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t AN EXTENSION OF SPITZER'S INTEGRAL

v REPRESENTATION THEOREM WITH AN APPLICATION
4

L by

Abdulhamid A. Alzaid, C. Radhakrishna Rao and
. D.N. Shanbhag

King Saud University, Saudi Arabia,

University of Pittsburgn, U.S.A. and
The University of Sheffield, U,K,

-. Summary Using a new approach, an extended version of Spitzer's integral
»
- representation for stationary measures of a discrete branching process is ob-
:: tained. This result is used to provide a complete solution to a problem in
" damage models satisfying a generalized Rao-Rubin condition.
::_: Key Words: Branching process, Cauchy equation, Damage Models, Potential theory
» of Markoff chains, Rao-~Rubin condition.
AMS Subject Classification: 60E05, 62E10.
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X 1. INTRODUCTION

Consider a modified discrete branching process {Zn; n=0,1,...} with one

- step tansition probabilities given by
5 ) ) ’ | , cp§i), i=0,1,...;j=1,2,...
1.1 P,,=P(Z . =3|z =1) =
14 n+l n l-c+c péi), i=0,1,...; §j=0

(1)
3

ability distribution {p j} with itself for 1> 0 and the degenerate distribution

where O0<c<1 and {p;” "} is the i~fold convolution of some nondegenerate prob-

at zero if 1= 0. (It is seen that the process reduces to Bienaymé-Galton-Watson

branching process when c= 1). Define
o« * o

(1.2) me= ]3p;.m = J(Jlog Jp,-
j=1 i=1

Inthis paper, we extend the Spitzer's integral representation for stationary

*
measures of a Bienaymé-Galton~Watson process with m<1l and m <= to a branch-

LN
sTat

ing process of the type defined in (1.1). Such an extension could be arrived at

by using arguments similar to those of Spitzer (1967) based on the potential

theory of Markoff chains. However, we give a new approach based on Bernstein's
theorem on absolutely monotonic functions. We use the extended version of
Spitzer's theorem to obtain a complete identification of the salucioﬁs to a
certain functional equation in damage models considered earlier by Talwalker
(1980) and Rao et al. (1980), and thus establish a link between branching pro~

- cesses and damage models.

AIR PORCE OFPPT A
NOTIoms v

R

E 0% gatpym
v T. &F:\‘T:‘?TP Wﬁr,‘?&;wv f“(‘l‘

P 2 DR

koo

Chier, i

“iten

AR,

‘t
Y

A R I . ‘ L aeata [N R T S
‘i'-{\?l-\{"i\..‘ni" s 1 . N v Je Y > .




gl Vel A e i T LA Tl B ¥ SN USRI AN RRIL SNSRI I e il SIS A W e L RTSINTN TR Y e e

2. AN EXTENDED VERSION OF SPITZER'S
INTEGRAL REPRESENTATION

We establish the following theorems.

Theorem 1. The generating function U(s) = ansj of any stationary measure
{nj} of the modified branching process defined in (1.1) is analytic for |s|<gq

where q is the smallest non-negative root of the equation s= f(s), and (if normal-

ized so that U(p0)= 1) satisfies the equation
(2.1) cU(f(s)) = c+ U(s)

vhere f(s) is the g.f. (gemerating function) of {pj}’ Conversely, if U(s) =

ansj, njz_o, |s|< q satisfies (2.1), then {"j} is a stationary measure.

Proof 1If U(s) is analytic for |s| < s, for some s;> 0, then

U(s) = n,s> = ) n P48
321 1 121 1 521 1]

=c ] e - (£O1Y
i=1

= c(U(f(s)) -U(py)), |s| < 30

which implies that (2.1) is valid at least for |s|< sg- Then using the arguments
exactly as in A.N. (Theorem 2, p. 68), [where we use the abbreviation A.N. for
the book by Athreya and Ney (1972)], we find that U(s) is analytic for |s| < q.
The converse assertion easily follows by equating the coefficients of sj in (2.1).
Theorem 2. (An extended version of Spitzer's theorem). If m<1 and m*< %

with f as in Theorem 1, then for every probability measure v on [0,1)
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(2.2) U(s) = K f U(s,t)dv(t)
{o,1)

is the g.f. of a stationary measure, where

U(s,t) = ] [exp{(B(s)-1)m"™ “}- exp{-n" “}]c""

N0

+ \
with B(s) as the unique p.g.f. among those vanishing at s= 0 and satisfying the
equation

(2.3) B(£(s)) = mB(s)+ l-m.

Conversely, every stationary measure has the representation (2.2) for some
probability measure v on [0,l).

Proof The first part of the Theorem is easily verified. To prove the
converse, it is sufficient to establish that the representation is valid for every

se [0,1). Define then for every se [0,1)
u*(s) = uB s))

where B is as mentioned in the statement of Theorem 2. In view of Theorem 1 and

the equation (2.3) we have

2.8) <V lsl-uH=UT(e) # £, n=1,2,...,5 055¢1,
where
1 n
c(F==-) if c#1,
- l-c
‘. {
n if c= 1.

We can write (2.4) also as

*+For an interpretation of B in branching processes, see A.N. (p. 17).
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: v*(s) = wa+ue BHe)) g . n=1,2,...5 Ogs<l,

where Qn(s) = [fn(s)--lllmn with fn(s) as the n-th iterate of f(s). Consequently
ol
4
L] * -
: 2.5) v*(s) = Lim {PU(1+a (0) - a"Q_(0)B, B (s)))-¢,}
n+> o

for 0<s< 1, where Bn(s) = [Qn(O)- Qn(s)]/Qn(O). If Oisl< 8<8,< 1, then noting

in particular that Bn+ B pointwise (see A.N., p. 47), and B and B-l are strictly

increasing on [0,1), we find that
-. n -1 n n -1
N (2.6) -m Qn(O)Bn(B (sl)) < -m Qn(O)s- -m Qn(O)B(B (s))

< -uQ_(0)B_(8™1(s,))
n n 2

3 for large enough n. Since U is increasing on [0,1) we obtain from (2.5) using

(2.6)
p
: (2.7 t*(s) < Lim {"U(1+a"Q_(0) - n"Q (0)s) =€}
2 T ioe n n

— n n %*
inl:.: {c"u(1+nQ_(0) - m"Q_(0)8) - § }< U (s,).
*

It is seen that U (s) 1is continuous and U*(O) = 0, and hence from (2.7) we
have for se [0,1)
'_. *
: (2.8) U (s) = lim {c"U(1+a"Q_(0) - u"Q (0)s) -€_}
: o oo n n n

n n n n
.nlinl {c [U(l+m Q,(0)-m Q, (0)s) - U(1+mQ (0))]}

for se [0,1), with the limits well defined. Since for each n> 1, the expression
_ within the second limit in (2.8) can be expressed as the g.f. of some non-negative
: sequence for se¢ [0,1), the extended continuity theorem given in Feller (1971,
S R R T
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*
p. 433) implies that U 1is the g.f. of a non-negative sequence. Define now a

A *
v function U on (-»,1) such that its restriction to [0,1l) is indeed U and for

any se (=~,0)
ﬁ(s) = cnU*(mns+-l~mn)- €n

where n is the smallest integer for which mis+1-m e [0,1). It is easily

seen that
(2.9) cnﬁ(mns+ l—mn)- ﬁ(s)+gn, n=1,2,...; se (==,1)

.‘ K -~ * ) - -~

s which, since U=U on [0,1), implies that U' (i.e., dU(s)/ds, s¢ (~,1)) exists
and is absolutely monotonic on (-»,1) with 1lim U'(s) = O as s+ -», Since U(0)= 0,
- . we conclude from Bernstein's theorem that for some measure u on (0,®)

- f 8X
(2.10) U(s) = (e""~1)du(x), se (==,1).

0,0
. From the equation (2.9), we find that the measure u is such that

- (2.11) o

’: f (0 ’w)

n _n r
™ -l)e(1 m)x du(x) = J (%*-1) du (x)

(0,)

n=1,2,...; 8¢ (=»,1).

1f Sg € (-=,1) and s¢ (-»~,0], then subtracting the identity (2.11) from the

corresponding identity with s replaced by s+s0 we obtain

.
.
s N

n
(2.12) nJ sxmn sOxm
. c e (e
0,=)

S~ X
du(x) = J esx(e 0 =1)du(x)
(0 )w)

n
_l)e(l-m Yx

which is valid for all se (==,0]. Then, in view of the uniqueness theorem for

‘-"a LY %N

Laplace-Stieltjes tranaforms, (2.12) implies




S.X S, Xm n
X (2.13) [ (e 0 -1)du(x) = an (e 0 —l)e(l'-m )xdu(x)
(1

(o, 1)

m )

for n=0, +1,+2,.... Since sg in (2.13) is arbitrary, we conclude using (2.10)

that
(2.14) U*(s)-ﬁ(s) = ZI n -1 (e5*-1)du (x)
n=-=’[m m )
® n n
- J -1 ) (B Ums T _ mxmy Xy (x)
[l,m ) nmew
-] Nwt n-t
= K f { A ™ (18 m g0 ce)

[0,1) nm—e

for se [0,1), where K is a positive constant and v is a probability measure on

[0,1) such that for every Borel subset A of [0,1) we have

(2.15) v(a) = k1 J X logx/log m du(x),
s
A

e ror’e

where S, = {x: (~log x /logm) € A}. [The operation of interchanging the order
} of summation and integration in (2.14) is justified by either Fubini's theorem
or monotone convergence theorem.] The required result now follows on observing
that U(s)= U (B(s)), s ¢ [0,1).
Remark 1. In the definition 2 on page 432 of Feller (1971), 0, should be
changed to 5:; to make the extended continuity theorem given on page 433 non-

ambiguous. [We used this theorem in the proof of our Theorem 2.]
Remark 2, If we define G(i1,j) to be the Green function corresponding to the
substochastic matrix (pij)’ i,j=1,2,..., then an argument essentially as in

A.N., (p. 70 implies that for every subsequence of positive integers {ki} such




that the fractional part of (~log ki)/logm-* t with te [0,1) we have

) G(ki.j)sj
j=1

G(ki,l)

-+ U*(s,t) a M
u'(,t)
where ﬁ(s,t) is the U(s,t) of Theorem 2 with o™t replaced by (—Q(O)mn-t), Q(0)

being as defined in A.N. (p. 40), and

u'(,t) = M .
s=0

We note that the proof in AN (p. 69) remains valid in the present case as well
with U(s,t) changed to U*(s,t). Consequernitly, the Poisson-Martin integral re-
presentation for a stationary measure analogous to the one given in Seneta (1973,
p. 151) for a super regular vector yields the validity of our Thecrem 2 with
U(s,t) replaced by G(s,t). Now, it is easy to verify that Theorem 2 remains valid
even when Q(0) is not necessarily equal to -1 ana hence we have an alternative
proof of Theorem 2.

Remark 3. The version of Theorem 2 with U(s,t) replaced by ﬁ(s,t) of Remark
2 yields Spitzer's theorem when ¢ = 1.

Corollary., 1If f(s) = l-wmtms, then every sequence {n,} is a stationary measure

b
iff it is of the following form:

(2.16) n, =K Mt -t gt

¥ J e R dv(t), §=1,2,...
] n=-w /{0,1) i

where v is a probability measure on [0,1), and K is a positive constant as in

Theorem 2.

The result (2.16) 1is obvious from Theorem 2 in view of the fact that

B(s) = g.
C. et e '.-" Tt e e T e et e e T T T T e e e e e e e e e e e e e e e N T AT N e
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3. AN APPLICATION TO DAMAGE MODELS

Let (X,Y) and (X',Y') be 2-vector random variables with non-negative integer

valued components such that X and X' have the same marginal distribution {gn}

with g <1, and Y and Y' are such that for eachn with 8, 0 .
P(Y= r|X= n) = (:)ﬂr(l-n)n‘t, r=0,1,...,n,
P(Y'= r'fX'sn) = (t;)ﬂ'r(l—n')n-r, r=0,1,.,.,n,

where 0<n',m< 1 are fixed. Talwalker (1980) and Rao et al. (1980) considered

the problem of characterizing the distributions of X and X' by the equation
(3.1) P(Y=r) = P(Y'=r|X'=Y"), r=0,1,...

which is an extended version of the Rao-Rubin condition (Rao and Rubin, 1964).

It is seen that (3.1) is equivalent to

(3.2) G(l-m+ ms) = G(sn')/G(n"),|s|<1

L 2 e e
., RO

where G is the g.f. of {gn}.

When w= 7', (3.1) is the Rao-Rubin condition, and it is shown by Rao and Rubin
(1964) using Bernstein's theorem and in a simpler way by Shanbhag (1974), that
in this case G is the p.g.f. of a Poisson distribution. When 7> n', it is easily

seen that G is the p.g.f. of a binominal distribution with an arbitrary index and

Ty vYwvwey Pl B NG o0 A4
[
.« . B R T

success probability (w-n')/m(l-n').
When < n', the picture is totally different, and the family of distributions
{gn} for which (3.1) holds is somewhat curious and fairly large. Talwalkar (1980)

and Rao et al (1980) identified the family as a mixture of Poisson distributions

with the mixing measure itself satisfying a further functional equation. The




........

following theorem gives a complete identification of the solution and provides
a more satisfactory answer and a rigorous proof to the characterization problem
than that given earlier.

Theorem 3. Let (X,Y) and (X',Y') be 2-vector random variables as considered

above with O<nm<w'<1l., Then (3.1) is valid if and only if

f cn--t:e-('rr/n")n-t (Tf/‘n")(n—t)j [ w7
J[O,l) it ' (1-7

|
~
QMS

g = yllav(e), 3=0,1,...

where v is a probability measure on [0,1) and ¢ is a real number lying in (0,1)
and K is a normalizing constant.
The result follows from the Corollary to Theorem 2 (see equation (2.16))

since (3.1) is equivalent to (3.2) which can be written as

cU(l-m+ms) = U(s)+ cU(1l-m)

with

==X ya- = L
8" 1-c Ui-m), m *

- (1-n)n!
U(s) G — s) Bg*
Observe that (3.2) implies that the p.g.f. G(s) is defined for all s such that
|s| < m'(1-m)/(n'=7) and it satisfies (3.2) for every

_n'd-m) m'(l-m)
(nt=nm) ' 7'=m

se (

).

Remark 4. 1If the measure v in Theorem 3 is taken as the Lebesgue measure
on [0,1), then the distribution {gn} in question reduces to a negative binomial

distribution.

............
......




Remark 5. It is interesting to note that if a p.g.f. G satisfies (3.2)

simultaneously for two pairs ("i’"i)’ i=1,2, where O< < wi< 1 and (log nl-log ni)/

i
(log nz-log ﬂé) is irrational, then G is the p.g.f. of a negative binomial distri-
bution of the form

I} (@-m,)/ (nlam ) ]-1)°
Ty (A= )/ (rl=w JT~s 10

G(s) =

for some ¢> 0., Since the condition implies G to be well defined also on (1,s

0)
[~ where 9= ni(l—nl)/(ni-wl), the result in question follows as a corollary to the
result of Marsaglia and Tubilla (1975) by noting in particular that f(x) =
G(so-soe-x)/G(O), x>0 is well defined and satisfies the equation f(ti+x) =
f(ti)f(x), x>0, i=1,2 with t, = log(ni/ni), i=1,2. The same result was es-

tablished in Rao et al (1980) by a different and slightly more involved method.
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