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Abstract

Two classes of finite and infinite moving average sequences of bivariate
random vectors are considered. The first class has bivariate exponential mar-
ginals while the second class has bivariate geometric marginals. The theory of
positive dependence is used to show that in various cases the two classes consist
of associated random variables. Association is then applied to establish moment
inequalities and to obtain approximations to some joint probabilities of the
related bivariate point processes, ; Lol lemal. /-34/)1\/&
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* 1. Introduction and Summary.

. A reigning stationary model in time series analysis is the pxl moving average
o (M.A.) model given by:
\

(1.1) X(n) = [° A€ (n=)), n=0, #1, +2,...,

j--&

where A(j), j=0,+1,+2,..., 1is a sequence of pxp parameter matrices s.t.
‘ zw la(l < =, and €(n), n=0,+1,+2,... is a sequence of uncorrelated pxl
o0
rgndom vectors (r.ve.s) with mean zero and common covariance matrix. It is well
E known that this model emerges from many physically relizable systems (see for
example Hannan (1970), p. 9), however in some physical situations where the
r.ve.s §(n) are either positive or discrete the preceeding assumptions about the

r.ve.s e{(n) are inapp}opriate (see Lewis (1980), p. 152).

Several researchers, addressing themselves to this problem, have been con-

structing univariate stationary M.A. models and univariate stationary auto-

regressive moving average (A.R.M.A.) models where the r.v.s X(n) have exponential

'.'.,;_..".

(exp.) or gamma distributions (dist.s) and discrete models where X(n) assumes
values in a common set. Lawrence-Lewis (1977) present stationary M.A. models
where the r.v.s X(n) have exp. dist.s; Gaver-~ Lewis (1978) consider stationmary

A.R.M.A. models where the r,v.s X(n) have gamma dist.s. Jacobs-Lewis (1978,a,b,c,

Wyt e

1983) construct A.R.M.A, models where the r.v. s X(n) are discrete and assume

2 8
o

values in a common finite set. The aformentioned models can be used in the

LA

various fields of applied probability and time series analysis. In particular, these
models have been used to model and to analyze univariate point processes with
correlated interarrival times. Jacobs (1978) uses the exp. models in queues

with correlated service and correlated interarrival times. Other authors have

p l'.":':'-'-'- ':'

concentrated their efforts on the analysis of univariate point processes in the
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context of time series analysis, for example Bartlett (1963, 1966), Brillinger
(1972, 1978), Jacobs and Lewis (1977) and Lawrance and Lewis (1977) to mention
a few. More details concerning the univariate geo. M.A. process and the corres-
ponding point processes may be found in Langberg-Stoffer (1985).

In this paper we present two classes of finite and infinite M.A. sequences
of bivariate r.ve.s. The first class has exp. marginals while the second class
has geometric (geo.) marginals. Within each class of M.A., the sequences are
classified according to their order of dependence on the past. For the sake of
clarity we restrict ourselves to bivariate M.A. sequences. However these models
can be extended in a straight forward way. We use the theory of positive de-
pendence to show that in a variety of cases the two classes of M.A. sequences are
associated (AS.). We then apply the association to obtain bounds for the bi-
variate point processes and to establish some moment inequalities.

In Section 2 we define the bivariate exp. and geo. dist.s, which are the under-
lying dist.s of our two classes, and present a variety of examples of such dist.s.
Further in Section 2 we define the concept of association and present a variety
of bivariate exp. and geo. dist.s that are AS. In Section 3 we construct the

two classes of M,A.sproving that they have exp. or geo. marginals and showing

that if the underlying dist. is AS., sois the related M,A. sequence., Finally in
Section 3 we present the autocovariance matrices for both classes of M.A. se-
quences, In Section 4 we define bivariate point processes whose interarrival

times are described by the bivariate exp. or geo. M.A. processes discussed in
Section 3. We show in Section 4 that if the interarrival times are AS. the corresponding
point processes inherit positive dependence properties, We then exploit positive
dependence to obtain bounds on the joint probabilities of the point processes.

We conclude Section 4 with moment inequalities for the bivariate processes and

their interarrival times.




2. Preliminaries.

In this section we present definitions and prove some basic results to be

used in the sequel. First we present a definition of a bivariate geometric

distribution (B.G.D.).

Definition 2.1. Let N(1), N(2) be r.v.s assuming values in the set {1,2,...}.

We say that (N(1), N(2)) has a B.G.D. if N(1), N(2) have geometric distributions.

Examples 2.2. (a) Let N be a geometric r.v. Then (N,N) has a B.G.D.

(b) Let N(1), N(2) be independent geometric r.v.s. Then (N(1),N(2)) has a B.G.D.
(c) Let N(1),N(2),N(3) be independent geometric r.v.s. Then (min(N(1),N(3)),

min(N(2),N(3)))has a B.G.D.; the Esary-Marshall (1974) B.G.D. (d) Let P(0,0),

p(0,1), P(1,0), and P(1,1) be in [0,1] s.t. (i) P(0,0)+P(0,1)+P(1,0)+P(1,1)=1,

3 (i1) p(0,1)+P(1,1), P(1,0)+P(1,1) <1, and let N(1),N(2) be r.v.s assuming

E values in the set {1,2,...} determined by:

PQ,1)1%P0,1)+P(1,1)1°2, b>a

, a,b=1,2,...

(2.3) P(N(1)>a, N(2)>b) = b —t

Then (N(1),N(2)) has'a B.,G.D.; the Block (1977) fundamental B.G.D. (see also
Block-Paulson (1984)). (e) Let (M(1),M(2)) have a B.G.D. and let N(j) =
(N(j,1),N(},2)), §=1,2,..., be an 1.1.d. sequence of random vectors (r.ve.s),

independent of (M(1),M(2)),with a B.G.D. Then (zg’g)n(j,l), z’j‘ii)

N(j,2)) has a
B.G.D.
In the following remark we show that Examples (Ex.s)(a),(b) and (c) in Ex.(2.2)
(but not (e)) are particular ‘cases of Ex. (2.2)(d).

Remarks-2,4. (a) Let P(1,0) = P(b,l)- 0. Then we obtain the B.G.D. introduced
in Ex. 2.2(a). (b) Let P(1,1)= (P(1,1)+P(1,0))(P(1,1)+P(0,1)). Then we obtain

the B.G.D. introduced in Ex. 2.2(b). (c¢) Let P(l,l)z.(P(1,1)+-P(l,O))(P(1,1)+P(0,l)),
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and let M(1), M(2), M(3) be independent geometric r.v.s with parameters
P(1,1)(P(1,1) + P(1,0)7%, p(1,1)(2(1,1) + p0, 107, (pa,»17 e, +
P(1,0))(P(1,1) + P(0,1)), respectively. Then (N(1),N(2)), given by (2.3), is
stochastically equal to the Esary-Marshall B.G.D.: (min(M(1),M(3)),min(M(2),M(3))).

Next we present a definition of a bivariate exponential (exp.) distribution

(B.E.D.)

Definition 2.5. Let E(1l), E(2) be r.v.s assuming values in (0,®). We séy

that (E(1),E(2)) has a B.E.D. if E(1),E(2) have exp. distributions.

Examples 2.6. (a) Let E be an exp. r.v. Then (E,E) has a B.E.D. (b) Let

E(1),E(2) be independent exp. r,v.s. Then (E(1),E(2)) has a B.E.D. (c) Let
E(1),E(2),E(3) be independent exp. r.v.s. Then (min(E(1),E(3)), min(E(2),E(3)))
has a B.E.D.; the Marshall-Olkin (1967) B.E.D. (d) Let (N(1),N(2)) have a
B.G.D. and let E(j)= (E(3,1), E(J,2)), j=1,2,..., be an i.i.d. sequence of
SR, TPeG,2)
has a B.E.D. (e) Let 0 < a<l. Then (E(1),E(2)) determined by: P(E(1)> x,

r.ve.s, independent of (N(1),N(2)), with a B.E.D. Then (Z

EQ2Q)>y) =e XY™  x.y >0 has a B.E.D.; a Gumble (1960) B.E.D. (f) Let
la|] <1. Then (E(1),E(2)) determined by: P(E(1) <x, EQ2) <y) = (1-e *)(1-e77)
(1+ae *™), x,y > 0, has a B.E.D.; a Gumble (19601 B.E.D. (g) Let a> 1. Then

~( a+ya)1/a
(E(1) ,E(2)) determined by: P(E(1) > x, E(2) >y) = e » X,y > 0, has
a B.E.D. (h) Let (X,Y) be a r.ve. with continuous marginal distributions F,G
respectively. Then (-1n{1-F(X)), -1n(1-G(Y))) has a B.E.D.
Ex. 2.6(d) has been used by several researchers to generate bivariate distributions
(for example Arnold (1975), Downton (1970), and Hawkes (1972) to mention few).

In the following remark we illustrate how some of the B.E.D. are obtained from

Ex. 2-6(d)o

-------------------
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Remarks 2.7. (a) Let N(1) = N(2) and let E(j,l1), E(j,2) be independent
r.v.s, j=1,2,... . Then we obtain the B.E.D. introduced by Downton (1970).
(b) Let (N(1), N(2)) be as in Ex. 2.2(d) and let E(jJ,1), E(j,2) be independent
r.v.s, j=1,2,.... Then we obtain the B.E.D. introduced by Hawkes (1972)-
Paulson (1973). (c) Let (N(1),N(2)) be as in Ex. 2.2(c) and let E(j,1) =
E(j,2), j=1,2,.... Then we obtain the Marshall-Olkin (1967) B.E.D. given in
Ex. 2.6(c) (for details see Marshall-Olkin (1967)).

Finally we present a concept of positive dependence.

Definition 2.8. Let 'fs(I(l)_,...,T(b)_)_, n=1,2,..., be a multivariate r.ve.
We say that the r.v.s T(1l),...,T(n) are associated (AS.) if for all pairs of
measurable bounded functions f,g: R" +R both nondecreasing in each argument
cOV(f('f),g(lj)) >0.

Remarks 2.9. (a) Note that independent r.v.s are AS.(Barlow-Proschan
(B-P) (1975), Th. 2.2 p. 31) and that nondecreasing functions of AS. rv.s are

AS.(B=P P, p. 30). Thus the components of the r.ve. given in Ex. 2.2(c) and the com-

3
ponents of the r.ve. given in Ex. 2.6(c) are AS. (b) Let (E(1),E(2)) be as in Ex. 2.6(e)
(with 0 >0) or in 2.6(f) (with -1<a<0). Since P{E(1) >x, E(2) >y} < P{E(1) > x}
P{£(2) >y} for x,y > 0, E(1), E(2) are not AS. (d) Let (X,Y) be as in

Ex. 2.6(h). If X,Y are AS. (not AS.) then -1n (1-F(X)), -lg(l-G(Y)) are

AS. (not AS.) (by P, of B-P p. 30).

3
The following lemma provides sufficient conditions for some of the bivariate dist.s
presented in Ex.s 2.2 and 2.6 to be AS.

Lemma 2.10. Let Q=(Q(1),Q(2)) be a r.ve. with components assumring values
in the set {1,2,...} and let B(j)-—(R(j,l),R(j,Z)), j=1,2,... be an i.i.d. sequence

of r.ve.s with nonnegative components independent of Q. Assume that Q(1),Q(2) are

AS. and that R(1,1), R(1,2) are AS. Then XQ(”R(j,l).ZQ(i)R(j,z) are AS.
i=1 j=

---------------------------------
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Proof: Let f,g: R2->R be measurable bounded functions nondecreasing in each

argument and let U(2) -ZQ‘“R(j,JL), £=1,2., First note that
i=1

covif(U(1),U(2)),g(U(1),U(2)}=E{cov(£(U(1)U, (2)),g(U(1),U(2))]Q}

+ cov{Ef(U(1),U(2))]qQ, Eg(u(l),u(2))|q:.

Now E£(U(1),U(2))]|Q, Eg(U(1),U(2))|Q are nondecreasing functions of Q(1),Q(2).

Since Q(1),Q(2) are AS.
cov{Ef(U(l),U(Z))|Q, ES(U(l),U(Z))lQ)}Z_O-

Next let J = max (Q(1),Q(2)), £(U(1),U(2))]|Q, g(U(1),U(2)|Q are nondecreasing

functions of R(1,1),...,R(Q,1), R(1,2),...,R(Q,2), by P,and Th. 2.2 of B-P

3
P. 30-31 these r.v.s. are AS. Thus:

cov{£(U(1),U(2)|Q, g(U(1),U(2))[Q}>o0.

Consequently cov{f(U(1),U(2)), g(U(1),u(2))}>0. ||

Remark 2.11. In particular we conclude frowm Lemma 2,10 that: (i) The
components of the B.G.D. given in Ex. 2.2(e) are AS, pruvided M(1),M(2) are AS.
and N(1,1), N(1,2) are AS. (ii) The components of the B.E.D. given in Ex. 2.6(d)

is AS.provided N(1),N(2) are AS,and E(1,1), E(1,2) are AS.

3. Model Constructions.

In this section we construct two classes of finite and infinite M.A. se-

]

quences of bivariate r.ve.s. We denote the first class of sequences by

NN,

- v
.

{X(n,m) = (X(n,m,1), X(n,m,2)), n=0,+1,+2,...} m=1,2 .. », and the second class

$ e 0

"

of sequences by {G(a,m) = (G(n,m,1),G(n,m,2)), n=0,+1,+2,...} m=1,2,...,=2. We

~
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show that each r.ve. X(n,m) has a B.E.D. with a vector mean that does not depend
on n or m and that each r.ve. G(n,m) has a B.G.D. with a vector mean independent
of n or m. Within each class of sequences the order of dependence on the past
is indicated by the parameter m. For each positive integer m, X(n,m) (G(n,m))
depends only on the previous m r.ve.s: X(n—l,m),...,%(n-m,m) (G(n—l,m),...,?(n-m,m))
while the r.ve. X(n,»)(G(n,~)) depends on all the preceeding r.ve.s: X(n-1,),
X(n=2,2),4000,(G(n=1,»,, G(n=2,%),...). After coﬁsttucting the various models we
present sufficient conditions for the r.v.s. X(n(j),m,l)(G(n(j),m,Z», L=1,2,
j=1,...,k to be AS.(where k=1,2,..., and n(l) <n(2) <...<n(k) € {0,+1,+2,...%
We conclude this section by computing the autocovariance matrices for the two
classes of sequences and present sufficient conditions for the sequences to be

.

stationary. For the stationary sequences we give the spectral density matrices.

First we construct the "exp." class. Some notation is needed.

Notation 3.1. Throughout, n ranges over the integers and m,j over the

positive integers. Let ?(q)==(E(n,l), E(n,2)) be i.i.d. r.ve.s with a B.E.D.

and mean vector (A-l(l),A-l(2)) (>(1),x(2) >0). Let (8(n,j,1),B(n,j,2)) be bi-
variate vectors with components in [0,1] and let B(n,j) be a 2x2 diagonal matrix
with 8(n,j,1), B(n,j,2) on the main diagonal. Further let (I(n,j,1),I(n,j,2)) be
independent bivariate r.ve.s independent of all the r.ve.s E(n) s.t. I(n,j,l),
I(n,j,2) are Bernoullis r.v.s with parameters 1-8(n,j,l), 1-8{n,j,2),respectively,

and let V(n,j,q) be a 2x2 random diagonal matrix with

..“' j
. mI(n,2,1), I I(n,2, 2) on the main diagonal qe {1,...,j}.
2=q L=q

Finally, let a sum (product) over an empty set of indices be equal to zero (ome).

We present now the class of "exp" sequences. For m=1,2,..., and n=0,+1,+2,...,

let

------------
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(3.2) X(n,m) = Z:;é V(a,r,1)B(n,r+1)E(n-r) + V(n,m,1)E(n-m),

and
(3.3) X(n,») = {:=OV(n,r,1)B(n,r+1)§(n-r).

We show in Corollary 3.8 and Lemma 3.9 that for all n,m, X(n,m) and X(n,*) have
B.E.D.s. Next we construct the '"geometric'" class. Some notation is needed.

Notation 3.4. Let p(1),p(2) be real numbers in (0,1] and let (a(n,l),a(n,2))

r be bivariate vectors s.t. p(2) <a(n,?) <1, 2=1,2. Further let N(n) = (N(n,1),N(n,2))
be independent r.ve.s with B.G.D.s and mean vector (p-l(l)a(n,l), p_l(Z)a(n,Z))

g and let M(n) = (M(n,l1l) ,M(n,2)) be i.i.d. r.ve.s, independent of all I;I(n),

- with a B.G.D. and mean vector (p-l(l),p-Z(Z)). Finally let (J(n,{j,l),J(n,j,Z))

be independent r.ve.s independent of all previous r.ve.s s.t. J(n,j,l),J(h,j,Z)
E’ are Bernoulli r.v.s with parameters 1l-a(n,l), l-a(n-2), respectively,and let

h| h|
U(n,j,q) be a 2x2 random diagonal matrix with I J(n,%,1), T J(n,% ,2) on the

- 2=q i=q
- main diagonal qe {1,...,j}.

We now present the class of "geometric" sequences. For m=1,2,..., n=0,+1,+2,...,

let
(3.5) G(n,m) = zfgo U(n,r,1)N(n-t) + U(n,m+l,1)M(n-m)
and
(3.6) G(ng) =) U(n,r,1)N(n-r).

- =0 -

Next we show that X(n,m) (G(n,m)) has a B.E.D. (B.G.D.). The following lemma is
needed.

Lemma 3.7. Let Y(n,m,q) = y:‘:g V(n,r+q-1,q)B(n,r+q)E(n-r-q+l) + V(n,m+q-1,q)

m

E(n-m~q+l), (W(n,m,q) = Zr.o

U(n,r+q-1,q)N(n-r=-q+1) + U(n,m+q,q)M(n-m-q+1)),

n=0,+1,+2,..., m,q=1,2,.... Then for all n,m, and q, Y(n,m,q)(W(n,m,q)) has a

N

.
' a®a "
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B.E.D. (B.G.D,) with mean vector (A-l(l),x-l(Z))((P-l(l),p-l(Z)))-
Proof: We prove the result of the lemma by an induction argument on m.
For m=1 (m=0) Y(n,1l,q) = B(n,q)E(n-q+1) + V(n,q,q)E(n-q) (W(n,0,q) =N(n-q+1) +

U(n,q,q)M(n-q+1)). By computing the characteristic functions of the components

of Y(n,1,q)(W(n,1,q)) one can verify that the results of the lemma hold for all

n,q. Let us assume that the results of the lemma hold for m and alln,q. Note

that Z(n,nrl-l,q) - B(n,q)!;:(n-q+1) + V(n,q,q)[Z::é V(n,t+q,q+1)B(n,r+q+1)l:’.:.(n—q-r)

+ V(n,mi-q,q-l-l)g(n-m-q)](‘j(n,n&l,q) = tj(n-q+1) +U(n,q,q)[ZT__OU(n,r+q,q+l)

!j(n—q-r) + U(n,xn-i-q+1,q+l)§(n-m-q)]). By the induction assumption the r.ve.

in the brackets has a B.E.D. (B.G.D.) with mean vector (A-l(l),A-l(Z))
((p-l(l),p-l(Z))). Since this r.ve. is independent of E(n—q-i-l) (El(n—q+1)) it

follows, as in the case m=1 (m=0), that g(n,ml,q)_(tj(n.mt-l,q)) has a B.E.D. (B.G.D.)
with mean vector (A_l(l),k-l(Z))((P-l(l),p-l(Z))) for all n,q. ||

Note that §(n,m) (g(n,m)), given by (3.2) ((3.5)), is equal to g(n,m,l) (Y(n,m,l)).

Thus we conclude from Lemma 3.7 that

Corollary 3.8. For all n,m )}(n,m) (g(n,m)) has a B.E.D, (B.G.D.) with
mean vector (A-l(l),A-l(Z))((p-l(l),p—l(z)))-
We show now that g(n,m), given by (3.6), has a B.G.D. Also we show that if for
all n and {=1,2
m

(3.9) lim I (1-B(n,2,i)) = 0
mro =]

then X(n,»), given by (3.3), has a B.E.D.

Lemma 3.10. (a) For all n,g(n,w) has a B,G.D, with mean vector (p-l(l),p-l(Z)).
(b) If Condition (3.9) holds then for all n,i((n,‘») has a B.E.D. with mean vector
ot ataen.

Proof: Let n be a positive integer. Sinc;a lim (1-a(n,2))" < lim(l-p(z))m

p me mee
= 0, £=1,2,6(n,m) —== G(n,=). By (3.9), X(n,m) —E>> X(n,=). Thus in
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particular i{(n,m) ;—3—9 f(n,w) and E(n,m) -%;;: (.;(n,w). Consequently the results

of the lemma follow from Corollary 3.8. ||
Note that for (3.9) to hold it suffices that for all n and 1 =1,2,
inf{B(n,2,i), 2=1,2,...}>0.

Next we investigate some dependency aspects of both classes.

Remarks 3.11. (a) For a fixed m, the sequences {X(n,m), n=0,+1,+2,...},

{g(n,m), n=0,+1,+2,...} are m-dependent (i.e. for n(l), n(2) integers s.t.
|n(1)-n(2)| >m the r.ve.s z((n(l) ,m), i((n(Z) ,m) (g(n(l) ,m), E(n(Z) »m)) are inde-
pendent). (b) Clearly if we choose m to be a function, say ¥, of n (¥(n) € {1,2,...}
for all n) then the dependency of )f(n, ¥(n)) (g(n,lD(n))) on' the past varies with
n. (c) It is easy to see that for all n the r.ve. i((n,m) (gljn,m)) depends on all
the preceeding r.ve.s i((q,“), - ®w<q<n (g(ch‘”), - ®<q<n).
We now investigate one positive dependence aspect of both classes.

Lemma 3.12. Suppose that E(1,1),E(1,2) are AS.- Then for all positive in-
tegers m,k, and all integers n(l) <n(2) <... <n(k) the r.v.s X(n(j),m,%),
L=1,2, j=1,...,k are AS.

Proof: By Th. 2.2 p. 31 and P, p. 30 of B-P, the r.v.s. E(r,t), I(n(3),qa,?),

4
2=1,2, q=1,0.c,my j=1,.0.,k, T=0(1);0eq,n(k) are AS. Since the r.v.s
X(n(j),m,2), £=1,2, j=1,...,k are nondecreasing functions of the previous collec-

tion of AS,r.v.s the result of the lemma follows by P, p. 30 of B-P. ||

3

In a similar way one can prove the following lemma.
Lemma 3.13. Suppose that M(1,1), M(1,2) are AS. and that for all n,

N(n,1), N(n,2) are AS. Then for all positive integers m,k, and all integers

n(l) <n(2) <... <n(k) the r.v.s G(n(j),m,2), 2=1,2, j=1,...,k are AS.

Next we prove similar results for the sequences {i((n,m), n=0,+1,+2,...} and

{g(n,ﬂ), n=0,+1,+2,...}.

Lemma 3.14. (a) Let us assume that M(1,1), M(1,2) are AS. and that for all

n, N(n,1), N(n,2) are AS. Then for all positive integers k and all integers
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n(l) <n(2) <... <n(k), the r.v.s G(n(j),»,2), t=1,2, j=1,...,k are AS. (b) Let
us assume that E(1,1), E(1,2) are AS and that Condition (3.9) holds. Then for
all positive integers k and all integers n(l) <n(2) <... <n(k}, the r.v.s
X(n(j),~,2), 2=1,2, j=1,...,k are AS.

Proof: By similar arguments to the ones given in the proof of Lemma 3.10
we concluc!e that the two sequences of r.ve.s: (G(n(l),m,l), G(n(l),m,2),...,
G(n(k),m,1), G(n(k),m,2)) and (X(n(l),m,1l), X(a(1l),m,2),...,X(n(k),mn,l1),
X(n(k),m,2)), m=1,2,..., converge in distribution as m+= to the r.ve.s:
(G(n(1) ,», 1), G(n(1),~,2),...,G(n(k),=,1), G(n(k),»,2) and (X(n(l),=,1),
X(n(l),»,2),...,X(n(k),~,1), X(n(k),»,2)), respectively. By Lemma 3.12 the r.v.s
X(n{j),my2), 2=1,2, j=1,...,k, are AS, for all m and by Lemma 3.13 the r.v.s
C(n(j),m,R),2=1,2, j=1,...,k, are AS, for a.ll m. Consequently the results of
the lemma follow by P, of Esary-Proschan-Walkup (1967). ||

Next we compute the autocovariance matrices for both classes'of sequences.
Some notation is needed.

Notation 3.15. Let T(e), I'(g), and T'(g,n) be the covariance matrices of

E(1),/M(1) and N(n) respectively. For 2=0,1,..., let I'(e,n,2,m) and I'(g,n,2,m)

be the autocovariance matrices of X(n,m), and G(n,m), respectively, 0,2 =0,+1,+2,

seeym=1,2,...,2 Further let A(n,j) be a 2x2 diagonal matrix with
(l-a(n,l))j, (1—u(n,2))j on the diagonal, let I be the 2x2 jidentity matrix, and
X the indicator function. By some simple calculations we obtain for n=0,+1,+2,...,

m=1,2,.,.,, and 2=1,2,... (but not zero), that

(3.16) I'(e,n,i,m) =

T +
B(n,r+1)[ N(I-B(n,j))Ir(e)[ T (I-B(n+L,j)]B(n+L,r+l=1)
3=l =1
m=2 m
+ B(n,m-2,+1)[ n (I-B(n,J))]I‘(e)[ n (.I‘B(n"'lsj)).]o
=1 i=1

o=1-1
r=0

R A A ey S S A, Py v
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Sy L DOENDY

LACAT AN o .

v, YY)

R A

B

"

We may obtain the off-diagonal elements of I'(e,n,0,m) from Equation (3.16) by
setting B(n,m+l) = I and 2 =0. The diagonal elements are the variances of
X(n,m,1) and X(n,m,2), na_mely,k-z(l) and A-Z(Z), respectively.

In a similar way we obtain for n=0,+1,+2,..., m=1,2,...,~, and £=1,2,... (but

not zero), that
(3.17) r(g,n,2,m) = Z‘::g A(n,r)T(g,n-r)A(n+L,r+8)
+ X{o}(z) A(n,m+1)T(g)A(n,m+l).

We may obtain the off diagonal elements of I'(g,n,0,m) from Equation (3.17) by
setting 2 =0. The diagonal elements are the variances of G(n,m,1l), G(n,m,2), namely,
(1-p(1))p"2(1) and (1-p(2))p_2(2), respectively.

Finally we give sufficient condi:tions for the exponential and geometric se-
quences to be 'stationary and present their spectral density matrices.
First we address ourselves to the exponential case. Let us assume that
8(n,j,1), 8(n,j,2), given in Notation 3.1, do not depend on n. Then clearly the
bivariate exponential sequences given by (3.2) and (3.3) are stationary. Let
us denote the autocovariance function of the stationary .}.((n,m) by T'(e,?,m).
We obtain T'(e,%,m) from Equation (3.16) by simply suppressing the index correspond-

ing to n in Equation (3.16). Note that for m<w Z‘Zmllr (e,2,m)|| 1s a fintte sum

and is thus finite, and for m=«, )‘:__QIII‘ (e,2,m)|| <=by Consition (3.9). Consequently

the 2x2 spectral density matrix, f(e,w,m), of the stationary process X {n,m) is given
by: -

o -1
(3.18) f(ew o) = 31;’ }-‘Q-.eor(e’n"m)e ul) we€ ["‘"""]o

m=1l,...,,

with inverse relationship
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(3.19) I'(e,2,m) = [ f(eiwam)eimldw. 1'0;_"_'1’:2.-.-1
-7

m=1,2,...,®

(where I'(e,~%,m) is the transpose of T(e,2,m)).

A sufficient condition for the geometric sequénces, given by Equations (3.5) and
(3.6), to be stationary is that a(n,l), a(n,2), given in Notation 3.4 are

equal to a(l), a(2) respectively for all n. Let us denote the autocovariance

function of the stationary sequence G(n,m) by I'(g,%,m). We obtain I'(g,2,m) from

Equation (3.17) by suppressing the index corresponding to n in Equation (3.17). Since

00

a(1) >p(1) and a(2) >p(2), },__ |IT (z,2,m)]|| <= for m=1,2,...,=. Consequently the

fLm—c

2x2 spectral density matrix, f(g,w,m), of the stationary process G(n,m) is given by:

(3.20) f(g,w,m) = ZL * I‘(g,l,m)e-imz.w € [-n,7],

T L f)macw

m = l'Z’l."”’

with inverse relationship

' r‘n’
(3.21) r(g,¢,m) =| £(g,u,me @ty , L=0,+1,+2,...

J-'ﬂ'

m= 1,2,...,”,

(where r(g,-%,m) is the transpose of I'(g,%,m)).

4. Inequalities.

For m=1,2,...,», let {E(s,t,m)- (R(s,m,1), R(t,n,2)), s,t >0},
§(0,0,m) = (0,0), be a bivariate point process with interarrival times equal to
§(1,m), §(2,m),..., given by Equation (3.2) or (3.3). Furthermore let
{§(a,b,m) = (S(a,m,1l), S(b,m,2)), a,b=0,1,...}, §(0,0,m) = (0,0), be a bivariate
point process with interarrival times equal to (-;(l,m).g(z,m),.... given by

Equation (3.5) or (3.6). We show that if the interarrival times of the process

B N I I e A I ) \‘\ “e
o, ’-"d'f-’ o
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R(S) are AS. then the process §(§) inherits positive dependence properties.
Then, we use the positive dependence properties and the special structure of the
interarrival times to obtain lower bounds for the joint probabilities of the
bivariate point processes. Finally, we utilize the positive dependence to ob-
tain moment inequalities for the processes R and S and for their interarrival
times.

First we define two concepts of positive dependence.

Definition 4.1. Let q=2,3,..., and let X= (Xl,...,Xq) be a r.ve. We say

~

that X is positively .upper orthant dependent (P.U.0.D.) [positively lower orthant
dependent (P.L.0.D.)] if for all real numbers tl,...,tq

q
P{xj > cj, 3-1,...,q}1j211’{xj >tj}

q
}iji%’j'lv-nﬂijszji%}L

Remarks 4.2. (a) In the bivariate case (q=2) § is P.U.0.D. iff X is P.L.0.D.
(b) For q>2 the two concepts of positive dependence are not equivalent.
(c) 1f xl,...,xq are AS. then clearly § is P.U.0,D., and P.L.0.,D. (d) Let
?3 fl,...,fq: (==,=) +» [0,») be measurable nondecreasing (nonincreasing) functions
and let § be P.U.0.D. (P.L.0.D.). Then

q q
(4.3) ETN £ (X,) > I Ef, (X,)
P e M R

(see Lehmann (1966)). For the sake of completeness we present the following
definition,

Definition 4.4. Let X,Y be r.v.s. We say that X is stochastically less

than or equal to Y, and write X g-Y is for every real number t,P(X>t) <P(Y >t).

Remark 4.5. Let f: (-»,») > [0,») be a measurable nondecreasing function

and let X < Y. Then EE(X) < Ef(Y) (see Lehmann (1966)).
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Now we show that if the interarrival times of 13(_8) are AS,, then §(§)
inherits positive dependency properties.

Lemma 4.6. Let m=1,2,...,, and let us assume that for q=1,2,..., the
r.v.s {X(j,m,2), j=1,...q, £=1,2} are AS. Then for all positive real numbers

sl,...,sq and El"""’q = 1,2 the r.ve.s (R(s,,m,%

j )y j=1,...,q) are P.U.0.D.

3
and P.L..0.D.

Proof: Let nl-""’nq be positive integers, let fj =X

"3
(L pap X(Tem, 20 < )
and let gj = y s J=1,...,q. The functions fl,...,fq(gl,...,gq)

n
( Zr‘j_lx(r,m,z )> 8,)

h b
are nonincreasing (nondecreasing) functions of AS. r.v.s. By B-P P3 p. 30
fl'":l’fq (gla...,gq)qare AS. r.v.s. Consequently P{R(s:j ,mflj) >nj, j=1,...,q9}
= - P »M,y s, s J®dlye00, -
E jElfj isfffj _121 {R(sJ m !lj) >nj} and P{R(sj m lj)inj j=1 ql
E g 1 E ?r P{R(. L,) oo
g, > 1 8: * s,,m, <n,l.

Lemma 4.7. Let m=1,2,...,», and let us assume that for q=1,2,..., the
r.v.s {G(,m,2), j=1,...,9, £=1,2} are AS. Then for all positive integers
nl,...,nq and 21,...,2q = 1,2 the r.v.sn{S(nj,m,lj

Proof: Note that S(nj,m,lj) = }:rilc(r,m,zj), j=1l,...,9. Thus the

)s J=1,...,q9} are AS.

S(nj,m,lj)'s are nondecreasing functions of AS. r.v.s and hence are AS. Il
Using these two last results one can obtain a variety of probability inequalities.
For more details see Tong (1980).

In Lemmas 4.6 and 4.7 we bounded from below joint probabilities of R(§) by
a product of marginal probabilities of R(-,m,2) (S(*,m,2)). For the stationary
models we bound from below some of these marginal probabilities by Poisson and

negative binomial probabilities.

d
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Lemma 4.8. Let us assume that 8(n,1,1), 8(n,1,2) are equal,respectively,to

8(1),8(2) for all n. Let m=1,2,...,%, ¢=1,2, 5>0 and let L(%,8) be a Poisson
r.v. with mean A(E)B-l(l)s. Then R(s,m,%) ; L(2,8).

Proof: From Equation (3.2) or (3.3) we obtain that X(q,m,%) > B(R)E(q,%),
q=1,2,.... Now for r=1,2,... P{R(s,m,2) <r} = P{ z:_lx(q,m,l) >s} >
P(]L BB, > 8} = PIL(W <z} ||

Lemma 4.9. Let us assume that a(n,l), a(n,2) are equal to a(l), a(2),

respectively for all n. Let m=1,2,...,», 2=1,2, r=1,2,..., and let

Q(%,r) be a negative binomial r.v. with parameters (r,p(%) a.l(l)). Then S(r,m,%)
s

> Q(z,r).
Proof: From Equation (3.5) or (3.6) we obtain that G(q,m,%) >N(q,%),

q~1,2,.... Now for a=1,2,... P{S(r,m,%) > r+a} = P{X:_lc(q,m,ﬂ.) > r+al >

P{X:.IN(q,l) >r+a} > P{Q(%,r) > r+a}. ||

Using the AS. of g(_l) (G(1)) we obtain the following "residual" inequalities.
Lemma 4.10. Let the assumption and notation of Lemma 4.8 hold and assume

that E(1,1), E(1,2) are AS. Then for t) 28, £y 28,, NyuNy, TE {1,2,...1,

2r, ny 2T

M
P{R(t,,m,2) <n , &= 1,2|R(s,,m,8) <r,L=1,2}

2
> QEIP{L(Q,tz—sQ) < n,-rh

Proof: Since X(q,m,%) 2B(R)E(q,%), q=1,2,..., £=1,2, we obtain that

n. +1
-2
P{R(t,,m,2) <n , R(s,,m,2) <, sz-1,2}-1»{)q_l X(q,m,2) > t,, z:_lx(q,m,z) >8,,

2!
n "’1 n£+1
1=1,2} > p{{q bl " Xq_IX(q,m L) >s,, z“ ilz} 2 P{T py B

E(q,L) >t -8, . IF qe1X(@sms2) >8, £=1,2}. Note that { t ~+18(E@), =12

X(q,m,2) > ¢t S

are nondecreasing functions of the AS. rv.s {E(q,%), q=r+l,..., n1+n2+1 L=1,2}

.Qn -."’\'ﬂﬁ."‘ﬂ"‘.\“l'ﬂ‘\" P P RN T I TS RO IS T RN e '-".'"’ “
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YWD
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and thus are AS., and that they are independent of Z:_IX(q,m,‘z)-,z-.fL,Z. Consequently
2

R(s,,m,2) <r, £=1,2} > P{J°_X(q,m,2) >s,, &= 1,2} I

. - te=l L g=1

P{R(t,,m,2) < n,,
n2+1 r 2

P{Zq_HIB(E)E(q.l) >t -8} = P{Xq_ll((q,m,ﬂ.) >8,, L -1,2}£EIP{L(E,t£-s£) <ng-rl.

Now the result of the lemma follows. ||

In a similar way one can show the following result.
Lemma 4,11, Let the assumption and notation of Lemma 4.9 hold and assume
that N(1,1), N(1,2) are AS. Then for Ny, 0, k, rl, r2, a), a, positive integers

s.t. It >k, n >a,, n,> a both conditional probabilities P{S(rl,m.‘l) >

2 1 2 2

n, +r,, £=1,2|S(k,m,8) > a +k, 9.-1,2;, and P{S(r ,m,2) >n +r,

a, +k, £=1,2)} are not smaller than 1 P{Q(f,r,~k)> n -a, 6 +r, 6 -k}.
L tm1 =T TR T

Finally we address ourselves to some moment inequalities.

s 2=1,2|S(k,m,2) =

Lemma 4.12. Let the assumptions and notation of Lemma 4.6 hold and let

q k q k
K,s.+.5k be positive integers. Then EINl [R(s ,m,L )] 35> 1 E[R(s, ,m,2,)] 1,
1 q =1 h| h| = ym1 i 3
Proof: The result of the lemma follows from Lemma 4.6 and Inequality (4.3)
k
(with £, (x) = x 3, x>0, §=1,...,q). ||

3

Lemma 4.13. Let us assume the assumptions and notation of Lemma 4.8 hold
and let k be a positive integer. Then ER(s,m,z)ki EL(E,s)k.

Proof: The result of the lemma follows by Lemma 4.8 and Remark 4.5 (with
£(x) =x*, x>0k
In a similar way we can prove the following result.

Lemma 4.14. Let us assume that the assumptions and notation of Lemmas 4.7

q k
and 4.9 hold and let kl""’kq be positive integers. Then E T [S(l‘l:l .m.lj)] 3
j=1

q k
> I E[Q(zj,nj)] 3,
i=1

Lemma 4,15. Let us assume that the assumption and notation of Lemma 4.6
q
hold and let kl""’kq be positive integers. Then E N [X(j,m,2

k
j)] J >
i=1

.........
.
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RURINORIEER
. j.l j j
5 Proof: The result follows by Corollary 3.8 and the association of the r.v.s
=,
:: {X(j,m,zj), j-19'°°,q}- H

Similarly we obtain the following.

Lemma 4.16. Let us assume that the assumption and notation of Lemma 4.7

atelelalal

q k
hold and let kl,...,kq be positive integers. Then E I [G(j ,m,!.j)] ] >
j=1

q k
: 1 El6(1,m,2,)] J.
- j=1 i

Note that G(1,m,%,) is by Corollary 3.8, a geometric r.v. with mean p-l(lj),

: i
s j=1,...,q.
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