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ABSTRACT
)

The acoustic properties of marine sediments bhave a direct effect on the
propagation of sound in the ocean. In the frequency range of interest (50 - 500 Hz)
the sediment can be modelled as a fluid. Assuming horizontal stratification of the
ocean bottom, the acoustic parameters of interest are the compressional wave

speed, the compressional wave attenuation and density as a function of depth. [hrs

Ahicts [Dwﬂerwls -~

~&n inverse method, based on_a perturbation techniqug‘i;—-pl\esented-iu ths>
_——tiresis for iati QL(t.lﬁ(esrem ’;:l; meters. A monochromatic source
experiment is proposed because of the desirability of such an experiment for
determining the acoustic properties of an anelastic medium. The input information

is the plane wave reflection coefficent as a function of the angle of incidence at a
fixed frequency. A nonlinear integral equation relating the variations of these
acoustic properties frogl a known reference value to the plane wave reflection
coefficient is derived,o this) is then linearised using the Born approximation. The

region of validity of the Born approximation is derived and) based on this,the ~>

PN
* '.?:“n % Do

p 33 e‘)a‘f, r..“.‘.%“‘"

h,
;
;

3
%o




*"iﬂoptimum angular aperture for the input data is obtained.

-2~

The linearised integral equation is a Fredholm integral equation of the first
kind. An acceptable stable solution of the integral equation is obtained by imposing
a priori constraints on the solution. The inversion method is tested using synthetic
data and inversions are carried out for various examples of the attenuation
coefficient profile and the sound speed profile. The results obtained with noise free
data show good agréement between the true profiles and the reconstructed profiles. 47
The resolution obtainable with the data set is studied :using the resolving power
theory of Backus and Gilbert and the inversion method is shown to provide
adequate resolution. The effect of additive noise in data is examined and inversions

performed with noisy data yielded stable acceptable results.

Thesis supervisor: George V. Frisk, Associate Scientist, Woods Hole

Oceanographic Institution.
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Chapter 9 is the concluding chapter where we indicate the directions for

future work in this field.
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We then formulate the inverse problem for the determination of the &
attenuation coefficient profile in the bottom. This is done in Chapter 5. Two x
approaches to linearisation , namely the Born and Rytov methods, are used and in
each case an integral equation relating the attenuation coefficient profile to the

reflection coefficient is derived. b

Chapter 6 is a predominantly review chapter, where we study the problems of 5
instability and non-uniqueness encountered in solving inverse problems of this type.
Various methods described in the literature for solving these problems are then ‘
described with a view to bringing out the underlying commonality of all the

approaches. The method of solving nonlinear problems by linearisation is then

K

described. b
In Chapter 7 we continue with the solution of the inverse problem formulated _
earlier. Adopting a regularisation scheme for overcoming problems of non-
uniqueness and instability several examples of inversion are performed using 5:
synthetic data. The sensitivity of the reconstruction to various parameters and
other related issues are examined. We extend the formulation of the inverse '
problem to determine perturbations in other acoustic parameters and demonstrate '
this by simultaneously solving for the attenuation profile and perturbations in the :
sound speed profile. We also show how the procedure described by Backus and i
Gilbert[20] for determining the resolvability of a finite data set can be applied to "
situations when all the quantities are complex. The effect of noisy data on E
reconstruction is also investigated. :
We then show that in the shallow water context, the problem can be
reformulated to relate the perturbations in the acoustic parameters to the changes :
in the eigenvalues. This is done in Chapter 8. Some preliminary results of inversion ‘
using synthetic and real data are presented. :'
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perturbations in the compressional wave speed and density. We do this not only
because it is the path that our investigation took us but also because the need to
determine the attenuation coefficient and the problems in its determination will

then be brought into focus.

When the ocean is a shallow water wave guide, we use eigenvalues of the
modes trapped in the water column as input information for the inverse method. A
linear Fredholm integral equation of the first kind relating the variations in the
acoustic parameters from a known reference value to the modal eigenvalues is
obtained. This equation can then be solved employing any one of the methods

available for solving this class of integral equations.

1.2 Overview

In Chapter 2 we study the propagation of plane waves in an anelastic medium
to obtain a correct model for the sediments. This is important as it can influence

the type of experiment performed for obtaining the acoustic parameters.

In Chapter 3, after a brief review of the methods described in the literature
for the determination of the attenuation profile in marine sediments, we propose a
method where, as a first step towards inferring the acoustic properties of the ocean
bottom, we obtain the plane wave reflection coefficient for the bottom as function
of angle of incidence[19]. A sequence of steps which can then be used to obtain all

the acoustic parameters of the bottom is indicated.

In Chapter 4 we describe methods for solving the forward problem i.e finding
the acoustic field in the bottom given its acoustic parameters. A numerically stable

propagator matrix algorithm is presented.
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: 4
! distinguish it from otber Born approximation methods are .
Y 1. The input information is the plane wave reflection coefficient as a z}‘
: function of the angle of incidence at a fixed frequency. <N
, 5
2. The reference wave speed, density and the wave attenuation can vary

arbitrarily with depth. A

- het

3. The medium can be Jossy. R

i

4. The method yields all three acoustic parameters. '

i 5. The Born spproximation is not uniformly valid over all the angles and SRt
: therefore band limited information is used N
The linear integral equation obtained by this method is a Fredholm integral

equation of the first kind. These equations suffer from problems of non-uniqueness ;'
and instability of the solution. We obtain a stable acceptable solution by using the o
regularisation method due to Phillips[17] and Twomey[18].

| Though the problem as described above involves the determination of all R
three acoustic parameters, the starting point of this thesis was the development of

s method for obtaining the compressional wave attenuation for the ocean bottom.

) T’
In studying a possible method, we noted that it required an exact knowledge of the o

sound speed and density profiles for the bottom. We found that even small errors in !

' _ these two parameters adversely affected the determination of the atienuation )
coefficient. This led to the present approach where instead of trying to correct for :

! the errors in the sound speed and density, these are treated as unknowns in a e
! general formulation that yields corrections to the sound specd and density profite. o
' . . . 'Y
; together with the attenuation coefficient profile. &
' ('-h
We will, therefore, develop the method for the determinaticn of the

attenuation coefficient profile for the bottom and then extend it to deal with ;

:}\
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through a linear integral equation as before.

) - X
Subsequent to the publication of the first paper by Cohen and Bleistein, a :“_
“ number of papers have appeared in the field of seismology which are based on a ";

Born type approximation[5-9]. Features common to all these are as follows.

S

i 3

: 1. The response to an impulsive source at the surface of the medium ;

i being probed is measured at the same location as the source or at a e
fixed off-set from it. This is equivalent to measuring the plane wave

K reflection coefficient as a function of {frequency at normal incidence or

: at a fixed angle of incidence.

\

X 2. The reference wave speed and density are generally assumed to be

constants. Raz[10],Clayton and Stolt[11], and Bleistein and Gray[12], :
4 however, also consider the case when the reference compressional wave L4
speed is depth dependent. bN

N o
;\. 3. The medium is lossless. :}' _
1 4. The variation of true wave speed from the reference speed is small and !
b the Born approximation is valid at all frequencies of the broad band t:,
source. t?
' The experiment that we propose uses a CW source and the input data in this »
E case is the plane wave reflection cocfficient at various angles of incidence. A @;’:
; schematic of the experiment is shown in Figure 1-3. Exact methods for obtaining g‘
! the acoustic parameters of the medium from the angular dependence of the - J
reflection coefficient have been proposed by Hooshayar and Razavy(13] and ?E :
' Stickler[14]. Schaubert and Mittra[15] and Roger[16] present inverse methods based :z'
on perturbation techniques for determining the permittivity of a lossless dielectric
i medium using a monochromatic source to probe the medium. However, a
[ perturbation method using the angular dependence of the plane wave reflection §.
coefficient as input information has not been applied to the determination of all ﬂ
\ three acoustic parameters of the ocean bottom. The features of this method that :\:
N o
': 3
; R
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have a direct effect on the propagation of sound in the ocean.

The forward scattering problem: deals with the determination of the wave
field scattered from an object with known properties for a given incident wave
field. In contrast to this, in the inverse scattering problem the scattered field for a
given incident field is measured at the boundary of the object or at points external
to the object and from this the properties of the object are inferred. The
determination of the acoustic properties of the ocean bottom from the plane wave

reflection coefficient falls into this category.

Two approaches are found in the literature for determining the acoustic
properties of a layered medium from its reflection response. These are exact
methods and approximate methods. A review of exact inversion mecthods using
reflection coefficient data for layered media is given by Newton[2]. Our approach is,
however, based on an approximate method developed by Cohen and Bleistein(3]. In
the setting of geophysical inverse problems, their method was applied to the
determination of the compressional wave speed in the interior of the earth. A
schematic diagram for the experiment is shown in Figure 1-2. The source is an
impulsive plane wave source. The backscatterd field at the location of the source is
measured. Using perturbation theory, the back scattered field is related to the
variation of the compressional wave speed from a known reference value and a
linear integral equation obtained. The linearising approximation is called the Born
approximation. When the reference wave speed is a constant a closed form solution
to the integral equation is obtained. In the two dimensional case[4], the experiment
consists of using a line of sources which is equivalent to repeating the experiment
for the one dimensional problem at a number of locations along a line. In this case

the variation of the compressional wave speed from its reference is in two spatial

coordinates. This is related to the backscattered field measured along the line
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Figure 1-3: Schematic of experiment with monochromatic source
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Figure 1-2: Schematic of experiment with impulsive source
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Chapter 1

s

8 Introduction

0y

; ' The prediction of sound propagation in the ocean requires a knowledge of the
b

%, acoustic properties of marine sediments. In the range of frequencies of interest (50

- 500 Hz) marine sediments can be modelled as a fluid[1]. Therefore, the acoustic

properties of marine sediments of interest are the compressional wave speed, the

R

%E:: compressional wave attenuation and the density. Further when the assumption of :
. horizontal stratification is made, these parameters are a function of depth only. In
-J this thesis, we present an inverse method based on a perturbation technique for
obtaining these parameters. The input information is the plane wave reflection

coefficient for the bottom as a function of angle of incidence at a fixed frequency.

19 3
", 1.1 Background e
E
N
3 Figure 1-1 is a typical ray diagram for low frequency sound (50 - 500 Hz) o
o . . . ) X
iy interacting with the bottom. The rays emanate from the source and are partislly 3
) g &
reflected at the water/ocean bottom interface and the energy entering the bottom,
£ therefore, depends on the impedance contrast at this interface. The rays that “_\
28 L
W penetrate into the bottom arehowever, refracted back into the water column :
i because of the increasing sound speed. As the rays travel in this region, some of the
Wy
1‘3' energy associated with them is converted into heat. The aitenuation coefficient is a i
18 measure of the amount of energy dissipated in this manner. Thus the compressional N
W
_ wave speed, the compressional wave attenuation sad the density of the sediment
;.' N
o N
:;ﬁi .' )
l', ‘~,'.

iy, ) X Y,
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Chapter 2
Acoustic Modelling of Marine Sediments

Acoustic transmission in the ocean at low frequency is dependent on the
geoacoustic properties of the seabed, namely, the speed and attenuation of the
compressional and shear waves and density. A complete specification of the seabed
will contain the wave speeds and attenuations as a function of the three spatial co-

ordinates and frequency, and density as a function of the spatial co-ordinates.

In this chapter we develop a model for the ocean bottom that will be used in
the analysis to be presented in the following chapters of this work. In this context,
we study the frequency dependence of attenuation and the dispersion of the wave
speeds due to attenuation. These are important considerations in the design of a
suitable experiment for the measurement of the attenuation coefficient. We also
summarise the other geoacoustic characteristics associated with wave propagation

in marine sediments.

2.1 Dispersion and attenuation of compressional waves

We start by studying the propagation of plane compressional waves in an
attenuating medium. In deriving the classical loss-less wave equation it is assumed
that the material behaves in an elastic manner. The result of such an assumption is
that sound waves propagate in the medium without change of shape and suffer no
attenuation. However, in real sediments the waves decay as they propagate. Their

energy is gradually converted to heat. This process is the result of a variety of
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mechanisms which operate for most part at the microscopic level. At the =
macroscopic level the energy loss is given such terms as internal friction,

attenuation and anelasticity. o

The most direct method of defining ’internal friction’ is as the ratio —(AE)/FE

where AE is the energy lost in each cycle because the material is not perfectly y

R
7

—
a
fadCa ¥ N,

elastic and E is the peak energy stored in the volume of material taken through the

2,4

stress cycle at a frequency w. The specific attenuation coefficient @ is defined as

-

hSt

o

2” AE :‘:_

—_ = —— (2.1) Rt

Q E

This factor @ can be measured without any assumption being made on the
attenuating mechanisms and is therefore used to describe attenuating behaviour of "
the medium in a phenomenological sense. "
For a plan= propagating wave, the effect of 'internal friction’ will be the Ry

.‘}‘

gradual decay of the amplitude of the wave as it propagates. Since the energy is N3

propotional to the square of the amplitude,

1 AFE AA
— = = (2:2)
Q(w) 2xF TA

LT B

e

In the above expression AA is the change in amplitude over one cycle or

AA=(dA/dz))\ where X is the wave length. 3

dA 27C(w)

AA = (2.3)
, d:t w
e
; wz o
2 A(z) = Agezrp(— ———) (2.4) o
‘ 2C(w)Q(w) S
L Therefore, for a propagating wave, ::.:
o 2
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Figure 2-1: Variation of the attenuation coefficient with
frequency-reproduced from Hamilton(4]
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Alz,t) = [( w t)]
z, —w
e Qo
—A, exp [§ (Huw)—wl] (2.5)

Here k{w) is a complex quantity, its imaginary part representing attenuation.
Another measure of attenuation found in the literature is the attenuation

coefficient which is given by the following expression.

W .
- —_— (2.6
W = e )

Attenuation in a medium can therefore be accounted for by making the wave

number complex.

The attenuation coefficient is a function of frequency by definition. Aki and
Richards(l] show that the behaviour of waves propagating in an attenuating
medium cannot be explained unless the assumption of dispersion of these waves is
made. Therefore both @ and C are functions of frequency. Figure 2-1 is a plot of
the attenuation coefficient for compressional waves with respect to frequency based
on laboratory/field experiments. Most of the information is in the high frequency
region. The experimental results show a rough linear dependence of the attenuation

coefficient on frequency in the high frequency range.

Efforts to explain this experimentally observed behaviour have been made by
modifying the equations of th classical elastic theory. Different approaches have
been proposed. For example Hamilton[4) proposes a visco-elastic model for water
saturated sediments while another approach, called the Biot model, which treats
the sediment as a porous elastic solid saturated by a viscous fluid has been pursued

by Stoll[13]. The two models will be described briefly in the following paragraphs.
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2.1.1 Visco-elastic model i
In the classical elastic theory, the stress and the strain are related by a linear \’
relationship such as ::,:j:
o =Be (2.7) ;3.
where o is the stress, ¢ the strain and B is the constant of propotionality called the :‘:-\
elastic constant. In the visco-elastic model the anelasticity is incorporated by =
i
modifying the elastic equation to express the stress as a function of strain and b
Vi
strain rate as indicated in equation (2.8), where de/dt is the strain rate. t}‘
de ! ‘
o0 = Be+G — (2.8) if‘
dt ]
1
We now have two elastic constants B and G. A mechanical system representing this A
stress strain relationship is shown in Figure 2-2 The spring represents a perfectly ‘.‘.
elastic body for which the stress-strain relationship is governed by the law f\-
o =DBe (2.9)
The dashpot represents a perfectly viscous body for which the stress strain oy
)
3
relationship is given below. 'y
de o
o (2. 10) ':-q

T

For a system in which these two elements are in parallel the relationship in

equation (2.8) is obtained. The analogies of various other visco-elastic models to

T g |

)
44 . . . N
' mechanical systems are given in Reference 5. =
The model in Figure 2-2 is called the Kelvin-Voigt model and Hamilton|[2,4
; '
(3%
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has proposed this model to describe the anelastic behaviour of marine sediments.
Kolsky|[3] has shown that the elastic equation (2.8) when applied to solids resulted
in the Lame’s constants Aand p being replaced by A+)' and p+u' where X' and '
govern the energy damping and A\ and p together with the density govern the
velocity. Based on this analysis, the following equations for specific attenuation

coefficient and compressional wave speed were obtained by Hamilton[2,4].

1 a(f)e(f)

QY -

2 (127
P(14r%)?

(A+2p)

where r = a(f)C(f)/2xf. When damping is small r is neglected and we recover the
equation (2.6). Again when r is negligible there is no dispersion in the medium. For
this visco-elastic model the attenuation coefficient is proportional to the square of

frequency|[3].

The Kelvin-Voigt model does not exhibit the behaviour of real materials when
a load is applied to it. The response of the Kelvin-Voigt model to a suddenly
applied stress is shown in Figure 2-3. The strain is zero at t=0 and reaches its final
value asymptotically with time. However, real materials show instantaneous strain.
A model which overcomes this shortcoming is the "standard linear model”. In this

model the stress and stress rate are expressed as a function of strain and strain rate

"‘«k{: Zo

R

B

and is given by equation (2.11)

- 1
.}

-

do M dc) _ @.11)
o+7 — = e+7— 2.11
%dt R ‘dt

where MR is called the deformation modulus, 7, is the stress relaxation time under

constant strain and 7, is the strain relaxation time under constant stress. We now
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have three elastic constants. A mechanical system that models this behaviour and
its response to a suddenly applied load are in Figures 2-4 and 2-5.It is seen from
Figure 2-5 that there is an instantaneous response of this system to suddenly
applied load as is the case for real materials. The dependece of the specific
attenuation coefficient for this model is shown in Figure 2-6. The Kelvin- Voigt
model anu the standard linear model, therefore, cannot explain the linear

relationsnip found experimentally.

However,since energy damping is due to a large number of mechanisms, Liu
etal[6] proposed that by considering a large number of relatively closely spaced
relaxation mechanisms representing the various damping processes, with each
mechanism behaving like a linear solid, the attenuation coefficient can be shown to

be linearly related to frequency for earth like materials.

Using the theory of superposition of relaxation mechanisms Liu etal{6] derived
the following expression for the dispersion of waves.
C (w,) 1 w
2l 4 In2 (2.12)
C p(wz) Q  w,
A similar equation for dispersion has been derived by other investigators[8,9] using

entirely different approaches.

The theory of superposition of relaxation mechanisms, therefore, gives the
experimentally observed linear dependence of attenuation with frequency and also
provides a dispersion relationship which has been cbtained from two completely
different approaches. This theory can, therefore, be considered as providing the
physical basis for understanding the propagation of waves in an anclastic medium
like the earth. Treating consolidated marine sedimcnts as earth-like materials and

applying the above theory, the attenuation coefficient can be predicted to have a
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linear relationship with respect to frequency over the entire frequency range and
the values of the attenuation coefficient obtained at high frequency can then be
extrapolated into the low frequency region. This procedure has been recommended
by Hamilton[4]. Experimental results obtained by Frisk{18], Mitchell and Focke[19]
and Stoll[20] for attenuation in marine sediments at low frequencies, however, yield
values much less than what is predicted by extrapolating the linear law. This casts

doubt on the applicability of the superposition theory to marine sediments.

2.1.2 ’ Biot ’ model

Biot[10,11,12] studied the propagation of elastic waves in a system composed
of a a porous elastic solid saturated by a viscous fluid. The fluid is assumed to be
compressible and may move relative to the frame. In this model, the losses are
grouped into two fundementally different categories, one which accounts for the
anelasticity of the skeletal frame and the other for the viscosity of the fluid moving

relative to the frame.

The theory proposed by Biot was later applied by Stoll[13] and Stoll and
Bryan[14] for propagation in ocean sediments. Using this theory, the variation of
compressional wave speed with frequency and the variation of attenuation with

frequency can be obtained for known sediment properties.

The way in which attenuation varies with frequency depends on the
dominance of one or the other of the two modes of energy dissipation that are built
into the mbdel, namely, the viscous losses in the fluid as it moves relative to the
frame or the frictional losses in the skeletal frame. Figure 2-7 shows two kinds of

response predicted by the model. For very fine materials of low permeability, such

as silty clay, the losses in the skeletal frame dominate and the authors propose a
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Figure 2-7: Variation of the attenuation coefficient with frequency
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linear relationship while for high permeability material like coarse sand etc. a
dependence ffwith n = 2 at the low frequency end and n = 1/2 at the high
frequncy has been proposed. McDaniel and Beebe[15] applied the Biot theory and
computed the acoustic characteristics of different types of sediments. The
sediments were classified on the basis of their mean grain size. To derive
expressions for the acoustic characteristics they used empirical relations between
permeability and grain size. The variation of attenuation with frequency was found
to obey the law a(f) = A" where n lies between 1 and 1.8. The results obtained
by them are shown in Figure 2-8. Hovem[16], however, suggests that the viscous
losses which is the cause of the nonlinear dependence can be made to vary linearly

with frequency if a distribution of grain sizes is adopted.

Figure 2-11 is a collection of laboratory and field data for attenuation plotted
against frequency with the prediction of the Biot model as computed by Stoll[23]
superimposcd. We note that in the low frequency region there is considerable
scatter in the experimentally determined values and applicability of the Biot model
to marine sediments cannot be confirmed on the basis of the evidence presented in

this figure.

The variation of compressional wave with frequency as obtained using the
Biot model is shown in Figure 2-9 for sediments of different mean grain size. For
coarser materials (low ¢) the dispersion is appreciable, which is similar to the result

obtained by Liu as such materials also have low Q.

2.1.3 Compressional wave attenuation vs Depth

The ray diagram in Figure 1-1 shows the rays interacting with the bottom.

The loss of energy suffered due to interaction with the bottom will, therefore,
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half space. In the water column for the purpose of our investigation we assume that £
the density and sound speed are constant. The negligible attenuation in the water

is ignored.
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Marine sediments have enough rigidity to transmit shear waves. When
compressional waves are incident on the ocean bottom interface, shear conversion
takes place. If the ocean bottom is modelled as a set of layers with velocity
gradients within each layer, then such shear conversion will occur at the layer
interfaces and if the velocity gradients are large it will occur continuously within
the layers. Fryer[17] studied the effect of shear in marine sediments and concludes
that the effect of shear conversion within the the sediment is small at frequncies
above 20 Hz. However, if strong discontinuities in shear speeds exist or if any
energy reaches the basement where the shear speed becomes éomparable to the
compressional wave speed, then shear conversion cannot be ignored. For thick
sediments, we can assume that there are no strong discontinuities in the shear
speed within the sediment and very little energy reaches the basement. Under such
assumptions, the effect of shear conversion can be ignored and the sediment treated
as a fluid. The ocean bottom model now contains only three parameters, the

compressional wave speed, compressional wave attenuation and density.

Some investigators have made a further simplifying assumption that the
dispersion of compressional waves is negligible and therefore the compressional
wave speed is a function of depth alone. For reasons explained earlier we will not
make such an assumption. Further we do not assume linear dependence of
attenuation with frequency since the applicability of this behaviour at low

frequencies to all types of sediments is in doubt.

The model for the ocean bottom we adopt is shown in figure2-6. The figure
represents a thick sediment layer in which the compressional wave speed , density
and attenuation can vary arbitrarily with depth, overlying a sub-bottom of

constant density, compressional wave speed and attenuation. Since we assume that

very little energy reaches the basement, the sub-bottom is modelled as an infinite
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permeability material. In the context of the evidence available for compressional
waves the validity of this assumption in the low frequency region is questionable.
Since the attenuation coefficient for shear waves is at least an order of magnitude

larger than that of compressional waves, dispersion in this case will be substantial.

2.2.4 Shear wave attenuation as a function of depth

Very little information is available on the variation of shear wave attenuation
with depth. For modelling purposes Hamilton recommends that the shear wave
attenuation be varied with depth in proportion to the variation of compressional

wave attenuation with depth.

2.2.5 Density as a function of depth

Density of the sediments can be modelled as increasing monotonically with
depth due to overburden pressure. Variation of density with depth is in Figure

2-15

2.3 Ocean bottom model

In a complete model for the ocean bottom the geoacoustic parameters are
functions of the spatial co-ordinates. A simplifying assumption commonly made for
the ocean bottom model is that of horizontal stratification i.e., the geoacoustic
parameters depend spatially only on depth. Figure 2-16 is a section of the ocean
bottom obtained by a 3.5 kHz seismic profiler in the Icelandic Basin[22]. The well
defined layering of the bottom can be seen in this figure and such layering is

observed in many regions of the ocean. Thus the assumption of horizontal

straticication is frequently satisfied.
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2.2 Summary of other essential characteristics of the geoacoustic

parameters.

2.2.1 Compressional wave speed as a function of depth

In-situ'measurements of velocity at the sediment water interface show a small
discontinuity in the compressional wave speed. The velocity ratio defined as the
ratio of sound speed in the sediment to the sound speed in water range from 0.97 to
1.03. From the sediment water interface the sound speed increases monotonically.
Using experimental data on compressional wave speed at various depths
Hamilton[4] gives a regression equation for modelling the compressional wave speed
in the sediment. The variation of compressional wave speed with depth is plotted in

Figures 2-12and 2-13 for different types of sediments.

2.2.2 Shear wave speed as a function of depth

All marine sediments possess enough rigidity to transmit shear waves. Shear
waves are important in underwater sound propagation because compressional waves
can be partially converted to shear waves at reflection boundaries and by
compressional and shear velocity gradients. Variation of shear wave velocity with
depth is given in Figure 2-14. For modelling purposes Hamilton[4] gives a regression

equation that relates the compressional wave speed to shear wave speed.

2.2.3 Shear wave attenuation and dispersion

Experimental results for shear wave attenuation are far fewer than that of
compressional waves. For modelling purposes Hamilton[4] suggests the use of the

linear relationship between attenuation and frequency in the case of high
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depend on the sedime.t layers sampled by these rays. Since each ray has different
x oy
v ray paths the energy ioss sssociated with it will depend on the variation of !
.f.{:‘.
3 attenuation with depth. Very little experimental data is available on this important 3'-]:'
' characteristic. The available data is shown in Figure 2-10 which is a plot of k(z). u
: The function k(z) is derived from the attenuation coefficient using the law _
4 g
: af f,z)=K(z)f. In the case of silty-clay sediments a peak in the value of attenuation ;j;-jﬁ»
S el
is observed around 300 m. Recent field experiments carried out by Jacobson etal{21] ‘
- and Mitchell and Focke[19] also indicate the existence of such peaks. b
- . N
o e
) . NS
! 2.1.4 Conclusions 2al
: 1)
N The modelling of the sediment as a visco-elastic model or as a porous solid }
A i
2 leads to conflicting results especially in the low frequency region. Experimental :
R results in the low {requency region is limited and the question as to which of these e
4
X models is applicable for marine sediments has not yet been resolved. However, “
*l l.‘.l.
‘i based on the theory presented so far, the following conclusions can be drawn. ::-C ’
A b
1.In the high frequency region (above 1 KHz), attenuation in low :_..
) permeability materials can be modelled as having a linear relationship ‘;-E
: with frequency. :».::
‘ 2. The behaviour of marine sediments in ‘he low frequency region is not ‘
iy well understood and under such circumstances it will not be correct to I
] extrapolate the results obtained in the high frequency region to the low Sl
. frequencies. g
W SN
: 3. Dispersion of waves for coarse sediments can be substantial especially »
N over a wide range of frequencies. . ;‘}‘
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Chapter 3

Determination of the Attenuation Prcfile

Attenuation as described in Chapter 2 refers to the decrease in the amplitude
of propagating waves due to a variety of emergy damping mechanisms. This
attenuation, also called intrinsic attenuation, dcpends on the type of sediment (i.e
the compositon of the sediment, the particle size and other parameters). Laboratory
measurcments of intrinsic attenuation can be readily performed but are restricted
to high frequencies because of the long wave lengths at low frequencies and the
difficulty in eliminating boundary effects. Laboratory measurements have,

therefore, been limited to frequencies above 1 KHz [1-5).

In view of this, field experiments which utilize the in-situ deposits of
sediments as large scale specimens have been performed. In such field experiments
it is necessary to take into account all factors like spreading, reflections, etc. which
affect the amplitude of the propagating waves. The determination of the
attenuation coefficient structure from field experiments, even in the simplest of

geological setting is, therefore, a difficult task.

In this chapter we will review some of the methods proposed in the literature
for obtaining the attcnuation profile for the bottom from field measurements. We
then describe a field experiment that has been proposed by Frisk etal[6] to obtain
the plane-wave reflection coefficient for the ocean bottom as a function of the angle
of incidence. The sequence of processing steps that can be adopted to obtain the

acoustical properties of the bottom starting with the plane-wave reflection

coefficient information is then indicated. The advantage of this method for the




Figure 3-1: Configuration of experiment by Anderson and Blackman(7)

aff) = Attenuation coefficient(dB/m) of sediment
a (f) = Attenuation coefficient of water : o
BL = Bottom loss of bottom reflected signals in decibels '
D = Depth of water

z = Thickness of sediment wedge

RL,,(f) = Peak amplitude of sub-bottom reflected signal KX
S(f) = Source level in decibels o
SBL = Sub-bottom loss :

TL, = Transmission loss of signal going through the water/sediment
interface

TLw = Transmission loss of signal going through the sediment water
interface
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determination of the attenuation profile over the others described in this chapter
will also be presented. We conclude the chapter by a statement of the problem that
will be considered in the remaining part of this thesis and the assumptions that will

be made in solving the problem.

3.1 Review of methods in the literature

Anderson and Blackman[7] describe a method for determining the average
attenuation coefficient from insitu measurements. A reqilirement for the
experiment is that the sediment layer be wedge-shaped and overly a highly
reflective bottom. The schematic diagram in Figure 3-1 shows such a configuration.
In such an environment, the field experiment is performed to obtain an average
value of attenuation for the sediment. Assuming near normal incidence, the
pressure pulse due to the source interacts with the water-sediment interface first.
Part of the energy is returned to the water column while the remaining is
transmitted into the sediment. This transmitted energy again undergoes reflection
and transmission at the sediment sub-bottom interface. Part of this reflected
energy is returned to the water column. If RL, and RL,; are the received pressure
levels of the sediment and sub-bottom reflected signals, they can be related to the
source level, spreading losses and other losses by the following equations. The
difference in the field returned from the water-sediment interface and sediment-
sub-bottom interface can then be related to the attenuation in the sediment. The

symbols used in the following equations are explained in the legend to figure 3-1.
RL, = S—BL—20log2D—2a D (3.1)

RL,, = S—TL,~SBL-TL —2az—20log{ D+2)2a D (3.2)
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Subtracting , we obtain

2
Y
S RL, - RL,,= SBL + |TL_+TL,—~BL—20log2D] =
+ 2az + 20log(D+2). (3.3) A
0% g
E Assuming that the term within the bracket remains constant for the entire wedge, :
3 we obtain :;
»
! RL,—RL,,—20log2(D+2)—-SBL = a(22)+c 4 (3.4) :
3 3
H Ignoring any contribution due to spreading term, i.e. 20 log2(D+z), and any change ' :
in the sub-bottom reflectivity, this equation reduces to ;.
X >
;l RL,~RL,, = a(2z)+c (3.5) i
\i By measuring (RL,—RL,,) at different points in range, i.e. at different depths
b* in the bottom, this quantity is plotted as a function of depth. The slope of the line -g
.;. obtained gives the attenuation coefficient. The depth at each observation point is :.
! determined from measuring the arrival times of the two reflected signals and '
Eéé knowing the sound speed in the bottom. f;-::.
The spectral ratio method of Jacobson, Shor, and Dorman[8] uses seismic g
refraction data to determine attenuation as a function of depth. The experimental 2N
._.' configuration is shown in Figure 3-2. Different ray paths from the source sample
5:‘ different depths in the ocean bottom. Assuming horizontal stratification, the 3
".3 amplitude spectrum of the received signal waveform can be written as :r
b s
; A[0.5,2) = Eq(0.NF6.5,21()) (36) 2
% where 8 is the angle of incidence,f is the frequency, and z the depth.A(4,f,2) is the ,.
K o
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received signal F(6,f) is the source signal, F{0,f,z) the earth response and If) the
instrument response. The suffix j refers to the jth observation. The earth response

function FJ(0,z, f) can be written as

F(f’ f,2) = T[0,:2(6,2)G (f,2) (3.7)

where T is the function containing transmission and reflection coefficients,
scattering loss, shear conversion etc., R is the function representing spreading loss
and G is the attenuation operator. T is assumed to be independent of frequency.

The frequency dependence of G is given by

G(f,2) = exp(—k(2) [*PL(2)). (3.8)

where PL(z) is the path length, fk(z) is the attenuation coefficient. If £ and I are
known, the earth response F can be obtained. To get a good estimate of the source

function, the direct water borne energy is :neasured. This is given by

A f0.12,) = Eo( R, {0.2,)1L1) (3.9)

where R j is the spreading loss function ralated to the waterborne path. The
spectral ratio defined as the logarithm of the ratio of the refracted signal amplitude

to the direct water signal is then obtained.

Af6.2)  T(6,2R(6,2G(2)

(3.10)

Aw](o7f$zw) ij(o)zu;)

Taking the logarithm of both sides, the spectral ratio is
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SR(0,f,2) = InTJ(0,z)+lnRJ(0,z)—
lanJ(0,2)+lnGJ(f,z) (3.11)

Assuming that the attenuation cofficent is linearly related to frequency

InG(f,2) = —k(2)fPL(z) (3.12)
Then,

SR{0,f,2) = SR ﬁ(o,z)—ﬁ’: kfPL,; | (3.13)
where, =

SRy = InT(0,2)+InR (0,2)-InR,, (0,) (3.14)

By plotting SI(0,f,z) with respect to f we can obtain the intercept SR, Then,

SR ~SR
J ~ N__
I -Y  kPL; (3.15)
$
where SR, is the intercept, PL'-J- is the path length in the sth layer for the jth
observation. A linear inverse method is now used to obtain k. Having obtained &/,
the attenuation in the sth layer equals fk. Wrolstad[9] also uses a similar method
for determining the attenuation profile. The spectral ratio method has been applied

by Hauge[10] to vertical seismic proliles to obtain attenuation information.

Stoll and Houtz[11] utilize the fact that in certain areas of the ocean where
there are deep sediment layers, the velocity profile is smooth and linear. With
linear profiles the refracting paths in the sediment layers will be arcs of a circle.

The experiment is similar to a refraction experiment and the configuration is shown

in Figure 3-3. The amplitude of the signal received at the time of the f{irst arrival or
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at a multiple of this time is given by
oY,
a0 12 prypr+ &3
A, =A,[0) -——( )/ “(1-R°)(6)" "exp(—2, (6)) (3.16) R
S(z,0) =
where, :._'-? 3
i)
R
et = 22 ( H
z,0) = z— 3.17) hahy

dé -
where n=0 for the first the first arrival and n=1 ,2,.. for the first multiple and so ”~'
on. The term in parenthesis accounts for geometrical spréading,R(O) is the f
rocd
reflection coefficient and A(f) is the amplitude of the source. @ is the angle of "*
inclination of the angle at the source and (1+n)x is the range between source and i
receiver. The exponent - $(0) is the total loss of amplitude occuring due to intrinsic d
attenuation, scattering and other causes and may be expressed in terms of the _’\:'
attenuation coefficient by the expression given below. :n;:f
&

= 3.18 g
(n+l)z a(f)As (3.18) Py

3

To evaluate &, we form the ratio A,/A,, :‘;._'_
X
]
Y O —
R, = — = - (1-R%)ezp(—9,) (3.19) B
A 2 wal
Therefore, W

¢ | (2R" ) (3.20) :

= —in .
° (1-R?)

and knowing &, a(f) is determined.
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experiment. One of the ray paths from the source to the receiver is shown in the
Figure 3-4. There may be many more such paths. The major part of the loss of
signal energy occurs along portions of the ray that lie in the sediment. This loss,
when normalised to a single bottom encounter and expressed as a function of
grazing angle is the bottom reflection loss. Obtaining this is the first step in this
method. Mitchell and Focke then use the fact that for rays penetrating the bottom
at high angles of incidence, the bottom loss associated with them is largely due to
attenuation in the layers. Under such assumptions, the bottom loss can be
expressed as a function of the attenuation coefficient and the ~path length in the
bottom. When the attenuation is a function of depth, then this relationship is

given by the equation below.

BL = f /L ki)l (3.21)

Here we have assumed that a(f,z)=k(2)f and the integral is over the path length.
Using this and considering a number of rays all at large angles of incidence a matrix

of the form given below can be constructed.

= . (3.22)

L k

n nl nm m

Here L'.j is the path length in the jth layer of a ray at an angle of incidence of
0. To compute the path length it is assumed that the sound speed in the bottom is
known. This matrix, which is lower triangular, can be easily inverted to give k, in
different layers and as before the attenuation coefficient in each layer can thus be

obtained.
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Spofford[13] describes a method of determining the sound speed gradient and
an average value of the attenuation coefficient for the sediment from a knowledge
of the bottom loss expressed as a function of the angle of incidence. Such data
exhibit an abrupt increase in loss at a grazing angle corresponding to the
development of a minimum range caustic in the bottom refracted path. If this
grazing angle is obtained from the data, then using a relationship between this
angle and the sound speed gradient for the bottom, the sound speed gradient is
determined. The knowledge of the sound speed gradient gives the path lengths of
the refracted rays. The attenuation coefficient value is then 6btained from the

difference in levels between the bottom reflected and refracted rays.

The methods described above make some or all of the following assumptions.

1. The reflection and transmission coefficients are independent of
frequency.

™

. The attenuation coefficient is linearly related to frequency and
therefore a(f,z) can be written as a(f,z)==k(z2)f.

3. The compressional wave speed for the medium is known.
4. The compressional waves are dispersionless.

5. Where other loss mechanisms like scatter,shear conversion are
involved, the attenuation coefficient obtained will be the 'effective
attenuation' and not the ’intrinsic attenuation’.

The field measurement of attenuation coefficent show considerable scatter as seen
in Figure 2-11. On the basis of the data presented in this figure,it is clear that
extrapolation of the high frequency results into the low frequency region using
linear law will be in error. Further, the data in the low frequency range are spread
over a wide range of values of attenuation and there is no consistent pattern to

justify a particular frquency dependence.
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d2P2 s o
;2—+(k2 ~k_ 2)Py=0 (4.8)

Where k, is the wave number in region Ill (i.e.) k,=w/C,.

For an incident wave of unit amplitude, the field in region I is the sum of the

incident and reflected waves.
Py=e"*20°+ R(k,)e~**:0? (4.9)

In the above equation R(k,) is the plane wave reflection coefficient of the entire
bottom structure and k= (k02 - kz2)l/ 2 is the vertical wave number in the water
column. The subbottom is an infinite half space and only outward propagating
wave exists in this region. The field in the subbottom is, therefore, given by the

following expression.
Py=T\k )e'¥:0* (4.10)

where k,, is the vertical wave number in the subbottom and T{k,) is the
transmission coefficient. Note that k_, is complex to allow for attenuation in the
bottom. The pressure field in the sediment layer is obtained by solving equation
(4.7). The boundary conditions that the solution has to satisfy are the continuity of
pressure and normal particle velocity at the two interfaces i.e at 2=0 and z=

representing the water-sediment and sediment-subbottom interfaces. The
application of these conditions at the sediment-water interface leads to the

following equations.

PA0)=1+R (4.11)
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d? 1 d
dfz)%pm(p(z)) 2, - ARa=0. (42)

Defining a new variable v(z) as v(z)=p"l/2(z)P(z) and substituting in the wave

equation we obtain the following relation.

d2v(z

)+Q(z)v(z)=0 (4.3)

where,

Q2)=FK(2)- ( Y (4.4)

When the density in the medium is a constant the wave equation takes the form

given below.

d2

)+(k2(2)—k,2)i’(2)=0 (4.5)

The wave equation in the three regions will then be as given below.

Water column (Region 1:

d*P
0 2 Qp
" +(ky%—k 2)Py=0 (4.6)

where k; is the wave number in region I (i) ky=w/C,.

Sediment layers (Region II):

i

d“v
—5+Qlz)lz)=0 (47)

Sub-bottom (Region III):
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Chapter 4
The Forward Problem

The forward problem deals with the determination of the response of a
system to a known input given system parameters. In the context of our problem, it
deals with the determination of the acoustic field in the sediment layers for a plane
wave of unit amplitude incident on the top of the sediment. The acoustic
characteristics of the sediment layer and the sub-bottom are assumed known. We
need to solve the forward problem for two reasons. First, the plane wave reflection
coefficient and the pressure field in the sediment layers for the assumed guess
model are needed to solve the inverse problem as we will see in the next chapter.
Second, we use synthetic data to test the inversion scheme and for this purpose the
plane wave reflection coefficient is required to be computed. Two methods for
solving the forward problem are presented in this chapter; a uniform asymptotic

method and a method based on a propagator matrix formulation.

We use the ocean bottom model developed in Chapter 2 and represented in
Figure 4-1. Consider a plane wave of unit amplitude incident at the water sediment
interface inclined at an angle 8 to the vertical. The acoustic field in the ocean and
the bottom obey the acoustic wave equation. If ¢ represents the pressure field; the
wave equatjon for ¢ is

% 0%

bt (l )"Mlk2 ¢=0 4.1
azzvazztp(Z)p(z)az' (e)p=0. (1)

Writing ¢(z,z)=Pz)e'Fz* the wave equation becomes
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d»OOMY
EAREAN

sircular symmetry exists in the point source field.

2. The sediments can be modelled as a fluid.

To siinplify the analysis, we further assume that the acoustic parameters are

knowr. in the region 2 < 0 and z > h and that the parameters need be determined ko
only iz the region 0 < z < h. ,_
o

o

/e start by assuming that there are no errors in the sound speed and density 3

and c:iy the attenuation profile needs to be determined. Then, treating errors in ‘.
Y

the scund speed and density as unknowns, the problem is extended to the ,
si

deter.~ination of these as well. b
e

3

s
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1. Since a C.W. source is used the effect of dispersion is not relevant. The
sound speed obtained in step 2 of the scheme is the value at the
frequency of the source.

2. No a priori assumption is made on the frequency dependence of
attenuation. The scheme provides the attenuation as a function of
depth at the operating frequency

3. By doing simultaneous inversion for attenuation coefficient and
corrections to sound speed and density structure , the effects of errors
in sound speed and density on the attenuation profile can be overcome.

3.3 Statement of the problem for the determination of attenuation

coefficient

For the purpose of this dissertation we will assume that by some suitable
experiment and subsequent processing the plane wave reflection coefficient as a
function of angle of incidence has been obtained. Further, we assume that this
information has been used in an inverse scheme to obtain a close estimate of both

compressional wave speed and the density profile for the bottom.

Consider the two models of the ocean bottom in Figure 3-7. The model on the
top is the true model of the ocean bottom with density, sound speed and
attenuation profiles as indicated. The other model is our present knowledge of the
parameters describing the ocean bottom(i.e) a close estimate of sound speed and
density stucture as obtained in the earlier stage of processing. The problem is to
develop a method to determine the attenuation profile and corrections to the sound
speed structure and density structure for the sediment layer. In solving the probler

the following assumptions will be made.

1. The ocean bottom is horizontally stratified.

------------
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the pressure field by the follwing equation. g
)
-(_":'1
] 00 ‘3-*
— Rk explik oz, +2))} = /0 P, A1)k rIrdr (3.24) -
20 z
Therefore, by performing the Hankel transform of the reflected pressure ficld f"
Ny
we can obtain the plane wave reflection coefficients as a function of the horizontal
wave number or equivalently as a function of the angle of incidence. Suitable _ _
, wrd
methods have been developed for performing the Hankel transform ;
i
operation[14-18]. Schoeberg[19] uses a different approach to obtain the plane-wave R
reflection coefficient from a measurement of the pressure field.

l“:h"
3.2.2 Dstermination of sound speed and density profiles(step 2) )
In this step the sound speed and density profiles are obtained using the plane- kﬁk

wave reflection coefficients as input data. Direct inverse methods{20-22] can be used Ry

s

for this purpose. =
hos
. . . . .lg‘ﬁe‘
3.2.3 Dctermination of attenuation coefficient(step 3) &
‘:!‘gi%
b

Using the information on sound speed and density values obtained in the last

step and the information on the plane wave reflection coefficient, the attenuation g@i
coefficient profile is obtained. In this dissertation a perturbation approach is used -_,

to accomplish this. -
.’{:
This method of determining the attenuation coefficient profile from plane- ,ﬁ: :
Rty
wave reflection coefficient obtained with a CW source experiment has the following ‘.:
advantages over the other methods where a broadband source is used. b, A .
' ]
: T
‘ -
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. pressure field by studying the peak to null difference in the measured interference -
P pattern. D
S =
Y -
N Y
) \1 '.:

' 3.2 Determination of the attenuation profile from the plane-wave =i
53 reflection coefficient :.:
R %
30 -

¥ By suitably proceessing the measured pressure field, the plane-wave reflection =)

L
Ko coefficient for the ocean bottom can be obtained. The plane-wave reflection :_;
W . iy
3 obtained is a function of angle of incidence and it contains all the information i
S .
about the acoustic parameters of the bottom. The determination of the acoustical *"’

E -4

properties of the bottom from the plane-wave reflection coefficients is a more exact

7-‘::: method and we will follow this path. .
L A possible sequence of steps to obtain the complete set of acoustic parameters
tl: starting with the measured field is given in Figure 3-6. We will briefly indicate the .:_:
:Tj:, approaches that can be adopted for solving each step. ::{-
\J "
Y 3.2.1 Determination of plane-wave reflection coefficient(step 1) ey,
R ’.:
ne The total pressure field is the sum of the direct field and the reflected field. 3_‘{
oW ! A
i After subtracting out the direct ficld, the reflected field is given by|[14]; B
00§ . E“
Prej{r) = /0 ;—R(kr).lo(krr){erp(zkzo(zr+za))}krdkr (3.23) e

20

where R(k.) is the plane wave reflection coefficient for the bottom, kis the ;:::

(‘-l

horizontal wave number, ris the range, k_jis the vertical wave number in the water .‘:fj

O,

column and z_ and 2, are receiver and source heights from the bottom. Jy is the

zeroeth order Bessel fuction. Alternatively we can relate the reflection cocfficient to
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Figure 3-5: Configuration of experiment by Frisk etal{6]
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’}» We noted in Chapter 2 that both the theoretical models predict substantial _i
' 3 dispersion for sediments with high attenuation coefficent. In view of this the ]
?3 assumption that the medium is dispersionless is questionable. This is an important L
-‘ consideration because all methods described above assume that the compressional k]
: wave velocity profile for the medium is known and this information is used in the
:fgf determination of the attenuation coefficient. Therefore any errors in the
:::“; compressional wave speed arising out of this assumption will manifest as errors in
5 attenuation coefficient.

),

._: These considrations indicate the desirability of an experiment which uses a
”‘ monochromatic source for the determination of the acoustic parameters of marine
f sediments. Experimental configuration of one such field measurement carried out
: by Frisk etal is shown in Figure 3-5. Two receivers are moored on the ocean bottom
2% at heights 1.17 m and 54.55 m from the bottom. A CW source is suspended from
.:;E; the ship at the end of a long cable. The ship is then allowed to drift and as the ship
'“}‘ drifts away slowly the two receivers record the pressure field. By suitable signal
'. processing methods the pressure field as a function of range is obtained.

Since the recorded pressure field at the receiver depends on the acoustic
' parameters of the bottom, these parameters can be obtained by forward modelling.
:‘“' In this we assume an initial guess model for the acoustic parameters and solve the

direct problem to obtain the pressure field at the receiver as a function of range.
This is compared with experimentally determined value, and the acoustic
parameters are changed until good fit between the experimentally determined valuc
and the theoretically determined value is obtained. Frisk[6] has done such analysis
with considerable success and obtained geo-acoustic models, including an average
attenuation coefficient, for different regions of the ocean. Frisk[6] also describes

how an estimate of the attenuation coefficient is obtained from the recorded
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f —P'(O) -—{1 ~R) (4.12)
3 p(0) Py
J
.
L, In the above equations p(0) is the density in the sediment at the interface while p
is the density in the water column. P(0) is the pressure field in the scdiment at
z==0. The primes denote derivatives with respect to z Similarly applying the
\ boundary conditions at the other interface yields a second set of equations.
;} Plh)=Te'* 2k : (4.13)
1 ik ,T
——P'(h)=—2¢F;2h (4.14)
:‘ p(h) Po
- 4.1 Uniform asymptotic solution
;. The uniform asymptotic solution[l] to the wave equatior in region il has been
", discussed in detail by Kawahara[2]. The solution that is valid when tlic function
. @(z) varies smoothly and there is only one turning point, is
o
[ _ - |
A 2=, @A () e, @ (2 B A()) (4.15)
ﬂ
where A, and B, are the Airy functions. 4(z) is given by the expression
roi 2n1/2 2/3
& Aa=3/2[ @" gl (4.16)
A %y
; and z, corresponds to the turning point ie @(z)=0. The solution for
L Az) = p1/2(z)v(z) is then;
¥
P z)=c,g,(2)+¢y9,(2) (4.17) —3
§ ;'.:?_31
2
0! .:::.'é
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g,(2)=c,p A 2)Q~ 42y /4 A ()

g5(2)=,p" A 2)Q 42y /*B~(2))

and ¢, and ¢, are arbitrary constants.

Applying the boundary conditions at the two interfaces we now obtain a set
of four equations with four unknowns to be determined namely the cofficients ¢,
and ¢, and the reflection and transmission coefficients R and T Solving for these
unknowns, we obtain R,T,clandcz. The coefficients are now substituted in equation
(4.17) and the field obtained. Kawahara|2] has shown that for certain canonical

profiles like ¢ linear, ¢2 linear and ¢3 linear the integral in (4.16) can be performed

analytically.

4.2 Propagator matrix method

The second method for solving the forward problem models the sediment as a
stack of homogeneous layers. By making the thickness of the layers small any
arbitrary variation of density, sound speed and attenuation can be accommodated.
Mook(3] has proposed a method for determining the reflection coefficient using the
propagator martix approach. We will essentially follow his approach and indicate
how a numerically stable algorithm is obtained for computing the plane wave

reflection coefficients and the field in the sediment layer.

The propagator matrix method is dealt with extensively in the literature[4-6).
We will explain in brief the essential features of the propagator matrix method

before taking up the problem indicated above.
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Any second order differential equation can be written as a set of first order

equations. The general representation is given below.

df
— — A(2)f(2)=0 (4.18)
dz

For the equation (4.2), f is an 2x1 vector and A is a 2x2 matrix. The propagator

matrix (also called matrizant) is defined as

P(z,2,) = I+ / A(€,)dé,+
%0

/ZA(f)/eld£d£+---+ (4.19)
3(0) 1 70 1752

where I is the identity matrix of the order of A. By substitution it can be shown

that P(z,2,) satisfies the following differential equation

d?P( 2,2y)

2 — A(2)P(z,2p)=0 (4.20)

Also P(z,,25)=I1. The most important property of the propagator matrix is that it

enables us to obtain f(2) from its value at some other point z,.

flz) = P(szo)f(zo) : (4.21)

To see that this is true,we substitute f{2) in the differential equation. Then,

déf(?)

dz?

— A(2)f(2)=0 (4.22)

Therefore, f(2) satisfies the differential equation. Also it gives the value of f(2)

at z; correctly.
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r(zo)=P( zovzo)f( zo)=f( 30) (4.23)

Another interesting property of the propagator matrix is shown by the following

equations.

f(z2) = P(z.z,zl)i‘(zl)
=P(zy,2,)P(2,,2o)f(2,) (4.24)

If we now choose z, = z, then,

f(zy) = P(zo,zl)P(zl,zo)f(zo) (4.25)
or

I=P(zp,2,)P(z,20) (-4.26)

When the matrix A is not dependent on z as in the case of homogencous

layers,

P(z,2g)=I+(2—2)) A+1/2(z—z)? A%+ - + (4.27)

P(2,2p)=el*"%}A (4.28)
For a square matrix A with distinct eigenvalues, X (k=1, - - - ,n) by the Sylvester
theorem,

A-)]
Xk—xr

ISEDIRINE | | (4.29)
k

=1 r# k
Reverting now to the differential equation (4.2) it is written as a set of first

order equations.
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Lz,
’ d |P 0 wp P
dz |y 2 0 w ( )

When applied to a stack of homogeneous layers p(z) and k, represent the density
and the veftical wave number in the layer under consideration. As before w
represents the frequency and the vector f contains the elements P and w,the
pressure and normal particle velocity. The matrix A for the above equation is,

therefore

0 wp(z)

5]
A = SR (4.31) £

2 0 =
:£ wp(z) :.-:.
s The propagator matrix is now obtained using equation (4.29). :-
iwp |

i cos(k,(z-zy)) —sin(z-z)) R
o~ P(z-zy) = i k, (4.32) M
< i ]
N —ksin(z-z) cos(z-z,) )
we %
g In the above, Y=-=is the admittance. :
3 wp 2
I;: Consider a layer of thickness h as shown in figure 4-2. The pressure and f-:

.
Fy

£ . . . ) ) als
B particle velocity at depth z=0 is related to the pressure and particle velocity at o
E’: depth z=h by the following equation. s
- , i
. o
N P(1) cos(k, h) —sin(k, h) P0) ;:-.
] | = ) (4.33)

- u(1) iY{1)sin(k, ) cos(k,h) u(0) R
» R
. Since each layer is homogeneous, the pressure and normal particle velocity in :f

-

the layers can be written as a sum of up and down going waves. " A

e
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RAz) = De'.kz'll"‘—"'rej'l + Ue ik ale%pl

k., . .
wz) = 2 (De*ali—2red — Ue*ale=2ref)

wp

or,
P(z) 1
wz)] |2
wp
Setting z_, FO, we obtain
P(z)
w(z)

where,

1)=-=

1

wp
eik“z
Y(1)ekz1?

eikzll ""zre/ 0

ik ll” zre/

D

U

(4.34)

(4.35)

(4.36)

(4.37)

Now consider a stack of homogeneous layers as shown in Figure 4-3. Then the

pressure and particle velocity at z=0 is related to the up and down going waves in

the watercolumn by the following equation.

P0)
w(0)

or equivalently,

i L

i gt LB o

1

10)

z')'*xss'}u\ E,-. -,\‘-,. }rﬂ\f

X0)

-No) JLUo)

(4.38)
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‘ d
D(0) 1 1 1 P(0)

- 11(0) (4.39) =
wol 2l e %

Following the method of Mook|3] tke matrix in equation (4.33) is modified -
and the elements expressed in terms of ratio of impedances. This is done to avoid :3-'.:‘
2
difficulties that may arise due to P and w being of different scales of magnitude. g
Po) cos(k (1)) -isinfk,(1)h) A1)

= . (4.40) 4

5(0)u{0) -i§(1)sin(k,(1)h) &(1)cos(k (1)k) s(1)u(1) =

where £(1)=Y{1)/Y{0), ¢(0)=1/Y{0), and g¢(z)(1)=1/Y{(1). Using the propagator L
matrix we can relate the P and w at the nth interface to the values of P and w at b:
the first interface: {-‘P
P() P(a-1) =

= (¢)-0,) (4.41) s

§(0)u{0) ¢(n-1)w(n-1) RS

where ¢s are the propagator matrices for the layers from 1 to n-1. The pressure e
Lt

and particle velocity at the bottommost interface is now related to the up and ::::-
down going waves in the terminating half space. ::::
P(n-1) | D(n) 3

= (4.42) "3

¢(n-1)u(n-1) €(n) -&(n) J{Un) %

The relation between D(0),U{0) and D(n),U(n) can now be obtained. }
£

Dol 1 |11 1 1 D{n) i

= - (6)-&p.1) (4.43) "

uoj 2 14 §(n)-£(n) | Un) o

]
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or,
D(0) D(n)+Un)
= ¢ (4.44)
U(0) ¢(n){ D(n} Un)}
where
1 1 1
= - (¢l ..... ¢n-l) (4.45)
2 1 -1

and ¢is a 2x2 matrix with elements ¢11v¢12’¢21“"d¢22' In the infinite half space
representing the subbottom U(n)=0. Therefore,

D(0) D(n)
= ¢ (4.46)

Uuo) §(n)D(n)

The reflection coefficient is then given by

U0)  dyy+E(n)dy,
D(O) ¢ll+€(")¢12
Having obtained the reflection coefficient the pressure and particle velocity at

the top interface are easily found to be PO0)=1+R and w(0)= Y{0)(1-R)

R = (4.47)

respectively. We can now propagate the pressure and particle velocity downward
and determine it at any layer. This is similar to solving the differential equation
given its initial conditions. If this procedure is adopted, the scheme becomes
numerically unstable aud the solution rapidly diverges from the correct solution in
regions where the waves become inhomogeneous. Hawker and Foreman|7] give
examples to show that the direction in which the integration is carried out is

important to obtain a stable solution and recommend that the integration be done
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upwards starting with the conditions at the bottommost interface as the initial

conditions.

To do this, we assume that D(n)=1.0 and U{n)=0. The pressure and particle

velocity at the nth interface is then related to D(n) and U(n).

P(n-1) 11 1
= (4.48)
¢(n-1)u(n) §(n) -§n) |10
We now relate P(n-1) and u(n-1) to P(n-2) and u{n-2).
Pln-2) An-1)
= ¢ (4.49)
¢(n-2)w(n-2) ¢{n-1)u(n-1)

As before relating the up and down going waves at the top to the up and down
going waves in the infinite halfspace in the bottom, we obtain the following
expression.

D(0) 1
— & (4.50)

o) §(n)

This gives the reflection coefficient as

oo U0 4y +Enldy,
DO) b +En)dy,

The pressure computed will correspond to an incident amplitude of IX0). The

pressure field at any point in the layers is then obtained by dividing thro-.gh by

D(0). Ir this thesis we use the propagator matrix method to compute the reflection

coefficient and the pressure field in the sediment layers.
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Chapter 5

Formulation of the Inverse Problem

In Chapter 3 we proposed a sequence of steps for the determination of the
acoustic parameters from the measured pressure field. We also gave a statement of
the problem that is addressed in this thesis. In Chapter 4 we dealt with the solution
of the forward problem. In this chapter we formulate the inverse problem, namely,
the determination of the attenuation coefficient profile in the sediment layer using
the plane wave reflection coefficient at various angles of incidence as input
information. The real and imginary part of the wavenumber at 220 Hz are given in
Table 5-1 for different types of marine sediments. These have been obtained using
data presented by Hamilton[l] for the compressional wave speed and attenuation
coefficient. The attenuation coefficient at 220 Hz is computed by extrapolating into
the low frequency region using a linear law. The attenuation coefficient is order of
magnitude smaller than the real part of the wavenumber and can therefore, be
treated as a perturbation of the real part. Hence, we formulate the inverse problem
largely following the perturbation method introduced by Cohen and Bleistein(2].
They dealt with the problem of determining perturbations in sound speed structure
using the plane wave reflection coefficient at all frequencies and at a fixed angle of
incidence as input information. In Chapter 3 we indicated the advantage of using a
constant frequency source for determining the acoustic properties of marine
sediments. ‘Therefore, an essential difference between our formulation and theirs is
that we use plane wave reflection coefficient at different angles of incidence and at

a fixed frequency as input information.
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Type of Wave Real Imaginary
sediment speed part of part of
m/s Wwavenumber wavenumber
nepers/m
Fine sand 1750.0 0.79 0.0126
Silty sand 1645.0 0.84 0.0145
Silty clay 1520.0 0.91 0.0019

Table 5-I: Real and imaginary parts of the wavenumber at
220 Hz for marine sediments
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§ In this chapter, we first arrive at a non-linear integral equation relating the
plane wave reflection coefficient to the unknown attenuation coefficient profile. The
i'f integral equation is then linearised using the Born approximation. We also obtain
g the region of validity of the Born approximation.
: Rytov approximation can also be used to obtain a similar linear integral
i' equation. Kéller[3] has shown that the Rytov approximation is valid for longer
¥

ranges than the Born approximation in regions where there is only one field, for
o example in regions where only transmitted field exists. Keller observes that where
";‘9» there are more than one field, the Rytov method has to be applied to each wave

separately for it to retain its advantage over the the Born approximation. On the

other hand, the Born approximation can be applied to the total field. In a recent

N QS o,
ny g,

work Oristaglio[4] studied the accuracy of the Born and Rytov approximation to

,.
ey

the laws of reflection and refraction and noted that the Rytov method works
‘4 reasonably well for in the backscattering regions as well even when the method is
‘3 applied to the total field; a surprising result in the context of Kellers observations.
We formulate the inverse problem using the Rytov method so as to make

comparisons between the two methods.

Consider the two models in Figure 3-7. One of these is the true model and the
other the guess model which we call the background model. The background model
represents our present knowledge of the model. In this chapter we assume that the
- only unknown is the attenuation coefficient profile in the sediment layer. The other

y"" acoustic parameters of the two models are the same. We first determine the

response at the water sediment interface of the two models to a plane wave of unit
amplitude. For the true model this is obtained from a field experiment. For the
background model we obtain this by solving the forward problem using the method

described in Chapter 4. We, then, relate the difference in response to the unknown
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attenuation coefficient profile and obtain an integral equation representation of the

problem.

5.1 Inverse problem formulation using Born approximation

5.1.1 Derivation of integral equation

Consider a plane wave of unit amplitude incident at an angle 6 as shown in
figure 5-1. The pressure field in the sediment layer is given by the equation;
% 9% 1 8¢
+——+p(2)(—)—+k%(2)p=0 (5.1)
dz? 922 p(z) 9z

Let ¢(z,2) = P(z)e"‘z"'. Substituting in the equation (5.1) we obtain the

following one dimensional wave equation for the field in the sediment.

+H(k%(2)—k,%)A(2)=0 (5.2)

d’Az) 1 dP:)
" vp(Z)(p(z)) ™

Let v(z) = p_l/2(z)P(z). Substituting this in equation (5.2), we obtain the

Schrodinger type equation given below.

d2
d—%(lcz(a)wu)—kf)v(z)ﬂ (53)
¥4

where,

We derive a similar equation for the backgroud model as well. The subscript

'b’ in the following equations refer to the backgroud model.
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;;—Hk (2)+py(2)—k,"Jvy(2)=0 (5.4)
&

X
N
o

' where,
N

Y
.1 e pbl/2{pb'(z) '

7 b 2 053/2(2)

The wavenumber in the sediment layer is a complex quantity and is given by the

following expression.-

Iy Y XN

w
.j k(z)—-(/Tz)-i-za(z) (5.5)
- where a(z) is the unknown attenuation coefficient and C{(z) the sound speed profile.
t‘ Since Cy(2)=C(z) we write k(z)=k,(z)+ia(z). We also note that u(z)=p,(z).
'f Substituting in the equation (5.3), we obtain
o
; du(z)
" T(kﬁ(z)+p,,(z)-kj)u(z):-zekba(z)u(z). (5.6)

Multiply equation (5.6) by v,(z) and equation (5.4) by v(z) and subtract one

| e o
P

from the other. We, then, obtain

vy (2)(2)—2)v)'=—2ik,(2)a(2)vz)v(2) (5.7)

TRy
A

.rl

o S

In the above equation the double prime denotes the second derivative with respect

to z. Integrating both sides between the limits 0 to A leads to the following

equation.

g ' ' A b

2 vy(2)v(2)—v,(2)2) |y = /(; —2ik,(2)2)vy(2)a(2)dz | (5.8)
.

.

‘
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b To determine {z),v(2),¢/(2),v,/(2), at the limits z=0 and z=h we make use of the
: boundary conditions, i.e continuity of pressure and normal particle velocity. Since
:‘ the water column is a homogeneous medium, the boundary conditions at the water

sediment interface for the true model are given by the following expressions. R is

; the plane wave reflection coefficient at the water sediment interface.
™
N Pb( )
» P0)=1+R, P(0) = —ik(1-R) (5.9)
Po
"::" A similar set of equations are obtained for the boundary condition at the other
.i interface. Here T is the transmission coefficient.
»
ik_oh £y(h) ik _oh
Ph)=Te , P(h)y=——tk ,Te'"z (5.10)
R The boundary conditions for the background model obtained similarly are given
% below. Rb and Tb are the reflection and transmission coefficients for the
background model.
p0).
{ o Po
59 (k)
o P(h)=T,e*:2b, P)(h)=——ik ,T;e":2h) (5.11)
2

The left hand side of the equation (5.8) is now evaluated using the relationship
between v(z), v(z) and P(z) and P(z) given above and the boundary conditions.
After a some algebra we find the L.H.S. of equation reduces to zero at the upper

limit while at the lower limit it is given by the following expression.

2k
(oo aNlg=—(R~F) (5.12)
0
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The integral equation is therefore,

k.o(R,—R)

—_= / ky(z)a(2)n2)vy(2)dz (5.13)
Po
This is a non-linear integral equation and it is not possible to solve this equation for
a(z) since v(z) is dependent on the unknown a(z). As the attenuation is a small

perturbation on the wavenumber we make the Born approximation v{z)=uv,(2). The

integral equation then, reduces to the following.

kzo(Rb_R)_/hkb(Z)a(z)P 2(z)dz {5.14)
) 0 '

P(,(Z)
Since k,(2) and p,(z) are known, P(2) is determined by the procedure outlined in

Chapter 4 and the integral equation solved for a(z).

The solution of the integral equation will be dealt with in a later chapter.
Here we will continue to establish the criterion for the applicability of the Born

approximation.

5.1.2 Region of validity of the Born approximation

In studying the applicability of the Born approximation we start with the
Schrodinger type equation (5.3). Putting k(z)=k(z)+ia(z) we obtain,

d2v(2) 2 2 .
;‘12—'+(kb (2)+l‘b(z)—kz )v(z)="2'kba(z)u(z) (515)

o Let G(z,zy) be the outgoing Green'’s function satisfying the equation,

G )
3 ;;—2—-4-(1:6 (2)+p(2)—k,)G=—62—2,) 0< 22, < h (5.18)
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Then we can write,

h
dkz,z)=vb(kz,z)+[) 2iky(zg)a(zg)uk,,20)G(K,,2,25)d 2 (5.17)

The total solution can therefore be viewed as the sum of the solution to the

homogeneous equation v,(z) and a scattering part v(z).
Wz) = yy2)+v,(2) (5.18)

Using the above, we obtain
h .
v,(k,,2)= /(; 2ik,(zg)a(zg)uk,,25)G(k,,2,20)d 2, (5.19)

h
v,(k,,2)= /0 2ik,(2g)a(2g)vy(k,,20)G K, 2,20)d 2+

/ h2ikb(zo)a(zo)v‘(kz,zo)G’(kz,z,zo)dzo (5.20)
0

In making the Born approximation we write v{z)=v(2). This implies the following.

h
‘/0m(zo)va(kz,zo)G(kz,z,zo)dzo <v,(k,,2) (5.21)
where,
m(2)=2ik(,(2)a(z) (5.22) X3
)
i N
Define the norm of f(z) as below. W
Ny
BY
)
A
3
(‘\
;
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h
= { [0 L)z} (5.23)

Let Irepresent the integral on the left hand side of the equation (5.21). Then,

h rh
= 1 g )Gl 2, 2qhzg ) (.24

But, by Schwartz inequality,

|/h (25)v (k z )G(k F-4 )dz | < {/h ( ) k )d }
m , N m ’
0 0/ s\ 270 z 0/"%0 0 ZO va( z 20 20

h
/ Gk, z,2p)dz, (5.25)
0

3 h
| etk )Gtk )i < limil i [ Gk zg)tzg  6:26)

The norm of I therefore satisfies the inequality given below.

A aic

h rh
i< el ¢ G zghdzg) a2 (5.27)
Let G(z2,2) have a maximum value equal to |[G(2,zy)l,,,,,- Then,
I < lmll vl b 1G(k,2,20)l 4, (5.28)
Using this in equation (5.27) we obtain,
"m" "v," h ’G(kz’z’z())lmaz« "va" (5‘29)
o
L o
/t a
WS T W e PR A S i I N IR S AL S PO A RN '.
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The condition to be satisfied for Born approximation to be valid is then given by

The applicability of the Born approximation depends on the magnitude of the
perturbation, the depth of the sediment, and the magnitude of the Green's
function. We will use this result in a later chapter to determine the most suitable

angular aperture for the inversion scheme.

5.2 Inverse problem formulation using the Rytov approximation

We will in this section derive the integral equation for obtaining the unknown
attenuation coefficient profiles using the Rytov approximation. We again start with
the one-dimensional wave equation. For the sake of simplicity we have assumed

that the density in the sediment layer is known and is a constant.

d’Az)

dz®

+(k*(2)—k,2)P(2)=0 (5.32)

Let P{z)=ezp(¥(z)). Substituting this in the above equation and using the relation

k(z)=ky(2z)+ia(z), we obtain

%y dy .
F{;}z‘*'(kf(z)—kzz): — 2ik,(2)a(z) (5.33)

Let P,(z) be the solution to the wave equation for the background model.
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d’P, ) .
EZT-*-(kb (2)—kz )Pb=0 (5.34)

We now write P(z) = ezp(y,(z)). Substituting this in the wave equation yields the
following.

2¢

— 2+ {d 524 (k,H2)—k 2)=0 (5.35)

dz
Let z/)(z)=¢b(z)+¢8(z). Substitute this in equation (5.33) and then subtract

equation (5.35) from the result. We then have the following equation.

0

Y, oW Yo ¥ ey
2 +2 5 1 [( )+2iky(2)a(2)] (5.36)

The left hand side of the above equation is, then, put into a more convenient form
for manipulation as shown below.
(P, &P dydP,  d%

= + 2 +P
dz? ?dz:? dz dz b

(5.37)

Using equation (5.34) and the relation Py(2)=P(2)(d¥(2)/dz) the equatiox (5.37) is
written as below.
d*(Py,) &y, dy,dy,

= —— (kX (2)—k )Py, = “d 72d dz, (5.38)

Now substitute equation (5.36) into the above to yield

0

4Py, dy,(2)
= +Py, (k> —k, %) = P2){ "

12 +2ik,(2)a(2)] (5.39)

Multiply equation (5.39) by P,(z) and equation (5.34) by Py(z)¥,(2) and subtract one
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from the other. We then integrate over the depth A and obtain the following

equation.
d(Py,) dP, dy,
{P—=" - P, —}* =P} —*
%2 o 4z o b dz ©
h dy, o . 0
= -—/ [(—)*+2ik,(2)a(2)] P,*(2)d 2 (5.40)
0 dz
The left hand side of the equation is evaluated by relating it to the boundary .~
conditions given in equations (5.9),(5.10) and (5.11). The relation between the Ps 4

and ys given below are also used for this purpose.

Az)
Pb(z)

Wz)=In Az2), ¥y=1In P(z),¥,=In (5.41)

dy(z) 1 dPAz) 1 dP,
dz Pz dz P2 dz

(5.42)

Using the above we find that the left hand side of the equation vanishes at the

upper limit, z=h. At the lower limit,2=0, it is given by the following expression.

dy, (00  R~R o,
Pz ——=2ik j———— 1+R,)? .
A “(1+R)(1+R)) ;;(H o (5:43)

The integral equation is then

1+R h d
2ikwﬂ—g(Rb—R) =/ [(&)2+2ikb(z)a(z)]Pb2(z)dz (5.44)
p 0 dz

So far in our derivation no approximations have been made. We now make the

approximation that (dqba/dz)2 is small compared to 2k,(z)a(z). Neglecting this term

the integral equation reduces to,
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k., 1+R k1
0 T g Ry = /0 ~ k(2)a(2)P(2)dz (5.45)
b

This equation is similar to the equation (5.14) obtained with the Born

approximation except for a multiplicative factor in the left hand side.

5.3 Summary

In this chapter we have obtained the linear integral equation relating the
unknown attenuation profile to the experimentally determined plane wave
reflection coefficient. We have applied both the Born and the Rytov approximation
to obtain two similar representation of the integral equation. DBefore we take up
the solution of this integral equation, we will consider in the next chapter the
general issues involved in solving this class of integral equations and include in it a

review of the methods in the literature for obtaining solutions.
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have in effect increased the magnitude of the eigenvalues. This results in a stable ,

and smooth solution. 4

To see how the addition of a matrix like H affecls the eigenvalue, we

investigate the case when H=I the identity matrix. Consider the eigenvalue

problem forGTG. Then,

GTGv = v | (6.39)
where X is the eigenvalue. Adding (el)v to both sides, we obtain

(GTG+ellv = (A +el)v | (6.40)

The eigenvalue problem for (GTG+eI) therefore gives the same eigenvectors but
the eigenvalue has been increased by el. The solution obtained Dby the

regularisation method when H=I is given belcw.

= (GTG+el)"'GTd (6.41)

By eigenvector analysis it can be shown that the inverse operator shown above has

the following form.

(GTG+el)™! =V { ywu T (6.42)
+

We therefore see that when the eigenvalues are small, i.e A, <e the diagonal terms
of the matrix goes as (X /e), thereby eliminating the effect of small cigenvalues. On

the otherhand when A >e then the effect of e is ignored.

.......
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Though the data does not in any way suggest that the solution m(z) must be
smooth function, we apriori make this assumption. There could be other
constraints. But one selects the constraint from the physical nature of the problem

and ones guess of what the solution should be.

Let S(m(z)) be a measure of smoothness of the solution i.e the smaller the
value of S, the smoother m(z) is. Restating the problem we now try to find m(z)
that minimises S(m(z)) subject to the data constraints being met. A least squares

procedure can now be adopted which minimises |d—Gm|2+S(m(z)).

One measure of smoothness that is proposed by Twomey{9] is the quadratic

measure given below.

b
S(m(z)) = / (m"(z))%dz (6.35)

We can generalise this by considering a constraint operator D acting on m. We,

then, seek to minimise the quadratic measure defined below.

mD'Dm = mTHm (6.36)
where H=DTD. To obtain a solution for m we now minimise the expression;

mHm+)\|d-Gm|? (6.37)
Differentiating with respect to each element of m,we obtain the solution;

(GTG+ \H)m = GTd (6.38)

We note that the acceptable solution has now been defined as one which

satisfies the smoothness constraint. By the addition of the matrix H to GTG we
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Elam Am 7] = oV A"V T (6.34)

We note that the error in solution is propotional to l/)«n2 and the variance becomes
large when the eigenvalues are small. Wiggins{5] and Jackson[6] suggest that the
effect of low eigenvalues can be eliminated if we set eigenvalues lower than a
threshold level equal to zero. The eigenvectors associated with these eigenvalues are
therefore eliminated and the solution obtained will therefore have poorer resolution.
Eliminating eigenveétors corresponding to small eigenvalues is equivalent to

obtaining a smooth solution.

6.2.2 Regularisatibn method

Phillips[7], Twomey(8], and others have proposed regularisation methods for
obtaining an unique stable solution. In the generalised inverse method we obtained
an unique stable solution by looking for a solution which has a specific property
namely that of minimum norm. The instability was overcome by effectively
smoothing the solution. The regularisation method proposed by Twomey[8] is
based on the method first suggested by Phillips [7] and looks for a smooth solution.
The measured data d(y) is available at discrete points and therfore it is defined
only at these points and to within measurement error as shown in figure 6-1. We
can therefore say that dfy) is arbitrary except that it passes within the error bars
associated with each of the measurement points. Therefore, there can be an
infinite set of m(z) associated with the infinite set of d(y). The ambiguity can only
be overcome by imposing additional constraints on m(z) which enables one to pick

out of the large possible set of m(z) one that satisfies the conditions imposed on the

solution. One such constraint that can be imposed is the smoothness criterion.




m, = Z v, (6.29)

The solution m g obtained by the generalised inverse operator, therefore, uses only
the eigenvectors corresponding to the non-zero eigenvalues. The true solution
however will be a linear combination of all the eigenvectors. We can then represent

the true solution by the following equation.

m=Zav+Z (6.30)

i—1 F=n+1
The norm of the total solution is then,

Im? = |m [+ Z B? (6.31)
J=n+1
From the above we see that the generalised inverse operator yields a solution with

minimum norm.

Though the problem of non-uniqueness has been resolved instability still
exists. Consider the situation when data contains error . Then the error in

solution is given by the following expression.

Am, = G ~'ad (6.32)

The covariance of the error in the solution can then be obtained. Here L[]

represents the averaging operator.
ElAm Am 1] = G ~'EladadTic T (6.33)

Assuming that the elements of Ad are statistically independent and have the same

variance we obtain,

S RRERTRE
'
* -
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GTgv, = z v, (6.23)
and

Gv; = Ny, (8.24)

GTu. = M. (8.25)

In addition there exists m-n eigenvectors v, such that Gv.=0,i=n+1,....,m.
Lanczos[4] has shown that the matrix G can be decomposed into product of three

matrices. Using the decomposition theorem we obtain
G = UV, T (6.26)

Here Uy is an nxn matrix containing the eigenvectors of GTG, Vy is an mxn
matrix containing the eigenvectors of GTG for the non-zero eigenvalues. A is a
diagonal matrix containing the non-zero eigenvalues. Since Gv,=0 for i=n+1,...
,m, any linear combination of these can be added to the solution and the data will
still be satisfied. This is the cause of non-uniqueness in an under-determined

system.

The operator defined below is called the generalised inverse operator.
-1 __ -1 T
G g = VA T Uy (6.27)
Using this operator :e obtain
m, = Vi u\Td (6.28)

or
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6.2 Solution in parameter space - Error free data

By using a suitable quadrature scheme the integral (6.3) is represented by the

sum given below.

rﬁ d; = ) w,Gym, (6.19)
: j

? . . . . . .
i where w;; is the weighting associated with the quadrature scheme. For the entire
L set of observations we obtain the following matrix equation.

d = Gm . (6.20)
! where & is a nx1 vector containing the observations and G is an nxm matrix which
operates on the vector m of dimension mx1 representing the solution.

P

! 6.2.1 Generalised Inverse

~

}

» e

) If G is a nxn non-singular matrix, then, the solution to the equation is easily
E obtained.

&

S m = G~ ld (6.21)

S’ vy

et |

-
LN

When the integral is written as a sum, the interval Az is made sinall so that the

true structure of the solution is obtained. This results in an under-determined

Iacal e EERE

%4 system. Though the analysis which follows is applicable for any general nxm matrix
2 we will consider such a case i.e. where n is less than m. It can be shown([4] that the
square matrices GGT and GTG define a coupled eigenvector eigenvalue problem
: such that

’
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;. : kernel has no zero eigenvalue. One example of this is the Fourier integral which

-_s. yields an unique solution. However, in practical situations, data is available only at
FCE a limited number of points. This situation generally yields non-unique solutions. We

“ have to, therfore, deal with the twin problem of instability and non-uniqueness in
{.:; solution. Many methods have been proposed in the literature for solving equations

:'." of this type. All of them incorporate a priori information about the solution to

\ overcome the problem of non-uniqueness. The solution is made stable by schemes

X which in effect make the eigenvalues large or reduce the effect of the small
:. eigenvalues. We will review these methods, briefly, in the following paragraphs. We
j will also study how solutions are obtained when the data containé noise.

3 When data is available only at discrete points the integral equation takes the
’fz} form in equation (6.3). In solving the integral equation two approaches are possible.
k- The integral can be represented as a sum by adopting a suitable quadrature scheme

o and then the solution of the integral equation reduces to solving a set of linear 3
.:E equations. A reasonable quadrature scheme can be adopted if we have some prior  ,
;e,». A knowledge of the solution from the physics of the problem. For example, if we know ‘
!‘é that the solution is smoothly varying we can assume without much error that the ]
:‘( function is constant over small intervals and represent the solution by a set of \k
parameters. On the other hand, if we have no knowledge about the solution, such :
}_ discretisation can be erroneous since it may hide some structure that exists in the :'
"'E}.j solution unless the discretisation is made infinitely small. An alternative is, then,
85g to express the solution as linear sum of a set of basis functions and determine the )

coefficients of the linear combination. The class of methods which follows the first g
approach we will call as providing solution in parameter space. The latter we will

call as solution in function space.
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N

m(z) = Y a,é,(z) (6.15)

n=0

Substituting this in equation (6.14) and using the orthgonality property of the

eigenfunctions we obtain

N
&
dy) = Y 2.8, ) (6.16)
n=0
The coefficients o, are obtained using the orthgonality property of the

eigenfunctions.
dn
d, = Mo a, = — (6.17)
xn
where,
b
4, = [ dtuie, oty (6.18)

Let d(y) contain an error e(y). Then,

N dn+en .

m(z) = ) T

n

n=0
If the kernel has small eigenvalues then small error in data will result in large

errors in solution. The kernel of the integral equation can be viewed as behaving

like a smoothing operator which smooths out wide fluctuations in solution. Such

smoothing operators are characterised by he presence of low eigenvalues. Indced if

<
gt
N the kernel is a delta function there will be no smoothing and a stable solution is
Hal
i obtained.
o N
',C:u When data is available over an infinite range, unique solution is possible if the T
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b
bt
, b
e dy(y) = dy(y) + N/ G(z,y)sinwz dz (6.10)
.
o
)
-’
R i
The norm I (d,,d,) is then,
1593 .
K¢ b b
.Z;}; [{d,dy) = {/ [/ G(z,y)sinwz dz)? dy}l/2 (6.11)
a a
;{ The norm |_(m,,m,) is given by the follwing expression.
¥ .
0 l(m;,m,) = maz. N]sinwz| = N (6.12)
j‘iy For large values of w, the integral (6.11) approaches zero by virtue of Reimann-
i%‘ Lebesque lemmal|2] as long as { z G(z,y)dz exists. Therefore we can make {(d,,d,)
Eh)

arbitrarily small while keeping {_(m,,m,) large.

To see how the kernel of the integral equation influences this property, we

will consider a special type of integral equation for which we can oblain solution.

Let us assume that the kernel of the integral equation is Hermitian. Then, by

3 Hilbert-Schmit theorem|3] the kernel can be represented in terms of its
;';: eigenfunctions. The eigenfuctions are orthogonal and the eigenvalues are real.
o)
49 N .
i Glzy) = Y M\, (2)8, (v) (6.13)
"f n==0
W Substituting in equation, we obtain
s
594 b N .
s dy) = [ m@3 7,018, W)z (6.14)
>
¥ ¢ n=0
Let, ;-—1

&

-1

>
N
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[ 'Gle,4)(z)dz=0 (6.6)

If a non-trivial solution ¢(z) exists for the above equation, then any multiple of ¢(z)
can be added to the solution of the equation and it will still be solution of the

integral equation. There can thus be an infinite number of solutions for the integral
equation.
6.1.2 Instability

By instability, we mean, that small changes in data can produce large changes
in the solution. To demonstrate this property of the integral equation we use the

proof due to Tikhonov|1].

Consider the integral equation (6.4). We shall measure changes in the

function d(y) by the norm defined below.

b
Igdydy) = [ 10 0)-dyu) a2 (67)
a
The changes in m(z) is measured by the following norm
l(m;,m;) = maz.|m —m,| (6.8)

Let us assume that the function m (z) has been changed to my(z) given by the

following equation.

m,(z) = m(z)+N sin(wz) (6.9)

Substituting in the integral equation, we obtain the change in d(y).
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=

However, in practical situations d(k_) containing the data is known only at discrete

points. Ther. the integral equation takes the following form where,the n's represent

the points at which the data is available.

o dea"-

o A
X i, = /o r12)G (2Mz (6.3)
-
iK% In addition to being available only at discrete points, the data is contaminated by
. error as well. In this chapter we, therefore, review the methods in the literature for
}E solving this class of equation with discrete and noisy data. For the purpose of the :
) . . i :
0 discussion that follows we will use a general form of the Fredholm integral equation :
W given below. v, ™
R hes
& e
:
¢ b "}
[ GlapmisMs =ds) e<z<b a<y<s (6.4) 4
5 I -
ol b
o : RE
\; 6.1 Fredholm integral equation of the first kind A3
KL Consider the linear integral equation in equation (6.4). There are two aspects a ‘:
! hy
+r §
- to be considered in the solution of this type of equations. These are (i) non- ‘ éﬁ
w ‘5.;*5
; uniqueness of the solution, and (ii) the instability of the solution. =
X bk
52
:_Z 6.1.1 Non-uniqueness }2':
& Ry
3 ‘-.
£ The eigenvalue of the kernel is given by the equation o
: ¢ .“
Ts N
>.l i‘;
55 b :."""’
- / G(z.y)6(z)dz=X¢(y) (6.5) &
3 s ¥
; v ' :
%4 If tL= kernel bas zero eigenvalues, then o
Y
o4
13
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Chapter 6

Linear Inverse Theory

In Chapter 5, a non-linear integral equation was derived relating the
attenuation coefficient profile to the reflection coefficients. The equation was
linearised using the Born approximation and the linear equation obtained is given

below.

kot Ry(k,)—R(k} = j LR (6.1)

A similar equation was obtained using the Rytov approximation. The unknown in

the equation is a(z). The above equation can be written as

h
d(k,) = [ a(2)G(k, 2)dz (6.2)
0
where,
d(k,) = ko{Ry(k,)—R(k)}

'G’(kz,z) —'%sz(kz,z)

Pr\2
This is a Fredholm integral equation of the first kind. In this chapter we consider
the issues of non-uniqueness and instability associated with the solution of this type

of integral equations and the role the kernel plays in this. The equation given

above assumes that d(k,) representing data are available continuously along a line.
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:.- C 6.3 Solution in parameter space-Data with errors o
&

o 6.3.1 Generalised Inverse

‘\1:

b

So far we considered error free data. However, in any measurement there will

«. be error. We can weight each observation depending on the variance of the
.{‘. .

"; measurement. I{ ai2 is the variance of the ith measurement, we weight the ith

. observation by 1/o;. Then each observation is related to the solution by the )
}‘,_.4 following equation. " 3%
’15-2.1 .:
7 =
1'. . LI
Py d. 1 m >
wly 1 v
o - = —Z g;/m; (6.43) 2
- 0. o,
5 .:{ 3

\J‘ We see that the data with the least variance will have the highest weightage. Let S <
. '.
5 j be the covariance matrix for the data. If the errors at each observation are 3
- statistically independent, the covariance matrix is a diagonal matrix with the ol
e ::.:‘
J{ diagonal terms equal to 1/ai2. Then, for a set of observation we obtain the N
al (<9
“f‘ following matrix relationship. N
gl s1/2q — s~Y/2Gm (6.44) 3
i :
:")' {4
) 24
?_'j We now define a new matrix Ge = $~1/2@G and a vector de =8"1/%4 We, then, r’é
\ obtain the solution using the generalised inverse method. If we have some :
= information about the variance of the elements of the solution vector these can be \
A -
= , : . i :
o incorporated in the solution by multiplying each column of the matrix G by a
,.- weight l/amj. The equation to be solved then takes the following form. !
p n.'f. DY
2 %
180 e

kpTw

A M A

where,
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d = S-—l/2d

G = S_l/2GTl/2
m' = T~ /2m

T is a diagonal matrix containing am2 along its diagonal. Using these relations a

generalised inverse solution is obtained as before. Jackson[6] has shown that even if t..
, : ] : BONG:

the covariance matrices are not diagonal a solution can be obtained which _'
incorporates the information on the covariance of the data and the solution. g’*‘
Re

6.3.2 Regularisation Method )

As in the previous method, we weight each equation and obtain a transformed
matrix equation. Using this transformed equation and the procedure outlined earlier

for obtaining a regularised solution we obtain[9], the following solution. ', 4

m=(GTs"!1G+\H)"lGTs"ld4 (6.46)

6.3.3 Maximum likelihood estimats

s
. The data measurements are considered as a set of random variables. If we R
: F3
; make tha assumption that the random variables are distributed in a Gaussian 1‘ :
1] ~ }, 3
1 manner and S is the covariance matrix for these variables, then the probability ——
j density function for the data is given by the following equation. f:f'\"
) 1
) IS s—11/2 :‘}
D
pld) = ()—leezp{—l/2(d—Gm)TS‘l(d—Gm)} (6.47) -
! N
) w3
s
RSAN
" :‘.\‘}::
"
-
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For maximising the probability p{(d), we need to minimise (d—Gm)7S"’(d—Gm).
Ry a similar argument. we can say that the mizimisstion of mTm associated with

the generalised inverse can be replaced by mT! m. The solution can thep be

obtained by the generalised inverse in transformed co-ordinates as discussed in

earlier paragraphs.

6.3.4 Minimum varaince estimate

In this sppro-ach also the data and the solution vectors are treated as a
random vectors. In the minimun variance estimate we seek a linear operator which
gives an unbiased minimum variance estimate for the solution. By Gaus:-
Markov[10] theorem the minimum variance unbiased estimate is given by the

following equation.

where,
= Elmd’]
C,, = Eldd"|
Consider now the matrix equation given below.

d = Gm+e (6.49)

Here e represents noise
s

P S

SN

Tty By Ay Ay

y r Ny e 1

Using equation (6.49) and assumiog that the noise and the solution vecior are

statistically independent we obtain{10]

~..\. "-\_ o ‘_‘ hLY

*t\‘ h}: 1.:‘}_. 2t ;‘;\ ) ‘




-123-
— -1 -haolTe -1
= (Gc,, +c, ~YheTc,~ud

C. = Elee’
Com = E[mm]T]

The stochastic inverse method proposed by Franklin[11] also yields the same result.

We note that approximate solutions are obtained in these methods by
incorporating apriori information about the statistics of the solution. Assumption
on the covariance of the solution is equivalent to assumptions on its smoothness
made in regularisation method. Further addition of a positive definite matrix like

C ee'l overcomes the problem of instability.

6.4 Solution in function space- Error free data

6.4.1 Spectral expansion method

Parker[12], arguing that the inverse problem differs from parameter
estimation problem in that the unknown is a function with an infinite number of
parameters, has provided a solution in the function space. This method is based on
the fact that since d; is the projection of m(z) on G {z) we can construct a set of
orthogonal functions to represent G(z) and express m(z) as linear combination of
these orthogonal functions. To construct the orthogonal functions, a covariance

matrix I is formed.
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b
r, = /.. G ()G (z)dz (6.51)

I’ is a symmetric matrix and if the equations are linearly independent the
eigenvalues are real and positive. I' is now expressed as a product of three matrices

using the decomposition theorem|4].
r = vavT (6.52)

Here the matrix V contains the eigenvectors and A is u diagonal matrix containing
the eigenvalues. The orthogonal functions are then formed by using the following

equation.

odz) = Ny v, G (a) (6.53)

J
Expressing the unknown function as a linear combination of the orthogonal

function we write,
N . .
miz) = Y apiz)+é (2) (6.54)
=1
where o.(x) are orthogonal to ¢(x). Multiplying both sides by ¢(x) and integrating

over the domain a to b we obtain

b
e, = /m(z)¢.(z)dz

or,

a, = \'_1/22 v, d; (6.55)
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Having obtained a’s, m(z) is then evaluated using equation

N
m(z)=)_ a4, (6.56)
=1

Using equation (6.54) we now compute the norm of m(z).

b N
*
Im@I? = [ 13 apda)+o"(a)ds (©57)
a
=1
or,
, .
lm()|* = aa’+l|¢"|I? (6.58)
By constructing the solution using only ¢, and neglecting the functions in the
space orthogonal to it we obtain the minimum norm solution as in the case of
generalised inverse. As the a's are propotional to )\‘1/ 2, small eigenvalues will
magnify noise. As done before, we set the eigenvalue as zero if its value is less than )
a threshold level and their eigenfunctions deleted from the solution. A method for .3;.';'.\'
determining how many eigenfuction are to be included in the solution is given by ~1?i
2y
Parker[12]. Q::Qj
:::3:;}.
6.4.2 Method of Backus and Gilbert et
10
The importance that the kernel of the integral equation in obtaining an :I:Ej'.i
Tl
unique stable soluion has been discussed earlier. In the method proposed by Backus e
and Gilbert_,[l3,l4], the kernel of thc equation is made close to a delta function. *T
< Consider the equation given below. \é
R
d'.=/a G{z)m(z)dz i=1,---,N ~ (6.59) :::_'::::
v e d
i

tv'«,r
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If by suitable linear combination of the kernel we make it close to a delta function
at some point z, then the value of the solution at this value of z is easily
determined. Let a; represent coefficient of the linear combination. Summing over

all s we obtain

N b N
Y afzold; = fa {)_ afzg)Gz)}m(z)dz (6.60)
i=1 n=1

or
N b '

Z afzy)d; = /A(z,xo)m(z)d:t (6.61)
=1 ¢

If A(z,2y) is a delta function §(z—z) then m(z,) is equal to the left hand side
of the equation above. However,it is not possible to construct such delta function.
We, therefore, choose the coefficients as in such a way that the function A(z,z,)
approaches a delta function in a least squared semse. Various measures of
'deltaness’ (spread function) have been proposed by the authors[l4]. For the

purpose of our discussion we will define the spread function as given below.

S = / b{A(z,xo)—é(z—zo)}2d:t (6.62)

We make the additional assumption that the function A(z,z;) is unimodular i.e.
J z A(z,zydz=1. By using a Lagrange multiplier, we then determine the
coefficients which minimises the spread subject to the unimodular constraint.
Having determined the coefficients, these are substituted in equation Ef\; . ad,

and the value of the solution at z, determined.
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6.5 Solution in function space- Data with errors

The spectral method discussed above can be extended to take into account
errors in data by weighting each equation. Another approach which incorporates
the stochastic information of the data and the solution has been given by Tarantola
and Nercessian [15] and Tarantola and Valette[16]. Tarantola and Nercessian[15]
show that their general result reduces to the Backus and Gilbert result if there is

no error in data and if we make the assumption that no information exists about

solution.

6.6 Non-linear problem

So far we have dealt with the linear problem. The approach in solving the
nonlinear problem is to linearise it by expanding the kernel around a base value

which is assumed known. We start with the non-linear equation given below.
= G(m(z),z) (6.63)

Now we expand G{z,m(z)) around my(z) which is close to m(z) such that

m(z)=m(z)+6m(z). If we can write,

d;, = be".(mo(z),z)d:t+

b
/ D(m(z),z)ém(z)dz + O||ém(z)||* (6.64)

then G (z,m(z)) is said to be Frechet differcntiable at my(z). Omitting the higher

order terms we can write
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di~{dg); = Ad, = /. D {z)bm{z)dz (6.65)

and since my(x) is known the equation is now in linear form and we can apply the :
techniques described in this chapter. D

The solution of non-linear equation starts with a guess of the solution and the »
kernel is expanded about this and a correction is obtained. Using this we obtain & o
pew estimate of the solution which can now be used as the background. We note .

that such linearisation is permissible only if the kernel is Frechet differentiable.

6.7. Summary i

In this chapter we have reviewed the various approaches available in literature % ;
for solving Fredholn integral equation of the first kind when the data are 3

available only at discrete points and is contaminated by error. In the mnext

chapter we take up the solution of the integral equation (6.1) and obtain the N

attenuation coefficient profile for the ocean bottom. ™S
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Chapter 7

Inversion for Acoustic Parameters

In this chapter we demonstrate the inversion procedure for obtaining the
attenuation profile for the ocean bottom. We show that by suitably modifying the
scheme corrections to the sound speed profile and density profile for the bottom

can be obtained in addition to the attenuation profile.

First we establish that the kernel of the non-linear integral equation is
Frechet differentiable and that the kernel obtained by the Born approximation is a
Frechet kernel. The iteration procedure for solving the non-linear problem is then

obtained.

We select the most suitable angular aperture for input information based on
the region of applicability of the Born approximation. We study the effect that
frequency has on the ability to reconstruct so that this information can be used in
the design of the experiment. Similarly we study the effect of the magnitude and
the extent of the perturbation on the performance of the inversion scheme. We
follow this by demonstrating the reconstruction of different types of profiles using
synthetically generated data. A comparison between results obtained with Born

and Rytov approximation is then made.

Reconstruction of the attenuation coefficient profile is done by using the
regularisation method mentioned in Chapter 6. We have not attempted to carry
out the inversion by all the methods described in Chapter 6 and choose one that

gives the best results. On the other hand, we have been guided by the fact that the

function we are trying to reconstruct is a smooth function. The regularisation
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method which uses the smoothness of the model as one of the constraints has a
strong appeal in this context and we have therefore chosen this apprcach. The

results obtained using this method are promising.

The means of iieasuring the performance of the inversion is developed in the
context of the resolving power theory of Backus and Gilbert[1]. Using this we study

the resolution of the inversion performed.

In studying the question of errors, we deal with two aspects of it. First we
consider the situation where the sound speed profile and the density profile are not
known exactly. Instesd of treating this difference between the exact profile and the
assumed one as an error, we treat it as an unknown and include it as one of the
functions to be determined. We demonstrate this by simultaneousiy inverting for

the attenuation profile and corrections to sound speed profile. We also study the

effect of adding noise to the data. Examples of reconstruction using noisy data are

presented. 3

7.1 Linearisation =nd iteration procedure

In Chapter 5 we obtained a non-linear integra! equation and used the Born o
approximation to lincarise it. We will be using this linear integral equation for
performing the inversion. We now show that within the region of validity of the
Born approximation this approximation is consistant with the requirement of
Frechet differentiabiiity of the non-linear kernel. To establish that the kerncl of
the non-linear integral equation is Frechet differentiable we follow the analysis of
Parker[2]. The integral equation relating the unknown function to the reflection

coefficient is given by the following equation.
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hkb(z)
k o{Ry(k )—R(k,)} =/(; p—z)—a(z)P(kz,z)Pb(kz,z)dz (7.1)
b

In obtaining the above equation we have assumed that the value of the attenuation
coefficient for the background model 1is zero. We now write
Rk,,2)=P(k_,2)+P (k,z) where P/(k_,z) is the solution when a(2z)=0. Substituting

in the above equation we obtain,

h }
k o Rk )—R(k_ ) = /0 A2)Pyk,,2)%dz + S(k) (7.2)
where
k(2
e = 2o
pb(Z)
h
Slk,) = f 2Pk, )P, (K, 2)dz (7.3)
0

In making the Born approximation we assume that S(k_ ) is small in comparison to
the first term and neglect it. Comparing equation (7.2) with equation (6.64) in
Chapter 6, we note that for Frechet differentiability, S(k,) must be of the order of

112,

Define the norm for ~(z) as given below.

h
il = /0 ()22} 112 (7.4)

Applying the Schwartz inequality to S{k ) we find that,
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[Rse‘kzlz+e'i"zlz] [ei"zlz'+Rbe_ikzlzl+2ikz1h]

G(2,?) =
2ik_ (1—R Ry 217
0<z2<”?
5.) R e* 17+~ ka1 |[e*a124 Rye=H 21242k, h)
G(z,7) =

2ik_,(1—R Rye**:1h)
?<z<h

(7.39)

The plane wave reflection coefficients R, and R, are given by the followin

equations.
R _kzl_kzo
"k +k
atr0
k, .—k
2l Tz2
Karers
zl+ 22
with,
w
[ 2 211/2 _
kzO_[kO ~kz ] / ’ko—g
0
w
— [ 2 q1/2 4. __
ko=l kA, by =
1
w
—[ 2 211/2 _
kzi.’—'[k2 _kz | / J k2_F
‘2

(7.40)

(7.41)

Our earlier discussion indicates that though there are no poles on the real

axis, off axis poles in the complex domain of horizontal wave number may exist in

the range of horizontal wavenumbers k2 < kz < kl' The effect of these off axis

poles are felt as we move along the real axis. There arc therefore values of

horizontal wavenumber for which the Green's function can take large values.
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{7.38) to be satisfied for larger values of the pertubation and sediment thickness. ‘_‘;
Since the background model parameters are known numerical evaluation of the Fé
Green’s function can be performed. From these computations we choose the \~:
angular aperture where the Green'’s function has low values. ~

3o

A qualitative feeling for the acceptable range of values of horizontal f“%
wavenumber can be obtained by studying the simple model in Figure 7-1. For this
model there are three distinct angular region, or equivalently, three ranges of
horizontal wavenumbers that we will consider. These are 0<k < k,,
Ic2 < kz < kl, and Icl < kz < ko. For the first range, there are no angles at which
total reflection at the interfaces occurs. Energy is transmitted into the water
column and the subbottom. In the second region total reflection occurs at the
bottom interface but energy is transmitted into the water column. In the region
where the horizontal wavenumber is greater than k;, there is total reflection at the
water sediment interface. However, the magnitude of the reflection coefficient at

the sediment/subbottom interface is no longer unity. Therefore complete trapping

is not possible for this particular model. However, there is a region of horizontal

wavenumber where the reflection coefficient magnitude for both the interfaces is NS
close to unity. Near trapping of energy can take place in this region and the :"3
Green’s fuction can assume large values. Figure 7-2 is a plot of the magnitude of :;:h'
the Rayleigh reflection coefficient at the two interfaces for this model. The region =
where both these reflection coefficients come close to unity approximately lies in ‘,
the range of horizontal wavenumbers from 0.76 to 0.785. -

For the model in Figure 7-1, the Green's function is given by the following *‘f‘;
expression. b
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Figure 7-1: Simplified ocean bottom model to study
behaviour of Green’s function
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7.2.2 Angular aperture for data points

In Chapter 5 we obtained the condition for the applicability of the Born

approximation. The condition to be met is given below.

Ik llllalllG(2,2) A< 1 (7.38)

The Green's function in the above equation is for the assumed background
model. For any arbitrary sound speed and density profile the Green’s function can
be obtained using the uniform asymptotic solution for the wave equation. This
solution is, however, valid only when these parameters vary slowly with depth and
increase monotonically with depth, a situation that is met in marine sediments. The

solution for the Green's function is given in Appendix A.

The Green's function is a function of horizontal wavenumber as well as the
spatial parameter z and 2, points representing source and receiver positions. If the

Green’s function is expressed as function of the horizontal wavenumber there are

regions in the horizontal wavenumber domain where the Green’s function assumes
large values. In marine sediment the sound speed at the sedimnent water interface is,
in some instances, less than its value in the water column. The sound speed then
increases monotonically with depth with a possible discontinuity at the sediment-
subbottom interface. With this structure, the sediment layer behaves like a wave
guide and complete trapping of energy is possible. There will, therefore, be values

of horizontal wavenumber for which the Green’s function takes very large values.

If we are to remain within the region of applicability of the Born

approximation we will be best served by remaining in the region of angles where

the Green’s function has low values. This will permit the inequality in equation

3l

Ny "rﬂ,i‘.")"}‘{:""-ﬁ‘\?v *)-"( . 1‘"-".'-" LN ""‘" "'&' /".)',.{;‘_«" i
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|d—Gal? < E? (7.32)

The smoothness measure is obtained from equation (7.22) reproduced below.

Sla(2) = Y (e, —2a+a,_))? (7.33)
)
If we can have a measure for this we write

aTHa < € (7.34)

where €2 is the measure of smoothness. Combining equations (7.32) and (7.33) we

;ﬁ; obtain

%

s 9 E? T

. |Ga—d| +—5a Ha < 2E? (7.35)
. €

\*- We now find a solution for o that minimises the left hand side. The solution is

X

obtained in a manner similar to that given earlier.

Lol
e &

(GTG+ H)a = Gd (7.36)

AN

o

where,

= E?%/¢ (7.37)

.
-* el el

Y
Lo 1

The factor E2/e2 is a measure of how smooth the solution will be. When €2 is small

E2/e? will be large and give a smooth solution. By making a priori assumptions
: P

0wl

-

about EZ2 and ¢2 we obtain the Lagrange multiplier ).
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::' decreases in some region indicating that the assumption the the solution is smooth _____;
e over the entire region is not correct. The fact that such sharp changes are seen in N
(L [ )
\'.
K the reconstructed profile even after making the smoothness assumption is a strong :s.j
. indication that these features are not an artifact of the inversion scheme. We will, ,“:‘:f
y therefore, be justified in making the assumption that sharp changes do occur at
N
N these depths and hence look for smooth solution in the intervening depths. An
‘S
O example of this will be presented later on.
_: The Lagrange multiplier A determines the smoothness of the solution. The .;,(_..‘
= {1
. larger the value of X\ the smoother the solution. This means that larger values of X )
“n ._!:.”!
will lead to poorer resolution. For lower values of A more structure will be observed oy
5 [y
[ but at the same time the variance of the solution will increase. One approach in o)
~ (_-:._-
- determining X\ is to initially take large value and reduce it with each iteration as Z:::Z_:
suggested by Marquadt[6]. At each iteration the residual is computed and the :}_Q
A iteration procedure terminated when any one of the following conditions are met. H-‘
¢ 5
s X
e |d-Ga|? < E? (7.29)
' 2
% loyy—agl* < e (7.30)
.
xl
bt Another method of determining the Lagrange multiplier is based on some
. prior knowledge of the upper bound for the noise power in the data and some
]
';,*_3 measure of the smoothness desired in the solution|7]. We write the equation to be
N
N solved in the following form
a4
F ~
- Ga = d+s (7.31) o
- o
'..‘ . . - 13 . ...“-.‘
i where 3 is the vector containing the error. If E? is the upper bound for noise M
™ power, then :F?
e ~s)
o L9AS
'J'. -_':q."
- TN
‘. g
.,‘.. "v..“q}
[S-8 3
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to |[d—Gm|? being less than E? (say), the errors associated with the numerical

estimation of data. Using A\ as the Lagrange multiplier we seek to minimise
aTHa+1/2{(d-Ga)T(d—Ga)} (7.25)

Differentiating with respect to each element of a and equating it to zero, we obtain
(G2G+)\H)a = GTd (7.26)
a = (GTe+ \H)"'GT4 (7.27)

In some instances it may be necessary to add additional constraints[5] such as
a minimum norm criterion in which case the equation to be solved will be as shown

below.
(GTG+)\ H+)\ e = Gd (7.28)

where X\, and )\, are two Lagrange multipliers and I is an Identity matrix. In the
examples considered in this dissertation, situations needing such additional

constraints did not occur.

By using the method described, a smooth solution is obtained. It may be
noted that the inversion using generalised inverse eliminates the instability by
discarding the small eigenvalues. The small eigenvalues are the ones that contribute
to high oscillations in the solution and climinating the small eigenvalues is
equivalent to a low pass filtering operation on the solution to get a smoothed
version. The regularisation method also overcomes the instability by assuming that
the solution is in some sense smooth and in this context both the methods are

analogous.

Having obtained a solution it may be seen that there are sharp increases/
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Nyquist criterion as the integral equation looks like a Fourier transform. Since the
vertical wavenumber varies with depth and the angle of incidence, we will take the
maximum value of the wavenumber as the water wavenumber. Based on this the
sampling interval must be less than \;/4 where A, corresponds to the wavenumber

in the water column.

The integral equation is now written as a discrete sum
d, = E w,G.a; (7.20)
Jj

where Wi is the weighting associated with the quadrature scheme. For a set of

observations the equation is put in matrix form,

d = Ga (7.21)

where the weights w; i have been absorbed in G. The smoothness measure in

equation (7.16) is also put in discrete form as shown below.

Sle(z) = Y (o4 ~20+a; ) (7.22)
]
This is a quadratic measure and S(a(z)) is therefore written as

S(a) = aTHa (7.223)
The matrix H is given below. i
RO
1 -2 1 ] i
2oy
-2 5 -4 1 . . ]
" H= |1 -4 6 -4 1 . (7.24) T
- 1 4 6 -4 1 1

The problem is now restated as follows. Find a a that minimises S(a) subject

-

, ......
. a o .-'l‘l .'-"
RV I
P e T e
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synthetic data, this measure has been found to be adequate.

We start with the integral equation derived in Chapter 5 for the
reconstruction of the attenuation profile. Since the reflection coefficient is known

only for discrete angular values, the above equation is written as

(R)),—R,|(k,g), = / ——a(2)P,,%(2)dz 7.17)

A I

where n corresponds to the discrete angular values at which the reflection cefficents

ROAED Wl U
T

\
Y e

are determined. The integral equation (7.17) is now written in the following form

M

d, = /Oha(z)Gn(z)dz (7.18)

dn = [(Rb)n—Rn](kzO)n

ky(2)

G, (2) = anz(Z)——
Pb(z)

The integral on the right hand side is then written as a sum using a

quadrature scheme. We have used the simple Simpsons rule for this purpose. With

the sediment modelled as a stack of homogeneous layers the term Pb“’(kz,z) in the

Ay
L LSS

integrand of the integral equation has the following form in each layer.

PA(k,2) = {A(k,) exp(i(k,>—k,})1/22)+
B(k,) exp(—i(k, 2~k H)/22)}? (7.19)

IR ES T 1o

Therefore, for the degradation resulting from converting the integral into a

discrete sum to be small, we must sample at points arrived at by applying the
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3 2
small parameter ¢ as indicated below. fi-:-*.‘l
:'v" 2 - %.4
) a(z) = eaglz)+ca, )+ - - - + (7.15) Kot
\.‘ I - 4
o~
.:. . . . . ’:':'.
o We now successively determine aj.0,, and so on. The convergence of this scheme M
4 was found to be slow compared to the earlier method.

7.2 Reconstruction of the attenuation profile

We, now, discuss in detail the reconstruction of the attenuation profile

assuming that the true value of the sound speed and the density in the sediment

s

Xy

:__ layer are known.

To test the inversion method we use synthetic data. This is obtained by
- solving the forward problem and obtaining the plane wave reflection coefficient for
;»:: a set of angles given the ocean bottom model. The data that will be used for
' inversion are, therefore, error free.

N

A 7.2.1 The regularization scheme

3

I\ Out of the various methods described in Chapter 6 we use the regularisation
y' method. We assume that the solution is in some sense smooth. Experimental results
”\E available on the variation of the attenuation with depth support this assumpt.ion.
J“E' We. therefore. look for a solution with the least structure. The smoothness criterion
is defined as below's’

\'.' )

k d°a(z) |,
Sla(z)) = A {_—2—}'d: (7.16)
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LYy v 2 2 ot

e -
.
L)
A

Otker smoothness eriteris are possible However n variwe enjermments d e with

LA YN

-
'y
o
A

o L T A I N L T N e N e
RN ~'3'-."x*' \:-:"--',:':’:~~' DAL
TR A X Wiy

-‘“ "y J‘ "F"' A qu‘ \:“-.i :a-




s SRR
.. " R
- ENL RN

MM

_<
N
P i ]

i

TR TN T WX O Wy ¢ gt ¥ ab pure gt gt W TR W W O W T T ow Y T N T R T . Chiln i f i.‘.‘i‘.‘.“-".

-135-

kernel obtained by Born approximation is a Frechet kernel.

Linearising of the integral equation is based on the term S(k.) being
negligible. If this is not so, then the solution when used in the non-linear integral
equation will not satisfy data. We, therefore, need to use an iterative process. In
the iterative scheme the solution obtained in the previous iteration is used to

generate the new kernel. The integral equation then takes the form shown below.

' hkb(z) 2
kzo{Rn(kz)—R(kz)} = A m&an(Z)an (kz,z,an(z))dz (7.12)
b .

a, 1(2) = a(z)+ba (2)
A variant of this is the fixed point iteration. In this case we first write,
ba(z) = a(z)—a,(2) (7.13)

Substituting this in equation (7.12) we obtain,

hk,(2)
b
ko{R, (k) —Rk}+ [ ——a,(2)P, %k, (2)2)dz =

0 py(2)
—a(2)P, “(k,,a, (2),2)dz (7.14)

0 Pb(z)
The iteration method described is similar to the procedure followed for
solving nonlinear equations by the Newton method. Convergence of this scheme is

guaranteed if the initial guess is close to the actual value. Also the convergence is

quadratic. These results have been proved in the literature[3].

Another approach is an iteration scheme based on higher order perturbation

theory. The unknown function a(z) is expressed as a power series in terms of the
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8 ISl < IBle,) (7.5)

5

{E

,; To obtain an etimate of ||P,|| we asssume that within the region of validity of Born

) approximation P (k_,z) can be written as follows.

L

2 h

) Pk, z) = / APy, 2)G(k, 2, 2)d (7.6)

’ 0

;{ where G(z,z') satisfies the equation; _:.‘;
L ’G 2 |
\ R (D-kAG = §a=7) (7.7)
::: Applying Schwartz inequality we obtain, g
- -
- A 2 1/2 s
3 1P < 1B | (Gte s (73) T
. Using this we find that, 4
(2 , A ) ;\
) O ISIS IR [ (Gl (7.9) 2
P).‘_‘ 0 .-:,-\'
. o The field Py(k,,2) in the sediment layer is finite. We will show in a later section of ns
.1:::1 this chapter that in the range of angles chosen for input data, the Green’s function \“
also remains finite. The equation (7.9) can, then, be written as given below. _.
N ISl < Clli® (7.10) o
ot L::
=y 2 t-‘ ’
- s < ojhil (7.11) >
-J :- *
*’§ We hove, therfore, established that the kernel is Frechet differentiable and that the E
N o
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The magnitude of the Green’s function in equation (7.39) is plotted in Figure
7-3 as a function of the horizontal wave number. The source and receiver positions
are 30 m and 10 m respectively from the water/sediment interface. The acoustic
parameters used in the computation are indicated in Figure 7-1.1t is seen that the
magnitude of the Green’s function has large values at positions where the
magnitude of the plane wave reflection coefficients at the two interfaces are close
to unity as anticipated earlier. The figure shows also that in the region where
there is least trapping, i.e. 0 < k, < k,, the Green's function has the least value.
This corresponds to pre-critical angles. In the second region, the behaviour of the
Green'’s function becomes complex and there are values of horiiontal wavenumber
where the magnitude of the Green’s fuction becomes large. When the waves in the
sediment becomes inhomogeneous the magnitude of the Green's function decreases.
The advantage of using the information from the pre-critical range of angles in the
inverse problem is therefore obvious. Rays incident at pre-critical angles will probe
deep into the sediment whilst rays incident at angles above the critical angle will
turn within the sediment layer there will be turning points in the sediment and
therefore these rays will have no information about medium beyond the turning
depth. If the entire range of angles from grazing to normal incidence is used there
rﬁay be certain angular regions where the Born approximation is not valid and this
can lead to degradation in the reconstructed profiles. However, since an iterative
scheme is employed the magnitude of the perturbation gets reduced at each stage

of iteration and the scheme may converge unless the non-linearity is too strong.

Only rays in the precritical region probe the entire depth and the Green's

function has the lowest magnitudes in this range. We have, therefore, used only

this range of angles in the reconstruction of the attenuation profiles.
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7.3 Effect of experimental and geoacoustic parameters

7.3.1 Frequency

Figures 7-3 to 7-5 show the magnitude of the Green's function vs horizontal
wavenumber at different frequencies. In the pre-critical region, a rough 1/w
dependence i§ seen. This result is not surprising because in this region the effect of
the interfaces in trapping energy in least and the Green's function behaves very
much like the free-space Green’s function . For homogeneous medium, the free
space Green's function behaves as 1/k, where k_ is the vertical wavenumber. This
is equivalent to 1/w dependence. In Appendix A the expression for Green’s function
in terms of the uniform asymptotic solution has been obtained for an arbitrary
variation of sound speed and density. In the pre-critical range of angles, there are
no turning points in the sediment layer and the uniform asymptotic solution
reduces to WKB solution as shown in the appendix and the Green’s function has an

approximate 1/w dependence.

Earlier for the applicability of the Born approximation we noted that the

inequality to be satisfied is,

d 7.42
I (7.42)

0\#

maz

We have shown that in the pre-critical angles the magnitude of the Green’s
function has an approximate 1/w dependence. From this alone, it appears that a
higher frequency is better since the magnitude of the Green’'s function is small.
However, the magnitude of the perturbation ky(z)a(z) is directly propotional to
frequency. Therefore its product with the Green's function is approximately

constant. We conclude, that the operating frequency will not have significant effect
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Figure 7-68: Reconstruction of constant attenuation of 0.02 dB/m
in the layer, Frequency=100Hz

1 - True profile, 2- Reconstructed profile
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in the layer, Frequency= 25Hz

1- True profile, 2- Reconstructed profile
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on reconstruction. To see this, we carry out inversion using synthetic data

j

generated at different frequencies. The result obtained at the first step of the

v
' i

iteration process is at figures 7-6 and 7-7. Though the frequency was increased four

e
x i 7
a )

e
o

fold it did not have any appreciable effect on the reconstructed profile.

o
o

7.3.2 Attenuation coefficient
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For two values of constant attenuation in the sediment (0.005dB/m and
0.02dB/m) inversions were carried out. The results are shown in Figures 7-7 and

7-8. As anticipated the larger the perturbation the poorer the recanstruction.

7.3.3 Depth of sediment

The magnitude of the Green’s function was computed for different sediment
layer thicknesses while keeping the other acoustic parameters of the model fixed.
The plot of the Green’s function magnitude as a function of horizontal wavenumber
is shown in Figures 7-9 and 7-10. The Green's function magnitude remains
approximately the same for all the three cases in the pre-critical range. Its
behaviour beyond this range is however complicated. In equation (7.39) the only
place where the sediment thickness enters the expression is in the phase term
exp(2ik,, k). Therfore for small values of R_ and Ry, which is approximately true
for precritical angles the sediment thickness will have little effect on the magnitude
of the Green’s function. This is true even in cases where the sound speed and
density in the sediment layer varies in an arbitrary manner. We can, therefore,
conclude that the sediment thickness has no significant effect on the magnitude of
the Green's function in the pre-critical range of angles. On the other hand in the

expression in equation (7.38) we note that the region of applicability of the Born

approximation is related to the depth of the sediment. We anticipate that with
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Figure 7-8: Reconstruction of constant attenuation of 0.005 dB/m
in the layer, Frequency= 25Hz

1- True profile, 2- Reconstructed profile
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increasing depth the errors made in making the Born approximation increases and
this will manifest itself in the reconstructed profiles. Figures 7-7 and 7-11 show the
reconstructed profiles for different slab thicknesses. We have increased the slab
thickness four times leaving every other parameter the same. We note that the

increase in thickness has resulted in poorer reconstruction.

7.3.4 Strength of the discentinuity at the interface

The strength of the discountinuity at the bottom interfaces was increased by
changing the values of the sound speed in the sub-bottom. The magnitude of the
Green's function for the two cases are shown in Figure 7-12 and 7-13. There is very
little change in the magnitude of the Green’s function in the pre-critical range and
therefore the strength of the discontinuty is not likely to have any appreciable
effect on the reconstructed profiles. However, we note that as the sound speed in
the sub-bottom increases the angular range of pre-critical angles decreases and
therefore will affect the number of data points that can be used in the inversion

scheme.

7.4 Examples of reconstruction

We now test the inversion algorithm developed earlier using different type of
profiles. The profiles used are given in Figure 7-14. The profile shapes have becn
chosen so as to cover possible attenuation profiles in marine sediments. The
magnitude of the attenuation coefficient chosen falls within the acceptable range of

values for marine sediments at the frequency considered.

In each case the input data for the scheme i.e the plane wave reflection

coefficient, is computed using the propagator matrix method described in Chapter
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Figure 7-12: Magnitude of Green's function as function of horizontal
wavenumber, Sound speed in sub-bottom = 2500m/sec
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Figure 7-13: Magnitude of Green’s function as a function of horizontal
wavenumber, Sound speed in sub-bottom = 3000m/sec
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separate regions of depth. Then the result in Figure 7-20 is obtained.

We now give an example of inversion using one of the realistic models
developed for Icelandic Basin[9]. The operating frequency in this instance is 220 Hz,
the frequency at which the experiment was performed. The model used and the

reconstructed profile are given in Figures 7-21 and 7-22.

7.5 Born and Rytov approximations

The question about the applicability of the Rytov approximation for back
scattering problems is still unresolved. While it can be proved [10] that the Rytov
approximation is valid over longer ranges than the Born approximation in regions
where only one field exists, no such general result exists for regions where there is
more than one wave. According to Keller[10], where more than one wave exists, the
Rytov approximation is to be applied to each wave seperately and not to the total
field if its validity over longer ranges than the Born method is to hold. On the
other hand the Born approximation can be applied to the total field. This accounts
for the more common use of the Born approximation for backscattering problems.
However, the investigations on the relative merits of the two methods for ultra-
sonic diffraction tomography have shown that the Rytov method gives better
results than the Born approximation even when the Rytov is applied to the total
field[11,12). In the light of these comments, we now carry out the inversion
without the iterative scheme and compare the results obtained by the two methods.
The results are given in Figures 7-23 to 7-26. We note that the Rytov method is
much better than the Born approximation at shallower depths and only slightly
worse than the Born approximation at deeper depths. This experiment, therefore,

seems to confirm the observation of other investigators that the Rytov method is
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4. The input data is obtained at 20 discrete points in the pre-critical range. For the
sake of convenience the input data is computed at equal increments of vertical
wavenumber. An operating frequency of 25 Hz was chosen. This was done only to
limit the size of the matrices since the sampling interval is dependent on the wave
length in the water column as explained in an earlier section. The sound speed
structure in the sediment was obtained using the regression formula given by
Hamilton([8]. The density in the sediment layer has been assumed to be constant.
The values for these parameters are given in Table 7-I. The Lagrange multiplier
was suitably chosen and the iteration continued till residual became less than a
predetermined value based on the numerical errors that méy creep into the

computation of the reflection coefficient.

For the iteration scheme to converge the nonlinearity should not be strong.
Stating differently, the guess model must be close Lo the real model. In Chapter 5
we saw that the attenuation coefficient is orders of magnitude smaller than the real
part of the wavenumber and this was the foundation on wkich we based the
perturbation method. At 25 Hz the real part of the wavenumber is approximately
0.1 m'l. Therefore the initial guess value for the attenuation is taken as zero. For

values of attenuation assumed the convergence occured in about six iterations.

The results of the inversion are given in Figures 7-15 to 7-19. Except in the
case of Figure 7-19 which is the recontructed profile for the discontinuous model at
Figure 7-14 the reconstruction is good with the residuals less than 107, The poor
reconstruction in the case of Figure 7-19 is due to the fact that the algorithm
assumes that the function we are looking for is smooth whereas in reality it is
discontinuous. The points where such discontinuities are likely to be, are seen in
the Figure 7-19. Based on this evidence we make the assumption that the

discontinuities do occur at these depths and look for smooth solutions in the three
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Figure 7-22: Reconstruction of profile for realistic ocean model

1- True profile, 2- Reconstructed profile
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Figure 7-21: Realistic ocean model
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Figure 7-20: Reconstruction of profile in figure 7-14(e)
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2- Reconstructed profile
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Figure 7-17: Reconstruction of profile in figure 7-14(c)

1- True profile, 2- Reconstructed profile
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Figure 7-14: Attenuation coefficient profile shapes
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Figure 7-25: Reconstruction of profile in figure 7-14(b) - Born
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1- True profile, 2- Reconstructed profile
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better than the Born method even in situations where more than one field exists.
The analytical foundations for this result needs to be established to determine the
limitations in the use of Rytov's method. However, since an iterative process is

found necessary to solve the non-linear problem, both methods needed

approximately the same number of iterations to converge Therefore, neither of the

two methods can be considered to have a clear advantage over the other. The
iterated result using Rytov's method for the profile in Figure 7-14 (a) is shown in

Figure 7-27

7.6 Resolution

Resolution is a measure of our ability to resolve fine structure in the function
i being reconstructed given that we have only a finite set of data points. A method

of determining the resolvability is given by Backus and Gilbert[l]. Here the

Lo\ Z e &

s & 4 2.

procedure described by them is extended to cover situations where the data, the

kernel and the function to be obtained can all be complex quantities. The situation
when the unknown function is a complex quantity arises when we invert to obtain

the real and imaginary part of the wavenumber.

LI = O BN

We start by considering the linear problem. The data is related to the

E‘«’ unknown through a linear equation of the form given below. All the quantities are
»? complex.
, h
d = /0 A2)G, (2)dz (7.43)

Multiplying by a weight a_(z,) and summing over all n's we obtain,
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h
Y d,a,(z) = [o AN a,(2)G ()} . (7.44)

or,

h
d(zp)= /0 (N2)A(2,25)dz (7.45)

Let d(z;),A(z,25) and 4(z) be all complex. Equating the real and imaginary

parts, we obtain

h
d= /(; {1(2)A,(2,25)—7(2)A(2,%,) }d= (7.46)

and

h
d= /0 {1 (2)A{2,20)+7(2)A (2,2) }d2 (7.47)

The subscript r and i represent the real and imaginary parts. If the coefficients
a,(zp)n=1, - - - ,N can be found such that Afz,z,) is equal to §(z—z;) and Afz,z2,)

is zero, then we will have

h
d (zg) = /o (B(z—20)dz (7.48)
and
h
dfzg) = /o )bz zg)dz (7.49)
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7,(29) and 7(2;) will then be known exactly. Similarly for each point we can find a
set of coeficents which will make A (2,zy) look like a delta function and A(z,2,)

equal to zero. However, this cannot be done. We, therfore, seek to minimise,

hA ) }2d+/hA2( )d 7.50
/(;{ r(z—zo —6(2-—-20) z A [ (2—2p)dz (7.50)

subject to A (z,2;) being unimodular i.e.

h
/ A (2,z5)dz=1 ~ (7.51)
0

Other measures of 'deltaness’ have been proposed in literature.[1]

From equation (7.44) the expressions for A (2,z,) and A(z,z)) are obtained.

Substituting for A (z,z5) and A{z2,2,) in the equation (7.46), we minimise,
h 2 h 2
I anleo)le) ~sz—zdz + [[13 a,(z)G, o)z
n n

h
+A /0 [} 8,(2,G,,(2)dz (7.52)

where ) is the lagrange multiplier. The derivative of this expression with respect to

each of the coefficient a_ is set to zero. A set of n linear equations is obtained

which are then solved to obtain the coefficients. After some algebra the following

equation is obtained.

AV, +¥)a+ u = 2G () (7.55)

- where
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h
(wr)nm = /(; Gnr(z)Gmr(z)dz

h
('pi)nm = /(; Gni(Z)Gmi(Z)dz
8={al(20), te van(zo)}T

G,(29) = {Gy,l2g), - - - .G, (2}

3
un=/ G, (2)dz
0
u={ul’ .« v . ’un}T
V=V _+¥,

2¥a+iu = 2G (z,)

a = ¥ 1[G (z5)—\u/2]

We now use the constraint relation given below.

aTu=l

Sustituting for a, we obtain

(7.54)

(7.55)

(7.56)

(7.57)
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wT¥G (z))-Mu/2] =1 (7.58)
or,
I11G - (o (7.59)
a= 1 u 7.59
o ulvla
Having found a , we can constructA (z,z)) and Afz,2). A(2,7;) is a measure -
of the resolution. Further Afz,z,) is a measure of the effect of the imaginary part f-_
on the recontruction of the real part and vice-versa and is therefore a measure of f~.
‘,f{-,,
contamination. e
The above method is applicable when the equation is linear. In the non-linear “
problem, the resolution kernels are obtained by the method suggested by f
Parker{13]. The linearisation assumption is based on the last term in equation (7.2) :
HERS
being negligible. If this is not small, the solution we obtain will not satisfy data. By E i
Faght
iterating we obtain an acceptable solution and when such a solution is obtained we ;" ’f
can say that the term Ol|||% is negligible. The Frechet kernels obtained with this
solution is the used to generate the resolution kernels. e
3
7.6.1 Measure of resolution ,
Resolution length defined as given below is a measure of resolution{14]. '\‘
hA2(z zo) :
M
RUzp)= f o r)iz (7.60) \“\'
o0 R
While resolution length at each point z gives a measure of local resolution one can :3'*:‘
also obtain a measure for global resolution. Seg
“:"4
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. Depth(m) Profile fig. 14(a) | Profile fig. 14(b) | Profile fig. 14(c) | Profile fig. 14(d)
0 2.15 x 10° 1.82 x 107 2.48 x 10° 2.91 x 107
20 5.48 x 10° 5.02 x 10° 7.31 x 10° 5.38 x 107
40 8.51 x 10° 7.22 x 10° 7.54 x 10° 7.17 x 10°
60 7.15 x 10% 7.59 x 10° 8.42 x 10° 7.58 x 10°
80 7.83 x 10° 9.79 x 10 8.87 x 10° 9.81 x 10?

100 8.45 x 10° 9.27 x 10° 9.91 x 10* 9.24 x 107
120 8.28 x 10° 7.25 x 10° 8.72 x 10° 7.72 x 10°
140 7.50 x 10° 7.04 x 10° 7.54 x 10° 7.19 x 10°
160 6.04 x 10° 6.04 x 10*° 791 x 10° 6.11 x 10*°
180 422 x 10° 422 x 10° 5.27 x 10° 4.25 x 10°
200 1.76 x 10° 1.94 x 10° 1.76 x 10° 2.00 x 10°
GRL 6.73 x 10° 6.86 x 10° 7.65 x 10° 6.86 x 10°

Table 7-II: Resolution lengths for the different examples of reconstruction
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1 rk
GRL_—_; / RLzp)dz, (7.61)
0

The global resolution measure can be used to determine the effect of various

T

parameters in inversion. 5N
TN

For the various examples of the reconstruction of the attenuation coefficient )
profile the resolution kernels have been constructed adopting a procedure similar to N
i

ks

1

LI R IR R R R
R | T I
. e et e e e e
[ Y RN, o

the one discussed above except that the function 4(z) is real. There will, therefore,

AJ‘_‘"L

no contamination from the imaginary part i.e we need to determine only A (z,z)).
These results are given in Figures 7-28 to 7-31. The resolution lengths for the cases

are given in Table 7-I1.

The average resolution length is approximately .07 which corresponds to 14

m. The layer thickness has been taken as 10m and within each layer the
attenuation is taken as constant. A resolution length of 14 m can be considered as

adequate in resolving the features of the model.

We will now see how the aperture size and the number of data points affect

resolution. We will use the global resolution measure to study this effect.

7.6.2 Variation of aperture size

Keeping the number of data points same, the aperture size is varied and for
each case the resolution length and the global resolution length are caiculated. The
resolution length and global resolution measure are given in Table 7-1I1 . As the
angular aperture increases the resolution improves. With small angular a eriure,
the separation between data points is small. In the ray picture the rays probing the

medium will be close to each other leading to near dependency of the rows of the
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Angular aperture

Depth (.054<K90<.067) (.054<K20<.079) (.054<K90<.088)
0 6.6 x 16° 1.84 x 10° 2.15 x 10°
20m 0.103 6.91 x 107 548 x 107
40m 0.110 8.95 x 107 8.51 x 10°
60m 0.109 8.73 x 107 7.15 x 107
80 m 0.111 9.28 x 10° 7.83 x 10°

100 m 0.121 0.112 8.45 x 10°

120 m 0.128 9.24 x 107 8.28 x 10°

140 m 0.104 8.75 x 107 7.50 x 107

160 m 0.101 8.03 x 107 6.04 x 107

180 m 7.84 x 10° 4.90 x 10° 4.22 x 10°

200 m 1.79 x 10* 1.76 x 10° 1.76 x 10°
GRL 9.98 x 107 7.89 x 107 6.73 x 107

Table 7-III: Resolution length and aperture size
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No of Data pts.

Depth 1 17 20 b
%Y
om 5.2x10° 2.42x 107 2.15 x 10° %ﬁ«:
ROy
20m 8.03 x 10° 5.34 x 10° 5.48 x 10°
4 m 0.146 9.03 x 10° 8.51 x 10° it
60 m 0.104 7.23x 10° 7.15 x 10° E
o R
80 m 0.113 8.09 x 10° 783 x 10°: "! .
]
100 m 0.118 8.76 x 10° 8.45 x 10° t
120 m 0.134 8.46 x 10° 8.28 x 10° . »
" Y
140 m 9.22 x 10* 7.34 x 10° 7.50 x 10° e
19
160 m 8.0 x 10° 6.29 x 10° 6.04 x 10° 13
180 m 5.35 x 10° 4.25 x 10° 4.22 x 10°
200 m 2.46 x 10° 1.79 x 10° 1.76 x 10° *w
e
,'.j.:.r
233
i
GRL 0.124 6.84 x 10° 6.73 x 10° il
ey
,Qék
i
- Table 7-IV: Resolution length and number of data points .
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3 matrix we are trying to invert. This illconditioning has to be overcome by
A discarding eigenvectors corresponding to low eigenvalues and therefore leads to
's poor resolution. However as the aperture size increases the near dependency of the
; rows gets reduced and the resolution improves.
~
t 7.6.3 Variation of the number of data points
13
For this experiment, the resolution length and global resolution length were
g obtained for number of data equal to 11,17 and 20. These are given in Table 7-IV.
.;. As the number of data points increase the resolution improves. This is what one
; would anticipate as the small number of points makes the system underdetermined
1 with a number of eigenvalues close to zero. A smooth solution is obtained by
:: utilising a relatively small number of eigenvectors which degrades the resolution.
‘
' 7.7 Errors
34
T
d So far we have assumed that the sound speed and density for the sediment
:‘ are known exactly. In the sequence of processing of the measured data as shown in ;
‘ Figure (3-7) of Chapter 3, the sound speed and density values are obtained using :-i 3
: direct inverse algorithms. These algorithms assume that the sediment is lossless and 0 ‘
j since this assumption is not true, it will give rise to errors in the reconstructed Y
h values of the sound speed and density. To show this we do the following synthetic Q‘Z
‘» experiment. Merab[15] has developed an inverse scheme based on the Gelfand- "*
'5 Levitan method for obtaining the sound speed and density profiles for the sediment. '((
v We generated reflection coefficients synthetically using a lossy model and this was ::\3-'
:: used in the inversion scheme to obtain the value of sound speed. The density in the '\;
N sediment was assumed known. The procedure was repeated with a different set of ,_}\
) Y
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Figure 7-32: Ocean bottom model 7Y
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Figure 7-33: Reconstruction for lossless model using Gelfand-Levitan method .
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input data corresponding to the lossless case with every other parameter in the
model remaining the same. The lossy and lossless models used are shown in Figure
7-32. The results of inversion is given in Figures 7-33 and 7-34. Even with the
attenuation coefficient as small as 0.001 dB/m there is observable error in the
reconstructed value of the sound speed. However, the result obtained can be used
as the initial guess model for the sound speed. We will call such errors in our
knowledge of sound speed and density in the sediment as model errors and show

how such errors can be dealt with.

The second form of errors are those in the data. The data, i.e., the plane-
wave reflection coefficients are not measured directly but are obtained by suitably
processing some other measured quantity. For the scheme proposed in Chapter 3
the directly measured quantity is the pressure field and this is then processed.
Errors that occur in the measurement of this quantity will therefore be propagated
and will finally appear as error in the reflection coefficient. We will call these data
errors and show by way of examples how these affect the reconstruction of the

attenuation profile.

7.7.1 Errors in the model

To show the effect of errors in the sound speed and density we use the model
in Table 7-1 . The input data is generated using the correct value of the sound
speed. However while performing the inversion a slightly different valu- of sound
speed is assumed. A similar test is done for error in density as well. The
degradation that occurs in the solution is shown in Figures 7-35 and 7-36. Table
7-V gives the true sound speed and the value assumed for reconstruction. In the
case of density the constant value of 1.7gm/cc in the sediment layer is changed 1.75

gm/cc. In both cases the attenuation profile used for recontruction is in Figure
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Erroneous value

Water Interface

- speed in sediment assumed. sediment z = 0

Layer 1 10m 1517.56 1511.0
Lny'or 2 20m 1530.39 1523.0
Layer 3 20m 1343.14 1535.0
Layer 4 40m 1855.74 1547.0
Layer 5 50m 1508.20 1559.0
Layer6 oo | 158052 1571.0
depth  Layer 7 7om 1592.69 1583.00
Layer 8 80m 1604.74 1585.00
Layer 9 _gom 1616.64 1607.00
Layer 10 100m 1628.41 1619.00
Layer 11 110m 1640.00 1631.00
Layer 12 120m 1651.55 1643.00
Layer 13 130m 1662.92 1655.00
Layer 14 140m 1674.16 1667.00
Layer 15 150m 1586.28 1679.00
Layer 16 160m 1696.27 1691.00
Layer 17 o0 1707.14 1703.00
Layer 18 180m 1717.88 1715.00
Layer 18 190m 1728.50 1727.00

Layer 20 200m 1739.00 1739.00 Sediment Subbottom interface

Table 7-V: Exact and erroneous sound speed profile
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7-14(a).

Consider the case where there is an error in the background model for the
sound speed profile. We can, then, relate the wavenumber of the true model to the

wavenumber of the guess model by the expression given below.

W AC(2)
k(z)= 1+ ]
Cyz) Cy2)
k(z)=lcb+6k(z) (7.62) ,;_%
)
Since 8k(z) is not known it cannot be subtracted out. An alternative approach is to
treat this as an unknown and invert to obtain 8k(z)+ia(z). T
We now take up the general case where we consider errors in the sound speed oW
and density profiles of the guess model. The parameters for the true model and the \
background model are now related by the following equation. :\
2
k(2) = ky(2)+6k(z)+1a(2) (7.63) X
plz) = py(2)+8(2) (7.64)
Our aim is to obtain an integral equation which on inversion will yield the 0
corrections to the sound speed and density profiles in addition to the attenuation "
coefficent profile. To do this we make the assumption that the density profile and
its first derivative are continuous across the interfaces. We, then, use the procedure _
developed in Chapter 5 to derive the integral equation for this case. Using .
equations (5.3) and (5.4), we express p(z) as a sum of p,(z) and a perturbation of it X
as given by the following equation. :.

B(z) = py2)+5(2) (7.65)
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where, L
°flz)  dp2)dp(z)  d®pyfz)  dpl2) T
20,%(2)b(2) = +3 . +3—13(2) 7.66) S
b dz2 dz dz ldz2 dz ( .
The integral equation then is, L e
b
- . - 2
ik o{Ry(k,—Rl(k )} = / 2k (2)(8K(2) +ia () +8(2)] A
° 2il2) L
Pk 2)dz (7.67) ,i_:‘: :

This equation can be solved to obtain 2k, (z)0k(z)+6(z) and 2k, (z)a(z). To seperate
TR
0k(z) and é(z) we use the method due to Coen[14]. The experiment is performed at ]
two frequencies and for each case the integral equation is solved. Let the solutions
obtained be n, and 7, respectively. Then the real part of the solutions can be
expressed as follows. ?"5“’4
o
2 O
wy Ty
1,(2) = 2—5—AC(2)+(2) (7.68) L
Cy(2) T
=22 Aot (7.69)
N,,(2 = 23— z)+6(z 6 <
r c3e) % |
Subtracting equation (7.69) from (7.68), we obtain —
Ca) my(2)-n,,(2) )
AC(z) = — & (7.70) g

Wy —w22 )

We obtain AC(z) and é(z) from the above. Having obtained §(z) we then obtain 3(z)
by using the equation (7.66). The boundary condtions for the problem are $(0)=0
and 3'(0)=0.

Now consider the case when there is only error in the sound speed. In
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Figure 7-45: Reconstruction of profile in figure 7-14(b) -
with noisy data 50dB

1- True profile, 2- Reconstructed profile
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Figure 7-44: Reconstruction of profile in figure 7-14(a) A
with noisy data 50dB

1- True profile, 2- Reconstructed profile o
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Figure 7-43: Reconstruction of profile in figure 7-14(c)
with noisy data- 40dB

1- True profile, 2- Reconstructed profile
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Figure 7-42: Reconstruction of profile in figure 7-14(b)
with noisy data -40dB

1- True profile, 2- Reconstructed profile
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Figure 7-41: Reconstruction of profile in figure 7-14(a)
with poisy data-40dB

1- True profile, 2- Reconstructed profile
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functions being reconstructed. We, therefore , seek to minimise the sum of the

1 smoothness measures subject to the data constraints being met. The solution then
::§ takes the form
E~
o [GTG+\(H,+H,)jm = GTd (7.75)
e S .
where H, and H, will depend oh the smoothness measure for the functions.
‘.' Using such a scheme, simultaneous reconstruction of the sound speed and
attenuation profile was done. Tables 7-VI and 7-VII give the details of the exact
E\ and initial guess values for the two cases considered. The exact.and reconstructed
. profiles are in Figures 7-37 to 7-40.
{;' While considering the effect of frequency on the inversion for the attenuation
f- profile we stated that the frequency has no effect on inversion. However, when
w simultaneous inversion is performed the perturbation associated with it is the
{; magnitude of 6k(z)+ia(z). Since 8k is propotional to the square of frequency, the
{: product 6kG(z,z’) will be propotional to frequency. This leads us to conclude that in
] this case a lower frquency is better for reconstruction.
Nl
-CE' The case where there are errors in our knowledge of the subbottom
:.‘:‘-: parameters is treated in Appendix B
": 7.7.2 Errors in data
N
B We have already mentioned that to model the error in the data we will need
to know the proceesing that has been done to obtain the data, namely, the plane f:,-.j
wave reflection coefficients. In the scheme envisaged in Chapter 3 the first stage is :

to obtain the Green’s function by carrying out a Hankel transforin operation of the

pressure ficld. Mook[16] studied the effect of adding stationary white gaussian noise &
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Exact Initiai guess Exact attenuation Initial guess
Soundspeed m/s of Sound speed m's dB/m of dB/m
1517.56 1610.00 0.005 0.0
5m
1530.40 1520.00 0.005 0.0
10m
1543.14 -1530.00 0.005 0.0
15m
15655.74 1540.00 0.005 0.0
20m
1568.20 1550.00 0.005 0.0
25m .
1580.52 ' 1560.00 0.005 0.0
30m
Depth 1592.69 1570.00 0.00s . 00
35m
1604.74 1580.00 0.005 0.0
40m
1616.64 1590.00 0.005 0.0
45m
1628.41 1600.00 0.00S 0.0
SOm
1640.40 1610.00 0.005 0.0
S5m .
1651.55 1620.00 0.005 0.0
60m
< 1662.92 1630.00 0.005 0.0
= 65m
' 1674.16 1640.00 0.00S 0.0
v 70m
. 1685.28 1650.00 0.005 0.0
75m
1696.27 1660.00 0.005 0.0
80m
1707.14 1670.00 0.008 0.0
85m
’ 1717.88 1680.00 0.005 0.0
90m
1728.50 1690.00 0.005 0.0
gsm '~\ ‘;‘..
1739.60 1700.00 0.005 0.0 N
100m -
B
Table 7-VII: True and background model parameters - case(ii) et
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Exact Initiat Exact Initial guess
Soundspeed m/s Guess value m's dB/m dB8/m
1517.56 1511.00 0.005 0.0
1530.39 1523.00 0.005 0.0
1543.14, 1535.00 0.005 0.0
1555.74 1547.00 0.00S 0.0
1568.20 1559.00 0.005 0.0
1580.52 1571.00 0.005 0.0
1592.69 1583.00 0.005 - 0.0
1604.74 1595.00 0.005 0.0
1616.64 1607.00 0.005 0.6
1628.41 1619.00 0.005 0.0
1640.40 1631.00 0.005 0.0
1651.55 1643.00 0.005 0.0
1662.92 1655.00 0.005 0.0
1674.16 1667.00 0.005 0.0
1685.28 1679.00 0.005 0.0
1696.27 1691.00 0.005 0.0
1707.14 1703.00 0.005 0.0
1717.88 1715.00 0.005 0.0
1728.50 1727.00 0.005 0.0
1739.00 1739.00 0.005 0.0

Table 7-VI: True and background model parameters - case(i)
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equation (7.65) we set §z)==0. We then obtain the integral equation given below.

ik o{R(k)—Ry(k,)} == /o p": :{6k(z)+m(z)}P‘(l.z,z)dz (7.71)
b

For discrete values of k, we obtain,

d = /0 hm(z)G'n(z)dz (7.72)
where |

d_ = i{k (R-R)}, = (d) +i(d)_

G (=G, (2}+iG, (2)

m{z)=m (2)+im {2)

with G (z) and G ;(z) being the real and imaginary parts of sz(kn,z). If the data
are available at discrete data points, we we employ a quadrature scheme and obtain

a matrix equation of the form given below.

d=Gm (7.73)

where d is the vector [dr,di]T, m is the vector [mr,mi]T and G is the matrix given

below.
G= (7.74)

To solve this matrix equation we again use the regularisation procedure and

impose constraints on the solution based on smoothness criteria for the two
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to the pressure field . If the noise is zero mean, the expected value of the output of
the Hankel transform will not be corrupted since the Hankel transform operation is
a linear one. However the variance is found to be non-stationary and the noise
power is concentrated around k_ =0 where k_is the horizontal wavenumber. The
non stationarity of the noise is simply that it is dependent on k_ value and this
makes it difficult to model noise in the reflection coefficient. However we make the
assumption that within the small angular aperture that we use for the data that
the noise is stationary and gaussian. With this assumption we define signal to

noise ratio as given below.

I
SNR:IOlogm{I—’} (7.76)

n

For reflection coefficients at a set of N discrete points we have

1N 2
I,= ;\Z IR,| (7.77)
n=1

— 2
I =0, (7.78)

Using this measure, errors corresponding to 40 dB and 50 dB was added to each
data point and inversion of the attenuation profile carried for diiferent type of
profiles. The results obtained for the different cases are shown in Figures 7-41 to
7-46. This experiment was performed to assess whether the inversion method is

stable in the presence of noise. We note that for the noise levels used, the scheme is




oy -
’-‘,p"s ¥
!.g. -
QA
:gg
wen -217-
\j:f:
bkt 7.8 Summary
x‘i: In this chapter we demonstrated that the linear integral equation derived in
ke
99 Chapter 5 can be solved to obtain the attenuation coefficient profile for the ocean
HE bottom. Though we started with the problem of requiring to determine the
‘__‘: imaginary part of the wavenumber, a perturbation of the real part, we showed that
[0 : o :
the scheme can yield perturbations in both the real and imaginary part thereby
! enabling determination of all the three acoustic parameters. We demonstrated this

by determining the attenuation coefficient profile and the sound speed profile. We
studied the effect of experimental and acoustic parameters on inversion. The
resolving power theory of Backus and Gilbert[l] was used to assess the resolution

obtainable with the data and examined the effect of the angular aperture and the

number of data points on inversion. Finally we showed by examples that the

inversion method is stable in the presence of noise.

In the next chapter, we examine briefly another approach to obtain the

acoustic parameters of the ocean bottom which is suitable in the shallow water

context.
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Chapter 8

Acoustic Parameters from Eigenvalues

In this chapter we will show that in the shallow water context a first order
perturbation theory can be used to connect perturbations in the modal eigenvalues
to the acoustical properties of the ocean bottom. Such a formulation leads to an
integral equation of the type we have considered so far in earlier chapters and
therefore the procedures recommended for the solution of such equations can be

used here as well.

Frisk and Lynch[l] have proposed that an experiment similar to the one
described in Chapter 3 can be carried out in the shallow water and measurement of
the pressure field taken. The experimental configuration is shown in Figure 8-1 . If
the pressure field obtained is now Hankel-transformed to obtain the Green's
function, distinct peaks can be observed at the modal eigenvalues. This has been
demonstrated by Frisk and Lynch[2] using real data. Figure 82 is the Greens
function computed by carrying out the Hankel transform of the pressure field
méasured in an experiment conducted off the Nantucket sound. The position of the

poles of the Green's function are easily seen. These occur at the modal eigenvalues.

If the medium is absorbing the modal eigenvalues will become complex and
the real and imagimary parts of the eigenvalues need to be found. Frisk and
Lynch(1] give a method by which this can be done. We, therefore, assume that from
the measurements of the pressure field an estimate of the modal eigenvalues have
been obtained. The eigenvalues of the modes depend on the acoustic parameters of

the bottom and therefore have this information. The problem then is to develop a

Rriiat
Pl Ay A

h oo

IL IA 3
.
~

Y Ntr

TaTa
f
-’

s
AL

S at "
LA
WAl o PR ]

(]
»

.
.
aek

A3
.

‘9 %

s

4 -{ ',' ,.“ 1.‘

y fy fr T Y

b

W A

s

/

r

¥
T

' v
AAAN

r.
ZACA L

i

‘,




S TTEVEE T IR AT TTRREITTIR TR IS TR TR TR TN TY R . Y T RTITR I T e Y
A

ol 'f::«
2 -221- f
i =
=
; 3
£ TYPICAL SHALLOW WATER EXPERIMENTAL CONFIGURATION

b Rodor Ranging Sysiem ((( ; . 23

. Edz T)\\ o
?" LS - ~ - ‘::
R 1 | I |/ surrace suov %
:*: b 4 . R
13.9m
g sounce [T Synihalle ARariure—p necenven 2 -
; Zo*6.1m | | Z,*7.0m br3
. f, =140 H:2 -
B fo=220H B
' 2 z - -
" C = 1500 m/l‘ RECEIVER Y
* 1.0 g/cm Z, =12, 4m T4
3 P ’ Anchor ﬂ ! T
' /7777777777777 ;
::. C,* 1800 m/s SEDIMENT HALF-SPACE "’t
2. Pi= 1.8 g/cm? . | o
® 2%
., Figure 8-1: Experimental configuration for shallow water experiment ot
o
4 x
. ox
b2 =
'«3, 2
,\-"
2 i
a; x:.':ﬂ.
R O, SR A
"‘ :’:’ 'i%‘&n"‘n -.'i" e WA I LR "5.-“‘ A o n* n'i‘ L) *;'l 0s 'l.q‘$a t' 'I‘«'l \‘l.:: $ > o ‘ ! &I :'lt AN 1K " > "‘ e '



[

i

-222-

4

-
.,

‘o,

-
e

INVERSE HANKEL TRANSFORM
OF EXPERIMENTAL DATA

50
$
40 ' INVERSE TRANSFORM
5- ! OF EXPERIMENTAL DATA
;% 30 : 1325m Aperture
% g 1 70m Receiver
;g 10
£8 © |
-1 [
E=-10 \
-20 }
-30 :

PHASE
(Radians)
10

AR PR AR

0.369 0.738 1.107 1.476 1.845
HORIZONTAL WAVENUMBER (m™!)

Figure 8-2: Hankel transform of measured pressure field

-]
- <~"p' N
A AR PYIS AT
A

R R T e TR
W e il



TR TEAST TR AT AN KT 4N EdAIXI T E R 4R B AN 4
»

‘-u..

he

P
Bt

¥
-223- N

procedure to reconmstruct the geoacoustic parameters of the bottom from a L
knowledge of the modal eigenvalues. 'i
£

8.1 Derivation of integral equation <

-
4
Consider the model shown in Figure 8-3. In the shallow water environment we i

assume that the sound speed in the water column is constant and all the acoustical =

k
parameters in the water column are known. We are now required to determine the

density,sound speed and attenuation profiles for the bottom. ;
% We assume that from archival data or other sources of information we are '
L::: able to get approximate values for these parameters. This is used as the initial éxk
o 3¢,
i\i:_- guess model for the bottom and a perturbative approach used to construct an y/
7
integral equation which will relate the changes in the eigenvalues between that of sl

SN the guess model and the real model to the acoustic parameters of the bottom. \{
N ¥
> . : . , 0
tz Making the assumptions of circular symmetry to a point source field and ﬁ
\ 33
horizontal stratification, the equations for the normal mode is given by the =
R
following equation. ‘
'«.{ (
L ek
dU (2) 1 dU(2) ;

n n
) )+ (K2} -k, AU, (2)=0 (8.1) ‘
T dz p(z) dz S
}1 ) "
s o
ﬁ:.' where k(z) is the complex wave number for the medium, i.e absorption in the Z"’-?C
..{‘ \“ .
N medium is accounted for by making the wave number complex. k, is the modal
%’ eigenvalue and U, the modal function for the nth mode. Making the substitution
. Al w
Y 53\
- vn(z)=p'l/ 2(z)Un(z) we obtain, &*‘\
N S
- :\‘Ar
u 20,2 -
n :
v ' +(k(2)+n(2)—k, v, (2)=0. (8.2) e
oS : | gz
}':.: oy
L4 , ) )
bod f v/ H
: F‘\.
B0 O e M ORI T
} . JTa%) RGN &“*5.‘.":‘.‘ s
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where,

0'/%(2) pl2) y
2 P

u(2)=

Let Cy(z) and py(z) be the initial guess model for the ocean bottom. The

attenuation is assumed to be zero for the guess model. Then,

Lo Z)+(kb2(z)+pb(z)—lczz)vnb(z)=0. (8.3)

where,
12

o 592_/_{:;/22)(2)},
Let,

uz) = v (2) +v,(2) (8.4)
and

k2)=kyt+ia(2); p(z)=py2)+62) (85)

Sﬁbstituting the above into equation (8.2),we obtain

v, "+, M+ [k 2(2) -2k, (2){20(d)k(2)+i2g(a)(2)}+
py+o(2)—k, v, (2)=0 (8.6)

Adding and subtracting k_, vn(z) to the left hand side of equation (8.6), we obtain

v "+v, "k 2Amy(2) -k, By (2)+

»\' 3

‘h'

x‘t
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Subtracting equation (8.7) from equation (8.3), we obtain

”m"'*'[kb2(Z)+I‘b(z)_knb2]”m(z)
=—{2kb(6k(z)+ia(z))+5(z)}vn(z)+(kn2—-knb2)vn(z) (8.8)

Taking the complex conjugate of equation (8.3), we obtain

d%,,’(2) .
ke (=0 (®9)

Multiplying equation (8.8) by v nb‘ and equation (8.9) by v, and subtracting we

obtain

*

v vna"—vmvnb."=-[2kb(z){6(z)+ia(z)}+6(z)]vn(z)vnb‘(z)
+k, 2k D (2)v,, (2) (8.10)

We now integrate over the entire depth. The left hand side then becomes equal to

zero. The resulting equation is then,

(kn2-—knb2) / <’ov n(z)vnb‘(z)dz=
0

/ow[2kb(z){6k(z)+ia(z)}+6(z)]vn(z)vnb‘(z)dz (8.11)

Using the first order approximation, v, (z)=v,_(2), we obtain

ol (2) U, (2)
k 2k 2 nb nb dz—
( n nb /0 pbl/2(z)pbl/2(z) z

o] .
j {2k (2}{bk(2)+ia(2)} +H(2)U, (), " (2)dz (8.12)
0 p(2)
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Since U, s are orthogonal, we obtain v
o

—knb2 -00] 0 :::
- /0 RRHEH o+ o) e (8.13) ¥
oz A
Let, =4
: :::f\
k, =k, +6k=k ,+(0k,) +i(6k,); (8.14) i
\
Then, A
k,2—k, 2 = 2k {(6,),+i(6,),} ' (8.15)

4

Substituting these relations in equation (8.13) we obtain the following integral -

equation for the unknown parameters.

k_.(6k ) oo}
TndPnlr / ——{k,(2)5Kk(2)+8(2)/2}|U, | dz (8.16) 3
N, 0 pyl2) 4

(6k ) =
FuilOka)i_ / —kb(z)ak(z)l 2z (8.17) *e

3

’
If the experiment is performed at two frequencies 6k(z) and &z) can be sepcrated. :ﬁ?
e

The approach is the same as the one shown in Chapter 7. We can recover the &
corrections to density, sound speed and attenuation in this manner. The similarity ’k_:
LF,',

between the equations (8.16) and (8.17) and those used in connection with the deep Z‘ "
water problem is evident. Therefore the methods suggested in Chapter 6 can be =
used to solve the above equations and obtain the geo-acoustic parameters of the w._
bottom. !
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8.2 Inversion for sound speed using synthetic data

Unlike the problem where the reflection coefficent at many angles of incidence
are available as data, in this case the number of data points are limited by the
number of modes. Further the modes have a decaying field in the bottom and
therefore the penetration of the modes is small. The changes in the eigenvalues are
affected by the sediment properties only in the top layers. If the source frequency is
reduced then the modes penetrate deeper but the number of modes gets reduced,

thereby reducing the number of data points available for inversion.

To test the validity of this method, the synthetic data were generated. A
model for the ocean bottom was assumed and the modal eigenvalues determined
numerically by using a search routine which searches for the location of the poles.
For the guess model the modal eigenvalues were simiiarly obtained. The bottom
was assumed to be lossless. Having thus obtained the difference in the modal
eigenvaiues inversion algorithm was used to reconstruct the bottom acoustic
parameter[3]. In this case it was assumed that the density in the bottom was

known leaving only the bottom socund speed to be determined.

To study the effect of the magnitude of the perturbation two cases were
studied; one in which the perturbation was taken as 50 m/s and the other in which

it was 100 m/s. The exact and guess models are given in Figures 8-4 and 8-5.

The modal eigen values were computed at three different frequencies 50
Hz,100 Hz and 200 Hz. The data from the two frequencies 50 Hz and 100 Hz were
then seperately used in an inversion algorithm. The results obtained are given in
Figures 8-6 and 8-7. In order to increase the number of data points, the data from
all three frequencies were combined and used in the inversion procedure In this

case we further made the assumption that the location of the sub-bottom is known.

SO LI R S W .
B T o T T S M - o
PR BV P e . . .
' Lt Ve et . .

--------

s - N R i At B . . . . «* - . PR )
PRSP L BERC RSP LT PU AL L PRI S IR N N R .S PURPR IR W S STy ~

. :b‘l'{:!&".'-'}

—
-
B

S RN

.

[

pd AN S 'T e et
. "r f x":' ', 1 "; < Y- S ." ." v
sk L2 L L LA il s

1

« s x e
PR
PAT R
)
PR ST
W s

Ak ot

} 4
LY.

P
A e @t
Pl ool S W

......_
?’ AR R
PRI

-
AR N SO

,...'. . .
, 7 LT .
'\_'u roete j ‘. [
. i 1 t d
.‘.A "—l B A .‘.L“(l J'J

2

RN
hgide
o




o e a e  a  aan s a il e s s S i - - 0N k- i Bt e et Ao ie /i v e (e e i ek S s e e R 0 Bir s 3 ‘E"T--'_t"h
'S
. e
)
. %
‘4"..

NG

« e

5

-229-

WATER (40m, ISOVELOCITY)
p=10 nscl)o |7?o ne?o 1900 20100 *—~

p=16 SEDIMENT

10~
Guess
Exact 3] Model

Model
20 I~

30

DEPTH

B B __1_

40 -

e

'
(I A
LMY

v i

myy yy
{ ,l r

60 L

Figure 8-4: Exact and guess model - case()

RO e

- . AR T Ve e TR LS 5,
Xttt LR PN DU S upoi: PAF ooy W S ogRy W WS ). W4




-243-

solutions. When Q(z) is a smoothly varying function and if there is only one turning
point, the solution can be written in terms of the uniform asymptotic solutions.

Let g,(2) and g,(2) be the two linearly independent solutions. Then,
0,(2) = QA4 (2)Ai(~v) (43)
0,(2) = Q22 (2)Bi(~v) (4.9)

where,

Uz)={3/2 wé(2)}*/3

Z
6 = [ Qe
4
z, is the turning point i.e. @(z,)=0. A; and B; are the Airy functions.
We now write the solutions in the two regions 0 < 2 < 2z and 2 < 2 < h in
terms of these solutions.
G(z,7') = Ag,(2)+Bg,(2) 0<z2<? (A.5)

G(z,2) = Cyg,(2)+Dg,(2) d<z<h (A.6)

These solutions must satisfy the boundary conditions at z=0 and 2=h. Further the

function G(z,2') must be continuous at z=2'. dG/dz, however, is discontinuous at

=2,

In the region z < 0, the region is homogeneous. The field in this region is an
outgoing wave of the form T exp(ikz). x5 is the vertical wave number in the

region z < 0. Applying boundary conditions of continuity of pressure and normal

particle velocity at z=0,
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Appendix A

Consider the model in Figure (2-16). We now derive the Green's function

which satisfies the following equation.

d’G

3 + (K¥(2)+p(2)—k )G =62—2) 0L 2,2 < h
i

where,

k w
“=
o2z pz)
u(z) - 2 p3/2(2)}
w .
kz——-b—osnn 00

Equation {A.1) can then be written as below.

du
— + Q¥ )G =§:—7) 0Lz <h
dz?
where
9 1 p#(z) sin 200
Q%z) = {

+ —_—
2 2 2
C2) w Co

(A.1)

(A.2)

To solve for the Green's function, we note that the Green's function satisfies the

homogeneous form of equation (A.2) when z 3£ 2/. Therefore in the regions where

27 2. we write the solution as the linear combination of the two independent
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9.1.2 Effect of shear

In the development of the reconstruction scheme, we assumed the sediment to

be a fluid. However, the sediment supports shear and part of the compressional

v

wave energy is converted to shear. This will manifest itself as additional loss. The

s '
v

]

effect of shear on the reconstruction therefore needs investigation. Also possibility

v
t
'
s

of extending the method to give information about shear is another aspect to be

.

‘ll- L SR

W e
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investigated.
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9.1.3 Shallow water problem

Only very preliminary investigation has been done on the method proposed

P
P
2

4

for reconstruction of acoustic parameters from modal eigenvalues. Further work S
needs to be done in this regard. 1
R

9.1.4 Inversion from the point source pressure field \:
The input information for the inversion scheme is the plane wave reflection ____4
coefficent while the measured quatity is the complex point source pressure field. *'ﬁ,
The measured pressure field is processed to get the input data. Errors in input data 'j
as well as assumptions made in the processing of the data will affect the quality of .s.lu
the reflection coefficents obtained. For example it has been shown that one the ::5
sources of error in the Hankel transform operation is the variation in source height. {\5
A scheme which takes the measured pressure fields as data will be less prone to ;_::
such processing errors and therefore the possibility of developing such a scheme '_—'i

needs investigation N
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part of the solution affects the reconstruction of the real part and vice-versa.

We showed that the reconstruction of the attenuation coefficent is sensitive
to errors in the sound speed and density and then developed and demonstrated a
method where the errors are treated as additional unknowns in the inversion.
However, when reconstruction of the sound speed is performed, the errors increase
with frequency. Hence the accuracy of the reconstruction will be limited by the

frequency at which the experiment is performed.

The ¢ fect of additive noise in the input data was investigated and in the case
of the reconstruction of the attenuation profile with noisy data, we noted that the

scheme is stable.

In Chapter 8, we derived the integral equation for obtaing the acoustic
parameters of the ocean bottom from modal eigenvalues. This method is applicable
to shallow water wave guides. We demonstrated the inversion using synthetic data
and one set of data acquired in a field experiment. The preliminary results show

promise and further work is continuing.

The foundations laid in this thesis provide a basis for future work in other

areas some of which are presented in the next section.

9.1 Suggestions for future work

9.1.1 Testing the validity with real data

We used primarily synthetic data in this thesis. The validity of the scheme

needs to be tested fully using real data.
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problem using a uniform asymptotic solution was also indicated in the chap’cr.

In Chapter 5, we derived the linear Fredholm intcgral equation of the first
kind for obtaining the attenuation coefficent profile for the sediment layer. The
linear equation was obtained using the Born and Rytov approximations. We
derived an expression for the region of validity of the Born approximation and

showed that it is dependent on the magnitude and extent of the perturbation. A

review of the methods available for the solution of this class of integral equation
was made in Chapter 6 and an iterative method for solving non-linear integral

equation indicated.

In Chapter 7 we established that thc kernel of the non-linear integral
equation is Frechet differentiable and that the Kernel obtained by the Born
approximation is a Frechet kernel. We then arrived at the optimum aperture angle
for input information by studying the region of validity of the Born approximation.
We noted that this corresponds to pre-critical angles. We also showed that if the
sound speed and density are known exactly, and only the attenuation cocfficient is
desired, then the frequency at which the experiment is conducted does not affect

the reconstruction.

The inversion procedure to obtain the attenuation coefficent profile was
demonstrated using synthetic data for different types of profiles including a
discontinuous one. The solution was obtained by making an a priori assumption on
the smoothness of the solution. The ability of the data to resolve fine details of the
solution was studied by computing the Dirichlet resolving kernel using the resolving
power theory of Backus and Gilbert. In the case of noise free data the method
yielded adequate resolution. We also derived the resolving kernel when the
unknown is a complex quantity and obtained an expression for the resolving kernel

and a contamination term. The contamination term determincs how the imaginary
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o~ ) . . <.
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Chapter 9

Conclusions

In this thesis, we developed a perturbation method for obtaining the profiles
of the compressional wave speed, the compressional wave attenuation and density
in marine sediments. We inferred these parameters using an inverse procedure that
has as its input the plane wave reflection coefficent as function of angle of incidence
at a fixed frequency. The Born approximation was applied to obtain a linear
Fredholm integral equation of the first kind. A numerical method for solving the
integral equation using a priori information on the smoothness of the solution was
adopted and the inversion procedure tested with noisy and noise free synthetic

data. In both cases the scheme yielded stable and acceptable results.

In Chapter 2 we studied the propagation of plane waves in marine sediments
and developed an acceptable ocean bottom model. We noted that no acceptable
theoretical model as yet exists to describe the variation of the attenuation
coefficient at low frequencies in marine sediments. Further, we noted that
dispersion of the propagating waves can be substantial for coarse sediments. This
led us to propose a field experiment using a mono-chromatic source for determining
the acoustic properties of the ocean bottom. In Chapter 3 we briefly described the
experiment and enumerated the processing steps to be used to obtain the acoustic

parameters.

In Chapter 4 we dealt with the forward problem and obtained = numerically
stable propagator matrix algorithm to compute the plane wave reflection coefficient

and the wave field in the sediment. An alternate method of solving the forward

-~ L
DA ol , AR NI rY, oLy
- 1.\4’-'\'.’\ e o %] :- . 4 i o "
“ " y Pept "" e Y \i' P i WO ..' .n ‘; N ll‘li Wt '*

g !‘.;_ﬂ'."'..':.sv‘&l"..v\:._\"nl';\‘fs.'f\'f R AT S '\t'-".‘ Tt ‘”' W ~w ‘7’
T e R
8 TN KA P l’!‘l‘,w'l.o'l‘.- -'lb 3 o0 :..s'




8.4 References

1. G.V. Frisk and J.F. Lynch, "Shallow water waveguide characterisation
using Hankel transform,” J. Acoust. Soc. Am.,76, 205-216 (1084).

2. G.V. Frisk, JF. Lynch, and J.A. Doutt, "Shallow water waveguide ;“V‘?
characterisation using Hankel transform - Preliminary results,” 2;';};3
J. Acoust. Soc. Am., 76(s1)S(94), (1984). ’

3. S.D. Rajan, M.S. Wengrovitz, J.F. Lynch, and G.V. Frisk, "A
linear inverse scheme for the extraction of ocean bottom
geoacoustic parameters from modal eigenvalues,” J. Acoust. Soc.
Am., 76(S1) S(94), (1984).

4. E.L. Hamilton, ” Geoacoustic modelling of the sea floor, » J. Acoust.
Soc. Am., 68(5), 1313-1340 (1980).

AR

L% 14 ~
tg

i
-~
o

e

. ettty
P . . .

e \-\-\-.:..-\:.‘-_._ .

) -‘-,_1..\\" -‘,;\\\‘\4 LY

SRR
o m&uMmhﬁn ; L




i L Zin She g v e,
et etga e s [ R A A LINLRL ‘ﬂ
s 472 Tu_# 0 T _ : N M N LT ’ M : -

2000
J

1900
1
SEDIMENT

-ofile

(1

p ——————

IBIOO

(2)

WATER (13.9m, ISOVE LOCITY.)
l7(l)0

Inversion of real data

1- Initial guess, 2- Reconstructe..

m
: S
3 o~
\ Q@
; nnwl.t .
o
] 0 iy
m n 0O o
J o O m
s T 0 w
b | n
. O |o
h - =
, ] ]
Q

i QU i ] 1 1 1 |
: o '®) ®) Q O @}

- N (2] < w (7]

Hi1d3Q
- PP LRI RN 8 I e Ty e % " N LAY
g ™ IRy 'Ry Ay A 7y TR T, ./.-\.JH.J.-.-.- 20 b ey G gt & -, DAL Y AR m--..! o .\ -.unc.h(\-\v-v\l.

s TR S SRR  TONNRKE: et NNERNY WRIASEE  TITASNNY VN ISR AR



R T

1 -

oo A - g

> 8% 4% & ED B

e

o~ e

A
'235‘ .":q >

The inversion method was similar to the one described in the last chapter, namely . 2

that we looked for a smooth solution. The results are given in Figures 8-8and 8-9. S

The following observations are made on the basis of results obtained, A

1. In the case of high frequency, reconstruction of only the top layer is R
possible. At lower frequencies reconstruction to a deeper depth can be it
obtained. NN

2. When data obtained at three different frequencies are used as input
data the situation improved considerably as more data points are

available. Feo

oy

3. If we add more information to the scheme such as the speed in the 5 ” i

subbottom and the location of this interface, the results of inversion ‘

are better. P

RCR:

PRSag

8.3 Inversion of real data Eot

R

The data obtained in the field experiment was processed and the modal eigen 'g

g

values determined at two frequencies 140 Hz and 220 Hz. Inversion for the sound A

speed structure of the bottom was carried out using the method proposed earlier. X

Syt

The result obtained is shown in Figure 8-10. The profile for the bottom is similar to :'.}'_ \

I" \w \

the one proposed by Hamilton[4] for sandy sediments. ‘:

Work on this approach to obtain the acoustic parameters of the bottom is oy

\", b S

continuing and a more detailed investigation will be necessary before any :f'
L NN

conclusions can be made on the efficacy of the proposed method. e .3;

T

f:: N )

s Wt

3
N
AN
“~ .
Ry
S
Y
*.'..Af
3 i ;
\4_ ‘-‘._','- ~.--'.' .“-‘. .‘"~ ~ . . ."~ ..- % \‘& . . -.’.-"- q*"' .' \' F‘ " .’ " V" $ \ ' N
.‘1‘\',}~.\, g_.‘.' “‘J""'i"?" IARDE LN _,_35,‘ PR Og N ..Nq- .; f-?‘}*f‘n‘,d' )-J- ' .

':x :Q '( 2 2N “'\ N !.b J“' l“l} N () _ ) n'..q'l: Pty las U 0“‘ N W :' I l! ....l’.. {'l: ‘b y * " Y *‘Q Q.‘ ;




-234-

3 1500 WATER (40m, ISOVELOCITY)
T p=10 1600 1700 1800 1900 2000

o) I | 1 |
p=16 SEDIMENT \‘
(2) (3) (n

%
N
(@)

T

40

iy 60L_

d

T
Yy .r-t f
FN I

]
J_‘x',‘

h
b g Figure 8-9: Reconstructed profile using data from all
' ﬁ three frequencies- case(ii)

—

7

' 3oy 1- Initial guess, 2- Reconstructed profile,
,}":.':- 3- Reconstructed profile after one iteration

M) ’.‘.-"n 4
(A

- .'::: X .'- o’ ~'.'-('.‘-r "{{ \ \ *. 5* 1.'\, < \‘-\' o -\.‘ -." "".:-' <. "\"\'-:u':-.':' A .'-': -:;\:.'-::'.:-_'.j:\"-. ’

ﬁ :L'f E"& a’x'i"' s :"'-:-"" b_h;' -



"g ~
~ ‘:
..; -233- . N
= -
» -

) 1500 WATER (40m, ISOVELOCITY)
b p =10 1600 1700 1800 1900 2000

0 l - 1 L 1r i)
o
2 10}

[ 201
o
I

L |... i
F a e
- 0 30 r‘ s
i o R

! '.-.:.rn'

e
§ comm s D S S . - ——— G — — —

40}

QL™

60L.

e Yl
L

s

Figure 8-8: Reconstructed profile using data from all
three frequencies- case(i)

B

‘ 1- Initial guess, 2- Reconstructed profile,
% 3- Reconstructed profile after one iteration
-
b
i
. . .‘ﬂ
ﬂa TN \\-4., T, ',--"-';-:.'-“-' '» N T N ~*‘ " '* " NI ‘J“" BN
- ‘-3. AN -:r.-'-,'-"-_:‘.‘- ,."‘ - '-""-' T Ry . -* 1 AL # W m |
‘."‘ T g u'..\& * RIS A l\-.{& \- "$.} \x&mm}m * }» L‘ .'




NI 2 80 - Y Bkl 2l S it e S TR At A B A A A Sl i it MRS L Sr b L e fa e Em e o s S e e mee am

. -232-

WY 1500 WATER (40m, ISOVELOCITY)
- p=1l0 1600 I7100 1800 1900 20(J)0
‘ | |

pe 16 SEDIMENT  \®| \@ |,

e el
i

LI
[ I
a &l s

3
4

R
DEPTH '

W

(@]

k|

-

f
LA

60L

h )
Pl
A A& X

18

L {a

o et
A

Figure 8-7: Reconstructed profile - casel(ii)

e

L.

frequencies- 50Hz and 100Hz

A £ R
K

)
.

LR

-+ Initial guess, 2- Reconstructed profile using
100 Hz data, 3- Reconstructed profile using 50Hz data

(Y

SNl

S N
*‘.Csf{.jjn.::\;x‘(-q;\’\' NSRS AN CEet RSSO
Y SR Y }-' TR ) PRt s
) [ L

" ) : BN 3 o .,
’&"( AL LR ‘Z LT R RN,

* LR S B - ﬁv'-'u‘
K 30 } ¥ ‘h‘ .. ~.. -
~ \.\_p',-

~ “

- \ -
u“’.l‘
-

L e

¥ L il T 1S




-231-

1500 WATER (40m, ISOVELOCITY)

p =10 16 1700 1800 1900 2000
o 1 1 1 1 1

p=16 SEDIMENT

1
|
("
()} (3 :

o . '

6oL

Figure 8-8: Reconstructed profile - case(i)
Frequencies - 50Hz and 100Hz
E:Z 1- Initial guess, 2- Reconstructed profile using o
-.r_:: 100 Hz data, 3- Reconstructed profile using 50Hz data __
o N
& &
-": :\&-

pRALSLY)

( - - g " ‘.r e 'I - - - _.I' .-< . - - ..I ‘-. - .‘-. « . Ta
IS NI SRR AR AT AN AR A AR A A NS PR Py o e EA
N ' " A s ) el B R w "
5N .‘,'F‘ el %t " 4" - - . ) - -  * g X 24 Sa MA T R DR 8




ae gk op > W WU WO UL RS d il = - - - o et il da it -

o

i

N R
- Sl i

-230-

ol e ey

*

.BE

. ""-w .A
SVLELYVY

T WATER (40m, ISOVELOCITY)
10 1600 1700 1800 1900 2000

1.6

o
=Y
n

Guess

el

—— e e
r

Exoct Model

Ly Model

; 20

_»ﬁ.

’;.

g x

) -

B o

A -

& 40

A

w SO
¢ L)

>,

<.

K 6 0 S ‘

X

'

',‘ Figure 8-5: Exact and guess model - case(ii)
B " A
w N
-. \~ )
b= \{I"
> "3
N .
o {f‘-;l
s :':’:*.1
e '“j‘\
:- 7]
2 o

»

1
5 s '1
s:, L. AR

30 Y [T
AR 0IROR

)
f
A_'_'f

.
2*37

?n ’b

iy

.
e



d n-b i-8 L4 W TR T TR T T L W VI T e e T T T A T A e TR R A A A e A T T T T T T T T e

g
2
3 -244-
,/;" Agl(O) + Bg2(0) = To (A7)
38 ! 1/2 1/2 ik
— (A 2)g,(2)+ BpV Y 2)gy2)}ly = —=T, (A.8)
p(0) Py

3 We now assume that p(z) and its first derivative are continuous across the
{' interface. With this assumption, we obtain
2 A g (0)+ik 40" 1%(0)g,(0) 49)
o B py9,(0) +ik p'/%0)g,(0) '
ow We now write the solution in the region z < 2’ as follows.
i G(z,) = B{R,g,(2) + g,(2)} (4.10)
.’[‘*,).,
-‘;"-.3‘ where R, = A/B and is given by the equation (A.9). Similarly by applying the
v boundary conditions at z = h, we obtain for z > 2,
%
0 Glz,#) = Clg)(2) + Ryg(2)) (A.11)
2 where
N .
o Posi'(B) =ik 50!/ 2 (k) (h)
A b .
’ p0g2'(h) _gkz2pl/2(h)92(h)
j:.i Since G(z,7') is continuous at z=2', the solution is written as below. }:’:
< =
k) G(z,7) = 01'1’2(2')'/)1(2) z< 7 (A.12) £
B G(2,7) = C\y(M,(2) # <z (A.13) ;-.'-:-;3
;E N
W where, o5
- —

: s
; 2
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¥,(2) = R,g,(z) + g,(2) (A.14)

¥y(2) = g,(2) + Ryg,(2) (A.15)

C, is a constant and is equal to 1/W{y,(z),¥,(2)}. The Wronksian W{y,(z),¥,(2) is
given by

WY,(2),95(2) = ¥o(2)9)/(2) — ¥,(2)9,/(2). (A.16)

Substituting for ¥,(z) and ¢,(2) from equations (A.14) and (A.15), we obtain

Md,l(z)’wZ(Z))—w —RR

The solution for the Green's function is therefore,

1
Gz, )= (DA (2} 2 < 2 (4.18)

w1_ 8 b

1
G(z, z’)— {v)(Ny(2)} <z (A.19)
-R,R,
If there are no turning points, then the uniform asymptotic solution reduces to the

WKB solution. Then,

1
0 = g el / Q) z<? (A.20)

1
g5(2) = e ))1/2 exp(— twf Q(t)dt) z2< 2 (A.21)

With this solution for g,(2) and g,(z), we can show that R, and R, look like the

Rayleigh reflection coefficents. Let us consider R,.

\-;:\4' Dot Y - ...-‘_1' 1'\“
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Q%0 Qo)

9,'(0) = 7 {iw _2Q2(0)} (A.22)

For a smoothly varying medium {Q"(z)/Q%(z)}<1 and in the frequency range we

are considering this term is negligible. Therfore,

g,'(0)=i{wQ(0)}!/?

Similarly,
9,/(0)=—i{wQ(0)}!/2 (A.24)

But wQ(0)=k (0) where kz(0)=k2(0)—kz2. Using these relations in equation (A.2)
we obtain,
A pok,(0)—p(0)k

== (A.25)
B pyk (0)+p(0)k

Compare this with the equation for the Rayleigh reflection coefficent R between
two medium with densities p, and p, and sound speeds C, and C,;. For an incident

wave in the medium with parameters p, and C,

_ Pk 1—P1k
pok 1 +p1k o
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Appendix B

In this appendix we indicate how errors in the acoustic parameters of the

subbottom can be dealt with. In this we follow the method of Coen(1].

Consider the case where the error is in the value of the attenuation coefficient
in the subbottom. We express the true value of the attenuation coefficent as a sum

of a background value and a small error term.
ay, = aytba (B.1)

Proceeding in exactly the same manner as in Chapter 5, an integral equation is

obtained.

2ik o {Ry(k,)~RI(k,)} = / (P2, )z +
0

[o o]
/ baP (k. 2)dz (B.2)
h

For discrete values of angle we write

h
d, = /o a(2)P,,X(2)dz +

oo
/ ba Py, %(z)dz (B.3) b5
h "
Since the unknown da is a constant it is taken out of the integral and the following Sy

equation obtained.

"‘-
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Pl

%
X

- o g
Ayt
L 4

»
2

h
= [ a(2)P,, X(2)dz+bal,
0

*p 2
I, =/h P, “(2)dz

At some other angle we write

h
d_ = /0 o(2)P,, Ae)dz+bal,,

Eliminating éa from these two equations the following relation is obtained.

d I —d I = / ha(z){Imen2(z)—Ian2(z)}dz (B.7)
0

For each data point 1,....,n, the contribution from the second term is subtracted
out by using the (n+1)th data point as shown above. The equations are now solved
for a(z) as before. Having obtained a(z), 6 is then computed. Error in other

parameters can be treated in a similar manner.

R ORI
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