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AN EXTENSION OF SPITZER'S INTEGRAL
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Summary Using a new approach, an extended version of Spitzer's integral

representation for stationary measures of a discrete branching process is ob-

tained. This result is used to provide a complete solution to a problem in

damage models satisfying a generalized Rao-Rubin condition.
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1. INTRODUCTION

Consider a modified discrete branching process (Zn; n- 0,1,... with one

step tansition probabilities given by
C p Mo,1, .;J-l1,2,..

(1.1) Pij" P(Zn+1
= jIZnn i) a -c+ () i- O,,...- JO

i" where 0< c< 1 and {pI)} is the i-fold convolution of some nondegenerate prob-

ability distribution {pj} with itself for i> 0 and the degenerate distribution

*• at zero if i- 0. (It is seen that the process reduces to Bienaymd-Galton-Watson

" branching process when c-l). Define

(1.2) m , Jpj , m ,, (Jlog j)pJ.

" In this paper, we extend the Spitzer's integral representation for stationary

measures of a Bienaym6-Galton-Watson process with m < 1 and m < - to a branch-

*. ing process of the type defined in (1.1). Such an extension could be arrived at

by using arguments similar to those of Spitzer (1967) based on the potential

theory of Markoff chains. However, we give a new approach based on Bernstein's

. theorem on absolutely monotonic functions. We use the extended version of

i! Spitzer's theorem to obtain a complete identification of tbe solutions to a

certain functional equation in damage models considered earlier by Talwalker

"" (1980) and Rao et al. (1980), and thus establish a link between branching pro-

* cesses and damage models.

. *

"7.ATIR FORCE 0-
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2. AN EXTENDED VERSION OF SPITZER'S
INTEGRAL REPRESENTATION

We establish the following theorems.

Theorem 1. The generating function U(s)- Zn si of any stationary measure

{n of the modified branching process defined in (1.1) is analytic for Isl < q

where q is the smallest non-negative root of the equation s-f(s), and (if normal-

ized so that U(po)- 1) satisfies the equation

* (2.1) cUf(s)) - c+U(s)

where f(s) is the g.f. (generating function) of {pj}. Conversely, if U(s)

En nS , n n>0, IsI < q satisfies (2.1), then {n is a stationary measure.

Proof If U(s) is analytic for jsl < s for some sO >O, then

U(s) - 7 n sJ  ni i p iS
J- ii i-l J

m

-c I niClf(s)] - f(O)])

a c(U(f(s)) -U(po)), Isl < SO

which implies that (2.1) is valid at least for II< so  Then using the arguments
exactly as in A.N. (Theorem 2, p. 68), [where we use the abbreviation A.N. for

*~o the book by Athreya and Ney (1972)], we find that U(s) is analytic for Isl < q.

The converse assertion easily follows by equating the coefficients of s] in (2.1).

Theorem 2. (An extended version of Spitzer's theorem). If m< 1 and m <

* with f as in Theorem 1, then for every probability measure v on [0,I)

", .. .. .. . •.- .. .. .. . ,. ... .. . ., - " ., .. ',... ." . . . ... . "..' '. , . '%'. * .'., . ',' .. " -
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- (2.2) U(s) - K Us,t)dv(t)

is the g.f. of a stationary measure, where
Bam

U(s,t) I [exp{(B(s)-1)mn-t I- exp{-m n-t)c n - t

with B(s) as the unique p.g.f .among those vanishing at s-0 and satisfying the

- equation

(2.3) B(f(s)) - mB(s)+ 1-r.

"- Conversely, every stationary measure has the representation (2.2) for some

*probability measure v on (0,1).

Proof The first part of the Theorem is easily verified. To prove the

converse, it is sufficient to establish that the representation is valid for every

Se [0,1). Define then for every s4 [0,1)

U (s) - u(B- (s))

where B is as mentioned in the statement of Theorem 2. In view of Theorem 1 and

the equation (2.3) we have

(2.4) cnU*(ns+l-n)u U(s) + n, n,1,2,...,; 0<_s<l,

* where
c( Sc-) if co 1,

&n 1-

n if c- 1.

We can write (2.4) also as

+For an interpretation of 8 in branching processes, see A.N. (p. 17).

° , ... '.', W .j ~ **'~*



4

U*(s) _ cU(l+m nQ -J(s)))-t n , n-l,2...; 0<sl,

where %n(s) _ [fn(s)-l]/m with fn(s) as the n-th iterate of f(s). Consequently

(2.5) U (s) _ lia {cnU(l+mn%(O) - mnQn(O)Bn(B (s)))-&n}

for 0<s< 1, where Bn(s) [Qn(0)- (s)]/Qn(O). If 0_Sl< s< s2 < , then noting

-1
in particular that B n B pointwise (see A.N., p. 47), and B and - are strictlyn

increasing on [0,1), we find that

n (2.6) -mU%(O)B(l(sl))<mUQ(O)sM mn%(O)B(B-l(s))
(26 MQ()B( s) _mnQn(O)n(_(s)

for large enough n. Since U is increasing on [0,1) we obtain from (2.5) using

(2.6)

(2.7) U (sI) < lim tcnU(l+ nQn(O)- MnQ(O)s) - n
n -= 

n

< lim {C(l+ m n(0)- m n (0)s) - In} <U*(s2)•
n -)o

It is seen that U (s) is continuous and U (0) - 0, and hence from (2.7) we

have for sE [0,1)

(2.8) U (s) - lrm fcrU(l+ mnQn(o)-mn Qn(O)s) -&n}
n -

- lim {cn[u(l+ m n(0)- m nQn(O)s)- U(l+ m n(0))]}
n-o

for sE [0,1), with the limits well defined. Since for each n> 1, the expression

within the second limit in (2.8) can be expressed as the g.f. of some non-negative

sequence for se [0,1), the extended continuity theorem given in Feller (1971,
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p. 433) implies that U is the g.f. of a non-negative sequence. Define now a

function U on (-",I) such that its restriction to [0,1) is indeed U* and for

any sE (-c,0)

.- °U (s)- _CnU (MLs + 1_mn)~ n

n n
where n is the smallest integer for which mns+ I-mn e [0,1). It is easily

seen that

cn( -s+1n ."()+
" (2.9) s+ ) -U(s) n- 1,2,...; sE (-c,l)

nA

which, since U-U on [0,1), implies that U' (i.e., dU(s)/ds, sE (- ,l)) exists

and is absolutely monotonic on (-c,l) with lim U'(s) = 0 as s)---. Since U(O)- 0,

we conclude from Bernstein's theorem that for some measure u on (0,0)

(2.10) u(s) -(e -l) dvt(x) s E

From the equation (2.9), we find that the measure 0 is such that

f (SXm n e(1-m n)x r (S-)d x

, (2.11) c (e -1) e du(x) - (0,) Xl)du(x)
-0,M) (o ,o)

n - 1,2,... sE (-e,1)

If sE (--,l) and se (-0,0], then subtracting the identity (2.11) from the

corresponding identity with s replaced by s+ s we obtain
n0

n s(1 0 n  sx0
(e (e -)e du(x) f e -l)du (x)

which is valid for all sE (-,0]. Then, in view of the uniqueness theorem for

Laplace-Stieltjes transforms, (2.12) implies
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(e -1)dM(x cn l0e - (-mn)x

(2.13) [(mn,mn_) [0- l f(19 md1) ( 1)e x (x)

for n-0, +1,+2 ..... Since s in (2.13) is arbitrary, we conclude using (2.10)

that

(2.14) U (s)-U(s) - J n- (eSX-1)du(x)n -w [m ,s - 1

- n
- -e )exd(x)

J { cn-t(e-m nt(1-s)-m n-t)dv(t)
[0,1) n---

for sE [0,1), where K is a positive constant and v is a probability measure on

[0,1) such that for every Borel subset A of [0,1) we have

(2.15) v(A) - K"1 f exc- l ogx/ l ogm du(x),
SA

where SA - {x: (-log x /logm) E A}. [The operation of interchanging the order

of summation and integration in (2.14) is justified by either Fubini's theorem

or monotone convergence theorem.] The required result now follows on observing

that U(s)- U (B(s)), s E [0,1).

Remark 1. In the definition 2 on page 432 of Feller (1971), 0,- should be

changed to 0,- to make the extended continuity theorem given on page 433 non-

ambiguous. [We used this theorem in the proof of our Theorem 2.]

Remark 2. If we define G(i,j) to be the Green function corresponding to the

substochastic matrix (p ), i,j-1,2,..., then an argument essentially as in

ijiA.N. (p. 70) implies that for every subsequence of positive integers {k I such

. . .. .0 Z" . " o . " ., " . " . " . " . " - " . " . " . . " - " . ' - ' ' '
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that the fractional part of (-log ki)/logm- t with tE [0,1) we have

G(kiJ)sJ

i=1 -* st U(st)
G(kil )  U'(0,t)

n-t t

%.I where U(s,t) is the U(s,t) of Theorem 2 with m replaced by (-Q(0)m n-), Q(0)

being as defined in A.N. (p. 40), and

U'(0,t) as aUst
I -0

"" We note that the proof in AN (p. 69) remains valid in the present case as well

with U(s,t) changed to U (s,t). Consequently, the Poisson-Martin integral re-

. presentation for a stationary measure analogous to the one given in Seneta (1973,

• .p. 151) for a super regular vector yields the validity of our Theorem 2 with

U(s,t) replaced by U(s,t). Now, it is easy to verify that Theorem 2 remains valid

even when Q(0) is not necessarily equal to -1 and hence we have an alternative

proof of Theorem 2.

Remark 3. The version of Theorem 2 with U(s,t) replaced by U(s,t) of Remark

2 yields Spitzer's theorem when c - 1.

Corollary. If f(s) = l-m+ms, then every sequence {n} is a stationary measure

iff it is of the following form:

"" n-t (n-t)j
(2.16) n K f c e m dv(t), jm 1,2,.

"jj

where v is a probability measure on [0,I), and K is a positive constant as in

Theorem 2.

The result (2.16) is obvious from Theorem 2 in view of the fact that

B(s) = s.

°.. ~ ~
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3. AN APPLICATION TO DAMAGE MODELS

Let (X,Y) and (X',Y') be 2-vector random variables with non-negative integer

valued components such that X and X' have the same marginal distribution {g n

with g < 1, and Y and Y' are such that for eachn with gn> 0

P(Y= rIX=n) - (n)Tr(l-1 )n-r, r=0,1,...,n,
r

P(Y'- r'IX'-n) - )Ir(l-)r, r- 0,1,...,n,

where 0< iT',n< 1 are fixed. Talwalker (1980) and Rao et al. (1980) considered

the problem of characterizing the distributions of X and X' by the equation

(3.1) P(Y- r) - P(Y'- rIX'-Y'), r= 0,1,...

which is an extended version of the Rao-Rubin condition (Rao and Rubin, 1964).

It is seen that (3.1) is equivalent to

" (3.2) G(l-ir+irs) G(s r')/G(i'),jsI<l

where G is the g.f. of {gI.

When iT- 7r', (3.1) is the Rao-Rubin condition, and it is shown by Rao and Rubin

*- (1964) using Bernstein's theorem and in a simpler way by Shanbhag (1974), that

in this case G is the p.g.f. of a Poisson distribution. When iT> T', it is easily

seen that G is the p.g.f. of a binominal distribution with an arbitrary index and

success probability (i-t')/i(I-i').

When iT< iT', the picture is totally different, and the family of distributions

{g n for which (3.1) holds is somewhat curious and fairly large. Talwalkar (1980)

and Rao et al (1980) identified the family as a mixture of Poisson distributions

with the mixing measure itself satisfying a further functional equation. The

5 - . 9 * *

, .A. . ,.:..,.. .?...,.,_.J,. ,, :i., _ _ .,-d. " ," " _ - , . , . , ,', '* " " " 
*

' ' "
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*following theorem gives a complete identification of the solution and provides

* a more satisfactory answer and a rigorous proof to the characterization problem

"" than that given earlier.

Theorem 3. Let (X,Y) and (X',Y') be 2-vector random variables as considered

above with 0 < T < 7r'< 1. Then (3.1) is valid if and only if

• r n-t _( / ,)n-t ( /7,) (n-t)j 7,_n
gt = K (J/c e I[ dv(t) J=0,1,

[,) j [ 1- "

where v is a probability measure on [0,1) and c is a real number lying in (0,1)

and K is a normalizing constant.

The result follows from the Corollary to Theorem 2 (see equation (2.16))

* since (3.1) is equivalent to (3.2) which can be written as

u cU(l-m+ms) = U(s)+ cU(l-m)

with

c it.
; (l-i)t'

U(s) - .G(.... - s) go.

Observe that (3.2) implies that the p.g.f. G(s) is defined for all s such that

Isl < ir'(l-T)/(ir'-T) and it satisfies (3.2) for every

Tr (- (1-n) n ,(1-0)
Or -70 T, I-. ".

Remark 4. If the measure v in Theorem 3 is taken as the Lebesgue measure

on [0,1), then the distribution [g } in question reduces to a negative binomial

distribution.

.................... -,o °,oo•o ,° . * "o - .- . -•. o" - ° .. .," o .. °. . o.• .° - . . .. - . o.o - -" . . ,*-~

. . . . . . * .-.• - * .,* ° ". " ' % ' .. .- ° ' . ". " " % , % . " . . , - °."• " •.-.• -*-. •*,
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Remark 5. It is interesting to note that if a p.g.f. G satisfies (3.2)

simultaneously for two pairs (Ti. r), i- 1,2, where 0< T < W< 1 and (log 7Tl-log IT11/

(log 72-log 7r2) is irrational, then G is the p.g.f. of a negative binomial distri-

bution of the form

T[ (1-Tr11/ (Tr-Tr111-11
.-."'- ~ ~~~~G(s) - {[il.~ l -}

for some ct> 0. Since the condition implies G to be well defined also on (l,sO )

where so llr(l-lr)/(01-n I), the result in question follows as a corollary to the

result of Marsaglia and Tubilla (1975) by noting in particular that f(x) -

G(s0-s0e )/G(O), x>0 is well defined and satisfies the equation f(t i+x) =

f(ti)f(x), x > 0, i- 1,2 with ti = log(7rr/ni), i= 1,2. The same result was es-

tablished in Rao et al (1980) by a different and slightly more involved method.
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