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SUMMARY
g \The objective of this work was to develop a general theoretical framework for cal-
¢ culating fluctuations of signals on waves propagated through random media (WPRM)
and to apply this framework to sound through the ocean; light through the atmosphere;
° radio waves through the ionosphere, solar wind, or interstellar plasma; and any other
similar case of waves propagating through continuous media. Comparison with real
data is an important aspect of the eflort.
Py This report will consist of a summary (with list of references), followed by copies of
the journal articles resulting from this contract that have been published, or have been
submitted for publication. Some work in progress will not be included in detail here,
€ since it will be discussed in the reports of future DARPA contracts.
The two most common signals sent on a carrier are the phase and amplitude of a
nearly monochromatic wave. If enough bandwidth is available, one can send a pulse,
€ and one can speak of the intensity and arrival time of that pulse. The technical prob-
lem is then to explain the statistical behavior of the intensity and arrival time in terms
of medium fluctuations, where the medium is described statistically, usually by a power
¢ spectrum covering a large dynamic range of scales. 4~ o
The eventual practical applications of an understanding of WPRM to science and
to the defense department are myriad. The phase of a light wave from an astronomical ‘:
¢ !
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object or a satellite is used by a telescope to focus to a detector; the quality of the
focus depends on the state of the atmosphere - a random medium. A ground-based
laser with large optics attempts to focus on a small spot for a period of time; the atmo-
sphere spreads out the spot by its action on the phase of the wave. Determination of
pulsar parameters depends on observations of radio pulses through a distorting random
medium-interstellar plasma. Communication with spacecraft by radio pulses using
radio telescopes depends on coding schemes and antenna control that must contend
with effects due to the solar wind and the earth’s ionosphere. Communication with
earth satellites must contend with the ionosphere, and the eflfects of a disturbed iono-
sphere (due, e.g., to nuclear explosions) must be predicted. Probing ocean processes,
from large-scales (Gulf stream) on down (internal waves and microstructure) depends on
understanding acoustic propagation through a random medium; for example, a favored
method is to send pulses over long range and observe their arrival-time variations.
Detection of submarines by passive acoustics is limited by ocean fluctuations that con-
trol the maximum antenna size and integration time that can be used for coherent sig-
nal integration. Active sonar for communication has a limited bandwidth due to ocean
fluctuations. Determination of the characteristics of earthquakes, thought to be impor-
tant for earthquake prediction, is done solely by seismic detection. The earth through
: which the seismic waves travel has randomness, and this limits the information that

E can be gleaned from seismic signals. The same effect limits our ability to distinguish
b

q between underground nuclear explosions and earthquakes, and thus affects our political
b

3

stance vis-a-vis nuclear test bans. On the other band, the distortions of seismic waves

due to the earth’s random properties can be used as a probe of those properties and

hence can lead to a better understanding of earth structure.

The path-integral method for treating wave propagation has been successfully
used by the principal investigator for the analysis of many experiments in ocean acous-

tics.! This method is therefore utilized extensively in our work. Another school of wave
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propagation theory, which began in the early 1960’s in order to explain experiments in

r light transmission through the turbulent atmosphere, utilizes a different technique
involving partial differential equations for the moments of the wave fiedd.> The moment
equations and the path integral have now been used by enough researchers that the
L value of both approaches is appreciated, but the relations between the two methods has

remained confusing to many people.

A first step in WPRM is characterizing the statistics of the random medium. In
b this report we will speak of the spectrum of medium fluctuations, which would be
obtained by dragging an index-of-refraction sensor through the medium and taking a

Fourier transform of the resulting time (=space) series. This spectrum is characterized
L by a power law (e.g. -5/3 for Kolmogorov turbulence) that implies much more variation
at large scales than at small scales. It is likely that a sensor dragged in different direc-
tions will observe different spectra even on the average. In that case we speak of an
anisotropic spectrum. For example, the strength of the ocean spectrum is much higher
in the vertical than the horizontal for the same wave-number. Finally it is important
to know that the spectrum cannot continue indefinitely at either large or small scales.
At the "outer scale” the spectrum cuts off due usually to finite container size -- the
height of the atmosphere or the depth of the ocean. At the "inner scale™ the spectrum

cuts off due to physical processes; for example, viscosity becomes important at scales of

* order a few millimeters in the atmosphere and ocean.
This technical report covers the two year period of our contract effort. The next
" several paragraphs summarize the technical results we have obtained: more details are
given in following sections. The work has been carried out under the direction of Dr.
Stanley Flatte, and involves eflort by Dr. Flatte, senior scientist Dr. Frank Henyey,
. two post-doctoral researchers Drs. Dennis Creamer and Rod Frehlich, and a graduate
student (in the UCSD Electrical Engineering and Computer Science Department)
Johanan Codona.
b
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Our progress in understanding the travel time of pulses in random media has

resulted in a paper published in Physical Review Le(.ters,3

as well as results that will [
lead to later publication. Pulses sent through a fluctuating medium arrive earlier or
later than they would in the absence of fluctuations, depending on the particular reali-
zation of the medium. The variance of arrival time can be calculated by straightfor- (
ward methods in the geometrical optics limit. Our dramatic new result is for the aver-
age arrival time, which we find advanced in weak media. Heretofore, researchers were
of the opinion that pulses were delayed on the average. This effect is of little impor- 4
tance in communication applications where the average arrival time is usually less
important than the variance. However, the effect can be important in probing a ran-
dom medium for large-scale variations by their eflect on average travel time. Our q
result implies a possible confusion between a changing turbulence level and a change in
the average index of refraction on a large scale. For example, ocean acoustic tomogra-
phy attempts to measure the warming of a 100-km-square area of the ocean by an (|
expected change in travel time of about 20 ms. However we find a change in average
travel time of about 10 ms, due to an internal-wavefield that has no average warming
at all. We have recently studied the range dependence of this effect, and have found #
that it grows as the square of the range. This implies that experiments being planned
in the 1000-4000 km region will have major difficulties sorting out the effects of internal

waves from the effects of large-scale structure. Most importantly, the determinations of ﬂ

internal-wave effects will NOT be contaminated by the large-scale eflects.*

The above understanding of travel-time eflects arose from studying the mutual
coherence function (MCF) of the complex wave function of the wave field arriving at a
receiver. We have developed quantitative treatments of the MCF in an anisotropic
medium with curved deterministic rays,5 and have applied these treatments to data
from a 35-km, 5-kHz ocean-acoustic experiment, with good success.® The medium

fluctuations in that experiment were measured by instruments that were independent of
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the acoustic information, so no free parameters were available to the theory.

r Moving from arrival time, which is related to phase, we discuss amplitude or inten-
sity. We have developed a method for calculating the spatial correlation function of
intensity on a transverse plane through a receiver. This is a long-standing problem
P that is of great importance in using wave propagation for probing the structure of a
random medium, because measuring intensity is often the observation that can be made

most easily. In addition, an amplitude-modulated signal will be degraded by intensity
* fluctuations due to the medium. The standard theory develops a series solution for the
intensity spatial spectrum. The first few terms are an accurate representation of the
L small-wave-number end of the spectrum. In order to calculate the high-wave-number
region many terms of the series had to be evaluated. We have determined a different
series expansion, whose first few terms give the high-wave-number section of the spec-
L trum. Hence the evaluation of the full spectrum is simplified considerably. We have
also made considerable progress toward evaluating the intensity spectrum for an arbi-
trary source distribution, going beyond the standard procedure of considering the spe-
cial cases of a point source or an incident plane wave. Our general case will include a
source that is extended over a large aperture. An example of a coherent source of large
aperture would be a large-aperture laser beam. An example of an incoherent source is a

planet, or ap illuminated satellite, or an infrared plume from an ascending booster. A

‘,
paper describing our results is in review at the journal of Radio Science.”
Intensity correlations at two different frequencies are of interest for a variety of
reasons. We have derived the intensity cross-spectrum for scintillations caused by a
r plane wave passing through a random phase screen. A common approximation for a
| case of this sort is the Gaussian-Field approximation, in which the cross-spectrum is
[ Y modelled as the transform of the square of the second moment. We have shown how

this approximation breaks down when the outer scale is large compared with the diame-

ter of the scattering disk (the transverse region of significant wave energy). A paper
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describing these results has been submitted to Radio Science.® Furthermore, the thesis

of J.L. Codona will contain much of the two-frequency, extended-source results.’

Because researchers favoring the moment-equation method or the path-integral
method typically knew only one of the methods in any depth, the relation between the
two methods has been a mystery to many. We bave expended quite a bit of effort to
understand this relation. We have shown that the two methods are mathematically
equivalent, in much the same way that the Heisenberg and Schrodinger approaches to
quantum mechanics were shown to be mathematically equivalent. A better analogy for
those familiar with quantum mechanics is the equivalence of the Schrodinger and Feyn-
man approaches to quantum mechanics. The equivalence extends to the equivalence
term by term of the series solutions for the intensity spectra mentioned earlier. a paper
describing these results has been accepted for publication in the Journal of Mathemati-

cal Physics.lo

In nearly all cases, in order to compare theory to experimental data in WPRM, we
must use a model spectrum for the medium fluctuations. We have developed
phenomenological spectra, as a function of wave vector, that allow for an anisotropic
component added to a turbulent isotropic componeut'..ll This model is meaningful both
for the ocean, where the anisotropic component represents internal waves, and the iono-
sphere, where the anisotropy is due to electrons preferentially moving along magnetic
field lines. We are in the process of calculating intensity spectra in the weak fuctua-
tion region using these model spectra. We have data from an ocean-acoustic experi-
ment that will be used for comparison purposes; the experiment utilized 10-70 kHz
sound over several hundred meters under the Arctic ice.”> We should note that the
weak-fluctuation regime is one in which the intensity series solution for the low-wave-

number regime is the only relevant one.

For more than one hundred years, eclipse observers have noted "mysterious”

bands of shadows moving on the ground just before and after an eclipse. Many exotic

-
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theories of these shadow bands have becn put forward, but most observers agree that
they are probably due to atmospheric scintillation that becomes visible when the cres-
cent of the eclipsed moon becomes thin enough (a few minutes before and after an
eclipse). Johanan Codona, the graduate student associated with this project, has made
the first systematic application of WPRM theory to eclipse shadow-band observations.'®
He explains the orientation and contrast of the bands as a function of time, and
describes the effects of eclipse geometry and the importance of wind direction. He
relates shadow-band observations to stellar-scintillation observations. One important
conclusion he draws is that as the illuminated crescent gets thinner, the shadow-band
observations probe higher into the atmosphere. Recently published data' from the

eclipse of February 16, 1980 in India agrees with Codona’s predictions. Further data

from the annular eclipse of May 30, 1984 in Georgia should soon be forthcoming.

We have begun the analysis of seismic data from the Center for Seismic Studies.
Two nuclear explosions in the Soviet Union with good detections on the NORESS array,
which has about twenty elements spaced out to a few kilometers have been obtained.
The first look shows rather small travel-time fluctuations, somewhat at odds with the
large amplitude fluctuations that have been suggested previously. Some of the prelim-
inary data are shown in a subsequent section. We have looked at the data as a func-
tion of frequency up to about 20 Hz, and have seen no obvious systematic differences in
travel time between the different frequencies, except for an unusual change in the

arrival structure between 5 and 10 Hz.

The theory of wave propagation through three-dimensional, continuous, random
media is based largely on the parabolic wave equation. This equation did not appear in
a classical physics context until about 1950. Yet, after 1926 it was used in a quantum-
mechanical context, where it is called the Schrodinger Equation. We have studied the

history of the development of this equation, and have developed some pedagogically use-

ful ideas on how to introduce the Schrodinger equation to students in a manner that is

’
.
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less mysterious than is used in the present curriculum. A paper on this subject has been
submitted to the American Journal of Physics.ls L

We have presented selected portions of our work at meetings of the American Phy-

sical Society at Providence (November, 1984), the Acoustical Society of America at Aus-

P s gp g o

tin (April, 1985), and the Union of Radio Scientists at Vancouver (June 1985), as well as q
in an invited talk at the International Symposium/Workshop on Multiple Scattering of

Waves in Random Media and Random Rough Surfaces at the Pennsylvania State

Eoll N
R

University (July, 1985).1°
Our longer-term goals will include the implementation of our new theoretical
results into computer codes for calculation of general phase and amplitude fluctuations.
Two directions are contemplated that will require large-scale computing. The first is
2 propagating waves through individual realizations of random mcdia to compare with
our theoretical results and to extrapolate those results icto parameter regimes in which
the theory is not valid. This propagation can be done via a parabclic wave equation, so
that it is a2 marching solution. The second involves evaluating the theoretical formulas
which involve either multidimensional ordinary integrals, or in some cases, path
integrals. We have begun some computer work on simulation of WPRM using our VAX,

and we plan to implement the code on an IBM-PC that has two FFT hardware boards

"o et ) ull
af IR R NI T

that should allow uninterrupted calculations at about twice the speed of a VAX. These

eflorts are in preparation for proposals to do simulation calculations on a CRAY.

Finally, it is desirable to make the comparison in a unified way between these
theoretical approaches and data from experiments in seismology, ocean acoustics,
atmospheric optics, and radio waves through the ionosphere, the solar wind, or the

interstellar medium. Our results will be important building blocks in making that hope

a reality.
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APPENDIX A

Average Arrival Time of Wave Pulses through Continuous Random Media

Johanan L. Codona, Dennis B. Creamer, Stanley M. Flatte|
ol R. G. Frehlich, and Frank S. Henyey
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Average Arrival Time of Wave Pulses through Continuous Random Media

Johanan L. Codona, Dennis B. Creamer, Stanley M. Flaue,®’ R. G. Frehlich, and Frank S. Henyey
Center for Studies of Nonlinear Dynamics,'™ La Jolla Insiitute, La Jolla, California 92037
{Received 9 October 1984)

It is pointed out that a continuous random medium can cause an average advance of the arrival
time of a puise. This advance will occur for unsaturated and partially saturaied propagation, but not
in full saturation (which corresponds to the discrete-scatterer case). The effect, which is associated
with Fermat's principle of least time, can be observed by measuring the difference between
intensity-weighted and unweighted average arrival times.

PACS numbers: 03.40.K[, 05.40.+j, 42.20.Cc, 43.30.+m

Wave packets, or pulses, are frequently used to
probe inhomogencous media. If the wave speed in the
medium varies on scales small compared with the total
distance traveled by the pulse, then the medium is
treated by statistical methods. **Macroscopic™ exam-
ples include sound through ocean internal waves,!
light through atmospheric turbulence, ) and radlo
waves lhrough plasmas such as the ionosphere,! the
solar wind,® or the interstellar medium. ¢ Microscopic
examples include various ‘‘sounds™ through liquid
helium,’ and waves through inhomogeneous con-
densed matter.! These continuous media may be dis-
tinguished from media consisting of discrete scatterers
such as would occur in light transmission through fog.’
or in wave transmission through a gaslike medium
with random-point particles.?

This Letter points out that a fluctuating continuous
medium can cause an average advance of the pulse ar-
rival time. All previous analyses have dealt with situa-
tions in which purses are delayed on the average.'"!?
By convention,!-! the ensemble average of a random
medium is taken as the medium reference state, and
the small fluctuations about this reference state are
thus by definition a zero-mean random process. The
arrival-time advance or delay is relative 10 the travel
time through the reference states. Thus, for example,
results through turbulent air or plasma are relative to
quiescent air or plasma, not vacuum.

The behavior of a wave propagating through a ran-
dom medium is controlfled by relationships between
the wave number (k) of the propagating wave, the
range (R), and the strength and size of the medium
fluctuations.*? Unsaturated behavior cotresponds to
one stationary-phase path (ray), and occurs if the

medium fluctuations are weak enough. In fully saturai-
ed behavior the original ray breaks up into many new
microrays which are statistically independent of each
other. Propagation through a medium of discrete
scatterers falls in this category. Partially saturated
behavior occurs in a strongly fluctuating medium with
a power-law spectrum, which has enough small-scale

fluctvations to cause the breakup into many microrays,
and enough large-scale fluctvations to make the mi-
croray bundle behave like a single ray in its wandering
from the unperiurbed ray. Experiments in waves
propagating through continuous random media typical-
ly fall into this category. We deal only with the impor-
tant case in which the transverse wandering from the
unperturbed ray is small compared with the range of
propagation.

Briefly our results are as follows: If the travel time
of a pulse is averaged over an ensemble of the random
medium, with each pulse weighted by its intensity,
then the average pulse is delayed, regardless of the
type of propagation behavior, in agreement with previ-
sus results.!! 12 However, if the average travel time is
obtained without weighting by pulse intensity, then a
pulse advance is expected for both unsaturated and
partially saturated behavior, while a pulse delay
remains for the fully saturated case. The difference
between intensity-weighted and unweighted travel
time probes the variance of the first derivative of the
refractive index, smoothed over 2 microray bundle.

To explain our effect qualitatively we first take a
simple special case. Consider a point source and point
receiver separated by range R, and a homogeneous
medium in the absence of fluctuations, so that the un-
perturbed ray from source to receiver is a straight line.
The random medium is concentrated in a ‘‘phase
screen’” at a distance z from the source. This screen
has the effect of advancing the time of a wave front by
a random amount ¢{x) where x is the position on the
screen, and ¢(x) is a stationary Gaussian random pro-
cess with zero mean. (We take x as one-dimensional
for simplicity.)

Weak fluctuations.—1In the geometrical-optics limit
only one ray exists from source to receiver. The travel
time for a path through point x is

T(x) = Ty+0.5c5 'Ax?- 1(x), 1)

where A~ "= 2(R -2)/R By Fermat's principle the
ray is at the point x, such that T(x,) is a minimum.

_©1985 The American Physical Soclety 9 -
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For the case of weak fluctuations we may expand /{x)
as

t{x) =104 rx+0.5"x (2)
The position of the ray follows to first order as
= A ey, (3)
The travel time of the ray is then
T(x,) = To+0.5cod "1~ 19— coA ~ 1’2, @)
This case requires that, typically
lcoA =t << [1gl. (5)

But ¢ (and hence o and 1°) are (by construction) ran-
dom variables with zero mean. Therefore the 7 term
will disappear in the average travel time and the only
effect of the fluctuations will come from the ¢’ terms.
These terms arise because the ray has moved away
from its unperturbed position. The first ¢ term is pos-
itive, corresponding to a pulse delay, and represents
the effects of geomeltry; the perturbed path is physical-
ly longer than the unperturbed one. The second ¢
term is negative, corresponding to a pulse advance; we
cal) this the Fermat term; the ray sought out a region
of the medium with a pulse advance. The Fermat
term is twice as large in magnitude as the geometry
term. The average travel time is

(T) = To—0.5¢,4~ (1), )

so that the pulse on the average arrives early.

There is a subtlety to this result. In the weak-
fluctuation limit the intensity is controlled by the
focusing due to the curvature of the wave front as it
exists from the phase screen. 1t is not difficult to show
that the intensity /s, to first order,

I=14+A" " cor". ¢
Consider the intensity-weighted average travel time
(IT(x,)) = To—0.5¢co4 1 ()
—coA =Y tor"), ®)

where the last term comes from the correlation
between the intensity and the travel time. For any
random function #(x) whose Fourier components are
uncorrelated (i.e., the correlation function is
transiation-invariant)

{tot”) = = (r'}). 9)
Therefore

(IT(x,)) = To+0.5cod =1 (1?). (10)

In other words, the intensity-weighted average travel

time is delayed by fluciuations by exactly the amount
that the unweighted average is advanced! The focus-

ing efTect exactly cancels the Fermat term, leaving a
resultant equal 10 the geometry effect alone. This oc-
curs because a positive Nuctuation, which delays the
pulse, acts as a converging lens to increase the inten-
sity.

The simple example of a phase screen in the weak-
fluctuation geometrical-optics limit has illustrated our
point. We will now make some remarks on generaliza-
tions to extended media and strong fluctuations which
we have treated rigorously but do not have space
within the Letter format to describe in detail. We then
describe a rigorous extension of these results by means
of a path-integral method to include diffractive effects
in a power-law medium.

There is no difficulty in extending the above results
from a phase screen 10 extended media in which (6)
and (10) are replaced by

(T)—Ty= —O.Sco“fdz AY2)

x{ [dr pglzsN, (D)
(IT) = To= +0.5¢5" [dz 4~ 1(2)

x lfdz'p,,(z.z’)l. 12)
Px(2.2') = (3, (2)Axpu(2)), (13)

where 9,u(2) is the transverse gradient of the refrac-
tive index due to the fluctuations at location 2 along
the unperturbed ray. These results require the Mar-
kov approximation [that is, the quantity in square
brackets in (11) is a local function of z}. If an incident
plane wave rather than a point source is used, all three
terms (geometry, Fermat, and focusing) are reduced
by a factor of 3. If the Markov approximation is not
made, the ratio between Fermat and geometry remains
—2, while all terms are modified by terms of order
L,/R, where L, is the longitudinal correlation Jength
of the medium fluctuations.

Strong fluctuations.—If the medium fluctuations are
strong enough, one can show in the limit of small
wavelength that both the Fermat and focusing terms
become negligible. This occurs when the intensity
fluctuations become of order unity. From (7) this cor-
responds 10

A lep(rhiinyy, (14)

If this condition is satisfied, the unperturbed ray
breaks up into many microrays that are not minima,
but extrema, in accord with Hamilton's principle of
stationary action. The converging (or diverging)
lenses now are so strong that caustics occur, destroying
the correlation between intensity and pulse delay. The
Fermat term disappears because the microrays are not
at global minima; hence the geometry term strongly
dominates, resulting in the validity of (10) even for
unweighted average travel time.
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If 1(x) has a power-law spcctrum, then the above
argument must be modified 1o separate the effects of
large-scale and small-scalc fluctuations. The small-
scale fluctuations, if they alone satisfy (14), break the
unperturbed ray into a bundie of microrays of size L,.
Fluctuations larger than L, correlate the travel times
of all the microrays as though they were a single ray,
and cause the average pulse arrival time to behave ac-
cording to the weak-fluctuation rule (6), where (1) is
to be interpreted as coming only from scales larger
than L,. It then becomes crucial to estimate L. For
the phase-screen case, we find

L, = oA~ ()2, (15)

The difficulty here is defining the average travel time
of a pulse that itself has complicated structure due to
microrays.

Path-integral result.—A major limitation of the
above treatment is its restriction to cases of very small
wavelength, and the related requirement of defining
an inner scale for the medium fluctuations (in order
for {r"?) or even (r'?) 10 be finite). The path-integral
method can treat the case of finite wavelength for
intensity-weighted travel time.

To arrive at average pulse travel time we note that

(T)-T,
= — (i/cg)B, (W (ko+ k)W (ko)) g mp.  (16)

where kg is a central wave number of the propagating
wave, k is a deviation wave number whose excursion
represents the pulse bandwidth, and ¢ is the reduced
wave function at the receiver. Let us treat the phase-
screen case for simplicity. The second moment as a
function of wave number is known to be' ™

(* (ko + k)w (ko))
=expl -0.5k%c{ (1§)1Q(k), (17)
Q(K) = N [ du expltlidkgk~u? - kgD (),

(18)
where D () is the structure function of the medium,
D(uw) = ([1(w) - 1(0)}%), (19)

and N is a normalization such that Q(0) = 1. It is easy
1o see that Q(k) has an increasing imaginary part as k
grows from zero.

At very small k, Q(k) is controlled by the behavior
of D(u) at small u, which must be quadratic if an
inner scale exists. Thus for small u

D(u) = (1) ul. (20)
Then'*
QUk) =1 —icd A~ (ryk])-V2, (21)

and the result for the intensity-weighted average travel
time is (10) exactly.’

If we atiempt 10 model D(u) at infinitesimal v as a
fractional power law, then the average travel time
diverges.

This result for finite wave number predicts a delay
equal 10 the geometry term. Most importantly this
derivation has made no distinction between the weak-
and strong-fluctuation cases, and can be easily general-
ized to the extended medium. We can conclude that
(IT) — Ty is equal to the geometry term alone regard-
less of the fluctuation strength, a result already sug-
gested by the geometrical-optics calculation.

When (18) is generalized to an extended medium by
a path-integral formalism the same conclusions are
easily shown, subject to the additional assumption of
the Markov approximation.

An important modification of the above result oc-
curs if, in the absence of fluctuations, the medium has
focusing properties. In ocean sound propagation this is
due to the sound channel. In radio-wave propagation
from pulsars this might be due to very large-scale
medium fluctuations that are effectively frozen during
the time of observation. The modification can be sim-
ply expressed by generalizing 4 ~'(z) in (11) and (12)
for a curved ray.? The key result is that 4~ '(z) can be
negative for various regions along the ray, and hence
the geometry term can be negative for curved rays. This
complication is crucial to the comparison between cal-
culation and experiment in the ocean, though probably
not in other media. Note that this effect provides
another, different mechanism by which fluctuations in
a medium may cause an average pulse advance. Final-
ly, dispersive propagation, such as occurs for radio
waves through plasma, can be treated with the same
techniques.
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Path-integral treatment of acoustic mutual coherence
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Path-integral treatment of acoustic mutual coherence functions for
rays in a sound channel

Roger Dashen
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The mutual coherence function (MCF) of the acoustic wavefunction from a point source is derived
by the path-integral technique for transmission in the presence of a sound channel. Separations in
time, transverse horizontal position, vertical position, and acoustic frequency are treated.
Approximate coherence times, lengths, and bandwidths due to internal-wave fluctuations are
derived. The MCF of frequency is explicitly evaluated for fluctuations due to internal waves. The
shape of an ensemble-averaged pulse is derived from the MCF of frequency.

INTRODUCTION

The mutual coherence function (MCF) contains impor-
tant statistical properties of the acoustic field that has tra-
versed a medium filled with random fluctuations. For exam-
ple, the coherence time and coherence lengths that
determine the maximum effective integration times and ar-
ray lengths that can be utilized in sonar systems are con-
tained in the MCF. We show in this paper how to derive a
number of results about the MCF which were indicated in
our carlier works on the subject.'? In particular, we show
how to derive the MCF from the path-integral technique for
transmission in the presence of a deterministic sound chan-
nel. .

The MCF of frequency controls the coherent band-
width and also describes the behavior of the ensemble-aver-
aged pulse for a pulse-transmission experiment. In this pa-
per, we derive the path-integral expression for the MCF of
frequency, and then give explicit rules for calculating it in
the special case of internal-wave medium fluctuations. We
are able to explicitly evaluate the case of internal waves be-
cause the accepted spectrum of internal waves implies a
nearly quadratic structure function and path integrals for
quadratic actions are known.

An appropriate Fourier transform of the MCF is the
ensemble-averaged pulse (EAP) at the receiver for a narrow
transmitted puise. With no sound channel the EAP rises
sharply and has an exponential tail. We show how the pres-
ence of a sound channel can cause a precursor region to the
pulse, and can cause the tail at late time to decrease in inten-
sity.

! I. PATH-INTEGRAL EXPRESSION FOR THE ACOUSTIC
WAVEFUNCTION

We begin with the wave equation for the pressure as a
function of space and time in the presence of a spatially vary-

» ing wave speed. We follow the notation of the review article 2 ,
eSo=9¢ J;. [0 W + 40, 2° — Uplz)}dx, (6}
“On leave from the Univensity of California, Santa Cruz, CA 95064, and Vis a normalization factor chosen by convention so that
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by Flatté’: The sound speed can be expressed as
Clxs)=Coll + Uplz) + plx.t)], )]

where C, is a reference sound speed, Upy(z) is a dimensionless
function of the depth z representing the deterministic sound
channe), and u(x,¢ ) is a random, zero-mean function of posi-
tion representing the effect of medium fluctuations such as
internal waves. The wave equation for an acoustic wave is
unaffected by the time dependence of 4 because u has only
components with very low frequency.
The acoustic pressure @ obeys the wave equation

3, p—~CWp=0. (2)

The parabolic approximation consists of considering
solutions in which waves are traveling only at small angles to
a particular direction; in the ocean this direction is in the
horizontal, labeled by x. Thus we try

@.= exp(iigx — o7)] ¥ix.1), (3)

where g and o are the wavenumber and frequency of an
acoustic wave traveling along the x axis at speed C,: that is,
g = 0/C,. The “reduced” wavefunction ¢ is slowly varying
in space and time compared with ¢ and o, and satisfies a
parabolic equation**
2gd, $=[—0, — 8, + 2% Up+ u)) ¥.
Equation (4} is a Schrodinger equation, and thus its so-

lution can be directly expressed in terms of a Feynman path
integral®
R
$=N f Dz exp(iqSo(z) —iq L ulxzx)e ]dx) , (5)
where the path integration (indicated by D ) is over all paths
zix) = [ yx),2{x)] connecting the source to the receiver. The

phase associated with the path in the absence of fluctuations
is

4




it. PATH-INTEGRAL DERIVATION OF THE MCF—THE
MONOCHROMATIC CASE
The MCF for the single-frequency case is ( ¥*(21¥(1)),
where the angle brackets indicate averaging over the ensem-
ble of random u functions. The MCF measures the coher-
ence between the acoustic fields at two different points, la-
beled by | and 2. These points may be separated in space,
time, or both. We treat spatial separations that lie in the ( y.2)

plane. .
The use of (S) and (6} resuits in

( ¥*(2)1)
= (IN |2 I Dz, Dz, exp(iqso(l) — igSel2)

R R
—ig [ s +ig [ wteriax)). 0
The ensemble average applies only to the us, so we may write

($*2) W1
- VP f Dz, Dx, expligSall) — igS2) — 4 Vial , (8)

where
Vo= (( [ wteirids — [ wizatias)) o
and we have used the fact that

(explia)) = exp( — §(a?)), (10)
if @ is a zero-mean, Gaussian random variable, such as any
combination of us is assumed to be. Even if a is not a GRY,
(10) can still be true if the higher moments of @ are small.

The problem of finding a useful result for the MCF now
reduces to evaluating’ the double path integral in (8). We
first express the unperturbed phases in terms of the path
variables using (6):

R
Soll) - So2) = L (40, 2 — 10, o + U0, 2.}

— 49, z.f — Udzy) + Usiza)Jdx , (1)
and we expand the deterministic sound channel function to
second order in the displacement of the paths away from the
equilibrium ray. That is, we define z,(x) as the function that
satisfies the ray equation (in the parabolic approximation):
with boundary conditions

7,0)=2z, z(R)=[A1)+22))2.
Define two new path variables by

viix)=z x) - 2,(x),  vylx)==2,x) — 2,(x),
and expand Uz,) around the point z, (x):

Uslz)) = Ulz,) + Ugey + § Ught, (15)
where it is understood that U} and U ; are evaluated at z,(x).
This expression will be valid as long as the effective bundle of
acoustic energy stays well confined around the unperturbed
ray, z,(x}. If more than one solution of (12) exists (determinis-

tic multipath), then we treat one unperturbed ray at a time.
Addition of the results depends on the coherence between

(13)

(14)
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deterministic rays, which can often be well estimated. At
caustics our method breaks down.

In terms of the new displacement path variables {11,
becomes

R
Soll) — Soi2) = j (48 P = 43, y:F + 3,0,
]

- “az ”z,z + a:zllalvl - a: UJ)

—Usw,—v)) = LU} —13))dx. (16
Now change variables once again, to
alx) = y,ix) — yiix),  Blx) = [ y\(x) + y,ix))/2,
u(x) = vy(x) = vofx) = 2y(x) — 2,(x} , (an

wix) = (vyx) + v,fx)] /2.
Then the unperturbed phase term becomes

R
Sll) = Sy2) = L 0.0, B +3,ud,w +d, 2,0,

- Ugu - Ug uwidx . (18)
Now the crucial observation is that ¥, is a function mainly
of the difference between two paths z, and z,, and not a
function of the average (z, + z,)/2. The path integral (8) is
being done over four scalar functions a, 8, u, and w. The
above observations correspond to noting that ¥,, is not a
function of 8 and w. .
Consider the B path integral. The only £ term in (18)
gives

I, = fDﬁ exp(iq J;R {0.ad, B )dx) .

First, integrate by parts within the x integral, keeping a and
B fixed:

R
I, =JDBexp(iqL [ - OB ]dx) .
Now the Bintegral is direct, in analogy with the definition of
the Dirac delta function, and yields a restriction on a:
d.a=0. (21)

The boundary conditions for @ can be expressed easily for a
point source:

(19)

(20)

al0)=0, alR)= yl)— M2). (22)
Thus the solution for a(x) is
aix) = a(R ¥x/R ), (23

which is the separation between two straight lines from the
source to the two receivers at positions 1 and 2. Thus the a
path integral is effectively done despite the dependence of
V,;ona.

Consider the w path integral. First we can integrate the
9, 2,0,u term by parts within the x integral yielding
( — d..2,)u. But (12) shows that this cancels the U u term.
Integrating the d, ud, w terms by parts finally yields

R

So(l)—So(2)=L (—0,u—Ujuwdx, (24)
and the w part of the path integral yields, again in analogy
with the Dirac 6 function:
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O u+Usu=0. 25)

The boundary conditions for u can be expressed in the same
way as (22)

0} =0, wuR)=2z1)-22). 126)

The solution of (25) and (26) is easily shown to be the separa-
tion between two nearby rays in the sound channel, which
start at the source and end at the two receivers.

Thus the path integral is done, and the only require-
ment is 10 evaluate V,, at the scparations that have been
determined solely from the integrations involving the unper-
turbed phase terms. A stationary-phase approximation has
been invoked to define the unperturbed ray in the absence of
fluctuations. However, the fact that no stationary-phase ap-
proximation has been invoked for propagation through the
fluctuations should be emphasized. But ¥, for z,(x) and
Z,(x) being nearby rays is defined as the well-known phase
structure function:

V,.la,u = ray separation)=D0(1,2) . 27)
Thus the result is
(¥*(2¥(1)) = exp{ — 1 D(1,2)] . (28)

At this point it is worth noting that a number of end-
point terms that resulted from the integrations by parts have
been subsumed in the normalization, which is required to
give unity at zero separation of the two receivers.

/ The resuic {28) has been obtained previously in many
different ways.*'! The path-integral derivation provides a
means of seeing the physics of the approximations in a new
way. The only approximations have been the parabolic ap-
proximation and that ¥, is not a function of 8 or w. The
result is valid in the presence of a deterministic sound chan-
nel, regardless of whether the wave fluctuations are unsatu-
rated or not. The limitations on the result come from the
approximation being violated by inhomogeneity and aniso-

Pt i gl C S g Ao B

are evaluated in Esswein and Flatté. Because (31} is nearly
quadratic the logarithm may rather accurately be replaced
by a constant. The best constant to use can be shown'~ to be
in @, where

= q‘fdx(u’)L, .

Evaluations of @ for some particular examples are given by
Esswein and Flatté."

The evaluation of f1a.0.0) for internal waves is compli-
cated by the coupling between horizontal internal-wave
structure and both vertical structure and frequency.'’ Nu-
merical evaluations have been done'? and seem to follow
approximately the law

f1a.00)x } Ba®, (33)

where the power p is empirically about 1.5. Thus our final
approximate results for the monochromatic MCF are

132}

LY L. 7 2.0 s 7 & 2222729221

ool aa

:
:

( L*0)0)) = exp[ — 0.5( /1011 , (34
( ¥4z} HO0)) = expl — 0.5(82/2,)°) , 135)
( %48y ¥0)) = exp[ — 0.5(4y/y,)"] , (36)

where the coherence time 1,, vertical coherence length 2z, and
horizontal coherence length y, are given by

R
152 ¢ [ dxudL ), 7
(1]
R
= q’ln¢f dx(pL kL], 138)
(]
R
}’o-p'—'qu‘ dx(”z)L,B, 139)
0

and the evaluations of all the quantities in (37)439) can be
done by the methods of Esswein and Flatté.'?
Comparisons of {34) and (37) with experiment are done K
in a companion paper.'* It would be very desirable to com-
pare (35) and (36) with experimental data in an appropriate

P tropy.? L : r
- parameter range in which internal waves should dominate. {

. EVALUATION OF THE MONOCHROMATIC MCF FOR )

INTERNAL WAVES IV. PATH-INTEGRAL DERIVATION OF THE MCF OF ;

o ACOUSTIC FREQUENCY ’

Under the Markov approximation, the phase structure ) . ) K

function can be expressed as We will treat in detail only the MCF for frequency sepa- K
f 2 rations with no simultancous space or time separations. .‘
D(1,2)=2¢ L dx(u®)L, fla.ut), (29)  Then (8)is replaced by J
1 w‘ o
‘ where (u?) and L, have been defined previously’? and (Ut q:)) 3
fla.u,t) is the phase correlation function (PCF) defined by =\N{* sz. Dz, explig,Soll) — ig:Sol2) — L V1] . 1
Esswein and Flatté.'? The PCF has been evaluated for inter- X
[ nal waves by Esswein and Flatté,'? using a combination of 401 3
analytical and numerical techniques. Sincea and u areboth ~ where ¢, = ¢,/C, and J

functions of range, x, (29) must in generai be evaluated by a '] R
numerical integration code. Via= «q.L pi(z,,0ldx — q,f p(z;.O)dx)’) . 41 3

At small separations, approximations to the PCF are ° X
possible. For example, The unperturbed phase is expressed in the manner of :

) 1 "
. £100.1) = a?)e?, po M !
10,0 = i{k} }u? Injug/u), 31)  :Soll) - g:Soi2) = J; (1900 ~ 1923y .
where {w?} is an average internal-wave frequency that is ‘ 9 2. 3. z.F ki
dependent on the local depth and position of the ray z,(x), + 190, 2yf — 1 ¢:00, 2:) !
. and likewise the quantities | k }. | and u,. All three quantities - q,Uolz)) + ¢:Uplz5))dx . i42) j
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Applying the same changes of variables indicated in (14)
and (17), we find

R
0541 = 542) = 1Sul1) = S20) + - 4q [ (13, 87

+ {(d.aP + (9, w) + {0, u)

+20,wd, 2, + 19,2, — 2Uz,)

—2Uqw—Uguw? - U5 «*]dx, (43)
where § = (¢, + ¢:)/2, 4¢ =g, — ¢, and S(1) — S(2} is
expressed in these variables in (18). Again we observe that
¥,, is not a function of 8 and w, and this allows the path
integrals over 8 and w to be done. However, in this unequal
frequency case the path integrals are not analogousto$ func-
tions; instead they are Gaussian integrals because of the qua-
dratic forms in (43).

Consider the B integral. Collecting 8 terms in (43) we

bave

1,= fDﬂexp[—;- Aq f ((a, B+ —Z’%&.a&, 3) dx] .
(44)

This path integral is done by completing the square, and,
aside from factors that will be subsumed in the normaliza-
tion, yields

I,= exp( - é—% J;. (d.a)’ dx) . (45)

Now consider the w path integral. This can be expressed
i " 2
I, = I Dw exp[— Ag J; (wLw +—= wLu)dx] R
2 4q
(46)

where L is an operator given by

L=-d,-U;. (47)
Note that integration by parts has been used in several places
to obtain (46). Evaluation of I, is done by completing the
square and yields, apart from normalization terms,

,,=exp(—-;—-4fq— :uLudx). {48)

Combining (43), (45), and (48), we find (40) becomes

(g 0) =NIDaMexp(—-;-."A'_qql

R
X L [@.a + uLu]dx -% V,,) :

(49)

First, let us note that if 4¢ =0, then this path integral is
essentially a stationary-phase integral around the extremum
of the range integral in the exponential. The solutions for a
and u are then (23) and {25) and {26), respectively. This MCF
expression (49) is a path integral over two scalar (or one vec-
tor) path, and it cannot be simplified without some assump-
tions about the nature of ¥,,. Let us express V|, in terms of §
and 4¢:

1719 J. Acoust. Soc. Am., Voi. 77, No. S, May 1985

Vi = i’(( Imz.m - I ,,(.M,)z)
* “q[« ,r # ""d")’) - « J'ﬂ(leX)z)]

+ -1— Mq;’(( Ip(z.)dx + f#(hm)l) - (301

The lack of dependence of ¥, on the centroid of the paths
( B.w) allows us to neglect the §44q term and to estimate the
last term as (4¢/ §|’®?, where

= i’((jmz,)dx)z)- (1)

Since @ 2 is a function only of the unperturbed ray z,,
and not the paths, the path-dependent part of ¥, is only the
first term of (50). Using the Markov approximation at this
point we have (32) and

R
Vi = 8¢/ TP + 27 j; (DL, flauOdx . (52

The dependence on paths is contained in f{a,u,0), and the
expression for the MCF is now

Plawa) = exp| - 5 (%)z o:louaa,
Q(4q)
- NJ. Da Du exp( - %"T";*- f [@.af + uLu)dx

R
-7 f (u’)Lpf(a.u.O)dx)- (54)
0

The evaluation of the path integral, Q (44), depends on
our understanding of f(a,u,0). We make use of the approxi-
mations given in (31) and (33), and our knowledge of the
magnitudes of B and {k 7, to justify the neglect of the de-
pendence of fon the horizontal variable a (because B is very
small). The a integral then yields

. R
Q(Aq)=~fpuexp(-%!‘%&'£ uLu dx

-%?hOf(pz)L,lkHu’dx). (55)

This is a one-dimensional path integral with quadratic
action, whose explicit evaluation will be given in the next
section. Note that the normalization N is set so that
Q(4q) = 1 if p = 0 everywhere.

V. EVALUATION OF THE MCF OF FREQUENCY

The evaluation of @ (4¢) from the path integral (55) can
be done in at least two useful ways. The first involves fixing
4gq and solving an ordinary differential equation for Q. The
second involves an eigenvalue method that finds the singu-
larities in Q (4q).

It will be useful 10 express Q in the following way:

. R
Q(Aq)=NfDuexp(—-—;-i’L uMudx). (561
Mixi= =8, -Ug —idqin @ (p)L ,{k}), (5T
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where we have used the fact that 9,9, = §. The solution of
this quadratic path integral is given in terms of the solution
of a differential equation® for a function S (x.4q). The equa-
tion is

MS=0, {58)
with initial condition 5(0,4¢) = 0. Then

Q(4q) = [SIR.OV/S(R.Ag)}''. (59)
Note that § is complex.

The form (59) is useful for finding the behavior of the
MCF at small frequency separations. (Remember that the
frequency separation 4o = 4¢C,, and we define == §C,.)
Consider M as made up of two parts

M=L-A40M,, (60)

M, =iCq'In®(u>)L,tk}]. (61)

Considered in position space these operators are infi-
nite-dimensional matrices, and the inverse of L can be found
by the equation

(=0, — UL ~'xx) =6(x' — x), (62)
hence,
L 'xx')= gixx'), (63)

where gix,x’) is the Green’s function defined in Ref. 3; it
depends on the sound channel through Uj.

Atsmall 40, we may solve (58) by a perturbation expan-
sion. This yields

In[Q(do}) = ﬁ‘z—"— TrL ~'M))

+E;—’f-Tr(L"M,L"M,), (64)

where Tr indicates the trace. The traces become integrals in
the infinite-dimensional case, so that we may finally express

Qas

In[Q do}) =idor, — Yo, (65)
n=22 [ (L, (k) ginaiis (66)
0
R
rz=(‘;'c")’ f de{ u?)Lp (k)
0 0
R
x L dx' (L, (k3] gex)]? (67)

where it is understood that the first { 4?)L,{k 3} is evaluat-
ed at x and the second at x’.

Although (65) is only exact as Ao—0, it is worthwhile to
model the MCF as

(w'(u.).z-(a,))=,,p[_ % (é;_)I ¢z]

X exp[idor, — {Adoro)*}, (68)
where the second exponential comes from the @ function. In
this form it is clear that 7, is a shift of the time origin for the
frequency determination, and 7, is to be compared with @ /o
to find which term is more important in determining the
width of the MCF. That is, 7, ' and o/9 combine to deter-
mine the coherent bandwidth of the transmission.
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TABLE 1. Parameters of Q{401 for two examples with constant F i} and "
Us Fixiusetat 10 ! ms/km’ Unns for the rs are ms. Units for the eigen- -
values are imsi ™' The exgenvalues were calculated by s general computer
code (CC); they should agree with (72) for these ssmple examples. which they
do reasonably wel).

Ugikm %) 0 0.034
r, 1.02 -26!
To 0.68 2.76

ccC 12) ccC (72)
i, 0.80 0.81 ~260 ~259
A, 3.22 3.24 ~0.18 -0.18
a, 7.2¢ 7.29 3.84 3.85
Al 12.87 12.89 947 9.49
As 20.1 20.1 16.7 16.47
Ao 80.4 80.6 770 1.2
Ars 181 181 178 178
Az 322 2 318 39

The behavior of the MCF near zero Ac is only part of
the information available. To learn more, we return to (58}
and solve it by an eigenvalue method:

LS, (x) =4, F(x)S,(x), (69)
Fix)=Cq'In®(u’)L,{k}], (70)
with boundary conditions S,(0) = S,(R ) = 0. Then

Q(Ao’):H(l——iAa//l,,)"”. )

There are many numerical methods for solving (69). We
find the most effective to be expanding S,(x) in Fourier
modes along with the eigenvalues 4, . In applying this meth-
od one must be sure that enough Fourier modes to accurate-
ly represent the S, up to the desired maximum n have been
taken.

Both F{x) and U] affect the values of 4,,. As an exam-
ple, take U g and F{x) = constant. Then

Ay =F~'[(z/RPn* - U3}, n=12,.,. (712)
Note that all of the 4, are positive if U g = 0 (no sound chan-

nel). In general, a nonzero U can pull the lowest lying 4,
below zero. The number of A, below zero is equal to the

[
(=]
]

magnitude
1]

F1G. 1. The MCF of frequency for
no sound channel and constant
Fix) = 10~ ? {ms)/km’. The range is
taken to be 35 km. The solid curve is
calculated by a general computer
code. The dotted curve is the approx-

lA(ll‘lll!lll'lll‘l'l‘

o
[=]

T

P oo / imation (681 with (66} and (67}, which s
= 20 E_/ = give r, = 1.02 ms and 7, = 0.65 ms.
? : -
I :
-20° z A
0 50 100 15C 200 :

Ao (Hz2)
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F1G. 2. The same as Fig. 1, except
the sound channel is represented by
constant U =0.036 (kmi-?,
r,= = 2.61 ms, and 7, = 2.76 ms.

i

AAlA (X} LlL

f

phase (deg)

L

El'

S0 100 150 200
Ac (Hz)

o

number of caustics the unperturbed ray has passed from
source to receiver.'® As a particular A, passes through zero,
the receiver is passing through a caustic.

Consider two examples in which @ /0 =28 ms,
F=10"2 ms/km? and ecither UJ =0, or 0.034 km—2
These values are comparable in magnitude to those in the
AFAR experiment'* which, however, has an Fand U § that
vary with range. The range istaken to be 35 km. Table I gives
the values of the eigenvalues for the examples, as calculated
from our numerical solutions to (69). They agree with the
analytic expectation (72). (The same computer code has been
used in calculating the eigenvalues for the AFAR experi-
ment."*) Figure 1 shows the Q (Ag) for this case. The values of
7, and 7, calculated from (66) and (67) are given in Table .
These values fit the phase slope and the 1/¢'/2 magnitude
half-width rather well.

When U is set t0 0.034 km ~2, the resulting Q (40) has
quite a different phase behavior; the phase slope has changed
sign (Fig. 2). The significance of this slope is discussed in the
next section. The values of r, and 7, calculated from (68) and
{67) are given in Table I, for this case, and again, they fit the
phase slope and magnitude half-width rather well.

Vi. PULSE TRANSMISSION

Consider the Fourier transform of the MCF as a func-
tion of 4o; label the conjugate variable as r, which we call
pulse time. If an experiment sends many pulses from a fixed
source to a fixed receiver, then the shape of the ensemble-
averaged pulse (EAP) is the Fourier transform of the MCF.

What are the meanings of the various parameters we
have used to characterize the MCF, such as 7, 7,, and the set
of 4,7 First, 7, is a shift in the mean arrival time of the EAP.
That is, the medium fluctuations cause a mean shift of the
pulse from when it would arrive in the absence of fluctu-
ations, and that shift is 7,. Unfortunately, very few experi-
ments (none in the ocean) can measure the pulse time in the
absence of fluctuations, and the absolute sound speed is not
known well enough to calculate it, so a prediction of r, can-
not b Jirectly tested. Second, 7, is a contribution to the
avciag. widt™ of the pulse, as is @ /0. Both act as standard
deviations in a Gaussian EAP.
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The tails of the EAP at both early and late times »re
controlled by the smallest 4, . This can be seen by noting that
{71)is a product of terms, so its Fourier transform is a convo-
lution of the Fourier transforms of all the terms separately.
In a convolution, the tail is controlled by the term with the
widest Fourier transform. Therefore we need the Founier
transform of

Q.40 =1 —ida/A, )" '"?, (73)
where 4, is the eigenvalue with the smallest magnitude with
the appropriate sign. The Fourier transform is

P.ir) =W /7r%e™"", 4,750,

=0, 4,r<0, (74)

where we have normalized so that § ( I (r))dr = 1. To find

the shape of the tail we convolve this function with the rest of

the MCF: that is, with a Gaussian of standard deviation @ /

0, and all the other eigenvalue terms, resulting in a tail given
1

" pineen ) 1 (-2)]

A 172 2 !
X(—'"—) e, A,1>0.
T

A
A

P(r)= exv[

(75}

The smallest positive eigenvalue dominates the very late 7
behavior. The smallest negative eigenvalue gives a precursor
and dominates the very early r behavior. If there are no nega-
tive eigenvalues (a caustic has not been passed) there is no
precursor.

Consider the examples given in Figs. 1 and 2. The corre-
sponding EAPs are shown in Figs. 3 and 4 along with the
predicted tail and precursor from (75). Note that the approx-
imation for Q given by (68) would give the position and gross
width of the pulse, but would not give the precursor in Fig. 4.
Note also that if the controlling eigenvalue has a large mag-
nitude (suchas 4, = + 3.85ms ™' for the positive 7 tail) then
the Gaussian remains in control to much larger 7. The time
at which (75) would become relevant is approximately
7=A, (®/0), or 30 ms in the case of Fig. 4.

The EAP calculation is valid whether the transmission
is unsaturated or not. In the unsaturated region a narrow
transmitted pulse will be received as narrow, and the precur-
sor or tail of the EAP is formed by there being a probability

gl L e N T .7 T T T |T!
T 0ty N ‘
: F vl
a *%r vl
+ Ny i \\ bt
‘\7 0 OO-E— \‘ —g
0.0001 :A‘L_‘ : P TENDIS Y .*
-20 -10 O 10 20

1 {ms)

FI1G. 3. Ensemble-averaged pulse calculated for the example given in Fig. 1.
The solid curve is calculated by a2 general code. The dotted curve is from
(68). The dashed curve is the prediction of the tail from (75) where the con-
trolling eigenvalue is 4,, whose value is 0.81 ms ™"
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F1G. 4. Ensemble-averaged pulse calculated for the example given n Fig. 2.
The curves have the same significance as in Fig. 3. The controlling eigenval-
ue is A, (for negative 7 hose value is —0.18 ms-'

for the pulse to be early or late, as well as a probability for
pulses arriving at different times to have different intensi-
ties.® In the saturated region each pulse may have its individ-
ual precursor or tail.

Vit. SUMMARY AND CONCLUSION

The derivation of the mutual coherence function (MCF)
of time, transverse space, and frequency by the path-integral
technique has been given. Allowance for a deterministic
sound channel and the presence of reasonable inhomogene-
ity and anisotropy in the fluctuation field has been included.
The MCF has been evaluated for fluctuations dominated by
internal waves, which have a vertical structure function that
is nearly quadratic. Reasonably simple expressions in terms
of environmental measurements for acoustic coherence
times and lengths, and coherent bandwidths have been giv-
en.

The Fourier transform of the MCF of frequency is the
ensemble-averaged pulse (EAP). The possibility of a precur-
sor or a tail on the EAP is shown to depend on both the
deterministic sound channel and the fluctuations, and meth-
ods have been given to calculate these effects.

1722 J. Acoust. Soc. Am,, Vol. 77, No. 5, May 1985

All of the parameters that can be used to approximate
the various MCFs and the EAP can be evaluated ona VAX
computer in a few seconds for a typical ocean-acoustic ex-
periment.
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F Abstract

A series expression is developed for the fourth moment of a beamed field
incident on a random phase screen or an extended medium. The series has a
P symmetry that allows its first few terms to generate useful approximations at
both low and high spatial frequency. The parabolic wave equation, the Markov

approximation, and Gaussian refractive index fluctuations are assumed. The

® result for the phase screen is obtained by Green's-function techniques. The
extended-medium result is derived in an analogous manner using path integral
methods. The same results are also derived by moment-equation methods. The
b behavior of the leading terms is compared to previous results for plane-wave ahd

point-source geometries.
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1. INTRODUCTION

Many years of research have been devoted to the study of wave propagation in random

media (WPRM). The first comprehensive review of the fleld was by Tatarskii [1971), followed by

waves through the ionosphere is reviewed by Yeh and Liu [1982). The phenomenon of interstel-
lar scintillation is reviewed by Rickett [1977] and Rickett et al [1984). Sound propagation

through the ocean and path integral techniques are discussed by Flatte et al [1979] and Flatte

F Prokhorov et al {1975], Ishimaru [1978], and Fante [1975,1980). The propagation of radio

{1983).

We consider waves propagating from an arbitrary source distribution in a random
medium. We assume the statistics of the medium are locally homogeneous, and we make the
Markov approximation; i.e. the field fluctuations induced within a correlation length along the
propagation direction are weak. For a more complete discussion see Codona et al, [1985).
The wave propagation is characterized by narrow angular scattering due to the small random
fluctuations in refractive index. It is then convenient to write the complex monccLromatic
scalar field as E(%z)e*® where z is the propagation direction, % is the transverse coordinate

and k is the wavenumber of the wave with no refractive index fluctuations.

The random nature of the fields is conveniently described by statistical moments

evaluated in the transverse plane located at distance R. Ensemble averages of random vari-

€ ables are denoted by <>. The first moment
I(&.R) = <E(L.R)> (1)
or average of the field and the second moment
Pa(t.20.R) = <E(1.R)E (%.R)> @)

or mutual coherence function are well understood [Tatarskii, 1971]. However, there are few

i analytic results for the fourth moment

Ti(2).2.20.2, R) = <E(2,, R)E" (2. R)E(25.R)E' (2, R)> (3)

Previous theoretical work concentrated on plane-wave and point-source geometry. We

P
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present three main resullts for arbitrary source distribution,

A series expression for the fourth moment is derived as an expansion of the Green's func-
tion for the fourth moment, thus avoiding the difficulties associated with the source distribu-
tion. For the thin-screen problem, the expansion quantity is a combination of phase structure
functions. For the extended random media, the expansion quantity is an analogous combina-
tion of phase structure function densities. The Green’s function is expressed as a multiple

path integral. The resulting series of path integrals is evaluated with a useful identity.

Our second result is the generation of two series for the intensity correlation or intensity
spectrum. The fourth moment Ty(%,.%..%3,%.R) has the obvious symmetries that it is
unchanged by interchanging %; and %3 or by interchanging %; and %,. Each term of the series
expansion does not share the symmetry of the entire expression. Thus two separate series
are obtained by invoking symmetry. In principle, either series could be summed to give I'y. We
demonstrate, however, that it is better Lo consider both series in order to describe the fourth
moment with the fewest number of terms. This asserlion is demonstrated for the second
moment of intensity or intensity correlation, C(%,.%;,R), \-hich is a special case of the fourth
moment, i.e.

C(%).%2.R) = <I(2,.R)I (22, R)> =Ty(1. 21,22, 25) = T'y(}1. 22,25, 1,) (4)
Note that the symmetry of the fourth moment has been explicitly indicated. A clear presenta-
tion of the behavior of the intensity correlation series obtained from the fourth moment
expansion requires the introduction of a spatial spectrum of intensity fluctuations for a spa-

tially nonstationary random process. We adopt the definition

: #(n4R)= (2 =) A [c@a.Rre-4 dp (5)
" where

2 P=r(t+%)  peti-% ()
! (Note the free format of the argument list of functions). The spectrum has the property

N -

: J¥@p.aR) dd=C(n,0,R) = </(A.R)*> (7)
;: -

“

) It should be noted that the spatial spectrum may depend on the centroid A.
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Since there are two series for the intensity correlation there are also two series for the
intensity spectrum. The leading terms of one series for $(2.4 R) describe the small §
behavior while the other series is valid at high §. The rate of convergence of each series pro-
vides a criterion for merging the two results to produce a complete expression for the inten-
sity spectrum. In general, an analogous treatment of the intensity correlation series is not
possible since the leading terms of both series do not converge to the variance as the spatial

separation approaches zero.

Our third result is the demonstration of the equivalence of path integral and moment-
equation methods. Early theoretical work on WPRM concentrated on geometrical optics and
the method of small perturbations [Barabanenkov, 1971; Tatarskii, 1971]). These two
approaches were limited to weak scattering conditions. This restriction was removed with the

introduction of differential equations for the moments of the field [Prokhorov, 1975). Func-

" tional techniques of high energy physics (path integrals and operator methods) provided

another point of view to WPRM [Klyatskin, 1973; Dashen, 1979). The moment equation method
and functional techniques are equivalent [Codona et al, 1985] and must generate identical
results when expansions are performed in the same quantity. This equivalence is demon-
strated by deriving the same fourth moment series expression using moment-equation

methods.

The thin-screen case is considered in section 2. The second and fourth moment are
analyzed with Green's function techniques and the behavior of the intensity correlation is
investigated. The same analysis for the extended medium case is presented in section 3. Here
we use the patb integral representation of the Green's function. ldentical results for the
fourth moment are derived with moment equation methods in section 4. The main results of

the paper are summarized in section 5.
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2. GREEN'S FUNCTION APPROACH TO THE THIN SCREEN PROBLEM

2.1 Introduction

One of the first WPRM problems considered was the propagation of plane waves through a
random phase screen [Mercier, 1962; Salpeter, 19687; Bramley, 1987; Gochelashvily and -
Shishov, 1971, 1972, 1975; Rumsey, 1975; Rino, 1979a, b; Uscinski and Macaskill, 1983a, b).
The propagation of radio waves through the ionosphere and the solar wind are two applica-
tions of this model. The theory of scintillation from a point source viewed through a random 4
phase screen has been investigated by Lee [1977]. The case of a Gaussian beam focussed on
the observation plane has been considered by Gochelashvily [1974). Previous work concen-
trated on plane-wave and point-source geometries. We analyze the more general problem of -’,L
an arbitrary beam incident on a phase screen using Green's function methods. The following

analysis is presented in a fashion that permits a clear extension to the more complex problem

of wave propagation in extended random media. We review Green's function methods with a P

discussion of the second moment. A series expression for the fourth moment is presented as

L e ln en o o

an expansion of the Green’s function for the fourth moment. The behavior of the resulting

series for the intensity correlation is then discussed.

(o

Consider the scalar wave field, E(¥,z). incident on a thin random phase screen situated

at the plane z=0. The field, E£(¥.0 + ), emerging from this screen is given by
E(¥.0+)=E(x,0)e® (8) -

where E(%,0) is the field just before the interface of the screen and the phase fluctuations are

g

(13
&(2)=k _!" n(f,z)dz (9)

where n(%,z) is the random fluctuations in refractive index. Assume (%) is a zero mean

Gaussian random variable with homogeneous statistics and correlation function

Co() = <B(1)0(X + 1> = [ o(@et- g (10)
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where #¢(Q) is the spectrum of phase fluctuations. The structure function of phase fluctua-
» tions, De(B), is defined by :
'
Do(B) = <[8(8) - (2 + A)]*> =2[Co(0) - Co(B)) = 2 [ [1 - cos(q- B))%e(Q) dQ (11) :
- J
J
' <
For narrow angular scattering the scalar fleld satisfies the parabolic wave equation g
( b
\ |
23 + vig =0 (12)
| z
The solution of the field at a distance R from the screen is (Mercier, 1962)
E(t.R)= fE(2,0)G(t¥.R) dt (13)
where the Green's function is
G(t2,R)=e'*NG/ (2.2, R) (14)
b with the free space Green’s function
Gf (:2.R) = —X— exp[ X_(2-1)?] (15)
) 2miR 2R
o
2.2 Green’s-Function Approach to the Second Moment
Since the random fields have a Green's function solution, the moments of the field also
[} have a Green's function representation. Consider the second moment of the field or mutual
coherence function, I'e(2;.2,R), given by
T(2,2.R) = <E(2,,R)E’ (2.R)> = [ [To2.2:.0)<G(2,:2.R)C (2:¥2.R)> d¥, d2y (18)
. —-—
The Green's function for the second moment is identified as the expression inside the <> , i.e. b
<
Gol%: 2. R) = G (%:2( . R)<expli (8(2,) - 8(22)))> (17) :j
b ;
4
[

where

G (%0 R) = O (11 R)G (Rete.R) = oo expl Snl(ti -1 - (e-121) (19)
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is the free space Green's function for the second moment. Here, £ and £ denote the set of ¥
and % coordinates respectively. The expectation over the random phase is performed with the

identity

L (gt
ce®>=e (19)

which is valid for zero mean Gaussian random variables. The Green's function for the second

moment is then

Go(2:2.R) = Gf (%%, R Jexp( — - D(%, - 1)} (20)

2.3 Green's{unction Approach to the Fourth Moment

Previous work on the fourth moment has concentrated on plane-wave conditions
[Zavorotnyi, 1979a). We address the full fourth moment with an arbitrary source distribution.
Following the previous analysis of the second moment, the Green's function for the fourth

moment is given by
Ga(%i:¥.R) = G{ (%:X.R) (21)
exp| - :—[D.(i‘, —%3)+ Do(X3-2) + Do(X| ~2,) + Do(t's — X3) — Do(X2 - X,) — Dg(X, — ¥3)]]

where G{ (&:¥,R) is the free space Green's function for the fourth moment. 1t is convenient
to apply the unitary coordinate transformation [Rumsey. 1975}

2a=/+ o+ 2+ 8, 22, =a+8+9+8

2=, +2,-1 -2, 2%,-a+p-3-8

2P=t-R -ttty 2ty=a-B-9+38

2= -2, +2,-%, 2, =a-B+9-8 (22)

The set (a',#.9.8") , will denote the same transformation on the coordinate set ¢ I8 I% I3 MY

The Green's function for the fourth moment then becomes
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Gut:2 (. R) = G{(%:%.R) (23)
GXP[- ‘i‘[Do(?' +3)4Dy(7 - &)+ Dy(B + &)+ Do(B - &) - Dy(F + 7) -~ Do(F '7')]]
where :
:
C{(%:X.R)= (@r R)‘ exP[ZR s~ )~ (2~ 22)% + (29—~ 25)° - (R - 1'4)2]]
= o explif f(a-a).(3-3)+ (ﬂ—&)-w—m (=24) 3
(2R “°['R
is the free space Green's function for the fourth moment. This expression is intréclable. both
analytically and numerically. Marians [1975), numerically calculated the intensity spectrum 3
N
of plane-waves incident on a two-dimensional phase screen. ’
The plane-wave case was considered by Zavorotnyi et al [1977]. They noted that a combi- ;

nation of structure functions was small in the important regions of integration. A series

expression was then obtained as a Taylor series expansion. For the general case, we identify

that same expansion quantity as
(25)

Q= —f[Do(p+3')*Do@'—s')‘oo@'*f)“po@'-ﬂ]

= 2}%(1)[0%(3 o) ~cos(¥-2)]eF tdp

« s "y

We will investigate the behavior of @ for a structure function that is power law above the

inner scale lo. The exponent in (23) is large unless two of the first four structure functions are

b & 0

small. (The other two can nearly cancel the last two structure functions). The only way the
exponent can be small , while allowing the cancellations, is for
8=0(so) and B =0(so) or ¥ =0(so) (26)

where sg is the field correlation distance defined by Dg(sg) = 1. The remaining variable (f' or

¥) is typically of order of the scattering disk

R @7)
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where 0, is the width of the angular spectrum. When the inner scale is larger than W, there is
little scintillation. Therefore, we consider the case sqKX W, oKW, ¥ = 0(so).and F=O(¥). A

Taylor series expansion about # reduces @ to
Q=1 (3*+7Ds(3) (28)

For a power-law structure function

De(B)=(B/soP (29)
@ becomes
Q= 2l Tty By - o 5o (30)

On the other hand, the other terms in the exponent are O(Dg(s)) = O(1), which was the condi-
tion which caused ¥’ and 3’ to be order s¢- Thus, if sq<¥#, a Taylor series in @ is appropriate,
but a Taylor series in the entire exponent requires many more terms.

The other possibility, #' = O(so), and 9' = O(¥) requires an expansion in another variable,
@', obtained from @ by interchanging ﬂ with ¥'. This alternate expansion is the fundamental

reason that two different series are required.

We now return to the Taylor series expansion in @, with the result

Gtk R)= ¥ Gy (itiiz)= Gl (Rt R)expl - L[ Do(7 +8) + D@ -2)]]  (31)
n=0 2

1+ ‘2 %{ d@, - - - !.“.ewli’gls-a’]’I:["o(tj)[cosa"‘;)-°°8(7'°31)]

This series should converge quickly when the quantity @ is small over the important region of
integration. Note that the symmetry of the full fourth moment expression (23) does not hold
for each term of the expansion. The equivalent moment-equation derivation is presented in
section 4.1.

The first term of (31) reduces to

- LDyt -y + Dy - 2))

Co(%:2 . R) = G{(%:%.R)e = Gy(1).2..% .82 R)Gp(25. 8. 852 R) (32)

ﬁ
)
:
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Thus, for spatially coherent sources, the first term of the fourth moment is a product of two

second moments, i.e.
PA.(‘\-‘Q-'Q-’A-R) =Ty(2,.2.R) (2.2, R) (33)
The next term of the Green's function expansion is

Go (2%, R) =261 (%%, R)exp ~ [ Doy + 3) + Do(y -3)]) (34)

}Qo(t)[cos(3° o) —cos(¥'- k)]e""' di

These two terms contain the useful first-order description of the fourth moment. The rate of
convergence of the series is determined by the higher order terms. For the plane-wave case,
the fourth-moment expressions generated from (33) and (34) are identical to the asymptotic

results of Zavorotnyi [1979a Eq (7)).

2.4 Intensity Correlation

There are few measurements of the full fourth moment of WPRM [Gurvich et al, 1978,
1979a]. However, the intensity correlation, a special case of the fourth moment, is commonly
observed. We will now demonstrate that our fourth-moment series (31) generates two different
expressions for the intensity correlation (4). one valid at low spatial frequency, the other valid

at high spatial frequency.

The low frequency version of the intensity correlation is obtained from the fourth

moment (3) by setting &, = 2, and 23 = &, or by setting § =0 and $=0. The n=0 term produces
cf (aB.R)= @,’:—;)TL r(a 2.8 Oexp(-i5-((@-8).8 + (@-3).7]] (39)

exp{ - +-(Do(¥ +8) + Do(y - )]} d@ d a7 ad'

For spatially coherent sources

Y (&A.R)=<u( %L.R)xl( Q—E-L.R» = </(%,.2)></(Ry.2)> (38)

...............
........................
--------
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or

/(A Q.R)= (2 . f<l(p+ 2 R)><1(p-L Ry et 4p (37)

which normally describes the smallest spectral scale of the process. Indeed, for plane-wave

conditions $¥ (2.4 R) = </>%8(Q) since the average intensity, </>, is a constant.

The corresponding terms for n=1 may be written as

Y (ap.R)= ).fn(a'a 3.8 O)expl~t——[(a -a)-8&+@-p)-7] (38)

(2nR

exp[— +1Do(7 +8) + Dol —3'>1]¢a<z)[cos<8'-z> -cos(-#)je?* da' ap dy ad di

and

ﬂf(a.q,/e)- )432 fr;(a' =—q 8',o)exp[-if‘,—(a—a').s-]e‘“*ﬂ’-* (39)

exp{— -‘;—[De(ﬂ-f— +8)+ Dg(ﬁi—?- - 3')]]Qg(t)[cos(3'-l) -cos(¥'-%)] da' df d8' dR

This term describes the refractive focussing by irregularities of the size of the scattering disk

(Rickett et al, 1984). For the case of plane waves, (39) reduces to the familiar resuit
i - _ R . 21,2 R
/(2.4 .R) = 4¢(Qexp ~ Do(q-)sin[g? ;-] (40)

which also describes the low q behavior of (2,4 R). The Born, or weak-scattering approxima-
tion is obtained by ignoring the exponential term of (40). Similarly, the Born approximation
for the general case is obtained from (39) by ignoring the last exponential term.

The high frequency version of the intensity correlation is obtained from the fourth

moment (3) by setting %, = &, and %, = & or by setting § =0 and #=0. The n=0 term produces

Y (a2.R) = @n R), j rfa.g.yl O)expl-t—l(a -a).8+(2-7). M] (41)

exp|- ':"[D.(‘r +8)+ Do(¥ -3')]] da' df dy dd de

E AT wTR T -
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For spatially coherent sources

CY (2,20, R) =g(2,.20. R)y (2,2, R) (42)

This expression is the high frequency approximation, i.e. the intensity correlation is the
square of the mutual coherence function, and may also be derived by assuming that the com-

plex electric fields are zero mean Gaussian random variables.

The n=1 term reduces to
Y (a.3.R)= (—;‘féy_f_ P.(a'.B'.r.s'.O)exp{—i%{(a -a).F+(3-7)-F) (43)

exp{_ -;_[09(7' +8) + Do(¥ 3')]]¢e(x)[cos(3~ &) —cos(¥-R)}e?t da'df d¥ d d&

and

y ~-i(ye R .
¢M(a.3R)= (2"%427?2—!.['4(&33' = 'Q'f—-f.s',O)exp[-i%(a—d').z']e (Fr2i)-4 (44)

exp[- ;—[ Do(3' +8')+ Dg(3 - &)]iq:e(z)[cos(s- -2) —cos(¥-2)] da’ dy d8 dR

Rickett et al [1984] argue that the physical mechanism for this term is the modulation of the

small scale structure (42) by the large scale refractive process (38).

We have shown how the fourth-moment series generates two expressions for the intensity
correlation: one (8 =0,5 = 0) useful at low spatial frequencies, and the other (8= 0,3 =0) useful
at high spatial frequencies. The region of validity depends on the statistics of the phase
fluctuations and the initial source distribution. The case of plane waves incident on a random
phase screen with a power-law spectrum has been investigated by Gochelashvily and Shishov
[1975). Their calculations of the first few terms of the intensity spectrum [Figure 1] imply the
two series converge quickly when the quantity @ is small over the important region of integra-
tion. The rate of convergence is difficult to determine a priori; the contribution to the inten-
sity spectrum from the higher terms is the best indication of convergence. A finite number of

terms from the two series can be merged by a weighted sum based on this rate of

______________
..........
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convergence. In strong scattering conditions, these two series merge quickly and only a few
terms are required to describe the complete spectrum. The intensity correlatlion series is
more difficult to interpret since the errors of the expansion accumnulate in the region of small
spacing but in the spectral domain, these errors appear in the central regions of the spec-

trum [cf Figure 1].

an

3. PATH INTEGRAL TECHNIQUES FOR EXTENDED RANDOM MEDIA

3.1 Introduction

We now consider the more complex problem of wave propagation in a random media that
is locally homogeneous with statistics that vary slowly in the direction of propagation. Laser
propagation in the atmosphere, radio propagation through the interstellar medium, and 1
sound propagation through the ocean with no deterministic background are common exam-

ples of this phenomena. Many theoretical methods have been applied to these problems.

Moment-equation methods are reviewed by Prokhorov et al [1975}. Recently, Macaskill [ 1983]
and Frankenthal et al [1984] have applied the two-scale embedding procedure (Frankenthal et

al [1982), Beran et al [1982]) to produce a solution for the fourth moment. The application of

'T'-'-‘—\Yrv—rw
L. et
KR P

path integral techniques to problems of wave propagation in random media was introduced by ﬁ

3

Klyatskin and Tatarskii [1970], Zavorotnyi et al {1977] and Dashen [1979]. Path integral

methods have been successfully applied to the difficult problem of WPRM for anisotropic, inho-
mogeneous medium with deterministic background of refractive index [Flatté et al, 1979). A ﬁ
functional operator form of the path integral was used by Tatarskii and Zavorotnyi [1980], to

extend thin-screen analysis to the problem of wave propagation in extended random media

.
"

) . < .
for the plane-wave case. We use the path integral representation of the Green's function to #
illustrate this connection because one obtains a clear presentation of the role of the source

distribution. We believe that the operator formalism is equivalent to the path integral method

YL R R

and produces the same results. i

The path integral technique is introduced by a review of the second-moment derivation.

The reduction of path integrals to familiar Reimann integrals is performed by a useful identity

........

.........
.......
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[cf (82)]. Using this identity, we present a series expression for the fourth moment that is

analogous to the thin-screen resultls of section 2.2. The behavior of the resulting correlation _

series is then discussed.

-

For narrow angular scattering, the scalar field satisfies the parabolic wave equation

PR

Zik-g—f'—+V2E'+?J:2n(2.z)E‘=0 (45)

where n(%,2) denotes the refractive index fluctuations. We define the correlation of refractive

index fluctuations, B,(3,t,z), as :
Ba(3.t.2)=<n(0,2)n(3z +£)> (48) j:
i
The path integral formulation for the Green's function was developed by Feynman [1948), and _;
‘1
may be written as T
P R ]
G(X:&.R)= f Dz )exp i?f[?(z)]"’dz —'ikfn[i‘(z ).z ]dz (47) 3
0 ) .
F
where Di{z) denotes the infinite dimensional integration over all possible paths, #(z), con- o
. . }z)= dt . ::
necting the points (¥,0) and (2, R) and f(z)= Pt The most important paths are those near .
-]
T the geometrical path from (¥,0) to (&, R), given by _]
z z )
= L R e
Po(z)=2(1 R (48) _
: :
' Transformations of these geometrical paths will be denoted with the subscript G. i
If there are no refractive index fluctuations, the Green's function becomes the free space ]
Green’s function. 4
P ¢ (2% .R)= [ Diz)ex i’—‘—}[?{z)]adz =k o ik—(i-i’)zl (49) :3’
| : PI*z4 2mR ©*P|2R ]
-
.
b 3.2 Second Momen! by Path Integral Techniques ]
The Green's function for the moments of the fleld are easily expressed in terms of the '{
[
path integral. The Green's function for the first and second moment were derived by Dashen j
. |
4

...........
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(1979). These rcsults were obtained under the Markov approximation {Zavorotnyi, 1978]. We

review the derivation for the Green's function for the second moment, which is given by

Go(2,2:¥). 22, R) = <G(2,:%.R)C (2:%2.R)> (50)

<exp

R R
= f [ pti(z) Doz )explig‘,{ ([h(2)]* - [Bo(2)])dz - [In(h().2) - n(re(e)e )ldzl>

Applying (19) and the Markov approximation results in

G 2. R) = E,%%’)z'fj Dry(z) Diy(2) (s1)

[ & B R
emliz—{ ([3(2)FF ~[Fo2) P)az -;—{ d[#,(z) -o(z).2 ]dZ]
and the phase structure function density is given by

4(B.2) =22 [[Ba(0.t.2) - Bu Bt 2]t

=4nk? f[1-cos(B-Q)¥n (9, =0.2) 4 (52)
where
_ 1 - - ]
, 40(39:.R) = o5 [ Ba (L2 Rexpl ~i(2-2+ 2q.)] dt d (53)
i is the refractive index spectrum. Change path variables to the centroid and difference coordi-
— nates
; Alz)= - [1(2) + 1e(2))] (54)
)
B(z) =t(2)-(2) (55)
The double path integral can be evaluated by expressing the paths as deviations from the two
geometrical paths defined by (48), i.e.
M(z)=A(z)-Rc(z) (58)
Bi(2)=5(2)-Bc(z) (57)
e B i s September 9
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? where :
Po(s)=R(O)(1~ 2I+AR) =1 (2 + 2a)(1- ) + Lt + 1) 2~ (58)
# and
Pal)=p(0N1 - PIA(R) = (X1 - X)(1- F) +(h - 1) & (59)
Then A,(0) = £,(R) =p,(0) =2,(R) =0 and the second-moment Green's function becomes
k Ga(%:%;,R)=exp é%‘[("l -2, (%, - *z)zllff Dpy(z) DB \(z)
R R
F exp %{ﬂ,(z)-ﬁl(z)dz ""l;{d[ﬁx(z)*pc(z ).z]dz] (60)

Integrating the first path term in the exponential by parts and substituting the free space

Green's function results in

Gt R) = EIRE o1 (3,8, R)GS (%022.R) [ ] Du(2) Dp(2)

P exp{ —ikzn.(z)-ﬁx(z)az —f;}:' d(ﬂn(ﬂ*ﬂc(z)ﬂ)dz] (61)
This path integral is evaluated with the identity
* S J oatz) Dp(=)F(p(z)]exp "‘2 A(z)-[B(z) - B(z)]dz| = @f:;),—rte(z)l (62)
where g(z) is the solution of #(z)=%z) that satisfies the appropriate boundary conditions.
r Identity (62) reduces (1) to
Gelt:¥(.R)= G (:2\.R)G" (k:l'z.R)GXP[‘-;‘Z d(Bo(= ).zldzl (83)
F and g(z) =0 is the solution of §(2) =0, that salisfies the required boundary conditions.
»
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3.3 Fourth Moment by Path Integral Techniques

Using the path-integral technique, we derive a series expression for the fourth moment in
a manner analogous to the thin-screen derivation. The Green's function for the fourth

moment is given by the multiple path integral

Gy(2:2,.R) = <G(2;:21.R)C (2.22.R)G(25:23.R)C (%X R)> = [ D, Dt; Dty DP,

k2.2 2 a2 42 R
exp "'2“{[*1 — ¥ + By - B Jdz|<exp| ""‘k_{["('nnz) -n(t2) +n(tyz) -n(te,2z)ldz)> (64)

R
It f[n(#.2)~-n(t22)+n(Pfsz)—n(t,.2z)]dz is a zero mean Gaussian random variable (19) and
°

the Markov approximation is valid, the last term of (64) becomes
exp| —;—Z [d(f) ~toz) +d(R3—Pe2z) + d(f) ~#o2) + d(Bo—Pa.2) - d(Py ~ Pe2) —d(#; - P5.2))d2 ).
Change path variables to

2a(z)=t(z) +1(2z) +B5(z) +R,(2) 2R (z)=a(z)+B(z) + 3(z) + 8(z)

2B(z)=\(2) +Pa(z) —s(2) -(2z)  2ta(z)=a(2)+B(z) - H(z) -8(2)

2§(z) =ti(z) - o(z) —to(z) + (z)  2ty(z)=&(z) ~p(2) - F(z) + &(2)

o 28(z)=#(z) - Pe(z) + ofz) - Bu(z)  2Py(z)=&(z) - (=) + }(z)-d(2) (85)

=

'[_: Following the second moment derivation, we express the paths as deviations from the

-.— transformed geometrical paths, i.e.

% a,(z)=a(z)-c(z) (68)

¥ B\(2)=p(z)~-Bc(2)

v (z)=Nz)-Pc(2) ﬂ

. 8:(z)=8(z)-8c(2)

)

< where 1

: ac=a(0)(1- 5 )+a(R) & (67)

4 R R

)

: l
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Be=RO)1- F AR
f e=HON1- )1+ &
3c=3(0)(1- - )+3(R) T

In order to simplify the large expressions, [&'.F.9.8'] will replace [2(0).3(0),9(0).8(0)] and
(a.3.2.8) will replace [a(R).B(R).2(R).8(R)] . Then,

" R
Gt R) = BB Gl (3.2, R) [ D4, DB, D, Dbiexp i f (&.-3.4,-9.)«1:’ (68)

R
exp —%{[d(’, +8,+9c(2)485(z).2) + d(P -8, + 2c(2)-8c(2).2) + d(B, + 8, + Bo(2)+8(2).2)

+d (@, -8+ Boe)-Bole).2) ~d (B +9, + Bale)+9c(e).2) 2 By~ 3 + ol ) Fol2).e )tz
Substituting (integration by parts)
R R
'7‘{(&1'3: + b )dz = "0‘{(&1'31 +8,-%1)dz (69)
and performing the integration over the paths &, and 31 using (62) results in

2 R .
Gy(2:x.R)= iz—';—f)—a{(x‘m.n)ff DB, D"le’fp[ -ik{pl"'ldzl

b R
exp “';',{[‘1(71 +9c(z)+8¢(2).2) + d(9, + 95(2)-8¢(2).2) + -‘-P(ﬂx +Be(z)+8¢(2).2) (70)
+d(B,+Bo(z)-8c(z).2) -d(Bi + 91 + Be(z)+9c(2).2) —d(By - + Bo(e)—Pc(z ).3)])‘1']
b
Note that (70) is similar to (23) of the thin-screen derivation. The parameter ¢ has been added j
to label the quantity X
, R \
’ Q=-‘;{[d(3.+3c(z)+3c(z )z)+d (B +Bc(z)-8c(2).2) 3’
"
~d(Bi+ 0 +Bc(2)+9c(2).2)-d (B ~9,+Bo(z)2c(2).2 }jde 3
Rw» -
' = Wc'{ £ ¥a (8.9 =0.2)exp[id. [B) + Bc(2)))cos(Q-8c(s)) —cos (Q-[9 + Pc(s)])) dQde  (71) J
-
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as the analogous expansion quantity to the thin screen derivation. For a point source, this

expression is small in the contributing regions of path space [Dashen, 1979). Performing the +

Taylor series in @ results in

Gt R)= B ol (aex . R) [ f DB, D, |

R
GXP[" i‘,{ [d(31(2) + Pc(2)+8c(2).2) + d(F:(2) + '7c(=)-3c(2).=)]dz]

R - » R R - -
[exp[-a{a,(z).y,(z)dz1+“§‘ﬁ';ﬁicn{dz,. fdf da- - fda, ﬁ

R .
exp[—fk,[ Bi(z)-[%(2) ",gl %—5(2 ~2;))dz *"'-,Z:IBC(Z,')'Q;)
}1 $1 (8,95 = 0.2 ){cos (§;-3¢(2;)) —cos Q- (7(z;) +7c(=s»>l] (72)

Applying identity (62) yields

{ R
Gu(%:¥(.R)=Gf (i‘:i".l?)[exp[—-;-{ [d(Fc(z)+8c(z)2) + d(F6(2)-8c(2).2 )]dZ] +

R R - -
Eﬁ’ﬂ)_n{dzl...{dzuidq‘...idqn (73)

eXP[ij}f'.‘Pc(ZJ) g "‘f[d( 2 T h(z:zm) + 9c(z)+8c(z )2 ) + d( 2 Th(z:zm) + 9c(z)-8c(2). 2)142]

[0 (8.0, =0:5)e0s@y-Botay) cosy-( § F-rtzs.em) +9ctaM| = T, Gt e

where h{z;z,) is the solution of

k(zi2))= (e —2,) (74)
that is
h(z;z,):z(%—-—l) 2<z, ﬁ
he:e)=e(F-1) o1, (79)
$
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The free space Green's function for the fourth moment, G{(%:%(.R). is given by (24). The
terms of the series are identifled as the coeflicients of the parameter ¢®. This construction
will be used to prove the equivalence of the path-integral series to the iterated moment-

equation series of section 4.2

The first term of (73)

R
-1 [1809(9)285(2).5) + d(95(s)-Bla).0))en
Gkt (.R) = G (it R)e *° (76)

= Gz(ihig;i'l.rz-R)G‘Z(ia-!‘;*s'r"k)

is analogous to the thin-screen result (32).

The n=1 term is more complex.

Re
Go (2%, R) = 4mk*G{ (%:20.R) [ [ #n(29, = 0.21){c0s(Q-3e(=,)) - cos(@- [ L nzrz)+20(2D)

R
e“““"’exp —i—{[d(%h(z:zlﬂ‘?c(z)*ac(z ),z)+d(2~h(z:z,)+7c(z)—36(2 ).2)])dz|dddz, (77)

The higher order terms of the fourth-moment Green's function are obtained from (73)
but become more intractable. However, the first order description of the fourth moment is
given by the leading terms of the series expansion. We now compare these expressions to pre-
vious results for the fourth moment. The point-source result is obtained from the Green's
function by setting ¥, to zero. This reproduces the iterated series of Shishov [1972 Eq (13)]
that was derived using moment-equation methods in a spherical coordinate system. Appling
the plane-wave initial condition generates the series expression of Shishov {1971 Eq (20)].
Gurvich et al {1979b] proved this series was convergent. It can be shown that the point-

source series is also convergent. Applying the plane-wave case to (77) with =0 and $=o0,

reproduces the strong scattering results of Fante (1975 Eq (B1)] and Zavorotnyi [1979b Eq
(3]
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3.4 Intensity Correlation

Furutsu [1972] derived expressions for the intensity correlation from a Gaussian beam (
propagating in a random medium with a square-law structure function. This case describes
random wander of a beam [Wandzura, 1980]. Weak scattering results for intensity correlation
from a Gaussian beam are presented by Ishimaru [1969). We now consider the intensity ‘
correlation following the thin screen analysis of section 2.3.

The fourth-moment series generates two expressions for the intensity correlation; one is
obtained by setting 8§ =0 and 9 =0 (the low spatial frequency region} and the other by setting (

8=0andB=0 (the high spatial frequency region). The resulting expressions for the n=0 term

are
_ kY T P .k ) . ‘
¥ (@RR)= o TRy 3.0 i ((@-a).8 + @-4).7]] (78)
R
exp[— -;—[ [d((7 +3)1- 5)2) +d(( - )1 - ,%).z)ldz] d& df d ad
and

¥ @AR)= e Tia By B Ol -1 (@-0) 34 0-B) () |

R
exp|- o [ a((y +8)(1- FIvra)+d((r-80-5) +7%—.z)]dz] da' df a9 dd:

For spatially - oherent sources, these expressions reduce to

e ooy

& o (a.B.R) = <I( g—Z—L.R)xl( —a—;—L,Rb = </(2,,2)></(25,2)> (80)

v

',:lj and

'.: C'O‘!(il-*z'R) =r2(1l'!2'R)P; (il-!ZIR) (81)

!: which are analogous to the thin-screen results (36) and (42).

' The corresponding expressions for the n=1 term are given by

2 T Ll o TUPURPRSIERR - S BV TR Y B U YRTT OB S PY L1

! d{ (a-p-R) - (Z"R)‘ {ir‘(d "'l’ '8 .O)C € ’n(Q-'l) ‘
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R
expl— -:- _{ [d(%—h(: #)+ (Y + &)1~ 7‘,—).:)+ d(%h(t:-:) +(¥-8)1- %—).8 ))dz

[cos(@-3:(1- BN -cos(@-(Lh(ze) +9(1- M) de ap dy a¥ dade,  (82) |

and

-t a-a)bep.9- B-2L
Y (a.2.R)= (;ﬂ;y f f rap.ydoe T FONTT, (40

FETN Wy T Ve e TR IS JNE TP RT IR DN

[eos[q-s'(l - 2h)-cosla-(Xh(zizi) +7(1 - J) 7 ))| da af dy dB dade, (8)

The appropriate Fourier transform (cf (5)) produces the corresponding expressions for the

intensity spectrum. The Born approximation is secured from (82) by ignoring the last
exponential term.

R
r expl-—;—‘[[d(g—h(z;z,) +@+ 8- E) 15 ) e d(Rhlzz) + (=301~ F) 49 52N

The low-frequency series for the intensity spectrum has been investigated for a power-law

spectrum of refractive index fluctuations and plane-wave [Gochelashvily and Shishov, 1971,

F 1974) and point-source [Gochelashvily et al, 1974] geometries. The qualitative behavior of the
intensity spectrum is similar to the thin screen result [Figure 1]. In weak scattering, the first

two terms describe the complete intensity spectrum. In strong scattering the intensity spec-

s trum is characterized by two components. The low frequency region, /(4 R), is due to
refractive focussing by irregularities of the size of the scattering disk (Rickett et al, 1984).

The high frequency behavior was first determined by summing the low-frequency series, which

b yields the high frequency approximation &g &/(§ R). The derivation presented here generates
this same result plus higher correction terms without performing a complicated summation.

As in the thin screen case, the physical mechanism for the first correction term (83) is the

4 modulation of the small scale structure {(B1) by the large scale refractive process (82).
Uscinski [1982)] derived an approximate expression for the intensity spectrum for the
case of plane waves by summing a perturbation series for the fourth moment equation.
b
]
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Macaskill {1983) derived the same result using the two-scale expansion [Beran et al, 1982]. In

our notation, their expression for the intensity spectrum is .

-1 T a
$@QR)= g Sexp|= [l d(2) + d(i-(R -2).2)

(2n)? <,
~taee (R -2)e) - La(2- (R -2)e))dele V2 an )

The extreme low and high spatial frequency behavior is identical to that obtained from (82)
and (81). However, the predictions for the intermediate frequency region are different. More d

theoretical calculations are required in order to determine the accuracy of the two methods.

The intensity correlation from a point source embedded in a random medium with irre-
gularities that are constant in one transverse dimension is obtained from the point-source 9

result by the substitution $,(9) = $,(g.)6(q, ). The leading order terms of the intensity corre-

lation series are

R
Co/ (B.R) = <I>%exp[ —{d(p%—)dz ] (85) ‘#
Re
Y (B.R) =8nkz<l>2ffﬁ,.(q.z‘)sin2[ %,:—h(z,,z,)]
0 -»

dq dz 1 (86)

[
expl—{d[ i—h(z :2,).2]dz +iBg -z-ﬁ'—

Re
¥ (B.R)= aﬂ’kz<1>sz’n(9-z 1)531)2[93';—;?‘ + gaz-h(z,.z 1)}
[ I

R .
exp[— 'lo-d[ﬁ% + %—h(z;z,),z]dz +1ifg fR'—] dg dz, (87) *

Ignoring the exponential term of (86) reproduces the weak scattering (Rytov approximation)
result of Tur and Beran [1983]. ¥

Fante [1983] investigated the eflect of the inner scale of turbulence on scintillation for

the case of strong scattering of plane waves by calculating the expression CY (B.R). The
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contribution of this term to the total intensity variance is appreciable over a wide range of

parameter space. Therefore, higher terms are required for an accurate descriplion of the

intensity correlation.

4. MOMENT EQUATION APPROACH

4.1 Moment Equation Method for the Thin Screen

We now derive the fourth-moment result (23), using the moment-equation method. This
method is based on partial differential equations for the transverse moments that are derived
from the parabolic equation for the random fields. These differential equations may then be
solved by transform methods [Rumsey, 1975] and the method of characteristics [Kiang and
Liu, 1982]). There are, in general, many transforms that will simplify the problem. We choose

one [Shishov, 1971} that permits an analogous derivation for the fourth moment of waves pro-
pagating through extended random media.

The fourth moment satisfles the differential equation

Tttt te)= (V- VE4 -kt 20 2) (88)

with initial condition
Fa(h. 2 R0.20.0 + ) = Ty(y, 2o, 25,2, 0) <90 ~800 18009081, g 5 92 0)
exp| - _;_[D°(" — %) + Do(%s — 24) + Dg(%; — %) + Do(% — £5) — Do — ;) — Do(, —25)])(89)
Change variables to the coordinate system (22). Then
T (@AA3)= E Ty Yy T8 R 30) (30)

This equation is solved in the Fourier transform domain

H(t44.8.R)= -(—23’6;-11‘.(&.3.7.3.R)e"l'“*"" dadp (91)

which transforms (90) to

DA Ll G Sttt o
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I eardR)= ~(F v+ L.vpuasdr) 0 |

Changing variables to {

8=kd-2z b=k9-4 r=z

3(")=“_+,;E 7(,.)=_5_+‘?t_ z=7 +
V3=kV, Vy=kVg R A X 7‘";- (93)

transforms (92) to 1
W (zaakr)=0 (94)

Since M is independent of 7, the solution in the original variables is 4
H®ZA73R) =HzaF-aE3-28 o4) (95)

The fourth moment is the inverse Fourier transform of this expression, i.e. ﬂ
rd{a.3d.r)= n ), f T(&.8.3-4R/k 8~2R/ k 0)e!lt- (@-2)+ 2-B-1)) (96)

exp|- i‘[De(‘r +8') 4+ Do(7' ~8') + Do(B' + 8') + Do(B - 8') - De(B +7) - De(B' -7)]| d& aP dgdi ﬂ

X The change of variables #=%-8R/ k and 8=8-2Rr/k produces the Green's function result,
- (23). The moment- equation method is based on the formulation of the free space Green's 7

function in the Fourier transform domain. This transform technique will now be applied to the

—‘r‘
e .
o

more difficult problem of wave propagation in an extended random medium.

o

- 4
E; 4.2 Moment Equation Method for Extended Random Media

:'i' The moment-equation method was a major contribution to the theory of wave propaga-

': tion in extended random media {Prokhorov et al 1975, Tatarskii, 1971). Using moment- *
'S. equation methods, a series expression for the fourth moment was derived for plane-wave

i [Shishov, 1971] and point-source [Shishov, 1972] conditions. For an arbitrary source

. 4
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distribution, we present an analogous expression thatl is identical to the path integral resuits
of section 3.3, thus demonstrating the equivalence of the two methods.

The transverse moments of the electric fleld satisfy differential equations [de Wolf, 1967;
Brown, 19687; Shishov, 1968; Dolin, 1968; Chernov, 1969; Tatarskii, 1969; Lee, 1974). We follow

the techniques of Shishov {1971] to solve the differential equation for the fourth moment

ar, ;
4 “,c[vf—v§+v§—v3]r4+ VI,=0 (97)

.
.
S o
F

2V=d(ti~2e2) +d(h ~Re.2) + d(Re—R5.2) + d(Rs - R 2) - d(R, —R3.2) ~d (R — R.2) (98)

In the coordinate system of (22), the fourth moment satisfies

or’ i
BZL-i_[v‘.v,wrv,]r'ﬁ VI,=0 (99)

e with

2V=d(3+8.R) +d(3-8,R) + c[d(p +3R)+d(B-8.R)-d(B+%.R) —d(a-~7.R)] (100)

k where the parameter ¢ identifles
=-§-[d(ﬁ+3.z)+d(ﬂ—8.z)—-d(B+7.z)—d(B—7,z)] (101)
& as the same combination of structure-function densities we used in the path-integral expan-
sion variable @ of (71). The Fourier transform (91) converts (99) to the integral equation
%—g- + -:— VM + %.V,M +L{a(+8) +d(I-B)IM =GR 33.8.2) (102)
b

where G is the convolution of M with the transform of S, ie.
G(2.3.38.2)= 41:1;2:/; $n(4.2)[cos(3- &) —cos(3-4,) M (R.4-4,.7.8.2)d &, (103)

The change of variables (93) transforms (102) to

M+ Lid(a(r)+3(r)r) +d(3(r) -3 )r) M =26 RAINB)r)  (104)
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which is analogous to (94) of the thin screen derivation. This is an ordinary differential

equation in r, with solution

M(z.a.S.ar)=u(z.q.{’-.:—.o)expl -2 [d(?(z)»fs(zm+d(7<z)—8<z>.z)ldz|
ve Jorp|- L [12(3(e) 4 3z)) + 2(3(a)-3e).0 e G2 ANE0Me D2 s, (105)

Changing variables back to 8,9,R resuits in

R 1
M(247.3.R)= M(t.qsa.aan)exp[ ~ g {(80e+ Boz) + (7o -do))e|

R R ]
vef exp[——;—[ [d(F2+822) + d (7 —sz.z)]dzlc(z.q.fl.sl.zl) dz,  (106)

where
n=1-Lr-2)  fe=3-Lr-2)  5=9-1r
3=3-2(r-2) &:=3-F(r-2) =8-%k (107)

This expression can be written as the integral equation

H(%.342.8.R)=2(2.49.8.R)

Rwewoe
te { i £ £ K(2348.7.9.8.8.R2,)H@®.8.9.8.2))dd dy d¥ dz, (108)
where
. R ]
Z(6a2.3.7)= H(24 9333 0)exp| - - [1d(2:+ 8oz} + d(2 - Baz az| (109)
and
e September 9
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% K(£.44.7.7.8.8'R.2,) = 4nk?¢, (3-q.2,)3( ~3,)3(7 - ) (110)
1 R ;
exp| — L [1a(2+35.2) + (9, - $p.2)]da | feos(E (@~ )] - cosl - (- )] 5
2, i
F The formal solution is .
P
M(®.22.3.R) = L Mn(k.42.3.R)e" (111) :
n=0 .
k where
Rweoeew
Ma(®.27.8.R)= ffffx(z 44,97 38Rz )Mn-(.8.7.8'2,) dY dF d¥' dz, (112)

F and Mo(R.4,9.8.R)=2Z(R.4.9.8.R). This solution is a power series in ¢. The path-integral expan- :
sion (73) is also a power series in the same parameter ¢. Since this problem has a unique solu- :
tion and since the path-integral and moment equation are equivalent representations (Codona ]
et al, 1985), the two series are equal, term by term. We will show this equivalence explicitly for .
the n=0 term. The fourth moment is given by the inverse transform of (110), i.e.

. Fy(@B2.8.R)=7 ,«f Nad3-af 32X opette-e-nra-0-4y (114)

exp{-;_Z[d(7+8—(q+c)(R -2)/k,2)+d(3-8—-(Q-R)(R-2)/k.z)|dz|dadf'dgde

The change of variables ¥ =9-8R/k and $=8-RR/k produces the same result obtained from
the n=0 term, (76), of the path-integral derivation. Unfortunately, for higher order terms, the
equality of the two expansions is less obvious since the functional form of the two series is
different: the moment equation series is essentially a multiple convolution, while the path
integral result is not. However, with careful algebraic manipulation, the equality of the two

series can be explicitly demonstrated.

The moment-equation method was first applied to the simple geometries of plane waves

and point sources. Since the moments are then independent of the centroid coordinate, the

differential equations simplify. Early work concentrated on moment-equation methods
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because of this simplification. Moment-equation techniques have also been used to investigate
the validity of the Markov approximation [Klyatskin, 1969; Klyatskin and Tatarskii, 1971) and
the eflects of non-gaussian refractive index fluctuations under the Markov approximation
[Kiyatskin, 1975). The Green's function formulation provides a clear connection between the
thin screen and extended medium. The operator form of the path integral has also been use-
ful for evaluating the corrections to the Markov approximation for the higher intensity
moments [Zavorotnyi, 1978].

5. SUMMARY

A series expression has been derived for the fourth moment of waves incident on a phase
screen or propagating through extended random media. These results can be derived using
moment-equation techniques or functional methods (path integral or operator). The asym-
metric terms of the expansion generate two expressions for the intensity correlation; one
that approximates the low frequency region of the spatial spectrum and the other appropri-
ate for the high frequencies. The rale of convergence of the two approximations can be used
to produce a complete expression for the intensity spectrum valid for any initial source dis-
tribution. The calculations required for a complete expression may be excessive. However, in
strong scattering conditions, the leading order behavior of the intensity spectrum is well
described by a few terms of the series. The expressions presented here are applicable to
many problems of WPRM that involve arbitrary source distributions. These include
a) The intensity statistics from beamed lasers, navigational beacons, radar, spacecraft and
satellite radio transmissions, astronomical sources and other extended wave sources.

b) The effects of slowly varying refractive-index statistics along the propagation path, e.g. the
turbulence profile of planetary atmospheres.

c¢) Comparison of thin-screen and extended-media results.

d) The relationship between intensity statistics and the refractive-index spectrum.

¢) Imaging through random media.
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Figure Captions

Figure 1. The leading terms of the intensity spectrum versus normalized spatial fre-

L
- quency, Ry, where Ry=(R/k)* is the Fresnel scale. The curves are calculated
from expressions given by Gochelashvily and Shishov [1975] for the case of plane
waves incident on a random phase screen with a Kolmogorov spectrum of phase

fluctuations and Dg(R,)=100. The (-) sign indicates that #}/(g) is negative at
high frequency.
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Abstract

The intensity cross-spectrum (spatial Fourier transform of the two-frequency intensity

° correlation) for scintillations caused by a plane wave passing through a random phase
‘ screen is considered. Two series solutions (one valid for low and the other for high spatial

frequencies) are obtained which are the generalizations of previous results for the mono-

chromatic intensity spectrum. We show that the Gaussian-field approximation (modelling
& P

the cross-spectrum as the transform of the square of the second moment) breaks down

when the outer scale is large compared with the diameter of the scattering disk.

‘On feave from the University of California, Santa Cruz, CA 95064
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h 1. Introduction

Wave propagation through random media gives rise to intensity fluctuations

that are wavelength dependent. Examples of this phenomenon are chromatic stellar

P scintillation [Jakeman et al, 1978], pulsar scintillation [Rickett,1969), interplanetary
scintillation of compact radio sources [Cole & Slee,1980], and multifrequency laser pro-
pagation [Gurvich et al, 1979; Azar et al, 1985]. In weak scattering, the intensity
L fluctuations are correlated over a wide range of frequencies. However, in strong scatter-
ing, the intensity fluctuations are decorrelated after a relatively small change in fre-
quency [Popov & Soglasnov, 1985; Cordes et al, 1985]. Further complexity arises when
the intensity correlation between spatially separated points are considered, and
w‘ different wavelengths at these separated points are allowed [Azar et al, 1985]. Finite-
bandwidth, finite-aperture receivers are examples of such cases. These problems may be
analyzed by studying the two-frequency, two-point, intensity cross-correlation, or its
L‘ Fourier transform: the two-frequency intensity cross-spectrum.
A common approach for dealing with intensity correlations in strong scattering
conditions is to argue that the real and imaginary parts of the field are the sum of
many sndependent contributions and therefore become zero-mean Gaussian random

processes. We call this the Gaussian field (GF) approximation. The GF approximation

* implies that the correlation of intensity fluctuations is equal to the magnitude squared
of an appropriate second moment of the field. In particular, the two-frequency two-
point intensity cross-correlation would be the magnitude squared of the two-frequency

d second moment, which contains the factor exp[—%(Aa/a)'“b’], where ¢ is the center fre-
quency, Ac is the frequency difference, and @ is the rms phase shift[Ginzburg & Erukhi-
mov, 1971]. For many practical experiments @ is large, making the predicted intensity

’ decorrelation bandwidth extremely small, and inconsistent with experiment [Gurvich et
al, 1979; Flatte, 1983]. Theoretical approaches in the 1970’s gave various reasons for
neglecting the rms-phase-shift factor completely [Shishov, 1973; Lee, 1976; Dashen, 1979]
Dashen’s argument, which applies to both the thin-screen and extended-medium cases,

¢ hinges on the relative size of the outer scale (largest sized medium fluctuations) to the
diameter of the scattering disk. He argues that if the diameter of the scattering disk is
much smaller than the outer scale, then, for small enough frequency differences, the

[ ) phase-shift factor can be ignored.

e A e e e e e e e e Q—1R-/RE | |

S T S e AT e T L




rr‘rV'-',‘rvTvv'
LA A RIS A A

- B R PRI ) . - - . .
CYM WAL TS R AP S S P SAT A Sl Yo i S T T

T Rl St M A Jta 2 T
It iRt Rt M A A <o i e

-2

In this paper, we analyze intensity decorrelations, in frequency and transverse
spatial separation, of a plane wave propagating through a random phase screen. A
series representation of the two-frequency intensity cross-spectrum (spatial Fourier
transform of two-frequency intensity correlation) is derived. An approximation to the
cross-spectrum is presented that is valid for all values of the outer scale. These results
extend the thin-screen results of Dashen to arbitrary frequency differences and provide
a description of the transition from a small (relative to the outer scale) to a large
scattering disk. The rms-phase-shift factor is replaced by a new, more accurate, factor,
and the conditions under which this factor may be omitted entirely are detailed. In
Section 2 we introduce the second and fourth moments of the field and the two-point,
two-frequency (intensity) correlation function. In Section 3, we consider the Fourier
transform of this correlation function, the two-frequency intensity cross-spectrum. We
derive two different series representations for this cross-spectrum. The first series
describes the low-spatial-frequency behaviour (i.e. it converges quickly in this region).
The other series describes the high-spatial-frequency behaviour. These series extend (for
the thin screen) the results for the monochromatic intensity correlation [Codona et. al.,
1985] to two frequencies. In section 4 we discuss the relationship of our approximation
to the GF approximation. It is shown that the GF approximation (with the mean-
square phase shift factor) is valid only over a negligible portion of the intensity cross-
spectrum. Finally, in Section 5 we summarize our approximations to the two-frequency

intensity cross-spectrum.
2. Definitions and Notation

We consider plane waves, normally incident on a phase screen, that freely pro-
pagate a distance R beyond the screen to an observation plane. The refractive index
fluctuations, p(x°), in the screen induce a random phase change, 6(x) =k [u(X",z)dz, as
the field passes through the screen. Here z is the direction of the propagating wave, ¥ is
the co-ordinate transverse to this direction, and k is the wavenumber. The phase change
O is assumed to be a zero-mean Gaussian random variable with homogeneous statistics.
We consider wave propagation which is characterized by narrow angular scattering by
the phase screen due to the small fluctuations of the refractive index. The complex

scalar wave field can be expressed as E(x°,z;k)e™, where the field E has the value on

- . . 9-18-'85

. S T A S e '._-._~ .-' S J ',‘-"“.' ‘."~',

I R N Tt L P . C LA
OO © vt A T e e IR I S
PPN PR h o> b h-J Al at P

S R N T U T T T

S

R IP IER R N N .
i Aa B B ool l‘_lj-



‘.‘

LIV I S ey

emerging from the screen

E(x" 0+k) = E(X° 0;k) ¢*®%) (1)

expressed in terms of the incident field E(x°,0;k). In the space after the screen the field

satisfies the parabolic equation

3z 2k 0%*2

> 2

For a plane wave, the incident field is a constant, which we set to unity. The solution
of the parabolic equation at the observation plane with the proper initial condition is

then

e RE) = kT o gy KN o
E(x",R;k) = ir R __Lc exp( R ) d’z (3)

Averages of the fields are performed by the use of the identity

1 o2
N —<O>
<®>=c¢ 2 (4)

valid for any zero-mean Gaussian random variable. This, for example, gives the average

of the field (first moment) as
<E(X",R;k)>=exp [—%-@2] (5)

where #? is the mean square phase shift.

The random nature of the fields is conveniently described by statistical moments
of the field evaluated in the observation plane. The moments of particular concern for
the study of frequency decorrelation are the second and fourth moments. The general

second moment is given by

Ty{%3,%3, Rk, k) = <E(%,R;:k,)E " (%5,R 1kg)> (6)

bE O sk o o
- (2’:;)2 {,{exp -(?)%2 ~ ik Dyl 5 )]exp [E‘I—?.[kl("l—xl')z*kz(xrxz'ﬂ d2z,'d%z;)

where the fields are given by (3). The identity (4) is used to obtain

LU h bl hopiTy NP> (22 4k D x5y
¢ 2 ~c 2 F

(7)

with the wavenumbers expressed in terms of sum and difference variables
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t=5ﬁgﬁ , &k =k, —k, (8)

. |
[: The second moment is expressed in terms of $2, which is the mean-square phase shift for
E a wave with the mean wave number, ¥, and the phase structure function, &k, D,, asso-

ciated with a wavenumber which is the geometric mean. The wavenumber dependence 4

of the phase structure function is explicily displayed by expressing it in terms of a struc-

ture function for the integrated index of refraction fluctuations, D,,

D,(x-%3) = <[[(n(x},2)-n(%3,2") 2] > 9)

It is convenient to express the second moment in terms of sum and difference variables

for the co-ordinates

o =% (10) -

with similar expressions for the (primed) co-ordinates on the screen. Then the second

moment is given by

o _1
S e S ,
exp[s’%l(ﬁ‘—"')ﬁ(i—F')’]#%(&’—a‘f).(i_ﬁ'r)]]pa:dzﬂ. o

The o' integration is immediate since the phase I'; is independent of &, which follows
from the translation invariance of the problem for an incident plane wave. Performing

the a' integration we secure for the second moment

3
- X "lkg _6_k_2£ * —%klhgo,(p) l.k‘kz i~ 9
TAB Rikikd) = o nm expl= (T ) L e exp| oo (BB P (12)
The general fourth moment involves the field at four different spatial points.
From the solution for the field, (3), this moment also involves the integration over four ..1

points on the screen. It is convenient to transform the co-ordinates of the screen to

1

1 1 1
1 -1 -1
-1 -1 1
-1 1 -1

(13)

> 2 ™ Ry
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L A similar transformation exists for the co-ordinates of the observation plane. For the
two-frequency, two-point intensity correlation function, which is a special case of the

fourth moment,
Cy(%3.%3, R ky,kg) = <I(%,R k)%, R kg)> (14)

= < E(%;,R;k,)E°(%3,R ;k,) E(%3,R ;k,)E *(%3,R ko) >

~ @

-

two of the transformed quantities on the observation plane, v and &, are zero. Using

the solutions (3), the above transformation, and (8), we find that the integration over

P the centroid, o, gives i
. "122 E o kg =m w0l iz
Ci(B Rikuks) =(5 )Hc “exp —ig W= (B - | sy (15)
L where f=x;~x; and
sk \= 8k \ =
Vi=kD((1-200") + B D1+ 2)7") (16)
o DT T T DE 4 7 BB 5y

3. Intensity Cross-Spectrum

The intensity cross spectrum is given by the § Fourier transform of (15), which

produces the delta function, 6(?—%'7(1—(61:/25)2)), where 7 is the transform vari-
r able. Integration over 4’ yields
o 1,
&R Rk k) = [ ™ Fe 2 a2p (17)
® where
. . Ok ) . Ok
V‘ = kID“(R, Sk (l+_"')) + ngy(R. Spk (l—'—)) (18)
2k 2F
» ~kiky[D,(B"+R, 8,F)+ D(B'~R, 8,%) — D B +2ER, 307)- D (ﬂ' R 8o%)|

2K

We have introduced two physical scales of the medium which are defined at a

wavenumber

---------------------
-------
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kb,
ky=—— 9
o=t (19)
These scales are the coherence length of the field, a4,
ko? D, (80) =1 (20)

and the size of the scattering disk, R,,
(21)

The coherence length is important in that the cross-spectrum is negligible for spatial
frequencies & >s5!, so that the combination sy« is always less than unity. The scatter-
ing disk size, R, sets the scale that separates high and low spatial frequencies. Notice

that the combination
RE=R,s, (22)

appears in (18). Ry is known conventionally as the Fresnel radius; it determines the
intensity spatial scale in weak scattering. Unfortunately, the final integral in (17) can-
not be done exactly. Our approach is to find two separate approximations for high and

low spatial frequency. First we consider low spatial frequencies.

When & €<1/R,, the 5" Fourier transform has substantial contributions from
everywhere in the integration plane, and over most of this region, #' > R, sox. It can be
seen from (18) that V, will be dominated by the first two terms on the right hand side

of that equation since the #' dependent terms nearly cancel. In this circumstance, the
dominant behaviour is A" independent. Since the A" dependent terms in V, are small,
the exponential may be expanded in a Taylor series

i,

e 3 ‘=exp [—' % (k3 Dﬂ(';'*'s.')'* k§ Dp(:’.'_i’)]] (23)

5 ;l,- (kiky)® [D,,(B"+'7 "N+D,(B'~7")-D,(F' '+3")_p,,(;9‘v_3‘r)]'

A=l

where 4" = R,s0% and &' = (8k/2F)R, s,% Inserting the above expansion into (17) yields

explicit expressions for the terms in the low-spatial-frequency series,

(-]
O/ (RR Ky k) = Y OB RR k5 (24)
(Y1)
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The structure function D, can be expressed in terms of a spectrum by
D) =2/, [1 —ei® T g2t (25)

with &, as the power spectrum of a quantity which is the refractive index fluctuations

integrated through the screen. The two leading terms in the low-spatial-frequency

series are
& Q2R ;- k) = 5(F) (26)
and
& RR Ky kg) = ke exp [-— L 12 D0+ ZE)R, 001423 D(1-E)R, aof’)l] 27
P 2 2F 2F

(%) [sin’(R,’-xzﬂ) - sinQ(-s—Ek- RFx%/4 )]

The correction (27) modifies the behaviour of the leading order expression, (26), for
0 <x «1/R,. Notice that the Fresnel radius squared, R% = R, s, appears in the sin?
terms, revealing these terms as the usual Fresnel filter. For weak scattering (R, <Ry)
the Fresnel filter cuts off the spectrum at large spatial frequencies. However, in strong

scattering, the exponential term in (27) provides the cutoff.

We now turn our attention to high spatial frequencies. It is convenient to

separate V,into V,= V? 4+ VIO LV} with

VI(B'8") = ky k,[D,(B"+8") + D (B" 5] (28a)
VEO(3",5%) = k% D (7' +8") +kF D (7' —8")—2k,k, D (1) (28b)

and
VRV (B'A") = bk, [2D,(7") =D (B +7") ~D (B" 7] (28c)

where 7" = R,so%* and &' =(5k/2F)R, s,k. Notice that VZ° is independent of 8'. The

exact expression for the cross-spectrum is then

ol

RO LivoLvm
V4 fe'-r, PG zlvq +V‘ ]
-0

O (RR ky ko) = ¢ a2 (29)

In the monochromatic case (8k=0,5'=0 ) at high spatial frequencies and strong
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o scattering, the terms corresponding to V{ dominate the integral for the spectrum.

[Gochelashvily & Shishov, 1975; Rumsey, 1975). Rumsey showed that, over the impor- ‘1

tant region of integration, the §’ dependence of V! is negligible compared to that of

V2, giving the intensity spectrum as the Fourier transform of exp[—k,k,D,(F’)]. This is
because the quantity ey« is of the order of unity, so that ¥~R, , while the important i
region of integration is f'~s,<R,. When 6k is not zero (but small), the high-spatial-

frequency behaviour of the cross-spectrum is still controlled by V3 for the same reasons.

Note that these terms do not dominate the behaviour of V, for all 8" and & but only for
p' €« R, sox. Unlike the monochromatic case, when ' is zero V, is non-zero. However V, ’

still increases with increasing £, so that the Fourier transform integrand, c—v./-z, is larg-

est when #' is small. The approximate domain of A7, in which the Fourier integrand is

large, is where §' < ¢,. In this regime the V%’s are roughly independent of £, so that #
the integrand is dominated by V?. The limiting value, p'~ s,, leads to the requirement
£ >R, (30)
. . -V /2 I~ - '
wherein we expect the §' behaviour of ¢™ ¢/ to be controlled by the D (8'+8") +D,(8"—5")
terms. This is verified explicitly in Appendix 1. Thus V{! is small compared to V?
allowing us to expand the final exponential in a Taylor series yielding a corresponding
series for the intensity cross-spectrum q
o0
Oy (RiR ki ke) = 35 SN (RIRk, k) (31)
n =0
The leading term is +
.VR°°° ,
YRRk k) =78 [oi®F (32)
«=00
exp |22 (D5 +- 3£ R, 4ok) 4 DUF" 2L R, o0k |07
2 THT Top ) 2
For the monochromatic case, the corresponding term is commonly called the high-
spatial-frequency approximation.
Writing the structure function in terms of the spectrum as in (25), the second *

term in the series expansion of exp[—% Vil is




;

o ;

g

This yields the first correction to the leading approximation, (32), }

r 4’:!”(3‘.3;*1.1‘3) n‘ig_z_ G-V"'OIIQ’(?')¢“.'("+R"°r') (34) 1

where V0 is given in (28b). This correction term is important in determining the con-

vergence properties of the series (31) for high spatial frequencies.
4. Comparison to the Gaussian-Field Approximation

In strong scattering, the coherence length of the field, sy, is much smaller than
the size of the scattering disk. This implies that the field at the observation point is
the sum of very many contributions from the scattering disk. If these contributions
were independent, then by the central limit theorem the field would obey Gaussian
r statistics. If the field is a zero-mean Gaussian random process then the intensity corre-

lation function is

Cor(%1,%5,R k1, k) = < I(%,R ;k))> < I(%5,R ;k9)> + ITo(%3,5,R 1 ky k) P (35)

h In the thin screen mode] and an incident plane wave, the mean intensities in the first

UV )

term are independent of position and, by definition, are unity. Because of translation

invariance the second term is only a function of B’ =% -%;. Inserting T, from (12) and

k transforming over B yields the GF approximation to the intensity cross-spectrum y

bar(BiR ky,ky) = H(K) + exp [—(%)""’] [ -7

b exp

_"i’. ., Sk a_JSk 2
=5 DB+ Ruaok’) + DB~ = Roaok )] | 8 (36)

We wish to compare this GF result with our previously derived approximations:
(26) + (27) for small =, (32) + (34) for large x. We see that (36) resembles (26) + (32)
b except that the factor exp(-V#°] has been replaced by the phase-shift factor

exp{{(6k/2F)*®%. However there is a problem with the low-spatial-frequency behaviour

tial frequencies, the cross-spectrum consists of a delta function piece plus a term that

4
:
1
L
k
1
[
L
]
of the GF approximation. On quite general grounds it can be argued that, for low spa- ﬂ
y
A
[
{
h
iﬁ
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must vanish as the spatial wavenumber goes to zero [Tatarskii, 1971]. If (36) is applied
for small x, the delta function is correct but the second term goes to a non-zero con-
stant for small x. Compare this situation with our results (26) and (27). The result (26)

correctly gives the delta function at the origin. Our correction (27) substantially

modifies the spectrum for non-zero «, but satisfies the requirement of vanishing as
x— 0. For a power-law medium, such that ¢,~x=°, with a <4, it is seen that (27) van-
ishes as x4,

To evaluate the GF approximation at high spatial frequencies, we are interested

in whether exp|--(6k/2F)®?) is a good approximation to exp|—V§®]. Consider a pure

power-law phase structure function

KD (&) = [L ]' & <lyyter (37a)
%0

k2D,(5) = @ 8 >l (37b)

where s, is the coherence length of the field, and (,,,,, is the outer scale of the spectrum

of phase irregularities. In most cases of practical interest, the outer scale is much

larger than the size of the scattering disk.

Since the phase structure function saturates to @2 for scales larger than the
outer scale, (32) gives the same result as (36) only for spatial frequencies such that
x >(l,uter/R. )85 . The only non-negligible portion of the spectrum is for « <1/s,, leading
to the conclusion that the GF approximation is only valid for a significant portion of
the spectrum when the outer scale, I ,.,, is small compared to the size of the scattering
disk. However, in virtually every case of practical interest, the scattering disk is small

relative to any estimates of an outer scale. In these cases, the GF approximation

becomes valid only after the cross-spectrum has dropped to a negligible value.
5. Comparison to Neglecting the Phase-Shift Factor

As mentioned previously, various arguments have been given for using (36) for

the cross-spectrum but neglecting the phase shift factor, ¢~/ #%

Sor(RR k) k) = f"r P exp —"‘—[Dp(ﬁ'-*‘—k. R, 8oF)+D (" - R 8K [d%F (38)

l-'

Dashen [1979] considered this problem theoretically for both a phase screen and for an

................
------------------------------
...........................
.....................
.........................
at 4t 2 P *




extended random medium and presented results valid for infinitesimal frequency
diflerences. There are two different regimes in strong scattering: " partial” and "full”
saturation. When the size of the scattering disk is larger than the outer scale of
medium fluctuations (full saturation) the contributions are independent and the GF
approximation is valid to first order. However, when the scattering disk is smaller than
the outer scale (partial saturation), fluctuations with a size larger than that of the disk
contribute a random, coherent phase to the field so the many contributions are not
independent. Since this coherency only affects the rms phase, this lack of independence
will not affect any monochromatic intensity statistic but will be important for multifre-
quency statistics. For a medium characterized by a fluctuation spectrum with a spec-
tral index less than four, the small-scale fluctuations can cause large (saturated) inten-
sity fluctuations, but the rms phase is dominated by the large-scale fluctuations. For
small enough frequency differences, this phase cannot aflect the intensity, providing a
first-order justification for dropping the exponential factor containing the rms phase.
Further experimental confirmation of this result was provided from ocean-acoustic data
[Flatte, 1983)].

Our more accurate expression (32) implies that neglecting the phase-shift factor
is valid over the portion of the spectrum for which VF° «1. Using the largest

significant x value (s ) in (28b) leads to the requirement
. Sk 1a 5k
ki DR, (l+§))+k2 D,(R,(1- 2—E-)) —2k,ky D (R,) <1 (39)

For a power law structure function this expression can be simplified by performing a

small 5k expansion ( valid for 6k <2F ) leading to
(—--)2 U<l (40)
where U is defined by
U = KD,(R,) [%—]v (41)

This requirement implies that, as the scattering becomes stronger, the region (in 6k ) for
which (38) is valid becomes smaller. This is not a severe restriction because the fre-
quency decorrelation bandwidth decreases as the scattering becomes stronger, limiting

the values of 8k which enter (40). We set this limiting value to be the decorrelation

---------------------------
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bandwidth, which we estimate by looking at the asymptotic (large x ) form of (38).

For large x, there are two important regions of integration in (38): near 8 =0,

where the integrand is largest, and near § = 1 (5k/2F)R,sox, where one of the structure
functions vanish. In Appendix 2, it is shown that the second region dominates the

asymptotic behaviour, leading to

K,k e

o, ~ exp-[-——D,(%R,aoﬁ‘)]cos [%Rﬁx’] f P 2 dzg’ (42)

2

The integral term in (41) is just the angular spectrum and its important scale is a,. The
cosine term oscillates rapidly for x:»x,=V 6k/2F /Rr. The frequency decorrelation
bandwidth can be estimated as that &k for which x, sp~1. Using (41) and (21) this leads

to
5k, ~ xE UV (43)
Inserting this bandwidth in (40) yields the criterion for neglecting the phase-shift factor
U-ir <1 (44)

Thus, for p <2, the approximation of neglecting the mean-square phase shift improves
as the strength of scattering increases.

It has been shown that the contribution to the scintillation index from the high-
spatial-frequency correction term is proportional to U!'~%/? [Prokhorov et al, 1975].
Thus if the correction term to the scintillation index is small, it is appropriate to ignore
the phase-shift factor over the main portion of the spectrum. On the other hand, if
correction terms, such as (34), are not neglected, then it is inappropriate to neglect the

phase-shift factor, since it generates corrections of the same order-of-magnitude.
6. Summary

In the previous sections we derived two different series for the intensity cross-
spectrum: one describes the low-frequency behaviour while the other describes the high-
frequency behaviour. Keeping the first two terms in each series gives expressions which
approximate the cross-spectrum in the two respective regions. The relevant formula are

given in (26),(27),(32), and (34). The phase-shift factor in (32) containing V{° correctly

describes the eflects of any coherent contributions from the scattering disk for all values
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of the outer scale and for arbitrary frequency differences.

The GF approximation should not be used when the outer scale is much larger
than the diameter of the scattering disk, and the reduced approximation, (40), should
only be used when U'-%/? £1. In very strong scattering (large U), when the scintillation
index has nearly saturated to unity, (40) provides a good approximation over the main

portion of the spectrum.
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Appendix 1

We show that 5" dependence of V¥! is negligible compared to that of V? where,
from (28),

VP = kiky|D,(B'+8)+ D (F'-8)] (Ala)

and
VE' = kko2D (7" -D (F'+7)-D (F-7) (A1b)

where 7=R,s,%" and §=(6k/2F)R,s,. We have argued in section 3 that the dominant
region of integration is for small 8’ <R, spx. In that case, the two terms in (Alb) may
be expanded as

2
a =
B | D& goar, o + = (A2)

g
8

D,(R, 8oR+B')+D (R, soF~p') = 2D (R, 8, )+

The second term may be bounded by
P
[BT'_a_i. Dﬂ(i‘)li‘-k.coi‘ S ﬂ'le‘,"(R, ’0")' (A3)

giving the leading ' dependence of V' as
V§ =~ kik8'? D,(R, sox) (A4)
In verifying that V? controls the §' dependence we will examine three cases

5k
Casel: —R, 8,8 < p'
oF ¢ °0

Case2: f < -:—;—,R, 80K (AS)
13
Case3: 2FR' o ~ g

In the first case, g is large compared to 8kR, g« /2F giving the leading dependence
of V? as

VI = 2k k,D () (A6)
so that we require

B2 D,"(R, sox) € D (8') (A7)
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3'
ﬁ' Using a model power-law structure function, k2D (&)=(s/s,)?, this requirement becomes i
y:A ~ [R x]'_a 2 ‘
L ——— A8
L ! p(p~1) (A8) 1
. 1
Since p is typically in the range 0 <p < 2, we find an upper bound for the left-hand side b
L
® by setting f’' =s, and x =85! resulting in the requirement b
2_(1?':1)_ < U2-0p (A9)
°® where U is the strength of scattering parameter, U=k D,(R,), with k, defined in (19). )
Therefore, the V? term controls the § dependence when the strength of scattering :
parameter, U, is large. When p is 1 or 2, our argument breaks down. For p =1 the
G approximation still holds by another argument, while for p =2, there are no scintilla- '
tions. ‘
In the second case, #' is small compared to 8kR, 8ok /2F, so that a Taylor expansion
[~ of the V{ term yields the leading B' dependence
] 2 [ 6k
V2 = kkyf?D, (R, s0k) (A10)
This leads to the requirement
|
D ] R " 6k
» ( 030") <Dp (;ERI al)") (All)
which for a power-law structure function is equivalent to
3 p—2
Sk
1€ — Al2
| [25} (12)
Since p is less than 2, this implies that 8k is small compared to twice the mean of the
'S wavenumbers.
h
Finally, in the third case, 8’ is about the same size as §kR, sox/2F so that the :
requirement for neglecting the g’ dependence of V¥ becomes ]
‘ L
3k o, eor | D" € D(2ER, sox) (A13) '
2k F ]
which, for a power-law structure function, leads to
Y
{
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(6k/EP— < ;G‘—_T)- (A14) ‘+

and is easily satisfied for small wavenumber differences.

In all three case considered above, the combination of structure functions in V¥

dominate the 8’ dependence if U is large and &k /2F is small. ﬂ
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Appendix 2
|
As mentioned in section 4, in (38) there are two important regions of integration
for large x. One is for small 8 where the integrand is largest. The other is where one of
i. the structure functions vanish, f=1 (6k/2F)R,80x. Near f=0 the exponent in the
integrand, V{ may be approximated
| 5k = 0 '
i' Vi~ kik, 2D..(ER.%E’)+ ﬂ"b—i, QD,‘(E‘)! a-(sk/zr)n,.,r] (B1)
i
which leads to rapidly decaying component of the cross-spectrum. For the other region
of integration we approximate the integrand of (37) in the vicinity of B7=(6k/2F)R,s,%"
¢ to be dominated by the “fast” variation of the structure function near its zero and the
“slow” variation of the other portion of the exponent. Including the F=0 contribution
gives the cross-spectrum asymptotically as
© ko &
—ED R, BT - 8
& ~e * 2 o _Lc"‘rpexp [p'.:'-)_g’]zD"(n i‘_(“‘/2,‘,)”‘.0‘?,] (B2)
bt & o0 kyko
——= D= R, X} . ——D
© +2¢ °* L5 Fro cos ik—R}xJIe"r're 2 'md,B
2k 8
For a power-law structure function, the first term falls off like
. Cyx2re =0 (B3)
where C, and C, are constants. The integral in the second term is just the angular
spectrum, which for p <2, falls off like x~?~2. Since this is a much slower fall off than
the =0 contribution, the asymptotic behaviour of the cross-spectrum is dominated by
< -
the points, =+ (6k/2F)RER".
¢
$
s N L
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Abstract

Differential equations for all moments of the field of & wave propagating through a
random medium are derived under the parabolic approximsation and the Markov
I® approximation, but including anisotropy in the random medium and a deterministic
background refractive index. Mathematical equivalence is demonstrated between these

moment equations and path-integral expressions for the moments obtained under the 1

® same approximations. A discussion of approximations that are weaker than Markov is

given,
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L Introduction

Many problems in wave propagation through random media concern phenomena in
which there is no significant backscatter, so that a parabolic approximation may be
made to the wave equation.lll In these cases a further approximation, called the Markov
spproximation,m leads to relatively tractable mathematical expressions for moments of
the field that can be used for practical calculations. Two quite different formalisms

have been used in this context: the moment-equation and path-integral techniques.

A path-integral expression for a general moment of the field of a wave propagating
through an inhomogeneous, anisotropic medium in the presence of a deterministic back-
ground refractive index has been derived,?! and the expression has been used for specific
calculations. !5

Moment equations in coordinate representation have been derived for homogene-
ous isotropic media in the absence of a deterministic backgromxd.lzl Treatments of inho-
mogeneity, anisotropy, and deterministic background by moment-equation techniques
have heretofore been confined to special cases involving the first and second
moments."8

We present here general moment equations in coordinate representation that
account for inhomogeneity, anisotropy, and deterministic background, but require the
Markov approximation. We derive these equations using the time-ordered-product
method of Van Kampen,® which also provides a derivation of equations that are valid
under conditions more general than the Markov approximation. The modified equations
are more complicated than those that require the Markov approximation: a special case

was previously derived by Besieris and Tappert.!%

We also show that our new general moment equations derived under the Markov
approximation are mathematically equivalent to the path-integral expressions for the
moments that have been previously presented. Thus, the two popular formalisms,

under the Markov approximation, are not different in content.
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The plan of the paper is as follows: in Section II we establish notation, present our
new moment equations, and present path-integral expressions for the moments in simi-
lar notation. In Section III we establish the mathematical equivalence between the two
techniques. In Section IV we present the derivation of our moment equations, and,
slong the way, derive the modified equations. In Section V, for completeness, we
rederive the path-integral expressions for the moments. In Section VI we comment on
the use of different coordinate systems (such as cylindrical or spherical) in the writing of

moment equations. A summary concludes the paper.
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» II. Notation and Markov-Approximation Results
| Consider waves travelling predominantly in the s direction. Let #° be a transverse
coordinate (e.g. two-dimensional, but in fact general), and & be a reference wave
" number (k = 25w/C,), where w is the wave frequency and C, is & reference wave speed).
“ Express the full wave field as
o(F,2,1) = $(F,31) exp[c’k(: -coc)] (1)
i
® Let the wave speed (a function of position only) be
! -
{ O(F,0) = G[1-20s(e) - 20| = Go[1+U)+ute )] (@)
' where U, represents the deterministic background and p represents the fluctuating ran-
e dom medium, assumed to be a realization of a zero-mean Gaussian process.
Then, the parabolic equation (in rectangular coordinates) for the reduced wave
function ¢ is:
k3, = -% V2 + KU (F)Y + K%(F, 2)$ (3)
where V2 is the transverse Laplacian.
® A moment T is the ensemble expectation value of a product of ¢’s and ¢"s where
each ¢ or ¢* is evaluated at a different position #; and wavenumber &;. We write, in
abbreviated form,
£ 4 4
> Toe = < ¥ ' Vo Vot1 * Pmps > (4)
Define an operator L, such that
mta
_ =¥ et -Loreyul ®)
» j=1 J
The terms that apply to the ¢’s use the plus sign and those that apply to the ¢*’s use
the minus sign. The subscript j requires that V3 operate only on #; and Up; = Uy(57).
Define the iﬁportant combination of fluctuation quantities as
mén
M(z) = ,_é‘ + kp(E,2) (6)
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Our general moment equation under the Markov approximation can be written
[}
0T m(s) = —ilolas(s) =% [ ds' <M(s)Muq(s) > Tus(s) ™

where M,,(s") is obtained by evaluating M(s) with all the Z at s shifted by the
transverse distance that a deterministic ray through (#;,s) moves in travelling from
to s’ (see Figure 1). In other words Mu,(s') is evaluated at point B: ie. & =g, (s)
where the ray is forced to go through #(z). The particular ray is determined not only
by the local position (%,z), but also by the initial conditions on the moment; for exam-
ple, the location of a point source, or the direction of a plane wave.l'¥l The unphysical
assumption of delta-correlated medium fluctuations along the propagation direction
would imply that M,,,(z') would be evaluated at point C: ie. #;(z) (and 2'). In the iso-
tropic case (or in the case of propagation along a principal axis of the anisotropy) the
difference between evaluating M, () at 7;(z) and %, (2') is negligible, and the delta-
correlated assumption is adequate. In the anisotropic case, the necessity of defining the
unperturbed ray makes (7) somewhat complicated to apply for general initial condi-
tions. However, since (7) is a linear equation, superposition can be used whether the
source is a point, an incident plane wave, or an arbitrary coherent or incoherent sum of
point sources. Equation (7), which is one of the principal results of this paper, is

derived in Section IV.

We now turn to the path integral method. Equation (3) has the formal solution

¢ = [DF(s)e® (8)

P where [ D#°(:) means integration over paths, #(z) is a transverse vector indicating the

3 position of the path at z, and

t ol (e

] S =t {h ry [‘;]7—”0(')—#(?.1) 9
In order to obtain a given moment, expressions like (8) (or its complex conjugate) are
multiplied together, and the ensemble average is taken:

! mis 2*"3,

’ f H Df;(l) <e! > (10)
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H‘ The Markov approximation yields (See Section V):

[ L4 R
r-l - In Df; (') exp‘
Jm)

expressions (11) are mathematically equivalent.
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II. Equivalence of Path Integral and Moment Equations under the Markov
Approximation y
We follow the technique that Feynman'® used to show that his path-integral
expression for nonrelativistic quantum mechanics is equivalent to the Schrédinger equa-
tion. The key to this demonstration is an understanding of how the important paths {
behave transversely as they move in s from a particular point. Feynman found that
these paths resembled random walks in that
() - £ ~ () (12) ¢
as 2’ gets close to z. Given this behavior, it is easy to expand (11) in a Taylor series
and obtain a differential equation which will turn out to be (7). We give the demonstra-
tion of (12) in the Appendix. 4

The path integral is defined as the limit of an integration over a set of ‘“phase

) .. dz° .
screens.” These screens are at values zy = Néz. The derivative <X— at z =zy is

dz
defined as (f’(zN +6z) —:‘r"(zN)) [z = —';i:— The limit §2—0 is taken after the integrals

are evaluated. The differential equation is obtained by considering the integral over the
very last phase screen. The last integral in (11) can be written in terms of
#'=5; (R —~6z) and % =#;(R). Also, we define éz; = & —5;'. Then I',, can be

expressed as:

Tul{T}.R) = (13)
2

N KA

2 l&z ] Uo’]

_-;— I dz' <M(R) M-W‘(")>]

N [ I1 4%’ exp| 82|Y £ ik;
J J

rmn((?'} vR —5:)

Y . ) 2
where {#} denotes the set of m+n #;’s. The first term in the exponent, + .: 5y

5 '’
is O(1) for small 6z, because of (12). The exponent of the remaining terms can be

expanded, since they have an explicit 6z, as well as higher order terms. This results in




T

Fae{(7}.R) = (14)

NS I;[ [d&!} exp{ + ik, (6% )’/28:}]

~

1-52 | 33 + ik; Uy, (R) +-;- ? dr' <M(R) My (2) > || Tma(( £}, R —82) +0(53)
] -~

We now have a relationship between the moment at R and the moment at R -z,
which we derived from our path-integral expression. But since the moment is a

differentiable function we can find another relationship by Taylor expansion as follows:

Foa({},R —82) = [1 —~ 8295 - 26E}°V,- + %(265}-7,-)2] T({Z"},R) (15)
J i

3
+0(822)
Substituting (15) into (14) we find

Fi((£),8) = NJT] (4855 exp{ & ik;(6257)/262} ) (16)

1—253, Vi+5 [26:, T —620,

s
Taa({Z},R) +0(522)

] -

The term linear in Y67 - V; is odd in 8% and therefore gives zero due to the 6%
)

integral. The term that is quadratic in 8z; can be integrated by parts, yielding, to

order éz:
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Fel(r).R) = N[ ] [au; exp{*ik,(&!})’/%x}]
. 8y Lyl _gi_via U
1 +6l[ 0. 2 zi: *l‘k,- V, 2’;* tk, UQ,(R)
t % -ﬁ
—5 | &' <M(R)Mua(s)> [ Toa(F).R) . (17)
—00
The only way (17) can be true for all &z is for the coefficient of 5z within the curly '1
brackets operating on T',,, to give zero. Therefore, setting R—:z,
arm({F),2) = - i T4 f(—-,}v;*‘+k,-’vo,-]rm.({r}.z) _#
J
: 1 o
- —3 J 4 <MEMun(e) >Taul(£,2) (18)
b which is identical to (7), as required. Thus, we have derived the moment equation (7)
[ from the path integral expression (11). This shows that the path-integral expression

(11) is a solution of the moment equation (7) and hcnce the two techmiques are

? equivalent.
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IV. Moment-Equation Derivation

We derive our moment equations by the method of Van Kampen !l The advantage
of his method is that the physical basis for each approximation is readily apparent. He

bases his method on techniques that were developed for quantum mechanics.

We shall find that the Markov approximation requires that the dimensionless
number LM} be small where L, is the medium correlation length in the direction of the
wave propagation, and M, is the “typical” value of M, defined by (6) and called the
“interaction strength.” For the first moment M = kg, but for higher moments M is the
sum and difference of a number of ku's at different positions, and with different values

of k.

We start with the parabolic wave equation (3) and the definition of L, and M, and
write:
¥ ¥ t #
$0,9 VY2 Vmis = (Lo+ MMy ¥y Yy (19)

The “interaction representation” is defined by:

(1{’1*4’:' P +-)l = C‘Lol ¢’1* ¢’2* toe ¢’m+- (20)
and
M)(2) = c”""M(z)c —ilot (21)

With these definitions, (19) becomes

i3,(%) Yo Ymeadt = M) 5 - Vmiadr (22)

This equation is linear and has the formal solution
(¥ ¥ - $msakr = Texp (=i [ M(z") d2’) T, (0) (23)
0

T',..(0) is the initial condition. The “time-ordering” symbol T requires explanation. One
notices that M, is an operator, not just a function of space. M;(z,) and M;(z,) do not, in
general, commute. If they did the solution of (22) would be given by (23) without the T
symbol. The T symbol means that a product of operators to the right is not applied in
the usual order, but in such a way that operators with smaller values of 2/ are to be
applied first. Thus there is an ordering in z. (The T-symbol was invented for solving

problems in quantum mechanics where the analog of the longitudinal direction z is the

......
Camtl e,
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time.) For example,
Texp( - i ;f My(s) &) = (24) 1
[Texp( - ‘]‘. My(s")ds")] [Texp( - i 2 M(s"és')] #
for 0 < 1, < s. Another example is
T 1-7'!)‘- :{M,(z')a'I = (=i [ My(5)-+ My{ss) My(s,) ds, dg-- dny (25)

where the integration region on the right side of (25) is 0 <z, <z, <z, <s, which is I
times smaller than that of the left side, cancelling the factor of kl. Using either (24) or
(25), one readily checks that (23) is a formal solution of (22).

We are assuming that M is a Gaussian process. The result that the expectation of
the exponential of a zero-mean Gaussian random variable is the exponential of half the
variance follows from combinatorial factors and remains true for a time-ordered

exponential. Thus

(Cods = Tep| -2 < [;fu.(s')a'[ > ru0) (26)

Although this is a formal expression for T, it is not immediately useful for calcula-

tions, since there is no simple algorithm for evaluating a time-ordered exponential (in

contrast to a normal exponential). Van Kampen proceeds by differentiating (26): q
0,(Cua)y = ‘ (27)
- T < My(2) } &' My(2) > exp --;- < }M,(x') a']. >|r..(0) #
° °

The M;(z) bas the largest z, so it is written in the proper ordered position. The M,(z")

that it is correlated with, however, might occur anywhere relative to the M;(z")’s in the

) exponential. If LIM? <1, very little error is made by assuming that the first two M,’s 3
F. are in the proper order, so that the T symbol can be brought through the first expecta-

E: tion value, yielding:

3 3
”




OFuddt = = <Mils) { &' Mis) > (Fua) (28)

This may be shown by expanding the exponential operators in (26) or (27) and dis-
cussing the order of M’s in each term. The Nth term in the expansion has 2N

occurrences of M;, and is of a magnitude
1 §
<(f M; ' >N/ N1 (29)
°
where typical eigenvalues of the operators are implied. The terms beyond
: 2
N = 4<(fMas) > (30)
[}

become negligible compared to the original exponential in (26), so we have to deal with
at most N pairs of M;’s from source to range . The two M;’s in a correlated pair must

be within L, of each other to give a nonzero correlation. The number of pairs may be

estimated as
N s 4L, : M} (31)

where M? is a typical value of Mf. (See Figure 2 for a schematic representation.) Our
approximation reduces to saying it is unlikely to find a third occurrence of an M; in

between a pair that are within L, of each other. This probability is roughly
Probability ~ 5’5’! S LIME . (32)

Thus if the fluctuations are weak enough (L, M, < 1), the approximation is valid, and
(28) is justified.

We call (28) “first order perturbation theory.” In typical situations, z is much
larger than Lp, and the lower limit can be replaced by —oo, making the equation
independent of the source position. Moreover, the integral from —oco to 2 can be

replaced by half the integral from —oo to oo, when the correlation is a much slower

function of -i'(z + 1) than of z —z'. The result is used, not in the interaction represen-

tation, but in the original representation. The exponentials of (20) and (21) are

removed, giving
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O,Fua(s) = (33)
= iLoT aa(2) - } ' < M(s)e =iLols -9 M(z’)c”"(' N> Fas(2)

For the second moment, this equation is related to an expression of Besieris and Tap-
pert.l'% Although their work was for the second moment, we can generalize it directly; {
therefore in the rest of our comments we treat the general moment I',, where Besieris
and Tappert treated only I';,. Their equation 3.2 was expressed in a Fourier-

transformed domain, but can be expressed in our notation as

8,Tpal(z) = —iLoTuals) - j &' < M(z)e "t M) ST (2 . (34)

This equation is equivalent to (33) to order L?M?, and it should be noted that both (33)
and (34) are invalid if L?M? is not small. Unlike (33), (34) implies & “memory” effect in
which the gradient of the moment depends explicitly on the moment at all previous z’s.
The Markov approximation leads to (7), which eliminates the memory effect and
requires only a correlation function of the medium along a specified (shifted) direction.
Besieris and Tappert pointed out that a weaker approximation, called the “long-time
Markov” approximation leads to a local (non-memory) equation (their equation 3.3),

that in our notation is expressed as
8,Tae = —1LgTo.(2) - } de' < M(z)e =fLols -#) M(s) > Il .. (2) (35)

where the L, operator acts only on M(s), not on ', (z), in the last term. We have {
derived (35) by use of the Wigner-function notation of Besieris and Tappert. We are
only considering situations in which the parabolic wave equation is valid. It has been
shown that in that case the long-time Markov approximation is valid,'“’l and therefore ‘
(35) is as valid as (33).

Because L, is an operator, the integrals in (33-35) involve the medium correlation
function in all directions, or, in the Fourier-transform domain, require a scattering ker-
nel as a function of scattering angle. The Markov approximation to (33) consists of
simplifying the deterministic propagation operator ¢ “lol* = for 2 — ' on the order of

Lp. Instead of correlating M(:) with all possible transverse positions of M(z'), the
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Markov approximation corresponds to choosing only one transverse position for M{(s").
(See Figure 1, where point A represents an arbitrary transverse position.) If the wave
represented by I, (z) were the unperturbed solution, then deterministic propagation
would move the phase in the direction of the unperturbed ray. If the wave energy is
travelling close to the unperturbed ray this operator retains its behavior to first
approximation. As a result, deterministic propagation approximates s shift along the
unperturbed ray to point B, i.e., #(3') = #;,,(2'), where the ray is forced to go through
£'(z). Hence ¢ ~ilole "”M(z')c"'d' = can be approximated by M,,(z"). This is the
appropriate definition of the Markov approximation (rather than assuming the medium
is delta-correlated along the z axis) and it immediately yields (7) from (33). In practice,

instead of using the actual unperturbed ray, the tangent to the ray at z is often used.

If the delta-correlated assumption were made, it would correspond to evaluating
M,n(2") at point C, which is strictly valid only if there is a single unperturbed ray trav-
elling along the z-axis. If the medium fluctuations are isotropic, the correlation of any
point at 2’ with the point P at z will give the same result because of the parabolic
approximation, and hence the delta-correlated assumption is as good as any other
choice. However, for an anisotropic medium it is important that point B (and hence
(7)) be used, even when the Markov approximation is invoked. Note that (7) can be

used in the presence of a deterministic background refractive index.

The difference between (33) and (7) can be caused by directions different from the
unperturbed ray becoming important. It is in this sense that (33)(35), which never
refer to unperturbed rays, are more general than (7), which does. A transverse
wavenumber &y, coming, for example, from M, causes the angle to change by
80 = ky / k. A transverse error in position of about krLp / k is made by assuming the
direction of the unperturbed ray. Thus, in order for the Markov approximation to be
valid, it is required that krLp / k € Ly, where Ly is the transverse scale of concern.
Since Ly =~ 1/kr, the Markov approximation fails at sufficiently small & = Lp/L}. The
parameter a = kL$#/Lp introduced by Beran and McCoy? and discussed further in

Flatte’ 4l reflects these considerations. For small a, one can use (33) or its equivalent.
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V. Path-Integral Derivation

We recapitulate the derivation of the path-integral expression (7) from (10). Using
the assumed Gaussian behavior of the fluctuations, we obtain from (10)

Tais
Toe = f[ Dxj(s) e’ Tev (36)
Jal
where S, is the part of S in (9) that does not involve u, and

V= —-i-f dz &' < M(z)M(:") > (37)

The expression (36) is an exact representation of the moment of the solution of the par-
abolic equation with Gaussian fluctuations. It is not used in practice as it stands

because V depends on the paths at two values of z, namely z and #'.

The Markov approximation for the path integral comes from assuming that the
paths do not stray far in transverse space over a distance Lp; they all move approxi-

mately parallel to the unperturbed ray. Thus, in the Markov approximation

V = _% [ dz d' < M{s)Mup(s) > (38)

which only requires knowledge of the path at z. The final result (11) follows directly.




V1. Coordinate Systems

Moment equations can be formulated in s variety of coordinate systems, while

path integrals require a rectangular coordinate system. There has been a fair amount

of effort expended on using polar coordinate systems, especially for point source prob-

jems.

The same results (for point sources among others) can be obtained in either polar
or rectangular coordinates. Thus, the results of Shishov!™! on the intensity correlation,
derived in spherical polar coordinates, can be seen to be identical (after an appropriate
transformation) to the results of Codona et al.'® derived in rectangular coordinates. It
was necessary for Shishov to make small angle approximations in addition to the para-
bolic approximation of dropping the second derivative in the propagation direction,

whereas Codona et al. only require the single parabolic approximation.
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VIL Summary

We bave derived moment equations in coordinate representatioa under the Mar- 1
kov approximation that apply in anisotropic, inhomogeneous medis with deterministic
background. The derivation shows the relationship between these moment equations
and modified equations that are valid under approximations weaker than Markov; the
second-moment equation of Besieris and Tappert is & special case of these modified

equations.

In a hierarchy of approximations we begin with the parabolic wave equation itself.
A path integral with non-local exponent can be written as an exact solution, although it d
is not yet useful in practice. The next level is the approximation that the interaction
strength over a correlation length is small—this “first-order perturbation theory” leads
to the modified moment equations, and in homogeneous, isotropic media, to the stan- ,*
dard moment equations and path-integral expressions. In anisotropic, inhomogeneous
media, however, a further approximation is necessary to obtain the moment equations
and path integral expressions. This further approximation is that the significant flow of
wave energy, or the important paths, are parallel to the unperturbed ray; we call this P |
the Markov approximation because its violation implies the appearance of correlations
between successive scatterings. We have shown that the moment equations and the
path-integral expressions for the moments are mathematically equivalent under the #
Markov approximation. Thus the two formalisms have exactly the same physical con-
tent. In an anisotropic medium, the moment equation involves a shift operation to cal-
culate the medium correlation function along the unperturbed ray; this form of the

moment equation has not been given before. .

We have also pointed out that all appropriate formulae can be derived in a rec-

tangular coordinate system (even for point sources).
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) We must show that the scaling |62 | ~ (52)* holds for integrals of the form
$
11 dsg; exp[E *-‘t;;’,’f—] FE) (A1)

If F is expandable in & power series (even if the radius of convergence is zero) this result
follows immediately. One expands F and integrates term by term, obtaining s power
P series in (6z)%. By standard methods in the theory of asymptotic expansions, only the

low order terms need to be retained as §z— 0.

For singular functions, a demonstration is not as simple. One may worry about

P cancellations between terms in the exponent, since the signs might differ.

We will content ourselves with a demonstration in the case likely to arise in prac-
tice. It is common to model a random medium as having a power law structure func-
k tion. Thus as two x’s become equal, a singularity |z; — #;|* with » >0 might occur in

the integrand. In order to have possible cancellations in the exponent, we assume that
k =k; =k, and the exponential factor is exp(ik (5627 —27)/26:). We assume, for simpli-

city, that z; and z; are one-dimensional; higher dimensional singularities are effectively

r weaker.

! Define v = (82, +62;)/2, p = 8s; —52;, @ = 2 —s3;. The singularity from the pre-

vious step, 3,/ = z; —&s; is [u —al?. The integral to be evaluated is
<y f dyp dv 25 o pv) |p —al (A.2)

We would like to ignore the g dependence in f. However, spurious large-p contri-

butions would arise, even though we are only interested in contributions from x close to

(Y a. To drop the 4 dependence of f and also to simplify the analysis, we introduce a con-
vergence factor exp(-a(u® +1°)/63! —¢). As long as p,v ~ 8%, this factor does not change

the integral as 52— 0 (we are assuming € >0). Conversely, if the integral in the limit

62— 0 does not depend on a and ¢, then 4 and v are of order §:%.

Y

The integral is then
I = [ dpdvetrih exp[ —a(p® +07) /82 - ] s —al? fa,») (A.3)

) The p integral can be done:




L *n.-:’t.ﬁ._'l.x S Y B TR Gy WA S g g MR | )Ny

I =0, [ dv e oxp| - afa® +2)/8s1 =] (A4)

fow) a-hommu -t [24L L fratifact

where M is » confluent hypergeometric function and C, is a constant independent of
634, and a (as are C; and Oy, below). The hypergeometric function has a part that
behaves as the exponential of its argument for large (positive) values of its argument, s
part that falls as a power (since (p +1)/2 is positive) and a part at small values of the
argument. These last two parts can be combined into a bounded part. We show that
the exponential part gives the leading bebavior and the bounded part is a higher power
of és.

The contribution I, from the exponential asymptotic part of M is

L = C, [ dv e*oll exp[ — a(a? + 19)/8s! ""] (A.5)

f(a,v) a —0 +2)/3 550 +2)1-9/2 op [ (262 & a — sk o)
4a8s! ¢

The exponential from M cancels much of the first two exponentials:

3 [ -

which can be done explicitly. Only the first term in the exponential survives as §:—0.

The result is independent of a and ¢, and is
1| = C, o2 f(a,O) h" (A.7)
exactly as would be obtained from the Taylor series expansion for 1.

We now turn to the contribution /; from the bounded part of M. We show /; has a
higher power of 6z than I;. We can set ¢ to any positive value. At large ¢ we depend on
the fact that e®2*/% averages to sero for » ~ 5:1 +4 for any positive §, but it would be
necessary to examine the detailed behavior of M to use this fact. On the other hand,

for small enough ¢, it suffices to bound the integral by the integral of the absolute value

of the integrand. The convergence factor provides a cutofl at » ~ 8:! =42, Thus

f dv exp[-av’/&:“]l’(a,v) gives a contribution scaling like &z} =¢/2. Thus I, is

bounded by an expression which scales as
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b. Iy ~ &0 -03+0+2)0 =08 o g1 +2/001 -0 (A8)
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As long as we have chosen ¢ small enough, the exponent of §: is larger than 1, and I,

can be neglected relative to /. Thus we have established the necessary scaling of » and

v even in the singular case. i
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In the ocean there may be many deterministic rays connecting the source and
receiver. In that case (7) is still correct, but an additional index needs to be added
to [',, to indicate which deterministic ray is connected to each trano.verse variable
. An entire matrix of moments would be followed, though each element of the
matrix can be followed independently. If the deterministic rays are far enough
from each other as to be uncorrelated, or if the source or receiver distinguishes
between rays (e.g. by travel time or angle), then each ray can be treated indepen-
dently. Near a caustic, at least two rays are very close to each other, but this

does not cause any difficulty since the rays are also adequately coincident in angle.
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Figure 1la.

Figure 1b.

Figure 2a.

Figure 2b.
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Figure Captions

Moment-equation expression of the Markov approximation. The corre-
lation should be taken between & point at s (point P) and an arbitrary
point at s/ (point A). Instead it is taken with the point B, obtained by
extrapolating along the unperturbed ray from P. The assumption of
delta-correlated medium fluctuations leads to the incorrect formulation
of correlations between points P and C. The dashed lines indicate the
idea of a scattering as a function of angle from point P.

Path-integral expression of the Markov approximation. The general
path at 2’ (point A) is approximated by the path at z extrapolated
along the unperturbed ray (point B).

Typical z values of the interactions from a Taylor series term in (9) are
indicated by z’s. Dashed lines show which interactions are correlated.
It is assumed that LIM? <1.

A portion of a contribution to (9) which is improperly ordered in “first
order perturbation theory.” Such contributions are small if L7 M? <1.
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A relativistic derivation of the Schrddinger equation is given from principles
known to physicists in 1928. Schrédinger's preference for Hamilton's optical-
F mechanical analogy over the relativistic route is discussed The derivation is

given of a classical analog to the Schrddinger equation called the parabolic wave

equation, which describes waves propagating in a narrow angular cone; the fact

that this classical version was not discovered until about 1950 is discussed.
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Introduction

Two great triumphs of twentieth century physics, relativity and nonrela-

® tivistic quantum mechanics, have been part of the undergraduate physics curri-
culum for only a few decades. Both these subjects have their paradoxical

aspects with which students must grapple.

It is generally agreed that quantum mechanics is more difficult to accept
than relativity, because of its apparent violations of cherished ideas such as
causality or locality. However, one aspect of quantum mechanics that should
not remain mysterious is the derivation of Schrddinger’s wave equation. On a
-3 suggestion of Debye, Schrodinger set himself to writing a wave equation for an
electron around a proton.! Once given the idea that the electron might be
represented by a wavefunction, this is a problem in classical physics; yet

Schrodinger came out with a ‘“wave equation’ that no one had seen before.

The purposes of this article may be stated as follows: 1) to show a simple

derivation of the Schrbdinger equation starting from a classical wave equation

and some physical assumptions that would have been plausible to physicists in
'. 1928; 2) to discuss why Schrddinger preferred to use Hamilton's optical-
mechanical analogy rather than follow the relativistic route to his equation; and
3) to discuss how physicists have used an analog to the Schrddinger equation
called the parabolic wave equation in completely classical contexts, and why

¢ nineteenth-century physicists, who certainly bad the mathematical tools, did

l not write down a Schrddinger equation in solving some classical wave-
" propagation problems. Finally, the relationships between the full wave equation,
the parabolic wave equation, Huygens' construction, the Schrddinger equation,

and Feynman's path integral are briefly discussed.
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1. The Relativistic Equation

Electromagnetic waves obey the classical wave equation
1
VF - -c-'-O“F =0 (l)

where F may be a component of the electric or magnetic fleld. If we desire the
equation that can represent matter as a wave, following de Broglie, we must deal
with the problem of rest mass. Schrédinger himself solved this problem in 1925,
but did not publish until 1928 for reasons we will discuss later.! By that time

Klein® and Gordon® had derived the same equation by generalizing Schrddinger’s

nonrelativistic equation.

The matter-wave equation should be able to describe something like a parti-
cle at rest with finite energy mec2 The connection between energy and fre-
quency wg = E/ R was not only known but used extensively by 1928, so it is plau-

sible to want a wave function

* . -

2
me
Y t

u = expl-i (2)

(with no space dependence) to satisfy the fundamental equation. This wave
function was explicitly suggested by de Broglie in 1925, but he failed in his J
attempts to find the appropriate equation.* It is plausible to simply add a covari-
ant term to (1) in order to have (2) satisfy the equation. One is then led to try

V‘u—;l-a-ouu—m::zu=0 (3) 5

as the fundamental, relativistic, equation for free, massive particles. This is the

Klein-Gordon equation. The wavefunction u has something to do with a free par-

ticle, but we will avoid as much as possible discussing interpretations of the "
wavefunction. Equation (3) is often justified as the wave analog of the relativistic
energy-momentum relation, E® = p2c?® + m%*, transformed using de Broglie's
relations, but the above derivation is preferable pedagogically. The addition of
the new m? term is crucial to all that follows, since without it all waves would 'ﬁ

move at speed ¢, and there would then be no possibility of a nonrelativistic

approximation.




I1. Derivation of the Free-Particle Schrédinger Equation

We desire solutions to (3) to represent particles moving through space. We
have one solution (Eq. (2)), but it is not too interesting since it describes a free
particle at rest whose wavefunction fllls all of space and oscillates very fast. Let

us search for more interesting solutions that vary in both space and time. We

try

.
4-
b
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Putting (4) into (3) results in

hz

2
A Ew{'—o. —[";f'] +au]¢— mey=o0. (5) ;

This is a general equation for ¥. Since it is an equation that is linear in ¥, it

makes sense to nonsider each Fourier component of ¥ separately:

¥~ exp{i(kz - t.)t)] (8)

where, of course, k£ = 2n/ A and A is the wavelength. If we restrict ourselves to

low-frequency solutions in which

me? )

O«h.

then the 3y term in (5) is negligible, and (5) becomes

: ne
. i PEO [ N,
; Ay = -~ Py (®)
'y which is the free-particle Schrddinger equation. Note that the first derivative in
' time and its imaginary coefficient come naturally from the second derivative
because the time dependence of ¥ is a difference frequency from the fundamen- A
_ tal cy. 4
1
. The low-frequency requirement (7) can be stated in two ways. The first is ;
obvious: 4
hAw « me? ; (9) ]
i o
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e RO PONCIT AL AR L DI (O I T T Y N e T T Nt e s A
AN LAV A A ARSI 2000 SN e e e e i




SR TV S

T
.

[l NG

e VW8T T,

Pt v

s 2

gy X

N
.
N

e rmes e

',[.W"l"v“"
. el e e e e
PO tam B i - A Cmas  mm m S

-——e

“ meew..

L v DB e, Sptciuih, iy G T
R Y 3 e A e T TNV T,
2

-

that is, interpreting the frequency of ¥ as an energy, that energy must be much
less that the rest-mass energy. A second interpretation is afforded if we imagine
making a wave packet of waves like (8). Equation (8) implies

228
o = B (10)

and therefore the group velocity of these waves is

_ Ak

Ys = m (11)
Using (10) and (11) one quickly shows that (8) gives

v} « ct (12)

In other words, the Schridinger equation (B) is a nonrelativistic approximation
to the Klein-Gordon equation (3). Finally, (9) and (10) can be combined to give

another version of the validity requirement:

A
A D me ° (13)

In other words, the Schrédinger equation is a large-wavelength approximation to
the full wave equation; that is, the wavelength must be large compared to the
Compton wavelength of the electron.

III. Addition of an External Potential
The addition of electromagnetic potentials to (3) should follow the rules of

relativistic invariance. It was known in 1928 that ¢ and 4/ c, the scalar and vec-

tor potentials, are components of a four-vector. The minimal coupling implies
that (3) becomes

u=20 (14)

(- g~ Srto - e - it

Consider the case in which 4 = 0. In that case the equation (5) for ¥ becomes
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The size of atoms (known in 1928) implies that the relevant Coulomb potentials

felt by an electron are small compared with mc¥; that is
ey « met ., (18)

Therefore the terms in (14) satisfy a hierarchy such that the last three terms
are negligible. Again this corresponds to ¥ having low frequency; that is (8) and

(12) are satisfied. The resulting equation is
. n?
hoy = |- —Freply. (17)

that is, the full nonrelativistic Schrodinger equation with external potential.

IV. The Fine Structure of Hydrogen

Schrddinger wrote down equation (14) in 1925, but did not mention it in a
publication until late 19268. He gave as his reason that an exact solution for the
energy levels of hydrogen disagrees with experiment in the fine structure.’
Since fine-structure energy-level diflerences are quite small, this amounts to
saying that the neglected three terms in (15) are incorrect. The actual numbers
are elegantly worked out in Schiff's text,® where it is shown that the hydrogen
fine structure from the last three terms on the left of (15) is about twice as
large as experiment, and has a slightly different dependence on the orbital

quantum number.

Schrddinger himself pointed out that the discrepancy probably had some-
thing to do with Goudsmit and Uhlenbeck’s hypothesis of electron spin.® This is
probably the main reason that Schrddinger did not derive his nonrelativistic
time-dependent equation along the lines of our discussion. And of course it is
one of the reasons why Dirac’s contribution, which seemned to find the existence

of electron spin in a “'natural” way, is so admired.

However, as will be discussed later, the derivation of the Schrddinger equa-
tion from a classical wave equation is much to be desired pedagogically. Given
the many paradoxes of quantum-mechanical matter waves in 1926, including the
existence of spin, the interpretation of the wavefunction, and the inability to

creste a dispersion-free wave-packet, the hydrogen-fine-structure discrepancy
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was hardly a reason to abandon the whole approach.

1

V. Antimatter and Electron Spin
Dirac's prediction of antimatter from his relativistic equation for the elec- |
tron with spin is rightly considered one of the triumphs of modern theoretical ‘

physics. It is possible to make the same point from the Klein-Gordon equation,

by simply pointing out that the nature of equation (3)-second order in time,

e ﬁ

g = exp[+ ® t] (18)

with m? appearing rather than m, allows

to be a solution as well as ¥ from (2). The same derivation of the nonrelativistic
equation goes through, and as long as ey < mc?, the two states will not mix. As
the energy eg gets larger, the coupling between the two states becomes more
important, leading in lowest order to vacuum polarization, Zitterbewegung, etc.,
and eventually to antimatter production and the necessity for second quantiza-

tion and quantum electrodynamics.

It was the unwelcome existence of negative-energy solutions to the Klein-
Gordon equation that led Dirac to search for an equation in first derivatives. His
search led eventually to four cormnponent spinors, and thus he was forced back to
the situation that is evident in the Klein-Gordon equation at the start—the simul-

taneous existence of positive and negative-energy solutions.

The discrepancy in the hydrogen fine structure cannot be dismissed as an
effect of relativity. The fact is that the spin of the electron is 1/ 2, not 0. Some #
people feel that starting with the Klein-Gordon equation to describe the electron

¢

is therefore too misleading. It should be pointed out that learning the Klein-

I,

Gordon route is quite valuable, since, as Case” has shown, the Foldy-Wouthuysen ﬂ
transformation makes the resulting forms for operators and the nonrelativistic

limits quite similar for integer and half-integer spins.
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V1. Relation to Hamilton's Optical-Mechanical Analogy
It is of the greatest importance to realize that (17) is a low-frequency

approximation to the relativistic equation. It was Schrddinger's great desire to
make the connection between quantum mechanics and classical mechanics by
the Hamiltonian method that Sommerfeld and Runge used to connect wave
optics to ray optics.? That connection requires taking the high-frequency limit of
the wave theory. Schrddinger was fully aware that the frequency was associated
with the energy, and that the logical total energy would involve a much larger
value, mc2. It was no problem for him to realize that the requirement for the
classical equations of motion to be valid would be a requirement that the
wavelength is small compared with some characteristic length L for the poten-

tial to change:

AK L. (19)

which combines with (10) to give

A

- P <ow. (20)

Thus Schrodinger took the point of view that classical mechanics should be
included in his equation, and took the high-frequency, small-wavelength limit to
satisfy that requirement, but he ignored the fact that the nonrelativistic
requirement at the same time restricted the frequency to be small compared
with a fixed quantity (mc?/h). He did realize implicitly that a restricted range
of frequency does exist that satisfies both the nonrelativistic and the classical

mechanics requirements:

2
a:L' <o« T (21)

Note that as A + 0 the range of validity of nonrelativistic classical mechanics
gets larger at both ends. That is why the & -+ 0 limit is often used as the classical

limit.

It is also useful to put the requirement (21) in terms of a spatial wavelength

requirement (A = 2n/k);
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The left-hand inequality expresses the nonrelativistic requirement and the vali-
dity of the Schrédinger wave equation, while the right-hand inequality expresses

the classical-mechanics requirement.

Schriddinger’'s novel use of Hamilton's -—=thods, wherein he used
de Broglie's relations to define w and & in terms of £ and p and then created a
wave equation by identifying @ and k with operators on a wavefunction, allowed
him to bypass the requirements of relativity and allowed him to ignore the left-
hand inequality in (22). By this method of starting with classical nonrelativistic
equations he avoided both the pitfalls and opportunities associated with

antimatter and electron spin.

V1. The Classical Schrédinger Equation: The Parabolic Wave Equation

The Schradinger equation comes out of the Klein-Gordon equation solely
because of the m? term. If the m? term were not there, all waves would move at
speed c, and there would be no hope for solutions with small velocity. Therefore
the classical wave equation (1) can never yield the Schrédinger equation with a

first derivative with respect to time.
However, an analog of the Schrédinger equation in which the first derivative

.::j is with respect to a spatial coordinate can be obtained in the following way. Sup-

i- pose the speed of the waves, ¢, is a function of position, and we look for time-

s barmonic solutions

»

: F(z,t) = u(z)e™* (23)

i Then our equation becomes the Helmholtz equation

L

E.‘i Veu + k% = 0 (24)

where k = w/ ¢ is the wavenumber, which is a function of position because of c.

,". The general solution to this equation involves waves in all directions. How-
: ever, let us single out the 2 direction as of special interest, and write

- (VP +0,, +k%Ju = O (25)

)
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where V§ = 0, + 0,,. Equation (25) has some of the characteristics of the
Kein-Gordon equation (3). Let us try a solution of a form which reminds us of

waves travelling in the positive 2 direction:
@
u = Yg)e' ™ (26)
The resulting equation for ¥{z, y, £) is

Uiy + [0, + 2ikod, + k%ly —k§y = O (27)

which is remarkably analogous to (5). We see that the k§ term is playing the
role of the m? term in the Klein-Gordon equation. If k2 is slowly varying in

space, then we can pick kg such that
k8 —k?| <« k§ (28)

In other words, the wave speed c (z) varies by a small fraction of itself, and does
so slowly with respect to z. In that case, ¥ will have only small-wavenumber

components
(X A
WD ~e ¥ gl « ko (29)
and the 8, term in (27) is negligible. The resulting equation is

2ikod,¥ = ~VRy + (k§ —k%)y , (30)

which is exactly analogous to the Schridinger equation (17), except that V# is a
two-dimensional Laplacian rather than a three-dimensional one. The constants
in (30) are a bit different from (17). The analogy more direct. Let

k(z) = kol1 + u(z)) (31)

where p(z) is the variation from unity of the index of refraction. Now write (30)

as
2ikgd, ¥ = VR + 2k§uy (32)
and wnte (17) as
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2(RH0uy = Py + 255" (v (33)

The analogy is complete, and we see that the appropriate kg is the inverse
of the Compton wavelength of the electron, and the variable index of refraction
is analogous to the potential ¥ as a fraction of mc®. [

There is an analogy to antimatter in (32). We can find solutior« to (25)

which are travelling in the negative z direction. These are analogous to . ntipar-

ticle solutions. As long as u is slowly varying and small, the waves going in the ‘
positive and negative directions are decoupled. However, if u is strong, or varies

over a small distance, then coupling will occur in the form of backscattering.

;j: This is a classical realization of Feynman's picture of positrons being electrons

’ moving backwards in time.? +
*

f:-_ Equation (32) is called the parabolic wave equation in the classical context

'.-ji ) in which it is used.' It is most used in solving problems in wave propagation

through continuously variable media; for example light through the atmosphere,
:j: : radio waves through the ionosphere or interplanetary plasma, or sound through 1

the ocean.n!

Let us discuss the validity requirements for the parabolic wave equation.
The main ingredient is (28) which states that the variations in the wave speed #
must be small compared with unity, in analogy with the nonrelativistic require-
ment (18).

In the quantum-mechanical context the nonrelativistic requirement can be
expressed in a variety of ways; for example, that the wavelength be large com- 1
pared to some quantity. The analog of this requirement in the classical context
is quite different, because the analog of the wavelength of the quantum-
mechanical ¥ is not the classical wavelength of the propagating wave. *

In the classical context we must distinguish between the longitudinal and

transverse components of g the wavevector of ¥, and furthermore we have the

wavelength A, defined from kg

Let q= (kr.ky) where ky has components in the x-y plane, and k; is along

: the z direction. The first term of (32) must be larger than 3,,¥. This results in
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the requirement
ky & ko (34)

which means that the total wavevector k is directed at a small angle to the 2

axis. This latter requirement is the analog of the nonrelativistic requirement,

v <« ¢ in the Schrbdinger equation case.

The relation of the various wavenumbers to the characteristics of the
medium index of refraction is quite involved, and lies beyond the scope of this
paper, because it brings in the strength of the fluctuations (u) as well as the

scale L.

The analogy between the parabolic wave equation and the Schrddinger
equation is expressed pictorially in Figures 1 and 2, and is summarized in

Table 1.

VIII. History of the Parabolic Wave Equation
The parabolic wave equation cculd be called the classical Schrédinger equa-

tion. The strongest difference is just one of variables, since the parabolic equa-
tion is first order in a space derivative rather than the time derivative. A para-
bolic wave equation was written down for the first time in 1948 by Leontovich and
Fock,'® but they did not really write down (32). They wrote down a parabolic
equation for radio wave propagation over the surface of the earth, with no poten-
tial term. Their eflect was controlled by diffraction due to the curved boundary
condition over the surface of the spherical earth.

Fock was one of the pioneers in searching for wave equations for quantum
mechanics, so it is not surprising that he was the first to point out the relation-
ship between the parabolic wave equation and the Schrédinger equation.!® He
also pointed out that the dependence of the index of refraction for radio waves
on height, which occurs because the atmosphere is stratified, is an analog to the
quantum mechanical potential. It is perhaps surprising that he did not make the

connection until 1950; he also did not discuss the requirements for validity as is

done in this paper.
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Thanks to Fock, the parabolic wave equation with external potential as in
(32) was known to Soviet workers in the 1960’s. It was common knowledge by
the time of Tatarskii's classic monograph on light through the turbulent atmo-
sphere.!* (Tatarskii gives neither references nor a very straightforward deriva-

tion.) A further interesting case in which the potential term is replaced by a

nonlinear term was written down by Kelley,'® who was dealing with self-trapped

laser beamns.

One may also ask why the parabolic wave equation was not written down one
bundred years earlier, since all the mathematical tools were available once

Hamilton had used complex numbers to represent oscillatory phenomena. Why

did not those mathematical physicists interested in the wave theory of light

write down a parabolic equation for the propagation of light?

The parabolic wave equation is fundamentally a small-wavenumber approxi-
mation. Most physicists were working with the large-wavenumber limit of wave
propagation, namely, geometrical optics. This was especially true of Hamilton,

whose work had tremendous influence over those who followed.

Probably more importantly, experiments were not done in continuous

tw cwemOwmew . o

media. Typical problems involved diffraction around obstacles, and for these

problems, solutions in the form of integrals were directly written down.

Rayleigh typifies the attitude of several generations of physicists by refer-
ring to the problem of continuous media in his Theory of Sound;

The variation is supposed to be so slow that no sensible reflection
occurs, and this is not inconsistent with decided refraction of the rays
in travelling distances which include a very great number of

wavelengths... The. further development of this part of the subject

} would lead us too far into the domain of geometrical optics. The funda-
, mental assumption of the smallness of the wavelength..., having a far
: wider application to the phenomena of light than to those of sound, the
task of developing its consequences may properly be left to the cultiva-

tors of the sister science.
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In one paragraph he washes his hands of the question and tells his optical
colleagues that it is a geometrical optics problem! It was not until 1948, when

Feynman'? wrote down his path integral, that the relation between the various
made clear.

h integral solutions to the diflerential equations describing wave propagation were
L IX. Huygens-¥Fresnel-Feynman Theory

Huygens attempted to describe light as a wave, in analogy to sound. Ironi-
cally, he used his ideas about secondary wavelets to prove that light travelled in

straight lines; that is, he dealt only with geometrical optics.!® In fact, Huygens'

< construction is mathernatically equivalent to the small-wavelength limit of the
full wave equation, namely the unfolding of a contact transformation (the

Hamilton-Jacobi equation for the phase).1?

Over one hundred years passed before attempts were made to generalize
Huygens construction to include diffraction. Fresnel's first attempt to do so
uncovered disturbing difficulties such as the backward wave and the require-
ment that the secondary wavelets had to be emitted one-quarter cycle out of
phase with the incident wave.® Helmholtz and Kirchhoff attempted to improve
on Fresnel by introducing the so-called obliquity factor (which, among other
things eliminated the backward wave), but neither they nor anyone else have
been able to create a Huygens-like construction that provides a solution to the
3 full wave equation.?!

After Fresnel, over one hundred more years passed before Huygens' con-
struction was generalized in a way that exactly solved a wave equation.
Feynman’s path integral is an exact solution of the Schrddinger equation.Z

Therefore, when translated into classical terms, it is an exact solution of the

parabolic wave equation. No obliquity factor appears, and the quarter-cycle
phase shift is relegated to the status of a mathematical normalization factor.
’Y No backward wave appears, since no coupling to a backward wave is allowed in
the parabolic wave equation, as discussed above. Thus the Feynman path
integral can be regarded as the simplest Huygens-Fresnel theory repeatedly

applied over infinitesimal steps in range.
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Feynman was concerned with quantum mechanics, not classical wave propa-
gation; hence he worked with the Schrddinger equation. The analog of generaliz-
ing to the full classical wave equation would have been to try to solve all the
problems associated with relativity, antimatter, and particle production. Thus
the road of Helmhoitz and Kirchhoff was not particularly tempting in the
quantum-mechanical context. One could say that Fresnel’'s difficulties were
solved not by constructing a solution to the full wave equation, but by going back
to Fresnel's simple construction and realizing that it was the solution to an
approximate wave equation, one that is valid for waves propagating in a narrow

angular cone,

Geometrical optics is valid in the limit of infinitesimal wavelength. The par-
abolic wave equation and the Feynman path integral are valid for waves pro-

pagating in a narrow angular cone.

X Conclusion

In 1926, the Schradinger equation was a wave equation that bad never been
seen before. Yet it does appear in classical contexts, a fact only realized well
after Schrodinger's work. In classical form it is called the parabolic wave equa-
tion, and its derivation from the full classical wave equation involves a restric-
tion to waves travelling within a narrow cone of angles in a particular direction.
An analogous derivation of Schrddinger's equation begins with the Klein-Gordon
equation, and need only require that the potential energy is small compared
with mc?. Undergraduates might well be introduced to Schradinger’s equation
by this route rather than the standard ad hoc approaches.

The development of theories of wave propagation through continuous
media, sometimes with a random component, owes much to the use of the para-
bolic wave equation. The analogy between that equation and the Schrodinger
equation has brought the full power of much that was learned in nonrelativistic
quantum mechanics to bear on classical wave propagation problems.!! Most not-
ably, Feynman's path-integral technique has been important in solving problems
in wave propagation in random media (WPRM). Perhaps in the future, quantum-

mechanical problems in condensed matter may be helped by recent progress in
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L. WPRM, where the medium is considered as having a statistically fluctuating wave
speed. That would have been appreciated by Schridinger.
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Table 1
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Fgure Captions

1. Typical solutions to classical wave equations.
(a) The full wave equation allows waves to travel in all directions. For an
incident plane wave, such solutions will be generated by medium variations
with scales comparable with a wavelength. Waves at large angles to the

L forward or backward directions can be thought of as linear combinations R

LIV L AT P

(couplings) of nearly forward and backward waves.

Py WY

(b) The parabolic wave equation describes only waves travelling in the

nearly forward or backward directions, and allows no coupling between

them.

2. Typical solutions to quantum-mechanical wave equations.
(a) The Klein-Gordon equation allows particle and antiparticle waves to
trave: at speeds up to the speed of light. For an incident plane wave, such
solutions will be generated by external potentials that have strengths com-
parable with mc2. Waves at high speeds can be thought of as linear combi-

nations of particle and antiparticle waves, representing the possibility of

(real or virtual) particle production.
(b) The Schrddinger equation describes only slowly moving particles or

| antiparticles, and allows no particle production.
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b I provide here s guide to & few recent results obtained by the group at the Ceater

i
0‘
'
'
1
i

for Studies of Nonlinear Dynamics in the area of wave propagation in random media.

h I. Average Arrival Time of Wave Pulses Through Continuous Random Media

A random medium consisting of discrete point scatterers in a homogenous back-
ground will delay the arrival of a pulse, because all scattered paths are of greater
length than the straight-line path from transmitter to reciever. A continuous random

medium is different.

[ Our recent analysis' points out that a fluctuating continuous medium can cause an

average advance of the pulse arrival time. All previous analyses have dealt with situa-
tions in which pulses are delayed on the average.?® By convention, the ensemble aver-
age of a random medium is taken as the medium reference state, and the small fluctua-
tions about this reference state are thus by definition a zero-mean 1andom process. The
arrival-time advance or delay is relative to the travel time through the reference state.
Thus, for example, results through turbulent air or plasma are relative to quiescent air

or plasma, not vacuum.

The bebavior of a wave propagating through a random medium is controlled by
relationships between the wavenumber (k) of the propagating wave, the range (R), and

the strength and size of the medium fluctuations.® Unsaturated bebavior corresponds to

()

one stationary-phase path (ray), and occurs if the medium Buctuations are weak

enough. In fully saturated behavior the original ray breaks up into many new microrays
which are statistically independent of each other. Propagation ihrough a medium of
(Y discrete scatterers falls in this category. Partially saturated behavior occurs in a
strongly fluctuating medium with a power-law spectrum, which has enough small-scale
fluctuations to cause the breakup into many microrays, and enough large-scale fluctua-

tions to make the microray bundle behave like a single ray in its wandering from the

. unperturbed ray. Experiments in waves propagating through continuous random media
typically fall into this category. We deal only with the important case in which the
transverse wandering from the unperturbed ray is small compared with the range of
b propagation.
'Z:"f-'-}";L:‘i'-i*.‘:':.‘;“ﬁﬁ'-3'{-::'-}.;-.';"23'-::'-:;\,‘;);:};Z-;;):;'\j;-" Xy AT LS CRRGRG N T T T T T T T e
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Briefly our results are as follows: if the travel time of a pulse is averaged over an
ensemble of the random medium, with each pulse weighted by its intensity, then the
average pulse is delayed, regardless of the type of propagation behavior, in agreement
with previous results.3 However, if the average travel time is obtained without weight-
ing by pulse intensity, then a pulse advance is expected for both unsaturated and par-
tially saturated behavior, while a pulse delay remains for the fully saturated case. The
difference between intensity-weighted and unweighted travel time probes the variance

of the first derivative of the refractive index, smoothed over a microray bundle.

The effect is illustrated by a simple special case. Consider a point source and
point receiver separated by range R, and a homogeneous medium in the absence of
fluctuations, so that the unperturbed ray from source to receiver is a straight line. The
random medium is concentrated in a “phase screen” at a distance z from the source.
This screen has the effect of advancing the time of a wavefront by a random amount
t(z) where z is the position on the screen, and {(z) is a stationary Gaussian random

process with zero mean. (We take z as one-dimensional for simplicity.)

Weak fluctuations—In the geometrical optics limit only one ray exists from source to

receiver. The travel time for a path through point z is:
T(z) & To+0.5¢q! Az? — t(2) (1.1)

where A~! = z(R — 2)/R. By Fermat’s principle the ray is at the point z, such that

T(z,) is a minimum. For the case of weak fluctuations we may expand ¢(z) as
t(z) = to+ t'z +0.5t"2? (1.2)
The position of the ray follows to first order as
5, = A ot (1.3)
The travel time of the ray is then
T(z,) = To+05cqA~1t% —ty —coA™117 (1.4)
This case requires that, typically

leoA~ 17| < ftol (1.5)

But ¢t (and hence t, and ¢') are (by construction) random variables with zero mean.
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L Therefore the ¢ term will disappesr in the average travel time and the only effect of
the fluctuations will come from the ¢’ terms. These terms arise because the ray has :
moved away from its unperturbed position. The firat ¢/ term is positive, corresponding ;

to a pulse delay, and represents the effects of geometry; the perturbed path is physically
k longer than the unperturbed one. The second ¢’ term is negative, corresponding to a
pulse advance; we call this the Fermat term; the ray sought out a region of the medium
with a pulse advance. The Fermat term is twice as large in magnitude as the geometry

L term. The average travel time is
<KT> = Tg—05cgA” I B> (1.6)

so that the pulse on the average arrives early.

* There is a subtlety to this result. In the weak-fluctuation limit the intensity is
controlled by the focussing due to the curvature of the wavefront as it exits the phase

screen. It is not difficult to show that the intensity I is, to first order,

I = 14+Act" (1.7)
Consider the intensity-weighted average travel time:
<IT(z,)> = Tyg—05ci A~ <I2> — g A~} gt > (1.8)

where the last term comes from the correlation between the intensity and the travel

time.

For any random function ¢(z) whose Fourier components are uncorrelated (i.c., the

F correlation function is translation-invariant): ]
<tt"> = - <1%> (1.9) "

Therefore

5 <LIT(3,)> = To+05cgA-' <t%> (1.10) ﬁ

In other words, the intensity-weighted average travel-time is delayed by fluctua-

tions by exactly the amount that the unweighted average is advanced! The focussing

b

effect exactly canceled the Fermat term leaving a resultant equal to the geometry effect

slone. This occurs because s negative fluctuation, which delays the pulse, acts as a
converging lens to increase the intensity. :
S 3
1
4
b
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The simple example of a phase screen in the weak-fSuctuation geometrical-optics
limit has illustzated our point. Other remarks on generalisations to extended media
and strong fuctuations, as well as a rigorous extension of these results by means of o
path-integral method to include diffractive eflects in & power-law medium, are included
in Reference 1.

There is no difficulty in extending the above results from a phase screen to
extended medis in which (1.6) and (1.10) are replaced by

<T> =Ty = —05¢5" [ dr A=Y z) [[ d' p,,(2,4)] (1.11)
<IT> — Ty = +05¢5" [ ds A=Y(2) ([ d2' p,,(2,5) (1.12)
Pss(2,5) = <8, p(2)9, u(s) > (1.13)

where 3, u(z) is the transverse gradient of the refractive index due to the fluctuations
at location z along the unperturbed ray. These results require the Markov approxima-
tion (that is, the quantity in square brackets in (1.11) is a local function of z). If an
incident plane wave rather than a point source is used, all three terms (geometry, Fer-
mat, and focussing) are reduced by a factor of three. If the Markov approximation is
not made, the ratio between Fermat and geometry remains —2, while all terms are
modified by terms of order L, /R, where L, is the longitudinal correlation length of the

medium fluctuations.

An important modification of the above result occurs if, in the absence of fluctua-
tions, the medium has focussing properties. In ocean sound propagation this is due to
the sound channel. In radio wave propagation from pulsars this might be due to very
large-scale medium fluctuations that are effectively frozen during the time of observa-
tion. The modification can be simply expressed by generalizing A ~Y(z) in (1.11-1.12) for
a curved ray.® The key result is that A~Y(z) can be negative for various regions along
the ray, and hence the geometry term can be negative for curved rays. This complication
is crucial to the comparison between calculation and experiment in the ocean, though
probably not in other media. Note that this effect provides another, difflerent mechan-

ism by which fluctuations in & medium may cause an average pulse advance.

A numerical study of (1.11) for acoustic rays through ocean internal waves has

revealed this effect as a significant bias in the measurement of large-scale ocean eddies

by acoustic means. Typical examples of experiments would be waves travelling over a
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rangs of 1,000 km, whose travel times are modified by about 20 ms due to a single eddy
of 100-km size. The effect of random internal waves slong this path is calculated to be
of the same order. Therefore an average change in the travel time of a long-range
ocean ray could be interpreted either as the effect of an eddy wandering across the ray,

or as the effect of the entire internal-wave field changing its strength.

II. Comparison between Moment Equations and Path-Integral Expressions for
Wave Propagation in Random Media

Mapy problems in wave propagation through random media concern phenomena in
which there is no significant backscatter, so that a parabolic approximation may be
made to the wave equation.® In these cases a further approximation, called the Markov
approximation,? leads to relatively tractable mathematical expressions for moments of
the field that can be used for practical calculations. Two quite diflerent formalisms

have been used in this context: the moment-equation and path-integral techniques.

A path-integral expression for a general moment of the field of a wave propagating
through an inhomogeneous, anisotropic medium in the presence of a deterministic back-
ground refractive index has been derived,® and the expression has been used for specific

calculations.*%?

Moment equations in coordinate representation have been derived for homogene-
ous isotropic media in the absence of a deterministic background.” Treatments of inho-
mogeneity, anisotropy, and deterministic background by moment-equation techniques
bave heretofore been confined to special cases involving the first and second

moments. 1%

We present here general moment equations in coordinate representation that
account for inhomogeneity, anisotropy, and deterministic background, but require the
Markov approximation. We have derived these equations!? using the time-ordered-
product method of Van Kampen,'® which also provides a derivation of equations that
are valid under conditions more general than the Markov approximation. The modified
equations are more complicated than those that require the Markov approximation: a

special case was previously derived by Besieris and Tappert.!*
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We have aleo shown that our new general moment equations derived under the
Markov approximation are mathematically equivalent to the path-integral expressions {
for the moments that have been previously presented. Thus, the two popular formal-

isms, under the Markov approximation, are not different in content.

Consider waves travelling predominantly in the z direction. Let 2* be a transvarse
coordinate (e.g. two-dimensional, but in fact gemeral), and k be a reference wave ﬂ
number (k¢ = 2xw/C,), where w is the wave frequency and Cy is a reference wave

speed). Express the full wave field as
u(Z’,2,t) = YT,z)exp [ k(z — Oot)] (2.1)

Let the wave speed (a function of position only) be

-%

o(,s) = Cy [ 1 — 2U,(2) — 2u(#, z)] ~ C, [ 14+ Uy(#) + ul(z, z)](z.z)
where U, represents the deterministic background and g represents the fluctuating ran-
dom medium, assumed to be a realization of a zero-mean Gaussian process.

Then, the parabolic equation (in rectangular coordinates) for the reduced wave
function ¢ is:

k8,9 = — % V29 + k2o (2) + k(2" 2)¢ (2.3)

where V3 is the transverse Laplacian.

A moment T is the ensemble expectation value of a product of ¥’s and qb"s where

each ¢ or 4!’ is evaluated at a different position Zj and wavenumber k;. We write, in

abbreviated form,

* *
= < ¢l . ¢ﬂ ¢m+l e ‘,'*. > (2‘)
Define an operator Lg such that ﬁ
m+n
1 1
Ly = Y + - [ --i-v,?+k,?vo,] (2.5)
i=1 J
- The terms that apply to the y’s use the plus sign and those that apply to the ¢"a use #
[
™ the minus sign. The subscript j requires that V, operate only on £ and Up; = Uy(%;).
V.
b
»
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ﬂ. Define the important combination of Buctuation quantities ss !
m+n
M(s) = "S5 & by} 3) (2)
H. Our general moment equation under the Markov approximation can be written
l [ ]
0,Tma(s) = —iLoTua(3) =5 [ d' <M(s)Mpp(#) > Tuals)  (27) ~
- 00 Y
é
L. where M,,4(2') is obtained by evaluating M(z) with all the Z} at z shifted by the ‘
transverse distance that a deterministic ray through (£}, z) moves in travelling from 2 |
to 2’ (see Figure 1). In other words M,;(2") is evaluated at point B: i.e. ¥ = 17, (5')
where the ray is forced to go through #;(z). The particular ray is determined not only
< by the local position (7}, z), but also by the initial conditions on the moment; for exam-
ple, the location of a point source, or the direction of a plane wave.!® The unphysical
assumption of delta-correlated medium fluctuations along the propagation direction
c would imply that M,,,1(2) would be evaluated at point C: ie. Zj(z) (and 2’). In the
isotropic case (or in the case of propagation along a principal axis of the anisotropy)
the difference between evaluating M,,,(z) at Z;(2) and %,, (z) is negligible, and the
delta-correlated assumption is adequate. In the anisotropic case, the necessity of
. defining the unperturbed ray makes (2.7) somewhat complicated to apply for general
initial conditions. However, since (2.7) is a linear equation, superposition can be used
whether the source is a point, an incident plane wave, or an arbitrary coherent or
¢ incoherent sum of point sources.
We now turn to the path integral method. Equation (2.3) has the formal solution
¢ = [ D&(s)e” (28)
“ where f Df’(z) means integration over paths, £°(z) is a transverse vector indicating the
|
§ position of the path at z, and
R 1 a5’ 2
In order to obtain & given moment, expressions like (2.8) (or its complex conjugate) are ]
maultiplied together, and the ensemble average is taken: k
‘ L
{
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Te = [ ’nl DEj(s) < ¢! > (2.10)
-

The Markov approximation yields (See Section V):

me+n R df' 3 1 bod
‘ T, = fl'[ D (2) expfdz Y +ik; _;'[]—;L] - Uy | — ry f &' < M(3)M,up0(s") > *
- J =]l [} I - 00
(2.11)
We have shown that the moment equations (2.7) and the path integral expressions i

(2.11) are mathematically equivalent.!?

Moment equations can be formulated in a variety of coordinate systems, while
path integrals require a rectangular coordinate system. There has been a fair amount J
of effort expended on using polar coordinate systems, especially for point source prob-

lems.

The same results (for point sources among others) can be obtained in either polar
or rectangular coordinates. Thus, the results of Shishov!® on the intensity correlation, #
derived in spherical polar coordinates, can be seen to be identical (after an appropriate
transformation) to the results of Codona et al.,'” derived in rectangular coordinates. It

. was necessary for Shishov to make small angle approximations in addition to the para- i
: bolic approximation of dropping the second derivative in the propagation direction,

whereas Codona et al. only require the single parabolic approximation.

1 We have derived moment equations in coordinate representation under the Mar-
kov approximation that apply in anisotropic, inhomogeneous media with deterministic
background. The derivation shows the relationship between these moment equations

and modified equations that are valid under approximations weaker than Markov; the

] second-moment equation of Besieris and Tappert is a special case of these modified ﬂ

equations.

In a hierarchy of approximations we begin with the parabolic wave equation itself.
A path integral with non-local exponent can be written as an exact solution, although it
is not yet useful in practice. The next level is the approximation that the interaction
’ strength over a correlation length is small—this “first-order perturbation theory” leads

. to the modified moment equations, and in homogeneous, isotropic media, to the

........
.........................
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standard moment equations and path-integral expressions. In anisotropie, inhomogene-
ous media, however, & further approximation is necessary to obtain the momeat equs- {
tions and path integral expressions. This further approximation is that the significant f
flow of wave energy, or the important paths, are parallel to the unperturbed ray; we i
9‘ call this the Markov approximation because its violation implies the appesrance of
correlations between successive scatterings. We have shown that the moment equations
and the path-integral expressions for the moments are mathematically equivalent under
the Markov approximation. Thus the two formalisms have exactly the same physical
P content. In an anisotropic medium, the moment equation involves a shift operation to

y
calculate the medium correlation function along the unperturbed ray; this form of the h
L° moment equation has not been given before.
III.Series Expansion of the Fourth Moment

We have developed a series expression for the fourth moment of a beamed field
incident on a random phase screen or an extended medium."” The series has a symmetry
that allows its first few terms to generate useful approximations at both low and high
spatial frequency. The parabolic wave equation, the Markov approximation, and Gaus-
sian refractive index fluctuations are assumed. The result for the phase screen is
obtained by Green’s-function techniques. The extended-medium result is derived in an
c analogous manner using path integral methods. The same results can also be derived

by moment-equation methods. The behavior of certain leading terms agree with previ-

ous results for plane-wave and point-source geometries.

; We consider waves propagating from an arbitrary source distribution in a random
medium. We assume the statistics of the medium are locally homogeneous, and we
make the Markov approximation; i.e. the field fluctuations induced within s correlation
length along the propagation direction are weak. For a more complete discussion see
f( snother of our papers.!? The wave propagation is characterized by narrow angular

scattering due to the small random fluctuations in refractive index. It is then con-

venient to write the complex monochromatic scalar field as E(Rz)e™* where 5 is the

propagation direction, £*is the transverse coordinate and k is the wavenumber of the
(1
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5 tion, C(%}, %3, R), which is a special case of the fourth moment, i.c.

.

L: C(%),%3,R) = <I(’;!R) I(!;!R)> - ri(ﬂ:ﬁ»i;rrﬁ) = Pl(i‘l'i;visnii) (34)

b

h Note that the symmetry of the fourth moment has been explicitly indicated. A clear
;'o T I RO L ST AT D R Tt e S R I N S S T T - . ey T-19-
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wave with no refractive index fluctuations.

The random nature of the fields is conveniently described by statistical moments
evaluated in the transverse plane located at distance R. Ensemble averages of random

variables are denoted by << >. The first moment
I(&R) = <EE®R)> @3.1)
or average of the field and the second moment
If%,%5,R) = <E(%,R)E'(%R)> (32)

or mutual coherence function are well understood.” However, there are few analytic

results for the fourth moment
I(%, %5, %, %3, R) = <E(%,R)E"(%,R)E(%;, R)E' (%, R) > (3.3)

Previous theoretical work concentrated on plane-wave and point-source geometry. We

present three main results for arbitrary source distribution.

A series expression for the fourth moment is derived as an expansion of the
Green’s function for the fourth moment, thus avoiding the difficulties associated with
the source distribution. For the thin-screen problem, the expansion quantity is a combi-
nation of phase structure functions. For the extended random media, the expansion
quantity is sn analogous combination of phase structure function densities. The
Green’s function is expressed as a multiple path integral. The resulting series of path

integrals is evaluated with a useful identity.

Our second result is the generation of two series for the intensity correlation or
intensity spectrum. The fourth moment I' (£}, %, £3, X, R) has the obvious symmetries
that it is unchanged by interchanging £} and £j or by interchanging X3 and £;. Each
term of the series expansion does not share the symmetry of the entire expression.
Thus two separate series are obtained by invoking symmetry. In principle, either series
could be summed to give I'y, We demonstrate, however, that it is better to consider
both series in order to describe the fourth moment with the fewest number of terms.

This assertion is demonstrated for the second moment of intensity or intensity correla-
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b presentation of the bebavior of the intensity correlation series obtsined from the fourth
moment expansion requires the introduction of a spatial spectrum of intensity Buctua-
tions for & spatially nonstationary random process. We adopt the definition

» HFER) = (7;)—, I cmmR) e Tap (3.5)
where

o F=@48)  P=f5i-5 (36)
(Note the free format of the argument list of functions). The spectrum has the pro-
perty

b .zoq)(p:qj}?) ag = C(B0,R) = <I(@R}> (3.7

It should be noted that the spatial spectrum may depend on the centroid "

L Since there are two series for the intensity correlation there are also two series for
the intensity spectrum. The leading terms of one series for (B} @ R) describe the small
G behavior while the other series is valid at high @ The rate of convergence of each
series provides a criterion for merging the two results to produce & complete expression
for the intensity spectrum. In general, an analogous treatment of the intensity correla-
tion series is not possible since the leading terms of both series do not converge to the

variance as the spatial separation approaches zero.

s Our third result is the demonstration of the equivalence of path integral and

moment-equation methods. Early theoretical work on  WPRM concentrated on

geometrical optics and the method of small perturbations.””!® These two approaches
were limited to weak scattering conditions. This restriction was removed with the
introduction of differential equations for the moments of the field.!® Functional tech-
niques of high energy physics (path integrals and operator methods) provided another
point of view to WPRM.?® The moment equation metbod and functional techniques
b are equivalent!? and must generate identical results when expansions are performed in

the same quantity. This equivalence can be demonstrated by deriving the same fourth

moment series expression using moment-equation methods.!”
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An example of the calculation of the first two terms in the expansion for a particu-

lar case is shown in Figure 2. 1

IV.Summary

Descriptions have been given of three recent results in the theory of wave propaga-
tion through random media. The first result is that pulse arrivals can be advanced in
time by the imposition of a zero-mean random wave-speed fluctuation on the medium. {
There are many subtleties to the interpretation of this effect; these subtleties involve
intensity weighting, curved rays, and strength of luctuations. The second result is that
moment equations can be written that are mathematically equivalent to the path 1
integral expressions for a general moment, but the moment equations so obtained under
the Markov approximation are not quite the standard ones used. The equivalent
moment equations require knowledge of the unperturbed rays between source and the
point of interest. The third result is a series expansion of the general fourth moment |
with arbitrary source distribution: a series expansion whose first few terms adequately
approximate the high-spatial-frequency part of the intensity spectrum. Previous work

in the high-spatial-frequency regime had required the summation of a large number of q

terms.
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Figure Captions
®
Figure 1a. Moment-equation expression of the Markov approximation. The corre-
lation should be taken between a point at 2 (point P) and an arbitrary
point at s/ (point A). Instead it is taken with the point B, obtained by
extrapolating along the unperturbed ray from P. The assumption of
delta-correlated medium fluctuations leads to the incorrect formulation

of correlations between points P and C. The dashed lines indicate the
idea of a scattering as a function of angle from point P.

Figure 1b. Path-integral expression of the Markov approximation. The general
path at 2’ (point A) is approximated by the path at z extrapolated
along the unperturbed ray (point B).

frequency, gR;, where R, = (R /k)* is the Fresnel scale. The curves
are calculated from expressions given by Gochelashvily and Shishov
[1975] for the case of plane waves incident on a random phase screen
with a Kolmogorov spectrum of phase fluctuations and Dg(R,)=100.
The (~) sign indicates that ®(g) is negative at high frequency.

L Figure 2. The leading terms of the intensity spectrum versus normalized spatial
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