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Abstract i "
- ) An equation that does not require tables is given to determine a ofe-sided tolerance limit for
the 100 pll percentile of a normal distribution with confidence 1-¥ for any sample size n.
This equation gives accuracy to approximately three or more significant digits when
compared to tabled values. Thus it is possible to develop an automated procedure for
determining tolerance limits that is not restricted to tabled values. < e
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In quality control applications, the practitioner may wish to estimate an extreme (lower)
percentile of the distribution from a sample. For example, daily samples are made from a
machine’s production. If the estimated 100 p™ percentile of some characteristic is too low,
the machine is adjusted. Since overestimating the 100 p™ percentile defers needed machine
adjustment, it is often desirable to be conservative and use a lower tolerance limit, t,, such
that the true population 100 p™ percentile is above t; with probability or confidence 1-y:
PIP(X=1t) =1~ p]=1 — v. If the data come from a norma! distribution, t, has the form
X — Ks where X is the sample mean, and s is the sample standard deviation. Tables of K for
various values of p, vy, and n have been devcloped (e.g. Guttman 1970). However, when
using daily samples, sample sizes may vary and it may be desirable to vary the percentile
being estimated or the desired level of confidence. If the process of determining tolerance
limits is to be automated, a method of determining K needs to be found that does not
require the use of tables and is not restricted in sample size and confidence levels to tabled
values. Lieberman (1958) gives a formula for K that could be used for sample sizes larger
than 50 (the extent of his table). This formula tends to underestimate K, which leads to an
overestimation of the tolerance limit, t,, and is contrary to our goal. This underestimation of
K becomes more extreme as the same size decreases, especially if the formula is used for
sample sizes less than 50. Lieberman’s equation has been used in other popular references
(e.g. Natrella 1966). The purpose of this paper is to show how this formula can be
improved to give reasonably accurate values of K for any sample size n, percentile 100 p,
and confidence 1 — .

Given a sample size n from a normal population N(j., o), in theorem 4.4 Guttman (1970)
shows that

PPXZty) =t - p|=P[T, . *(Vnz,) = VaK]

where ty = X — Ks, z, is the (1 — p)100th percentile of the standard normal distribution and
T, *(8) is the noncentral Student’s t distribution with v degrees of freedom and noncentrality
parameter 8. Abramowitz and Stegun (1972, equation 26.7.10) show that the noncentral t
distribution may be approximated by the standard normal distribution Z.

PTV*(a)gt]:P{zg[t(l—Z'—)—a]/[uz‘—i]m} (1)

Therefore K should be found such that

I =y =P[T, *(Vnz,) = VK|

~ p{zg [\/EK(I - ;(n—l_—l,) - WZP]/[' * 2(:521)]“:}

or

o {\/;K<' _4“‘1_ I)) - VEZ"]/{' * f(nl'il_l)]Iz

since | —y=PZ=2z,)
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Solving for K yields the following equation:

(=0 12,2 (1 = D= [(1 = 12 ~ 22/ - Dz, = 2,7/n)}"” o
(1~ 02— 22/ - 1)

where f = 1/(4(n — 1)). Lieberman’s formula is based on equation (2), but ignores the factor
f. As n gets larger this factor is negligible; but for small n, leaving out this factor
underestimates K. |

In order to determine K without the use of tables, z, and z, must be determined. An
approximation for these quantities may be found in Abramowitz and Stegun ( 1972, equation
26.2.23):

z,=t=(co+ e+ eVl +dit+d,t* + d,t%) 3

where

t= (In(l/p)"2,
co = 2.515517,
¢, = 0.802853,
c, = 0.010328,
d, = 1.432788,
d, = 0.189269,
and d; = 0.001308.
The error of the approximation of z, or z, is less than 4.5 X 10~* in absolute value.

A FORTRAN program was written in double precision to compare equation (2) with
Lieberman’s formula and tabled values (see Guitman 1970, table 4.6). When computing K
in Lieberman's formula and equation (2), approximations for z, and z, from equation (3)
were used. The chosen values of the parameters were: p = .25, .10, .05, .01, .001; y = .25,
.10. .05. .01; and n = 10 to 200 by 10. Some typical results can be seen in tables 1 and 2.
Lieberman’s formula will always give a value for K that is less than equation (2) because
factor f is missing. The difference in equation (2) and Guttman'’s tabled values will be due
to the error in the two approximations used: the approximation of the noncentral t by the
normal (equation (1)) and the approximation of the normal quantiles (equation (3)). Of
these, the error in equation (1) has the most effect especially for small sample sizes. Of
course a more accurate determination of K could be made using tabled values of z, and z,.
This changes the estimates of equation (2) by .001 or less in absolute value. Because of the
goal of tolerance limits, a conservative approach would be to overestimate K. For this
reason eyuation (2) is preferable to Lieberman’s formula as it either overestimates K (due to
the approximation of the noncentral t distribution by the normal) or the underestimation is
less severe. As n gets large. either formula will give reasonable estimates of K since the
factor f = 1/(d(n — 1)) goes to zero. If greater accuracy is desired. and the IMSL library of
subroutines is available. the noncentral t cumulative distribution function routine MDTN can
be used with the root finding routine ZREAL2. The estimate of K from equation (2) can be
used as an initial estimate. This procedure gives results that agree with Guttman's tables.

Thus olerance limits, 1, = X — Ks, may be estimated for samples from normal populations
without the use of tables. Using equations (2) and (3), K may be determined with
approximately three or more significant digits of accuracy. When the estimation of K has
fewer than three significant digits of accuracy. the problem can be traced to the poor
approximation of a noncentral t distribution for small degrees of freedom by the normal
distribution. It greater accuracy is desired. tables or IMSL subroutines are necded.
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Table 1.—Values of K for one-sided tolerance limits. p = .05, y = .28

n Lieberman Equation (2) Guttman
10 20322 2.0995 2,104
20 1.9021 1.9300 1.932
30 1.8501 .8674 1.86Y
40 1.8203 1.8329 1.834
50 1.8008 1.8103 1.811
60 1.7862 1.7941 1.798
70 1.7751 1.7819 1.782
80 1.7663 1.7721 1.772
%) 1.7590 1.7642 1.764
100 1.75829 1.7575 1.758
110 1.7477 1.7519 1.752
120 1.7431 1.7469 1.747
130 1.7392 1.7426 1.743
{40 1.7356 1.7388 1.739
150 1.7324 1.7354 1.735
160 1.7296 1.7324 1.732
t70 1.7270 1.7296 1.730
180 1.7246 1.7271 1.727
190 1.7224 1.7248 1.725
200 1.7204 1.7226 1.723

Table 2.—Values of K for one-sided tolerance limits for selected values of p, v, and n

p Y n Lieberman Equation (2) Guttman
0 25 10 1.6154 1.6683 1.671
A 10 28 50 14174 1.4250 1.425
R 10 28 100 1.3760 1.3796 1.380
0 25 200 1.3477 1.3494 1.349
- 10 08 10 23215 24231 2,355
) 10 05 50 1.6401) 1.6497 1.646
10 05 100 1.5243 1.5288 1.827
10 08 200 14488 1.4504 1.450
08 25 10 20322 2.U995 20104
. 08 25 50 18005 1.8103 1.811
. [§N] 28 14} 1.7529 1.7875 1.758
0s 25 200 1.7204 1.7226 1.723
N 038 08 10 28758 3.0047 2914
i 0s 08 S0 2.0590 20713 2.068
- 03 0s 100 1.9239 1.9293 1.927
s 0s 20 1.8362 1.8386 1 837
il 28 10 28235 29182 2,927
[}]] 25 S0 2820 2.5371 283
ul 25 100 24627 24692 2470
ol 25 200 2428 2.4246 2428
) s 10 19412 41224 3.9%1
1] 0s S0 ME SRR 2 8725 2862
0l s IL3] 2 6ROK 2 68K} 2.684
o1 0s 2N 2 SR 25719 2.570
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