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Abstract

Two classes of finite and infinite moving average sequences of bivariate

random vectors are considered. The first class has bivariate exponential mar-

ginals while the second class has bivariate geometric marginals. The theory of

positive dependence is used to show that in various cases the two classes consist

of associated random variables. Association is then applied to establish moment

inequalities and to obtain approximations to some joint probabilities of the

* related bivariate point processes,
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1. Introduction and Summary.

A reigning stationary model in time series analysis is the pxl moving average

(M.A.) model given by:

(1.1) X(n) A(j) r (n-j), n 0, +1, +2,...,

" where A(j), j-0,+1,+2,..., is a sequence of pxp parameter matrices s.t.

1 IIA(ji)I < -, and -(n), n- 0,+1,+2,... is a sequence of uncorrelated pxl
j =-Go

'- random vectors (r.ve.s) with mean zero and common covariance matrix. It is well

- known that this model emerges from many physically relizable systems (see for

example Hannan (1970), p. 9), however in some physical situations where the

r.ve.s X(n) are either positive or discrete the preceeding assumptions about the

r.ve.s E(n) are inappropriate (see Levis (1980), p. 152).

Several researchers, addressing themselves to this problem, have been con-

" structing univariate stationary M.A. models and univariate stationary auto-

- regressive moving average (A.R.M.A.) models where the r.v.s X(n) have exponential
,'

* (e.) or gamma distributions (dist.s) and discrete models where X(n) assumes

. values in a common set. Lawrence-Lewis (1977) present stationary H.A. models

- where the r.v.s X(n) have exp. dist.s; Gaver--Lewis (1978) consider stationary

±A.R.M.A. models where the r.v.s X(n) have gamma dist.s. Jacobs-Lewis (1978,a,b,c,

- 1983) construct A.R.M.A. models where the r.v. s X(n) are discrete and assume

,*2 values in a common finite set. The aformentioned models can be used in the

various fields of applied probability and time series analysis. In particular, these

"" models have been used to model and to analyze univariate point processes with

correlated interarrival times. Jacobs (1978) uses the exp. models in queues

with correlated service and correlated interarrival times. Other authors have

concentrated their efforts on the analysis of univariate point processes in the

a'
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context of time series analysis, for example Bartlett (1963, 1966), Brillinger

(1972, 1978), Jacobs and Lewis (1977) and Lawrance and Lewis (1977) to mention

a few. More details concerning the univariate geo. M.A. process and the corres-

ponding point processes may be found in Langberg-Stoffer (1985).

In this paper we present two classes of finite and infinite M.A. sequences

of bivariate r.ve.s. The first class has exp. marginals while the second class

has geometric (geo.) marginals. Within each class of M.A., the sequences are

classified according to their order of dependence on the past. For the sake of

clarity we restrict ourselves to bivariate M.A. sequences. However these models

can be extended in a straight forward way. We use the theory of positive de-

pendence to show that in a variety of cases the two classes of M.A. sequences are

associated (AS.). We then apply the association to obtain bounds for the bi-

variate point processes and to establish some moment inequalities.

In Section 2 we define the bivariate exp. and geo. dist.s, which are the under-

lying dist.s of our two classes, and present a variety of examples of such dist.s.

Further in Section 2 we define the concept of association and present a variety

of bivariate exp. and geo. dist.s that are AS. In Section 3 we construct the

two classes of M.Asproving that they have exp. or geo. marginals and showing

that if the underlying dist. is AS., sois the related M.A. sequence. Finally in

Section 3 we present the autocovariance matrices for both classes of M.A. se-

quences. In Section 4 we define bivariate point processes whose interarrival

- times are described by the bivariate exp. or geo. M.A. processes discussed in

Section 3. We show in Section 4 that if the interarrival times are AS. the corresponding

*i point processes inherit positive dependence properties. We then exploit positive

dependence to obtain bounds on the joint probabilities of the point processes.

We conclude Section 4 with moment inequalities for the bivariate processes and

a
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2. Preliminaries.

In this section we present definitions and prove some basic results to be

used in the sequel. First we present a definition of a bivariate geometric

distribution (B.G.D.).

Definition 2.1. Let N(l), N(2) be r.v.s assuming values in the set {1,2,.•.

We say that (N(l), N(2)) has a B.G.D. if N(l), N(2) have geometric distributions.

Examples 2.2. (a) Let N be a geometric r.v. Then (N,N) has a B.G.D.

(b) Let N(l), N(2) be independent geometric r.v.s. Then (N(l),N(2)) has a B.G.D.

(c) Let N(l),N(2),N(3) be independent geometric r.v.s. Then (min(N(l),N(3)),

min(N(2),N(3)))has a B.G.D.; the Esary-Marshall (1974) B.G.D. (d) Let P(0,0),

P(0,1), P(1,O), and P(l,l) be in [0,1] s.t. (i) P(0,0)+P(0,1)+P(1,0)+P(ll)- 1,

(ii) P(0,1)+P(l,l), P(1,0)+P(l,l) <1, and let N(l),N(2) be r.v.s assuming

values in the set {i,2,...} determined by:

". [ [p(I,I)la[p(0,1)+ P(l,I)]b a  b > a

" (2.3) P(N(l) > a, N(2)>b) b - b a,b- 1,2.
[P(1,1)l [P(1,0)+P(1,1)] - , b_<a

Then (N(l),N(2)) has'a B.G.D.; the Block (1977) fundamental B.G.D. (see also

Block-Paulson (1984)). (e) Let (M(1),M(2)) have a B.G.D. and let N(J)

(N(J,l),N(J,2)), J- 1,2,..., be an i.i.d. sequence of random vectors (r.ve.s),

independent of (M(l),M(2)),with a B.G.D. Then (IMjN " ' j2 hs

B.G.D.

In the following remark we show that Examples (Ex.s)(a),(b) and (c) in Ex.(2.2)

(but not (e)) are particular %cases of Ex. (2.2)(d).

Remarks2.4. (a) Let P(1,O)- P(0,1)- 0. Then we obtain the B.G.D. introduced

in Ex. 2.2(a). (b) Let P(l,l)- (P(1,1)+P(I,0))(P(l,I)+P(O,1)). Then we obtain

the B.G.D. introduced in Ex. 2.2(b). (c) Let P(1,1)> (P(1,1)+P(I,0))(P(I,I)+P(0,1)),

I
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and let M(l), M1(2), M1(3) be independent geometric r.v.s with parameters

-l~)P11 (,0) P.,)P11 -(O l -11 P1)+

* P(l,O))(P(l,l) + P(O,l)),respectively. Then (N(l),N(2)), given by (2.3), is

stochastically equal to the Esary-Marshall B.G.D.: (mi.n(M(l),M(3)),min(M(2),M(3))).

Next we present a definition of a bivariate exponential (ep.) distribution

* (B.E.D.)

Definition 2.5. Let E(l), E(2) be r.v.s assuming values in (0,00). We say

*that (E(l),E(2)) has a B.E.D. if E(l),E(2) have exp. distributions.

Examples 2.6. (a) Let E be an exp. r.v. Then (E,E) has a B.E.D. (b) Let

* E(l),E(2) be independent exp. r.v.s. Then (E(l),E(2)) has a B.E.D. (c) Let

* E(l),E(2),E(3) be independent exp. r.v.s. Then (min(E(l),E(3)), min(E(.2),E(3)))

has a B.E.D.; the Marshall-Olkin (1967) B.E.D. (d) Let (N(l),N(2)) have a

B.G.D. and let E(j)- (EQj~l), Ecj,2)), j- 1,2,..., be an i.i.d. sequence of

*r.ve.s, independent of (N(l),N(2)),with a B.E.D. Then ( iN~l)EQj,l), iN(2) E(J, 2))iml J-1

has a B.E.D. Ce) Let 0 < a <1. Then (E(l),E(2)) determined by: P(E(l)>x,

* E(2) > y) - eX-Y-Ot ,x,y > 0,has a B.E.D.; a Gumble (1960) B.E.D. (f) Let

ja <c <1. Then (E(l),E(2)) determined by: P(E(l) < x, E(2) < y) - (l-e-x)(l-e-Y)

* (l+cex-y),, x,y > 0, has a B.E.D.; a Gumble (196& B.E.D. (g) Let at> 1. Then

ct(X cA") l/a
* (E(l),E(2)) determined by: P(E(l) > x, E(2) > y) a ex , x,y > 0, has

* a B.E.D. (h) Let (X,Y) be a rve. with continuous marginal distributions F,G

* respectively. Then (-ln(1-F(X)), -ln~l-G(Y))) has a B.E.D.

Ex. 2.6(d) has been used by several researchers to generate bivariate distributions

* (for example Arnold (1975), Downton (1970), and Hawkes (1972) to mention few).

* In the following remark we illustrate how some of the B.E.D. are obtained from

Ex. 2.6(d).
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Remarks 2.7. (a) Let N(l) N N(2) and let E(j,l), E(J,2) be independent

r.v.s, J- 1,2,..... Then we obtain the B.E.D. introduced by Downton (1970).

(b) Let (N(l), N(2)) be as in Ex. 2.2(d) and let E(J,l), E(j,2) be independent

r.v.s, j- 1,2,.... Then we obtain the B.E.D. introduced by Hawkes (1972)-

* Paulson (1973). (c) Let (N(l),N(2)) be as in Ex. 2.2(c) and let E(Jl) =

- E(j,2), J- 1,2,.... Then we obtain the Marshall-Olkin (1967) B.E.D. given in

- Ex. 2 .6(c) (for details see Marshall-Olkin (1967)).

Finally we present a concept of positive dependence.

Definition 2.8. Let T=(T(1Y,...,T(n)1, n-l,2,..., be a multivariate r.ve.

We say that the r.v.s T(l),...,TCn) are associ'ated (AS.) if for all pairs of

measurable bounded functions f,g; R -R both nondecreasing in each argument

cov(f(T),g(T)) >0.

Remarks 2.9. (a) Note that independent r.v.s are AS. (Barlow-Proschan

(B-P) (1975), Th. 2.2 p. 31) and that nondecreasing functions of AS. rv.s are

AS.(B-P P3 p. 30). Thus the components of the r.ve. given in Ex*--2.2(c) and the com-

ponents of the r.ve. given in Ex. 2.6(c) are AS. (b) Let (E(l),E(2)) be as in Ex. 2.6(e)

(with a >0) or in 2.6(f) (with -1 <t < 0). Since P{E(l) > x, E(2) > y) < P{E() >x}

P{E(2) >y} for x,y > 0, E(l), E(2) are not AS. (d) Let (X,Y) be as in

Ex. 2.6(h). If X,Y are AS. (not AS.) then -ln (l-F(X)), -ln(1-G(Y)) are

AS. (not AS.) (by P3 of B-P p. 30).

The following lemma provides sufficient conditions for some of the bivariate dist.s

presented in Ex.s 2.2 and 2.6 to be AS.

Lemma 2.10. Let Q-(Q(l),Q(2)) be a r.ve. with components assuring values

in the set {,2,...} and let R(J) -(R(J,1),R(J,2)), j-1,2,... be an i.i.d. sequence

of r.ve.s with nonnegative components independent of Q. Assume that Q(l),Q(2) are

AS. and that R(l,l), R(1,2) are AS. Then YQ(1)R(J,1), Q(2)R(J,2) are AS.
j-=l j-=1

J-1J.

"•.- . .''...'1, ''.-'i' . i ."-" ":.."" . '/ -: - . --•-' ,'. .%-."]]l-'-
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Proof: Let f,g: R 2-~R be measurable bounded functions nondecreasing in each

argument and let UMs -jQ")R(J,L, Z =1,2. First note that

covff(U(1) 43(2)) ,g(UCI) ,U(2)) I Ecov(f(U(l)U, (2)) ,g(U(l) ,U(2)) JQI

+ cov{Ef(U(l),U(2))IQ, Eg(UJ(l),U(2))jQI.

Now Ef(U(l),U(2))IQ, Eg(U(1).U(2))JQ are nondecreasing functions of Q(l),Q(2).

Since Q(l),Q(2) are AS.

cov{Ef(U(l),U(2)) 1Q, Eg(U(l),U(2)) IQ)} >0.

Next let -max (Q(l),Q(2)), f(U(l),U(2))IQ, g(U(l),U(2)IQ are nondecreasing

functions of R(l,l),...,R(Ql1), R(l,2)....,R(Q,2), by P and Th. 2.2 of B-P

p. 30-31 these r.v.s. are AS. Thus:

cov~f(U(l) ,U(2) jQ, g(J(l) ,U(2))IQI > 0.

Consequently cov{f(U(l),U(2)), g(u(1),U(2))} >0. I

Remark 2.11. In particular we conclude from Lemmna 2.10 that: (i) The

components of the B.G.D. given in Ex. 2.2(e) are AS.pruvided M(l),M(2) are AS.

and N(l,l), N(1,2) are AS. (ii) The components of the B.E.D. given in Ex. 2.6(d)

is AS.provided N(l),N(2) are AS.and E(l,l), E(1,2)- are AS.

3. Model Constructions.

In this section we construct two classes of finite and infinite M.A. se-

quences of bivariate r.ve.s. We denote the first class of sequences by

{X(n,m) w (X(n,m,l), X(n,m,2)), n-0+l,2,...}I mil2,.,, and the second class

of sequences by {G(n,m)in (G(n,m,l),G(n,m,2)), n -0,+1,+2,...} m -1,2,...,Oo. We
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"' show that each r.ve. X(n,m) has a B.E.D. with a vector mean that does not depend

-, on n or m and that each r.ve. G(n,m) has a B.G.D. with a vector mean independent

of n or m. Within each class of sequences the order of dependence on the past

is indicated by the parameter m. For each positive integer m, X(n,m) (G(n,m))

*. depends only on the previous m r.ve.s: X(n-l,m),...,X(n-m,m) (G(n-l,m),...,G(n-m,m))

while the r.ve. X(n,-)(G(no)) depends on all the preceeding r.ve.s: X(n-l,w),

X(n-2,c),...,(G(n-l,c, G(n-2,-),...). After constructing the various models we

present sufficient conditions for the r.v.s. X(n(j),m,Z)(G(n(j),m,z)), Z 1,2,

j -1,...,k to be AS.(where kfl,2,..., and n(l) <n(2) < ...<n(k) E ,+,+2 .....

We conclude this section by computing the autocovariance matrices for the two

. classes of sequences and present sufficient conditions for the sequences to be

stationary. For the stationary sequences we give the spectral density matrices.

First we construct the "exp." class. Some notation is needed.

Notation 3.1. Throughout, n ranges over the integers and m,j over the

positive integers. Let E()= (E(n,l), E(n,2)) be i.i.d. r.ve.s with a B.E.D.

and mean vector (A (1),A (2)) (X(1),X(2) >0). Let (6(n,j,l),B(n,j,2)) be bi-

variate vectors with components in [0,1] and let B(n,j) be a 2x2 diagonal matrix

with B(n,j,l), 6(n,j,2) on the main diagonal. Further let (I(n,j,l),I(n,j,2)) be

independent bivariate r.ve.s independent of all the r.ve.s E(n) s.t. I(nj,l),

l(n,j,2) are Bernoullis r.v.s with parameters l-B(n,j,l), l-6(n,j,2),respectively,

and let V(n,j,q) be a 2x2 random diagonal matrix with

J J
I(n,Z,l), IT I(n,Z, 2) on the main diagonal qe {l,...,j}.

Z=q Znq

Finally, let a sum (product) over an empty set of indices be equal to zero (one).

We present now the class of "exp" sequences. For m -l,2,..., and n=0,+l,+2,...,

let

. * * * * * * * * * . . .
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*(3.2) X (n, m) M-1 V(n,r,1)B(n,r+1)E(n-r) + V(n,m,,1)E(n-m),

and

(3.3) X(n,co) - OV(n,r,l)B(n,r+1)E(n-r).

We show in Corollary 3.8 and Lenmma 3.9 that for all n,m, X(n,m) and X(n,-') have

* B.E.D.s. Next we construct the "geometric" class. Some notation is needed.

Notation 3.4. Let p(l),p(2) be real numbers in (0,1] and let (ci(n,l),ca(n,2))

be bivariate vectors s.t. p(Z) <ct(n,Z) <1, R -1,2. Further let N(n) =(N(n,l),N(n,2))

-1 -1
- be independent r.ve.s with B.G.D.s and mean vector (p (l)ci(n,l), p (2)cL(n,2))

and let M(n)- = (M(n,l),M(n,2)) be i.i.d. r.ve.s, independent of all N(n),

with a B.G.D. and mean vector (p (1),p (2)). Finally let (J(n,j,l),J(n,J,2))

be independent r.ve.s independent of all previous r.ve.s s.t. J(n,j,l),J(n,j,2)

are Bernoulli r.v.s with parameters l-cx(n,l), 1-ca(n-2), respectively,and let

j j
U(n,j,q) be a 2x2 random diagonal matrix with Ht J(n,Z,l), HI J(n,. ,2) on the

main diagonal q E {l,... ,j}.

We now present the class of "geometric" sequences. For m -1,2,..., n -0,+l ,+2,...,

let

*(3.5) G(n,m) = In U(n,r,l)N(n-r) + U(n,m+l,l)M(n-m)

* and

* (3.6) G(nec) U(n,r,l)N(n-r).
r=0

Next we show that X(n,m) (G(n,m)) has a B.E.D. (B.G.D.). The following lema is

* needed.

Lemma 3.7. Let Y(n,m ,q) - m- 1VnrqlqBnrqEnrql Vnmllq

*E(n-m-q+l), (Wnmq Im U(n,r+q-l,q)N(n-r-q+l) +U(n,m+q,q)M(n-n-q+l ,

nin0,+1,+2,..., m,q -1,2,......Then for all n,m, and q, Y(n,m,q)(W(n,m,q)) has a
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B.E.D. (B.G.D.) with mean vector (Xl-1),A- (2)) ((p- (1),p- (2))).

Proof: We prove the result of the lemma by an induction argument on m.

For m -1 (m= 0) Y(n,l,q) - B(nq)E(n-q+l) + V(n,q,q)E(n-q)(W(n,O,q) =N(n-q+l) +

*U(n,q,q)M(n-q+l)). By computing the characteristic functions of the components

of Y(n,l,q)(W(n,l,q)) one can verify that the results of the lemma hold for all

n,q. Let us assume that the results of the lemma hold for m and alln,q. Note
.-1

that Y(n,m+l,q) - B(n,q)E(n-q+l) + V(n,q,q)[ r-O V(n,r+q,q+l)B(n,r+q+l)E(n-q-r)

-* -+ V(n,m+q,q+l)E(n-m-q)](W(n,m+l,q) - N(n-q+l) +U(n,q,q)[I m
0 U(nr+q,q+l)

." N(n-q-r) + U(n,m+q+l,q+l)M(n-m-q)]). By the induction assumption the r.ve.

in the brackets has a B.E.D. (B.G.D.) with mean vector (x -l1),X- (2))

((p- (1),p- (2))). Since this r.ve. is independent of E(n-q+l)(N(n-q+l)) it

follows, as in the case m-1 (m--), that Y(n,m+l,q)(W(n,m+l,q)) has a B.E.D. (B.G.D.)

with mean vector (x -l1),X- (2))((p-l),p- (2))) for all n,q. H
Note that X(n,m) (G(n,m)), given by (3.2) ((3.5)), is equal to Y(nm,l) (W(n,m,l)).

Thus we conclude from Lemma 3.7 that

Corollary 3.8. For all n,m X(n,m) (G(n,m)) has a B.E.D. (B.G.D.) with

mean vector (X-()1 A ,X-1(2))((p-l(l),p- (2))).

We show now that G(n,-), given by (3.6), has a B.G.D. Also we show that if for

all n and 1- 1,2

m
(3.9) lim 11 (l-8(n,l,i)) - 0

then X(n,-), given by (3.3), has a B.E.D.

Lemma 3.10. (a) For all n,G(n,-) has a B.G.D. with mean vector (p i)p (2)).

(b) If Condition (3.9) holds then for all n,X(n,-) has a B.E.D. with mean vector

(A-1 (1),A- 1(2)).

M mProof: Let n be a positive integer. Since lim (l-a(n,l)) < lim(l-p())
p m*

-0, Z -l,2,G(n,m) ----- > G(n,-). By (3.9), X(n,m) --- X(n,-). Thus in
-' "-
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particular X(n,m) D> X(n,-) and G(n,m) D G(n,-). Consequently the results

of the lemma follow from Corollary 3.8. II

Note that for (3.9) to hold it suffices that for all n and 1 =-1,2,

inf{[(n,t,i), 1-1,2,...} >0.

Next we investigate some dependency aspects of both classes.

Remarks 3.11. (a) For a fixed m, the sequences {X(n,m), n =0+,+_2,...1,

fG(n,m), n =0,+l,+2,...) are m-dependent (i.e. for n(l), n(2) integers s.t.

In(l)-n(2)I >m the r.ve.s X(n(l),m), X(n(2),m) (G(n(l),m), G(n(2),m)) are inde-

pendent). (b) Clearly if we choose a to be a function, say J, of n (w(n) E {1,2,...)

for all n) then the dependency of X(n, (n)) (G(n,P(n))) on the past varies with

n. (c) It is easy to see that for all n the r.ve. X(n,-) (G(n,-)) depends on all

the preceeding r.ve.s X(q,-), - <q<n (G(q,-), - <q<n).

We now investigate one positive dependence aspect of both classes.

Lemma 3.12. Suppose that E(l,l),E(1,2) are AS.- Then for all positive in-

tegers m,k, and all integers n(l) <n(2) <... <n(k) the r.v.s X(n(j),m,t),

I-1,2, j -l,...,k are AS.

Proof: By Th. 2.2 p. 31 and P4 p. 30 of B-P, the r.v.s. E(r,t), I(n(j),q,),

9 1-1,2, ql,...,m, j-l,...,k, r-n(l),...,n(k) are AS. Since the r.v.s

X(n(j),m,1), 1- -1,2, j -1,...,k are nondecreasing functions of the previous collec-

tion of AS.r.v.s the result of the lemma follows by P 3 p. 30 of B-P. Ii

In a similar way one can prove the following lemma.

Lemma 3.13. Suppose that M(l,l), M(1,2) are AS. and that for all n,

N(n,l), N(n,2) are AS. Then for all positive integers mk, and all integers

n(l) <n(2) <... <n(k) the r.v.s G(n(j),m,), 9-1,2, j -1,...,k are AS.

Next we prove similar results for the sequences {X(n,-), n- 0,+1,2,...} and

fG(n,),n = 0,+,_+2,...1.

Lemma 3.14. (a) Let us assume that M(l,l), M(1,2) are AS. and that for all

n, N(n,l), N(n,2) are AS. Then for all positive integers k and all integers

,..-...... .,. ,-,.... ;-.- . .;.- .',. .-*.- .. ,. ........**-..... .:,...-.*. .'..-....-...........-..-.,,.:. ,. -..--..... .... * - *'.. ." .% "...,
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n(l) <n(2) <... <n(k), the r.v.s G(n(j),",t), 1-1,2, j -l,...,k are AS. (b) Let

*us assume that E(l,l), E(1,2) are AS and that Condition (3.9) holds. Then for

all positive integers k and all integers n(1) < n(2) <... <n(k, the r.v.s

X(n(j),-,L), I -l,2, j -1,...,k are AS.

Proof: By similar arguments to the ones given in the proof of Leia 3.10

we conclude that the two sequences of r.ve.s: (G(n(l),m,l), G(n(l),m,2),...,

G(n(k),m,l), G(n(k),m,2)) and (X(n(l),m,l), X(n(1),u,2),...,X(n(k),u,l),

X(n(k),m,2)), m -1,2,..., converge in distribution as a -- to the r.ve.s:
.1

(G(n(l),, 1), G(n(l),-,2),...,G(n(k),-,l), G(n(k),-,2) and (X(n(l),-,l),

X(n(l),-,2),...,X(n(k),-,l), X(n(k),-,2)),respectively. By Lema 3.12 the r.v.s

X(n(j),m,2), t-1,2, j -l,...,k, are AS. for all m and by Leuna 3.13 the r.v.s

G(n(j),m,t),9-l,2, j l,...,k, are AS.for all m. Consequently the results of

the lemna follow by P4 of Esary-Proschan-Walkup (1967). II

Next we compute the autocovariance matrices for both classes of sequences.

Some notation is needed.

Notation 3.15. Let r(e), r(g), and r(g,n) be the covariance matrices of

E(1),tK(1) and N(n) respectively. For Z-0,1,..., let r(e,n,L,m) and r(g,nt,m)

be the autocovariance matrices of X(nm), and G(n,m), respectively, n,t-0,+l,+2,

.*.., m1,2,...,. Further let A(nj) be a 2x2 diagonal matrix with

(1-c(n,l))3, (1-a(n,2))3 on the diagonal, let I be the 2x2 identity matrix, and

X the indicator function. By some simple calculations we obtain for n= 0,+l,+2,...,

ml,2,...,., and 9-1,2,... (but not zero), that

- (3.16) r(e,n,L,m)=

r r+t
r-O -B(n,r+l)[ fl(I-B(n,j))]r(e)[ TI (I-B(n+t,j)]B(n+t,r+t-l)

+ B(nm-t+l)[ II (I-B(n,j))]r(e)[ IT (I-B(n+t,j))].
.4'1 j-l J-l

j' ; - +'"", i- '.: .. '; " . ? . . ., ,: 5" . .. .' .:..:;. .:.:
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* oWe may obtain the off-diagonal elements of F(e,n,O,m) from Equation (3.16) by

setting B(n,m+l) - I and -0. The diagonal elements are the variances of

X(n,m,l) and X(n,m,2), namely,-2 (1) and -2 (2), respectively.

In a similar way we obtain for n=nO,+l,+2,..., m=l,2,..., , and 1-1,2,... (but

not zero), that

(3.17) r(g~nl,m) A(n,r)r(g,n-r)A(n+L,r+Z)

+ x{O}(L) A(n,m+l)r(g)A(n,m+l).

We may obtain the off diagonal elements of r(g,n,O,m) from Equation (3.17) by

setting L -0. The diagonal elements are the variances of G(n,m,l), G(n,m,2), namely,

(l-p(l))p-2 (1) and (l-p(2))p2 (2), respectively.

Finally we give sufficient conditions for the exponential and geometric se-

quences to be stationary and present their spectral density matrices.

First we address ourselves to the exponential case. Let us assume that

-" 8(n,j,l), B(nJ,2), given in Notation 3.1, do not depend on n. Then clearly the

bivariate exponential sequences given by (3.2) and (3.3) are stationary. Let

us denote the autocovariance function of the stationary X(n,m) by r(e,t,m).

We obtain r(e, L.,m) from Equation (3.16) by simply suppressing the index correspond-

- ing to n in Equation (3.16). Note that for m<- .Ir (e,L,m)Ilis a finite sum

"*. and is thus finite, and for m-m, ' -l (e< ,m)l <-by Consition (3.9). Consequently

* the 2x2 spectral density matrix, f(e,w,m), of the stationary process Xjn,m) is given

by:

(3.18) f(ewm) ( " E , WC()e-  we[-i
7 m .

aM

*with inverse relationship

.,a



13

(3.19) r(e,X,m) W fVe,w,m)e IAdw, 1 -0,+l,+2,...,

(where r(e,-X,m) is the transpose of r(e,X,m)).

A sufficient condition for the geometric sequences, given by Equations (3.5) and

(3.6), to be stationary is that mdn,1), ct(n,2), given in Notation 3.4 are

* equal to at(l), at(2) respectively for all n. Let us denote the autocovariance

function of the stationary sequence G(n,m) by r(g~t,m). We obtain r(g,k,n) from

* Equation (3.17) by suppressing the index corresponding to n In Equation (3.171. Since

at(l) > p(l) and a(2) >p(2), ~i~r (zg,m)II <-for *-l92.,oo* Consequently the

2x2 spectral density matrix, f(g,w,m), of the stationary process G(n,m) is given by:

(3.20) f (g. W'm) - ~. r(g,k,m)e -!X e [-1 , rrjI

with inverse relationship

*(3.21) r(g.L,m) -~f(g~w,m)e dw 0,I±,.

7I-T

M 1,2,... 1001

(where r(g,z,m) is the transpose of r(g,k,m)).

4. Inequalities.

For m " ,2,... ,, let {R(s,t,a) - (R(s~ml), R(t~m.2)), s,t >01,

R(0,0,m) -(0,0), be a bivariate point process with interarrival times equal to

Xl),X(2,m),..., given by Equation (3.2) or (3.3). Furthermore let

fS(a~b,tn) -SMa~ml), S(b,m,2)), a,b -0,1,..)}, S(0,0,m) - (0,0), be a bivariate

* point pr6cess with interarrival times equal to G(1,m),G(2,m),..., given by

Equation (3.5) or (3.6). We show that if the interarrival times of the process
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R(S) are AS. then the process R(S) inherits positive dependence properties.

Then, we use the positive dependence properties and the special structure of the

interarrival times to obtain lover bounds for the joint probabilities of the

bivariate point processes. Finally, we utilize the positive dependence to ob-

tain moment inequalities for the processes R and S and for their interarrival

times.

First we define two concepts of positive dependence.

Definition 4.1. Let q=-2,3,..., and let X-(X1,...,x q ) be a r.ve. We say

that X is positively .upper orthant dependent (P.U.O.D.) [positively lower orthant

dependent (P.L.O.D.)] if for all real numbers tl,...,tq

q
P{XJ >tj, j l,...,q}> TI P{X >t }

-J j j
q

[P{X <tj, j fl,...,q}> II P{X <t }].

Remarks 4.2. (a) In the bivariate case (q-2) X is P.U.O.D. iff X is P.L.O.D.

(b) For q >2 the two concepts of positive dependence are not equivalent.

(c) If Xl,...,Xq are AS. then clearly X is P.U.O.D. and P.L.O.D. (d) Let

ft f (..,) f [0,-) be measurable nondecreasing (nonincreasing) functions

and let X be P.U.O.D. (P.L.O.D.). Then

q q
(4.3) E I fj(X )> H Ef (X.)

j-l J -l J

(see Lehmann (1966)). For the sake of completeness we present the following

definition.

Definition 4.4. Let X,Y be r.v.s. We say that X is stochastically less

sthan or equal to Y, and write X < Y is for every real number tP(X>t) <P(Y >t).

Remark 4.5. Let f: ([0,,) -(0, ) be a measurable nondecreasing function
Sde s

and let X < Y. Then Ef(X) < Ef(Y) (see Lehmann (1966)).
a.
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Now we show that if the interarrival times of R(S) are AS., then R(S)

inherits positive dependency properties.

Lemma 4.6. Let m-1,2...,., and let us assume that for q-1,2,..., the

r.v.s {X(J,m,l), j -l,...q, 1-1,2) are AS. Then for all positive real numbers

and ,Lq - 1,2 the r.ve.s (R(sj.mJi)l j-l....q) are P.U.0.D.

and P.L.O.D.

Proof: Let nl.,...,nq be positive integers, let fj x n
( r~m j < i

and letgj =9 XX n, j =l,...,q. The functions fl...,fq(gl,...,gq)
( ~~ s1

are nonincreasing (nondecreasing) functions of AS. r.v.s. By B-P P3 p. 30

fll...,q (gl,...,gq ) are AS. r.v.s. Consequently P{R(s.m,# )i >nj, j I,...,q}
=E ifi > IHEf = J=P{R(s.,,Lj)j >nj} and P{R(sj,m,tj)<nj, J =l,...,q} =

in Sal Jil-
q q q

Ell g_ z HE gj - I P{R(s.m,J ~<n}. I
J-1 -Jl jal

Lemma 4.7. Let ml,2,...,-, and let us assume that for q-1,2,..., the

r.v.s {G(J,m,i), j-l,...,q, i-1,2} are AS. Then for all positive integers

nl,...,nq and £1 ,...,Lq 1,2 the r.v.s {S(njm,1), j =1,...,q} are AS.

Proof: Note that S(nj1mLt) - , 1lG(r,m, 1̂ ), j -l,...,q. Thus the

S(nilmtj)'s are nondecreasing functions of AS. r.v.s and hence are AS. II

Using these two last results one can obtain a variety of probability inequalities.

For more details see Tong (1980).

In Lemmas 4.6 and 4.7 we bounded from below joint probabilities of R(S) by

a product of marginal probabilities of R(*,m,t) (S(*,m,t)). For the stationary

models we bound from below some of these marginal probabilities by Poisson and

negative binomial probabilities.



16

Lemma 4.8. Let us assume that 0(n,l,l), B(n,l,2) are equal,respectively,to

0(l),0(2) for all n. Let m-l,2,...,-, t -1,2, s>0 and let L(t,s) be a Poisson

-1
*i r.v. with mean X(t)8 (t)s. Then R(s,m,t) < L(t,s).

Proof: From Equation (3.2) or (3.3) we obtain that X(q,m,t) >_(I}E(q,t},

q-1,2,.... Nov for r-l,2,... P{R(s,m,t) <r} - P{ 7r X(q,m,t) >st >'- qq

*."" P{ 0 =lB(t)E(q,t) >s) - P{L(t) <r}. II
Lemma 4.9. Let us assume that a(n,l), c(n,2) are equal to a(l), a(2),

respectively for all n. Let ml,2,...,®, 91,2, r-1,2,..., and let

Q(I,r) be a negative binomial r.v. with parameters (r,p(L)c-l(9)). Then S(r,m,t)
s

> Q(t,r).

Proof: From Equation (3.5) or (3.6) we obtain that G(q,m,t) >N(q,t),

q- ,2,.... Now for a -1.2.... P{S(r,m,t) >r+a} - P{yr G(q,m,t) >r+a} >

. P{yr N(q,L) r+a} > P{Q(t,r) >r+a}. II
Using the AS. of E(1) (G(1)) we obtain the following "residual" inequalities.

Lemma 4.10. Let the assumption and notation of Lemma 4.8 hold and assume

that E(l,l), E(1,2) are AS. Then for t >s1 , t 2 >s 2, nl,n 2 , r {1,2,...1,

n 1 >r, n2 >r

P{R(t,m,t) <n,, tl,21R(s,m,t) <r,t l,21

2
> I P{L(t,ts t ) < nt-r).

t=l

Proof: Since X(q,m,t) .(Z)E(q,t), q-l,2,..., L1,2, we obtain that
n +1

P{R(t(s,m,l) <r, t1,2}=P{yq 1 X(q,m,t) > tt q 1 s9

nt+l n +1t = 1,2} > P .t + X(q,m,l) >t Si r X(q,m,t) >s,, E- -1,21 > P{ +lS(t)

Sq-r+1 q=l +1 qnr+1

E(q,t) >tt-st, .q.X(q,m,t) >s,, Z -1,21. Note that .B(1)E(q,t), t-l,2

are nondecreasing functions of the AS. rv.s {E(q,t), q =r+l,.... nl+n2+l, Z -1,2}

I'.
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and thus are AS., and that they are independent of jr X(q,m,.L)-=i,2. Consequently
q-l 2

P{R(t,,m,l)< n., R(st,m,t) <r, tl,2} > P{.q=lX(q,m,I) >s , Z= 1,2} H

n +l 2
P{1 qI8B(t)E(q,L) >t -s t } = P{q lX(q,m,t) >s,, I-1,2} 1I P{L(L,t,-s.) <n -r}.

Now the result of the lemma follows. [

In a similar way one can show the following result.

Lemma 4.11. Let the assumption and notation of Lemma 4.9 hold and assume

that N(l,l), N(1,2) are AS. Then for n1 , n2, k, rl, r2, a,, a2 positive integers

s.t. rl,nr > k, n > a, n2 > a2 both conditional probabilities P{S(rtm,t) >
rr2 >k n1 a 2

n +rt, 1-l,21S(k,m,t) > at+k, -1,2}, and P{S(r,,m,L) >n+rt., t-l,21S(k,m,) 
=

2

a2,+k, t1-,2) are not smaller than U P{Q(t,r -k)> n -a +r -k}.
t-l

Finally we address ourselves to some moment inequalities.

Lemma 4.12. Let the assumptions and notation of Lemma 4.6 hold and let
q k q k

1 k,...,k q be positive Integers. Then E R [R(sjm, t )) > TI E[R(sijm,t )] J.
i-ij~ j-l

Proof: The result of the lemma follows from Lemma 4.6 and Inequality (4.3)
k

(with f (x) x, x>O, j =l,...,q). II

Lemma 4.13. Let us assume the assumptions and notation of Lemma 4.8 hold

k k
and let k be a positive integer. Then ER(s,m,t) < EL(t,s)

Proof: The result of the lemma follows by Lemma 4.8 and Remark 4.5 (with

kf(x) -x , x>Qt

In a similar way we can prove the following result.

Lemma 4.14. Let us assume that the assumptions and notation of Lemmas 4.7
q k

and 4.9 hold and let kl,...,k q be positive integers. Then E H [S(n ,m,t )] J

q kq J-l
>RE[Q(Xj )]

J-1

Lemma 4.15. Let us assume that the assumption and notation of Lemma 4.6
q k

hold and let kl,....kq be positive integers. Then E H [X(J,m,t)] >
q jl
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q -k

ii {k ![X(I )] J.J. J 

1" ~ Proof: The result follows by Corollary 3.8 and the association of the r.v.s

.,"{X(j m, Ij), J =l,...,.q}. I I

Similarly we obtain the following.

Lemma 4.16. Let us assume that the assumption and notation of Lemma 4.7
q kj

hold and let kl,...kq be positive integers. Then E H [G(i,m, )] _

q k J.1

T E(G(1,mi)] J.

Note that G(l,m,tL) is by Corollary 3.8, a geometric r.v. with mean (-l1s)

j 1 1,... ,q.
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