)e _ Blelt
Lim :_,_“8 [l e e =0 (1.3
The focus of (1] is on the construction of a system
as in (1.2) where

1

Blc) = T diag(A,, cA .,...erAr)T- (1.4)

1
so that A, captures the order 1l time scale, eA;,
the 0(1/:9 scale, etc. What is accomplished in
[1] is the development of a procedure which deter-
mines if such a complete time scale decomposition
is possible and, if so, computes the A.. In our
opinion, this is a very important result, but (1]
left much to do, for example in "peeling back™ the
mathematics of (1] to allow us to obtain a far
clearer and deeper understanding of time scale de-
compositions.

In (3) we presented some of our first results
on an algebraic approach to the problem of time
scale decomposition of (1.1) based on viewing Al(e)
as a matrix over the ring W of functions of ¢ that
are analytic at €»0. This work allowed us to re~-
late the general result of (1] to earlier work as
in (4] on special cases for which the form of the
time scale decomposition is intuitively clear.

*The work of these authors was supported in paret
by the Air Force of Scientific Research under
Grant AFOSR-82-0258 and in part by the Army Re-~
search Office under Grant DAAG 29-84-K-000S5.

-

The work of this author was supported by the
Bunting Institute Scienge Scholars Program.

Furthermore, by making clear the role of invariant
factors in time scale decompositions, we were able
to formulate and solve a "time scale control” pro-
blem. This algebraic approach also allows us to
consider and solve several other imporeont sroblems
which we report on in Section II. In particular,
we have been able to obtain a complete characteri-
zation of the relationship between the eigenvalues
of A(c), its invariant factors, and a condition
introduced in (1] in a complicated way but to which
we can now give a far clearer interpretation. This
characterization is then used to develop (a) a gro-
cedure for computing the invariant factors (and
thus determining the number of modes at each time
scale) from the gcd's of principal minors of A(e),

’and (b) a method for scaling the system (l1.l1) when

it doces not have a uniform time scale approximation
to obtain a system that does.

The work in [2]) applies the method of [1l] to
FSMP's with rare transitions (as parametrized by
€). In such a case x(t) in (l.1l) is a vector of
state probabilities and A(e) is a stochastic matrix
(offdiagonal elements > O and column sums I 0).
what is done in [2] is to interpret the results of
(1] as defining a succession of stochastically dis-
continuous processes representing the evolution of
x at successively slower time scales (t, t/:,...)
so that at each stage transitions that occur at a
faster rate appear to occur instantaneously. This
led naturally to an aggregation at each stage that
had the effect of removing these discontinuous
transitions. While this is an extremely important
result, it does have some drawbacks. In marticu-
lar, the directapplication of the results of ([l!
involves a procedure whose probabilistic interczre-
tation is, at best, obscure., Furthermore, the
computational feasibility of this approach is dubi-
ous. This is in marked contrast to other work in
this area, such as (8], in which an intuitively
appealing approach to aggregation is described for
the special class of models devoid of transient
states at any time scale: to obtain an aggregate
description of the FSMP at the slower time scale,
we lump together the states in each separate er-
godic class at the faster time scale (f.e. with
¢ = 0) and compute an averzge transition rate be-
tween these ergodic classes to be used to describe
evolution at the slower time scals.

While the intuition provided in this method
is aesireable, the limitations of methods as’ in
(8] are both the absence of proofs of uniform
asymptotic equivalence of the approximations pro-
duced and their inability to handle transient
states. In our recent work, described in Secticn
11I, we have been working to bridge the gap
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between the methods of [l] and [8]. In particu-
lar, we have developed an understanding of the role
of transient states and, in particular, of what we
call "splitting transient states.” This under-
standing has allowed us to formulate an approach
to aggregation and asymptotic approximation that
in essence follows the procedure of ([l] but does so
by modifying the FSMP at each stage so that the
computations involved are essentially those of the
extension of the methods of (8] to allow for trans-
ient (but non-splitting) states. The procedure we
describe and illustrate in Section III is computa-
tionally feasible for the analysis of very complex
systems.
II. Algebraic Methods for Time Scale Analysis

The perturbed matrix A(¢) from (l.l) can be
expressed in the Smith-decomposed form A(c) = P(€)
D(e)Q(e), where P(c) and Q(c) are unimodular (i.e.
|P(0) |#0 and |Q(0)|p0) and

jl jm
D(e) = block diagonal (e "I ,...,t L 1.
n n
1 m
Q< jl < ,..< jm .

The diagonal elements of D(€) are the invariant
factors of A(c). Since P(e) and its inverse are
well defined in a neighborhood of ¢ = 0, we can
make the change of variables x(t) = P(e)z(t) in
(1.1), which results in a description that we call
explicit form:

z(t) = D(e)Q(eIP(e)z(t) = D(e)Ale)z(t),
A(e) unimodular. (2.1)

what we term a reduced explicit form for (1.1) is
then obtained by replacing the unxmodulaz matrix
A(c)=Q(e)P(e) by the constant matrix A(O)-Q(O)P(O),
which we shall from now on simply denote by A, to
form the system

jl -

4 Y (e . € In1 17" "Mnm Y,(%)
d: : . . .o .
R 0 . cee_e

...k Yot

(2.2)
The partitioning in (2.2) is that induced bv the
block sizes in D(e¢).
A key role in our theorems is played by a set
of matrices derived from A in (2.2). To obtain
this set, we first write

(1) -
A = A and “11 All . (2.3a)
Now let A(Z) danote the Schur complement of Ay; in

A(l) and A_, denote the n_xn_, leading principal
submatrix Si this Schur complement, so that
-l
22 = Ry = Ry A DTR,
Thus A_, is defined iee All is nonsinaular. Contin-
uing tﬁu. we define A, i =1 tom, as the
n, xn lcadin? pzxnctpai submatrix of the Schur com=-
pleméne, ali), of & in aA{7l); again, it is

defined 10¢f Ai 1.i- i.l'i-l is nonsingular.

A,, = A (2.35)

A. Connections to Results of (l,5]

It was shown in (5] that the necessary and
sufficient condition for (1.1) to have a complete
time-scale decomposition is that A(e) satisfy a
so-called "multiple semi-stability" (MSST) condi-

tion. Another condition on A(ec) that will be of
considerable interest to us here, though it plays
only a subsidiary role in (3] and (1], is
the multiple semi-simple null structure"” (MSSNS)
condition.
The proofs of all the results that follow are
in (or may be readily deduced from) [5,6]
Theorem 1l: The following are eguivalent:
(a) A(€e) in (1.1) satisfies the MSSNS condition
of (1].
(b) The orders of the eigenvalues of A(c) are
identical to the orders of its invariant fac-
tors. -
(c) D(e)A in (2.2) satisfies MSSNS.
(d) l i i =1 tom, are defined and nonsingu-
lar.
Although our focus here is on MSSNS, we note that the
statements in Theorem 1 have analogs valid for MSsT.
If we replace MSSNS by MSST and replace ncnsingular
by Hurwitz in ld, then the following implications
hold: (a) <=> (c)<m=> (d).
Theorem 2: If A(€) satisfied MSSNS, the eigen-
values of A(c) and D(e)X are clustered in m
qroups., wigh‘ihoso in the k-th group lying

within 0(c © ) of the eigenvalues of ¢ Rkk'

It is evident from Theorem l(b) and Theorem 2
that the MSSNS condition is of value in freguency-
scale approximation, a topic traditionally studied
in the context of root loci, see for example (71,
The frequency scales of (l.l) are esual to its in-
variant factors preciselv under the MSSNS condition,
which is directly checked via Theorem 1(d). The
eigenvalues of A(e) at the different frecuency scales
are then approximated, according to Thecrem 2, via
the Aii'

In general, the invariant factors of A(e) are
obtained from the gcd g(i) of all ixi minors for
each i, while the eigenvalues of A{ec) are determined
solely by its principal minors. By (b} of Theorem
l, it must be true that, when A(e) satisfies MSSNS,
the invariant facotrs are also determined by the
principal minors alone -- in fact, by the gecd's of
the ixi princiral minors for each i, as descrikted in
the next theorem. For the statement of the theoren,
denote the orders of the gcd's of the ixi princigal
minors by p(i), i = 1 to n, and define p(Q) = 7
Now let b(i) be the slopes of the line segments
forming the lower (boundary of the convex) hull in
the graph of p(i) versus i.

Theorem 3: (a) If A(<) satisfies MSSNS, thern

the orders of its invariant factors are egual

to b(i), i = 1 to n.

(b) If A{e) has invariant factor orders egual

to the b(i) of the explicit form, then A(:

satisfies MSSNS.

Such "Newton polvgon" constructions are to be ex-
pected in the context of the present problem, cf.
(7]. However, we have not encountered a statement
as simple as that of the above theorem in the liter-
ature. The result will be ugeful in the discussior
of scaling (I1.B). Another use is illustrated in
example 1.

Example 1: Suppose n=d4, and suppose pl(li=3, p(2)=2,
p(3)=2 and p(4)=3. Then Fiqure 2.1 shows that the
b(i) are 2/3, 2/3, 2/3 and 1. Since invariant fac-
tors of Al¢) cannot be of fractional order, the only
possible conclusion is that A(c) does not satisfy
MSSNS.
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B. Scaling

A matrix A(€) that does not satisfy MSSNS --
and that therefore has eigenvalue orders different
from invariant factor orders, see Theorem l(b} --
can often be transformed by non-unimodular simi-
larity transformations to a matrix that does sat-
isfy MSSNS. An important reason for trying to in-
duce MSSNS like this is to enable the application
of decomposition results such as Theorem 2 to es-
timating the natural frequencies of (1.l1).

We restrict ourselves to e-dependent scaling
of variables, i.e. to non-unimodular diagonal simi-
larity transformations. This enables us %o build
directly on Theorem 3(b), because such transfor-
mations leave both eigenvalues and principal minors
unchanged, while they still permit some modifi-
cation of invariant factors. Before stating the
procedure in a general way, we consider an example.

Example 2: A(c) =[-¢ 1]= [1-: 1] 1 0 ][?e 1+fr
[o - -1 [; eJl-e 1

The explicit form and reduced explicit form of A(e)

re then
1 0[-~2¢ 1] [1 0o 1
A (e) = ,A_(€) = .
e P | S o ¢Ak1 o

Since A, = 0, it is evident from Theorem 1l(d) that
A(g) do%% not satisfy MSSNS. 1If we let S(¢) =
diagonal (¢,1], and transform the explicit form to
s(€)D(cIA(e)S~1(e) the resulting matrix satisfies
both MSSNS and MSST. Below, we outline a systema-~
tic approach for generating appropriate scaling
matrices S(g).

The first step of our general scaling proce-
dure, again driven by Theorem 3(b), is to trans-
form A(c) to its explicit form, A (c)=D(eg)Al(e),
see (2.1). The second step then involves marking
what we term a skeleton in the explicit form: pre-
cisely one element from each row and column of
A _(e), with the additional constraint that no other
element in a row have lower order (in ¢) than the
skeleton element. Since A(0) is nonsingular, the
skeleton element in the i-th row has order equal
to the order of the i-th entry of D(c). (The choice
of skeleton may not be unique, but see Remark 1l
below.)

Now identify the skeleton above with the nxn
permutation matrix that has l's at the locations
of the skeleton elements and 0's elsewhere. Recall
that any permutation can be uniquely expressed as
a product of disjoint cycles. It follows thac,
perhaps after scme re-ordering of the variables
associated with our system, the elements of the
skeleton can be brought to the positions occupied
by 1's in a block diagonal canonical circulant
matrix, whose diagonal blocks take the form:

210.... 0
9010 ..0
90...01
Lo. .. .0

We shall restrict ourselves here to the case of
only a single block; the extension of the follow=-
ing results to the multiple block case is described
in (6]. Note that the required re-ordering of
variables corresponds to using a permutation matrix
for similarity transformation of the explicit fomm,

(or simply 1 for a scalar block)

and the result is still in explicit form. This re~
ordering of variables is the third step of our pro-
cedure.

The following description now takes A (¢) to
have a skeleton corresponding to a single Eanoni-
cal circulant block. We denote the order of the
skeleton element in the i-th row by a(i) =-- note
that these are just the orders of the invariant
factors. We make three further assumptions. The
first of these is that the orders of the diagonal
entries in the matrix are in nondecreasing order:
this agssumptions is also lifted in {6]. We have,
however, been unable to relax the remaining two
assumptions:

Assumption 1: b(i) > a(j) for i,j = 1 to n-1. To
visualize what the assumption states, plot both
p(i) and q(i) versus i, as in Figure 2.2. Then the
slopes of the (solid) line seqments making up the
lower hull of the p(i) curve are assumed to be not
less than the slopes of those making up the 3(i)
curve (the dotted lines), except at the last step
(from n-1 to n).

Assumption 2: In any principal submatrix of A (¢g),
the order of any term formed by taking the product
of precisely one element from every row and column
of the submatrix is not less than the order of the
corresponding principal minor.

with all the above assumptions, the following
scaling can be shown to transform the matrix to
one that satisfies MSSNS:

1 s, *n-1
S(e) = diagonal [e , ¢ °, ...,c . 11, (2.%5a)

where

TSt b(i) - a(i), s, = 0. (2.3b)
The argquments, even for the special case we are
considering, are rather intricate, and are pre-~
sented in [6]. They show that, under Assumptions
1 and 2, the above scaling produces invariant fac-
tor orders equal to b(i).

The following example illustrates the process.
Example 3: Suprose

3 4 s

e H £ 1
3 3 ,
A(e) =] ¢ € € ¢ |, where the circled
el - .2 .7] elements constitute
6 a & - a skeleton.
[ < <

™

It is easv to see that A(:) is alreadv in explizit
form, Similarity transformation by a permutation
matrix, corresponding to a re-ordering of vari-
ables, brings it to the form

"
e“ ¢ 3 57

A (g) = 23 eJ < 3
es 54 :3 1
_6 8 6 7
&€ € € €

It is evident that a(l)=l, a(2)=1, a(3)=0, a(4)=6,
while some computation shows that b(i)=2 for iw=l
to 4. This information can be visualized via
Figure 2.3. From (2,.5b) we have s =2, s_=3 and
Similarity transforming A ?i) byzs{e) de-

s,=4
!%ned in (2.5a), we get the macrix
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It is easy to check that this matrix satisfies
MSSNS.
Remark l: While the validity of Assumptions 1 and
2 is independent of which particular skeleton is
chosen (when the choice is not unique}, it may be
that one choice leads to a simpler procedure than
another choice. -1
Remark 2: Our scaling procedure involves (in §
(€)) and may produce matrices whose entriess are
outside the ring W. However, by changing the time
scale (i.e. redefining €), one can always bring the
result of the scaling to a form that our thecrems
apply to.
Remark 3: See [6] for application of this scaling
procedure to cases treated in [10].
Remark 4: Other scalings are possible., even when
our assumptions are violated, and further work in
this direction will be worthwhile.
atio; ime~ e Decomcosition of
Finite-state Markov Processes
In this section we describe our recent work
on aggregation of finitee-state Markov processes.
In order to provide some perspective on the key
ideas underlying our approach, we begin bv review-
ing the case of "nearly completely decomposable
- systems” and contrasting what the approaches of
[1] and (8] have to say in this case.
A, Nearly Completely Decomposable Systems

Consider a FSMP whose probabilistic evolution
is described by (l.l) with A(e) = A + ¢B, where A
describes a FSMP with several ergodic classes and
no transient states., The precise structure of the
transitions between these classes for ¢>0 is
specified by the matrix B. Such a process can be
shown to have only two fundamental time scales
(c and t/¢) due to the combination of the irreduci~
ble structure of A and the restriction to linear
perturbations of the form €8,

If we follow the approach of (1}, [2], the
"glow" dynamics of the FSMP are captured by the
generator B(ec)=P(c)A(c)P(c) where P(c) is the
oblique projection onto the eigenspace of A(:) of
all the ¢(l) eigenvalues along the space of d{(1l)
eigenvalues. More precisely, the fast dvramics,
represented by A(0) (which capture the behavior of
(1.1) over interwals of the form [0,111, Tl =)
and the slow dynamics €D(0), where

0(0) = éﬁ& Pgs)Aée)P(:) (3.1)

(;hxch capture (1.1) over intervals of the form
(1%, =), Tz > 0) together provide a uniform approx-

imation to the original FsMP,
An issue here is whether it is really nece-
ssary to calculate P(¢). 1In particular, inter-

pretation of the reduction performed by Courtois
(8] on nearly completely decomposable chains is
that C(c)=P(O0)A(c)P(0)= P(0)BP(0) generates a
Markov process whose probability transition func-
tion is an approximation of the original funczion
with bounded error on an interval t > T(:) for
some T(e) that grows without bound as ¢ - 9. What

we conjecture is a good bit stronger,
we claim that A(0) and P(0)BP(0) together provide
a uniform approximation to the original FSMP that
is that A(e) = A+cB can be replaced by A(e)=

Specifically

A+¢P(0)BP(0). Note that in this approach all that
is required is P(0), which is nothing more than the
ergodic projection matrix associated with A(0)=A.
An example illustrating this is shown in Figure
3.1. The original process is shown in (a), for
this process.

/2 12 0 0

P(0) =172 1/2 0 O (3.2)
Q 0 2/3 2/3
0 0 1/31/3

The process corresponding to A(ec) is shown in (b).
While this process may appear to be more complex,
what we have in fact done is to maintain the
equilibrium of the fast dynamics after rare transi-
tions, Further, since A and P(0)BP(0) commute

Alere At P(0)BP(O)et
e = e e

{(3.3)
As in (2], we can write P(0) as
P(O) = 172 ° [1 1 0 O]é uv (3.4)
1/2 0 (s 1] 11
0 273
0 1/3

where the columns of U represent the two possible
ergodic probability vectors of A, and V lumps the
states in each ergodic class.

Comkining (3.3) and (3.4) we have that

X .
MEIE L AT Bty (3.5)
where
8' = VBU = [’1/2 °] (3.6)
172 0

Figure l.1l(c) provides the interzretation of (3.3}:
the matrix B' describes the evolution of the slow,
aggregated process, while the matrix A sgecifies
the faster evolution within either of the two
aggregate classes.

This procedure can bHe extanded in a straight-
forward fashion %o systems exhibiting multiple
time scales when there are no transient states at
the first time scale. 1In such cases the cenerator
has the form A(c)=A+¢B(<) where A generates no
transient states. In this case, we again conjec-
ture that A(c) and A(:)=A+<P(0)B(g)P(0) are asymp-
totically equivalent, Cne can then proceed as in
the example to aggregate B(e); one may then regeat
this procedure several times as in the prccedures
of (2] and (9].

A natural guestion that arises at this point
concerns the role and effect of transient states.
This topic is %~aken up in the next subsection.

B8, Transient States

Though indecomposable structure of A(O) is a
sufficient condition for using the gimplified pro-
cedure described above, a less restrictive condi-
tion is available. In particular, we can allow
A(0) to possess "non-splitting transient states,’
i.e. transient states that may have Q(l)transitions




into more than one A(0)-ergodic class but do not
have direct transitions into other such classes
with states of any higher order. If such splitting
transient rates are present, then the FSMP may
exhibit implicit time scales that can't be captured
directly by our simplified procedure. As an
example, consider the FSMP shown in Figure 3.2.
Though this chain has only linear pcztuxba:ion
terms, the eigenvalues are 0, O(l), and O(e”). The
generator P (0)A(€)P(0) = 0, obviously does not
capture the t/cZ time scale behavior. An intuitive
explanation of this is that using this reduction
process implicitly assunes that the "fast"
components equilibrate between rare(0(c) rate)
transitions. In this example, the t/e? behavior

is associated with a sequence of two consecutive
rare transitions (state 1 to 2 followed by 2 to 13).
Beginning in state 2, there is an 0(l) probability
of entering state 1 next and an 0(c) probability of
entering 3. Effectively, this 0(c) probability is
lost in the reduction procedure.

Transient states which do not exhibit such
0(€) probabilities of entering various recurrent
classes do not cause this problem. Consider the
related FSMP shown in Figure 3.3. Both states 2a
and 2b are transient at €=0, but neither of them
splits as state 2 does in the previous example.

The 0(e?) rate is explicit and P (0)A(€)P(0)
successfully captures the t/c? behavior. This
chain is derived from the first by "splitting”

the transient state 2 into the nonsplitting
transient states 2a and 2b, depending on the

first recurrent class entered. 1If we imagine
having an observation mechanism for this process
that yields the value 1l or 3 if the FSMP is in
state 1l or 3 respectively and the value 2 if the
FSMP is in 2a or 2b, then the transition rates
between these cbservation values are exactly those
given in Figure 3.2. An approximation of the
process shown in Figure 3.3J can then be used to
construct an approximation of the original process.
C. The G P

An interative procedure can be derived to
construct a sequence of aggregate perturbed
generators such as B'(c) at each successive time
scale. The steps involved in computing B' (g) from
A(g) consist of (i) identifying the recurrent
classes and transient states at €=0, (ii) calcu-
lating the invariant probabilities of the
recurrent classes at c¢=Q (together (i) and (ii)
determine P(0)), (iii) calculating the c-dependence
of the trapping probabilities starting in any
state of the transient class (so that we may split
any splitting transient class), and finally (iv)
computing the aggregate rates B' (¢) from these
quantities. From A(0), B'(0), etc., an
approximation can be calculated which we conjecture
is the same uniform approximation derived in (2].

This procedure can further be simplified by
identifying modifications of a perturbed chain
which preserve its time scale behavior. For
example, it is conjectured that only the leading
order term in £ of any transition rate affects
asymptotic baehavior. Also, if there is an
inairect sequence of 0(l) rate transitions from
one state to another, then any direct 0(7) rate
between these states can be safely "pruned.”

Though the reduction algorithm as outlined
above has produced the same uniform approximation
as the methods of [2) and [9] in all the examples
we have considered, the proof that this is
necessarily true has not yet been established.
Explicitly, two fundamental conjectures form the
basis of the result.

1) A(E)=A(0)+eB(E): Markov generator with A(Q)
irreducible
F(e)=P (0)A(E)P(0) = P (0)B(€)P (0}

conjecture

lim sup|[exp(A(e)t)-exp(F()t)|| = 0 (3-7)
€+0 €t26>0

lim sup Jexp(A(E)t)-exp(A(O)t) exp(B(E)E) .\ = O
€40 €20 (3-8)

2) Conjecture 1 is also true if A(0) has no
splitting transient states, that is under
the following condition. Let T denote the
set of transient states of A(0) and let
R ,...,Rm denote its ergodic classes. Let
p}:) denote the sample path of the FSM?
(with ¢ included). Then for all x.:T and

0
all isl,...,m

Pr(oul)eai[cl-mt(c:o(::ir) (P(0) =x,) = 0 or d(1)
(3-2)

Proving this second result allows us to consider
arbitrary generators A(¢) by conceptually splitting
the trangient class T into m copies, TL""'Tm

associated with the classes Rl""'am'
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