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3 ABSTRACT
: Computationally efficient Recursive-Least-Squares (RLS) the SF method. The freedom of choice in training sequence can
< procedures are presented specifically for the adaptive adjustment aiso result in & factor 2 or more improvement (reduction) in
of the Data-Driven Echo Cancellers (DDECs) that are used in learning time to get to the same echo canceller performance
. voiceband full-duplex dats transmission. The methods are shown level as the SF echo canceller. We specifically investigate many
to yield very short learning times for the DDEC while they also interesting trade-offs between computational requirements and
o simultaneously reduce computational requirements to below those the performance of the echo canceller.
. required for other leasi-square procedures, such as those recently The new method’s much-less-restrictive or arbitrary
- proposed by Salz (1983). The new methods can be used with any choice of training sequence permits use of sequences that are
training sequence over sny number of iterations. unlike any of the "white" (autocorrelation matrix is a diagonal), such as those of
B previous fast-converging methods. The methods are based upon the Milewski [17). The use of such a sequence can lcad to as much
. Fast Transversal Filter (FTF) RLS adaptive filtering algorithms as a 3dB advantage over the pseudorandom sequence. Also. the
that were independently introduced by the authors of this paper; prewindowed FTF solutions do not require "priming” the echo
however, several special features of the DDEC are introduced and channel with N inputs, before computation can begin, as is
exploited to further reduce computation to the levels that would be necessary in the SF method, and are numerically stable over the
- required for slower-converging stochastic-gradient solutions. initialization time period (using the soft-constraint initialization
e Several trade-offs between computation, memory, learning-time, of [13.14]).
" and performance are also illuminated for the new initialization. A possible disavantage, however, of the new method is its
? 1. INTRODUCTION requirement of more read-only memory than the SF method, if
" Echo cancellers were suggested for use in 2.wire One Wishes to keep computation to an absolute minimum. This
% full-duplex data transmission by Koll and Weinstein [1] in 1973, °""‘_ memory is used to pre-store certain quantities of the RLS
Additionally, much other work concerning the data echo 3lgorithms that are solely a function of the known training
canceller has appeared in [2-12,19]. Of particular n in q Since practical experience dictates that the cost of
. this paper is Mueller’s Data-Driven Echo Canceller (DDEC) [6]. 'F“d'm')' memory, in comparison to “’lf cost ol the other
:' The use of stochastic-gradient LMS (Least-Mean-Square) 3'8“"'!{"“‘”}“8 h!ncuons lh“' appear im high-speed modems, is
. algorithms in the DDEC has led to ptably long training lows this p.omble dl'sadvantage is minimal.
- periods for the full-duplex modem [2,11,12]. In this paper, we Section 2 reviews and analyzes the RLS PDE(:'-'-. Section 3
", -, zcifically investigate the use of the Fast-Transversal-Filters introduces  and d""“”f’ ‘hf new recursive initialization
" (FTF) Recursive-Least-Squares (RLS) adaptive algorithms proc{edum. .F'"“"Y. Secnon.4 is a brief conclusion. A longer
[13-14] in the DDEC to substantially red the y Vversion of this paper appears in [16).
training period. 2. RLS AND THE DDEC
% Because the transmitted data sequence is wusually This section briefly reviews the DDEC and the application
.. "whitened” through scrambling prior to entering the transmitter of RLS methods to it.
. and DDFC, it was orginally believed that the use of RLS 2.1 Definitions and Terminology
b~ adaptive algorithms would have led to no improvement in the The near-end transmitted data signal is defined as
o convergence time of the DDEC in comparison to A ot
0y stochastic-gradient techniques. However, Farrow [15], Honig u,(t) = Re {2 x(kT,)p(t—kT,)e’" } . 2-1
S (11) and Salz {12] verified a significant convergence .
improvement (about a factor of S, see [11]) of the RLS (or where the inphase and quadrature fh“ symbols are the real and
closely related) methods when the double-taking data signal was !Maginary p’"’L"‘ f""fs)- r ”P‘f“‘felyi The carrier frequency
. intentionally silenced during the initial training phase of the data '* we/2m, the and pulse shaping is p(t), and 1/T; is the
S transmission. However, there arc several drawbacks of the symbol rate. ;Also. Re” denotes the.rql part of a complex
“Salz-Farrow” (SF) method in [11], [12], and [15]. Most of NUMber. u,(t) is the real part of analytic signal, U, (1),
:‘ these are the result of the SF method’s absolute nccessity for the .
o training scquence to be “pscudorandom” with very special Uy(t) = 2 X(kT,)p(t-kTs)c’“‘t . 2-2
. autocorrelation properties and with a period equal to the X
= cei Her, i .
. bt of coeff L (order) of the echo canceller, which The impulse response of the combined hybrid and channel path
# fimits both the permissible orders (to, say, 7, (5. 31, 63, 127, . . y
. 255, 511, .... 2"-1) and the performance of the RLS DDEC. is h(t). The hybrid output, d(t), is the sum of the ccho, and the
* * Th'ism'papcr introduces FTF solutions that rcquire less uncorrelated double-talking data signal and channel noise ua(t),
"y computation than the SF method, permit training of the echo d(t) = h(t) « “l(l) + u,(t), 2.3
. canceller with any known training sequence of any length (long -
” ~nough to converge), and which converge as fast or faster than where * denotes continuous-time convolution.
» h(t) is also wri
: This work was supported in part by the U.S. Armyv Research (t) is also written as -
Office. under Contract DAAG29-79-C-0215, and by the h(t) = Rc{hnn(l)el‘*e } . 2.3
s Air Force Office of Scientific Research. Air Force Systems
;'_- Command, under Contract AF49-620-79-C-0058. where hpp(t) is the baseband-equivalent [18] echo path for h(1).
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Then d(t) becomes (see [18])

d(t) = Re { b x(kr,)g(z-k'r,)ei"c‘! +0,(1), 2-5
k

where g(t) is
g1 = .21_ P(1) = hyglt) . 2-6

mmm&a(t).andthcmﬁpd(dwbb-ulw
estimate) is

€(t) = d(v) — (1) . ‘27
‘The Minimum Mean-Square-Error (MMSE) of e(t) is
MMSE & min E[e®?] 2 o2, 28
A
4

where 3(;) becomes

3(1) = Re {2 x(k'r,)g(t—kl',)eio,x} , 229
k

assuming a linear-time-invariant estimator followed by a
modulator. E[-] denotes expectation.
2.2 The Data-Driven Echo Canceller (DDEC)

The DDEC appears in Figure 1. The adaptive transversal
filter acts at a tap-spacing, Ts/l. that is sufficiently short to
satisfy the Sampling Theorem [or the entire passband
lransmmed signal u(t), where [ is integer. The continuous

U, (1) is rewritten

Uy(t) = 3 x(kTel**Trg(1-kT,)el*<"kTo  2-10a
k

= ¥ X(kT,)g(t-kT,) 2-10b
k

where %(kT,) = x(kT,)el*xTs 2-11

and §(t) = s(t)e"'=‘ . 2-12

as discussed in [2]. In conventional e Hation
[2], the designer carefully chooses W, nnd T so that the rotation
of the data symbols in Equation 2- ll is tnvnal (typically 270°).
Thus, we now drop the tilde on x(kT )+X(KTy) in the ensuing
results. The DDEC then,synthesizes g(l) at rnle T/

Since d(t) is real, d(1) should also be real, or

d(kT,) = WR Re (R0} - W3, Im{X(k)} 2-13

p(t) e”

to
receiver

where "Im" denotes imaginary part, W\‘k and W\ x are the
real and imaginary parts of the adapuive transversal filter
(complex Ix NI row vector) that estimates g(t), N is the order
of (or number of spanned symbol periods in) the DDEC, and
XN(k) is the column vector (N{x 1) corresponding to the last N

_ DDEC inputs at the sampling rate I/T.

-— T
Xpo(k) & [x(kT) 0 ., 0 | x((k-N+ 1]T) 0 .., 0}
2-14

. where a superscript of T denotes transpose.
2-3 Subcanceliers
Detailed analyses of the use of subcancellers appesr in

"[2.3.5]. The essential structural simplification arises, because N
(not NI} taps in the transversal filters contribute to d(T) at any
sampling instant (see zeros in 2-14). The structure is equivalent
to I sub-echo cancellers or “subcancellers” that independently
act to estimate the / phases (per symbol period) of the desired
echo-contaminated output. We add the new observation that
the same inputs appear in each subcanceller, and the majority of
computation in the FTF (or any fast-RLS) algorithms, which
depends only on these inputs, need only be performed once for
the group of subcancellers, even when the training sequence is
unknown. Since [24 in practical voiceband modems for
full-duplex data communications, this leads to large
computational and storage savings.
2.4 The Application of RLS to the DDEC

. The RLS DDE chooses Wy, = W\.k + jW\v,‘ to
minimize the (for the it subcanceller)

k
§ ’
ex(k) = 3 (A(mT, + iT) + WY, XR(mT) + 2-15

m=0
+ W XUmT))?

where i=0, ..., /-1, X\‘(mT) and ‘(\(mT) are the real and
imaginary parts of

x(mT,)
x([m-N+ 1T,)

respectively, and T 2 T /I Minimization of Equation 2-15
directly requires the two-channel (real) FTF algorithms of
{13-14). However, a single-channel FTF algorithm can be used
(during training) by staggering the inphase and quadrature data
sequences (setting either or both to zero at appropriate time
instants). The single-channel is less costly to implement than
the two-channel. More about specific implementational
comparisons appear in Section 3.

The solution to 2-15, when the DDEC staggers the starting
sequence, is

Xn(mT,) & 2-16

X , T
Wi = (e, + TYXUMTY) + 217

mw0

(Zx\(mT )X&(mT,) ) and

k ’
Wi = ( T AliT, + (m + k + NTIXUm + k + MyT,)T

m=0
2-176
(mzox\[(m +k + MTIXUm + k + NT,] )

where k2N, and k is the number of learning iterations for the
subcanceller.  (The reason for k+N in Equation 2-17b is




TR TR e

LTELLTM T T e W w ke 1T T LT BT T T

)
'
H
‘
.
.
.
‘
.
'

-y
-t

RIS} S

e

discussed in Section 3, and has 1o do with the aforementioned
staggering.) No generality or performance is lost if one by
choosing XN(mT‘) such that

XJ(mT, + (k + N)T,) = X}(mT,) 0Ogmgk-1. 2-18

Thus, for all 2/ subcancellers (! inphase and / quadrature). one
need only invert the same matrix

k .
Ry(k) & T X¥mT)XJ(mT,) .

We now turn to comparing the various RLS_solutions.
Paralleling Salz [12], we can use the trace of cov [Wg ;] as an
indicator of equality. Salz {12) shows that if a length-N
pseud d q is used, then

trace { cov [W:i_\._l]} =

2N
N+1
while it is trival 1o show for a pure white training sequence
(after N iterations) )

o2, 2-23

2-19 ” )
m=0 trace { cov [w_\-i__\-_,]} = 03- 2-24
‘The FTF methods invert this matrix only implicity to obtain an Thus, the pseudorandom training seq is ab 3dB worse
equivalent set (much less storage) of psrameters (Cyy | filters or  gyer iterations than a white training sequence, under the

“Kalman Gain," see [16]). All of the computation in the

equivalent of the inversions can be off line since the training
sequence X (kT,) is known beforechand. No useful off-line
computation can be performed in the SF method, which also is
restricted to the use of psecudorandom training sequences.

2.5 Performance Analysis of RLS DDEC

- We assume that NT, exceeds the nonzero time extent of
g2(1). Under thjs common assumption, the RLS estimates of
Wy i and Wx x are unbiased after k2N iterations (sce
(13,13)), thatis™

E[WR,] = Re{[GGT)3((k = N + DT, + iT) ]} 2-2¢a

E[wW3,] = ImiGj . 2-20b

irrespective of the doubl G; is the impuise
response for the ith echo This unbiased estimator
property is not exhibited by stochastic-gradient solutions until a

taker's pr

heh 1

cov[WN'k] criteria. Equivalently, it is also easy to show [12]
(for pseudorandom) that over 2N iterations
u'ace{cov[wkl . ]}- N
N.2N-1

N+1

or it takes about twice as long to reach the same performance
level with pseudorandom training in comparison to white
training.

The above performance comparisons also hold for the
multichannel case, see [16). rcsponses are simultancously
computed.

We also show in Section 3, after further defining the
windowing methods, that in terms of double-talker cstimate
quality, the pseudorandom starting sequence is the worst
possible choice, so that the FTF methods offer substantial
improvements in comparison to the SF methods.

3. RLS DDEC ALGORITHM COMPARISON
This section lists and compares the various initialization

o, 2-25

much later time. The (RLS) covariance matrix ([13,14]) for procedures for the RLS DDEC. (Sce Tables 1.3).
either (W x 0F WY il is (for k2N, and white channel noise) 3.1 New FTF Solutions for DDEC Initialization
o R, Q -1 2 . An important component in assessing performance and
cov[W_\."k] = cov[WN"k] = Ry(k)o3 , 221 learning time of the RLS DDEC is the data window for the
2 sum-of-squares-errors criterion (equation 2-15). In the DDEC,
where o§ EY E[uz(t) ] . 2-22 essentially two windowing cases are of interest: the

and Ry {k) is given in 2-19. Thus, the RLS solution is near
optimum after N iterations only if 0, is small. One achicves
small 0, by intentionally silencing the ciouble-talking data signal
during training [12]. This leaves o) equal to the residual
channel-noise power level, which is typically much smaller than
the power levels of the other signals in the problem. However,
the stochastic-gradient methods wilh still be far from optimum
b of the biased mean of Wy, or Wy after only N
iterations. They take about 5-10 times longer [11,16].

Figure 2 simulates a situation typical of 4800 bps
full-duplex data transmission. The order is 22, while the
number of subcancellers / is 4. The performance improvement
of the RLS methods is illustrated by the staggered prewindowed
FTF solution, which permits training more rapidly than the
stochastic-gradient solution.

20

prewindowed case and the Growing-Memory Covariance
(GMC-"unwindowed”) case (see [13.14]). The prewindowed
FTF solutions assume that all data before the very first iteration
is zero. The more general GMC case allows this data to take
arbitrary values. The GMC method is only necessary for the
DDEC if one desires the autocorrelation matrix to assume some
exact, prespecified form on the NWM jteration of the
initialization, such as is in the SF method [12). This fixing of
the autocorrelation matrix mandates the “priming” of the echo
channel with approximately N nonzero data values prior to the
first iteration of the algorithm, which adds an additional N (2N
in multichannel or QAM case) delay (in symbol periods) to the
learning time. In the prewindowed solution, there is absolutely
no need for this priming, thus leading to a reduction in learning
time. Both experimentally and analytically. the elimination of

priming is not a significant drawback for the prewindowed
algorithm.

. . =10

o ;:: :wsmmam MM:i” Another i tant compy in terms of Icarning time
E Figure 2 w02 and computation. of the DDEC intialization is the choice of a
8 ° Am| single-channel or a multichannel solution. The staggered
2 LMS single-channel solution requires one-half the computation of the
S .rnullichanne! solution, but can lead to an extra N units of delay
= o in the prcw-ndowed'cnse. Specifically, the proposed staggered
Y - single-channcl solution first lﬁansmils and trains upon the

g inphase ccho channel (W\.'T i=0,..,1=1), while
z %“ FTF simultancously zeroing (suppressing) the quadrature training
g.ﬂ, ‘ sequence. Then N symbol periods of suppressing both inphase
and quadrature sequences follaw to clear the echo channel. The
° 700 700 500 500 1000 third and final step is to now transmit only the quadrature
N TIME ('TERATIONS) training scquence (usually the same sequence, see Equation

2-17b), while suppressing inphase signals. Since both inphase
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and quadrature estimation is separate in time, a single ch 1

algorithm is used twice, once for inphase training, and once for
quadrature training.

The prewindowed singlo-channel (staggered) FTF
algorithm is then (k2 N=1)

Prewindowed (Single-Channel) FTF (i = 0, .., I-1)

i). 0<m<k (zero quadralure training sequence)

(m) = d(mT, + 1T S+ wN.m-l l_\l-(m'l',) 3-1a

R, R
Whim = Wyln g + eN(m)Cy 3-1b

ii). k<m<k+N-1 (zero both inphase and quadrature
training sequences)
ii#). k+N-1<m<2k+N-1 (zero inphase training sequence)

ey(m) = d(fT, + iT,) + WO XUmT)  3-1c

Wl = W+ eQim-1)Cy 3-14

while the GMC {(unwindowed) version is
Covariance (Singic=Channel) FTF (i = 0, ..., I-1)
i). 0<m<N-2 (nonzero inphase priming, zero quadrature)

ex(m) = d(mT, + iT,) + WR__ xR(mT) 32

. R;
wf\" w\' ma ¥ €Nl(m)c.\’.m 3-2b
iii). k+N<m<k+2N-1 (zero inphase, prime quadrature)
iv). k+2N<m<2k+2N (while zeroing inphase)

ex(m) = d(mT, + iT,) + W3 _XQmT)  3-2¢

W =W b e mICy - 324
The filter CN.m is computed from the known training sequence
beforehand and stored for 0Sm <k, (see [16]). In general in the
prewindowed initialization, at least one-half of the 1iotal
coefficients (of CN m) are always zero, leading to a reduction in
both computation and storage in comparison to the covariance
case, in which no such simplification generally arises. The
covariance algorithm can use a training sequence that is exactly
white over N iterations.

The muitichannel algorithms determine the inphase and
quadrature responses simuitaneously. The multichannel
prewindowed algorithm is (k22N-1)

Prewindowed (Multichannel) FTF (i=0, .... I-1)

0<m<k
RQ. ot
€x '(m) = d(mT, +iT) + Wi xR%mT) 3-3a
wRO - wR 4 eX%micy . 3-3b

while the covariance case is
Covariance (Multichannel) FTF (i=0. ..., 1-1)
i). 0Sm<2N-1 (prime inphase and quadrature)
ii). 2N<Sm<k+2N
R v’
eqo'(m) = d(mT, + iT,) + WE% 1 Q(mT ) 3-4a
wl\l? WRQ,

R
vl * e,‘.Q‘(m)C.\._m . 3-4b

Table | compares the algorithms in Equations 3-1 through 3-4.
In Table 1, the single-channel (staggered) prewindowed
FTF (Equations 3-1a, b, ¢, d) has the lowest computational
requircments.  The operation of this particular method was
verified in Figure 2. Table 2 is a speciflic comparison for the
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conditions of figure 2.

In Figure 2, we chose the starting sequence arbitrarily
(actually pseudorandom sequence of length >65,000>>22). The
true echo-channel impulse response v s known for the
simulation, and we computed and plotted the quantity of
Equations 2-23 and 2-24 (norm tap error vector). There, one
sees that the DDEC converges in about k=N(=22) iterations at
Ts (or 88 itcrations at Ts as is shown in Figure 2), and the
choicc of training scquence is not critical. We have used k=100
iterations at rate 'l's (and 100 ijterations of channel clearing
between inphase and quadrature) to illustrate another advantage
of our approach that the FTF solutions can be propagated for
any number of iterations to further “fine-tune” the solution.
However, the minimum of 2N is used for the total prewindowed
learning time and total computation figures in Table 1. The
short learning period in all the methods of Table 1 is caused by
03 being very low (double-talker is silenced for training).

Furthermore, one uses the formula [or excess error from
Section 2.2 of {13] to obtain

excess MSE = o3(1 - yy(k)) 3-5
where
(k) 21 - XJORFWXNK) 3-6

The worst (maximum of 3-5) that the echo canceller can do at
any time (k2N-1)is .

excess MSE = o§ . 37

In this case, the worst possible RLS MSE after echo cancellation
is thus

MSE = 202 3-8

This worst possible performance of prewindowed RLS (which is
nevertheless a dramatic improvement over stochastic-gradient
methods) is achieved by the pseudorandom-trained SF method
or the exactly white-trained GMC FTF method when T=N.
Thus, any other training sequence' for the FTF performs at least
as
well under the excess MSE measure.
3.2 The SF Method

[16] lists the SF method in terms of the quantitics defined
in this paper. One should note i diately that in only the SF
methods is the number of iterations frozen beforchand. Table 1
lists the SF mcthods as covariance mcthods, since they require
priming of the channel with the pscudorandom scq before
the first itcration to ensure the dcsired structure of the
underlying autocorrelation matrix.
3.3 Storage Requirements (Initialization)

The training sequecnce is not completely arbitrary in that the
autocorrelation matnx must be nonsingular, precluding
ridiculous choices such as all zeros or DC.
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The random-access-memory (RAM) requirements of all
the various algorithms above are about the same, 2N1+N RAM
storage locations. However, the proposed FTF methods of this
chapter also require a significant amount of read only memory
(ROM) if one desires to store the quantity Cy , over the
initialization interval rather than compute it on line. Just how
much storage depends upon the window and also upon the
number of channels (single- or multichannel). The storage
requirements appear in Table 3. in general and under the
conditions of Figure 3 (N=22, 1=4). There one determines that
the ROM requirements are not substantial by modern modem
standards, especially when one considers that many kilobytes of
software code are usually now found in commerical
microprocessor-controlled modem products.

4. SUMMARY

Computationally efficient Recursive-Least-Squares (RLS)
procedures have been presented specifically for the adaptive
adjustment of the Data-Driven Echo Cancellers (DDECs) that
are used in high speed (ull-duplex data transmission over
two-wire telephone lines. The mcthods have been shown to
yield very short learning times for the DDEC while they also are
shown to reduce computational requirements simultaneously to
levels below those that are required by the most efficient
existing RLS (SF) method (12]. During the initialization period.
the aew numericaily stable methods significantly outperform
slower-learning stochastic-gradient (LMS) solutions while also
requiring no more computational operations than these same
LMS solutions.

The new methods can be used with any training sequence
over any number of iterations. The new methods are
applications of the Fast Transversal (FTF) RLS adaptive
filtering algorithms of (13-14]. However, we additionally
exploit several special features of the DDEC to dramatically
reduce computation below the levels that would have been
required for a straightforward use of these FTF algorithms.
Several tradeoffs between computation, memory, learning-time
and performance have been illustrated. The results of this paper
can now be used to design cost-effective high-performance
DDEC’s for full-duplex data communications with acceptable
"start-up”.
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Table 3
DDEC STORAGE COAMPARISON FOR TRAINING
(N=22, 1mq)
Algorithm I RAM I ROM r ROM{t=22) | ROM{kbyte)!
Covanaace (Unwindowed) Sotutions
FTF . . . .
Multchaneel {Ae 20Ny 2N %68 2
Single-channcl {2+ 1)V hy3 34 1
SHF . . - .
Multichansel {HNe2)¥ - . -
Sing.e-chanmel {20+ 11V - - .
Prewisdowed Solvtions

FTF . . - .
Multichannel (Me20NV ] () 1
Swate-chanacl cteny | L 202 s
Cract TTF M+ )N . . .
Statde IN not taree) . . . -
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