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1.0 SUMMARY

In an effort to better understand the mechanics of wave propagation

through the near field of an explosive seismic source, the real time functions
of stress and strain have been measured for a variety of rock types using both
tensile and compressive loading. Experiments were performed using cylindrical
specimens of Boise sandstone, Berea sandstone, Indiana limestone, and Westerly
granite. Peak stresses varied from 4.5 x 104 pPa to 2.5 x 100 Pa, and maximum
longitudinal strains, as measured on the surface of the cylinders, varied from
approximately 1 x 1076 to 2 x 10~%. Differences in the details of the experi-
mental results exist among the various rock types studied, but the following
observations are generally applicable:

1.

3.

At very low amplitudes the rocks behave almost linearly; the
stress-strain curves have the same slope on either side of zero
stress, and a hysteresis loop cannot be detected above the noise
level,

The first evidence of nonlinearity appears at peak stresses of
approximately 1 x 105 Pa. At this amplitude the slope of the
stress-strain relationship is not the same on either side of
zero stress. In all but two anomalous cases, Indiana 1imestone
and Westerly granite at relatively low peak stress levels, the
effective modulus is higher in compression than in tension.
Furthermore, a small hysteresis loop is observed, especially on
the tensile side of zero stress.

Hysteresis loops continue to enlarge with increasing maximum
stress. Compressional hysteresis loops are smaller than
tensional loops, and nonlinearity is obvious.
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These results confirm that nonlinear effects are present in rocks at
very low amplitudes (<105 Pa stress and <102 strain) both in compression and
in tension. Material response in compression is more elastic than in tension,

g in that the loading-release curve follows a curved path, but with relatively
little hysteresis. A significant amount of hysteresis is observed in ten-
sion. This is apparently related to interyranular friction, which is aided by
the opening of intergranular cracks. Measurements using the resonating bar
technique, as reported previously, are excellent for detecting the first signs
of nonlinearity in either tension or extension, but cannot resolve differences
. in extensional behavior vs compressional behavior. Finally, it is unlikely

5 that rocks respond perfectly linearly to high amplitude compressive pulses
. propagating through the near field of an explosion at peak stresses greater
- than approximately 105 Pa. It is more 1ikely that material response is

nonlinear in compression, with a small amount of hysteresis due to inter-
. granular friction. Further studies of rocks are planned while the specimens
~ are subjected to elevated effective stresses in order to test this hypothesis.
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2.0 INTRODUCTION

The mechanics of wave propagation through the near field of an
explosive seismic source are not completely understood, particularly in the
peak strain amplitude range between 10~% and 107®. The most complete data
:ﬂ sets which describe free-field wave propagation as a function of scated
ii distance (distance/yie1d1/3) in this strain amplitude range have been obtained
R for explosions in polycrystalline salt. The data base includes measurements
N from (a) the 5.3 kT nuclear event, SALMON (Perret, 1967; Trulio, 1978); (b)

. the medium to large scale chemical explosions of the COWBOY experiments, which
took place in a natural salt dome (Trulio, 1978, 1981); and {(c) a series of
small scale chemical explosions in pressed polycrystailine salt in the labor-

atory (Larson, 1982). When all available data are combined, wave propagation
appears to satisfy cube root of yield scaling. That is, the decay of peak
particle velocity and displacement can be defined as a function of distance/
yie1d1/3 (Trulio, 1978, 1981; Larson, 1982). This appears to be the case,
even though available data cover approximately 10 decades in yield, 4 decades
in peak particle velocity, and 4 decades in frequency. However, the data fit
a line that decays much faster than r-l
ial behaves in a perfectly elastic manner. Thus, the behavior of salt in the
range of available free field measurements, to strains as low as approximately
7 x10°0, cannot be regarded as perfectly elastic (Trulio, 1978. 1981).
Because of the uncertainties regarding the amount of energy that can be
dissipated as a seismic pulse propagates at intermediate strains, Bache, et
al, (1981) have questioned the usefulness of reduced displacement potential
(RDP) calculations based on close range data for the purpose of defining a
seismic source function.

, which would be the case if the mater-

T

The exact nature of attenuation in the near field of an explosive
seismic source remafns a controversial subject. In fact, the evidence
regarding the issue of linearity is ambiguous. Using smali-scale chemical
explosions in pressed salt in the laboratory, Larson (1982) measured a Q of
12.5 near 10-3 strain, and a Q of 24.9 near 6 x 10-4 strain. The fact that Q

YWD L JOAAA AR, GEAEA
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is amplitude dependent is evidence for nonlinear response. However, Larson
also demonstrated an approximately linear superposition of waveforms at
strains higher than 10'4, which suggests near-linearity. The experimental
results reported in Tittmann (1983) using resonating bars of natural halite
indicate that the linear anelastic Q of halite is quite high, near 500, with a
transition to an amplitude dependent nonlinear Q at strain amplitudes greater
than approximately 2 x 1075, Burdick, et al (1984a) have argued that it is
possible to model a seismic source function for the Amchitka tests, detonated
in volcanic material, assuming Tinear behavior in the near field just outside
the spall zone (approx. 700-1200 m/kT1/3). Furthermore, Burdick, et al,
(1984b) contend that the same model can be used to predict the first vertical
pulse arrival and rise times even within the spall zone. They used the
concept of a compressional elastic radius that in fact mey be considerably
smaller than a tensional elastic radius and that must extend at least as far
as the outer limits of the spall zone. Minster and Day (1985) recently re-
examined the COWBOY data set, and concluded that it is possible to explain
simultaneously the radial decay of peak displacement and peak velocity by
either (a) a linear anelastic model with low Q (approx. 20) or (b) a nonlirear
model with amplitude dependent Q. MacCarter and Wortman (1985) conclude that
the free field motion measurements from the SALMON event are consistent with
an amplitude independent Q of about 10. In any case, these amplitude inde-
pendent Q values are too low to represent the linear anelastic Q of salt
according to the results of Tittmann (1983).

While generally it is acknowledged that Q is defined rigorously only
when the material through which a wave propagates behaves linearly, it is
common (McCarter and Wortman, 1985; Minster and Day, 1985) to assume for
theoretical purposes that "nonlinear Q" can be defined using the equations of
Mavko (1979) and Stewart, et al (1983):

0 Hwe) = g7 (W + ae (1)

4
C7069TC/bje




ST WA N LA %0 A A e oapll I N A T S T AR I Tt A A S A S AN LG M g i e i R ey g CRRECMCR ol oy i

‘l‘ Rockwell International

!
Science Center

- $SC5361.85A

where 0'1 is nonlinear Q, 00'1 is linear anelastic Q, a is a constant, and €
is strain. This equation considers the combined effects of Coulomb-type
friction from many intergranular contacts on the energy dissipated during one
full elastic wave cycle. In their derivations, 0'1 was defined as

Q! = (1/2%) (si/w) (2)

where & is the energy dissipated in one full cycle, and W is the peak strain
energy stored per cycle.

One technique used in the laboratory to estimate nonlinear Q involves
5 the forced resonance of bars. As pointed out in previous reports (Tittmann,

A 1983a, 1983b, 1984), the various resonating bar techniques offer a partic-
ularly sensitive tool for detecting the onset of nonlinearity, even at very

: low strains. The data reported by Tittmann (1983a) indicate that the intrin-
p- sic linear attenuation of dome salt is quite low (Q > 500), and that the onset
: for nonlinear behavior is near 2 x 1070 strain, corresponding to approximately
i; 1 bar of stress. Similar behavior has been reported for other rock types,

Q - including granite, limestones, sandstones, and miscellaneous igneous rocks

(cf Mavko, 1979; Stewart et al, 1983). These measurements suggest that
nonlinear response should persist to large scaled distances from explosions,
on the order of 104 m/kt1/3. Furthermore, the 1ow Q values calculated by
Larson (1982) (laboratory measurements], Trulio (1979, 1981) {COWBOY], Minster
2 and Day (1985) [COWBOY] and McCarter and Wortman (1985) [COWBOY, SALMON] from
" free field measurements in salt are much lower. This constitutes additional
evidence of nonlinearity in available free-field measurements.

It is also quite tempting to use the nonlinear Q measurements
reported from forced resonance-type experiments to estimate the coefficient
in Eq. (1). There are certain dangers in doing this, however. First, it must
- be recognized that resonating bar specimens are not subjected to homogeneous
o strain. This is not a problem as long as material response is linear. How-
y ever, it tends to lead to an underestimation of the value of a. Minster and

N 5
e C7069TC/bje |




RPN o)

.l ‘l 'l e

i)
.

b
e

IO A A AN

LatMC A SV NP S g SN P IV e AL A S it g g e e G pa s L M R (AU d S A A it AP S e A G G Ak bedh ek Sl Gl Aeslh et

‘l‘ Rockwell International

Science Center

SC5361.85A

Day (1985) indicate « that from flexural resonance measurements is probably
underestimated by about a factor of 2, and from torsional measurements it is
underestimated by about a factor of 3. A second hazard with using nonlinear Q
values from resonance measurements is related to the fact that Q is calculated
from the bandwidth of the resonance peak, assuming linear anelastic behav-
jor. The distortion of the resonance peak shape associated with nonlinear
resonances has been described by Tittmann (1983b) and casts an element of
suspicion on the significance of the nonlinear Q values reported. Finally,
during both extensional and flexural resonances each increment of volume
within the specimen is subjected to tensile stresses half of the time and to
compressive stresses the other half. A tacit assumption is that the material
behaves the same in compression as it does in tension. The apparent drop in
bar modulus with increasing vibration amplitude has been noted (Tittmann,
1983a, 1983b, 1984), and is probably also related to the distortion of the
resonance peak shape with increasing strain. Not proven, however, is whether
either the frictional losses or the effective modulus of a rock are the same
in tension as they are in compression. Resonating bar-type measurements are
not capable of resolving the details of the rheological response of materials
to nonlinear loading.

On the basis of the above discussion, the laboratory work most
beneficial to resolving the issue of linearity vs nonlinearity would involve
studies of the mechanical response of various test site materials, including
salt, to realistic seismic pulse loading histories. Such studies would neces-
sarily require the application of true uniaxial strain while test specimens
are subjected simutaneously to a hydrostatic bias stress. This type of study
is very difficult technically, and results of such studies do not exist, at
least not in the open literature. Several papers have examined the details of
stress-strain hysteresis loops under nonlinear, uniaxial stress loading condi-
tions (distinguished from uniaxial strain) (Gordon and Davis, 1968; McKavanagh
and Stacey, 1974), but in each of these cases only compressional measurements
were performed. Shock and Louis (1982) examined the inelastic response of two
rock types, sandstone and granite, to high tensile stress loading, but did not

6
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examine hysteresis, per se. Nor was the behavior in axial compression con-
trasted with the behavior in tension.

In this report we describe the results of combined high amplitude
tensile and compressive uniaxial stress loading experiments on four different
rock types: Westerly granite, Boise sandstone, Berea sandstone, and Indiana
limestone, under ambient pressure conditions. This represents the first stage
of a new effort with the ultimate goal to examine the mechanical response of
test site materials, including dome salt, to high amplitude uniaxial strain
loading at elevated hydrostatic pressures. We examine the details of the
stress-strain hysteresis loops, and demonstrate that both the elastic and the
inelastic properties of rocks at nonlinear amplitudes are quite different in
compression than in tension. Results to date indicate that the behavior in
compression at strains greater than 10°% is nonlinear, but with much less
hysteresis than in tension. The behavior in tension at comparable strains is
also nonlinear, but a relatively large hysteresis loop is evident. This
indicates that frictional losses are much greater in tensile loading than in
compressive loading.

7
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¢ 3.0 EXPERIMENTAL PROCEDURES

Figure 3.1 includes schematic illustrations of the mechanical parts
of the system used for measurement. Briefly, cylindrical rock specimens

l.
; 2.54 cm in dia. and 6.35 cm long were cut from blocks of Boise sandstone,
N Berea sandstone, Westerly granite, and Indiana limestone. A resistance-type
: strain gauge was bonded to the surface of each specimen to respond to strains
. in the longitudinal direction. The rock was then bonded adhesively to stain-
J less steel mounting fixtures using a semiplastic polymer resin (Crystal Bond
o #509, Aremco Products) that is quite brittle and stiff at room temperature,
b but that softens readily at approximately 70°C. By keeping the specimen warm
. while mounting it in the apparatus, residual stresses could be removed.
‘:3 Measurements were made at room temperature and under ambient pressure
5 conditions. o
' . LOAD CELL —————=——MTS LOAD FRAME
(STRESS) T |
. HyprauLic 11" ‘
T GRIPS S SAMPLE
: Hyoravuc—H- ] |
‘ RAM e
- b
2 EXTENSION BARS
- STRAIN GAUGE ——
- ROCK SPECIMEN ———
- ADNESIVE BONDING
.
~
“
o Fig. 3.1 Schematic illustration of the apparatus used for the measurement
. of stress-strain response curves.
x 8
3 C7069TC/bje
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Experiments were run using an MTS electro-hydraulic, closed-loop load
frame equipped with the hydraulic hardware and controls necessary to apply
alternating tensile and compressive loads. The instrumentation used for the
measurements is illustrated in Fig. 3.2. The frequency of loading was usually
: 1 Hz, except for two series of measurements on Westerly granite and Berea
. sandstone at 0.1 Hz. A series of eight cycle bursts of load-controlled con-
stant strain rate triangle wave loading were applied to each specimen.
Measurements of load and strain were collected simultaneously, digitized, and

atala e 4 8%

stored in the computer.

.
Gl

Representative time functions of stress and strain are illustrated in
Fig. 3.3. Measurements were obtained on each sample using bursts of increas-
ing maximum stress, starting with ¢+ 3.4 x 10° Pa and working up to a maximum
of + 3.4 x 107 Pa, unless precluded by the breakage of the specimen. As many
" as 5 bursts of 8 waves each were applied at low amplitudes in order to enable
- satisfactory signal averaging when the signal-to-noise ratio was low. At
higher amplitudes the signal-to-noise ratio was good, and only one eight-cycle
burst was run in order to avoid excessive damage to the specimen.

- STRAIN GAUGE
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X TN | CONTROLLER SYSTEM

f HP 9816 LAB COMPUTER

cavenaTon S

PRINTER MOTTER

Fig. 3.2 Schematic illustration of instrumentation used to acquire and
process stress-strain response curves.
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4.0 EXPERIMENTAL RESULTS

To test the linearity of the experimental apparatus and the stiffness
of the adhesive bonds, the first phase of the experimental study involved
measurements of stress and strain on an aluminum bar which has a relatively
ideal linear elastic response. A typical curve of stress vs. strain for an
aluminum bar is shown in Fig. 4.1, Extensional stresses and strains are
positive. Only a small amount of hysteresis is observed in this set of
measurements, and the apparent relationship between stress and strain is
nearly linear. A small amount of hysteresis is observed and may be attributea
to plastic flow in the resin used to bond the aluminum bar to the loading
fixtures. This is a relatively insignificant effect compared with the large
amounts of hysteresis and nonlinearity observed in rocks under corresponding

stresses.
[SLLMINDM TEST BAR
+2 . BE*E A T T T T 1 o T R
ALUMA (TENSION)
I~ CYCLES 1-8 (RVE) 7
- -
- -J
AXIAL STRESS | 4
(Pa) %I -
i ]
= B
- -
{COMPRESSION)
~2.0E+6 1 A 1 i i L 1 I
-2.5E-95 (%] +2.5E-5

SAMPLE SUPFACLC STRAIN

Fig. 4.1 Stress-strain response for aluminum test bar.

Experimental results also show that each rock displays nearly linear
behavior when the loading is very small, around 4.5 x 104 Pa, resulting in
strains between 2 x 106 and 6 x 10‘5, depending on rock type (Figs. 4.2
through 4,5). At higher load levels (Figs. 4.6-4.9) there is evidence of
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strong nonlinearity and inelasticity in the weakest frame rock, Berea sand-
stone, while the nonlinear and inelastic effects are more subtle in the
stronger frame rocks, especially Indiana limestone. In all rock specimens
except Indiana limestone the effective modulus of the rock is significantly
larger in compression than in tension. In two anomalous cases, Indiana
limestone and Westerly granite have a slightly higher modulus in tension than
in compression at rather small loads (Fig. 4.10).

McKavanagh and Stacey (1974) argue that it is possible to distinguish
between linear anelastic relaxation and nonlinear relaxation, such as inter-
granular friction, by examining the shape of the hysteresis loop tips. Cusped
tips indicate a nonlinear mechanism, while rounded tips indicate linear
anelastic relaxation. Expanded views of the hysteresis loop tips measured on
Westerly granite, Boise sandstone, and Berea sandstone are shown in Figs.
4,11, 4.12, and 4.13, respectively. In each case the tips are cusped and not
rounded, which argues against an anelastic relaxation mechanism.

In some cases evidence for large nonrecoverable changes in the rock
during the first excursion to a “new" maximum load is clear. A reasonable
assumption is that these changes are associated with intergranular cracking.
This is apparent when the hysteresis loop is not clearly established until at
least the second cycle of loading. In the case of Berea sandstone subjected
to 1.25 x 10° Pa axial stress (Fig. 4.14), the result of the first full
loading cycle was a net shortening of the specimen. The nonrecoverable change
at comparable stress is small in rocks with a moderately strong frame, such as
Boise sandstone and Westerly granite (Figs 4.15 and 4.16). Indiana limestone,
the rock with the strongest frame, shows no hysteresis and no nonrecoverable
changes after comparable loading (Fig 4.17).
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' -5.BE-6 %] +5.8E-6

SAMPLE SURFACE STRRIN

Fig. 4.2 Stress-strain response for Boise sandstone with a peak loading

5 stress of 4.5 x 10" Pa showing nearly linear behavior.
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{. _5.aE+4 1 1 S 1 i1 T |
2 ~-5.BE-6 %] +5.BE-6
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- Fig, 4.3 Stress-strain response for Berea sandstone with a peak loading
’ stress of 4.5 x 10" Pa showing nearly linear behavior.
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Fig. 4.4 Stress-strain response for Westerly granite with a peak loading
stress 4.5 x 10“ Pa showing nearly linear behavior.
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1
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_S . aE+4 L B S| i i A deed, I
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Fig. 4.5 Stress-strain response for Indiana limestone with a peak loading
stress of 4.5 x 10“ Pa showing nearly linear behavior.
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BOISE SANDSTONE B8DP-34B
+2 . 5E+6 R L RS T T | S T L4 LE
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(Pa) 2 r / -
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Fig. 4.6 Stress-strain response for Boise sandstone with a peak loading
stress of 4.5 x 10" Pa.
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Fig. 4.7 Stress-strain response for Berea sandstone with a peak loading
stress of 1.32 x 10° Pa,
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Fig. 4.8 Stress-strain response for Westerly granite with a peak loading
2 stress of 1.32 x 10° Pa.
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Fig. 4.9
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stress of 1.32 x 10° pa.
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Fig. 4.10 Stress-strain response for two rocks showing the anomalous
occurrence of a slightly higher effective modulus in tension
than in compression. Peak loading stresses are relatively
small (1.32 x 10> Pa).
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J Fig. 4.11 Magnified views of the hysteresis loop tips for Westerly granite.
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:Z Fig. 4.12 Magnified views of the hysteresis loop tips for Boise sandstone.
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Fig. 4.13 Magnified views of the hysteresis loop tips for Berea sandstone.
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Fig. 4.14 (:omparison of the first loading cycle for Berea sandstone at
1.25 x 106 Pa with the subsequent 7 cycles showing nonrecoverable
changes after the first. The previous maximum load was
4,39 x 10° Pa. \
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Fig. 4,15 Stress-strain response for the first eight loading cycles for
Boise sandstone at 1.25 x 10° Pa. A small amount of nonrecover-
able change is observed after the first cycle, but the following
seven are super1mposed The previous maximum load was

4,39 x 10° Pa,
GRANITE 3E4-6
+2.5E+8 T T T T ) SN SN SENEEE S s
G?GCG 3
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Fig. 4.16 Stress-strain response for the first eight loading cycles for
Westerly granite at 1.25 x 10° Pa. A small amount of nonrecover-
able change s observed after the first cycle, but the following
:e;;n a;g superimposed. The previous maximum load was

x 10° Pa.
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INDIANA LIMESTONE 333-4 SC5361.48SA
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Fig. 4.17 Stress-strain response for the first eight loading cycles for
Indiana lTimestone at 1.25 x 10°® Pa. The material appears to be
nearly linear elastic and nonrecoverable changes are not observed.

By reversing the direction of initial loading, the shape of tensional
hysteresis loops and compressive hysteresis loops can be examined. In Figs.
4.18 and 4.21 we show the effects of reversing the loading direction from
tension-first to compression-first, and from compression-first to tension-
first, respectively, for two different rock types. It is apparent that in
Boise sandstone the opening of the loop is due primarily to tensile stresses,
and that the behavior in compression is nearly nonlinear elastic. In Westerly
granite these effects are similar, but the contrast between compressional
hysteresis and tensional hysteresis is less pronounced. A hysteresis loop
exists in both compression and tension, but it is smaller in compression.

Finally, the effect of frequency on the shape of the hysteresis loop
has been examined. The results of measurements on Boise sandstone and Wes-
terly granite at 1 Hz and at 0.1 Hz are shown in Figs. 4.22 and 4.23. The
curves superimpose very well, which is consistent with a frictional relaxation
mechanism, even though this observation alone does not preclude anelastic
relaxation.
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Fig. 4.18 Effect of reversing the initial loading direction from tension-
first to compression-first for Boise sandstone with a maximum
loading stress of 4.39 x 10° Pa, showing the lack of significant
hysteresis in the compressional part of the cycle.

24
C7069TC/bje




’l‘ Rockwell International

Science Center
SC5361.8SA
BOISE SANDSTONE BBP-34B
+5 . BE+6 1 ] R Rl L L A 1 L}
| BBR3I4B_8! (TENSION)
CYCLE 68~ COMPRESSION FIRST
-
-
RXIRL STRESS
(Pa) 2 r
N
i (COMPRESSION)
-5.8E+E . - . 4
-2.5&E-4 %) +2.5E-4
SAMFLE SURPFARCE STRRIN
+5 . BE"'G ) 1 I R 1] ¥ T T ]
BBR34E_S1 (TENSION)
[~ CYcLE #1- TENSION FIRST
-
-
AXIAL STRESS
(Pa) e
-
= -
3 {COMPRESSION)
;: _5. aE+s 1 1 S R | . B 1 | Il
* -2.5E-4 % +2.5E-4
SAMPLE SURFRCE STRAIN
51 _ Fig. 4.19 Effect of reversing the initial loading direction from compression-

first to tension first for Boise sandstone with a maximum loading
stress of 4.39 x 10® Pa, showing the development of a hysteresis
loop in tension.
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Fig. 4,20 Effect of reversing the initial loading direction from tension-
first to compression-first for Westerly granite with a maximum
loading stress of 4.39 x 10 Pa, showing a significant compres-
sional hysteresis loop.
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Fig. 4.21 Effect of reversing the initial loading direction from compression-
., first to tensfon-first for Westerly granite with a maximum loading

stress of 4.39 x 10 Pa, Figure shows the existence of a hystere-

sis loop in tension which is larger than the compressional hystere-
sis loop illustrated in Fig. 4.20.
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Fig. 4.22 Comparison of the stress-strain response for Berea sandstone at
two different frequencies. The traces appear to be identical.
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Fig. 4.23 Comparison of the stress-strain response for Westerly granite at
The traces appear to be identical.
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5.0 DISCUSSION AND CONCLUSIONS

a s B AL

In this study we have examined the details of stress-strain hystere-
sis loops when rock specimens are subjected to alternating compressive and
tensile stresses. In general at nonlinear amplitudes the stiffness of the
rock is greater in compression than in tension. Furthermore, preliminary
results indicate that most of the energy loss during a full cycle of loading
occurs as a result of strain in extension; the hysteresis loop in compression
is smaller than the hysteresis loop in tension. The shape of the hysteresis
loops also appears to be independent of frequency. These observations indi-

LA

cate a loss mechanism associated with intergranular friction. Intergranular
sliding appears to be restricted by the impingement of opposing crack faces in
compression, since the rock is stiffer in compression than in tension, and a
- large hysteresis loop develops only when the rock is subjected to tensile
stresses.

e The results of this study indicate that the mechanical behavior of

' rocks can be significantly different in compression than in tension and that
the onset of nonlinear effects with increasing strain may not be the same for
tensile loads as for compressive loads. All available evidence indicates that
the primary relaxation mechanism at nonlinear amplitudes between 1076 strain

‘f and 1074 strain involves intergranular friction. More experimental work in

» this area will shed light on the issue of linearity vs nonlinearity at inter-

. mediate strains, and also will provide realistic detailed information about

7] rock rheology for the numerical modeling of near-field seismic pulse propa-

3 gation. For this work to be most meaningful true uniaxial strain is neces-

; sary, and specimens must be exposed to elevated confining pressures.
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