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Abstract The solution of linear systems having circulant coefficient matrices is considered in this

paper. This kind of systems occur in many applications: prediction, time series analysis, spline

approximation, difference solution of partial differential equations, etc. The methods presented

here are more efficient than the Toeplitz type methods and are d on the fast Fourier transform

as well as the circulant factorization of the 4anded circulant matrices.

On The Solution of
Circulant Linear Systems

Mingkui Chent , , i "

Research Report YALEU/DCS/RR-401 OC T 3 1985
July 1985 A

The author was supported in part by the U. S. Office of Naval Research under contract N00014-
82-K-0814, by the Department of Energy under contract DE-AC02-81ER10996 and by the Army
Research Office under contract DAAG-83-0177.

Keywords: circulant linear system, block circulant matrix, banded circulant matrix, circulant
factorization, FFT, elliptic equations, Poisson solver, biharmonic solver.

tDept. of CJomputer Science, Yale Univ., P.O. Box 2158 Yale Station, New Haven, CT. 06520,
visiting from the Dept. of Mathematics, Xian Jiaotong University, Xian, China.

,je
C.--- --- ---- --- ---- --- --- ---- --- ---- --- ---- --- --- ---- --- ---- --- --- - - -- - -- - - -- - ---.



Table of Contents

1 Introduction ............ ....................................... 1

2 Fourier-Circulant Method .......... ................................ 2

3 Banded Circulant Systems .......... ................................ 4

4 Block Circulant Systems .......... ................................ 10

5 Applications to elliptic equations ......... ............................ 13

6 Numerical experiments .......... ................................. 19

Bibliography.... ........................ .............. 21

KI

'._1 , ,

* A~ ~li

U rll " + r--



1. Introduction

Many problems in mathematics and applied science lead to the solution of linear systems having

circulant coefficient matrices, which are related to the periodicity of the problems. Examples

are prediction [171, time series analysis[121, spline approximation[ 1], solution of certain partial

differential equations[18], and possibly in many other applications.

Circulant matrices belong to the class of Toeplitz matrices. Linear systems with Toeplitz

matrices can be solved with 0(n 2 ) arithmetic operations [2, 11, 15, 19]. If we use any of the

methods for solving Toeplitz systems to solve linear systems having circulant coefficient matrices

we will not be able to make full use of the properties of the circulant matrices, which are a) the

orthonormal eigenvectors of all n-by-n circulant matrices are the columns of the Fourier matrix,

the elements of which can be expressed with exponential or trigonometric functions. nd b) their

eigenvalues are the polynomials of the primitive n-th root of unity with the elements of the matrices

as its coefficients[9]. Such nice properties make it simple to estimate the invertibility of the matrix,

to compute their inverses(if they sxist), and to solve circulant linear systems. Furthermore, the fast

Fourier transform may be employed to calculate the eigenvalues and to solve the systems since the

components of the eigenvectors are exponential functions. The methods presented in this paper are

based on the use of fast Fourier transform. The dominant work of the algorithms is in performing

the fast Fourier transform, and therefore the algorithms solve circulant systems in 0(n 1og 2 n)

operations as opposed to the 0(n 2) arithmetic operations required by using other algorithms for

solving linear systems having Toeplitz coefficient matrices.

In some applications, for example, in the finite difference solution of one dimensional elliptic

equations subject to periodic boundary conditions[5, 18] and approximation of periodic functions

using splines[1], "banded circulant" matrices are encountered. Under certain coditions such matri-

ces can be factored as a product of tow simpler circulants, and the systems may then be solved by

using the Sherman-Morrison formula, or its block version, the Woodbury formula[13]. This method

is quite competitive with Gaussian elimination both in terms of arithmetic operations and storage

requirements.

In the case where multi-dimensional problems are concerned the matrices of coefficients of the

resulting linear systems are block circulant matrices. After some transformations and permutations

we are led to a block diagonal matrix with circulant blocks on the diagonal. This reduces the

problem to the solution of n circulant linear systems, which may be performed in parallel. An

important example is the finite difference approximate solution of elliptic equation over a rectangle

with periodic boundary conditions [5, 18].
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In §2, we develop the Fourier-circulant method for solving circulant linear systems. In §3 the

method for decomposing banded circulant matrices into two circulants and solving the system will

be described. The methods presented in §2 and §3 will be extended to block circulant systems in §4.

§5 applies the results of §2, §3 and §4 to elliptic equations, and finally, some numerical experiments

will be given in §6.

In what follows, we employ the notation diag(61,62,.. , 6,) to mean the n-by-n diagonal matrix

with diagonal elements 61,62,..., 6,, A* the complex conjugate transpose of the matrix A, and AT

the transpose of matrix A.

2. Fourier-Circulant Method

Consider the system of linear equations

(2.1) Cx = b,

where C is a circulant matrix of order n, and x and b are n-vectors. An n-by-n matrix C = (ci) is

a circulant matrix if cii = ci+lj+l , and the subscripts are taken modulo n. Thus a circulant matrix

can be written
CO Cl C2 ... Cn-I

Cn-j CO Cl ... Cn-2

C = Cn- 2 Cn-1 CO ... Cn-3

Cl C2 C3 ... CO

It is clear that C contains at most n distinct elements, and therefore often denoted by

(2.2) C = circ(co, C1, C2,..., Cn-l).

It is well known[9] that if C is a circulant, then

(2.3) C = F diag(A1 , A2,.. ,A)F*,

where F, called Fourier matrix, is n-by-n unitary matrix of the eigenvectors of matrix C with

(i,j)-element [n-2w(-)( j - 1),] and

n-1

(2.4) Ak= EC[wkll k = 1,2,... n
1=0

are the eigenvalues of C, and w is the primitive n-th root of unity.
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If C is nonsingular, then the inverse of C is also a circulant, and it is, from (2.3), given by

(2.5) C - 1 = Fdiag(A' 1, A-',..., A')F * .

Thus the solution to (2.1) is

(2.6) x = F diag(Alj1 , A21,..., Anl)F*b.

If C is singular, in which case some of the eigenvalues of C are zero, the inverse of C will not

exist, but there will exist an unique matrix called the Moore-Penrose generalized inverse of C and

denoted by C + , which is geven by

(2.7) C + = F diag(A+,A+,. .A+

where

(2,8)if Ak=O,
(2.8) A+ 0 ;, if Ak = 0, k = 1, 2,...n,

and the least squares solution of (2.1) is given by

(2.9) - C+b,

which is the solution to (2.1) with smallest 2-norm when the system is consistent[3, 14].

It is easily seen that premultiplying a vector by matrices F ° and F may be accomplished

by the fast Fourier transform(FFT) and its inverse, respectively, and the eigenvalues of C can be

calculated via FFT [8]. Thus the algorithm procceds as follows.

Algorithm CIRS (CIRculant Solver) solves the circulant system (2.1).

1. Transform b - Fb by FFT.

2. Compute the eigenvalues of C via FFT.

3. Calculate b = diag(A, A, ,+)b.

4. Tramsform the vector S to obtain the solution vector x - F 5.

endalgorithm

The algorithm uses the fast Fourier tansform three times and is, therefore, an O(n log 2 n)

algorithm.

3
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3. Banded Circulant Systems

In the case where only co, cl and c,,_ 1 are nonzero, the matrix, denoted by Ct, is circulant

tridiagonal, and its eigenvalues can easily be computed. Assume that Ct is real, then the eigenvalues

are given by

2wr 27r
(3.1) A + CO + ," + c,,--] cos(k - 1)- + i[c- - c,,-,] sin(k - 1)-, k = 1,2,..., n,

n n

where i = VET. If the matrix is real and symmetric(denoted by Cal), i.e. cl = c,- 1, then the

eigenvalues are real and given by

2vr(3.2) Ak = co+ 2clcos(k- 1) -, k = 1,2,...,n.
n

In these situations, the method presented in the previous section may be employed. Since the

matrices Ct and Cg5 have the cyclic tridiagonal structure, we are able to take advantage of the

fact that under certain conditions this special kind of matrices can be factored into the product

of a circulant lower bidiagonal matrix and a circulant upper bidiagonal matrix, and the systems

then may be solved by using the Sherman-Morrison formula[13]. In this section we will develop an

algorithm for solving the systems

(3.3) Ctx =b,

and

(3.4) Cgx =b,

and then extend it to general banded circulant systems.

We assume, without loss of generality, that co > 0. It was shown[6] that if the matrix C, is

strictly diagonal dominant, then there exist real numbers ce, 3 and -y, such that 1/31 < 1, 1-1[ < 1,

and

(3.5) C, =

where

/311
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It is easy to verify that

[~= co + Vcg - 4clc_...]

(3.6) =c-.
Ce

To solve (3.3) we first solve

(3.7) Zh = c-'6,

and then

(3.8) Ux = h.

where h is an auxiliary vector and its components are denoted by hi, j = 1,2, . .. , n.

Writing

Z = L + e1

and

U = U + -ene ,

and using the Sherman-Morrison formula, (3.7) and (3.8) are reduced to the following bidiagonal

systems

(3.9) Lh = b1 b- bt (-8 n-1 el

(3.10) UX = h - ,i h(--Y)1 e,,

where

1 6
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1 -T

1 -Y

1

el and e, are the first and the last column of the n-th order identity matrix, respectively, and

(3.11) = 8/[1 - (-P']

(3.12) - 'y/[1 -

which may be solved by forward and backward sweeps, respectively, and the procedure is stable

since 1,81 < 1 and j-yj < 1. The algorithm, thus, may be formulated as follows.

Algorithm CTS(Circulant Tridiagonal Solver) solves circulant tridiagonal system (3.3).

1. Compute the quantities ce, 3, and -y via (3.6).

2. Compute and il.

3. Solve equation (3.9) and (3.10).

endalgorithm

The algorithm solves equation (3.3) with O(5n) arithmetic operations, which is more favorable

than those proposed by Bj~rck and Golub [4] requiring O(9n) operations.

The method studied above may be extended to "banded circulant" matrices. Consider the

symmetric "banded circulant" of the form

co cl ... Cp cp ... Cl

Cl .

Cp

C p-- .. . .

Cb. . .

. " . .CP

Cl

Cl ... cp cp ... Cl cO
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Assume that p < n, the order of the matrix Cb. If Cb is positive definite and elliptic[lO], then

there exists a real polynomial 1(z) = )3o + -'" + ) pzP, 1o > 0, with no root inside the unit circle,

such that the characteristic function O(z) of A, defined by

O(z) = cpzP +... + co +... + cpz -P,

can be factored as O(z) = 1(z) i(1/z). There are several methods to compute this factor(see [101).

We now assume that the factor I(z) has been computed. It is easy to verify that

(3.13) Cb = LL,

where

o .. g.pp* . *..

The system

(3.14) Cbx= d

can be solved by solving following two systems

(3.15) y= d

and

(3.16) ZTX y

Let El and Ep denote the n-by-p matrices consisting of the first p columns and the last p

columns of the n-th order identity matrix, respectively, and

0
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Then L can be written

(3.17) L= L+ ERET,

where

and using the Woodbury formula the inverse is given by

L-'-L'Ej(R-' + ET L 'E, -E ,

and thus

(3.18) y= L-ld - L-'EI(R-1 + ETL-'E1)-'ETL-ld

= h- Wg,

where h, W and g are the solution of the following equations,respectively

(3.19) Lh = d,

(3.20) LW = El,

(3.21) Bg= z,

and
z =(h-p+l,...,h.)T

is the p-vector with the last p elements of the vector h as its components, and

(3.22) B = R - ' + ETL-'E.

To compute the p-th order matrix B, we first solve the equation (3.20). Since TW is the first p

columns of L- 1, and L is a lower triangular Toeplitz matrix and so is its inverse, TV is defined by

the first column of L- 1, which is the solution of the equation

(3.23) Lw= (1,0,...,O)T,

8
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and can be computed with 0(np) operations.

Denote by Wl, w2,..., w, the components of vector w, then we have

Wi1

W2 W 1

(3.24) w =
Wl

kwn Wn-I Wn-p+I

and.

(Wn-p+l Wn-p • Wn-2p+2

(3.25) E2W =

Wn Wn-I ..." Wn-p+ 1

which is a Toeplitz matrix too.

The matrix R - 1 is an upper triangular Toeplitz matrix and can be calculated with O(p 2)

operations. Thus B is Toeplitz, so solving (3.21) will cost O(p 2 ) operations. Having computed B

and solved the equations (3.19), (3.20) and (3.21), the auxiliary vector y can be found, and then

we can solve equation (3.16) in a similar way. Since
L-T -T L-T EPB-TETL-T,

the solution vector x is given by

(3.26) x = r - Vs,

where r = (rl, r2 , .. , r,,) is the solution of the equation

(3.27) LTr = y,

Wn-p+1 Wn-p+2 Wn

Wn-p Wln-p+ W ln-

(3.28) V = Wl W2 .'" Wn-p+1

11
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and s is the solution of the equation

(3.29) BTs = (ri, r2,..., rp)T.

The asymptotic operation counts of the method would be 0 (5pn) excluding the amount of work to

calculate the factor I(z). In most usual case, p = 1 or 2, and finding 1(z) does not cost much work.

The algorithm may be summarized as follows.

Algorithm BCS (Banded Circulant Solver) solves banded circulant system (3.14). Assume that the

parameters Po, 01, ... , 8p are precomputed.

1. Solve equation (3.19) for h by forward substitution.

2. Solve equation (3.23) and form W via (3.24).

3. Compute R- 1 by backward substitution, and form matrix B.

4. Solve equation (3.21) for g using a Toeplitz type method.

5. Calculate the solution vector y of (3.15).

6. Solve equation (3.27) for r.

7. Form V via (3.28).

8. Solve (3.29) for s.

9. Compute the solution vector x via (3.26).

endaigorithm

4. Block Circulant Systems

A block matrix M = circ(Mo,Mi,... ,M.-), where each of the blocks M i is itself an n-th

order circulant, is called block circulant with circulant blocks. In this section we will consider the

system of the form

(4.1) Mx = b,

which arises in many applications. An important one is the solution of elliptic equation with

periodic boundary conditions by finite difference methods. The method proposed here to solve

(4.1) is based on the use of the fast Fourier transform, and on the fact that the coefficient matrices

of the resulting linear systems are circulants, hence the methods described in section 2 and 3 may

be employed directly.

10



Denote the eigenvalues of the n-by-n circulant matrices M i by A(", A(".... A(i", then we have

(4.2) Mj = FDF*

where

(4.3) Di = dinag ( D , \ (' ) ..... \')), 0 - , 1,.. m -1

It follows that the block circulant matrix M can be decomposed as

(4.4) M=QDQ',

where

(4.5) Q =diag(F, F,...,F)

is an unitary block diagonal matrix of order (inn), and

D = circ(Do, D1,..., Dm-1)

is a block circulant.

After certain exchanges of the rows and the columns of D we are led to

(4.6) M = Q Pdiag(Ni, N 2 , ... ,Nn)PQ,

where

(4.7) N, = circ()4O),A ),... ,\4m-)), k n

are rn-by-rn circulant matrices with the eigenvalues of M as their elements, and P is an (ran)-

by-(rnn) permutation matrix. It is easily seen from (4.6) that M is nonsingular if and only if the

matrices Nk are nonsingular for all k. In this case we have

(4.8) M - ' = QPdiag(N1 , N1,. N-) PQ ,

and the solution to (4.1) is given by

(4.9) x = QPdiag(NT', NjI,. .. , Nn1 )PQ*b.

11
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If at least one of the diagonal blocks is singular, then the inverse of M does not exist and the least

squares solution of (4.1) is

(4.10) :i = Q Pdiag (N,+,N+,. .. , N+)PQ *b,

which will be the solution to (4.1) if the system is consistent.

To use (4.9) and (4.10) to compute the solution of (4.1), we need to do some exchanges of

the components of some vectors in addition to performing the FFT's and solving the circulant

systems. These exchanges can easily be handled by partitioning the vector b and x into subvectors

to conform with the block structure of the matrix M as0)/ ('
b( 2) X(2)

(4.11) b ,x

b(m) J ~m

where

{ ) = (bi,b 2 1,.. bnj)T ,

X(i) = (Xlj, X2j,..., Xnj) T ,

are subvectors of length n. Now let

(4.13) ( = F*b(), j = 1,2,..

and the components of b(') are denoted as in (4.12). Furthermore denote

(4.14)

!M

where

(4.15) (k) (bkl,bk2,. .. ,bkm) T , k = 1,2,...,n,

then we have

-PQ*b.

Let

(4.16) = (41, 42,. - 1,tm)T

12



denote the solution vectors of the systems

(4.17) Nky = 1(k), k = 1,2,...,n,

then

(4.18) () F

where

(4.19) xJ (i , i2j,.-.., in,) T ,  j = 1, 2,..., m

and we finaly obtain the solution of (4.1) by composing the vector x using the subvectors x(j) via

(4.11). Thus we have the following algorithm.

Algorithm BLCS (BLock Circulant Solver) solves block circulant system (4.1).

1. Transform b() = F*b(j), j = 1,2,... ,m.

2. Compute the eigenvalues of Mi, j = 1, 2,..., m.

3. Solve equations (4.17) using algorithm CIRS for all k.

4. Transform P ) = F ), j = 1,2, ... ,m.

5. Assemble the vectors P~') via (4.11) to obtain the solution vector x.

endalgorithm

5. Applications to elliptic equations

We will now apply the Fourier-circulant method to certain elliptic equations. It is well known [51

that the approximation of Poisson's equation on a rectangle subject to periodic boundary conditions

in both directions by the standard five-point difference scheme on a uniform mesh results in the

block circulant linear system of the form

(5.1) Mu =b,

where
Mp= circ(A, -I, 0,..., O, -I),

and

A =circ(4,-1,0,..,0,-1).

13



We partition the unknown vector u as in (4.11) and denote its components as in (4.12). Since

A is symmetric circulant tridiagonal matrix its eigenvalues are, from (3.2),

2vr
Ak=4-2cos(k-1)-, k=l,2,...,n.n

Assume that n is even. We rewrite the eigenvalues, by reordering them, as follows

[A 1 2,

(5.2) A2 =6,

21\2,-l \ 2, = 4 - 2 cos(v - 1) nr  V = 2,3, .. Ij

The elements of the matrix of the corresponding eigenvectors(denoted by F also) are real and given

by

Al=

fi,2 = (- 1
(5.3) F Fn

f,2 --1 = s [ -[ )(i - 2,

n n

i= 1,2,...,n.

In this situation we have

(5.4) Nk = circ(Ak, - 1, 0,..., 0,-1), k= 1,2,..., n.

All the diagonal blocks Nk except N1,which is singular since it has an eigenvalue equal to zero, are

nonsingular, and therefore M is singular. From (4.10) the least squares solution to (5.1) is given

. by

(5.5) u = QPdiag(N , N2,...,N 1 )PQT b,

where the orthogonal matrix Q is as in (4.5). The vector u computed via (5.5) is the solution to

(5.1) only if eTb - 0, where e = (1, 1,..., 1)T , since e is the only null vector of matrix Mp.

To compute

(5.6) () = ),

14



we use the algorithm CIRS. In this case the eigenvalues of N1 are (Assume that m is also even.)

U1 =-0 ,

J2 = 4 ,

2 2v 2-2cos(V - 1) -, V = 2, ...

and the elements of the orthogonal matrix of the corresponding eigenvectors are

gi'l "- M)-

gi,2 =

g = sinL , v= 2,3,...,
F2 27 M

--1,2,...,m.

If we denote this matrix by

G = (gq,)mxm,

then (5.6) becomes

(5.7) i(1) = Gdiag(O, u21 , , , I)GTj(1),

which can be computed by real transform and its inverse.

The other equations

(5.8) Nkii(k) = 1(k)

are nonsingular circulant tridiagonal, and the coefficient matrices have the forms

\k -1 -1
-1 Ak -1

N" " , k=2,3,...,n.

-1 Ak -1

-1 -1 Ak

Since the eigenvalues satisfy the relation A k > 2 for k -- 2, 3,... , n, the quadratic equations

(5.9) r k I

15



have real root 1k for all k except k = 1, such that 0 < rk < 1. In fact we have

(5.10) rk=-- ( 1)

- 'The matrices Nk can then be factored as

Nk = LUk,

where;. I -rk

-Tb 1

-- r 1

and Tb1  -1
Uk=

1 -1

On the analogy of what we did in §3, we can solve the equations (5.8) by solving the following

two bidiagonal systems of order m

(5.11) Lky- 1(k) + '- el,

and

(5.12) Ub() y,+ [1ri' em
* mZ

where

-Tk 1

Lk= ".

-- rk 1

-- rk

Tb1 -1

Ub=

16
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I
k = 29,3,...,n,

and el and em are the first and the last column of the m-th order identity matrix. Thus the

algorithm procceds as follows.

Algorithm PPS (Periodic Poisson Solver) solves block circulant system (5.1).

1. Transform 1U) = F*b(), j = 1,2,...,m.

2. Compute the eigenvalues of A via (5.2).

3. Calculate f(l) via (5.7).

4. Solve equation (5.8) for k = 2, 3,... , n using algorithm CTS.

5. Transform x(j) = F(J), j = 1,2,.. .,m.

6. Assemble the vectors (') via (4.11) to obtain the solution vector x.

endalgorithm

The complexity of the algorithm is O(mn log 2 n). Although it is the same as cyclic reduction,

the algorithm is more efficient than cyclic reduction since it is a FFT-based method(see [16])

Another kind of elliptic equations to which the method may be applied is the biharmonic

equation

(5.13) V.U(X, i) = (x, y), (x,y) E

subject to periodic conditions.

When the region fl is a rectangle, and the mesh lengths in both directions are the same, and

the standard 13-point difference approximation of the biharmonic operator is used, the resulting

system of linear equations is of the form

(5.14) Mju = b,

where

Mb = circ(C, B, I, 0,..., 0, 1, B),

and

C = circ(20, -8, 1,0,... ,0, 1, -8),

B = circ(-8,2,0,...,0,2).

Since C and B are symmetric their eigenvalues are real and given by
• f Al 6,

(5.15) A2 - 38,
.2ir 2ff nA 2v-i I AN, 20 - 16 cos(v - 1) n + 2 cos 2(v - 1) n v 2,3,.,

17
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and
-4,

(5.16) /A2 --12,

[p2,-l A2, 3-, -8 + 4cos(V1- I), m , v ,3m 2
respectively. Thus

(5.17) Nk = circ(Ak, Ak, 1,0,...,0, 1,0k), k = 1,2,...,n.

The system

(5.18) Nlti(l) = 10)

is singular, and can be solved by using the algorithm CIRS, and the others

(5.19) Nkii(k) = 1(k), k = 2,3,...,n

are circulant pentadiagonal, and can be solved by the method of §3. In this case, p = 2 and the

factor 1(z), which is quadratic, may be found by solving the equations( see [7])

(5.20) p4 + Ap 3 + Akp 2 + PkP + 1 = 0.

Since j - 4Ak + 8 = 0 for k = 2,3,..., n, the equations (5.20) have two real roots that each

has multiplicity 2, and they are given by
(5.21) P(= 1 21

and

(5.22) p2k) A .

It is easily seen that
p1 )> 1,p2k < I,

and

P2
since Ip < -4 for k = 2,3,...,n, and the factor l(z) for the matrix Nk is found to be

lk8z) = o) + + Ok)

where
(k) = (k)

(5.23) 8(k) -2,

, (k) = 1

18



Thus we have the following O(mn log 2 n) algorithm.

Algorithm PBS (Periodic Biharmonic Solver) solves block circulant system (5.14).

1. Transform (i) = F*b(j), j - 1,2,...,m.

2. Compute the eigenvalues of A and B via (5.15) and (5.16), respectively.

3. Solve equation (5.18) for i(l) using algorithm CIRS.

4. For k = 2, 3,. .. ,n,

4.1. calculate / ( k), '6(k ) , g) via (5.21) and (5.23), and

4.2. solve equations (5.19) for ii(k) using algorithm BCS.

5. Transform x(j) = Fi(j), j = 1,2,...,m.

6. assemble the vectors (') via (4.11) to obtain the solution vector x.

endalgorithm

6. Numerical experiments

The methods described in the previous section were tried on the FPS- 164 of the Department of

Computer Science, Yale University. The programs were written and timed in FORTRAN, and the

FFT subroutines used are part of the NA Packege of the Research Center for Scientific Computation,

Yale University.

In each test case, a periodic function was arbitrarily chosen and its values at the mesh points of

an N x N grid, which are considered to be the "true" solution of (5.1) and (5.14), were calculated,

and the corresponding right hand sides were computed with the use of (5.1) and (5.14), respectively.

Approximate solutions to (5.1) and (5.14) were then generated by using the algorithms described

in §5 as well as the cyclic reduction for Poisson's equation. The maximun errors of all tests are less

than 10-10, indicating that the algorithms presented in this paper are stable. The execution time

for each case are summarized in Table 1. It should be noted that the Foureir-circulant method is

more efficient than cyclic reduction.

N Algorithm PPS Cyclic reduction Algorithm PBS

16 0.246 x 10- 1 0.816 x 10- 1 0.287 x 10-

32 0.696 x 10- 1  0.347 x I00 0.815 x 10 -

64 0.258 x 10 0.155 x 101 0.297 x I0 °

128 0.915 x 100 0.691 x 10' 0.105 x 10'

Table 1: Execution times (millisecond) on FPS-164
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