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ABSTRACT

The acoustic properties of marine sediments have a direct effect on the

propagation of sound in the ocean. In the frequency range of interest (50 - 500 Hz)

the sediment can be modelled as a fluid. Assuming horizontal stratification of the

ocean bottom, the acoustic parameters of interest are the compressional wave

speed, the compressional wave attenuation and density as a function of depth. 71/-

-An inverse method, based on a perturbation technique Lese - tki

--tr-s for 4- ezri 5 4uitee parmees_- for the t,= uthese pa/l'meters. A monochromatic source

experiment is proposed because of the desirability of such an experiment for

determining the acoustic properties of an anelastic medium. The input information

is the plane wave reflection coefficent as a function of the angle of incidence at a

fixed frequency. A nonlinear integral equation relating the variations of these

acoustic properties from a known reference value to the plane wave reflection

coefficient is derived, -This is then linearised using the Born approximation. The

region of validity of the Born approximation is derived and based on this the -

N Op,7%-%LL
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- 7Zoptimrnum angular aperture for the input data is obtained.

The linearised integral equation is a Fredholm integral equation of the first

kind. An acceptable stable solution of the integral equation is obtained by imposing

a priori constraints on the solution. The inversion method is tested using synthetic

data and inversions are carried out for various examples of the attenuation

coefficient profile and the sound speed profile. The results obtained with noise free

data show good agreement between the true profiles and the reconstructed profiles. 4-,r
The resolution obtainable with the data set is studied using the resolving power

theory of Backus and Gilbert and the inversion method is shown to provide

adequate resolution. The effect of additive noise in data is examined and inversions

performed with noisy data yielded stable acceptable results.

Thesis supervisor: George V. Frisk, Associate Scientist, Woods Hole

Oceanographic Institution. '
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Chapter 9 is the concluding chapter where we indicate the directions for

future work in this field.
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We then formulate the inverse problem for the determination of the

attenuation coefficient profile in the bottom. This is done in Chapter 5. Two

approaches to linearisation , namely the Born and Rytov methods, are used and in

each case an integral equation relating the attenuation coefficient profile to the

reflection coefficient is derived.

Chapter 6 is a predominantly review chapter, where we study the problems of

instability and non-uniqueness encountered in solving inverse problems of this type.

Various methods described in the literature for solving these problems are then

described with a view to bringing out the underlying commonality of all the

approaches. The method of solving nonlinear problems by linearisation is then

described.

In Chapter 7 we continue with the solution of the inverse problem formulated

earlier. Adopting a regularisation scheme for overcoming problems of non-

uniqueness and instability several examples of inversion are performed using

synthetic data. The sensitivity of the reconstruction to various parameters and

other related issues are examined. We extend the formulation of the inverse

problem to determine perturbations in other acoustic parameters and demonstrate

this by simultaneously solving for the attenuation profile and perturbations in the

sound speed profile. We also show how the procedure described by Backus and

Gilbert[201 for determining the resolvability of a finite data set can be applied to

situations when all the quantities are complex. The effect of noisy data on

reconstruction is also investigated.

We then show that in the shallow water context, the problem can be

reformulated to relate the perturbations in the acoustic parameters to the changes

in the eigenvalues. This is done in Chapter 8. Some preliminary results of inversion

using synthetic and real data are presented.



-19-

perturbations in the compressional wave speed and density. We do this not only

because it is the path that our investigation took us but also because the need to

determine the attenuation coefficient and the problems in its determination will I
then be brought into focus.

When the ocean is a shallow water wave guide, we use eigenvalues of the

modes trapped in the water column as input information for the inverse method. A

linear Fredholm integral equation of the first kind relating the variations in the

acoustic parameters from a known reference value to the modal eigenvalues is

obtained. This equation can then be solved employing any one of the methods

available for solving this class of integral equations.

1.2 Overview

In Chapter 2 we study the propagation of plane waves in an anelastic medium

to obtain a correct model for the sediments. This is important as it can influence

the type of experiment performed for obtaining the acoustic parameters.

In Chapter 3, after a brief review of the methods described in the literature

for the determination of the attenuation profile in marine sediments, we propose a

method where, as a first step towards inferring the acoustic properties of the ocean

bottom, we obtain the plane wave reflection coefficient for the bottom as function

of angle of incidence[19]. A sequence of steps which can then be used to obtain all

the acoustic parameters of the bottom is indicated.

In Chapter 4 we describe methods for solving the forward problem i.e finding

the acoustic field in the bottom given its acoustic parameters. A numerically stable

propagator matrix algorithm is presented.

N-N , %
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distinguish it from other Born approximation methods are

1. The input information is the plane wave reflection coefficient as a
function of the angle of incidence at a fixed frequency.

2. The reference wave speed, density and the wave attenuation can vary
arbitrarily with depth.

3. The medium can be lossy'.

4. The method yields all three acoustic parameters.

S. The Born approximation is not uniformly valid over all the angles and
therefore band limited information is used.

The linear integral equation obtained by this method is a Fredholm integral

equation of the first kind. These equations suffer from problems of non-uniqueness

and instability of the solution. We obtain a stable acceptable solution by using the

regularisation method due to Phillips[17 and Twomey[18].

Though the problem as described above involves the determination of all

three acoustic parameters, the starting point of this thesis was the development of

a method for obtaining the compressional wave attenuation for the ocean bottoi.

In studying a possible method, we noted that it required an exact knowledg.- of the

sound speed and density porofiles for the bottom. We found that even small errors in

these two parameters adversely affected the determination of the atten) uat-ion

coefficient. This led to the present approach where instead of trying to correct for

the errors in the sound speed and density, these are treated as unknowns in a

general formulation that yields corrections to the sound specd and d(nit%'

together *ith the attenuation coefficient profile.

We will, therefore, develop the method for the determination of th '

attenuation coefficient profile for the bottom and then extend it to dcal iAith

.J. .. 'V- '.

*~ ~'-%
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through a linear integral equation as before.

Subsequent to the publication of the first paper by Cohen and Bleistein, a

number of papers have appeared in the field of seismology which are based on a

Born type approximationf5-91. Features common to all these are as follows.

1. The response to an impulsive source at the surface of the medium
being probed is measured at the same location as the source or at a
fixed off-set from it. This is equivalent to measuring the plane wave
reflection coefficient as a function of frequency at normal incidence or
at a fixed angle of incidence.

2. The reference wave speed and density are generally assumed to be
constants. Raz[1O],Clayton and Stolt[1], and Bleistein and Gray[12],
however, also consider the case when the reference compressional wave
speed is depth dependent.

3. The medium is lossless.

4. The variation of true wave speed from the reference speed is small and
the Born approximation is valid at all frequencies of the broad band
source.

The experiment that we propose uses a CW source and the input data in this

case is the plane wave reflection coefficient at various angles of incidence. A

schematic of the experiment is shown in Figure 1-3. Exact methods for obtaining

the acoustic parameters of the medium from the angular dependence of the

reflection coefficient have been proposed by Hooshayar and Razavy[13] and

Stickler[14j. Schaubert and Mittra[15] and Roger[16] present inverse methods based

on perturbation techniques for determining the permittivity of a lossless dielectric

medium using a monochromatic source to probe the medium. However, a

perturbation method using the angular dependence of the plane wave reflection

coefficient as input information has not been applied to the determination of all

three acoustic parameters of the ocean bottom. The features of this method that



have a direct effect on the propagation of sound in the ocean.

The forward scattering problem deals with the determination of the wave

field scattered from an object with known properties for a given incident wave

field. In contrast to this, in the inverse scattering problem the scattered field for a

given incident field is measured at the boundary of the object or at points external

to the object and from this the properties of the object are inferred. The

determination of the acoustic properties of the ocean bottom from the plane wave

reflection coefficient falls into this category.

Two approaches are found in the literature for determining the acoustic

properties of a layered medium from its reflection response. These are exact

methods and approximate methods. A review of exact inversion methods using

reflection coefficient data for layered media is given by Newton[2]. Our approach is,

however, based on an approximate method developed by Cohen and Bleistein(31. In

* the setting of geophysical inverse problems, their method was applied to the

determination of the compressional wave speed in the interior of the earth. A

schematic diagram for the experiment is shown in Figure 1-2. The source is an

impulsive plane wave source. The backscatterd field at the location of the source is

* measured. Using perturbation theory, the back scattered field is related to the

variation of the compressional wave speed from a known reference value and a

linear integral equation obtained. The linearising approximation is called the Born

approximation. When the reference wave speed is a constant a closed form solution

to the integral equation is obtained. iln the two dimensional case[4J, the experiment

consists of using a line of sources which is equivalent to repeating the experiment

for the one dimensional problem at a number of locations along a line. In this case

the variation of the compressional wave speed from its reference is in two spatial

coordinates. This is related to the backscattered field measured along the line

1;J
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Chapter 1

IntroductionI

The prediction of sound propagation in the ocean requires a knowledge of the

acoustic properties of marine sediments. In the range of frequencies of interest (50

- 500 Hz) marine sediments can be modelled as a fluid[1j. Therefore, the acoustic

properties of marine sediments of interest are the compressional wave speed, the

compressional wave attenuation and the density. Further when the assumption of

horizontal stratification is made, these parameters are a function of depth only. In

this thesis, we present an inverse method based on a perturbation technique for

obtaining these parameters. The input information is the plane wave reflection

coefficient for the bottom as a function of angle of incidence at a fixed frequency.

1.1 Background

Figure 1-1 is a typical ray diagram for low frequency sound (50 - 500 11z)

interacting with the bottom. The rays emanate from the source and are partially

reflected at the water/ocean bottom interface and the energy entering the bottom,

£ therefore, depends on the impedance contrast at this interface. The rays that

penetrate into the bottom are,however, refracted back into the water column

because of the increasing sound speed. As the rays travel in this region, some of the

energy associated with them is converted into heat. The akItenuation coefficient is a

measure of the amount of energy dissipated in this manner. Thus the compressional

wave speed, the compressional wave attenuation baid the density of the sediment

-Zr
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Chapter 2

Acoustic Modelling of Marine Sediments

Acoustic transmission in the ocean at low frequency is dependent on the

geoacoustic properties of the seabed, namely, the speed and attenuation of the

compressional and shear waves and density. A complete specification of the seabed

will contain the wave speeds and attenuations as a function of the three spatial co-

ordinates and frequency, and density as a function of the spatial co-ordinates.

In this chapter we develop a model for the ocean bottom that will be used in

the analysis to be presented in the following chapters of this work. In this context,

* we study the frequency dependence of attenuation and the dispersion of the wave

speeds due to attenuation. These are important considerations in the design of a

suitable experiment for the measurement of the attenuation coefficient. We also

summarise the other geoacoustic characteristics associated with wave propagation

in marine sediments.

2.1 Dispersion and attenuation of compressional waves

We start by studying the propagation of plane compressional waves in an

attenuating medium. In deriving the classical loss-less wave equation it is assumed

that the material behaves in an elastic manner. The result of such an assumption is

that sound waves propagate in the medium without change of shape and suffer no
attenuation. However, in real sediments the waves decay as they propagate. Their

energy is gradually converted to heat. This process is the result of a variety of



-25-

mechanisms which operate for most part at the microscopic level. At the

macroscopic level the energy loss is given such terms as internal friction,

attenuation and anelasticity.

The most direct method of defining 'internal friction' is as the ratio -(AE)/E

where AE is the energy lost in each cycle because the material is not perfectly

elastic and E is the peak energy stored in the volume of material taken through the

stress cycle at a frequency w. The specific attenuation coefficient Q is defined as

27r AE
-- E (2.1)

This factor Q can be measured without any assumption being made on the

* attenuating mechanisms and is therefore used to describe attenuating behaviour of

the medium in a phenomenological sense.

For a plan,' propagating wave, the effect of 'internal friction' will be the

gradual decay of the amplitude of the wave as it propagates. Since the energy is

propotional to the square of the amplitude,

1 AE AA
-" - -- -- (2.2)

Q(w) 2,rE irA

In the above expression AA is the change in amplitude over one cycle or

AA=(dA/dx)X where X is the wave length.

dA 2irC(w)
AA =- (2.3)

dx w

A(x) = ) (2.4)

2(w)Q(w)

Therefore, for a propagating wave,

IV
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A(z,) -- Aoep[i( - ) iQ()2 q w)

=AO exp [i (k(w)-wij (2.5)

Here k(w) is a complex quantity, its imaginary part representing attenuation.

Another measure of attenuation found in the literature is the attenuation

coefficient which is given by the following expression.

$w) =(2.6)
2C(w)Q(w)

Attenuation in a medium can therefore be accounted for by making the wave

number complex.

The attenuation coefficient is a function of frequency by definition. Aki and

Richards[l] show that the behaviour of waves propagating in an attenuating

medium cannot be explained unless the assumption of dispersion of these waves is

made. Therefore both Q and C are functions of frequency. Figure 2-1 is a plot of

the attenuation coefficient for compressional waves with respect to frequency based

on laboratory/field experiments. Most of the information is in the high frequency

region. The experimental results show a rough linear dependence of the attenuation

coefficient on frequency in the high frequency range.

Efforts to explain this experimentally observed behaviour have been made by

modifying the equations of th classical elastic theory. Different approaches have

been proposed. For example Hamilton[4] proposes a visco-elastic model for water

saturated sediments while another approach, called the Biot model, which treats

the sediment as a porous elastic solid saturated by a viscous fluid has been pursued

by Stoll[13]. The two models will be described briefly in the following paragraphs.

N0 , ,-. ,-

0%

.:Z



i .f

-28-

Dash pot

n'p

Force

Spring

Figure 2-2: Kelvin-Voigt model of visco-elastic solid

L.

Time-

Figure 2-3: Response of Kelvin-Voigt solid to suddenly applied load.'
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2.1.1 Visco-elastic model

In the classical elastic theory, the stress and the strain are related by a linear

relationship such as

o "-BE (2.7)

where a is the stress, E the strain and B is the constant of propotionality called the

elastic constant. In the visco-elastic model the anelasticity is incorporated by

modifying the elastic equation to express the stress as a function of strain and

strain rate as indicated in equation (2.8), where dE/dt is the strain rate.

dE
o= B+G - (2.8)

dt

We now have two elastic constants B and G. A mechanical system representing this

stress strain relationship is shown in Figure 2-2 The spring represents a perfectly

elastic body for which the stress-strain relationship is governed by the law

a =B(2.9)

The dashpot represents a perfectly viscous body for which the stress strain

relationship is given below.

(2.10)
dt

For a system in which these two elements are in parallel the relationship in

equation (2.8) is obtained. The analogies of various other visco-elastic models to

mechanical systems are given in Reference 5.

The model in Figure 2-2 is called the Kelvin-Voigt model and Hamilton[2,4]

V( N_ . IV N. N~ N
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has proposed this model to describe the anelastic behaviour of marine sediments.

Kolsky[3 has shown that the elastic equation (2.8) when applied to solids resulted

in the Lame's constants Xand p being replaced by X+X' and p+p' where X' and p'

govern the energy damping and X and p together with the density govern the

velocity. Based on this analysis, the following equations for specific attenuation

coefficient and compressional wave speed were obtained by Hamilton[2,4.

1 f(1rc(f)

2 (1-r2)

V(X+2p) -- e (l+r2 )2

where r = a(f)C(J)/21rf. When damping is small r is neglected and we recover the

equation (2.6). Again when r is negligible there is no dispersion in the medium. For

this visco-elastic model the attenuation coefficient is proportional to the square of

frequency[3].

The Kelvin-Voigt model does not exhibit the behaviour of real materials when

a load is applied to it. The response of the Kelvin-Voigt model to a suddenly

applied stress is shown in Figure 2-3. The strain is zero at t=O and reaches its final

value asymptotically with time. However, real materials show instantaneous strain.

A model which overcomes this shortcoming is the "standard linear model". In this

model the stress and stress rate are expressed as a function of strain and strain rate

and is given by equation (2.11)

da d* + = (2.11) '

Odt dt

where MR is called the deformation modulus, r. is the stress relaxation time under

constant strain and r, is the strain relaxation time under constant stress. We now

.. ,
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have three elastic constants. A mechanical system that models this behaviour and

its response to a suddenly applied load are in Figures 2-4 and 2-5.1t is seen from

Figure 2-5 that there is an instantaneous response of this system to suddenly

applied load as is the case for real materials. The dependece of the specific

attenuation coefficient for this model is shown in Figure 2-6. The Kelvin- Voigt

model ant, the standard linear model, therefore, cannot explain the linear

relationbaip found experimentally.

However,since energy damping is due to a large number of mechanisms, Liu

etal[6] proposed that by considering a large number of relatively closely spaced

relaxation mechanisms representing the various damping processes, with each

mechanism behaving like a linear solid, the attenuation coefficient can be shown to

be linearly related to frequency for earth like materials.

Using the theory of superposition of relaxation mechanisms Liu etal[6] derived

the following expression for the dispersion of waves.

= 1+- In- (2.12)
CP(w 2) Ir w

A similar equation for dispersion has been derived by other investigators[8,9] using

entirely different approaches.

The theory of superposition of relaxation mechanisms, therefore, gives the

experimentally observed linear dependence of attenuation with frequency and also

provides a dispersion relationship which has been obtained from two completely

different approaches. This theory can, therefore, be considered as providing the

physical basis for understanding the propagation of waves in an anelastic medium

like the earth. Treating consolidated marine sedimcnts as earth-like materials and

applying the above theory, the attenuation coefficient can be predicted to have a

%-
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linear relationship with respect to frequency over the entire frequency range and

the values of the attenuation coefficient obtained at high frequency can then be

extrapolated into the low frequency region. This procedure has been recommended

by Hamilton[4]. Experimental results obtained by Frisk[18, Mitchell and Focke[19]

and Stoli[20] for attenuation in marine sediments at low frequencies, however, yield

values much less than what is predicted by extrapolating the linear law. This casts

doubt on the applicability of the superposition theory to marine sediments.

2.1.2 ' Biot ' model

Biot[10,11,121 studied the propagation of elastic waves in a system composed

of a a porous elastic solid saturated by a viscous fluid. The fluid is assumed to be

compressible and may move relative to the frame. In this model, the losses are

grouped into two fundementally different categories, one which accounts for the

anelasticity of the skeletal frame and the other for the viscosity of the fluid moving

relative to the frame.

The theory proposed by Biot was later applied by Stoll[13] and Stoll and

Bryan[14 for propagation in ocean sediments. Using this theory, the variation of

compressional wave speed with frequency and the variation of attenuation with

frequency can be obtained for known sediment properties.

The way in which attenuation varies with frequency depends on the

dominance of one or the other of the two modes of energy dissipation that are built

into the model, namely, the viscous losses in the fluid as it moves relative to the

frame or the frictional losses in the skeletal frame. Figure 2-7 shows two kinds of

response predicted by the model. For very fine materials of low permeability, such

as silty clay, the losses in the skeletal frame dominate and the authors propose a

4,-c
--- % -.
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linear relationship while for high permeability material like coarse sand etc. a

dependence f'with n = 2 at the low frequency end and n = 1/2 at the high

frequncy has been proposed. McDaniel and Beebe[15J applied the Biot theory and

computed the acoustic characteristics of different types of sediments. The

sediments were classified on the basis of their mean grain size. To derive

expressions for the acoustic characteristics they used empirical relations between

permeability and grain size. The variation of attenuation with frequency was found

to obey the law a(J) = Aj' where n lies between I and 1.8. The results obtained

by them are shown in Figure 2-8. Hovem[161, however, suggests that thle viscous

losses which is the cause of the nonlinear dependence can be made to vary linearly

with frequency if a distribution of grain sizes is adopted.

Figure 2-11 is a collection of laboratory and field data for attenuation plotted

against frequency with the prediction of the Biot model as computed by StollI23I

superimposed. We note that in the low frequency region there is considerable

scatter in the experimentally determined values and applicability of the Biot model

to marine sediments cannot be confirmed on the basis of the evidence presented in

this figure.

The variation of compressional wave with frequency as obtained using the

Biot model is shown in Figure 2-9 for sediments of different mean grain size. For

coarser materials (low 0) the dispersion is appreciable, which is similar to the result

obtained by Liu as such materials also have low Q.

2.1.3 Compressional wave attenuation vs Depth

The ray diagram in Figure 1-1 shows the rays interacting with the bottom.

The loss of energy suffered due to interaction with the bottom will, therefore,
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half space. In the water column for the purpose of our investigation we assume that

the density and sound speed are constant. The negligible attenuation in the water -

is ignored.
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Marine sediments have enough rigidity to transmit shear waves. When

compressional waves are incident on the ocean bottom interface, shear conversion

takes place. If the ocean bottom is modelled as a set, of layers with velocity

gradients within each layer, then such shear conversion will occur at the layer

interfaces and if the velocity gradients are large it will occur continuously within

the layers. Fryer[17] studied the effect of shear in marine sediments and concludes

that the effect of shear conversion within the the sediment is small at frequncies

above 20 Hz. However, if strong discontinuities in shear speeds exist or if any

energy reaches the basement where the shear speed becomes comparable to the

compressional wave speed, then shear conversion cannot be ignored. For thick

sediments, we can assume that there are no strong discontinuities in the shear

speed within the sediment and very little energy reaches the basement. Under such

assumptions, the effect of shear conversion can be ignored and the sediment treated

as a fluid. The ocean bottom model now contains only three parameters, the

compressional wave speed, compressional wave attenuation and density.

Some investigators have made a further simplifying assumption that the

dispersion of compressional waves is negligible and therefore the compressional

wave speed is a function of depth alone. For reasons explained earlier we will not

make such an assumption. Further we do not assume linear dependence of

attenuation with frequency since the applicability of this behaviour at low

frequencies to all types of sediments is in doubt.

The model for the ocean bottom we adopt is shown in figure2-6. The figure

represents a thick sediment layer in which the compressional wave speed density

and attenuation can vary arbitrarily with depth, overlying a sub-bottom of

constant density, compressional wave speed and attenuation. Since we assume that

very little energy reaches the basement, the sub-bottom is modelled as an infinite

-..% •:.%.,.-..,..... .. .-.-:.. ... ........ :........................... ........ .-...........--. ... .- ., * '.:, '.'. .. x.3
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permeability material. In the context of the evidence available for compressional

waves the validity of this assumption in the low frequency region is questionable.

Since the attenuation coefficient for shear waves is at least an order of magnitude

larger than that of compressional waves, dispersion in this case will be substantial.

2.2.4 Shear wave attenuation as a function of depth

Very little information is available on the variation of shear wave attenuation

with depth. For modelling purposes Hamilton recommends that the shear wave

attenuation be varied with depth in proportion to the variation of compressional

wave attenuation with depth.

2.2.5 Density as a function of depth

Density of the sediments can be modelled as increasing monotonically with

depth due to overburden pressure. Variation of density with depth is in Figure

2-15

2.3 Ocean bottom model

In a complete model for the ocean bottom the geoacoustic parameters are

functions of the spatial co-ordinates. A simplifying assumption commonly made for

the ocean bottom model is that of horizontal stratification i.e., the geoacoustic

parameters depend spatially only on depth. Figure 2-16 is a section of the ocean

bottom obtained by a 3.5 kHz seismic profiler in the Icelandic Basin[22]. The well

defined layering of the bottom can be seen in this figure and such layering is

observed in many regions of the ocean. Thus the assumption of horizontal

straticication is frequently satisfied.

J,.. --
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2.2 Summary of other essential characteristics of the geoacoustic

parameters.

I2.2.1 Compressional wave speed as a function of depth

In-situ measurements of velocity at the sediment water interface show a small
~discontinuity in the compressional wave speed. The velocity ratio defined as the r

ratio of sound speed in the sediment to the sound speed in water range from 0.07 to

1.03. From the sediment water interface the sound speed increases monotonically.

Using experimental data on compressional wave speed at various depths

Hamilton[4] gives a regression equation for modelling the compressional wave speed

in the sediment. The variation of compressional wave speed with depth is plotted in

Figures 2-12and 2-13 for different types of sediments.

2.2.2 Shear wave speed as a function of depth

All marine sediments possess enough rigidity to transmit shear waves. Shear

waves are important in underwater sound propagation because compressional waves

can be partially converted to shear waves at reflection boundaries and by

compressional and shear velocity gradients. Variation of shear wave velocity with

depth is given in Figure 2-14. For modelling purposes Hamilton[4] gives a regression

h equation that relates the compressional wave speed to shear wave speed.

2.2.3 Shear wave attenuation and dispersion

Experimental results for shear wave attenuation are far fewer than that of

compressional waves. For modelling purposes Hamilton[4] suggests the use of the

linear relationship between attenuation and frequency in the case of high

4 '0
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depend on the sedime:_t layers sampled by these rays. Since each ray has different

ray paths the energy loss associated with it will depend on the variation of

attenuation with depth. Very little experimental data is available on this important

characteristic. The available data is shown in Figure 2-10 which is a plot of k(z).

The function k(z) is derived from the attenuation coefficient using the law

a(f,z)=k(z)f. In the case of silty-clay sediments a peak in the value of attenuation

is observed around 300 m. Recent field experiments carried out by Jacobson etal[21]

and Mitchell and Focke[9 also indicate the existence of such peaks.

2.1.4 Conclusions

The modelling of the sediment as a visco-elastic model or as a porous solid

leads to conflicting results especially in the low frequency region. Experimental

results in the low frequency region is limited and the question as to which of these

models is applicable for marine sediments has not yet been resolved. However,

based on the theory presented so far, the following conclusions can be drawn.

1. In the high frequency region (above I KHz), attenuation in low
permeability materials can be modelled as having a linear relationship
with frequency.

2. The behaviour of marine sediments in Lhe low frequency region is not
well understood and under such circumstances it will not be correct to
extrapolate the results obtained in the high frequency region to the low
frequencies.

3. Dispersion of waves for coarse sediments can be substantial especially
over a wide range of frequencies.

'___
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Chapter 3

Determination of the Attenuation Profile

Attenuation as described in Chapter 2 refers to the decrease in the amplitude

of propagating waves due to a variety of energy damping mechanisms. This

attenuation, also called intrinsic attenuation, dcpends on the type of sediment (i.e

the compositon of the sediment, the particle size and other parameters). Laboratory

measurements of intrinsic attenuation can be readily performed but are restricted

to high frequencies because of the long wave lengths at low frequencies and the

difficulty in eliminating boundary effects. Laboratory measurements have,

therefore, been limited to frequencies above 1 KHz [1-5].

In view of this, field experiments which utilize the in-situ deposits of

* sediments as large scale specimens have been performed. In such field experiments*2'.

" it is necessary to take into account all factors like spreading, reflections, etc. which

affect the amplitude of the propagating waves. The determination of the

*" attenuation coefficient structure from field experiments, even in the simplest of

geological setting is, therefore, a difficult task.

In this chapter we will review some of the methods proposed in the literature

for obtaining the attenuation profile for the bottom from field measurements. We

then describe a field experiment that has been proposed by Frisk etal[6] to obtain

the plane-wave reflection coefficient for the ocean bottom as a function of the angle

of incidence. The sequence of processing steps that can be adopted to obtain the

acoustical properties of the bottom starting with the plane-wave reflection

coefficient information is then indicated. The advantage of this method for the

3f .
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determination of the attenuation profile over the others described in this chapter

will also be presented. We conclude the chapter by a statement of tile problem that

will be considered in the remaining part of this thesis and the assumptions that will

be made in solving the problem.

3.1 Review of methods in the literature

Anderson and Blackman[7] describe a method for determining the average

attenuation coefficient from insitu measurements. A requirement for the

experiment is that the sediment layer be wedge-shaped and overly a highly

reflective bottom. The schematic diagram in Figure 3-1 shows such a configuration.

In such an environment, the field experiment is performed to obtain an average
value of attenuation for the sediment. Assuming near normal incidence, the

pressure pulse due to the source interacts with the water-sediment interface first.

Part of the energy is returned to the water column while the remaining is

transmitted into the sediment. This transmitted energy again undergoes reflection

and transmission at the sediment sub-bottom interface. Part of thi3 reflected

energy is returned to the water column. If RL, and RLb are the received pressure

levels of the sediment and sub-bottom reflected signals, they can be related to the

source level, spreading losses and other losses by the following equations. The

difference in the field returned from the water-sediment interface and sediment- I,

sub-bottom interface can then be related to the attenuation in the sediment. The

symbols used in the following equations are explained in the legend to figure 3-1.
'-4

RLb - S-BL-2Oog2D-2aD (3.1)

RL8b S- TLb-SBL-TLW-2az-2Olog(D+z)-2aD (3.2)

jZ

h'4
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Figure 3-2: Configuration of experiment by Jacobson etal[8I



Subtracting, we obtain

RLb -RLab= SBL + [TL,+TL,-BL-201og2D"
+ 2az + 20log(D+z). (3.3)

Assuming that the term within the bracket remains constant for the entire wedge,

we obtain

L

RLb-RLsb-20iog2(D+z)-SBL = a(2z)+c (3.4)

Ignoring any contribution due to spreading term, i.e. 20 log2(D+z), and any change

in the sub-bottom reflectivity, this equation reduces to

RLb-RL b - a(2z)+c (3.5)

By measuring (RLb-RLb) at different points in range, i.e. at different depths

in the bottom, this quantity is plotted as a function of depth. The slope of the line

obtained gives the attenuation coefficient. The depth at each observation point is

determined from measuring the arrival times of the two reflected signals and

knowing the sound speed in the bottom.

The spectral ratio method of Jacobson, Shor, and Dorman[81 uses seismic

refraction data to determine attenuation as a function of depth. The experimental

4configuration is shown in Figure 3-2. Different ray paths from the source sample '-

different depths in the ocean bottom. Assuming horizontal stratification, the

cwfo
amplitude spectrum of the received signal waveform can be written as

A(O,fz)-- Eoj(),JF(O,,z)l(J) (3.6)

where 0 is the angle of incidencef is the frequency, and z the depth.A(O,f,z) is the
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received signal,E(O,f) is the source signal, F(O,fz) the earth response and 1(f) the

instrument response. The suffix j refers to the jth observation. The earth response

function F(O,z,f) can be written as

F4O,f,z) -T ,z .P 1Oz)G fz )  (3.7) "4

where T is the function containing transmission and reflection: coefficients,

scattering loss, shear conversion etc., R is the function representing spreading loss

and G is the attenuation operator. T is assumed to be independent of frequency.

The frequency dependence of G is given by

G(f,z) = exp(-k(z)r"PL(z)). (3.8)

where PL~z) is the path length, fk(z) is the attenuation coefficient. If E and I are

known, the earth response F can be obtained. To get a good estimate of the source %

function, the direct water borne energy is measured. This is given by

A., O',z w) = EO(f)R 3(O'z.)lf) (3.9)

where R is the spreading loss function ralated to the waterborne path. The

spectral ratio defined as the logarithm of the ratio of the refracted signial amplitude

to the direct water signal is then obtained.

A (O'f'z) -- T Oz)R3(Oz)G(f'z)
Awj(Ofz,,) Rwj(Oz,,) "

Taking the logarithm of both sides, the spectral ratio is

4.

-. %- A V .
A,"
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SR(Ofz) = 1nT,4Oz)±InROz)-

1nR (O,z)+1nG,(f,) (3.11)

Assuming that the attenuation cofficent is linearly related to frequency

InG(f,z) - -k(z)fPL z) (3.12)

Then,

N
SR z) - R (O,z)- kifPLij (3.13)

where,

SRO =-InT,(O,z)+1nRt(O,z)-InRu, (O,z) (3.14)

By plotting SR(O,f,z) with respect to I we can obtain the intercept SR O. Then,

S -S R -Zk.PL..'

f - kiPL j (3.15)

where SR0 is the intercept, PL.U is the path length in the ith layer for the jth
observation. A linear inverse method is now used to obtain k Having obtained k,

the attenuation in the ith layer equals fk i . Wrolstad[9] also uses a similar method

for determining the attenuation profile. The spectral ratio method has been applied

by Hauge[10 to vertical seismic profiles to obtain attenuation information.

Stoll and Houtz[1 utilize the fact that in certain areas of the ocean where

there are deep sediment layers, the velocity profile is smooth ard linear. With

linear profiles the refracting paths in the sediment layers will be arcs of a circle.

The experiment is similar to a refraction experiment and the configuration is shown

in Figure 3-3. The amplitude of the signal received at the time of the first arrival or

'o

+ o ,.- .-.. .ii°.... .. .-. .. • _ o • .'. .. • • ,i

. *J-. °l . . .m + + + + + ' - * % + s . . .. .) - - . + ." -S + + 4 ' tl 
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SOURCE-RECEIVER RANGES - 0 TO 800 km

SOURCE- 18
TO 250 m DEPTHS

RECEIVERS- ,(0W
TO 3000 m ABOVE
BOTTOM

1 TO 15 BOTTOM ENCOUNTERS

Figure 3-4: Configuration of experiment by Mitchell and Focke[12
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at a multiple of this time is given by

1 tan(O)
A n = A,(O) - ( /2l-pIR2)()+nexp(-O )) (3.16)

l+n S(x,O)

where,

dx
S(x,O) X- (3.17)dO

where n=0 for the first the first arrival and n=l ,2,.. for the first multiple and so

on. The term in parenthesis accounts for geometrical spreading,R(O) is the

reflection coefficient and A(O) is the amplitude of the source. 0 is the angle of

inclination of the angle at the source and (l+n)x is the range between source and

receiver. The exponent - 0(0) is the total loss of amplitude occuring due to intrinsic

attenuation, scattering and other causes and may be expressed in terms of the

attenuation coefficient by the expression given below.

O = (n+I)E a(J)AS (3.18)

To evaluate 0, we form the ratio A/A 0 ,

R. Al -- (l-R2)exp(-Oo) (.9
A 0  2

Therefore,

2Ra
= in (3.20)

and knowing 00, a(f) is determined.

Mitchell and Focke[12] use the setup shown in Figure 3-4 for their field

- '5 .

04 
-..
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experiment. One of the ray paths from the source to the receiver is shown in the

Figure 3-4. There may be many more such paths. The major part of the loss of

signal energy occurs along portions of the ray that lie in the sediment. This loss,

when normalised to a single bottom encounter and expressed as a function of

grazing angle is the bottom reflection loss. Obtaining this is the first step in this

method. Mitchell and Focke then use the fact that for rays penetrating the bottom

at high angles of incidence, the bottom loss associated with them is largely due to

attenuation in the layers. Under such assumptions, the bottom loss can be

expressed as a function of the attenuation coefficient and the path length in the

bottom. When the attenuation is a function of depth, then this relationship is

given by the equation below.

BL ffk()dI (3.21)

Here we have assumed that a(fz)=k(z)f and the integral is over the path length.

Using this and considering a number of rays all at large angles of incidence a matrix

of the form given below can be constructed.

BLI LI1 k"

(3.22)

BLJ lLnI Lnm Lkm J

Here Li is the path length in the jth layer of a ray at an angle of incidence of

9.. To compute the path length it is assumed that the sound speed in the bottom is

known. This matrix, which is lower triangular, can be easily inverted to give k, in

different layers and as before the attenuation coefficient in each layer can thus be

o)'ai!.ed.

..........-... .... ..... .... ..... ....

b ain, .. ..



-65-

Spofford[13] describes a method of determining the sound speed gradient and

an average value of the attenuation coefficient for the sediment from a knowledge

of the bottom loss expressed as a function of the angle of incidence. Such data

exhibit an abrupt increase in loss at a grazing angle corresponding to the

development of a minimum range caustic in the bottom refracted path. If this

grazing angle is obtained from the data, then using a relationship between this

angle and the sound speed gradient for the bottom, the sound speed gradient is

determined. The knowledge of the sound speed gradient gives the path lengths of

the refracted rays. The attenuation coefficient value is then obtained from the

difference in levels between the bottom reflected and refracted rays.

The methods described above make some or all of the following assumptions.

1. The reflection and transmission coefficients are independent of
frequency.

2. The attenuation coefficient is linearly related to frequency and
therefore a(f,z) can be written as a(fz)=k(z)f.

3. The compressional wave speed for the medium is known.

4. The compressional waves are dispersionless.

5. Where other loss mechanisms like scatter,shear conversion are
involved, the attenuation coefficient obtained will be the 'effective
attenuation' and not the 'intrinsic attenuation'.

The field measurement of attenuation coefficent show considerable scatter as seen

in Figure 2-11. On the basis of the data presented in this figure,it is clear that.

extrapolation of the high frequency results into the low frequency region using

linear law will be in error. Further, the data in the low frequency range are spread

over a wide range of values of attenuation and there is no consistent pattern to

justify a particular frquency dependence. ",'P

%I 5, . . ............. .......... -. -,
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d2 pd 2  2)p2=0 (4.8)dz2

Where k2 is the wave number in region IUl (i.e.) k2 =W/C 2.

For an incident wave of unit amplitude, the field in region I is the sum of the

incident and reflected waves.

Po=eik zOz+R(kz)e- ikzOz (4.9)

In the above equation R(k.) is the plane wave reflection coefficient of the entire

bottom structure and k -(k0
2 k2)l/ 2, is the vertical wave number in the water

column. The subbottom is an infinite half space and only outward propagating

wave exists in this region. The field in the subbottom is, therefore, given by the

following expression.

P 2=1 k)ekz2z (4.10)

where kz2 is the vertical wave number in the subbottom and 1k_) is the

transmission coefficient. Note that kz2 is complex to allow for attenuation in the

bottom. The pressure field in the sediment layer is obtained by solving equation

(4.7). The boundary conditions that the solution has to satisfy are the continuity of

pressure and normal particle velocity at the two interfaces i.e at z=0 and z=h

representing the water-sediment and sediment-subbottom interfaces. The

application of these conditions at the sediment-water interface leads to the

following equations.

JjO)=l+R (4.11)

"ne
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d2p(Z) I dfZ) 2 :d 2  Ip(z)(- z)'d- - + (k (z)-k z2 P z O (4.2) x

dz2  p(z) dz

Defining a new variable v(z) as v(z)=p-1/2(z)~z) and substituting in the wave

equation we obtain the following relation.

d2v( z)
-+Q(z)v( z)=O (4.3)
dz

2

where,

p1/2(z) p'(z)
- - 2 - 3/2(Z) (4.4)

When the density in the medium is a constant the wave equation takes the form

given below.

d 2 t-k2 2zl-k _2_Pz)O (4.5)

dz2

The wave equation in the three regions will then be as given below.

Water column (Region I): .4

d2 p ̂ ,0z2 + (k o2-k 2)p0-0 (4.6),:(4.6)

dz2

where k 0 is the wave number in region I (i.e.) ko=wl/Co.

Sediment layers (Region I):

d2v
,+Q( z)v(z)=O (4.7)dz2

,

Sub-bottom (Region IlI):

?N,-

-2i
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Water Column
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Figure 4-1: Ocean bottom model
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Chapter 4

The Forward Problem

The forward problem deals with the determination of the response of a

system to a known input given system parameters. In the context of our problem, it

deals with the determination of the acoustic field in the sediment layers for a plane

wave of unit amplitude incident on the top of the sediment. The acoustic

characteristics of the sediment layer and the sub-bottom are assumed known. We

need to solve the forward problem for two reasons. First, the plane wave reflection

coefficient and the pressure field in the sediment layers for the assumed guess

model are needed to solve the inverse problem as we will see in the next chapter.

Second, we use synthetic data to test the inversion scheme and for this purpose the

plane wave reflection coefficient is required to be computed. Two methods for

solving the forward problem are presented in this chapter; a uniform asymptotic

method and a method based on a propagator matrix formulation.

We use the ocean bottom model developed in Chapter 2 and represented in

Figure 4-1. Consider a plane wave of unit amplitude incident at the water sediment

interface inclined at an angle 0 to the vertical. The acoustic field in the ocean and

the bottom obey the acoustic wave equation. If 0 represents the pressure field; the

wave equation for 0 is

29 a29 1 a9
. 2  - 2- p(z)- )  k-- (z0=0. (4.1)

az p(z) a z

Writing 4(x,z)=P(z)eikzz the wave equation becomes

.. .. . . . .

02"
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. ircular symmetry exists in the point source field.

. The sediments can be modelled as a fluid.

To -,-iplify the analysis, we further assume that the acoustic parameters are I
known in the region z < 0 and z > h and that the parameters need be determined

only i. the region 0 < z < h.

le start by assuming that there are no errors in the sound speed and density

and ,.i: the attenuation profile needs to be determined. Then, treating errors in

the solund speed and density as unknowns, the problem is extended to the

deter'.ination of these as well.

'4-
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Figure 3-7: Exact and guess model for the ocean bottom
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1. Since a C.W. source is used the effect of dispersion is not relevant. The
sound speed obtained in step 2 of the scheme is the value at the
frequency of the source.

2. No a priori assumption is made on the frequency dependence of
attenuation. The scheme provides the attenuation as a function of

* depth at the operating frequency

3. By doing simultaneous inversion for attenuation coefficient and
41 corrections to sound speed and density structure , the effects of errors

in sound speed and density on the attenuation profile can be overcome.

3.3 Statement of the problem for the determination of attenuation

coefficient

For the purpose of this dissertation we will assume that by some suitable

experiment and subsequent processing the plane wave reflection coefficient as a

function of angle of incidence has been obtained. Further, we assume that this

information has been used in an inverse scheme to obtain a close estimate of both

compressional wave speed and the density profile for the bottom.

Consider the two models of the ocean bottom in Figure 3-7. The model on the

top is the true model of the ocean bottom with density, sound speed and

attenuation profiles as indicated. The other model is our present knowledge of the .

parameters describing the ocean bottom(i.e) a close estimate of sound speed and

density stucture as obtained in the earlier stage of processing. The problem is to

develop a method to determine the attenuation profile and corrections to the sound

speed structure and density structure for the sediment layer. In solving the problem

the following assumptions will be made.

I ~ ~1. The ocean bottom is horizontally stratified. ~

* iiM



the pressure field by the follwing equation.

kZR kr){ exp(ik,(zor+z)) f0 Pr r)Y°(krr)rdr (3.24)

Therefore, by performing the Hankel transform of the reflected pressure field

we can obtain the plane wave reflection coefficients as a function of the horizontal

wave number or equivalently as a function of the angle of incidence. Suitable

methods have been developed for performing the Hankel transform

operation[14-181. Schoeberg[19] uses a different approach to obtain the plane-wave

reflection coefficient from a measurement of the pressure field.

3.2.2 Determination of sound speed and density profiles(step 2)

In this step the sound speed and density profiles are obtained using the plane-

oI wave reflection coefficients as input data. Direct inverse methods[20-22] can be used

for this purpose.

3.2.3 Determination of attenuation coefficient(step 3)

Using the information on sound speed and density values obtained in the last

step and the information on the plane wave reflection coefficient, the attenuation

coefficient profile is obtained. In this dissertation a perturbation approach is used

to accomplish this.

This method of determining the attenuation coefficient profile from plane-

wave reflection coefficient obtained with a CW source experiment has the following

advantages over the other methods where a broadband source is used.

~. %
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pressure field by studying the peak to null difference in the measured interference

pattern.

4

3.2 Determination of the attenuation profile from the plane-wave

reflection coefficient

By suitably proceessing the measured pressure field, the plane-wave reflection

coefficient for the ocean bottom can be obtained. The plane-wave reflection

obtained is a function of angle of incidence and it contains all the information

about the acoustic parameters of the bottom. The determination of the acoustical

properties of the bottom from the plane-wave reflection coefficients is a more exact

method and we will follow this path.

A possible sequence of steps to obtain the complete set of acoustic parameters

starting with the measured field is given in Figure 3-6. We will briefly indicate the

approaches that can be adopted for solving each step.

3.2.1 Determination of plane-wave reflection coefficient(step 1)

The total pressure field is the sum of the direct field and the reflected field.

After subtracting out the direct field, the reflected field is given by[14];

j°R J---- kr)r ikzo krdk r "

Pe/r) = k )R( ) {ep( (Zr+z 8 )) } (3.23)

where R(kr)is the plane wave reflection coefficient for the bottom, kris the

horizontal wave number, r is the range, k 0 is the vertical wave number in the water

column and zr and z. are receiver and source heights from the bottom. .10 is the

zeroeth order Bessel fuction. Alternatively we can relate the reflection coefficient to

I,
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Figure 3-5: Configuration of experiment by Frisk etal[61
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We noted in Chapter 2 that both the theoretical models predict substantial

dispersion for sediments with high attenuation coefficent. In view of this the

assumption that the medium is dispersionless is questionable. This is an important

consideration because all methods described above assume that the compressional

wave velocity profile for the medium is known and this information is used in the

determination of the attenuation coefficient. Therefore any errors in the

compressional wave speed arising out of this assumption will manifest as errors in

attenuation coefficient.

These considrations indicate the desirability of an experiment which uses a

monochromatic source for the determination of the acoustic parameters of marine

-: sediments. Experimental configuration of one such field measurement carried out

by Frisk etal is shown in Figure 3-5. Two receivers are moored on the ocean bottom

at. heights 1.17 m and 54.55 m from the bottom. A CW source is suspended from

the ship at the end of a long cable. The ship is then allowed to drift and as the ship

drifts away slowly the two receivers record the pressure field. By suitable signal

processing methods the pressure field as a function of range is obtained.

Since the recorded pressure field at the receiver depends on the acoustic

parameters of the bottom, these parameters can be obtained by forward modelling.

In this we assume an initial guess model for the acoustic parameters and solve the

direct problem to obtain the pressure field at the receiver as a function of range.

This is compared with experimentally determined value, and the acoustic

parameters are changed until good fit between the experimentally determined value

and the theoretically determined value is obtained. Frisk[6] has done such analysis

with considerable success and obtained geo-acoustic models, including an average

attenuation coefficient, for different regions of the ocean. Frisk[6] also describes

how an estimate of the attenuation coefficient is obtained from the recorded

an %R
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1ik
-P'(O)=--:-- I-R) (4.12)

p(o) pO

In the above equations p(O) is the density in the sediment at the interface while po

is the density in the water column. P(O) is the pressure field in the sediment at -

z==0. The primes denote derivatives with respect to z. Similarly applying the

boundary conditions at the other interface yields a second set of equations.

f.h)= Tekz 2h (4.13)

:; 1 ik 2T

1P'(h)= zk 2h (4.14)

p(h) P2

4.1 Uniform asymptotic solution

" The uniform asymptotic solution[l] to the wave equatiop in region II has been-

discussed in detail by Kawahara[2]. The solution that is valid when tlvr function

Q(z) varies smoothly and there is only one turning point, is

V( }=el Q -1/( Z 11 A(,t }}+C2Q-114(Z),,11/4B(,j 11
-1] z/4A zz i z4.5! '2,Q

where Ai and Bi are the Airy functions. -y(z) is given by the expression

-y(z1) = 3 /2 f 1 14 .1 6) .- ".

and zt corresponds to the turning point iLe Q(zt)=o. The sohlition for

l1}"-p/2(Z)V(Z) is then;

z)-'1g(Z)+C292(z) (I 7

. ,

t.'z

It
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where

9 (z) (Z)Q-1/4(z)-y14,j-(z))L ". .

and c and c are arbitrary constants.

Applying the boundary conditions at the two interfaces we now obtain a set

of four equations with four unknowns to be determined namely the cofficients c.

and c2 and the reflection and transmission coefficients R and T. Solving for these

unknowns, we obtain R,T,clandc2. The coefficients are now substituted in equation

(4.17) and the field obtained. Kawahara[2] has shown that for certain canonical

profiles like c linear, c2 linear and c3 linear the integral in (4.16) can be performed

analytically.

4.2 Propagator matrix method

The second method for solving the forward problem models the sediment as a

stack of homogeneous layers. By making the thickness of the layers small any

arbitrary variation of density, sound speed and attenuation can be accommodated.

Mook[3] has proposed a method for determining the reflection coefficient using the

propagator martix approach. We will essentially follow his approach and indicate

how a numerically stable algorithm is obtained for computing the plane wave

reflection coefficients and the field in the sediment layer. .A

The propagator matrix method is dealt with extensively in the literature[4-6].,-N-

We will explain in brief the essential features of the propagator matrix method

before taking up the problem indicated above.

jl % %

:...2 1 .; .;.:.: : .. :. : :. ...:.:..: :. :..:.;..: . :. ;.-... '.,,.! N _ ..'-.':-> ,,:y.-.:.: : --,;:,:.:,:: ..- ,--,, , 3',,
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Any second order differential equation can be written as a set of first order

equations. The general representation is given below.

df
- - A(z)f(z)=0 (4.18)dz

For the equation (4.2), f is an 2x1 vector and A is a 2x2 matrix. The propagator

matrix (also called matrizant) is defined as

Pzzo)- I+ A( l)dfl+

•31 4 1~~ .. + (4.19) 2-

where I is the identity matrix of the order of A. By suibstitution it can be shown ,-'

that P(z, z0 ) satisfies the following differential equation,'-bd z 2  z

dz -A() z) 0 (4.20)- --

Also P(z0 ,z0 )=I. The most important property of the propagator matrix is that it

enables us to obtain f(z) from its value at some other point zO.

fd 2 "--P(z,ZO)f[ zo) (4.21)

To see that this is true,we substitute f(z) in the differential equation. Then,

d2f~z) A(z)f(z)=O (4.22)

dz2

Therefore, f(z) satisfies the differential equation. Also it gives the value of f(z)

at z0 correctly.

.K*

,9 . . ., • - " . ". . " - ".. . ". . " . ". " . ". . ". "- • -

P -w 
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f(z0)=P(z0,z0 )f(z0)= f (z0 ) (4.23)

Another interesting property of the propagator matrix is shown by the following

equations.

f(z}- 2 P(z2,zl)f(zl)

=P(z2,Zl)P(z l,z O)f(z O) (4.24)

If we now choose z2 = z0 then,

f(z0 ) = P(z0 ,z1 )P(ZI ,z0 )f(z0 ) (4.25)

or

I = P(Zo,Z1 )P(Z1 ,Zo) (1.26)

When the matrix A is not dependent on z as in the case of homogeneous

layers,

, P(z,Zo)=I+(z-zo)A+1/2z-zo) 2A 2+ + (4.27)

P(z,z0 )=e(z-zo)A (4.28)

For a square matrix A with distinct eigenvalues, Xk(k=l, • • ,n) by the Sylvester

theorem,

E~) ~ (k)l XA-XkI(.kffk r~k=1 rk 34k~X

Reverting now to the differential equation (4.2) it is written as a set of first

order equations.

I ~-i
:,4

*..., . . . . . .. . . .
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1

A 2z [ (4.30)dz W0,.

wpwpz)

When applied to a stack of homogeneous layers p(z) and k z represent the density

and the vertical wave number in the layer under consideration. As before Wv 2

represents the frequency and the vector f contains the elements P and w, the

pressure and normal particle velocity. The matrix A for the above equation is,(42)
therefore .

P "0 )p z)(4.32)A = i kz 2 o4.1

WP(z) z) .

The propagator matrix is now obtained using equation (4.29).

wpp

1W*1

* particle velocity at depth z=0 is related to the pressure and particle velocity at

depth z-h by the following equation.

rP(1) 1 Fos~k~,h) s n( k 2 1 ) 1F
= I'll)i kz0 (4.32)

ll)] LiY(l)sin(kz 1h) cos(kz 1h) [i0) j,

patSince each layer is homogeneous, the pressure and normal particle velocity in

*the layers can be written as a sum of up and down going waves.

4- L

6m
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D (0) U(O)
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Figure 4-3: Multi-layer model
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F(z) = DeikzlIZZrefl + Ue-ikzjIZ-ZreI (4.34)

?..

w(z) -- (Deikzjjz-z, - Ue-ikzIz-ref) (4.35)

or,

(z) ] = I -k I [eikzllZzre, 0U (4.36)
Lw(z) I eik zlrzr I

wp wvp

Setting Zre!=O, we obtain

P(z) eikz eikzi4r [D 1

Lw(z)J Y(1 )eikzlz Y )eikz J J (4.37)

where,

'op

Now consider a stack of homogeneous layers as shown in Figure 4-3. Then the

pressure and particle velocity at z=O is related to the up and down going waves in

the watercolumn by the following equation.

rP(O) 1 I 1 l)rD(O)]14.8
004)J Y(0) Y) [U(O)J

or equivalently,

Y, .4

& lit"
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0)1 1 [ 1 ] [10) (4.30)

L UO)I JI Y

Following the method of Mook[3] the matrix in equation (4.33) is modified

and the elements expressed in terms of ratio of impedances. This is done to avoid

difficulties that may arise due to P and w being of different scales of magnitude.

P(O) ] cos(kz(1)h) -isin(kz(1)h)  P(I)

0)4o) i)sin(k,(1)h) (l)cos(k,()h) ) J (

where (I)--'(I)/Y(0), (0)--/Y(0), and g(z)()=1/Y(1). Using the propagator

matrix we can relate the P and w at the nth interface to the values of P and w at.

the first interface:

P(0) 1 P(n- 1)1
-- ( b .... n-l)(4.41)

L O)o L -I)ujn-1) .

where Os are the propagator matrices for the layers from 1 to n-i. The pressure

and particle velocity at the bottommost interface is now related to the up and

down going waves in the terminating half space.

P(n-1) 1 1 D(n)

Ln-I)u(n-l) [(n) -J(n) (.(n)

The relation between D(0),U(0) and D(n),U(n) can now be obtained.

D(0 1 ,1 [, , I
](1).. Dn-l) (4.43)LIo)j 2 1-1 O(n) -On) (l)J:

W1

.5 ,=, '3, .- 7 .' ,,, ', -,," ¢ v "-"- .,. "- .",", -' ' -' .' ... ;Ji I X,.""' . . " ,, . ,., '
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or,

Io) D(n)+U(n) 1
0' (4.44)'"

L(O) L, (n){D n)-(}(n)} . '(4-4

where

- (0 1 ..... n-n ) (4.45)

and Ois a 2x2 matrix with elements 0ll, 12,¢2 1andO22. In the infinite half space

representing the subbottom U(n)=O. Therefore,

--( 1 [• 1(4.46) -

U(0) V(n)D(n) "

The reflection coefficient is then given by

R -- - (4.47)
D() 01 +f1")0,2 ,

Having obtained the reflection coefficient the pressure and particle velocity at

the top interface are easily found to be P(0)=I+R and tv(O)= 10)(1-R)

respectively. We can now propagate the pressure and particle velocity downward

and determine it at any layer. This is similar to solving the differential equation .

given its initial conditions. If this procedure is adopted, the scheme becomes

numerically unstable aud the solution rapidly diverges from the correct solution in

regions where the waves become inhomogeneous. Hawker and Foreman[71 give

examples to show that the direction in which the integration is carried out is

important to obtain a stable solution and recommend that the integration be done

.J 5.*~ ~ - *~. . . . . * - - . %'

~ ~ S....-'5- ",
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upwards starting with the conditions at the bottommost interface as the initial

conditions.

To do this, we assume that D(n)=.O and U(n)=0. The pressure and particle

velocity at the nth interface is then related to D(n) and U(n). j

S(4.48)-

[n U4n) I [on) n) J (4

We now relate P(n-1) and uwn-1) to P(n-2) and w(n-2).EP(n-2) ] IPn1
- € (4.49)lon-2)t~n-2) Ofn-l)ujn-l) ,

As before relating the up and down going waves at the top to the up and down -

going waves in the infinite halfspace in the bottom, we obtain the following

expression.

D(0) [
- J (4.50)

UO) L'

This gives the reflection coefficient as

U(O) __ ___ _____R --
D(O) 011 + (n)012

The pressure computed will correspond to an incident amplitude of D(O). The

pressure field at any point in the layers is then obtained by dividing thrvgh by

D(O). r this thesis we use the propagator matrix method to compute the reflection 0

coeffiiecnt and the pressure field in the sediment layers.
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Chapter 5

Formulation of the Inverse Problem

In Chapter 3 we proposed a sequence of steps for the determination of the

acoustic parameters from the measured pressure field. We also gave a statement of

the problem that is addressed in this thesis. In Chapter 4 we dealt with the solution

of the forward problem. In this chapter we formulate the inverse problem, namely,

the determination of the attenuation coefficient profile in the sediment layer using

the plane wave reflection coefficient at various angles of incidence as input

information. The real and imginary part of the wavenumber at 220 Hz are given in .

Table 5-I for different types of marine sediments. These have been obtained using

data presented by Hamiltonf 11 for the compressional wave speed and attenuation

coefficient. The attenuation coefficient at 220 Ilz is computed by extrapolating into

the low frequency region using a linear law. The attenuation coefficient is order of

magnitude smaller than the real part of the wavenumber and can therefore, be

treated as a perturbation of the real part. Hence, we formulate the inverse problem

largely following the perturbation method introduced by Cohen and Bleistein[2J.

They dealt with the problem of determining perturbations in sound speed structure

using the plane wave reflection coefficient at all frequencies and at a fixed angle of

incidence as input information. In Chapter 3 we indicated the advantage of using a1

constant frequency source for determining the acoustic properties of marine

sediments. Therefore, an essential difference between our formulation and theirs is -

that we use plane wave reflection coefficient at different angles of incidence and at

a fixed frequency as input in!armation.

i = . k- ,- : , . .-, - , .. L . . ; - ./, IL 5" .. _ - r , . . -- ° . • .- .
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Type of Wave Real Imaginary
sediment speed part of part of

m/s wavenumber wavenumber
nepers/m

Fine sand 1750.0 0.79 0.0126

Silty sand 1645.0 0.84 0.0145

Silty clay 1520.0 0.91 0.0019

Table 5-I: Real and imaginary parts of the wavenumber at

220 Hz for marine sediments

.,..".
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In this chapter, we first arrive at a non-linear integral equation relating the

plane wave reflection coefficient to the unknown attenuation coefficient profile. The

integral equation is then linearised using the Born approximation. We also obtain

the region of validity of the Born approximation.

Rytov approximation can also be used to obtain a similar linear integral

equation. Keller[3 has shown that the Rytov approximation is valid for longer

ranges than the Born approximation in regions where there is only one field, for

example in regions where only transmitted field exists. Keller observes that where

there are more than one field, the Rytov method has to be applied to each wave

separately for it to retain its advantage over the the Born approximation. On the

other hand, the Born approximation can be applied to the total field. In a recent

work Oristaglio[4] studied the accuracy of the Born and Rytov approximation to

the laws of reflection and refraction and noted that the Rytov method works

reasonably well for in the backscattering regions as well even when the method is

applied to the total field; a surprising result in the context of Kellers observations.

We formulate the inverse problem using the Rytov method so as to make

comparisons between the two methods.

Consider the two models in Figure 3-7. One of these is the true model and the

other the guess model which we call the background model. The background model

represents our present knowledge of the model. In this chapter we assume that the

only unknown is the attenuation coefficient profile in the sediment layer. The other

acoustic parameters of the two models are the same. We first determine the

response at the water sediment interface of the two models to a plane wave of unit
"' amplitude. For the true model this is obtained from a field experiment. For the i

background model we obtain this by solving the forward problem using the method

described in Chapter 4. We, then, relate the difference in response to the unknown
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attenuation coefficient profile and obtain an integral equation representation of the

problem.

5.1 Inverse problem formulation using Born approximation

5.1.1 Derivation of integral equation

Consider a plane wave of unit amplitude incident at an angle 0 as shown in

figure 5-1. The pressure field in the sediment layer is given by the equation;
02o 2 0 ()

-- 2+p(z)(-)'-+k)= (5.)a X2 az ~)8z (5.1) 0

Let 4(x,z) - P(z)eikz'. Substituting in the equation (5.1) we obtain the

following one dimensional wave equation for the field in the sediment.

d d P(z) 22p' "
d 2 ( ±p(z)( )+(k (z)-k 2 )piz)=O (5.2)

Let v(z) = p-1 1 2(z)P(z). Substituting this in equation (5.2), we obtain the

Schrodinger type equation given below.
~d 2 )v )--'

d v ) (k2(z)+p(z)-k z2 )v(z) -O (5.3)
i i : d z 2

where,

.. • p1l2lz) '(Z) ,

We derive a similar equation for the backgroud model as well. The subscript

'b' in the following equations refer to the backgroud model.

amc
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d%.l~z) (k
dz2  (z)-+pb(Z)-kz 2 )Vb(Z)=O 

(5.4)

where,

1/2
-b P6 Pb'(Z)

The wavenumber in the sediment layer is a complex quantity and is given by the

following expression.

(5.5)
C(z)

where a(z) is the unknown attenuation coefficient and C(z) the sound speed profile.

Since Cb(z)=C(z) we write k(z)=kb(z)+ia(z). We also note that p(z)=pb(z).

Substituting in the equation (5.3), we obtain

d 2t~z)
dz2 z)-(kb2 (z)+pb(z)-k_2)tvz)=-2ikv(ztvz).

dz

Multiply equation (5.6) by vb(Z) and equation (5.4) by v(z) and subtract one

from the other. We, then, obtain

vb( z)t'( z)-tjz Z)b - - 2ikb( z)a( z)v(z)vb( z )  (5.7)

In the above equation the double prime denotes the second derivative with respect

to z. Integrating both sides between the limits 0 to h leads to the following

equation.

Vb(Z)V(Z)-Vb(Z)t(Z) d0h " -2ikb(z)t=zlvb(z)(z)dz (5.8)
fo



To determine tVz),vb(Z),v'(z),vb(z), at the limits z=0 and z=h we make use of the

boundary conditions, i.e continuity of pressure and normal particle velocity. Since

the water column is a homogeneous medium, the boundary conditions at the water I
* sediment interface for the true model are given by the following expressions. R is

the plane wave reflection coefficient at the water sediment interface.

P(O)=I+R, P(O) = kz0(l-R(59)

A similar set of equations are obtained for the boundary condition at the other

interface. Here T is the transmission coefficient.

Pb(h)-

P~h)=Teik z2h, P(h)= -ik z2 Te z2 (5.10)

The boundary conditions for the background model obtained similarly are given

below. Rb and Tb are the reflection and transmission coefficients for the

background model.

Pb(O)
Pb(O)=l+Rb, Pbl0)= "z0(-Rb)

__ Pb(h) i

,Pb(h)=Tbeikz2 h, Pb  b(h) •kz 2Tbe z2h) (5.11)
P2

The left hand side of the equation (5.8) is now evaluated using the relationship

between v(z), vb(z) and P(z) and Pb(z) given above and the boundary conditions.

*After a some algebra we find the L.H.S. of equation reduces to zero at the upper

limit while at the lower limit it is given by the following expression.

2ik z ",

(Vb(Z)tI(z)-~z)vb(z))IO=--Rb-R)
PO -.

.

: ;. . , : .: : . . , %i' , . .. ,:. ":--. '%':-" ".'-"".'-: -?'-:" ' - , .- ' '"- .- ":'''.-4 '- '--,"



The integral equation is therefore,

kz°(Rb-R) foh kb( ) ( ~t )Vb(Z~dz(5.13)

This is a non-linear integral equation and it is not possible to solve this equation for .J

a(z) since i(z) is dependent on the unknown a(z). As the attenuation is a small

perturbation on the wavenumber we make the Born approximation tVz)=Vb(Z). The

integral equation then, reduces to the following.

kzo(Rb-R) hk (z)(z)5.14)

PO  Jo pb(z)

Since kb(z) and pb(z) are known, Pb(z) is determined by the procedure outlined in

Chapter 4 and the integral equation solved for a(z).

The solution of the integral equation will be dealt with in a later chapter.

Here we will continue to establish the criterion for the applicability of the Born

approximation. L ,

5.1.2 Region of validity of the Born approximation

In studying the applicability of the Born approximation we start with the

Schrodinger type equation (5.3). Putting k(z)=kb(z)+ia(z) we obtain,

d 2 tiz)

2 (kb2(z)+pb(z)-k 2 )tvz)=-2ikbp(z)t~z) (5.15) z

Let G(zz 0 ) be the outgoing Green's function satisfying the equation,

d2G .
-2G+kb 2(z)+p(z)-k 2)G=---Z-Zo) 0 < z,z 0  h

IN NN
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LJ Then we can write,

Skz,z)-vb(k0,z)+ 2ikb(Zo)a(zO)tzk0, zo)a(kxz,zo)dz0  (5.17)

The total solution can therefore be viewed as the sum of the solution to the

homogeneous equation vb(z) and a scattering part v,(z).

viz) =Vb(Z)+V.(Z) (.8

Using the above, we obtain

v,(kzz)= 2 ikb(zo)a(zo)v(k 2 ,zo)G(k, z,zo)dzo (5.10)

V(k'z)= fn2ikb(zO)a(zo)vb(kz,zo)G(k_,,z, Zo)dzo+

Z hI0 2ikb( z°)a( zo)v, (kzzo)G(k_, zzO)dz° (5.20)

In making the Born approximation we write tjz)=v(z). This implies the following.

f 
h

Sm( Zo)v(kz,zo)G(k,,z,zo)dz0  ,v(k.,z) (5.21)

S where, -/

rm(z)=2ik( b(Z)a(Z) (5.22)

Define the norm of f(z) as below.

I*!
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Ill = hz)dz/2 (5.23) .4-

Let I represent the integral on the left hand side of the equation (5.21). Then,

II/=jh[f h mzo)v(k,zo)G(k,z,zo)dzo12dzI
1/ 2 5

But, by Schwartz inequality,.a

IfJ h
jhm(zO)v.(kz,zo)Glk,,z,zo)dzoj m(Zo)v slk.,zo)dzo)

f hG(k,z,zo)dzo 
(5.25)

/0 /o0 m(z0)v.,(k.T,z 0 )G(k,,z,z0 )dz0I 5 11lit811 G(k.,z,z0)dzO (5.26)

The norm of I therefore satisfies the inequality given below.

11111 < IlmII I vI[ f{JG( kz,z,zo dzo)}2dzl 1/2 (5.27)

Let G(z,zo) have a maximum value equal to IG(z,ZO)jmaz. Then,

lull !5 limll IIv.II h IG(kz,z, Zo)lmaz (5.28)

Using this in equation (5.27) we obtain,

limi JiV, h lG(kTZZo)im,,=C Iv,11i (5.29)
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or,

limll h lG(kzi,zo)lmoz<<1 (5.30)

The condition to be satisfied for Born approximation to be valid is then given by

IlkbI 1kalI h IG(kz,zZo)Imaz «1. (5.31)

The applicability of the Born approximation depends on the magnitude of the

perturbation, the depth of the sediment, and the magnitude of the Green's

function. We will use this result in a later chapter to determine the most suitable

angular aperture for the inversion scheme.

r

5.2 Inverse problem formulation using the Rytov approximation

We will in this section derive the integral equation for obtaining the unknown
attenuation coefficient profiles using the Rytov approximation. We again start with

the one-dimensional wave equation. For the sake of simplicity we have assumed

that the density in the sediment layer is known and is a constant.

d2F z)
dz2  ±(k2(z)-k 2)PIz)-o (5.32)

Let P(z)=ezp(tP(z)). Substituting this in the above equation and using the relation

k~z)'-k(zl+ia(z), we obtain

d 2tP dtP 2
dz(2 d( z )- - 2 ikb(z)a(z) (5.33)

Let P4 (z) be the solution to the wave equation for the background model.

4
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-d2 Pb 2 2k (5.34) -

dz2

We now write Pb(z) =ezp('Pb(z)). Substituting this in the wave equation yields the

following.

d2 ?b db 2 (k 2 (z)k 2 )-0 (5.35)

dz2  dz

Let O(z)=Obb(z)+Ot,(z). Substitute this in equation (5.33) and then subtract

equation (5.35) from the result. We then have the following equation.

d 2?/ do8 ~b ~
2 - -=[-- +2ik(z)k(z)I 5.6

dz2  dz dz dz

The left hand side of the above equation is, then, put into a more convenient form

for manipulation as shown below.

d2(pbok.) 2 ~~~ d2 ob

d2  dz + +P6- 2 (5.37)
dzdz d dz dz

Using equation (5.34) and the relation Pb(z)=Pb(z)(d~kb(z)/dz) the equation (5.37) is

written as below.

d2(bIB)d~k 8  dikb do's
+(kb2(z)-kX)bPP[ ±2- -~(.8

dz2  dz2  dz dz

Now substitute equation (5.36) into the above to yield

d2 PbtP _k =Z- 2i(z) )2+i

dz2  +P60P8(kb k6 2  Pb I dz }2±ib(z)*)J (5.39)

Multiply equaLion (5.39) by Pb(z) and equation (5.34) by Pb(z)?P8(z) and subtract one

.51 J, JA
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from the other. We then integrate over the depth h and obtain the following

equation.

d(PbPb) dPb h d58

dz dz dz

ph diPs
= [(-- ) 2+2ik(z)a(Plbz2(z)dz (5.40)

The left hand side of the equation is evaluated by relating it to the boundary

conditions given in equations (5.g),(5.10) and (5.11). The relation between the Ps

and Vps given below are also used for this purpose.

'P~z).-.
VP(z)= In PIz), 0b in Pb(z), tip'= In (5.41)

Pb(z) (541

diP ( z) 1 dP(z) 1 dPb
____ - _ _ - __ -(5.42)

dz J(z) dz Pb(z) dz

Using the above we find that the left hand side of the equation vanishes at the

upper limit, z=h. At the lower limit,z=0, it is given by the following expression.

2diP8 (0) Rb-R R2
Pb2(z)-=2ik ~ -(1±Rb) (5.43)

dz (I+R)(I+Rb) PO

The integral equation is then

2ik Ob  (Rb -R) h (di)Y -2ikbz)c&( z)jp b2(z)dz (5.44)
po (i+R) -O dz

So far in our derivation no approximations have been made. We now make the

approximation that (dt,6dz) 2 is small compared to 2kb(z)a(z). Neglecting this term

the integral equation reduces to,

-o
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k 0, l+Rbh1
1+Rb-R) _ k(Z)C(z)lPb2(z)dz (5.45)Po I+R Rb-R - P b (i.

This equation is similar to the equation (5.14) obtained with the Born

approximation except for a multiplicative factor in the left hand side.

5.3 Summary

In this chapter we have obtained the linear integral equation relating the

unknown attenuation profile to the experimentally determined plane wave

reflection coefficient. We have applied both the Born and the Rytov approximation

to obtain two similar representation of the integral equation. Before we take up

the solution of this integral equation, we will consider in the next chapter the

general issues involved in solving this class of integral equations and include in it a

review of the methods in the literature for obtaining solutions.

.2 -. °. -. - .
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have in effect increased the magnitude of the eigenvalues. This results in a stable

and smooth solution.

To see how the addition of a matrix like H affects the eigenvalue, we %

investigate the case when H=I the identity matrix. Consider the eigenvalue

problem forGTG. Then,

GTGv - Xv (6.39)

where X is the eigenvalue. Adding (eI)v to both sides, we obtain

(GTG+eI)v = (X+eI)v (6.40)

The eigenvalue problem for (GTG+eI) therefore gives the same eigenvectors but

the eigenvalue has been increased by el. The solution obtained by the

regularisation method when H=I is given below.

m = (GTG+eI)-GTd (6.41)

By eigenvector analysis it can be shown that the inverse operator shown above has

the following form.

(GTG+eI)- - V A{ U( T 6.42)

A 2+e -''
n

We therefore see that when the eigenvalues are small, i.e Xa<e the diagonal terms

of the matrix goes as (X\/e), thereby eliminating the effect of small eigenvalues. On

the otherhand when Xn>e then the effect of e is ignored.

.............



Though the data does not in any way suggest that the solution mr() must be

smooth function, we apriori make this assumption. There could be other

constraints. But one selects the constraint from the physical nature of the problem

and ones guess of what the solution should be.

Let S(m(x)) be a measure of smoothness of the solution i.e the smaller the

value of S, the smoother m(x) is. Restating the problem we now try to find m(x)

that minimises S(m(x)) subject to the data constraints being met. A least squares

procedure can now be adopted which minimises Id-Gm12+'S(m(x)).

One measure of smoothness that is proposed by Twomey[9J is the quadratic

measure given below.

b
S(m(x)) -- (rn"(x))2dx (6.35)

am

We can generalise this by considering a constraint operator D acting on m. We,

then, seek to minimise the quadratic measure defined below.

mTDTDm - mTHm (6.36)

where H=DTD. To obtain a solution for m we now minimise the expression;

MTHm+XldGm12  (6.37)

Differentiating with respect to each element of m,we obtain the solution;

(GTG+XH)m - GTd (6.38)

We note that the acceptable solution has now been defined as one which

satisfies the smoothness constraint. By the addition of the matrix H to GTG we

. - *-. -. .. . . .
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EXACT REPRE SEN TAT ION
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Figure 6-1:



E1Am Am 9 ) = -11 - (6.34)

We note that the error in solution is propotional to I/X n2 and the variance becomes

large when the eigenvalues are small. Wiggins[5] and Jackson[6] suggest that the

effect of low eigenvalues can be eliminated if we set eigenvalues lower than a

threshold level equal to zero. The eigenvectors associated with these eigenvalues are

therefore eliminated and the solution obtained will therefore have poorer resolution.

Eliminating eigenvectors corresponding to small eigenvalues is equivalent to

obtaining a smooth solution.

6.2.2 Regularisation method

Phillips[7], Twomey[8], and others have proposed regularisation methods for

obtaining an unique stable solution. In the generalised inverse method we obtained

an unique stable solution by looking for a solution which has a specific property

namely that of minimum norm. The instability was overcome by effectively

smoothing the solution. The regularisation method proposed by Twomey[8] is

based on the method first suggested by Phillips [71 and looks for a smooth solution.

The measured data d(y) is available at discrete points and therfore it is defined

only at these points and to within measurement error as shown in figure 6-1. We

can therefore say that dty) is arbitrary except that it passes within the error bars

associated with each of the measurement points. Therefore, there can be an

infinite set of m(z) associated with the infinite set of d(y). The ambiguity can only

be overcome by imposing additional constraints on m(x) which enables one to pick

out of the large possible set of m(z) one that satisfies the conditions imposed on the

solution. One such constraint that can be imposed is the smoothness criterion.

.•...................................... :,..,.,
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S= (6 1.29)

The solution m9 obtained by the generalised inverse operator, therefore, uses only

the eigenvectors corresponding to the non-zero eigenvalues. The true solution

however will be a linear combination of all the eigenvectors. We can then represent

the true solution by the following equation.

n m
m -- - .-Vj (6.30)

The norm of the total solution is then, r

Im12 Img2+ : (6.31)
jF.n+ 1

From the above we see that the generalised inverse operator yields a solution with

minimum norm.

Though the problem of non-uniqueness has been resolved instability still

exists. Consider the situation when data contains error . Then the error in

solution is given by the following expression.

Am 9 -- 'Ad (6.32)

The covariance of the error in the solution can then be obtained. Here El.]

represents the averaging operator.

CAm -AmE 1- LEAdAd G -r (6.33)

Assuming that the elements of Ad are statistically independent and have the same

variance we obtain,

or
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GTGv - X -12Vi (6.23)

and

Gv Xiu (6.24)

GTu. = Xiv. (6.25)

In addition there exists m-n eigenvectors vi such that Gv -=O,i=n+l ......,m..

Lanczos[4] has shown that the matrix G can be decomposed into product of three

matrices. Using the decomposition theorem we obtain'

G = UNANVN T  (6.26)
N~

Here UN is an nxn matrix containing the eigenvectors of GTG, VN is an mxn

matrix containing the eigenvectors of GTG for the non-zero eigenvalues. A is a

diagonal matrix containing the non-zero eigenvalues. Since Gvi=0 for i=n+l,...

,m, any linear combination of these can be added to the solution and the data will

still be satisfied. This is the cause of non-uniqueness in an under-determined

system.

The operator defined below is called the generalised inverse operator.

G - 1  VNA-1UN T  (6.27)

Using this operator obtain

M., A-' (6.28) :
m9  V N 'NUN

or

..%,,... ..--,,....Y.,1
, r r, . . -. .. . ...'... ..".,,. . .. , . .- -... ''. .,-'.. .. , .. ,'" " ..' .' .
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6.2 Solution in parameter space - Error free data

By using a suitable quadrature scheme the integral (6.3) is represented by the

sum given below.

di E WU ( V6.1)

where %j is the weighting associated with the quadrature scheme. For the entire

set of observations we obtain the following matrix equation.

d Gm (6.20)

where d is a nxl vector containing the observations and G is an nxm matrix which

operates on the vector m of dimension mxi representing the solution.

6.2.1 Generalised Inverse

If Gy is a nxn non-singular matrix, then, the solution to the equation is easily

obtained.

m -G d (6.21)

When the integral is written as a sum, the interval Ax is made small so that the

true structure of the solution is obtained. This results in an under-determined .
system. Though the analysis which follows is applicable for any general nxin matrix

we will consider such a case i.e. where n is less than m. It can be shown[4] that the

square matrices GGT and GTG define a coupled eigenvector eigenvalue problem

such that

GGTu - X.2u. (6.22)

.. -...............-..........-.. z
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kernel has no zero eigenvalue. One example of this is the Fourier integral which

yields an unique solution. However, in practical situations, data is available only at

a limited number of points. This situation generally yields non-unique solutions. We

have to, therfore, deal with the twin problem of instability and non-uniqueness in

solution. Many methods have been proposed in the literature for solving equations

of this type. All of them incorporate a priori information about the solution to

overcome the problem of non-uniqueness. The solution is made stable by schemes

which in effect make the eigenvalues large or reduce the effect of the small

eigenvalues. We will review these methods, briefly, in the following paragraphs. We

Mi will also study how solutions are obtained when the data contains noise.

When data is available only at discrete points the integral equation takes the

form in equation (6.3). In solving the integral equation two approaches are possible.
'- •

The integral can be represented as a sum by adopting a suitable quadrature scheme

"I and then the solution of the integral equation reduces to solving a set of linear
r-I.

equations. A reasonable quadrature scheme can be adopted if we have some prior

knowledge of the solution from the physics of the problem. For example, if we know

that the solution is smoothly varying we can assume without much error that the

function is constant over small intervals and represent the solution by a set of

parameters. On the other hand, if we have no knowledge about the solution, such

discretisation can be erroneous since it may hide some structure that exists in the

solution unless the discretisation is made infinitely small. An alternative is, then,

,to express the solution as linear sum of a set of basis functions and determine the

coefficients of the linear combination. The class of methods which follows the first

- approach we will call as providing solution in parameter space. The latter we will

call as solution in function space.

e-, -..
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N
r(x) = n() (8.15)

n=0

Substituting this in equation (6.14) and using the orthgonality property of the

eigenfunctions we obtain

N
d(y) = \nann(Y) (6.16)

n=O

The coefficients a are obtained using the orthgonality property of the

eigenfunctions.

d
d X n (6.17)

n. nn I;'Xn

where,

b
d --f d(Y)On(y)dy (6.18)

Let d(y) contain an error e4y). Then,

N d+en

n=0 n .-n

If the kernel has small eigenvalues then small error in data will result in large

errors in solution. The kernel of the integral equation can be viewed as behaving

like a smoothing operator which smooths out wide fluctuations in solution. Such

smoothing operators are characterised by 'he presence of low eigenvalues. Indeed if

the kernel is a delta function there will be no smoothing and a stable solution is

obtained.

When data is available over an infinite range, unique solution is possible if the

.. , ..



d2(y) =dj(&') + NJ G(x,y)8inwx dx (6.10)

The norm ldjd,d 2) is then,

Udd' {[G(x.j)sinwx d.T2 d')/2  (.1

The norm Im(m,m 2) is given by the foliwing expression.

mmIm)= max. Nlsinwxl =N (.2
.(MI'm2

For large values of w, the integral (6.11) approaches zero by virtue of Reimann-

Lebesque lemma[2J as long as fba G(x,y)dx exists. Therefore we can make 1Q.d,,d 2)

arbitrarily small while keeping Ilm(mi'm 2 ) large.

To see how the kernel of the integral equation influences this property, we

C, will consider a special type of integral equation for which we can obtain solution.

Let us assume that the kernel of the integral equation is Hlermitian. Then, by

Hilbert-Schmit theorem[3l the kernel can be represented in terms of its I
eigenfunctions. The eigenfuctions are orthogonal and the eigenvalues are real.

N

G~x i ) =~j ~(6.13)

n=O

Substituting in equation, we obtain

d(y) = m(x){ X,O,jx)On (y)}dx (.4

Let,

s'.N.



L bG(x,y));X)dx=0 (6.6)

If a non-trivial solution 4(z) exists for the above equation, then any multiple of O(x)

can be added to the solution of the equation and it will still be solution of the

integral equation. There can thus be an infinite number of solutions for the integral

equation.

6.1.2 Instability

By instability, we mean, that small changes in data can produce large changes

in the solution. To demonstrate this property of the integral equation we use the

proof due to Tikhonov[1].

Consider the integral equation (6.4). We shall measure changes in the

function d(y) by the norm defined below.

-~ 

fb 1

ljdl,d2) = I {d(y)-d 2(y)}2dy] 1/ 2  (6.7)

The changes in m(z) is measured by the following norm

Sm(mI,m 2) = max.1mi-m 21 (6.8)

Let us assume that the function m,(x) has been changed to m,(z) given by the

following equation.

m2(z) m(z)+N.sin(wz) (6.9)

Substituting in the integral equation, we obtain the change in d(y).

'AP'4

.,,; , , l ' i , .... , . ,,,. .; - -,. ,,,:... . ;,. '-, , . t . '.",'.,.,- ,, ,. o,..,.---.'.-.,-,_,, :-. .
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However, in practical situations d(kz) containing the data is known only at discrete

p,int.. Thor.. thp inrtgral equation takes the follouing form %here,the n's reprv ;Pnt

the points at which the data is available.

0I
d = ' r. z)Gmlzldz (6.3)

In addition to being available only at discrete points, the data is contaminated by

error ju well. In this chapter we, therefore, review the methods in the literature for

solving this class of equation with discrete and noisy data. For the purpose of the

discussion that follows we will use a general form of the Fredholm integral equation

given below.

Lb
G(z,y)m(z)dz =d(y) a < z < b, a < b (. 4).

6.1 Fredholm Integral equation of the first kind

Consider the linear integral equation in equation (6.4). There are two aspects

to .be considered in the solution of this type of equations. These are (i) non-

uniqueness of the solution, and (ii) the instability of the solution.

6.1.1 Non-uniqueness

4 The eigenvalue of the kernel is given by the equation

f Glz,y)Olzldz---XO6.S

If tL kernel has zero eigenvalues, then

%'
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Chapter 6
Linear Inverse Theory

In Chapter 5, a non-linear integral equation was derived relating the

attenuation coefficient profile to the reflection coefficients. The equation was

linearised using the Born approximation and the linear equation obtained is given

below.

hkb(z)kzozRb(kz)-R(k.} " /Z)Pb 2(k z)dz (61)ko Pb(Z)

A similar equation was obtained using the Rytov approximation. The unknown in

the equation is a(z). The above equation can be written as

" h

d(k.) f a(z)G(k,z)dz (6.2)

where,

d(k - kzo(Rb(kz)-R(k) )

Pb(z)

This is a Fredholm integral equation of the first kind. In this chapter we consider

the issues of non-uniqueness and instability associated with the solution of this type

of integral equations and the role the kernel plays in this. The equation given

above assumes that d(k.) representing data are available continuously along a line.

"S,

"5% " 4 "
" , ' , " , - " . ; - . " ," ' " ' ' , - - " , - . . , -" " ' " . . " " " - " - - . " "
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6.3 Solution in parameter space-Data with errors

. 6.3.1 Generalised Inverse

So far we considered error free data. However, in any measurement there will

be error. We can weight each observation depending on the variance of the

measurement. I or2 is the variance of the ith measurement, we weight the ith

observation by 1/or. Then each observation is related to the solution by the

following equation.

d.4 I

dgirnj (6.43)
OU. •

We see that the data with the least variance will have the highest weightage. Let S

be the covariance matrix for the data. If the errors at each observation are

statistically independent, the covariance matrix is a diagonal matrix with the
idiagonal terms equal to l/O Then, for a set of observation we obtain the

following matrix relationship.

S- -/2d = S- 1 / 2Gm (6.44)

We now define a new matrix G. - S-I/ 2G and a vector d. S- 1/ 2d. We, then,

obtain the solution using the generalised inverse method. If we have some

information about the variance of the elements of the solution vector these can be

incorporated in the solution by multiplying each column of the matrix G by a

weight l/Omj. The equation to be solved then takes the following form.

d'=G 'I' (6.45)

where,

',

Vt~ V.I V
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G = S-1/ 2 GT1/2

I.1

-. T1/2 M

T is a diagonal matrix containing Om2 along its diagonal. Using these relations a

generalised inverse solution is obtained as before. Jackson[6 has shown that even if

the covariance matrices are not diagonal a solution can be obtained which

incorporates the information on the covariance of the data and the solution.

6.3.2 Regularisation Method

As in the previous method, we weight each equation and obtain a transformed

matrix equation. Using this transformed equation and the procedure outlined earlier

for obtaining a regularised solution we obtain[g], the following solution.

m=(GTS- IG+XH )- IG TS-ld (6.46)

6.3.3 Maximum likelihood estimate

The data measurements are considered as a set of random variables. If we

make tha assumption that the random variables are distributed in a Gaussian

manner and S is the covariance matrix for these variables, then the probability

density function for the data is given by the following equation.

IS-1l1/2

p(d) = I-1/2 -{1/2(d-Gm)TS-l(d-Gm)} (6.47)

-1Z.. -!

'5 , - - °
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-122-

For maximising th(. probability p(d), we need to minimis. (d-Gm)7S-(d-Gm).

B% a similar argument. we can say that the mininmisatrin of mm a.;soria d m it 1,

the generalised inverse can be replaced by mT1 m. The solution can then be -

obtained by the generalised inverse in transformed co-ordinates as discussed in

earlier paragraphs.

6.3.4 Minimum varaince estimate

In this approach also the data aud the solution vectors are treated as a

random vectors. In the minimun variance estimate we seek a linear operator which

gives an unbiased minimum variance estimate for the solution. By Gaus.-

Markov[10] theorem the minimum variance unbiased estimate is given by the

following equation.

m - CmdCdd-ld (6.4

where,

Cmd-- EjmdT]

Cdd-- EddTI

Consider now the matrix equation given below.

d = Gm+e (b. 1')

1t(r( e r( pr'serit [j .-V.

Using equation (6.49) and assuming that the noise and the solution verior are

statistically independent we obtain[IO,

,i JL Xq

Id.-'

.4
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m (GCee'-+C mm-)GTCee-ld (6.50)

where,

Cee - E[ee7

Cmm - E[mm

The stochastic inverse method proposed by Franklin[Il also yields the same result.

We note that approximate solutions are obtained in these methods by

incorporating apriori information about the statistics of the solution. Assumption

on the covariance of the solution is equivalent to assumptions on its smoothness

made in regularisation method. Further addition of a positive definite matrix like

C ee "1 overcomes the problem of instability.

6.4 Solution in function space- Error free data

6.4.1 Spectral expansion method P

Parker[12), arguing that the inverse problem differs from parameter

estimation problem in that the unknown is a function with an infinite number of

parameters, has provided a solution in the function space. This method is based on

the fact that since d, is the projection of m(z) on G,(z) we can construct a set of

orthogonal functions to represent G(x) and express m(x) as linear combination of

these orthogonal functions. To construct the orthogonal functions, a covariance

matrix/' is formed.

4.S'

' "'" . ,.,, , ' .,' . - ,, . . . . . , . . .- . . .-. ,- . . ,, ,.%.
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i = fbGi(z)Gjx)dz (6.51)

J%;4. 
7

F is a symmetric matrix and if the equations are linearly independent the

eigenvalues are real and positive. F is now expressed as a product of three matrices

using the decomposition theorem[4].

F = VAVT (6.52)

Here the matrix V contains the eigenvectors and A is a diagonal matrix containing

the eigenvalues. The orthogonal functions are then formed by using the following

equation.

0,(Z) = '-/ 2 -v 0.4 ) (6.53)

Expressing the unknown function as a linear combination of the orthogonal

function we write; "
-
'

N,. ,(z) = aSj,:)+& (z) (6.54)

where O (x) are orthogonal to O(x). Multiplying both sides by O(x) and integrating

over the domain a to b we obtain

a. jfb m(z)e )dz

or,

- xi- 1 /2 v ,d- (6.55)

i"i

I1 V7

Ji.

- . ..-- - - • - -... . .- . - , :"-' : "';"':-" '- ' " Z'. 2-.':' '-" '.-'.: .................................................................................................. "-..........-..': ,.
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Having obtained a's, m(z) is then evaluated using equation

N
(x)= (6.56)

Using equation (6.54) we now compute the norm of m().

b N * 2"

Ilm(x)112 - Ia a,.,x)+O (x)]2dx (6.57)

or,

IIm(z)I2 - (T+1[**12 (6.58)

By constructing the solution using only Oi and neglecting the functions in the

space orthogonal to it we obtain the minimum norm solution as in the case of

generalised inverse. As the ai's are propotional to X i-1/2, small eigenvalues will

magnify noise. As done before, we set the eigenvalue as zero if its value is less than

a threshold level and their eigenfunctions deleted from the solution. A method for

determining how many eigenfuction are to be included in the solution is given by

Parker[12].

6.4.2 Method of Backus and Gilbert

The importance that the kernel of the integral equation in obtaining an '
unique stable soluion has been discussed earlier. In the method proposed by Backus

and Gilbert[13,141, the kernel of the equation is made close to a delta function.

Consider the equation given below.

di= JG,x)m(x)dx i1-, • • • ,N (6.59)

, r .-. - .. ..-; . . - a. .. .. -. - j* .r ' .' '. ' . ' - '" ",' '. '"""" "" "

I.,f'."..'. . A, iLLP'',' ''w .. , .
""
4'f-' :;-"-"..''. '': ''''-.... .",.' ",".z"". . "':""''(.€?". . ' ' ' ."
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If by suitable linear combination of the kernel we make it close to a delta function

at some point z0 then the value of the solution at this value of z is easily

determined. Let ai represent coefficient of the linear combination. Summing over
.. 1%,

all ais we obtain

N bN
E a14xo)d- fbI a~xo)G)}m(x)dx (6.60)

or

Nb
a,(xo)d i - A(x,xo)m(x)dz (6.61)
sfa

If A(x,xO) is a delta function 6(x-xo) then m(xo) is equal to the left hand side

of the equation above. However,it is not possible to construct such delta function.

We, therefore, choose the coefficients ap in such a way that the function A(X,zo)

approaches a delta function in a least squared sense. Various measures of

'deltaness' (spread function) have been proposed by the authors[14]. For the

purpose of our discussion we will define the spread function as given below.

b
S f{A(zxo)-6X -zo)}dx (6.62)

We make the additional assumption that the function A(x,xo) is unimodular i.e.

bA(x,xodx-l. By using a Lagrange multiplier, we then determine the

coefficients which minimises the spread subject to the unimodular constraint.

Having determined the coefficients, these are substituted in equation .N ad

and the value of the solution at z0 determined.

%

. .-..-. :. . .:.::::
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6.5 Solution in function space- Data with errors

The spectral method discussed above can be extended to take into account

errors in data by weighting each equation. Another approach which incorporates A

the stochastic information of the data and the solution has been given by Tarantola
~~~and Nercessian 115) and Tarantola and Valette[16]. Tarantola and Nercessian[15] 1...

show that their general result reduces to the Backus and Gilbert result if there is

no error in data and if we make the assumption that no information exists about

solution.

6.6 Non-linear problem

So far we have dealt with the linear problem. The approach in solving the

nonlinear problem is to linearise it by expanding the kernel around a base value

which is assumed known. We start with the non-linear equation given below.

di  G(m(z),z) (6.63)

Now we expand G(z,m(z)) around m0(x) which is close to in(x) such that S

M()--mo(x)+bm(x). If we can write,

di  G(mo(z),x)dx+ 
.

4. 
fD(m 0(z),x)6m(z)dx + OIm(x)I 2  (6.6)

4a

Ile then Gi(x,m(z)) is said to be Frechet differentiable at m0 (x). Omitting the higher

order terms we can write

.. .:-: i, i: i" ':, : :!::' ..!:.::"::-.::.. .:======= =============== :::::::::::::::::::::::::::::::::: : ::. : : :::::::::. .: :::::: ::::/ .
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and since MO(x) is known the equation is now in linear form and we can apply the

techniques described in this chapter.

The solution of non-linear equation starts with a guess of the solution and the

kernel is expanded about this and a correction is obtained. Using this we obtain a

new estimate of the solution which can now be used as the background. We note

that such linearisation is permissible only if the kernel is Frechet differentiable.

6.7. Summary

In this chapter we have reviewed the various approaches available in literature

for solving Fredholm integral equation of the rst kind when the data are

available only at discrete points and is contaminated by error. In the next

chapter we take up the solution of the integral equation (6.1) and obtain the

attenuation coefficient profile for the ocean bottom.

%~ V.

4,' .
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Chapter 7

Inversion for Acoustic Parameters

In this chapter we demonstrate the inversion procedure for obtaining the1

attenuation profile for the ocean bottom. We show that by suitably modifying the

scheme corrections to the sound speed profile and density profile for the bottom

can be obtained in addition to the attenuation profile.

First we establish that the kernel of the non-linear integral equation is

Frechet differentiable and that the kernel obtained by the Born approximation is a.

Frechet kernel. The iteration procedure for solving the non-linear problem is then

obtained.

We select the most suitable angular aperture for input information based on

the region of applicability of the Born approximation. We study the effect that

frequency has on the ability to reconstruct so that this information can be used in

the design of the experiment. Similarly we study the effect of the magnitude and

the extent of the perturbation on the performance of the inversion scheme. We

follow this by demonstrating the reconstruction of different types of profiles using

synthetically generated data. A comparison between results obtained with Horn

and Rytov approximation is then made.

Reconstruction of the attenuation coefficient profile is done by using the

regularisation method mentioned in Chapter 6. We have not attempted to carry

out the inversion by all the methods described in Chapter 6 and choose one that

gives the best results. On the other hand, we have been guided by the fact that the

function we are trying to reconstruct is a smooth function. The regularisation

(.-
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method which uses the smoothness of the model as one of the constraints has a

strong appeal in this context and we have therefore chosen this approach. The

results obtained using this method are promising.

The means of i.easuring the performance of the inversion is developed in the

context of the resolvirg power theory of Backus and Gilbert[l]. Using this we study.-

the resolution of the inversion performed.

In studying the question of errors, we deal with two aspects of it. First we

consider the situation where the sound speed profile and the density profile are not

known exactly. Inste..d of treating this difference between the exact profile and the

assumed one as an error, we treat it as an unknown and include it as one of the

functions to be determined. We demonstrate this by simultaneously inverting for

the attenuation profile and corrections to sound speed profile. We also study the

effect of adding noise to the data. Examples of reconstruction using noisy data are

presented.

7.1 Linearisation Lnd iteration procedure

In Chapter 5 we obtained a non-linear integral equation and used the Born

approximation to lincarise it. We will be using this linear integral equation for

performing the inversion. We now show that within the region of validity of the

Born approximation this approximation is consistant with the requirement of

Frechet differentiability of the non-linear kernel. To establish that the kernel of

the non-linear integral equation is Frechet differentiable we follow the analysis of

Parker[2. The integral equation relating the unknown function to the reflection

coefficient is given by the following equation.

Mr- A7-s.:.



Ik kb(z)
kz~{Rb(kx)-R(kx)} -a (z),P(kx,z)Pb(kx,z)dz (7.1)

In obtaining the above equation we have assumed that the value of the attenuation

coefficient for the background model is zero. We now write

F~kX~z)=P(k.zZ)+P,(kzZ) where Pb(kx,z) is the solution when ca(z)=O. Substituting

in the above equation we obtain,

Sh
k o(Rb Z-R(kX) = L z)Pb(k.,,Z)2dz + S(kx) (7.2)

where

kb(z)
~z) = a(z)

Pb(Z)

S(kx) f jh~z)Pb(kZz)P(kxz)dz (7.3)

In making the Born approximation we assume that S(k.) is small in comparison to

the first term and neglect it. Comparing equation (7.2) with equation (6.64) in

Chapter 6, we note that for Frechet differentiability, S(kx) must be of the order of

Define the norm for -tAz) as given below.

dzI (7.4)

Applying the Schwartz inequality to S(kx) we find that,
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[R8 e ikzI z+e-ikzIz] [eikZI z+Rbe- ikzI z+2ikz I h]

G(z,z') =.,Rb z
2ik( 1- R Rbe2kIzlh)

0'<z<zh (.-,

k-k,

[Rek '+ e-"k 1 '[Ikz +b -ikz z+ 2ikz hi :'

Gz,z') = b:
2ikZlll-R6R) ."I

zk< z< h (7.39)

Rbbk
equations. ".,

ok l-k  741":

kzl +ko .

R kz l-k,2 (.1

kZ I +z2

with,

w

k =k 0
2 -k 2 1/2, k-=-

k,0=[k1
2  2 J/ 2 k

kZl=[k 2 -k 2 ]l 2 kl--- ~C c2  -

Our earlier discussion indicates that though there are no poles on the real

axis, off axis poles in the complex domain of horizontal wave number may exist in

the range of horizontal wavenumbers k2 < kr < k1 . The effect of these off axis

poles are felt as we move along the real axis. There art therefore values of

horizontal wavenumber for which the Green's function can take large values.

°".
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(7.38) to be satisfied for larger values of the pertubation and sediment thickness.

Since the background model parameters are known numerical evaluation of the

Green's function can be performed. From these computations we choose the

angular aperture where the Green's function has low values.

A qualitative feeling for the acceptable range of values of horizontal

wavenumber can be obtained by studying the simple model in Figure 7-1. For this

model there are three distinct angular region, or equivalently, three ranges of

horizontal wavenumbers that we will consider. These are 0 < k < k

k2 < k_ < kl, and k < kz < k0 . For the first range, there are no angles at which

total reflection at the interfaces occurs. Energy is transmitted into the water

column and the subbottom. In the second region total reflection occurs at the

bottom interface but energy is transmitted into the water column. In the region

where the horizontal wavenumber is greater than k,, there is total reflection at the

water sediment interface. However, the magnitude of the reflection coefficient at

the sediment/subbottom interface is no longer unity. Therefore complete trapping

is not possible for this particular model. However, there is a region of horizontal

wavenumber where the reflection coefficient magnitude for both the interfaces is

close to unity. Near trapping of energy can take place in this region and the

Green's fuction can assume large values. Figure 7-2 is a plot of the magnitude of

the Rayleigh reflection coefficient at the two interfaces for this model. The region

where both these reflection coefficients come close to unity approximately lies in

the range of horizontal wavenumbers from 0.76 to 0.785.

For the model in Figure 7-1, the Green's function is given by the following

expression.

7-7

. ~ . . . . . . . . .
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Figure 7-1L: Simplified ocean bottom model to study
behaviour of Green's function
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7.2.2 Angular aperture for data points

In Chapter 5 we obtained the condition for the applicability of the Born

approximation. The condition to be met is given below.

IlkbllIla 1 G(z,z'I)mazh< 1 (7.38)

The Green's function in the above equation is for the assumed background

model. For any arbitrary sound speed and density profile the Green's function can

be obtained using the uniform asymptotic solution for the wave equation. This

solution is, however, valid only when these parameters vary slowly with depth and

increase monotonically with depth, a situation that is met in marine sediments. The

solution for the Green's function is given in Appendix A.

The Green's function is a function of horizontal wavenumber as well as the

spatial parameter z and z', points representing source and receiver positions. If the

Green's function is expressed as function of the horizontal wavenumber there are

regions in the horizontal wavenumber domain where the Green's function assumes

large values. In marine sediment the sound speed at the sediment water interface is,

in some instances, less than its value in the water column. The sound speed then

increases monotonically with depth with a possible discontinuity at the sediment-

subbottom interface. With this structure, the sediment layer behaves like a wave

guide and complete trapping of energy is possible. There will, therefore, be values 0.

of horizontal wavenumber for which the Green's function takes very large values.

If we are to remain within the region of applicability of the Born

approximation we will be best served by remaining in the region of angles where

the Green's function has low values. This will permit the inequality in equation

A,
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Id-Gal2 < E2  (7.32)

The smoothness measure is obtained from equation (7.22) reproduced below.
I 

.

S(a(z)) = X (@ i+ 1-2a + a i-)2 (7.33)

If we can have a measure for this we write

aTHa < C2 (7.34)

where £2 is the measure of smoothness. Combining equations (7.32) and (7.33) we

obtain

IGC2d +-aTH < 2E 2  (7.35) .,.

We now find a solution for a that minimises the left hand side. The solution is

N- obtained in a manner similar to that given earlier.

(G T G + X H )a -G d (7 .3 6 )

where,

The facr E2/ 2  (7.37)

E 2/( 2 is a measure of how smooth the solution will be. When C2 is small

E2/f 2 will be large and give a smooth solution. By making a priori assumptions

about E2 and £2 we obtain the Lagrange multiplier X.

U,
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Sdecreases in some region indicating that the assumption the the solution is smooth

4 over the entire region is not correct. The fact that such sharp changes are seen in

the reconstructed profile even after making the smoothness assumption is a strong

indication that these features are not an artifact of the inversion scheme. We will,

therefore, be justified in making the assumption that sharp changes do occur at

these depths and hence look for smooth solution in the intervening depths. An

example of this will be presented later on.I

The Lagrange multiplier X determines the smoothness of the solution. The

larger the value of X the smoother the solution. This means that. larger values of X

will lead to poorer resolution. For lower values of X more structure will be observed

- but at the same time the variance of the solution will increase. One approach in

determining X is to initially take large value and reduce it with each iteration a-.

suggested by Marquadt[6J. At each iteration the residual is computed and the&A

iteration procedure terminated when any one of the following conditions are met.

Id-Gal' < E' (7.29)

Ian+l-an 12 < e2  (7.30)

Another method of determining the Lagrange multiplier is based on some

prior knowledge of the upper bound for the noise power in the data and some

measure of the smoothness desired in the solution[7J. We write the equation to be

solved in the following form

Go d+z (7.31)

where z is the vector containing the error. If E2 is the upper bound for noise

power, then '.



to Id-GmI2 being less than E2 (say), the errors associated with the numerical

estimation of data. Using X as the Lagrange multiplier we seek to minimise

aTHa+ 1/X{(d-Ga)T(d-Gci)} (7.25)

Differentiating with respect to each element of a and equating it to zero, we obtain

(G 2G+H) = GTd (7.26)

4- (GTG±+H)-lGTd (7.27)

In some instances it may be necessary to add additional constraints[5] such as

a minimum norm criterion in which case the equation to be solved will be as shown

below. _.j

(GTG X 1H+X\21)a -GTd (7.28)

where XI and X2 are two Lagrange multipliers and I is an Identity matrix. In the

examples considered in this dissertation, situations needing such additional

constraints did not occur.

By using the method described, a smooth solution is obtained. It may be

noted that the inversion using generalised inverse eliminates the instability by

discarding the small eigenvalues. The small eigenvalues are the ones that contribute

to high oscillations in the solution and eliminating the small eigenvalues is

equivalent to a low pass filtering operation on the solution to get a smoothed

version. The regularisation method also overcomes the instability by assuming that

the solution is in some sense smooth and in this context both the methods are i7I
analogous.

Having obtained a solution it may be seen that there are sharp increases/

. .

*PI
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S Nyquist criterion as the integral equation looks like a Fourier transform. Since the

vertical wavenumber varies with depth and the angle of incidence, we will take the

*, maximum value of the wavenumber as the water wavenumber. Based on this the

sampling interval must be less than X0/4 where X0 corresponds to the wavenumber

in the water column.

The integral equation is now written as a discrete sum

di  ZW.G.O . (7.20)

where wij is the weighting associated with the quadrature scheme. For a set of

observations the equation is put in matrix form,

d = Ga (7.21)

where the weights w . have been absorbed in G. The smoothness measure in

equation (7.16) is also put in discrete form as shown below.

S(a(z)) - (ai+1 -2a2+ai.l)2 (7.22)

This is a quadratic measure and S(a(z)) is therefore written as

S(a) = aTHa (7. 21)

The matrix H is given below.

"1 ;2 1-2 5 -4 1 -
H 1 -4 6 -4 1 (7.24)

1 -4 6 -4 ."-1

The problem is now restated as follows. Find a a that minimises S(a) subject

•..-....... ' .....--... .. ... . - . .-.. •. , ..-. .. . .- .- , . * '- ,-
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synthetic data, this measure has been found to be adequate.

We start with the integral equation derived in Chapter 5 for the

reconstruction of the attenuation profile. Since the reflection coefficient is known

only for discrete angular values, the above equation is written as

o hkb(z) Z)Pbn2(z)dz (7.17)
"bn-nzl .0. 0 Pb(Z)

.', where n corresponds to the discrete angular values at which the reflection cefficents
*,1

are determined. The integral equation (7.17) is now written in the following form

d 
fS a(Z)G (7.18)

where

d= [(Rb)n-Rn](ko)n

G()= 2 kb(z)
' an(Z) = Pbn2(ZHpb'z

Pb(z)

The integral on the right hand side is then written as a sum using a

quadrature scheme. We have used the simple Simpsons rule for this purpose. With

the sediment modelled as a stack of homogeneous layers the term Pb2(kZz) in the

integrand of the integral equation has the following form in each layer.

Pb2(k ,z) - {A(k,) exp(i(kb2 -kZ 2)l/2z)+

B(k ) exp(-i(kb2-kz2)1/2z)}2

Therefore, for the degradation resulting from converting the integral into a

discrete sum to be small, we must sample at points arrived at by applying the

,*-.-.-...
t" it ! -.-. ,-",'- ,ro,', . .

I - , , ,r - . .. . -. - . .. - . . °- .- %. . . . . .. '. ' ,. .... .-- , -



-136-

small parameter & as indicated below.

o(:) = (o(:)+(2o1(:)+ + (7*15)

We now successively determine a0, , and so on. The convergence of this scheme I
was found to be slow compared to the earlier method.

7.2 Reconstruction of the attenuation profile

We, now, discuss in detail the reconstruction of the attenuation profile

assuming that the true value of the sound speed and the density in the sediment

layer are known.

To test the inversion method we use synthetic data. This is obtained by

solving the forward problem and obtaining the plane wave reflection coefficient for

a set of angles given the ocean bottom model. The data that will be used for

inversion are, therefore, error free.

7.2.1 The regularization scheme

Out of the various methods described in Chapter 6 we use the regularisation

method. We assume that the solution is in some sense smooth. Experimental results

available on the variation of the attenuation with depth support this assumption.
We. therefore. look for a solution with the least structure. The smoothriess criterion

is defined as bel, 1'w4'

S~od-)) =

Orroi .i. i -- zdi 1 .

.',, O th~tr sm ,, r ( - r(rlria at( po,;¢ , 1. ,, ,, , r iii var' u-(11, ::1,1- d ', 10.
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kernel obtained by Born approximation is a Frechet kernel.

Linearising of the integral equation is based on the term S(kz) being

negligible. If this is not so, then the solution when used in the non-linear integral

equation will not satisfy data. We, therefore, need to use an iterative process. In

the iterative scheme the solution obtained in the previous iteration is used to

generate the new kernel. The integral equation then takes the form shown below.

JohR )-Rzk,)l =) d hkb(z"

ko{Rn(kz)-R(k)} - __ln(z)PbI z (z))dz (7.12)
0Pb(Z)

an+slz) = a(z)+6&anz)

A variant of this is the fixed point iteration. In this case we first write,

6a(z) = a(z)-an(z) (7.13)

Substituting this in equation (7.12) we obtain,

f hkb(z) 2

kzo{Rn(kx)-R(kx}+ 1 -can(z)Pb k(za(z),z)dz -

'4.

hkb(z) '2 ,

pb(z) az)Pbn 2 (kZQ'n(z),z)dz (7.14)

The iteration method described is similar to the procedure followed for

solving nonlinear equations by the Newton method. Convergence of this scheme is

guaranteed if the initial guess is close to the actual value. Also the convergence is . -

quadratic. These results have been proved in the literature[3].

Another approach is an iteration scheme based on higher order perturbation

theory. The unknown function a(z) is expressed as a power series in terms of the

4,-i-i.1
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IISII _ II''PbIIIIPII (7.5)

To obtain an etimate of IIPII we asssume that within the region of validity of Born

approximation P,(kz'z) can be written as follows.

P,(k.,z) = (z ) ( )dz'(7.6)

where G(z,z') satisfies the equation;

. d2G
+k2(Z)-kz-z) (7.7)2

Applying Schwartz inequality we obtain,

IIPo _< II11PbI (G(z,z))2dz}I (7.8)

Using this we find that,

IISII _ I1yI2IPbII2([0 (G(zz'))2dz} 1/2  (7.9)

The field Pb(kpz) in the sediment layer is finite. We will show in a later section of

this chapter that in the range of angles chosen for input data, the Green's function

also remains finite. The equation (7.0) can, then, be written as given below.

11511 < CjIY12  (7.10)

_ (7.11)

We h2.ve, therfore, established that the kernel is Frechet differentiable and that the
q i

, .' ' % -" "'.."-::-" .:-."::. '-:" ': ..";'.' ..'.';..'% ''. .: .'" - ';,' ".":." ":';'';,\; ," % ;' "-." :'',-' :-- ",
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The magnitude of the Green's function in equation (7.39) is plotted in Figure

7-3 as a function of the horizontal wave number. The source and receiver positions

.9. are 30 mn and 10 m respectively from the water/sediment interface. The acoustic

parameters used in the computation are indicated in Figure 7-1.1t is seen that the

magnitude of the Green's function has large values at positions where the

magnitude of the plane wave reflection coefficients at the two interfaces are close

* to unity as anticipated earlier. The figure shows also that in the region where

there is least trapping, i.e. 0 < kZ < k2, the Green's function has the least value.

This corresponds to pre-critical angles. In the second region, the behaviour o' the

Green's function becomes complex and there are values of horizontal wavenumberI

where the magnitude of the Green's fuction becomes large. When the waves in the+

sediment becomes inhomogeneous the magnitude of the Green's function decreases.

The advantage of using the information from the pre-critical range of angles in the i
* inverse problem is therefore obvious. Rays incident at pre-critical angles wvill probe

deep into the sediment whilst rays incident at angles above the critical angle will

* V turn within the sediment layer there will be turning points in the sediment and 7
therefore these rays will have no information about medium beyond the turning

~* depth. If the entire range of angles from grazing to normal incidence is used there

may be certain angular regions where the Born approximation is not valid and this

can lead to degradation in the reconstructed profiles. However, since an iterative

scheme is employed the magnitude of the perturbation gets reduced at each stage

of iteration and the scheme may converge unless the non-linearity is too strong.

Only rays in the precritical region probe the entire depth and the Green's

function has the lowest magnitudes in this range. We have, therefore, used only

this range of angles in the reconstruction of tbe attenuation profiles.
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7.3 Effect of experimental and geoacoustic parameters

7.3.1 Frequency

Figures 7-3 to 7-5 show the magnitude of the Green's function vs horizontal

wavenumber at different frequencies. In the pre-critical region, a rough l/w -,.11%

dependence is seen. This result is not surprising because in this region the effect of

the interfaces in trapping energy in least and the Green's function behaves very

much like the free-space Green's function . For homogeneous medium, the free

space Green's function behaves as 1/k 2 where k2 is the vertical wavenumber. This

is equivalent to 1/w dependence. In Appendix A the expression for Green's function

in terms of the uniform asymptotic solution has been obtained for an arbitrary

variation of sound speed and density. In the pre-critical range of angles, there are

no turning points in the sediment layer and the uniform asymptotic solution

reduces to WKB solution as shown in the appendix and the Green's function has an

approximate 1/w dependence. i.
Earlier for the applicability of the Born approximation we noted that the

inequality to be satisfied is,

11 1 la III(z')Imaz.< (7.42)

We have shown that in the pre-critical angles the magnitude of the Green's

function has an approximate 1/w dependence. From this alone, it appears that a
.5.

higher frequency is better since the magnitude of the Green's function is small.

However, the magnitude of the perturbation kb(z)c(z) is directly propotional to

frequency. Therefore its product with the Green's function is approximately

constant. We conclude, that the operating frequency will not have significant effect
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on reconstruction. To see this, we carry out inversion using synthetic data

generated at different frequencies. The result obtained at the first step of the

iteration process is at figures 7-6 and 7-7. Though the frequency was increased four

fold it did not have any appreciable effect on the reconstructed profile.

7.3.2 Attenuation coefficient I

For two values of constant attenuation in the sediment (0.005dB/m and i
0.02dB/m) inversions were carried out. The results are shown in Figures 7-7 and

7-8. As anticipated the larger the perturbation the poorer the reconstruction.

7.3.3 Depth of sediment

The magnitude of the Green's function was computed for different sediment

layer thicknesses while keeping the other acoustic parameters of the model fixed.

The plot of the Green's function magnitude as a function of horizontal wavenumber

is shown in Figures 7-9 and 7-10. The Green's function magnitude remains '

approximately the same for all the three cases in the pre-critical range. Its

behaviour beyond this range is however complicated. In equation (7.39) the only

place where the sediment thickness enters the expression is in the phase term

exp(2ikzlh). Therfore for small values of R and Rb, which is approximately true

for precritical angles the sediment thickness will have little effect on the magnitude "

of the Green's function. This is true even in cases where the sound speed and

density in the sediment layer varies in an arbitrary manner. We can, therefore,

conclude that the sediment thickness has no significant effect on the magnitude of

the Green's function in the pre-critical range of angles. On the other hand in the

expression in equation (7.38) we note that the region of applicability of the Born

approximation is related to the depth of the sediment. We anticipate that with ,

,-.".
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increasing depth the errors made in making the Born approximation increases and

this will manifest itself in the reconstructed profiles. Figures 7-7 and 7-11 show the

reconstructed profiles for different slab thicknesses. We have increased the slab

thickness four times leaving every other parameter the same. We note that the

increase in thickness has resulted in poorer reconstruction.

7.3.4 Strength of the discontinuity at the interface

The strength of the discountinuity at the bottom interfaces was increased by

changing the values of the sound speed in the sub-bottom. The magnitude of the

Green's function for the two cases are shown in Figure 7-12 and 7-13. There is very

little change in the magnitude of the Green's function in the pre-critical range and

therefore the strength of the discontinuty is not likely to have any appreciable

effect on the reconstructed profiles. However, we note that as the sound speed in

the sub-bottom increases the angular range of pre-critical angles decreases and

therefore will affect the number of data points that can be used in the inversion

scheme.

7.4 Examples of reconstruction

We now test the inversion algorithm developed earlier using different type of

profiles. The profiles used are given in Figure 7-14. The profile shapes have been

chosen so as to cover possible attenuation profiles iii marine sediments. The

magnitude-of the attenuation coefficient chosen falls within the acceptable range of

values for marine sediments at the frequency considered.

In each case the input data for the scheme iLe the plane wave reflection

coefficient, is computed using the propagator matrix method described in Chapter
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separate regions of depth. Then the result in Figure 7-20 is obtained.

We now give an example of inversion using one of the realistic models

developed for Icelandic Basin[9]. The operating frequency in this instance is 220 lz,

the frequency at which the experiment was performed. The model used and the

reconstructed profile are given in Figures 7-21 and 7-22.

7.5 Born and Rytov approximations

The question about the applicability of the Rytov approximation for back

scattering problems is still unresolved. While it can be proved [101 that the Rytov

approximation is valid over longer ranges than the Born approximation in regions

where only one field exists, no such general result exists for regions where there is

more than one wave. According to Keller[10], where more than one wave exists, the

Rytov approximation is to be applied to each wave seperately and not to the total

field if its validity over longer ranges than the Born method is to hold. On the

other hand the Born approximation can be applied to the total field. This accounts

for the more common use of the Born approximation for backscattering problems. 24

However, the investigations on the relative merits of the two methods for ultra-

sonic diffraction tomography have shown that the Rytov method gives better

results than the Born approximation even when the Rytov is applied to the total

field[1,121. In the light of these comments, we now carry out the inversion

without the iterative scheme and compare the results obtained by the two methods.

The results are given in Figures 7-23 to 7-26. We note that the Rytov method is

much better than the Born approximation at shallower depths and only slightly

worse than the Born approximation at deeper depths. This experiment, therefore,

seems to confirm the observation of other investigators that the Rytov method is

. *./
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4. The input data is obtained at 20 discrete points in the pre-critical range. For the

sake of convenience the input data is computed at equal increments of vertical

wavenumber. An operating frequency of 25 Hz was chosen. This was done only to

limit the size of the matrices since the sampling interval is dependent on the wave

length in the water column as explained in an earlier section. The sound speed

structure in the sediment was obtained using the regression formula given by

Hamilton[8]. The density in the sediment layer has been assumed to be constant.

The values for these parameters are given in Table 7-I. The Lagrange multiplier

was suitably chosen and the iteration continued till residual became less than a

predetermined value based on the numerical errors that may creep into the

computation of the reflection coefficient.

For the iteration scheme to converge the nonlinearity should not be strong.

Stating differently, the guess model must be close to the real model. In Chapter 5

we saw that the attenuation coefficient is orders of magnitude smaller than the real

part of the wavenumber and this was the foundation on which we based the

perturbation method. At 25 Hz the real part of the wavenumber is approximately

0.1 m"1. Therefore the initial guess value for the attenuation is taken as zero. For

values of attenuation assumed the convergence occured in about six iterations.

The results of the inversion are given in Figures 7-15 to 7-10. Except in the

case of Figure 7-19 which is the recontructed profile for the discontinuous model at

Figure 7-14 the reconstruction is good with the residuals less than 10"7 . The poor

reconstruction in the case of Figure 7-19 is due to the fact that the algorithm

assumes that the function we are looking for is smooth whereas in reality it is

discontinuous. The points where such discontinuities are likely to be, are seen in

the Figure 7-19. Based on this evidence we make the assumption that the

discontinuities do occur at these depths and look for smooth solutions in the three

-.. o-
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Water Column: Density a 1.0 9/cmn3

Sound Speed a 1500 r/sec
Attenuation -0.0

Depth in Meters Density Sound Speed MIS Attenuation

10 1.7 1517.56

_ _ _ _ _ _~arou p_ _ _ _ __ V ro s ro files adpte.

These are shown in figure 7.14

so 1.71 j 5 .2 0

60 1.7 1580.52

110 1.7 1640.04

U)
190 1.7 161.55

110 1.7 1662.92

140 1.7 1674.16

150 1.7 1685.28

160 1.7 1696.27

*170 1.7 1707.14

1&0 1.7 1717.88

190 1.7 1726.50

200 1.7 1739.00

Sub-bottom: Density *1.9 gm/cm2

Sound Speed - 1739.0 rn/sec

Attenuation - 0,001 dB/m

Table 7-1: Parameters used for ocean bottom model
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Profile Shape Description

0JO05 Constant value of
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Figure 7-14: Attenuation coefficient profile shapes
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better than the Born method even in situations where more than one field exists.

The analytical foundations for this result needs to be established to determine the

limitations in the use of Rytov's method. However, since an iterative process is

found necessary to solve the non-linear problem, both methods needed

approximately the same number of iterations to converge Therefore, neither of the

two method's can be considered to have a clear advantage over the other. The

iterated result using Rytov's method for the profile in Figure 7-14 (a) is shown in

Figure 7-27

7.6 Resolution

Resolution is a measure of our ability to resolve fine structure in the function

being reconstructed given that we have only a finite set of data points. A method

* of determining the resolvability is given by Backus and Gilbert[1J. Here the

* procedure described by them is extended to cover situations where the data, the

kernel and the function to be obtained can all be complex quantities. The situation

when the unknown function is a complex quantity arises when we invert to obtain

the real and imaginary part of the wavenumber.

We start by considering the linear problem. The data is related to the

unknown through a linear equation of the form given below. All the quantities are

d =f z)G.z~dz(7.43)
n. -

Multiplying by a weight a.(z0) and summing over all n's we obtain,

Or .
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h -

. E d a (zo) = z) n(zo)Gn(z)}dz. (7.44)

or,

d( zo)=fo ('7(z)A( z,zo)dz (7.45)

Let d(zo),A(z,Zo) and 'I(z) be all complex. Equating the real and imaginary '

parts, we obtain

Sdr-f {yr(z)Ar(z, zO)--(,4z)A,(z,zo)}dz (7.46)

and

=fhd (7.47)

The subscript r and i represent the real and imaginary parts. If the coefficients

an{zo),n=1,... ,N can be found such that Ai(z,zo) is equal to 6(z-zo) and Ai4z,zo)

is zero, then we will have

dr(zo) =1 r(z)6(z-zo)dz (7.48)

and

d,4zo) -  J ,4z)6(z-zO)dz (7.4g)
i-.

.%
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'yTr(zO) and "yi(zo) will then be known exactly. Similarly for each point we can find a

set of coeficents which will make Ar(z,ZO) look like a delta function and Ai(z,Zo)

. equal to zero. However, this cannot be done. We, therfore, seek to minimise,

f hhJOh{Ar( Z-Z0)-b( Z-Z0)} 2dz+ A 2( z- zo)dz (7.50)

subject to A7(z,zo) being unimodular i.e.

f hoAr( z, z 0)dz= 1 (7.51)

Other measures of 'deltaness' have been proposed in literature.[1]

From equation (7.44) the expressions for Ar(z,zo) and Aj(z,zo) are obtained.

Substituting for Ar(ZZO) and A14z,zo) in the equation (7.46), we minimise,

h

fo -6(z-z0 )J(dz + jn~(z0 )G~~zJd
nn

+X an(zoGnr(z)dz (7.52)
n

where X is the lagrange multiplier. The derivative of this expression with respect to

each of the coefficient a is set to zero. A set of n linear equations is obtained

which are then solved to obtain the coefficients. After some algebra the following

equation is obtained.

2(!'r+1Pi)a+Xu = 2G7 (Zo) (7.5))

where

- I4, j -, . € ,€ o . -. . e . - . . . . . . . e""""% - .. .""""""""•""% 
:" "•"•"-"•" 

"- 
M " M -'
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(Vbr)nm =fnr(z)Gmr(z)dz

0%o

...

('Pi.)nm =o IUiAz)U.,,z)dz

Gr(Zo) ( Gir(Zo))

Let,

-- r. (754

au=ui (7.57).4

Sutttn foLet, bti

. -4(7.54)

Then,114Z
Mi %
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UTIGr(zo)-Xu/21 = 1 (7.58)

..

or, ]
.'u -Gr(zo)_

a - fIl[(z){f. )}UJ (7.59)

Having found a., we can constructAr(z,zo) and Ai(z,zo). Ar(z,ZO) is a measure
A •4

of the resolution. Further A,.zzo) is a measure of the effect of the imaginary part

on the recontruction of the real part and vice-versa and is therefore a measure of

contamination.

The above method is applicable when the equation is linear. In the non-linear

problem, the resolution kernels are obtained by the method suggested by

Parkerf131. The linearisation assumption is based on the last term in equation (7.2)

being negligible. If this is not small, the solution we obtain will not satisfy data. By

iterating we obtain an acceptable solution and when such a solution is obtained we

can say that the term 011-112 is negligible. The Frechet kernels obtained with this

solution is the used to generate the resolution kernels.

7.6.1 Measure of resolution

Resolution length defined as given below is a measure of resolution[14].

hR zA)- (z0,dz (7.60) XI'.: 0 h~ 2(zOZo)

While resolution length at each point z gives a measure of local resolution one can

also obtain a measure for global resolution.

Ii.,
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Depth(m) Profile fig. 14(a) Profile fig. 14(b) Profile fig. 14(c) Profile fig. 14(d)

0 2.15 x 102 1.82 x 102 2.48 x 10 "2 2.91 x 10"

20 5.48 x 10 "  5.02 x 10' 7.31 x 10' 5.38 x 10-

40 8.51 x 102 7.22 x 10' 7.54 x 10 .2 7.17 x 10'

60 7.15 x 10' 7.59 x 10*' 8.42 x 10.2 7.58 x 10'

80 7.83 x 10' 9.79 x 10' 8.87 x 10.2  9.81 x 10,2

100 8.45 x 102' 9.27 x 10' 9.91 x 10' 9.24 x 10.'

120 8.28 x 10' 7.25 x 10' 8.72 x 10' 7.72 x 10'

140 7.50 x 10' 7.04 x 102 7.54X 102 7.19 x 10'

160 6.04 x 10 6.04 x 10' 7.91 x 10 6.11 x 10,

180 4.22 x 10' 4.22 x 10 5.27 x 10 z  4.25 x 10 "

200 1.76 x 10' 1.94 x 10" 1.76 x 10' 2.00 x 10'

GRL 6.73 x 10.2 6.86 x 10*2 7.65 x 102 6.86 x 10
z

Table 7-11: Resolution lengths for the different examples of reconstruction

. - ,,
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GRL---f RL(zo)dz 0  (7.6 1)

The global resolution measure can be used to determine the effect of various

parameters in inversion.

For the various examples of the reconstruction of the attenuation coefficient

profile the resolution kernels have been constructed adopting a procedure similar to

the one discussed above except that the function yf(z) is real. There will, therefore,

no contamination from the imaginary part i.e we need to determine only Ar(Zo). .

These results are given in Figures 7-28 to 7-31. The resolution lengths for the cases

are given in Table 7-H.

The average resolution length is approximately .07 which corresponds to 14

m. The layer thickness has been taken as 10m and within each layer the

attenuation is taken as constant. A resolution length of 14 m can be considered as

adequate in resolving the features of the model.

We will now see how the aperture size and the number of data points affect

resolution. We will use the global resolution measure to study this effect.

7.6.2 Variation of aperture size

Keeping the number of data points same, the aperture size is varied and for

each case the resolution length and the global resolution length are caiculated. Tl"

resolution length and global resolution measure are given in Table 7-lll . As the

angular aperture increases the resolution improves. With small angular a1,,ertur(,

the separation between data points is small. In the ray picture the rays probing the

medium will be close to each other leading to near dependency of the rows of the

-"V•" "". " " "
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Angular aperture

Depth (.054<K 2 0 <.067) (.054<K2<.079) (.054<K2%<.088)

0 6.6 x 10 1.84 x 10 2.15x10'

20 m 0.103 6.91 x 10"' 5.48 x 10'

40 m 0.110 8.95 x 10 8.51 x 10'

60 m 0.109 8.73 x 10. 7.15 x 102

80 m 0.111 9.28 x 10' 7.83 x 10'2

100 m 0.121 0.112 8.45 x 10

120 m 0.128 9.24 x 10.V 8.28 x 0"

140 m 0.104 8.75 x 102  7.50 x 102

160 m 0.101 8.03 x 10.  6.04 x 10"2

180 m 7.84 x 10 4.90 x 10*' 4.22 x 10"

200 m 1.79 x 10' 1.76 x10 2  1.76 x 10J

GRL 9.98 x 10.  7.89 x 10' 6.73 x 10.

Table 7-rn: Resolution length and aperture size

4. .17



No of Data pts.

Depth 11 17 20

O M 5.2 x10' 2.42 x10' 2.15 x10'

20 m 8.03 x 10'2 5.34 x 102 S.48 x10'

40 m 0.146 9.03 x 10' 8.51 x 10,

BWrM 0.104 7.23 x 10' 7.15 x 102

80 M 0.113 8.09 x102 783 x10'.

100 M 0.118 8.76 x 10, 8.45 x10'

120 m 0.134 8.48 x 10' 8.28 x 10'

140 m 9.22 x 102 7.34 x 10' 7.50 x 102

160 m 8.0 X 10,2 6.29 x 102 6.04 x 10'2

180m 5.35 x le 4.25 x 10 4.22 x 10'

200 m 2.46 x10' 1.79 x10' 1.76 x10'

GRL 0.124 6.84 X 10" 6.73 10"o

Table MVI: Resolution length and number of data points

6 I=J %
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matrix we are trying to invert. This illeonditioning has to be overcome by

discarding eigenvectors corresponding to low eigenvalues and therefore leads to

poor resolution. However as the aperture size increases the near dependency of the

rows gets reduced and the resolution improves.

4 7.6.3 Variation of the number of data points

For this experiment, the resolution length and global resolution length were

obtained for number of data equal to 11,17 and 20. These are given in Table 7-V.

As the number of data points increase the resolution improves.. This is what one

would anticipate as the small number of points makes the system underdetermined

with a number of eigenvalues close to zero. A smooth solution is obtained by *.

utilising a relatively small number of eigenvectors which degrades the resolution.

7.7 Errors

So far we have assumed that the sound speed and density for the sediment

are known exactly. In the sequence of processing of the measured data as shown in

Figure (3-7) of Chapter 3, the sound speed and density values are obtained using

direct inverse algorithms. These algorithms assume that the sediment is lossless and

since this assumption is not true, it will give rise to errors in the reconstructed

values of the sound speed and density. To show this we do the following synthetic

* experiment. Merab[15] has developed an inverse scheme based on the Gelfand-

Levitan method for obtaining the sound speed and density profiles for the sediment.

We generated reflection coefficients synthetically using a lossy model and this was r

used in the inversion scheme to obtain the value of sound speed. The density in the ,.

sediment was assumed known. The procedure was repeated with a different set of

iI



Ocean-sediment Interface

Depth -0 Sound Speed ,*

Depth

40m Attenuation 0

(Lossless Case)
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Ocean-sediment Interface
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V., 40m Attenuation 0.001 dB/m
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Figure 7-32: Ocean bottom model
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Figure 7-34: Reconstruction of lossymodel using Gelfand-Levitan method
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input data corresponding to the lossless case with every other parameter in the

model remaining the same. The lossy and lossless models used are shown in Figure

7-32. The results of inversion is given in Figures 7-33 and 7-34. Even with the

attenuation coefficient as small as 0.001 dB/m there is observable error in the

reconstructed value of the sound speed. However, the result obtained can be used

as the initial guess model for the sound speed. We will call such errors in our

knowledge of sound speed and density in the sediment as model errors and show

how such errors can be dealt with.

The second form of errors are those in the data. The data, i.e., the plane-

wave reflection coefficients are not measured directly but are obtained by suitably

processing some other measured quantity. For the scheme proposed in Chapter 3

the directly measured quantity is the pressure field and this is then processed.

Errors that occur in the measurement of this quantity will therefore be propagated

and will finally appear as error in the reflection coefficient. We will call these data

errors and show by way of examples how these affect the reconstruction of the

attenuation profile.

7.7.1 Errors in the model

To show the effect of errors in the sound speed and density we use the model

in Table 7-I The input data is generated using the correct value of the sound

speed. However while performing the inversion a slightly different valu' of sound

speed is assumed. A similar test is done for error in density as well. The

degradation that occurs in the solution is shown in Figures 7-35 and 7-36. Table

7-V gives the true sound speed and the value assumed for reconstruction. In the

case of density the constant value of 1.7gm/cc in the sediment layer is changed 1.75

gm/cc. In both cases the attenuation profile used for recontruction is in Figure
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Exact value of sound Erroneous value Water Interface -.

speed in sediment assumed. sediment z =0

Layer 1 10M 1517.56 1511.0

Layer 2 20m 1530.39 1523.0

Layer 3 m 1543.14 13.

Layer 4 40m 1555.74 1547.0

Layer 5 1508.20_______ 1559.0

Layer 6 §60m 1580.52 1571.0

depth Layer 7 1592.69 1583.00

Layer 8 N 1604.74 1595.00

Layer 9 9M 1616.64 1607.00

Layer 10 lom 1625.41 1619.00

Layer 11 110 1640.00 1631.00

Layer 12 la0m 1651.55 1643.00

Layer 13 130m 1662.92 1655.00

Layer 14 14m 1674.16 1667.00

Layer 15 1 IQ= 1586.28 1679.00

Layer 16 t6Om 1696.27 1691.00

Layer 17 170M 1707.14 1703.00

Layer 18IS E[ 1717.88 1715.00

Layer 19 190M 1728.50 1727.00

Layer 20 Mm 1739.00 1 1739.00 Sediment Subbottorn Interface,

Table 7-V: Exact and erroneous sound speed profile
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7-14(a).

Consider the case where there is an error in the background model for the

sound speed profile. We can, then, relate the wavenumber of the true model to the

wavenumber of the guess model by the expression given below.

w AC(z)

Cb(z) Cb(z)

k(z)=kb±+ k(z) (7.62)

Since 6k(z) is not known it cannot be subtracted out. An alternative approach is to

treat this as an unknown and invert to obtain bk(z)+ia(z).

We now take up the general case where we consider errors in the sound speed

and density profiles of the guess model. The parameters for the true model and the

background model are now related by the following equation.

k(z) - kb z)+k(z)+ia(z) (7.63) .7..

p(z) = pb(z)+O(Z) (7.64)

Our aim is to obtain an integral equation which on inversion will yield the

corrections to the sound speed and density profiles in addition to the attenuation

coefficent profile. To do this we make the assumption that the density profile and

its first derivative are continuous across the interfaces. We, then, use the procedure

developed in Chapter 5 to derive the integral equation for this case. Using

equations (5.3) and (5.4), we express p(z) as a sum of pb(z) and a perturbation of it

as given by the following equation.

p(Z) = Pb(Z)+b(Z) (7.65)

.'.," - 3- " "" '.: - .""," -" ."-"". . "," .""." - , "- .- "- ".- "-•. " ". - '"-' • • ""-"'- ." ." ; ,* -. ', '- '..'\'" " .'" "",

tt .] - ' k~ . ' ' , ':.. '. . :g_ _ , :, ""'_ - : _.r_¢.' _ ,".:,: ,. . . .."-," .. - , . ,-. . .
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where,

22t6 d O~f(z) dpbz) d/3(z) d d~bz) dp(z)
2 dz2b~z + 3 ±b dz( + 3 1,(z) (7.66)

The integral equation then is,

ik ({Rb(kZ-R(kZ) =[2k b( z)(bk(z)±ia(z))±6(z)] __

p 2
b (kx,z)dz (7.67)

This equation can be solved to obtain 2k b( z)bk(z)+b(z) and 2 k b( z)a(z). To seperate

bk(z) and 6(z) we use the method due to Coen[l4l. The experiment is performed at

two frequencies and for each case the integral equation is solved. Let the solutions

obtained be andand respectively. Then the real part of the solutions can be

expressed as follows.

w2
q .z 2 ACz+()(7.68)

__C
3(z) v 1 7(z)-q 2 (z)

2Cz) A2 2+~ (7.70)

We 7btan ,(z) and6(z)frmteaoeHaigotie6()wthnban (z

Sbrausingh equation (7.6). Them boundary eodtins o h rbe r ~

and 3',(O)=O.

Now consider the case when there is only error in the sound speed. In
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Figure 7-44: Reconstruction of profile in figure 7-14(a)
with noisy data 50dB

1- True profile, 2- Reconstructed profile
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functions being reconstructed. We, therefore , seek to minimise the sum of the

smoothness measures subject to the data constraints being met. The solution then

takes the form _ 3
[GTG+X(HI+H 2 )]m - GTd (7.75)

where H1 and H2 will depend oh the smoothness measure for the functions. 9.

Using such a scheme, simultaneous reconstruction of the sound speed and

attenuation profile Was done. Tables 7-VI and 7-VII give the details of the exact

and initial guess values for the two cases considered. The exact. and reconstructed

profiles are in Figures 7-37 to 7-40.

While considering the effect of frequency on the inversion for the attenuation
'a

profile we stated that the frequency has no effect on inversion. However, when

simultaneous inversion is performed the perturbation associated with it is the

magnitude of bk(z)+ia(z). Since ok is propotional to the square of frequency, the

product bkG(z,z') will be propotional to frequency. This leads us to conclude that ill

this case a lower frquency is better for reconstruction.

The case where there are errors in our knowledge of the subbottom

parameters is treated in Appendix B

7.7.2 Errors in data

We have already mentioned that to model the error in the data we will nee(i

to know the proceesing that has been done to obtain the data, namely, the plane

wave reflection coefficients. In the scheme envisaged in Chapter 3 the first stage is

to obtain the Green's function by carrying out a Hankel transform operation of the

pressure field. Mook[16 studied the effect of adding stationary white gaussian noise

:..::..-.: :.: ':.:Z
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Exact Initial guess Exact attenuation Initial guess

Soundspeed m/s of Sound speed m's dBIm of dBlm

1517.56 1510.00 0.005 0.0
5m __ __ _ __ _ _......___ __ _ _ _ __ __ _ __ _

1530.40 1520.00 0.005 0.0

15m 1543.14 •1530.00 0.005 0.0

1555.74 154000 0,005 0.0
20m

1568.20 1550.00 0.005 0.025m _______

1580.52 1560.00 0.005 0.0
30m"

Depth 1592.69 1570.00 0.005 0.0
-35m

1604.74 1580.00 0.005 0.0
40m r '

45m 1616.64 1590.00 0.005 0.0

1628.41 1600.00 0.005 0.0*' 50m ",____"__

1640.40 1610.00 0.005 0.0

1651.55 1620.00 0.005 0.0
• m,-___rn""__-'_.__"

-" 1662.92 1630.00 0.005 0.0
65m

1674.16 1640.00 0.005 0.0
70m

1685.28 1650.00 0.005 0.0
75m A___ _

1696.27 1660.00 0.005 0.0
BOrn

1707.14 1670.00 0.005 0.0..' 85m .,.

1717.88 1680.00 0.005 0.0~90m

95m 172850 1690.00 0.005 0.0

,. 1739.60 1700.00 0.005 0.0

Table 7-VII: True and background model parameters - case(ii)

r!' it 4* '
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Exact Initial Exac Initial guess
-Soundspeed rn/s Guess value rn's dB/m IdB/m

1517.56S 1511.00 0.005 I0.0

*1530.39 1523.00 0.005 I0.0
20m 1

1543.14. 1535.00 0.005 0.0
30m _______

40m 1555.74 j 1547.00 0.005 0.0

5M 1568.20 1559.00 0.005 0.0

*1580.52 1671.00 0.005 0.0
SOm

4. 192.69 1553.00 0.005 0.0
70m

1504.74 1595.00 0.005 0.0

1616.64 1607.00 0.005 0.0
90M

lOm 1628.41 1619.00 0.005 0.0

1Om 1640.40 1631.00 0.005 0.0

1m 1651.55 1643.00 0.005 0.0

1662.92 [ 1855.00 0.005 0.0

1674.16 1667.00 0.005 0.0
140M _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1685.28 1679.00 0.005 0.0
I15Dm __ _ _ _ _ _

1696.27 1691.00 0.005 0.0
160m

1707.14 1703.00 0.005 0.0
170m _________ ________

1717.88 1715.00 0.005 0.0
180r __ _ __ _ __ _

19M 1728.50 I 1727.00 1 0.005 10.0

1739.00 j 1739.00 0.005 0.0
200m _________ _______

Table 7-V!: True and background model parameters - case(i)

VVt %1~
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equation (7.65) we set b(z)=0. We then obtain the integral equation given below.

fhkb(Z)
ik {R(k_)-Rb(kZ)} -' b( {1k(z)+ic(z)}Pb(kZ,z)dz (7.71)

For discrete values of kX we obtain, -

fhm(z)G (7.72)

where

dn  i{kzo(R-Rb)}n (dr)n+i(d

m(z)=mr()+im(z)

with Gnr(z) and Gji(z) being the real and imaginary parts of Pb2 (kf,z). If the data

are available at discrete data points, we we employ a quadrature scheme and obtain

a matrix equation of the form given below.

d=Gm (7.73)

where d is the vector [drdi]T, m is the vector [mr,mi]T and G is the matrix given

below.

G r  -G i

G= (7.74)
G Gr ?:

To solve this matrix equation we again use the regularisation procedure and

impose constraints on the solution based on smoothness criteria for the two "

%4"

4..-.f
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to the pressure field If the noise is zero mean, the expected value of the output of

the Hankel transform will not be corrupted since the Hankel transform operation is

a linear one. However the variance is found to be non-stationary and the noise

power is concentrated around kr =0 where kr is the horizontal wavenumber. The

non stationarity of the noise is simply that it is dependent on kr value and this

makes it difficult to model noise in the reflection coefficient. However we make the

assumption that within the small angular aperture that we use for the data that

the noise is stationary and gaussian. With this assumption we define signal to

noise ratio as given below.

SNR= 1OIoglo ( l-} (7.76)

For reflection coefficients at a set of N discrete points we have

jN
N RnI2  (7.77) ,.

n= 1
2(7.78)

Using this measure, errors corresponding to 40 dB and 50 dB was added to each

data point and inversion of the attenuation profile carried for diiferent type of

profiles. The results obtained for the different cases are shown in Figures 7-41 to

7-46. This experiment was performed to assess whether the inversion method is

stable in the presence of noise. We note that for the noise levels used, the scheme is
I-

stable and yields reasonable results.



7.8 SummaryI

In this chapter we demonstrated that the linear integral equation derived inI

Chapter 5 can be solved to obtain the attenuation coefficient profile for the ocean

bottom. Though we started with the problem of requiring to determine the

imaginary part of the wavenumber, a perturbation of the real part, we showed thatj

the scheme can yield perturbations in both the real and imaginary part thereby

enabling determination of all the three acoustic parameters. We demonstrated this

by determining the attenuation coefficient profile and the sound speed profile. We

studied the effect of experimental and acoustic parameters on inversion. The

resolving power theory of Backus and Gilbert[1J was used to assess the resolution

obtainable with the data and examined the effect of the angular aperture and the

number of data points on inversion. Finally we showed by examples that the

inversion method is stable in the presence of noise.

In the next chapter, we examine briefly another approach to obtain the

acoustic parameters of the ocean bottom which is suitable in the shallow water

context.

NJY
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Chapter 8

Acoustic Parameters from Eigenvalues

In this chapter we will show that in the shallow water context a first order

perturbation theory can be used to connect perturbations in the modal eigenvalues

to the acoustical properties of the ocean bottom. Such a formulation leads to an

integral equation of the type we have considered so far in earlier chapters and

* therefore the procedures recommended for the solution of such* equations can be

used here as well.

Frisk and Lynch[l] have proposed that an experiment similar to the one

described in Chapter 3 can be carried out in the shallow water and measurement of

the pressure field taken. The experimental configuration is shown in Figure 8-1 . If

the pressure field obtained is now Hankel-transformed to obtain the Green's

- function, distinct peaks can be observed at the modal eigenvaiues. This has been

demonstrated by Frisk and Lynch[2] using real data. Figure 8-2 is the Greens

function computed by carrying out the Hankel transform of the pressure field

measured in an experiment conducted off the Nantucket sound. The position of the

poles of the Green's function are easily seen. These occur at the modal eigenvalues.

If the medium is absorbing the modal eigenvalues will become complex and

the real and imagimary parts of the eigenvalues need to be found. Frisk and

Lynch[l] give a method by which this can be done. We, therefore, assume that from

the measurements of the pressure field an estimate of the modal eigenvalues have

been obtained. The eigenvalues of the modes depend on the acoustic parameters of

the bottom and therefore have this information. The problem then is to develop a

4 
5&
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TYPICAL SHALLOW WATER EXPERIMENTAL CONFIGURATION

N Rodor Ranging System

----- --- F- r ------- A -ML LVf c
SURFACE BUOY

15.9 M

9 ~ SOURCE .- ytel prue.RECEIVER 2

Z* 6.1 m Za7.0 m

C a 1500 n/6 SEDIMEN I PC
P a .0 /cm3 Z 1.

Figure 8-1: Experimental configuration for shallow water experiment
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* ~ w 0 I ?Om Receiver

0

-a.

0.369 0.7 36 1.107 1.476 1.845
HORIZONTAL WAVENUMBER (rrf')

Figure 8-2: Hankel transform of measured pressure field
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procedure to reconstruct the geoacoustic parameters of the bottom from a

* knowledge of the modal eigenvalues.

I8.1 Derivation of integral equation

Consider the model shown in Figure 8-3. In the shallow water environment we

assume that the sound speed in the water column is constant and all the acoustical

parameters in the water column are known. We are now required to determine the

I' density,sound speed and attenuation profiles for the bottom.

We assume that from archival data or other sources of information we are

able to get approximate values for these parameters. This is used as the initial

guess model for the bottom and a perturbative approach used to construct an

integral equation which will relate the changes in the eigenvalues between that of

the guess model and the real model to the acoustic parameters of the bottom.

Making the assumptions of circular symmetry to a point source field and

horizontal stratification, the equations for the normal mode is given by the

following equation.

d2UN(z) 1 dU (z) 2

dz 2  p(z)()(k(z)-k (8.1)

where k(z) is the complex wave number for the medium, i.e absorption in the

medium is accounted for by making the wave number complex. kn is the modal

eigenvalue and U. the modal function for the nth mode. Making the substitution

V.(z)-p1I2(z)U.(z) we obtain,

d2vn(Z) (k2(z)+p(z)-k 2)v.(z)=O. 
(8.2)

dz2 +.
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where,

p1/2(z) p'(z)

2L

Let Cb(z) and pb(z) be the initial guess model for the ocean bottom. The

attenuation is assumed to be zero for the guess model. Then,

d2vlb( z) 2v2 z=
dz 2  +(kb2(z)+pb( z)-kZ2)vb( z)-O. (8.3)

where,

'1/ Pb(Z)

2 Pb -(Z)

Let,

tvz) = Vnb(Z) + vn8 (z) (8.4)

and

k(z)=kb+ia(z); p(z)=pb(Z)+6(z) (8.5)

Substituting the above into equation (8.2),we obtain

V IV#l+ [I 2( z)- 2 kb( z) { 2g(d)k( z)+i2g(a)( z) } + ' "

b z )- k 21 - -O (8.6)

Adding and subtracting knb2vn(z) to the left hand side of equation (8.6), we obtain

Vn 8
+ Vn o#+ [kb2+m(z)-k n b2jv n(z)+

[2kb(z)( 2g(d)k( z)+ ia( z)) + 6(z)]Vn( z)- {kn 2-kb 2}v fn(z)=O (8.7)

Ali, VvN.
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Subtracting equation (8.7) from equation (8.3), we obtain

v, 8 ± +[kb 2 (z)+pb(z)-k b2 ]vle

{-2kb(6k(z)+ia(z))+6(z)}vfl(z)+(knl -knb nl2 v(z) (8.8)

Taking the complex conjugate of equation (8.3), we obtain

d2v n*Z ( z)p()k2 V,(z)=0 892 b ( b2 )f 8 9
dZ2

Multiplying equation (8.8) by vnb and equation (8.9) by vn8 and subtracting we

obtain

Vnb no, -va vb =~b(z){(bz)+cdz)}+6(z)] vn(z)vnb*(z)

+(kfl2-klb2)(z)vlb*(z) (8.10)

We now integrate over the entire depth. The left hand side then becomes equal to

zero. The resulting equation is then,

(k 2-k2) nb(z)vflb ,(zz=

0

Using the first order approximation, vfl(z)=vflb(z), we obtain

(k-k 2) fOUnb(Z) Ulb(z)dzn nb fo Pb/1(Z)pb/1(Z) Z

01

J0 [2kb(z)6k(z)+ia(z)) +6(z)IUflb(z)Ulb (z)dz (8.12)fo P(:4
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Since U s are orthogonal, we obtain

'p°

k 2-k 2 ..lo1
n n=jo -[2k(z)6(z)+i(z)+6(z)IUlb(z)12 dz (.3

Let,

kn=knb+6k=knb+(6kn)r+i(6k n)i (8.14)

Then,

2- knb2 - k -- }b

Substituting these relations in equation (8.13) we obtain the following integral

equation for the unknown parameters.

knb( bk r--O°(z ){ bzl ( )+  ) 2}N Or 001 IU nbI2dz (8.16)

knblk n ) 1 o01 (8.17)
-Nn 0 "-J b(Z) b(z)ak(z)lU nb12dz  ( .7 ,

If the experiment is performed at two frequencies 6k(z) and 6(z) can be seperated.

The approach is the same as the one shown in Chapter 7. We can recover the

corrections to density, sound speed and attenuation in this manner. The similarity

between the equations (8.16) and (8.17) and those used in connection with the deep

water problem is evident. Therefore the methods suggested in Chapter 6 can be

used to solve the above equations and obtain the geo-acoustic parameters of the

bottom.

...... ~..........................
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8.2 Inversion for sound speed using synthetic data

Unlike the problem where the reflection coefficent at many angles of incidence

are available as data, in this case the number of data points are limited by the

number of modes. Further the modes have a decaying field in the bottom and

therefore the penetration of the modes is small. The changes in the eigenvalues are

affected by the sediment properties only in the top layers. If the source frequency is

reduced then the modes penetrate deeper but the number of modes gets reduced,

thereby reducing the number of data points available for inversion.

To test the validity of this method, the synthetic data were generated. A

model for the ocean bottom was assumed and the modal eigenvalues determined

numerically by using a search routine which searches for the location of the poles.

For the guess model the modal eigenvalues were similarly obtained. The bottom

was assumed to be lossless. Having thus obtained the difference in the modal

eigenvaiues inversion algorithm was used to reconstruct the bottom acoustic

parameter[3]. In this case it was assumed that the density in the bottom was

known leaving only the bottom sound speed to be determined.

To study the effect of the magnitude of the perturbation two cases were

studied; one in which the perturbation was taken as 50 m/s and the other in which

it was 100 m/s. The exact and guess models are given in Figures 8-4 and 8-5.

The modal eigen values were computed at three different frequencies 50

Hz,10 Hz and 200 Hz. The data from the two frequencies 50 Hz and 100 Ilz were

then seperately used in an inversion algorithm. The results obtained are given in

Figures 8-6 and 8-7. In order to increase the number of data points, the data from

all three frequencies were combined and used in the inversion procedure In this

case we further made the assumption that the location of the sub-bottom is known.

4..?
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Figure 8-4: Exact and guess model - case(i)
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solutions. When Q(z) is a smoothly varying function and if there is only one turning

point, the solution can be written in termc of the uniform asymptotic solutions.

Let gl(z) and g2(z) be the two linearly independent solutions. Then,

gI(z) Q-l/2(z)vl/4(z)Ai(_v) (A.3)

g2(z - Q-112(z)v 1 / 4(z)Bi(-v) (A.4)

where,

t$z)-{3/2 wC(z)}2/3

z= Q(t)dt
t

zt is the turning point i.e. Q(zt)=o. A i and B. are the Airy functions.

We now write the solutions in the two regions 0 < z < zi and z < z < h in

terms of these solutions.

G(z,z) = Agl(z)+Bg 2(z) 0 < z < z' (A.5)

G(z,z) - Cgl(z)+Dg2 (z) z' < z < h (A.6192('.)

These solutions must satisfy the boundary conditions at z=0 and z=h. Further the

function G(z,z') must be continuous at z=z. dG/dz, however, is discontinuous at

z=zj.

In the region z < 0, the region is homogeneous. The field in this region is an
outgoing wave of the form TO exp(ik z). k.o is the vertical wave number in the

region z < 0. Applying boundary conditions of continuity of pressure and normal

particle velocity at z=0,

-- ---

~-4-*°--



Appendix A

Consider the model in Figure (2-16). We now derive the Green's function

which satisfies the following equation.

d2G 2 z + ~ ) k 2 G b z i ~ ' < h( .1-+ (k2 ()pz-~) 5zz)0<zz Al

where,

0(z) -

p1/2(z) P?(z

2

kz=-sin 00
CO

Equation (A. 1) can then be written as below.

d2G
- +w 2 Q2 (z)G (z-,4) 0< zz' < h (A.2)
Z2

where

I P(z) sin 2o}
Q~~ 2(z) ()+W 2  C0

2

To solve for the Green's function, we note that the Green's function satisfies the

homogeneous form of equation (A.2) when z 34 z'. Therefore in the regions where

z 34 z'. we write the solution as the linear combination of the two independent
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0.1.2 Effect of shear

In the development of the reconstruction scheme, we assumed the sediment to

be a fluid. However, the sediment supports shear and part of the compressional

wave energy is converted to shear. This will manifest itself as additional loss. The

effect of shear on the reconstruction therefore needs investigation. Also possibility

of extending the method to give information about shear is another aspect to be

investigated.

9.1.3 Shallow water problem

Only very preliminary investigation has been done on the method proposed

for reconstruction of acoustic parameters from modal eigenvalues. Further work

needs to be done in this regard.

9.1.4 Inversion from the point source pressure field

The input information for the inversion scheme is the plane wave reflection

coefficent while the measured quatity is the complex point source pressure field.

The measured pressure field is processed to get the input data. Errors in input data -

as well as assumptions made in the processing of the data will affect the quality of

the reflection coefficents obtained. For example it has been shown that one the

hources of error in the Hankel transform operation is the variation in source height.

A scheme which takes the measured pressure fields as data will be less prone to

such processing errors and therefore the possibility of developing such a scheme

needs investigation
.W
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part of the solution affects the reconstruction of the real part and vice-versa.

We showed that the reconstruction of the attenuation coefficent is sensitive

to errors in the sound speed and density and then developed and demonstrated a

method where the errors are treated as additional unknowns in the inversion.

However, when reconstruction of the sound speed is performed, the errors increase

with frequency. Hence the accuracy of the reconstruction will be limited by the

frequency at which the experiment is performed.

The 7''ect of additive noise in the input data was investigated and in the case

of the reconstruction of the attenuation profile with noisy data, we noted that the

scheme is stable.

In Chapter 8, we derived the integral equation for obtaing the acoustic

parameters of the ocean bottom from modal eigenvalues. This method is applicable

to shallow water wave guides. We demonstrated the inversion using synthetic data

and one set of data acquired in a field experiment. The preliminary results show

promise and further work is continuing.

The foundations laid in this thesis provide a basis for future work in other

areas some of which are presented in the next section. jj
9.1 Suggestions for future work 77

9.1.1 Testing the validity with real data

We used primarily synthetic data in this thesis. The validity of the scheme

needs to be tested fully using real data.

77?
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problem using a uniform asymptotic solution was also indicated in the clap or.

In Chapter 5, we derived the linear Fredholm integral equation of the first

kind for obtaining the attenuation coefficent profile for the sediment layer. The

linear equation was obtained using the Born and Rytov approximations. We

derived an expression for the region of validity of the Born approximation and

showed that it is dependent on the magnitude and extent of the perturbation. A -.

review of the methods available for the solution of this class of integral equation

was made in Chapter 6 and an iterative method for solving non-linear integral

equation indicated.

In Chapter 7 we established that the kernel of the non-linear integral

equation is Frechet differentiable and that the Kernel obtained by the Born

approximation is a Frechet kernel. We then arrived at the optimum aperture angle

for input information by studying the region of validity of the Born approximation.

We noted that this corresponds to pre-critical angles. We also showed that if the

sound speed and density are known exactly, and only the attenuation coefficient is

desired, then the frequency at which the experiment is conducted does not affect

the reconstruction.

The inversion procedure to obtain the attenuation coefficent profile was

demonstrated using synthetic data for different types of profiles including a

discontinuous one. The solution was obtained by making an a priori assumption on

the smoothness of the solution. The ability of the data to resolve fine details of the

solution was studied by computing the Dirichlet resolving kernel using the resolving

power theory of Backus and Gilbert. In the case of noise free data the method .. ,

yielded adequate resolution. We also derived the resolving kernel when the

unknown is a complex quantity and obtained an expression for the resolving kernel

and a contamination term. The contamination term determines how the imaginary

.° -' ° -" o-. " -' -" • .• 4" ./ " " " ''" '-°- ' - ' .'° '- - " ' " "t ° . . - "': , A t
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Chapter 9

Conclusions

In this thesis, we developed a perturbation method for obtaining the profiles

of the compressional wave speed, the compressional wave attenuation and density

in marine sediments. We inferred these parameters using an inverse procedure that

has as its input the plane wave reflection coefficent as function of angle of incidence

at a fixed frequency. The Born approximation was applied to obtain a linear

Fredholm integral equation of the first kind. A numerical method for solving the

integral equation using a priori information on the smoothness of the solution was

adopted and the inversion procedure tested with noisy and noise free synthetic

data. In both cases the scheme yielded stable and acceptable results.

In Chapter 2 we studied the propagation of plane waves in marine sediments

and developed an acceptable ocean bottom model. We noted that no acceptable

theoretical model as yet exists to describe the variation of the attenuation

coefficient at low frequencies in marine sediments. Further, we noted that

dispersion of the propagating waves can be substantial for coarse sediments. This

led us to propose a field experiment using a mono-chromatic source for determining

the acoustic properties of the ocean bottom. In Chapter 3 we briefly described the

experiment and enumerated the processing steps to be used to obtain the acoustic

parameters.

In Chapter 4 we dealt with the forward problem and obtained . numerically

stable propagator matrix algorithm to compute the plane wave reflection coefficient

and the wave field in the sediment. An alternate method of solving the forward

* b

.'. + •
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The inversion method was similar to the one described in the last chapter, namely

that we looked for a smooth solution. The results are given in Figures 8-8and 8-9.

The following observations are made on the basis of results obtained,

1. In the case of high frequency, reconstruction of only the top layer is

possible. At lower frequencies reconstruction to a deeper depth can be
obtained.

2. When data obtained at three different frequencies are used as input
data the situation improved considerably as more data points are
available.

3. If we add more information to the scheme such as the speed in the
subbottom and the location of this interface, the results of inversion
are better.

{2- S ,.'

8.3 Inversion of real data

The data obtained in the field experiment was processed and the modal eigen

values determined at two frequencies 140 Hz and 220 Hz. Inversion for the sound

speed structure of the bottom was carried out using the method proposed earlier.

The result obtained is shown in Figure 8-10. The profile for the bottom is similar to

the one proposed by Hamilton[4] for sandy sediments.

Work on this approach to obtain the acoustic parameters of the bottom is

continuing and a more detailed investigation will be necessary before any

conclusions can be made on the efficacy of the proposed method.

+
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Figure 8-6: Reconstructed profile - case(i)

Frequencies - 50Hz and 100Hz

I- Initial guess, 2- Reconstructed profile using
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Figure 8-5: Exact and guess model - case(ii)
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Agl(O) + Bg2(0) =T o  (A.7)

I Bpl 2 (z~g(z)}% ik~
-(Apl/2(z)gl(z)+ BP-2(z)g2(z)}OO TO (A.8)

P(O) pO
We now assume that p(z) and its first derivative are continuous across the

interface. With this assumption, we obtain

A pog2 (O)+ikop/ 2(O)g 2(O) (A9)

B p0g,'(0) +ikop1/2(O)gl(O)

We now write the solution in the region z < z' as follows.

G(z,z) = B{Rgl(Z ) + g2(z)} (A.10)

where R. = A/B and is given by the equation (A.9). Similarly by applying the

boundary conditions at z = h, we obtain for z > z,

G(z,z') = C{gI(z) + Rbg2(z)} (A. 11)

where

pogp (h) -ik, 2p' / 2(h)gl(h)
Rb -Pg 2 (h) -ik z2 pl/ 2(h)g 2(h)

Since G(z,z') is continuous at z=z, the solution is written as below. .4.

G(z,z) = C1 0 2(z)IP(z) z < z' (A.12)

G(z,z) = Cz < z (A.13)

where,
77

6I
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0k1(z) " Ragl(z) + g2(z) (A.14)

02(Z)  g1(z) + Rbg2(z) (A.15)

is a constant and is equal to l/W{b 1(z),b 2(z)}. The Wronksian W() is

given by

W1M(z),2(z))-2(Z)(Z) -- 0(00214 (A.16)

Substituting for vbl(z) and 02(z) from equations (A.14) and (A.15), we obtain

(A. 17)

The solution for the Green's function is therefore,

7r1
G(z,z )= -  {v2{z')vl(z) z < z (A.18)

1w-RRb

If there are no turning points, then the uniform asymptotic solution reduces to the

WKB solution. Then,

g1(z) = 1wexp(iw l(t)dt) z < z' (A.20)
g (wQ (Z))' 1 2

1 zp(iw

g2(z) = exp(-iw Q(t)dt) z < z' (A.21)
9 (z wQ(z))/ 2

With this solution for g,(z) and g2(z), we can show that R8 and Rb look like the

Rayleigh reflection coefficents. Let us consider R8.

:-z i1
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glt(0) i- 2 0} (A.22)

For a smoothly varying medium {Q,(z)/Q 2(z)}«1 and in the frequency range we

are considering this term is negligible. Therfore,

g'(O)=i{WQ(O)}' 1 2  (A.23)

Similarly,

g2 (o)--i{WQ(O)} 1/2 (A.24)

But wQ(O)=k,(O) where k.(O)-k 2(O)-k 2 "Using these relations in equation (A.2)

we obtain,

A_ pok.,(O)-p(O)kz° (A.25)

B pok (O)+p(O)kzo

Compare this with the equation for the Rayleigh reflection coefficent R between

two medium with densities p0 and p, and sound speeds CO and C1 . For an incident

wave in the medium with parameters p, and C1

R P(A.26):4: :.~ ~ k zl+Plk zo

I%

2!,,

2I
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Appendix B

In this appendix we indicate how errors in the acoustic parameters of the

subbottom can be dealt with. In this we follow the method of Coen[l].

Consider the case where the error is in the value of the attenuation coefficient

in the subbottom. We express the true value of the attenuation coefficent as a sum

of a background value and a small error term.

a 2 = a 2b+a (B.1)

Proceeding in exactly the same manner as in Chapter 5, an integral equation is

obtained.

2ikzo(Rbkz)-Rkz)}- fO c ()Pb (k,'z)dz +

f 00

f ap2,k z~dz (B.2)

Jh

For discrete values of angle we write

: . n - ( )b2( z)dz +%

f6apbnP2(z)dz 
(B.3)

Since the unknown ba is a constant it is taken out of the integral and the following

equation obtained.

~"
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c(z)pb2(z)dz+afln (B.4)

where "

2(z)dz (B.5)

At some other angle we write

dm = 10 a(z)Pb 2()dz+6aI (B.6)

Eliminating 6a from these two equations the following relation is obtained.

h
dnIm-dmIn -- a(Z){ImPbnz)-JnPb2(z)}dz (B.7)10

For each data point 1 ..... ,n, the contribution from the second term is subtracted

out by using the (n+l)th data point as shown above. The equations are now solved

for a(z) as before. Having obtained a(z), ba is then computed. Error in other

parameters can be treated in a similar manner.

A A
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