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) I. INTRODUCTION

13 In the middle 1970's the evolution of the long rod munition
- was accelerating rapidly. Many theoreticians were making predic-
- tions of performance and of implementation problems. One of the
} theoreticians! predicted the rneed for rods of higher stitfriess and
ft suggested the implementation of finned rods. He supggested that

o the shape given in Figure 1 would be of constant polar moment and
si ' mresented graphs for design purposes. The graphs were not based
}' upon the presented snape; rather they were based uoon three

2 planer fins of constant thickness connected at 1200,
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= Figure 1. The Katz tri-foil parameters.

:p We attempted to design two variations of the proposed finned
- rods and found that we could not duplicate the process by wnicn
& . the original graphs were prepared. Relying solely upon the

j graphs, two penetrator types were desigred witn tne parameters

5 described in Table 1. These designs were nct optimal, and at-

L tempts to make optimization computations were frustrated bv tne
:{ lack of a more accurate model.
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Table 1. Design Parameters

Item 12D ra d L L/D%*

1 8.08 12.12 14.2% 96. 5 14,6

P4 S.41 S. 34 7.21 104.8 16. 1
Note: Dimensions are in millimeters. Tne nose was maage

hemispherical. 7The length of 1tem 1 was changed to
make the weights of each item egual ©5 oms. The
dimensions given are for the actual rounds since the
machinists had difficulty obtaining the design aoais.

Qur designs were intended for ballistic performance as well
as for launch integrity of the rod. The rods were of reiativeiy
low L/D*, where D¥* is the diameter of a circle of tne same area
as the area of a transverse sectionn of the design. The small
aspect ratio of our designs did not require the tri-foii saape
focrr launch or penetration integrity but did allow the study of
the foil design with respect to rods that were under stuay at
that taime. Each rod was to have an L/D* of 16 but some varia-
tions coccurred due to machining difficulties. Note tnat tne
machinists had fair success with Item 2 but not with Item 1 which
had to be shortened to maintain the weight at 6% grams.

Eulers buckling of the rod during launch was of pgreater
concern than during the penetration phase. Whereas no closed
form solution of the interactions of such a penetrator woulo be
possible for the penetration orocess, the launch buckling orooen-—
gity for a tri-foil should be proportional to tne relative ooalar
moments of inertia of the rod and foil. For ease of analysis,
this ratio will be presented using the moael opresented in tne
next section rather than the complete solution of all possibie
buckling modes. This paper will also present the polar moment
for a tubular design for comparison purposes. Other studies
involving the tubular design3 4 have presented the advantapes and
drawbacks of such projectiies.

II. THE TRI-FOIL SHAFE

The parameters of importance to the tri-foil shane were
given in Figure 1. The cutting radii are normalized by the
separation distance such that unitless dimensions may be used to
describe the designs. It can also be noted that the designs are
rot limited by the ratio of the fin thickness to the radius (ri,
the fin width) as was the analysis by Katzl I1f the separation
distance betweern the radii centers becomes very large compared to
r1 the tri-foil will begin to loock and behave as a bar with an
equilateral triangle for cross sectiorn. Rse less and less is cut
from the bar, i.e. r2 decreases while the other parameters are
held constant, the firmed bar aquickly becomes a rod. The oraig-
inal analysis approached neither of these two limiting cases
while the analysis presented irn this paper reaches tnese two
realistic limits.
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Figure 2 presents the various kinos of geometries that are
possible with a simple set of design parameters. The variables
and ) are defined after equations 1 and 2 on the followirng bpage.
A third limiting case with the shape being a haoliow cviinder.,

i.e, d=0, should also be considered. For ease of calculation of
the finmed shape, the two angles (compare figure £ and figure 3
were limited to pi/3 radians. This precluded the mooel from
extrapolating to the hollow cylinder and the shapes tvpitied in
Figure 2 where k=1.3 and )=0. 3. Rather, the closed form solution
for the hollow cylinder will be compared as a unique poant.

<«<|

TN
25 0 (A
o (D)

Figure 2. Geometries for various values of k ang 1.

Figure 3 opresents tne shape used for tnis analysis. Note
that only a third of the total shape is used to simplify the
calculation, The simplification comes from the fact tnat tne
total polar moment is taken to he just three times the polar
moment calculated for this segment. The sector used for normaiil-—
zation is also a third of a circle.
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Figure 3. Shape used for the arnalysis of J/Ja.

Using the following definition of terms:

Theta = Arctan(y/x)
Phi = Arctaniy/ (d—-x) 1]

where x and y are derived from the eguations for the arcs,
namely:

X2 + y& = € (1)
(d=x)E + y& = pp ()

to obtain nondimensionalized parameters the apove parameters are
divided by d as defined below:

ri/d = k ra/d = ) X/d = m y/d = n
and the equations yield:

m= (1 + k& - 3@)/2 m) Q (3)

n="f& - w2 (4)

Therefore:

Theta = Arctan(n/m)

Phi = Arctanin/ (1-m) 1] theta and ohi: { or = P1/3
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Solution of the simultaneocous equations involving k and tne
radius, ri, at theta set equal to Pi/3 and yielding values for n
which are less than k times Sin(Pi/3) but greater than zero i1mplv
that the foil web would be cut and the foil extrema wouid be de-
tached; thus, they are rejected in the computer prcogram used to
calculate the polar moment ratios. A typical prooram that witl
run on a small personal comouter is givern i1n the anpendilx.

Area of sectors and segments as defined 1n fipure 3.

AreaT/dE = PixkZ/3 (5)

Areat1/de = k€x[Theta — Sin(Theta)*Cos(Theta)] (&)
Arear1/d€ = 1E€%[Phi — Sin(Phi)*Cos(Phi))] (7)
Arean/dS = (AreaTt ~ Areal — Areary)/ad (e

for a sector of equal area:
Areas = (Pi #* r-&)/3 (9

By definition, the moments of inertia of tne tri-foil are to be
compared to the moment of inertia of a rod of eagual area.

Set: Areasn = Areapn
from this the definition of r 4/d4 can be abtained
Palar moments of inertia of the areas defined bv figure 3:
Ja/d4 = Pisr 4/ (6xd%) = 3xAreanS/ (2#Pixd4) (10)

The above moment is for the sector of a rod. For the tri-foil a
step wise procedure will be followed:

Jv/d% = Pixk4/6 (11)
Ji = M1y + Myy JIT = Myyy + MITYy (12)
where:
Mrx/d?® = [Theta — Sin(Theta)#*Cos (Theta) — Z#Sin(Theta)s

#Cos (Theta) /31%k4/4 (13)

[Theta - Sin(Theta)#Cos(Theta) + 2*Sin(Theta)>
#Cos (Theta) IJ*#k4/4 (14)

Mry/a4

J17 is similar but the vy axis must be transrerred from tne
remcte position at x = d.

Mi1y/d4 = [Phi - Sin(Phi)#Cos(Phi) - 2%#Sin(Phi)S
#Cos (Phi) /31%k4/4 (15)

11




\‘4—: TSRO Lt el Ay il L Sk Sie i Miaim B nt aa Sl w Liath g k's B Sha A i~ 2 3 R i g A G S e Aregll, S M S S i et et Al S e ol e il uSRICERALEL S atiul AL i Al i - st - ol S
oo
. USER EVALUATION SHEET/CHANGE OF ADDRESS
':f:
N This Laboratory undertakes a continuing effort to improve the quality of the
e reports it publishes. Your comments/answers to the items/questions below will
e aid us in our efforts.

-t 1. BRL Report Number Date of Report

YRy

L

- 2. Date Report Received
;:) 3. Does this report satisfy a need? (Comment on purpose, related project, or

other area of interest for which the report will be used.)
el 4. How specifically, is the report being used? (Information source, design
data, procedure, source of ideas, etc.)

A
N

= 5. Has the information in this report led to any quantitative savings as far

‘ as man-hours or dollars saved, operating costs avoided or efficiencies achieved,

MR etc? If so, please elaborate.
::::,

J 6. General Comments. What do you think should be changed to improve future
308 reports? (Indicate changes to organization, technical content, format, etc.)

-

. Name
;:E CURRENT Organization
%f ADDRESS Address
City, State, Zip
\;f 7. If indicating a Change of Address or Address Correction, please provide the

NN New or Correct Address in Block 6 above and the 0ld or Incorrect address below.

. ' Name
Ry OLD Organization
T ADDRESS
e Address
- City, State, Zip
0
<
v "
s )
A (Remove this sheet along the perforation, fold as indicated, staple or tape
- closed, and mail.)
2
4
"."'a"-' A '."-’_-‘.-' Y '.' ., " '-"-'.q"-'.h“a'.‘- - f-"‘ "-&' “xr W ISP A NN Fe _foF B - e -y .--‘ L i L
e e T e e L i e 3 T 1St % PHCRCECRTN N o T‘?" rf-"ﬂ“_}-lt‘ .




DISTRIBUTION LIST

Organization

No. of No. of
Copies Organization Copies
1 Commander

US Army Development &
Employment Agency
ATTN: MODE-TED-SAB

.Fort Lewis, WA 98433

AFWL/SUL
Kirtland AFB, NM 87117

Air Force Armament Laboratory
ATTN: AFATL/DLODL
Eglin AFB, FL 32542-5000

AFELM, The Rand Corporation
ATTN: Library-D

1700 Main Street

Santa Monica, CA 90406

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: AMXSY-D

AMXSY-MP, H. Cohen
Cdr, USATECOM
ATTN: AMSTE-TO-F
Cdr, CRDC, AMCCOM
ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-SPS-IL




DISTRIBUTION LIST

g

T TR T Y T T VR T LY VT

No. of
Copies Organization
12 Administrator

Defense Technical Info Center

ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22304-6145

HQDA
DAMA-ART-M
Washington, DC 20310

Commander

US Army Materiel Command
ATTN: AMCDRA-ST

5001 Eisenhower Avenue
Alexandria, VA 22333-0001

Commander

Armament R&D Center
US Army AMCCOM
ATTN: SMCAR-TSS
Dover, NJ 07801

Commander

Armament R&D Center
US Army AMCCOM
ATTN: SMCAR-TDC
Dover, NJ 07801

Director

Benet Weapons Laboratory
Armament R&D Center

US Army AMCCOM

ATTN: SMCAR-LCB-TL
Watervliet, NY 12189

Commander

US Army Armament, Munitions
and Chemical Command

ATTN: SMCAR-ESP-L

Rock Island, IL 61299

Commander

US Army Aviation Research
and Development Command

ATTN: AMSAV-E

4300 Goodfellow Blvd

St. Louis, MO 63120

25

No. of

Copies Organization

Director

US Army Air Mobility Research
and Development Laboratory

Ames Research Center

Moffett Field, CA 94035

Commander

US Army Communications -
Electronics Command

ATTN: AMSEL-ED

Fort Monmouth, NJ 07703

Commander

ERADCOM Technical Library

ATTN: DELSD~L (Reports Section)
Fort Monmouth, NJ 07703-5301

Commander

US Army Missile Command
ATTN: AMSMI-R

Redstone Arsenal, AL 35898

Commander

US Army Missile Command
ATTN: AMSMI-YDL

Redstone Arsenal, AL 35898

Commander
US Army Tank Automotive

Command
ATTN: AMSTA-TSL
Warren, MI 48090

Director
US Army TRADOC Systems

Analysis Activity
ATTN: ATAA-SL

White Sands Missile Range,
NM 88002

Commandant

US Army Infantry School
ATTN: ATSH-CD-CSO-OR
Fort Benning, GA 31905




List of Symbols (Cont.)
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Arear one third of the total area of a rod of
radius »i.

Arealy area of segment defirned in figure 3.
Areaty area of segment defined i1n figure 3.
AreaNn net area of a tri-foil sector.

Arean area of a sector of area eagual to Arean.

Ji polar moment of inertia of a sector of
aream.
Jr palar momert of inertia of a sector of

radius rij.

Jr palar moment of seagment 1.

Jrr pelar moment of segment 11.

Ll moment aocut & giver axis.

AN Arean.

Je= polar moment of a hollow cyiinder,

Vi residual veiocity of largest fragment of

peretrator after defeating the tarpet.
Ve striking velocity of tne penetrator.
vi probabilistic limit velcocity .

R, P tambert fit coefficients.
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}; List of Symbols
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: Symboi Description
Y N . o
l** ™y locii of points that incliude tne extrema o
33 the flanges on a tri-foi1l or the i1rnner racius
,ﬂ of a hollow cylinder depencilny ularn tne
O situation.

X ro cutting arc which forms the concave curves or
iy the tri—-foi1l surface or the cuter radiws of a
Nk hollow cylinder dependcivng uwoon tae situataion.
s

!

\'!-

. d the separation of centers of tra tri—foil e

the cutting arc.

- L length of a rod or trai-foli.
L7 D diameter of a rod.
N D* the effective diameter of a tri-foui. t.e.
e the diameter of a rod with tre same area as
o the tri-foil.

4o

¥ Sy

= K the ratio of ri/d (for a tri—fail).

) J the ratic of Pé/d (for a tra-fo1l).

}: Theta the anple formed between tne racius ry ang the
R horizaontali when ri1 1s drawn to end of the

"4 chord forming the "missinp" sepments of the

- tri-foil. (s@ee fipure 3 of text)
e Phi the anple formed between the cuttirg arc arnc
ot the horizontal when the cutting arc 1s drawr to
Jﬁ the end of the chord forming the “"missing'

> seaoments of tne tri-fuoal, (see figure 3)

™
W ;

X riCos(theta).

R y r1Sin(theta).

{j m x/Q.

r n y/d. Note that m and rn are used irn computer
Wi vaiidity checkinp.

A
R

.
N
i

x

L

M
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PI=3, 141593

INPUT "ENTER THE VALUE OF K"K

FOR L=1 TO 100

L2=L/100

M= (14K 2-L2"2) /2

IF M<O THEN PRINT "“OUT OF RANBE" : GOTO 20

IF M ) 1 THEN 400

B=K~2~-m~2

IF B(=0 BOTO 400

N=8SQR (B)

T=ATN (N/M)

P=ATN(N/ (1-M))

IF T)PI/3 OR P)P1I/3 GOTO 400

TN=1+TAN(PI/3)#TAN(PI/3)

Cmi—(TN® (1~L#L))

IF C(0 THEN BOTD 260

Ci=(1+8QR(C))/TN

D=C1+#TAN(PI/3)

IF D)=Ka#SIM(PI/3) THEN GOTO 210

607TQ 400

Ca2=(1-SQR(C)) /TN

IF C2¢(0 THEN GOTO 270

D=C2#TAN(PI/3)

IF D)=K#8IN(PI/3) THEN 270

GOTO 400

REM NET AREA IS NORMALIZED BY THE SQUARE OF THE SEPERATION DISTANCE
AN= (KeK2#PT/3) - ((T-SIN(T)#COS(T) ) #K#K) — ((P-SIN(P) #COS(P) ) s 2wl 2)
JT=K~44P1/6

REM POLAR MOMENTS ARE ALS0O NORMALIZED BY THE ScPeRATION DISTANCE
JimK~4/2# (T-SIN(T)#CO8(T) +2/3#SIN(T) ~3+COS(T))

M2X=L2 4/ 4% (P-SIN(P) #COB (P) -2/3#8SIN(P) ~32C08(P))

MRYCsL2"4/4% (P-SIN(P) #COS(P) +2#SIN(P) “3#COS(P) -16/9#SIN(P) 6/ (A-SIN(P)«CULS.P)))
M2Y=MR2YC+L2 2% (P-SIN(P) #COS (P) —2/34SIN(P) ~“3#LE) “2/ (P-SIN(F) #C0S () )
Ja=M2X +M2Y

J=JT-J1-J2

IF J<(O GOTO 400

JIN=2#PI#J/3/ (AN"2)

REM PLOT L2 AS X AND JN AS Y ON A PLOT SUCALED FROM O TO 1 IN X
REM AND O TO 7 IN V.

NEXT L

GOTO 20

END

2]




APPENDIX
SAMPLE PROGRAM TO CALCULATE THE
RELATIVE POLAR MOMENT RATIULS

FOR TRI-FOIL SHAPEYS

(he followimo page 1% biank.)
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IV. CONCLUSIONS

The polar moment ratio of tri—-foil shaped projectiles has
been investigated theoretically. The degree in improvement is
marginal but may present some special advantages to the employ-~
ment of the projectile such as lighter weight sabots or integrail
fins that may be stripped away by multiple plate targets.

While the ballistic tests were not definitive regardirig tne
use of tri~foil penetrators, they serve to indicate the possible
improvements with rion circular peretrators. The material was not
recessarily up to current standards but by comparing the perfor-
mance toc a rod which was up to the same stardard as the tri-foil,
relative figure of merit 18 possible. The ballistic tests were
rivt carried out with the largest possible increases in tne polar
moment ratio. This was done for two reasons. First, the graohs
presernted by Katzl were not sufficient for accurate design.
Second, the lower ratios left much of the mass of the penetrator
centralized. Where the mass i1s left rnear the center, tne impact
cross section is maximized. Thus, the performance of the pene-
trator was not as degraded as would be the case for the shape
shown in Figure 5 ¢, for example.

Some of the designs that are obtainable with unlimited
selection of k and ) result in shapes that would be extremely
difficult to machine, or they would require techniques that are
too expensive to permit implementation. These are generally the
designs that have flanges at the extrema of the fcils. Thus,
this investigation centered on "possible" designs by restricting
the cutting arc to Pi/3 radians. The same limit had to be
applied to the cut arc since a preater angle would result in the
ocuter radius being reduced.

While the ballistic limit of the tri-foi1l, Item 1, is not as
good as the long rod, the performance is very good on a absoclute
scale. The poorer performance was partly due to the snorter
effective L/D of the tri-foil relative to the long rod. Thus,
advantages of the tri-foil may be employed without fear of a
serious degradation. This presents the fact that should system
advantages point to the need of a flanged rod, the tri-foil
design can be further developed without large risk factors.

A graphical presentation of the polar moment ratios has been
given to permit designing of the tri—-foil shape for long rod
penetrators. This analysis may also be useful for the design of
ornamental columns for structural and architectural purposes.

The methods used to calculate this chart, Figure 4, are accurate
and the calculation is quick if one has access to a modest
computenr. Hand calculations are more laboriocus but readily
performed.
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velocity, and v) 1s the desired limit velocity.

Figure 6 shows the performance of the tri-fail retative tao a
hemi-nosed rod penetrator of the sane materiail. Note that the =
coefficient (see the equation above) of tne tri—-foil is lower
than for the corresponding rod. This results 1n an asymotove of
lower slope and generally infers a better material or design.

The higher limit velocity may be highly influenced by the strik-
ing velocities and vagaries of tnis test.

A spectacular behavior was noted durirg the pernetratiun of
the target by the tri-foil peretrator. The extrema of tne foals
were stripped away by the first and secornd blates, Item ) has
foils that are narrower at the tip tharn at arny other point. EEaE §-1
means that the mass is centered and tends to act lixke a hipgs
aspect ratio rod.

The design of item & is such tnat the fins are tnicker at
the extrema than at some points alorg the webs., This can e seen
in Figure 7. Note tnhat both designs are drawn to the same sr-ale
in this figure. Program limitations orevented the testirvig of
item 2. Ballistic tests should be carried cut to determirne if
the stubbier foils pive some of the advantages of lorg vrod ene-

trators without the disadvantages of tubular orajectiles a.ready
mentioned.

Figure 7. Items 1 and & of table 1.
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Figure 6. Residual velocity as a function of the
striking velocity for the L/D = 16 rod anc tne
L/D* = 14.6 tri-foil. 0O = rod X = ¢tri—-foil

vy = 0 where vg ( Vv (87)

vy i3 the residual velocity of the largest penetrator
fragment passing through the target.

vg 18 the initial striking velocity of tne pernetrator.

v] is the probabilistic limit veiocity where no penetrations
will occur.

] and
{ vir = AlvgP = v1P)1/P where vg ) v1 (&8)

A, P, and v) thus become the variables that must ve fit by
multiple regression analysis. A must be positive and less
than 1 and P must be greater than 1.

Note that if the variable P is tawen as 2, tHe aoove
equation simply states that the residual enerngy after reretratiomn
is linearly related to the differerice between tne sirikino energv
and the limiting penetration energy. "he implied lirearity
; would be due to a lirnear decrease in tne mass of tne resicual
fragment of the initial rod. By takirg P as a varianie ratrer
than as 2, the real ron-linearity of the process near tne laimit
velocity can be fit. While this does not qualify as a model, tne
high degree of freedom exoerienced by having tnree variables to
fit results in very good fits. The variable A is related to tle
asymptote that the data approach when the tarpet is severly
overmatched. P relates to the degree of curvature near the 1lim:.t
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Figure 5. Canstant area snapes. E ang €C have polar
moment ratios of S.1 relative to A.

111. BARLLISTIC TEST

A comparison ballistic test was performed using one of the
two designs listed in Table 1. The tri-foil was compared ta a
simple rod penetrator having a hemispherically rourded rnose.
Both the rod and foil shapes were made from U-3/4 Ti alloy. Thig
is a high ductility, higph density material which was heat treated
similarly to the M774 pernetrator material. The simple rod had arn
L/D of 16 which was also the target L/D¥* for the tri-foil shapes.
Due to machining difficulties the desired dimernsions could riot ne
held, and they were modified by the vendor for [tem 1. Thas
modification led to a slightly over weight penetrator. To cor-
rect the weight, Item 1 was again madified by cuttivrg off sone of
the length. The target was a standard US trisle target.

The strikes that were considered valid are oresented in
Figure 6. This plot assumes that the peretration orocess will
result in a pernetration curve? see equations &7 and =8 below,
that has the solution as given by Lamhertﬁ LLambert?s curve
fitting passes through the center of the data rather than fallowing
Bloore's hypothesis? that all data should be belaw and to tne
right of the curve.

14




The polar moment of inertia for a hollow cylinder is easily
obtained from:

Jo = Pi#(rp4 - ri4) (22)

for a hollow cylinder of inner radius ri and outer radius rz
Jao = Piwry4 (23)

for a rod of radius rg

As above, define the area of the roa to equal tnhe area of
the cylinder such that:

reE - r12 = rga (24)
thus:

Jo/Ja = (rg@ + r1@)/raE F-5))
and we have:

ro/re = \/c(Jc/Jg/a) + 1/21] (26)

Comparison of a hollow cylinder with the tri1-foil can bDe
made for specific polar moment ratios. That 1i1s, if we choose a
hollow cylinder with a polar moment ratio of 7, for example. The
above equations auickly show:

re/va = 2 and ry1/ro = \/3 for the cylinder

and for the tri-foil Kk and ) must be selected from Figcure 4 of
the text, k = 0.85 and ) about 0. 8t4 should give the desired
ratio of moments of inertia. Note, the author has dore some
calculations to obtain these values of k and 335 J/J~ is actually
about 6.9 for these parameters; a closer definition of k ana ) to
exactly achieve 7 is unrealistic in terms of machining tolerances.

The usual criterion of equal area defines rj, r2, and a for
the tri-foil.

ri1/ro = 3.53 re/ra = 3.60 ano d/ve = 4,16
where: rgs is the basic radius of the solid roc.

Another such comparison 1¢ presented i1n Figure S relative to
a rod of unit radius.
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Myiys/d4 = [Phi - Sin(Phi)*#Cos(Phi) + Z#Sin(Ph1)3

#Cos (Phi)J#j4/4 (16)

My1y,e/d4 = Miryr/d4 - Axx2/d% (17)
where: K/d = 2%3#S1n(Phi)3/(Phi - Sin(PFni)*Los (Fh1) 4 L7
and A/dE = JExTPhi — Sin(Phi)*Cos(Phi)l (1 8)

M1yy/d% = Mi1y,co/d% + A%(1 - x/d)2/d& (19)

In/d4 = (J7 - J1 - J11) /04 (20)

and J/Je = E#PinIn/d%/ 3% (AN/DE)E] (1)
where: AN is the net area.

AR computer program was written to calculate the ratic cof
polar moments; and the results are shown in Figure 4. The inter-—
section at the left of the graph at 1 is the natural laimit where
the tri-foil acts as a rod. The locii of the terminus points of
the various curves point to the value of the polar moment ratioc
for a cross section of an eguilateral triangle. Since this
program was run with a coarse step the terminus owints are rot
exact and extrapolation with respect to the gravh is noct very
accurate. This value can be easily caiculated from tne eguatins
given ahave.

6r
4t
I/3o - N /d
2L DECREASING
0 | O N N N I R Y R
0.0 0.2 0.4 0.6 0.8 1.0

r,/d

Figure 4. Relative poclar moment, J/J., as a
function of rz/d. Curves are for vri/d ratics

of .85, .75, .65, .35, .45, .35, .30, .&5, .z,
.15, .10, .08, and .025 poing from left to right.
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