AD-A159 821

UNCLASS r1ED

THE RAND-ABEL PROGRAMNING LANGUAGE: HISTORY RATIOMALE "1
AND DESIGN(U) RAND CORP SANTA MONICA CA
N SHAPIRO EV AL. AUG 83 RAND/R-3274-NA UA”?;gSaC;OOSO

"mlgg jze HEE

s (|22

e =2

Jit s e

el -]
=

e

AD-A159 821

The RAND-ABEL "
Programming Language

History, Rationale, and Design

Norman Z. Shapiro, H. Edward Hall,
Robert H. Anderson, Mark LaCasse

S
A Report from ‘ b 5

The Rand Strategy Assessment Center

01 TiLe copyY

’ U o opreved |
Y . RS S ;
[SO R YU AV U SRS l

T I T O T T L T G Ay N R S e
e O R et na R in PRy Ly P ST
| R I i o

s S S

Do vecirel dew ribed in this FEPOrt Was sponsored by the
Ivreciorof Ny Assessment, ()fﬁ<'w{'ﬂn-Sm'rc-t:(r_\ af Defopse
ander Contract No. MDAYO3 85 M350,

Library of Congress Cataloging in Publication Data
Main entry under titfe:
The RAND-ABEL Programming language.

“Prepared for the Director of Net Assessment,
Office of the Secretary of Defense.”

“August 1985."

Bibliography: p.

“R-3274-NA.”

1. ABEL (Computer program language) |, Shapiro,
Norman Zalmon, 1939. . 1. Rand Corporation.
H1. United States. Dept. of Defenge. Director of
Net Assessment.

QA76.73.A14R36 1985 005.13'3 85-19187
ISBN 0-8330-0674-¢

The Rand Publication Serjes: The Report is the principal
publication documenting and transmitting Rand’s major
tesearch findings and final research results. The Rand Note
reports other outputs of sponsored research for general
distribution. Publications of The Rand Corporation do not

Copyright © 1985
The Rand Corporation

Published by The Rand Corporation

SECURITY CLASSIPICATION OF THIS PAGE (Wien Data Entored)

REPORT DOCUMENTATION PAGE
. REPORT NUMBER 2. GOVY ACCESSION NOJ

R-3274~NA LD -5 ‘7}?»2)

READ INSTRUCTIONS
BEFORE COMPLETING FORM
3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitte)

The RAND-ABEL Programming Language

S. TYPE OF REPORYT & PERIOD COVERED

Interim

History, Rationale, and Design

€. PENFORMING ORG. REFPORT NUMBER

7. AUTHOR(e)

Norman Shapiro, H. Edward Hall, Robert Anderson,
Mark LaCasse

e
8. CONTRACT OR GRANT MUMBER(e)

MDA903~-85-C~-0030

IS PERPORMING ORGANIZATION NAME AND ACORESS
The Rand Corporation

1700 Main Street

Santa Monica, CA 90406

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OF FICE NAME AND ADORESS
Director of Net Assessment

12. REPORT DATE
August 1985

Office of the Secretary of Defense

Washington, DC 20301 —_—
1. uom"—fo'g_nma'n"i—o NCY NAME & ADORUSS(I! different trom Contrelling Offies)

13. NUMBER OF PAGES
43

e T
18. SECURITY CLASS. (of this report)

Unclassified

8a. DECL ASBIFICATION/ DOWNGRAOING
CHEDULE

e M———
16. DISTRIBUTION STATEMENT (of thie Repert)

Approved for Public Release; Distribution Unlimited

No restrictions

17. DISTRIBUTION STATEMENT (of the sbetrast antered in Bleck 20, Il difforent frem Repert)

18. SUPSLEMENTARY NOTES

19. XEY WORDS (C. an alde it Y aw ity by block ber)

Programming Languages
War Games

20. ASSTARACT (Centinue on roverse side It Y end y by block b-

see reverse side

romM
DD , ox'ys 1473 eoimon oF 1 nov e8 13 OBsSOLETE

SECUMITY CLASSIFICATION OF TWIS PAGE (When Data Entered)

-

‘

SECURITY CLASSIPICATION OF THiS P s %L (When Deta Bntered)

L) o

’) This report describes the motivations

/ behind the development of the RAND-ABEL
proyrarsriny languaqge aad soame of its novel
features, LKAND-ABZL was designed to meet
the needs of the Rand Strategy Assessment
Center, whict is building a larje systenm
for automated wvar gaming in which separate
rule-based mcdels represent U.S., Soviet,
and thirdi-country benavior. To satisfy the
requireaents for speed and transparency,
the lanquage was designed to be: (1)
rapidly conmpilable and exacutacle; (2)
self-docuwenting; (3) understandable by
nonprograamer domain experts after modest
instruction; (4) reasorably easy to learn
and use, especially for modifying or
incrementaliy extending existing code; (5)
portable acrcss different computers; and
{6) well suited to development of larje and
complex rule-based simulations. Cartain of
its features are unijue: the ability to
express directly in FAND-ABZIL soucce code
such natural structures as Jdecision tables
(isomorphic with decision trees) and order
tables, wiiclt lay out orders to be executed
sequentially, and its novel
declaration~ty~-exaaple feature, wiaich is
useful for rule-based projgrams with
enumerated variacles and many distinct data
types. QDRAND-ABEL has puilt-in support for
a4 data dicticnary for coamunication between
separate modules.if\

- -

' .

SECURITY CLASFICATION OF THIS SAGE(When Date Entered)

R-3274-NA

The RAND-ABEL™
Programming Language

History, Rationale, and Design

Norman Z. Shapiro, H. Edward Hall,
Robert H. Anderson, Mark LaCasse

August 1985

Prepared for the
Director of Net Assessment
Office of the Secretary of Defense

A Report from
The Rand Strategy Assessment Center

1700 MAIN STREET
PO BOX 138
SANTA MONICA . CA 904062138

APPROVED POR PUBLIC BRLEASE; DISTRIBUTION UNLIMITED

PREFACE

This report describes the motivations behind the development of the
RAND-ABEL™ programming language and some of its novel features.
The RAND-ABEL language was developed at The Rand Corporation
for use in writing complex rule-based models as part of a system for
automated war gaming. The language was designed and implemented
for use by the Rand Strategy Assessment Center (RSAC), which is sup-
ported by the Director of Net Assessment, Office of the Secretary of
Defense.

RAND-ABEL is an evolving operational language. This report
describes some of RAND-ABEL’s features as of July 1985. It is
intended for military analysts, modelers, and software engineers
interested in new programming languages suitable for large rule-based
simulations, including those using expert system techniques. It also
serves as an introduction to the principles underlying the design of
RAND-ABEL for programmers using the language. A complete
description of the RAND-ABEL language is contained in the authors’
forthcoming Rand Note, The RAND-ABEL Programming Language:
Reference Manual.

Inquiries and comments on this report are welcome. They may be
made directly to the authors or to Paul K. Davis, director of the Rand
Strategy Assessment Center.

e e e

l_ | H i

SUMMARY

This report is one of a series describing a new programming
language called RAND-ABEL. The principal objective here is to
explain in some detail the rationale underlying RAND-ABEL’s design
and to describe certain RAND-ABEL features that are unique or
unusual. A secondary objective is to describe RAND-ABEL’s develop-
ment history, which may be of interest to computer scientists because
there are so few discussions in the literature of how such developments
actually proceed.

RAND-ABEL was designed to meet the needs of the Rand Strategy
Assessment Center (RSAC), which is building a large system for
automated war gaming in which separate rule-based models represent
U.S., Soviet, and third-country behavior. The decisions from those
models then become inputs to a simulation of large-scale crisis and
conflict. Primarily because of requirements for speed and trans-
parency, it was necessary to design a new language. Upon reflection,
we determined that the language should be: (1) rapidly compilable and
executable; (2) self-documenting; (3) understandable by nonprogram-
mer domain experts after modest instruction; (4) reasonably easy to
learn and use—especially for modifying or incrementally extending
existing code; (5) portable across different computers; and (6) well
suited to development of large and complex rule-based simulations.
Later, we concluded that it is highly desirable to add interpretive
features and incremental compiling, especially if RAND-ABEL pro-
grams were to be written by analysts with only modest programming
skills.

To a substantial degree, RAND-ABEL’s design derived logically
from these requirements coupled with certain beliefs we hold concern-
ing languages for RSAC-like applications. Throughout RAND-ABEL’s
development we have emphasized: (1) language features thought
natural to the intended users, with particular emphasis on two-
dimensional structures, such as decision tables, that are cognitively
efficient and logically transparent; (2) readability (even at the expense
of efficient initial coding); (3) strong type checking; (4) syntactic con-
ventions minimizing the scan-ahead needed to resolve ambiguity; and
(5) orthogonality in the sense of not using ~n operator such as “+” to
represent two different concepts.

Certain features resulting from this approach are unique and, we
believe, a contribution to the state of the art. In particular, the ability
to express directly in RAND-ABEL source code such natural structures

vi I'HE, RAND AREL PROGRAMMING LANG! AGE

as decision tables (isomorphic with decision trees) and order tables,
which lay out orders to be executed sequentially, have proved in prac-
tice to be enormously valuable—to hoth writers and reviewers of code.
RAND-ABEL also uses a novel declaration by example feature, which is
especially useful for rule-based programs with enumerated variables
and many distinct data types that otherwise would require separate
names. Associated with RAND-ABEL is built-in support for a data
dictionary for communication between separate modules.

RAND-ABEL is currently implemented as a preprocessor for the C
programming language under the UNIX operating system, which
makes it quite portable across different computers. In its present
environment at Rand, RAND-ABEL is used with a data dictionary, a
data editor, and a special capability permitting co-routines. This has
been essential for representing naturally in computer code the various
objects of a hierarchically structurcd system (i.e., various military and
national command levels). It has also been essential in permitting
RAND-ABEL code to accommodate scripts (time sequences of com-
mands or actions to be performed), which are important in many
expert systems.

Although it is too early for a definitive assessment, RAND-ABEL
appears to be successful in achieving most of its goals. In particular, it
can execute a rule-based program of approximately 4000 lines in about
a second or less, corresponding to approximately 1 millisecond per rule,
on an unloaded VAX 11/780. It produces succinct readable programs,
and has been used successfully by a multi-team development project.
Its principal shortcoming so far has been that it has proved more diffi-
cult to learn and write than we had hoped. We are quite confident
that this shortcoming will be greatly reduced with the imminent addi-
tion of interpretive features and incremental compiling of the data dic-
tionary. Even then, writing complex programs will be more difficult
than we had expected, but the difficulties we observe are increasingly
related to fundamentals such as the inherent complexity of the
phenomena we are simulating. Other improvements planned for
RAND-ABEL in the very near term (during summer 1985) include:
sets, structures (i.e., records), pointers, transcendental functions, more
succinct declarations, and many more applications of the two-
dimensional Table statement.

Based on our experience, we expect that RAND-ABEL will be of
value for other applications requiring a highly readable language, fast
performance, and early discovery of errors. It is especially suitable, we
believe, for complex models in which these requirements are especially
stringent.

ACKNOWLEDGMENTS

The design and implementation of RAND-ABEL to date have bene-
fited from comments, usage, and suggestions by Paul Davis, Herbert
Shukiar, Steven Bankes, William Jones, Jean LaCasse, Arthur Bullock,
David Shlapak, and William Schwabe. Bill Jones “walked on grass”
(see the subsection “Build the Sidewalks Where the People Walk”); his
use of tables of information in particular inspired our development of
the Table statement. Jean LaCasse’s study of ROSIE™ use by the
Rand Strategy Assessment Center (RSAC) was particularly helpful,
and she wrote the first RAND-ABEL program with content.

We especially wish to acknowledge strong and continuing support
for the development of RAND-ABEL by Paul Davis and Herb Shukiar
of RSAC. Paul’s stubborn refusal to be satisfied with anything less
than our best effort at meeting RSAC’s real needs, Herb’s effective and
knowledgeable guidance, and their allocation of resources to RAND-
ABEL when its future was uncharted are responsible for RAND-
ABEL’s success to date.

vii

CONTENTS
PREFACE 1l
SUMMARY v
ACKNOWLEDGMENTS vii
Section
[. INTRODUCTION i
[I. RSAC DEVELOPMENT PRIOR TO RAND-ABEL 4
I1I. REQUIREMENTS FOR A NEW PROGRAMMING
LANGUAGE 7
IV. THE EVOLUTION OF RAND-ABEL 12
Psuedo-ROSIE 12
RAND-ABEL as a Language 14
V. SOME PHILOSOPHICAL UNDERPINNINGS
GUIDING RAND-ABEL DEVELOPMENT 17
Build the Sidewalks Where the People Walk 17
Languages Should Be Self-Documenting 17
Minimize the Scan-Ahead Needed to Understand
a RAND-ABEL Statement 18
Two-Dimensional Language Structures Are Good
for People and Therefore Good 19
Orthogonality 20
Emphasize Readability over Writability 21
Strong Type Checking Is Good 21
Default Declarations Should Not Be Used 22
VI. IMPORTANT FEATURES IN THE RAND-ABEL
LANGUAGE 23
The Table Statement 23
Declaration by Example 31
Translation of RAND-ABEL into C Source Code 33
Data Dictionary 34
Co-Routines 35
Documentation as an Integral Part of
l.anguage Development 36

X FHE BKAND ABED PROGEHAMAMING [AN AGE
VII. CURRENT STATUS AND FUTURE DIRECTIONS 38
Preliminary Assessment of RAND-ABEL 38
Future Directions 39
VIII. CONCLUSION e . 42
REFERENCES . . . e 43

I. INTRODUCTION

This report discusses RAND-ABEL,! a new programming language
developed during the past 18 months at The Rand Corporation. One
question must be asked and answered immediately upon making that
statement: Why does Rand, or the world for that matter, need another
programming language? In essence, this whole report is a response to
that question; it presents the background leading up to the decision to
develop RAND-ABEL, the requirements that could not be met by an
existing language. and the novel features of RAND-ABEL that resnlted
in meeting these requirements.

For now, the short answer to “Why RAND-ABEL?” is: A team of
people developing a complex rule-based” simulation system, who were
experts in the subject matter of the simulation but not in program-
ming, needed a highly readable, fast-executing simulation development
svstem that was portable across computing machines. Existing
languages were not adequate. Also, as will become clear below, the
time and cost for developing a new language were relatively low,
because we stood on the shoulders of a giant: the C language and its
supporting UNIX® system.

Beyvond answering the *“Why RAND-ABEL?” question, we believe it
is important to present a case study of the development of a new pro-
gramming language, to show the real-world considerations involved, the
compromises inevitably made, and the extensions and insights that
occur in mid-process that enrich the final result. These considerations
do not traditionally appear in a language reference manual (and, fol-
lowing tradition, do not appear in the RAND-ABEL Reference Manual
[Shapiro et al., 1985a), but affect the design and applicability of a
language and should therefore be understood by its users.

This report also discusses the novel features of the RAND-ABEL
language, which we feel are a contribution to programming language
design. These features include: use of two-dimensional tables of infor-
mation as a programming language construct; declaration of identifiers
by giving examples of their usage; translation of RAND-ABEL code

“The name RAND-ABEL stands for nothing in particular.

‘The term “rule-hased” is sometimes reserved for programming systems having a
built-in inference mechanism interpreting a set of rules having a standardized form. In
this report, we use the term more generally to mean the specification of logic that is pri-
marilv in an “If . . then” form or else is described by decision tables.

‘T'NIX is a trademark of AT&T Bell Laboratories.

[I I I O A R R 1

Last, as the prototvpe version of RAND ABEL hecame nsed for the
construction of agents, analvsts themselves suggested new facilities, or
sometimes new facihties suggested themselves through the patterns we
observed in their usage. Simce RAND ABEL was meant from the start
as a language for strategic analvsts, analvsts were taken as an impor
tant touchstone in all design considerations. The pomnt 1< well made by
a story related during design discussions:

One dav, Robert Hutchins, then President ot the Universits ot Chy
cago, was talking with the campus Director ot Buildings and
Crrounds. The Director handed Hutchins an aertal photograph of the
campus showing where the students had worn hrown paths through
the beautitul lawns by taking shorteuts among the sidewalks.
Hutchins exclaimed, “"Then, that’s where you should build the side
walks'"

Perhaps the most important “sidewalk”™ in the RAND ARBEL
language 1 the concept of a statement that directly incorporates a
two-dimensional table of information. A semior Rand analv<t, Bill
Jones, was observed early in RAND-ABEL's usage to regularly relv om
tables of information as a concise vet complete description ot the
options to be considered in a particular situation. or the et of orders
to be processed in some consecutive manner. He then spent time
translating this information into more verbose and less obvious rules or
statements iIn RAND-ABEIL. Members of the design team decided that
these tables were a natural construct that shouid be directly incor-
porated, although their two-dimensional structure is complex and can-
not be handled by normal left-to-right parsing algorithms.

In our first attempt. tabular information was handled quite dif-
terentlv from the current mechanism: a sequence of one-line “tabular
function calls” consisting of a function name followed by a space-
separated list of parameters. This allowed function calls to he orga-
nized into a tabular form if desired, but did not make tabular notation
a part of the language svntax. We then observed that the most com-
mon use of this feature was to create a block of calls, all using the
same function name, but with varying parameter values. In our con-
timung attempt to make these “proto-tables™ as terse as possible, we
then replaced the multiple occurrences of the function name within the
table hbody with a single occurrence in the table header.

We originallv used “Begin Table” and “End Table” brackets.
Within the table's header, the order in which parameter names were
listed as column headings determined the matching of columns to func-
tion parameters. (That is, the first - leftmost — column was assumed to
contain values for the first-mentioned parameter, etc.) The next step
in the table statement’s evolution was the Macro Table, in which a

14 FHEE 1ANT ALk L PROGIEANNENTS 0 v

even by these early steps. (Currently, compiled RAND-ABEL rule
based programs can execute approximately 1000 lines in about a second
or less, or about a millisecond per rule, on an unloaded VAX 11/7%0.)

During this time, to ger some capability quickly, the O language
iselt was used to declare data items and perform other housekeeping
chores. Modeling logic was written in the higher-level pseudo ROSIE
language, lhinked with C programs. The translator extracted these
higher-level statements and replaced them with O language equivalents,
Within one or two months from the decision to create an intermediate
pseudo-ROSIE language, the logic of the Scenario Agent was suc
cessfullv translated into an intermediate language that could be
automatically translated into C. From this point on, extensions and
modifications to the Scenario Agent could be performed directly in the
intermediate language. Pseudo-ROSIE took on a hite of its own, {reed
from its ROSIE ancestor. This new language was called ABEL. (The
prefix RANI)- was later added to distinguish the language from other
svstems and products with similar names.)

RAND-ABEL AS A LANGUAGE

The evolution of the RAND-ABEL language. once RAND-ABEL
was perceived as a separate entity, was driven by four different themes,
although not necessarily all at once, and with varving priorities. First,
design discussions began shifting from “*How do we handle ROSIE con-
structions?” to “What should a modeling language really contain?”
Second. the initial versicn of RAND-ABEL relied on the C language to
provide such facilities as iteration and declaration of local variables
(since the initial goal of quickly creating a pseudo-ROSIE did not
require or justify re-inventing some common programming Constructs
alreadv available). This, however, required a programmer’s intimate
knowledge of the ' language. violating the goals of readability and
writability of RAND-ABEL code. So a second theme of RAND-ABEL
language development was to make RAND-ABEL a self-contained.
consistent, and high-level language that could be understood as a single
conceptual entity,

Third. the expanding concept of a data dictionary linking all
modules together, and the need tor co-routines, required new support-
ing facilities in the RANID)-ABEL language.

a load of hetween 10 and 20 users. Regrettahlv, we never bothered either to run
Decide Policx 100 times for a more precise wall clock timing, or to separate its execution
from its interactive aspects so that the UNIX fime command could be run on 1t

PRHE FVOLT CTON OF BAND ARL "

e FEven if ROSIE-in-C was developed successfully, on time, the
resulting speed increase might still not be adequate for RSAC
needs.

¢ We telt that the requirements of the RSAC might best be
served by some new language features; experimentation with
new language tacilities might well be easier while contimnng to
pursue a specially designed language, not trving to retrofit these
features into the existing language ROSIE.

e Finally, the RSAC team dealing with these language issues had
"a head of steam up” toward developing a language tailored for
RSAC. (At this time. using vace and lex, the design team
already had a kernel of the new language running as a test.)
Giiving a go-ahead tor a new language development would main-
tain the interest and morale of the RSAC system design team.

After reviewing the situation, the RSAC program director concluded
that we should go ahead on language development because the resulting
svstem had the potential to be an order of magnitude faster even than
ROSIE-C, which could be critical for the RSAC’s unusual objectives
(gaming and simulation); also, we were far enough along by that time
to be confident of being able to develop an operational language
reasonably soon, while considerable uncertainties still existed regarding
the difficulties in reprogramming the ROSIE language into C. Finally,
we had begun to discuss a number of new language features that
seemed especiallv attractive, features that were not likely to exist in
ROSIE for some time (e.g.. tables).

Development of the new language continued, with continued reliance
on the UNIX tools vace and lex. By using these general-purpose tools,
we were able to achieve both speed and generality. (Generality was
important hecause we had some new features in mind for the Mark 111
version of RSAC, and wanted to create a system into which they could
be gracefully introduced.)

Results of initial tests of the new language were dramatic: Although
precise timings were not done, it was clear that the resulting compiled
(' code executed thousands of times faster than the equivalent ROSIE
code. Run time was similarly dramatically improved. The new code
ran on a time-shared VAX 11/780, which we estimate to be about 10
times slower than the dedicated DEC-20 formerly used. In spite of this
machine disadvantage. the new Scenario Agent ran on the VAX in
under a tenth of a second.? At least the efficiency goal was being met,

‘On a DEC-2060 with a single user, the Scenario Agent's main function,
Decide Policy, took ten minutes of clock time. The same function, recoded into the first
version of RAND ABEL, took less than 0.5 seconds of clock time on a VAX 11/780 with

IV. THE EVOLUTION OF RAND-ABEL

PSEUDO-ROSIE

The Scenario Agent within the Mark [l version of RSAC, which
described the actions of other parts of the world except for Blue
{United States) and Red (UISSR), was written in the ROSIE language.
ROSIE is a rich, complex language whose parsing is necessarily com-
plex. But recall that only a subset of ROSIE was in practice being
used. Therefore, a tactic suggested itself:

1. Hand-translate existing ROSIE code for the Scenario Agent
into a much simpler “pseudo-ROSIE™!

2. Wrte an automatic translator that could turn pseudo-ROSIE
statements into valid C language statements

The hand translation step did not translate ROSIE directly into C
because of the goal of having statements readable by analysts. This
two-step strategy was thus adopted. A first version of a pseudo-ROSIE
to C translator was written, relying on the UNIX yacc program for syn-
tactic analysis and on a lexical analysis program written earlier.

Some initial experiments were run using this translator and the
results were verv encouraging. At this point, a major management
decision was required: whether to (1) risk the RSAC on the develop-
ment of a new language, (2) continue using ROSIE (which existed, and
was much liked by users), or (3) await a scheduled reprogramming of
ROSIE in the C language and thereby ameliorate the speed problem.
This decision was complicated by several factors, among them:

e It was not clear how long the reprogramming of ROSIE would
take; the problem was hard and the opportunities for delays
legion.

e The code for the Scenario Agent in ROSIE was not as readable
and transparent to analysts as desired; it contained excessive
prose, making it difficult to tell whether all cases were really
covered, and what the essential decision tree lurking within the
rules really was.

"The definition of a simple pseudo-ROSIE language gradually emerged from a series
of meetings attended, in addition to most of the authors, by Jean LaCasse, Jim Gitlogly,
and (sporadically but importantly) Bill Jones.

HEQUIREMENTS FOR A NEW PROGRAMMING LANGUAGE 11

standability of the translator, since they force a table-driven coding
style that separates the unique features of the language being
translated trom the details of lexical analysis and parsing algorithms.

As a result of the above design considerations, a translator was to be
developed that could take certain statements describing a model, con-
sidered to be understandahle by policy analysts, and turn them into
statements in the C programming language. This leaves open the ques-
tion of what form those statements should take, and whether those
statements should form a complete modeling language or else be an
extension to the C language. In the next section, we describe how a
language now called RAND-ABEL emerged from the process of
developing such a translator.

10 THI. RAND ABEL PROGRAMMING LANGUAGE

executed in a computerized political-military war game between Red
and Blue (the Soviet Union and the United States). In this case, each
line requires that a simulated diplomatic message be sent to the coun-
try shown requesting that that country take sides, cooperate, partici-
pate in the European war, and participate in the Southwest Asian war
as indicated. The order table is a part of a simulated Red war plan.
The second line, for example, corresponds to Red sending Austria a
message saying “Stay neutral and do not cooperate with Blue!”

Define RGCL3-intl-communication-action

Table Red-to-3rd-countries

european- swa-
country side cooperation involvement involvement
Afghanistan Red Reinforcement -- --
Austria White Uncooperative Normal Normal
Bahrain White Uncooperative -- --
(...}
Poland Red Reinforcement Combatant --
[...]
Yugoslavia Red Reinforcement Combatant --
End.

The above table meets our criterion for being a self-documenting state-
ment. [t is also a valid statement in the RAND-ABEL language; Table
statements are discussed in more detail in later sections.

To handle the needs for modularity and team development of com-
plex systems, the system should have a data dictionary that defines all
global data, so that communication between separately compiled
modules always uses common terminology and assumptions. It should
also allow co-routines,? permitting processes to become dormant and
reawaken while retaining context.

The following additional design consideration is not really a goal,
but rather a practical strategy: Use the UNIX tools lex (a lexical
analyzer) and yacc (Yet Another Compiler-Compiler) to aid in develop-
ing this preprocessor for the C language. Use of these tools speeds up
the development process, and aids portability because of the
widespread availability of the UNIX system on a variety of computing
machines. They also contribute to a certain cleanliness and under-

Co-routines are discussed further in a later section of this report.

REQUIRFMENTS FOROUNEW PROGRAMMING [ANGEAGE 9

The C language does not meet the goals of readability and easy writ-
ability. Therefore, there should be some higher-level language tailored
to creating complex simulations: processing of this new language
should result in € code, which can then be compiled in the normal
manner.

The goals of readability and writability should be met by a language
that is “self-documenting.” We use the term self-documenting to mean
a language whose meaning can be understood by someone not inti-
matelyv familiar with the details of the syntax of the language. We
deliberately do not use the term “English-like” here, because that term
has been misused enough to create complications—a situation that is
exacerbated by ambiguity in the term: Do we mean using English
words, syntax, and grammar, semantics, pragmatics, or all of the
above? We mean none of the above, but rather: An English-speaking
person that is familiar with the subject matter being modeled should be
able to read the programming language in which the model is expressed
and understand what is meant.

Another reason that “English-like” is inappropriate to describe a
language like RAND-ABEL is that the writer of RAND-ABEL pro-
grams does not rely on his knowledge of English in writing those pro-
grams (unlike such programming languages as ROSIE). This is delib-
erate, so that there is no confusing assumption made by the writer of a
RAND-ABEIL program that some rules of English apply as valid
RAND-ABEL svntax. [t is interesting that we explicitly do not want
to confuse writing of RAND-ABEIL with English, yet we expect to rely
on the reader’'s knowledge of English to help interpret RAND-ABEL
statements —even to the extent that someone totally unfamiliar with
the RAND-ABEIL language, but familiar with the subject matter of a
RAND-ABEL program, should be able to interpret that program. In
fact, preciselv this has occurred in RSAC demonstrations: military
officers have stopped the demonstration, looked at the RAND-ABEL
logic defining an agent. understood it, and recommended changes in
the logic as an interesting exercise.

We note that a “self-documenting”™ language might differ in other
important wavs from an “English-like” language. The syntax of the
Fonglish language (or any other natural language, for that matter) is not
commonly considered to include many constructions that are under-
standable to every educated FEnglish speaker; examples are simple
mathematical notation, tables, and charts. The following excerpt does
not follow any English language syntax that we are aware of, yet
should he immediately understandable to the reader (who, having got-
ten this far. qualifies as an English reader). This is an example of an
“order table,” each line of which corresponds to an instruction to he

8 FHE RAND ABEL PROGRAMMING T ANGY AGE

or some equivalent. Yet an important goal was that, even for
these complex programs, any interested person familiar with
the subject matter of an agent should be able to read the
(source) code for an agent and understand the assumptions and
logic underlying its behavior. It would also be highly desirable
for them to be able to make straightforward changes to the
code, once the underlying structure for an agent had been
developed.

¢ Easy to write with little training. Programmers or strategic
analysts knowing one high-level programming language fairly
well should be able to learn this new language easily, and be
able to write agents after some study and practice (especially
when using existing agents as a guideline and example) albeit
with consultations with professional programmers.

e Allow creation of complex simulations by groups of
developers. The language must be rich enough to allow com-
plexity and subtlety in models, and to handle large models.
The RSAC system consists of several agents acting together——
ideally overlapping each other in processing. Therefore, it
should be possible to create modular systems in which the vari-
ous modules operate in a multiprogramming mode on a single
CPU, or else execute in parallel on separate CPUs with some
intercommunication between agents.

¢ Solution required quickly. If an existing language is to be
modified or a new programming language developed, it should
not require a major diversion of project resources. A quick, effi-
cient solution is needed.

The RSAC system design team concluded that no existing program-
ming language adequately met all these requirements. Therefore, the
design team now concentrated its attention on options for developing a
new language. From the above set of requirements, the following
design goals were synthesized.

C is a good language for satisfying the requirements for portability,
execution speed, and compilation efficiency. C, and its associated
operating system, UNIX, were well known to system developers at
Rand, since UNIX has been operational within Rand for over 12 years.
Therefore, the new language should be related to C in some manner.'

‘Other languages that might be considered are: BASIC (portable, but not powerful
enough), FORTRAN and COBOL (not sufficiently structured), LISP (full version not
available on the VAX when we needed it), PL/I (restricts portability primarily to [BM
mainframes), Pascal (similar advantages and disadvantages to C, with C better known at
Rand), and Ada (no compiler had yet passed the DoD standard, and there were insuffi-
cient program development tools available when the development effort began).

III. REQUIREMENTS FOR A NEW
PROGRAMMING LANGUAGE

The previous section outlined a set of problems, constraints, and
needs for a programming language arising from the RSAC project.
Project discussions about these needs led to a first conclusion: moving
the entire ROSIE system onto a VAX minicomputer would not meet
all project needs. "

Project members therefore distilled the earlier discussions into a set
of requirements for a programming language:

Speed in execution. The new language should execute at
least hundreds of times faster than did the same rule-based
models in ROSIE.

Speed in recompilation. RSAC “agents” are developed and
enhanced over time. Writing a new agent requires perhaps
thousands of compilations of the code at various stages of
development to achieve a stable, useful agent. (We are planning
an interpretive version of RAND-ABEL for developmental pur-
poses, but it is meant to supplement, not replace, compiled
RAND-ABEL.)

Portable. The inability to move existing code easily from a
DEC-20 to a VAX computer helped precipitate a remedy. Proj-
ect members did not want to be in the same situation again,
and the RSAC had a requirement that its programs be transfer-
able to government agencies. Thus, the language chosen to
represent RSAC agents should be available on a number of
popular computers, and easily portable to new ones.

Readable by “real people.” Real people are defined here as
civilian or military strategic analysts with knowledge of a sub-
ject domain (e.g.,, NATO defense forces, Soviet command and
control systems) or the RSAC project’s Department of Defense
sponsors interested in studying models developed by Rand
analysts. Almost all such people are not professional program-
mers. Yet major parts of the programs being developed for the
RSAC were large, complex systems similar to “expert systems”
in artificial intelligence, containing hundreds or thousands of
rules. This type of program was written with heavy use of
enumerated variables (so that lists of choices and other finite
lists of elements could be highly readable) and If . . . then rules,

6 FHE RAND ABEL PROGRAMMING LANGE AGE

In considering how to move, or recode, the Scenario Agent’s ROSIE
code, our colleague Jean LaCasse studied the actual ROSIE code
representing the agent, and found that it did not use all of the special
features of ROSIE, such as the bult-in “inference engine” that
automaticallv applies rules to a situation represented by a data bhase. It
might therefore be possible to reprogram the agent(s) in a simpler
language, so it would not be necessary to move all of the ROSIE sys-
tem onto the VAX. Thus began a set of language design and discus-
sion meetings regarding new programming options.

ﬁ

RSAC DEVFLOPMENT PRIOR TO RAND ABEL i
Blue Team Control Team Red Team
Force orders Force orders
Force -
Military Operations Military
situation situation
Mihtary
situation
Political Political
situation situation
Blue Requests Scenario Requests Red
Agent — Agent - Agent
Nonsuperpower Nonsuperpower
responses responses
|
Time
advance
Time advance Time advance
Systems
Requests Monitor Requests
- i - .

Fig. 1—Structure of RSAC automated political-military gaming

At about this same time, we began studying how agents representing
the Red and Blue forces could be programmed within a next-generation
Mark Il version of RSAC. The notions suggested in a conceptual
model design [Steeb and Gillogly, 1983] required many rules, games
within games, and effective communication between agents. Also
required were explanatory facilities for debugging and to aid analysis of
a model. All this led to the need for some new programming features
that were not then available, or that could be constructed only with
difficulty.

Al

:;‘__M

II. RSAC DEVELOPMENT PRIOR
TO RAND-ABEL

The Rand Strategy Assessment Center is, at this writing, operating
the Mark III version of a war-game modeling and simulation system
[Davis, forthcoming]. The Mark I version was demonstrated in 1981.
The Mark II version was begun in January 1982. It consisted of a Blue
Agent, a Red Agent, a Scenario Agent, a Force Operations module, and
a Systems Monitor [Davis and Winnefeld, 1983). Figure 1 shows the
overall architecture of the Mark 1I RSAC system.

By late 1982, the Mark Il system was operating as a collection of
computers and programs, with people acting as manual links between
the various system components. The Scenario Agent, containing logic
for the behavior of countries other than the Soviet Union and the
United States, was written in the ROSIE! language {Fain et al., 1981;
Hayes-Roth et al., 1981]. ROSIE is a general-purpose artificial intelli-
gence language developed at Rand for the building of expert systems
and other Al applications. It is interactive and interpretive with a
built-in inference mechanism for applying the rules comprising a pro-
gram. The rules are written in a fixed grammar that resembles a styl-
ized kind of prose English; the rules therefore appear quite readable,
although the meaning a human reader extracts from a ROSIE rule and
the logic a computer extracts from it might differ in subtle but impor-
tant ways. A typical ROSIE rule used in the Mark II version of RSAC
is the following:

If Strait-of-Hormuz is blocked and the actor is

economically dependent on Strait-of-Hormusz,
let the actor's threat be indirectly serious
and record serious [threat| as “economic
losses from Hormuz blockage”?

The (] brackets in the above example delimit an unexecuted comment.

The ROSIE language satisfied some of the RSAC’s goals (namely,
flexibility and readability) but it had some shortcomings: (1) Most
importantly, it ran too slowly for this application, requiring minutes for
each cycle of “play” of the scenario model within the simulation; (2) it
was written in the LISP language, operating on a DEC-20 computer,
and the DEC-20 was being replaced by a slower VAX computer.

'ROSIE is a trademark of The Rand Corporation.
‘From Schwabe and Jamison, 1982, pg. 43.

4

——

INTRODUCTION 3

The function is delimited by the Define and End statements. The
Record statement generates an execution-time trace file. The table, a
simplified example, is executable code. It orders 10 percent of U.S.
tactical aircraft to Southwest Asia. It also orders deployment of one
division of U.S. airborne troop

Although RAND-ABEL should be more generally applicable, the
reasons for its character are best understood in the context of the
RSAC project, as it existed just prior to RAND-ABEL’s development.
The next section describes this RAND-ABEL prehistory. With this
background, we then describe the resulting requirements for a new pro-
gramming language, our attempts to meet those goals, and our assess-
ment of our success to date in doing so.

TTHL MWL L oY el dap e lantt s AMAL G LR e e W

b 2

2 THE RAND ABEL PROGRAMMING LANGUAGE,

into C language source code, rather than complete compilation of it;
and very strict tvpe checking.

The RAND-ABEL language cannot be understood without some
understanding of the Rand research project whose requirements led to
its development and test: the Rand Strategy Assessment Center
(RSAC). The RSAC 1s an ambitious effort to develop a war-game
modeling and simulation svstem composed of programmed “agents”
representing the decsionmaking of the hierarchical command struc-
tures of the United States and the USSR, as well as third parties
involved in the scenano. (The purpose and design of RSAC are
described in Davis and Winnefeid, 1983; Davis, 1984.) The logic
governing the agents’ behavior should be describable in RAND-ABEL
by policy analvsts and be modifiable and extendable by them. The
resulting code should be readable by persons knowledgeable in the sub-
ject matter but unfamiliar with programming in general and RAND-
ABEL in particular. Professional programmers or computer scientists
should, however, be involved in the implementation of complex simula-
tions to create a sound, modular foundation that permits graceful
modification and extension.

The reader can assess whether some of these goals have been
achieved by reading examples of RAND-ABEL code. Here is a typical
example of a RAND-ABEL statement:*

If Deployment-authorization of SWA {Southwest Asia] is Yes
then perform Order-SWA-deployment.

Deployment-authorization is an array indexed by military theater, here
the Southwest Asian theater. Brackets enclose comments, used here to
indicate the mean ng of the acronym SWA. “Perform” is a call to the
function Order-SWA-deployment, which is operationally defined by the
following RAND-ABEL function:

Define Order-SWA-deployment:
Record "Deploying forces to Southwest Asia.”.

Table Deploy

qty #-% unit-type unit-owner to-area
10 % Tacair uUs SWA
1 # Airborne US SWA

End.

“Reserved words in RAND-ABEL are shown in bold type in this report as an aid to
the reader’s understanding the structure of the language.

16 FHE RAND ABEL PROGRAMMING LANGUAGE

compound RAND-ABEIL statement, containing both declarations and
executable statements, could be used in place of a function call in the
table header; the order of the declarations of identifiers determined
their matching with the columns of data values. Finally, the link
hetween identifiers and table columns was made much more flexible by
creating column headers that were readable by both user and machine.
These “text islands” (later extended to allow abbreviations and
hvphens) name RAND-ABEIL identifiers, and can therefore be
matched by name, independent of their ordering, with declared vari-
ables or function parameters.

Throughout this process, a major contributing factor to RAND-
ABEL tables derived from Paul Davis’ continuing interest in decision
trees as a natural means of logic representation. Although direct
representations of tree structures have vet not heen made available in
RAND-ABEL. decision tables are providing a useful compromise as a
natural and relevant means of communication. In discussions with the
RSAC system design team, it became clear that the Table statement
had become encompassing enough to include decisien tables as a spe-
cial case. The form and content of table statements in RAND-ABEL
are discussed further in a subsequent section of this report.

V. SOME PHILOSOPHICAL UNDERPINNINGS
GUIDING RAND-ABEL DEVELOPMENT

RAND-ABEL. or anyv other language. would quickly evolve into a
hodgepodge it new features were tacked on as needed or as conceived.
From the beginning, our development of RAND-ABEL has been
strongly guided by a set of philosophical principles we have come to
believe in through combined decades of the use of programming
languages and the observation of others’ use of them. We give here the
main principles we believe have affected the design of RAND-ABEL.
Some of these principles should be of general interest; others are more
specific to tormal language design.

BUILD THE SIDEWALKS WHERE THE PEOPLE WALK

This principle was discussed earlier, and is perhaps the most impor-
tant. The RAND-ABEL language has been conceived first as a pro-
gramming language for a particular class of users (in our case, strategic
analysts, both within Rand and within the government), and second-
arily for other simulation modelers. How these users conceive of their
models, how they express them, and how it is natural for them to read
and write code expressing these models are the primary criteria to be
used in deciding what facilities RAND-ABEL has, and how those tacil-
ities are called upon. (An interesting but different approach from ours
to designing user interfaces in response to user requirements is
described in Good et al., 1984.)

LANGUAGES SHOULD BE SELF-DOCUMENTING

We have discussed our distinction between “self-documenting” and
“English-like™ languages. Programming languages should be self-
documenting because the code rarely stays put; it is inevitably modi-
fied. extended. and rewritten —usually by people other than the original
authors. This is especially true for the complex models worked on by
teams of analvsts and programmers in concert, as in the case of the
RSAC. Effective use of tables, matrices, charts, and mathematical (or
chemical, etc.) notation can often condense pages of verbose English-
like code into succinct but eminently readable instructions for both
man and machine.

18 IHE KAND ABEL PROGRAMMING LANGU AGE

MINIMIZE THE SCAN-AHEAD NEEDED TO
UNDERSTAND A RAND-ABEL STATEMENT (*)!

A growing body of literature indicates that people understand sen-
tences by absorbing k words, making a hypothesis about the meaning,
then reading the next word. If the successive words confirm the
hyvpothesis, they go on; otherwise they go back and rehypothesize. In
earlier RAND-ABEL statements, such as the assignment statement:

Let country be choice using readiness as criterion .

it was difficult to make an early, correct hypothesis about a RAND-
ABEL statement’s meaning. (In the above example, it becomes clear
that “choice” is a function only after reading ahead and detecting the
keywords “using” and “as”.) We therefore undertook to redesign parts
of the language to minimize the scan-ahead that was needed to
correctly parse a RAND-ABEL statement. To accomplish this, we
have started all RAND-ABEL statement forms with a keyword to indi-
cate the type of statement. For example, the above assignment state-
ment now is written:

Let country be report from choice using readiness as criterion .

in which the phrase report from provides prior notice that a function
call is involved. It turns out that minimizing scan-ahead for readers of
RAND-ABEL has a serendipitous effect: it also makes parsing of
RAND-ABEL easy for computers. Almost all of RAND-ABEL is
LR(1), meaning that the interpretation of a statement can proceed
from left to right, never requiring a scan more than one lexical token
ahead to resolve any ambiguity. (The big exception to this is the table
header, which is handled by a specially written program, not an LR(1)
parser.)

It seems quite clear that people are adept at scanning and interpret-
ing a linear language, such as normal English sentences. But they use
a different mechanism to understand tabular displays—a mechanism
much more akin to picture or pattern interpretation. By creating for-
mal languages rich in two-dimensional patterns (now made possible by
ubiquitous CRT displays, tablets, mice, and graphics printers) we can
tap onto this other nonlinear information-absorbing mechanism people
possess, and thereby transfer more information, faster and more suc-
cinctly, between man and machine. Candidates for such two-

'Design principles marked with an asterisk (*) are technically oriented and may be
skipped by readers without a background in programming or language design.

PHILOSOPHICAL UNDERPINNINGS OF ABEL DEVELOPMEN| 19

dimensional information representation include: tables and matrices,
two-dimensional mathematical notation, and networks and graphs.
One of the authors [Anderson, 1977] has discussed an extension of nor-
mal computer parsing methods to handle the interpretation of such
two-dimensional constructions.

TWO-DIMENSIONAL LANGUAGE STRUCTURES ARE
GOOD FOR PEOPLE AND THEREFORE GOOD

Most computer languages do not use two-dimensional structure; for
example, if they are indented to show nesting of statements, that
indentation is ignored by the compiler. In this sense, the languages are
not self-documenting, because the structure of the language itself does
not aid in the interpretation. We believe that information conveyed by
such two-dimensional forms as indenting should be interpretable
equally well by man and machine. However, in spite of our enthusiasm
for two-dimensional constructs in programming languages, RAND-
ABEL at present pays no attention to indenting of programs; RAND-
ABEL'’s compiler (called the RAND-ABEL Translator) therefore would
not prevent misunderstandings such as in the following program:

If condition_1 then
{
For alpha:
{
Let r be report from function_1
using alpha as argument _1.
If r > 2.5 then
{ Perform function_2.
Let s be report from function_3
using alpha as argument_3.
Let p be report from function_é&
using r as argument_&.
}
Perform function_ 5 using n as argument 5.}
}

In this example, it appears at first glance that three statements are
executed in the iterative loop headed For alpha:

Let r ...
fr>...
Let p ...

In fact, the third statement, “Let p . ..", is buried within the “If r
" statement, and is not on the same level as the other two state-

20 FHE RAND ARED FROGEAMMING T ANGT A

.-

ments. Similarly, the last statement, “Perform function 5 .. .7, s
reallv within the scope of the For loop, not the next sequential state:
ment after it,

For twenty vears, programming language designers have made
languages easy for machines to parse, because machines were expensive
and slow. Also, language users were turned off by such formatting re
strictions as FORTRAN statements that had to start in column 7 of a
punched card, and vowed to make all future languages just a string of
text with no artificial boundaries or restrictions; in addition, in an era
of line-oriented text editors (punched cards being the lowest torm of
such), it was difficult to create two-dimensional structures. All of these
constraints have been greatly reduced, if not eliminated.

Finally, we are reaching a stage where machines are fast enough and
cheap enough that we can begin to optimize for people, not the
machines. Two-dimensional text editors allow the cursor to be moved
to any spot on a page, so that tabular arrays of data can be created in a
natural manner. We have observed that people are very good at
absorbing the meaning of a two-dimensional construct.® (The
widespread popularity of interactive spreadsheet programs, especially
with nonprogrammers, is one indication of the naturalness of two-
dimensional information presentation.) By employing these constructs
in our programming languages, we often can make the languages more
concise and more readable. RAND-ABEL's Table statement is a first
step. We believe much more can he done in this area, as our emphasis
shifts awav from the machines and toward people.

ORTHOGONALITY

The word orthogonal, in its simplest definition, means mutually per-
pendicular. In mathematics, two functions that define orthogonal
planes are independent of each other. In the computer and other sci-
ences, the term has come to mean that two concepts are independent
of each other within one or more categories of interest.

We have strived ftor orthogonality among the various concepts and
constructs of RAND-ABEL. More precisely, we believe that semanti-
cally independent constructions should have syntactically independent
representations. For example, the “+" sign is used to represent addi-
tion of both integers and real numbers, hecause the underlving concept
of mathematical addition is the same for both. The “+" sign is not,
however, used in RAND-ABEL for string concatenation as it is in
some languages because that is a semantically independent concept.

“Some interesting ohservations on the human predilection for two-dimensional recti-
linear constructs is contained in Haves, 1985.

PHID oot A0 USSR RIS IS G O ABED DRy Lo A 21

In the many discussions during the design and implementation of
RAND ABEL. our desire to achieve and preserve orthogonality of
language concepts was a continual touchstone ot the quality ot our
design.

EMPHASIZE READABILITY OVER WRITABILITY

Programming languages are both written and read. The attributes
ot readability and writability are not svnonyvmous. A language such as
APL might be quite writable by someone familiar with the language.
hecause of its tremendous economy of styvle; however, APL is famous
tor allowing the production of “one-line programs” that are hard to
read. because of this same extreme terseness of style.

Whenever a choice had to be made, we emphasized readability of
RAND-ABEL over writability for the simple reason that programs are
read much more often than written. We note that in addition to
nonprogrammers wanting to understand their logic. existing programs
are also often read by programmers attempting to recall their logic and
to modify or extend the programs. We know of no statistics on this,
but it is likely that once a line of code i1s written, it is read ten to one
hundred times during its existence, often by people with less knowledge
ot the programming language than the writer.

STRONG TYPE CHECKING IS GOOD ()

A strongly tvped language is one in which the data type of each
identifier must he declared, with the usual restriction that it must be
declared betore the first use of that identifier. tMultipass comgpilers
can relax this second restriction, but such relaxation leads to sloppy
programnng practices, so it is not encouraged. In RAND ABEL. 1t s
not allowed.)

Strong tvpe checking allows the tvpes ot all identifiers being used in
operations to be checked, usually at compile time, to be sure that theyv
are consistent. For example, a string cannot be added to an integer:
onlv logical data tvpes can be ANDed and ORed together: an
enumerated data type cannot be assigned to a real (number) variable.

Some languages (most notoriously, PL/D allow automatic coercion
of data tvpes, so that if an inappropriate data type is used. the com-
piler tries to “make it right” (e.g., by coercing a string of digits into a
number, or an integer into a floating point number). We beheve impli-

o

FHE HANT ABEL PROGEAMMING | AN AGE

citt coercion of data types in a programming language is not good prac-
tice, because (1) it leads to mistakes in interpretation between the
writer and the reader (and due to the self-documenting nature of
RAND-ABEIL. each might assume thev understood the meaning,
although each understands a ditferent meaning); (2) it leads to mis
takes in Interpretation between the writer and the compiler; and 3)
representation of intormation is nnportant (for example, whether a
number is represented internally as an integer or floating point), and
coercions change representation without informing anyone. RAND-
ABEIL does no coercion, with one exception: in certain cases, if an
integer is used where a real number i1s required, that integer is inter-
preted as if it were a real number. RAND-ABEL does not coerce a real
number into an integer. because it could well silently lose precision in
the process.

DEFAULT DECLARATIONS SHOULD NOT BE USED

RAND-ABEL does not permit default declarations of data values;
that is, there are no implicit declarations of identifiers, by their spell-
ing or first usage, or whatever. We believe it is good programming
practice to clearly define all terms in advance, and we require this dis-
cipline in RAND-ABEL programs.

'We use the term 1mplicit coercion here in contrast to explicit coercion in which the
programmer clearly signals which change of data type is to take place. as in the €
language statement: “int var = (int) char _ptr.". This type of explicit coercion of data
types is occasionally useful, although at times overused.

VI. IMPORTANT FEATURES IN THE
RAND-ABEL LANGUAGE

There are features of the RAND-ABEL language that should be of
interest to persons interested in modeling and simulation, to program-
mers, and to programming language designers. In approximate
decreasing order of novelty, they are: two-dimensional constructs like
order tables and decision tables; declaration by example; RAND-
ABEL'’s translation into another high-level language; integral use of a
data dictionary for linkage between modules; and facilities for co-
routines. In addition, our use of very strict type checking, mentioned
in the previous section, distinguishes RAND-ABEL from many current
languages.

THE TABLE STATEMENT

General Comments

As mentioned earlier, one of the most important features of the
RAND-ABEL language is its use of two-dimensional table statements.
In fact, we currently (July 1985) have three types of RAND-ABEL
tables: (a) function tables, (b) macro tables, and (c) decision tables. In
each case the tahle includes a key word (Table or Decision Table),
header names for the various table columns, and a series of lines
within the table, each of which defines a separate RAND-ABEL state-
ment. The table types differ only in the way they convey to the com-
puter how to “read” each line of the table.

The Function Table

An example of a function table was shown above, on p. 10. It is a
function table accomplishing the job of issuing a series of orders to be
performed by a simulation model. The function Red-to-3rd-countries
results in a series of messages being sent from Red to various third
countries with particular requests (e.g.. Red asks Afghanistan to take
the Red side and to cooperate by allowing reinforcement. It makes no
requests pertaining to Afghanistan participating in the war itself, either
in Europe or Southwest Asia).

23

24 I'HE RAND ABEL PROGRAMMING LANGUAGE

The Macro Table

By contrast with function tables, macro tables are self-contained,
Le, the instructions for how the computer is to read each of the table’s
lines are contained within the table header. In this particular example,
we have a decision table. The material following the key word Table
includes: declarations of local variables needed for the table construc-
tion; the macro itself (the inner If . . . then statement); and the column
headers. In this example, only the last variable is the result of a deci-
sion and the other If variables are all connected by “and”s. More gen-
erally, however, the macro could use “and”s and “or”s (or even < s and

8) and could have several dependent variables (decisions). The
Break appearing in the macro means that as soon as the computer
reaches a line for which the conditionals prove to be true, the decision
is made and control shifts to the first line of code following the table.
This had advantages in writing certain types of succinct decision
tables—advantages similar to the If-then-else construction.

¥ Current-situation is Eur-demo-tac-nuc

{"Eur-demo-tac-nuc" represents the situation that one or both
superpowers have used some tactical nuclear we pons in Europe,
but have done so primarily for demonstrative purposes --i.e.,
to coerce the opponent into terminating]

Then
{
Table
{
Declare Basic-statusff by example: Let Basic-statusy# be Basic-status.
Declare Other-status# by example: Let Other-statusf be Other-status.
Declare Prospects# by example: Let Prospect# be Prospects.
Declare Risks# by example: Let Risks# be Risks.
Declare Escalation-guidance# by example: Let Escalation-guidance#
be tscalation-guidance.

If (Basic-status# is Basic-status or
Basic-status# is Unspecified) and

{(Other-status# is Other-status or
Other-statusft is Unspecified) and

(Prospectsft is Prospects or Prospects# is Unspecified) and
(Risks# is8 Risks or Risks# is Unspecified)
Then
{
Let Fscalation-guidance be Escalation-guidanceft.
Break.

IMPORTANT FEATURES IN THE RAND ABEL LANGUAGE 25
Escalation-
Basic-status# Other-status# Prospectsit Risks#f / guidancef
CSSTESDmoITooN SSSSSSSSSTNT= TDoDSSSESSSE SSEST TS / SEToT=SosoorooTwT—
goals-met -- -- -- Eur-term
progress good good low Fur-demo-tac-nuc
progress marginal good low Eur-demo-tac-nuc
progress good good low Fur-gen-tac-nuc
progress marginal good low Fur-gen-tac-nuc
pProgress good good marginal Fur-demo-tac-nuc
progress marginal good marginal Eur-demo-tac-nuc
progress good good marginal Lur-gen-tac-nuc
progress marginal good marginal Eur-gen-tac-nuc .

}

The Decision Table

Our next example is representative of a great deal of actual RAND-
ABEL code in current Rand work. It accomplishes precisely the same
thing as the macro table given earlier, but without the complex header.
In this case, the key word Decision Table coupled with the separator
/ (separating the independent variables from the dependent variables)
in the header line are sufficient to define the logic. Note, however,
that all tables headed by Decision Table have the logic of If ...
and .. .and ... Then ... and ... and ... Break, whereas other combi-
nations are possible with macro tables.

The decision table structure is very powerful, for both programmers
and subject area speecialists developing program logic. Note, for exam-
ple, that the decision table is isomorphic with a decision tree, and that
decision trees have long been an especially effective way to work
because they break problems down into pieces and allow one to keep
track of whether all the cases are being considered. Furthermore. deci-
sion trees (and to a similar degree, after practice, decision tables) are a
highly effective way to communicate logic. Indeed, the motivation for
decision tables in our work arose when the program director found
himself very unhappy trying to review the logic of models written in
long series of If-then-else statments: the individual statements were
clear enough (either in ROSIE or RAND-ABEL), but comprehending
the whole was quite another matter. Moreover, in practice, his review
demonstrated that important cases were being excluded--which is a
notorious problem in If-then-else code.

-

26 THE RAND ABEL PROGRAMMING LANGUAGE

The following examples illustrate the differences among expressions
of decision logic as a typical computer program, as a decision tree, and
as a RAND-ABEL decision table:

(1) Programming language form (e.g., in RAND-ABEL without
use of the Table statement):

If X = x1
Then
(
IfyYy=yil
Then
{
If 2 = 21

Then Let D be d1.
Else [Z = z22]
Let D be d2.

Else [Y = y2)

If 2 = 21
Then Let D be d3.

Let D be da4.
Else [X = x2)

IfyYy =yl
Then

£ 2=z

Then Let D be d5.
Else [Z=2z2)

Let D be d6.

Else [Y = y2j
If 2 = 21
Then Let D be d7.
Else [Z=22)
Let) be d8.

IMPORTANT FEATURES IN THE RAND ABEL ANGUAGE 27

(2) Expressing the logic as a decision tree. (Note that this is not
a programming language statement, merely a display of the
logic that humans find useful in understanding the logic of a
decision.)

Independent variables:

X =1{x1,x2}; Y = {yl,y2}; Z = 121,22}

Dependent variable (the decision):)
D= {dl,d2,d3,d4,d5,d6,d7,d8}
X?
x1 x2
Y? Y?
y1 y2 A y2
2? Z? 2? 2?
z1 22 z1 22 z1 22 ’ 21 ;,
D: di d2 d3 d4 d5 dé d7 d8

s

Mo ITHE RAND ARST PROGRAMMING LANGUAGE

(3) RAND-ABEIL code representing the same logic, using the
tsecision Table statement:

Decision Table

X Y A / N
/ -=
x 1 vl A g1
. vl FN d2
Al v A d3
X v 22 A4
X vl 21 d5
x. vl 2.2 de
. . 2l d7
LW V. " d8

Although we shall not discuss the matter here, we should also note
that the decision table construction makes it especially easy to produce
“explanation logs™ that are rigorous statements of what logic path the
computer tollowed.

As one additional example of a decision table, the following is
equivalent to the macro table illustrated in the previous subsection:

Decision Table
Escalation-

Baste »status tther-status Prospects KRisks / guidance
xodls-met -- - - - Fur-term
PIOgTesSs goud good Jow Fur-demo-tac-nuc
Progress marginal s0o0d low Eur-demo-tac-nuc
PTORIeSS good nood low Fur-gen-tac-nuc
progress marginal good low Fur-gen-tac-nuc
Progress good good marginal Fur-demo-tac-nuc
Progress marginal good marginal Fur-demo-tac-nuc
pProgress gnod good marginal Eur-gen-tac-nuc
Progress marginal good marginal Fur-gen-tac-nuc

Complications and Fine Points

In practice, there are many complications in using tables—
complications that could prove lethal if not resolved. Because of this,
we spent considerable time developing techniques for handling them
rather easily. The next example shows, for instance, how we can deal
with long variable names heading up table columns. This particular
table happens to be an unusual function table that calls a function, Ini-
tialize, that makes a decision (it establishes how long it takes the vari-

e

IMBPORTANT FEATLRESIN THE BAND ARFE T AN AGE

ous named countries to make decisions in the simulation, with this

tune being a function of some |

2 variables).

P

This table does not

include all the cases needed to cover the complete space of possibilities.

Table initi1ilize

Rewion

Conntiv-set {is

|
;
|
|
|

Hu‘mx Power -set

e

[is

4 country?)

1t

one |

not a4 region/sceal

I

| Player-status jshonbd the mode] simulate 107
P Decisann
I] Borders-wp -delay
[[1-366]]
Pl Assertavesconntry foadwiy s tight o onott k) podays)
P !
Pl b Naclear-capable Mom Grien Kod- Rlue- i
[O T A ber ta Tempera pres pres |
Pl LT e ship Lo ment Cnce epce |
Argh stan YN Y Y NN DTSSR -- Keedd Captive Miajer None i
Vtgharistan Y NY Y NN ISSR -- Ked Caplive Token None 6
Atchanistan YNY Y NN LUSSK -- Ked Captive None None 10
Aribhan-Seq NNNNNN -- -~ -- -- -- -- --
Anstralag YN Y NNNIK ANZS Blue Moderate None Token 2
tria YNY YNN -- -- White Reluctant None None 4
KRR Y NY NNNIUS NATO Biue Keiiable None TripW 1

(In the above table as in other RAND-ABEI statements, unexe-
cuted comments are delineated by square brackets. The three separate
table rows dealing with Afghanistan are deliberate, showing as an
example handling special cases of differing Red-presence. As special
situations arise requiring “tuning” of such decision tables, additional
rows can easily be added to describe the desired response to these
situations.)

Our final example shows how long variable values within the table
itself can he accommaodated by a “wraparound” feature. Although it is
uglier than our basic examples, the wraparound feature can be very
usetul.

Table Function-of-s

Forst- Second- Third- Fourth-

Pl ameter arameter rdrameter rarameter
i 13 F
boatth- Sixth-
prarmeter parameter
1o Green 512 "String 1"
oo A
, e 2o "String 2"
[A - 4)

REFERENCES

Anderson, Robert H., “Two-Dimensional Mathematical Notation,” in
K. S. Fu (ed.), Syntactic Pattern Recognition. Applications,
Springer-Verlag, New York, 1977, pp. 147-177.

Davis, Paul K., and J. A. Winnefeld, The Rand Strategy Assessment
Center: An Overview and Interim Conclusions about ('tuity and
Development Options, The Rand Corporation, K _945-DNA,
March 1983.

Davis, Paul K., “Concepts and a Prototype System for (Game-
Structured Strategic Analysis,” The Rand Corporation (forthcom-
ing).

Davis, Paul K., Experience in Applying Artificial Intelligence Tech-
niques to Strategic-Level Military-Political War Gaming, The Rand
Corporation, P-6977, April 1984.

Fain, J. E,, D. M. Gorlin, F. A. Hayes-Roth, S. J. Rosenschein, H. A.
Sowizral, and D. A. Waterman, The ROSIE Language Reference
Manual, The Rand Corporation, N-1647-ARPA, December 1981.

Good, Michael D., John A. Whiteside, Dennis R. Wixon, and Sandra J.
Jones, “Building a User-Derived Interface,” Communications of
the ACM, Vol. 27, No. 10, October 1984, pp. 1032-1043.

Hayes, Brian, “Rank-and-File Thinking,” Lotus, Vol. 1, No. 2, June
1985, pp. 73-717.

Hayes-Roth, F. A., D. M. Gorlin, S. J. Rosenschein, H. A. Sowizral,
and D. A. Waterman, Rationale and Motivation for ROSIE, The
Rand Corporation, N-1648-ARPA, November 1981.

Schwabe, William, and Lewis M. Jamison, A Rule-Based Policy-Level
Model of Nonsuperpower Behavior in Strategic Conflicts, The
Rand Corporation, R-2962-DNA, December 1982.

Shapiro, Norman, H. Edward Hall, Robert H. Anderson, and Mark
LaCasse, The RAND-ABEL Programming Language: Reference
Manual, The Rand Corporation, 1985a (forthcoming).

Shapiro, Norman, H. Edward Hall, Robert H. Anderson, and Mark
LaCasse, The RAND-ABEL Programming Language: An Interac-
tive Tutorial, The Rand Corporation, 1985b (forthcoming).

Steeb, Randall, and James Gillogly, Design for an Advanced Reca Agent
for the Rand Strategy Assessment Center, The Rand Corporation,
R-2977-DNA, May 1983.

e

VIII. CONCLUSION

The Rand Strategy Assessment Center required a programming
language for the development of complex strategic simulations that was
tast, portable, easy to read and write, and permitted modular develop-
ment of a large system by separate teams of developers. No existing
language was found to have all the needed qualities. By creating a
very-high-level language that is translated into C source code, it was
possible quickly to tailor a language to the needs of these analysts,
while retaining some major advantages inherent in the C language and
its supporting UNIX system.

The RAND-ABEL language contains some novel features that we
believe are important to its success. Perhaps most important is the
Table statement, having a fully two-dimensional syntax that is difficult
to describe as a traditional programming language, yet is understand-
able to any educated person. Also of interest are declarations using
only examples of usage of identifiers, very strict type checking, a data
dictionary facility for intermodule communication, facilities for co-
routines, and processes as a RAND-ABEL data type.

The RAND-ABEL language is important for its understandability
by specialists in the subject matter being modeled, combined with exe-
cution efficiency and facilities for handling complex models that are
primarily qualitative, not quantitative. RAND-ABEL is a young
language, still evolving. However, we feel it has been very successful in
its intended application.

42

#—_-_—_L

CURRENT STATES AND FUTURE DIRECTIONS 41

Explanatory facilities are critical in a language designed for huilding
large, symbolic models. This is especially true when they involve com-
plex control structures with co-routines. In models of this complexity,
a “dump” or “trace” of all system behavior (even if selectively turned
on and off) is inappropriate; it is too hard for the model developer to
find key data at the right level of abstraction. RAND-ABEL allows
reporting of system actions controlled by the user, in conjunction with
a “stack” mechanism whereby the stored trace of entire lines of logic
that do not prove fruitful can be discarded before they become part of
the final explanatory output. The current explanatory facilities in
RAND-ABEL are possibly adequate, but new approaches will be
explored in the future that provide better selectivity and control over
the level of abstraction desired.

Programming in current RAND-ABEL sometimes requires some
knowledge of the C language (for example, to set wakeup rules for co-
routines that are dormant). By completing the support environment
for RAND-ABEL as part of the RAND-ABEL language itself, it should
be possible to allow strategic analysts to perform their work within one
consistent language, thereby reducing the entry barrier for persons
developing RAND-ABEL programs.

1

40 I'HE KAND ABEL PROGRAMMING LANGT AGE

¢ Incremental compilation of RAND-ABEIL programs

¢ Better explanatory features

¢ Use of sets and their operations within RAND-ABEL

* A major generalization of the Tahle statement to succinctly per-
form groups of declarations

¢ Incorporation of structures (i.e., records)

¢ Extension of pointer facilities

¢ Transcendental functions

¢ Completion of a stand-alone environment for RAND-ABEL, so

that it becomes a complete programming system not requiring
the application programmer to know or use its underlying C
language.

Sets are viewed as a useful supplement to the current enumerated
variables of RAND-ABEL, in particular permitting a more easily
understood form of “For” statement than currently exists. They will
also allow writing decision tables succinctly by permitting construc-
tions such as “<good” or “>marginal” to be values in the table—
meaning that any value in the ordered set occurring before the value
“good” or after the value “marginal” is acceptable in that position.

By using the Table statement to declare identifiers, the same suc-
cinctness that has been achieved in iteration and selection can be
applied to the declaration of a sequence of identifiers. An example of a
tabular declaration is contained in Sec. VI; that particular form, how-
ever, is unlikely to be the final version of this feature. We are begin-
ning to recognize in the Table statement a great expressive power that
we intend to exploit. Indeed, if we are successful, entire programs
might be recoded as a series of tables in a fraction of their current size
and seeming complexity.

Structures are groups of data composed of differing data types. In
some languages, they are known as records, in which each field may
have a distinct data type. Structures have been found useful in the C
language, and we are planning an implementation that mirrors their
use in C.

Pointers will be able to point at essentially all RAND-ABEL data
types; they are based on the existing pointer facility of the C language.

Interpretive RAND-ABEL will be an extremely useful supplement to
the current compiled version, permitting program changes and testing
without lengthy intermediate compilations. In a separate but related
development, we will be providing an interactive version of RAND-
ABEL. We expect that the RAND-ABEL tutorial document will rely
heavily on interactive RAND-ABEL to provide the reader with a set of
exercises introducing language features in a “hands-on” manner.

[

CERRENT STATLS ANUCEU TURE DIRFCTIONS R

For all the above reasons and others ot less criticality, we believe
RAND-ABEL is a success. [t is being used at Rand by a broad range
of strategic analysts and programmers on a daily basis for the develop-
ment of complex models.

However, not all of our goals have been completely met. Although
translation of RAND-ABEL into C and the subsequent compilation of
that ' code was initially very fast, it has become somewhat slower due
to features being added to the language; on the other hand, with the
continuing evolution of the language we have not concentrated on
translation efficiency. It is therefore possible that considerably greater
efficiency can be gained when we turn our attention to that area.

From our experience to date, it is now clear that an interpretive
RAND-ABEL should be available for program development. In addi-
tion, the data dictionary should not require total recompilation every
time some data item is changed; incremental compilation of the dic-
tionary must be added so that delays in compiling do not impede the
development process.

The most difficult area to assess is the readability and writability of
RAND-ABEL programs. The Table statement, in particular, makes
RAND-ABEL programs easy to understand by casual users and pro-
grammers alike. Important RAND-ABEL programs are being written
by strategic analysts with some FORTRAN or BASIC familiarity who
are not professional programmers, based on general control structures
and data organizations established by programmers. In this sense, we
have succeeded. However, we frankly had goals beyond these, which
may well have been too idealistic; we hoped that RAND-ABEL pro-
grams would be transparent, not just readable. Such totally self-
documenting transparency has not been achieved; portions of RAND-
ABEL agents still look too much like computer programs, with nested
If ... thens, “For” loops, pages of declarations, and all the other bag-
gage of programming languages. However, as analysts become more
familiar with the power of the Table statement, major portions of their
programs are being encoded in highly readable and succinct tables.
There is some chance, however, that the level of complexity of these
agents simply cannot be expressed much more simply than RAND-
ABEL already permits.

FUTURE DIRECTIONS
Extensions of RAND-ABEL are planned in the following areas:

e An interpretive version of RAND-ABEL and an interactive
RAND-ABEL that will aid in learning the language and in pro-
gram development

VII. CURRENT STATUS AND FUTURE
DIRECTIONS

PRELIMINARY ASSESSMENT OF RAND-ABEL

The RAND-ABEIL language has been in serious use as a develop-
mental tool for only about 18 months. It is therefore too early for a
detinitive statement regarding our successes and failures in achieving
nur goals. However, enough has been learned to provide an initial
assessment. An overview is provided by the following table:

Success Less Than Success
1. Runs fast 1. Incrementally compilable
2. People like 1t data dictionary required
3. Suceinet programs 2. Compilation too slow
that have proven 3. Not as easy to learn and
in practice to he use as hoped
readable by 4. C code unreadable
nonprogrammers 5. ood programming still requires
4. Portable among a sense of style

UNIX systems
5. Allows creation of
complex simulations
by groups of developers
6. Initial RAND-ABEL language
developed quickly

Certainly the greatest success of RAND-ABEL is its ability to run
complex simulation agents many times faster than their equivalents in
ROSIE. This alone has made RSAC goals achievable that otherwise
would not have been. Perhaps the next most important success has
been the Table statement. [t compresses into a succinct, easily read-
able form logic that previously took pages of verbose text. More and
more of the logic defining RSAC agents is being put into tabular form
(for both iterative calculations and decision tables) as analysts become
more familiar with its power. Third, the data dictionary is successful
in recording the necessary information to allow teams of developers,
working at different times and places, to communicate and coordinate
in developing their interrelated processes.

38

IMPORTANT FEATURES IN THE RAND ABREL LANGUAGE 37

same structure. Each section of the reference manual will be
mirrored by a section with the same number and title in the
tutorial. Each section of the tutorial will present interactive
exercises on the subject matter in the corresponding section of
the reference manual. Also, importantly, we plan to include in
the tutorial descriptions of how to access and use the informa-
tion in the reference manual, so that learning to use the refer-
ence manual is in fact an integral part of learning the
language.

e Examples as templates. The RAND-ABEL reference manual
contains examples of the various language statements, as do
similar manuals. What is somewhat unique about our approach
is that the examples deliberately and explicitly are not designed
to explain the subject matter, but rather are templates that can
be used as examples to be filled in when one needs that form of
statement in a program. We have observed that the most com-
mon use of examples in a manual is as examples to be copied in
programming, and have tried to accommodate this “learning by
example” process. We have set the examples apart from the
rest of the reference material typographically, but have placed
them consistently below each statement’s syntax description, so
that one can scan and quickly find the example of a RAND-
ABEL statement when that is needed.

These experiments in language documentation are being published
approximately coincidentally with this document, so it is too early to
assess their success. However, they are indicative of our feeling that
experiments with language documentation should be performed, in an
attempt to increase the effectiveness of this important and often over-
looked aspect of computer languages.

36 THE RAND ABEL PROGRAMMING LANGUAGE

facility, so we created a co-routining facility in C to support RAND-
ABEL co-routines. These C language co-routine functions are a gen-
eral feature that could be used by other C programs. They were writ-
ten in C itself, using essentially no assembly language coding, and
correspond closely with the UNIX primitives that manipulate
processes; for this reason, they can be quickly understood by someone
knowledgeable of the UNIX system.

RAND-ABEL functions are available for the following actions
involving co-routines:

Spawn a new process

Terminate a process

Put a process to sleep

Associate wakeup rules with a co-process
Remove wakeup rules from a co-process

DOCUMENTATION AS AN INTEGRAL PART OF
LANGUAGE DEVELOPMENT

Part of learning to use a language is learning to use its documenta-
tion. Therefore, we feel the form and content of documentation for a
programming language are an integral part of that language. In think-
ing about our intended users and how we have used language documen-
tation in the past, we decided on a set of strategies and innovations in
RAND-ABE]I. language documentation. The following steps have been
taken to date:

e Parallel tutorial and reference manuals. Many languages have
quite decent tutorial manuals that lead new users through the
features of a language. They also have separate reference
manuals that give a terse but complete description of language
features, in alphabetical or some other categorized order. The
problem is that in using the tutorial manual, the new user
becomes very familiar with its contents and organization; but as
he or she outgrows the tutorial and needs to access the refer-
ence manual, all the learning about efficient information
retrieval in the tutorial manual is wasted, even counterproduc-
tive, in finding information within the reference manual. A
discontinuity is introduced into what should be a smooth learn-
ing process.

We are planning to address this problem by providing a
RAND-ABEL reference manual [Shapiro et al.,, 1985a] and a
tutorial manual [Shapiro et al., 1985b| that have exactly the

o~

IMPORTANT FEATURES IN THE RAND ABEL LANGUAGE 35

CO-ROUTINES

A strategic simulation, as developed within the RSAC, consists of a
number of agents—for example Red, Blue, Scenario—all pursuing cer-
tain logic and reacting to events communicated to them via the World
Situation Data Set. There are times in such a simulation when a pro-
cess can proceed no further and must await later events caused by
other processes. It becomes dormant and awakens at a later time.
(We omit in this discussion how it might be awakened.) Upon awaken-
ing, a process might operate one of two ways:

o Total reassessment. It awakens with no knowledge of its, or any
other processes’, prior decisions, accesses a data base to deter-
mine the current status of the simulated “world,” and deter-
mines on that basis what, if anything, to do.

o Marginal changes to existing plans. It awakens “remembering”
the context in which it became dormant, discovers what has
changed during its dormancy, and makes appropriate incremen-
tal changes to the plan(s) it had been pursuing.

In the first case, the normal mode of behavior for a simulated plan-
ning agent would be to totally “rethink” the situation upon awakening,
perhaps embarking on a totally new plan that seemed to fit the current
situation best. The new plan might in fact be best in some sense, but
this sort of “optimize afresh at each stage” behavior is very nonhuman.
People and their organizations are strongly biased toward continuing
plans previously decided upon, making marginal changes to fit new cir-
cumstances.

Although RSAC agents are not necessarily programmed to mimic
the behavior of humans or human decisionmaking organizations at
each stage of their planning, these agents should nevertheless mirror
some of the inertia inherent in the planning processes of people and
their organizations.

If “total reassessment” were an acceptable mode of behavior, co-
routines would not be necessary. Co-routines are, however, a very
natural way to allow processes to wake up in context and thereby exhi-
bit consistent, incrementally changing behavior.

The RSAC can be considered a series of co-routines, each running
independently of the others, with the World Situation Data Set as the
integrating link among them all. Indeed, the RSAC Red and Blue
Agents are themselves a hierarchical series of co-routines, each written
in RAND-ABEL.

As described earlier, the RAND-ABEL language is in one sense a
preprocessor built upon the C language. C does not have a co-routine

ﬂ-—_'___" B

34 THE RAND ABEL PROGRAMMING LANGUAGE

DATA DICTIONARY

In the large simulation models being developed within the RSAC,
individual modules are often revised, or new modules created, that
must communicate with other established modules. Traditionally, it
has been possible to compile separate components of a program and
then to “link-edit” them together, resolving external references. There
has also been the notion of a “common” data area into which all
modules can read and write, for communication between separately
developed modules.

These simple mechanisms are not nearly enough for the RSAC
environment. A source of problems in the old FORTRAN common
area is differing assumptions or perceptions by different programmers,
possibly at various times during a complex program’s development,
regarding the size, type, and meaning of data in this common area.
Since there was no type checking possible, or even a record of what
assumptions were made by whom and when, subtle errors could arise
that might be undetectable until unlikely combinations of events
arose —and then the culprit module can be hard to trace, since many
different modules could read and write into the common area.

To address these problems, a common data area for intercommuni-
cation among RAND-ABEL modules was established. In the RSAC,
this data area is called the World Situation Data Set (WSDS). Entries
in the WSDS are defined by a data dictionary, somewhat analogous to
a data dictionary within a modern data base management system
(DBMS). The data dictionary is established by means of data item
declarations describing external data within individual RAND-ABEL
programs.

The data item declarations in a RAND-ABEL program that estab-
lish entries in the data dictionary fall into three categories:

e Defining attributes—Information that actually affects the object
code. Among the declarations possible in this category are
method of access, owner, read/write permissions, read/write
preferred formats for the data item, validation range or function
to be used in checking for proper data, and prompt string to be
used in requesting this data item.

e [dentifying attributes—Information that is documentary but
mandatory, such as author, date, and a prose description
explaining the purpose and use of the data item.

e Informative attributes—Information that is optional. Examples
are bibliographic references for further description of the data
item, comments, and whether the form and content of the data
item is under consideration and subject to change, or is con-
firmed as definite.

IMPORTANT FEATURES IN U'HE RAND ABEL LANGUAGE 33
Table

{

Declare v.ariit-le by example: Let variable be sample .

}
var b le sample
tactor -1 1
no-ot-sides 1
cont=level 1.0
vesult-msng "Shccess”

This table is equivalent to writing:

Declare t 1 11 -1 by example: Let tictor-1 be 1 .
Declare 1,-0t-+ides by example: Let no-of-sides be 1 .
Declare . :nf-level by example: Let conf-level be 1.0 .

Declare result-msy by example: Let result-msg be "Success"”

TRANSLATION OF RAND-ABEL INTO C SOURCE CODE

Goals for the development of RAND-ABEL included a high degree
of portability, compilation speed, and efficient execution. Existing
languages such as C met all these goals, although they did not meet
others. However, a great deal of time and effort was saved by translat-
ing RAND-ABEL source code into C source code, so that the advan-
tages of C could be enjoyed without reinventing a major, fast, portable
compiler. By using the UNIX functions lex and yacc as the basis for
our translator, still greater implementation efficiencies were made pos-
sible; the RAND-ABEL-unique portion of the translator in effect
becomes the set of syntax rules for RAND-ABEL, plus a set of lexical
functions to extract identifiers, operators, constants, and handle special
constructs such as the table syntax.

We hoped at the start of the project that the C code resulting from
RAND-ABEL translation would itself be easily readable by any C pro-
grammer. However, especially with the development of the data dic-
tionary, this goal has not been met. The resulting C code is quite
arcane. In practice, this has not been a significant problem.

2 1 HE KAND ABEL PROGRAMMING LANGUAGE

of the declaration. RAND-ABEL's declaration is an extension of this
concept, eliminating the need for a keyword like int.
The following are all valid RAND-ABEL declarations:

Declare confidence-level by example: Let confidence-level be 6.5 .

Declare Fvaluate-situation by example:
Let Success be report from Evaluate-situation
using red as side and 5.5 |km] as distance .

This declaration method does require some care in use. The data
type of the expression used in the example within the declaration-by-
example must be determinable at the time the declaration is encoun-
tered. It must also be unambiguous. For example, one cannot write:

Declare confidence-level by exampie: Let confidence-level be 8 .

and then later assign the value 6.5 to confidence-level. If a number
can take on non-integral values, it should be indicated as a decimal in
the declaration, even though an integer is a special case of a decimal
number. (Note that the “.” at the end of the declaration is a statement
delimiter, not a decimal point.)

Another advantage of declaration by example is that the reader need
not learn any new special syntax for declaring a data item, once he or
she knows how to use that item in a RAND-ABEL statement; giving
an example of its use suffices, once the uniform “Declare x by exam-
ple:” method of declaring is known. (This property is another example
of orthogonality in the language, because each statement represents
itself, and no other means is required.)

Our current form of the declaration tends to be quite verbose,
especially when a number of variables are being declared, each requir-
ing a separate RAND-ABEL statement. It is natural to ask: Why not
offer declaration-by-example as an option, but allow more traditional
forms of declaration as well? Our answer is two-fold: (1) We believe a
language becomes harder to learn and use when there are several ways
of accomplishing the same thing, and (2) we are currently designing
extensions to the Table statement permitting its use as a succinct
means of representing groups of declarations. For example, the follow-
ing table (almost certainly not the final form to be chosen, but illustra-
tive of the idea) declares four variables in what we feel is a succinct,
readable manner:

IMPOKTANT FEATURES IN THE KAND ABEL LANGT AGE 3]

In general, we have found that the Table statement is useful in
situations where a number of statements need to be made, each having
a parallel structure, but differing in details. Examples of such situa-
tions include a series of similar function calls (e.g., to generate orders
to countries having varying characteristics) and decision tables that are
equivalent to a series of rules, each having slightly varying conditions
and resultant actions. Because of the success of the Table statement
in representing these situations, we are planning to expand its use in
other areas having similar parallel structure. We also recommend that
programming language designers seriously consider the addition of
table structures to other languages, even though this might require
selective “breaking away” from the linear parsing algorithms in
widespread use. We see no reason why table statements could not be
integrated into commonly used programming languages, such as C,
Pascal, or Ada.

DECLARATION BY EXAMPLE

In essentially all programming languages, identifiers can be declared
to have a specific data type by explicitly listing the name of the data
type. For example,

C: int int_variable;
FORTRAN: INTEGER INTVAR
Pascal: VAR int_variable: integer;

This approach requires the programmer and the reader of such
languages to learn a new set of keywords and syntax that represents
syntactic concepts. The problem is greatly magnified in a language like
RAND-ABEL, which allows enumerated values. Since each
enumerated variable is itself a new data type, taking on a finite range
of enumerated constants as its range, for consistency one should make
up a new name for each of these user-defined new data types. For our
community of users, who are not professional programmers, this is
excess baggage. We have also observed that most people rely heavily
on examples in understanding programming languages. Combining
these observations, in a further attempt to make RAND-ABEL code
self-documenting, even to the casual reader, all identifiers are declared
by giving examples of their use; in fact, this is the only means
currently available for declaring identifiers.

We got the idea of declaration-by-example from the C language. In
C, to declare f to be a pointer to a function returning an integer value,
one writes: int (*f)(). Note that one uses a call on the function as part

30 IHE RAND ABEL PROGRAMMING EANGE AGE.

The mechanism for allowing such complications is one of the more
novel features of the table facility. The table header contains a set of
column headings used to match table columns to parameter names or
variable names. In making this match, extra hyphens used to create a
column heading are ignored, as are various other “spacing” characters.
Also, an apostrophe (‘) can be substituted for one or more characters in
a variable’s name to create abbreviations within a column heading.
Essentially, a column heading can be thought of as an island of text
within a field of white space, where the island can have isthmuses and
peninsulas as long as it retains its connectivity. In determining this
connectivity, the following characters are treated as “white space™
space, tab, newline, comments enclosed in square brackets, /, ~., _, and

The svntax of RAND-ABEL tables is actually richer than these
illustrations indicate. The interested reader is referred to the RAND-
ABEL language reference manual {Shapiro et al., 1985a] for a more
complete description of this statement.

It 1s important to note that we have introduced a table statement
into RAND-ABEL, rather than treating tables as pure data to be read
in. At first glance, data residing in a file would seem simpler: it could
be changed without recompiling the program, it could be accessed by
multiple programs, and a simple linear syntax could represent all
RAND-ABEL statements.

We believe the data approach is not the correct one for our users’
applications for several reasons: (1) Separating tabular data from the
statements that read it violates our principle of self-documenting pro-
grams. The meaning of the table is buried in the program that reads
it, with the data and the program usually residing in different places.
(2) Our use of column headers meaningful to both user and computer is
made possible by the intimate association of program and tabular data.
(Headers are usually only comments, if present at all, in data files
because they do not have the same form and content as the data they
elucidate.) (3) As we extend the power of the Table statement to han-
dle declaration of variables and other programming constructs, the dis-
tinction between program and data within the Table statement will
become blurred to the point where separation would seem artificial and
contrived. (4) Perhaps most importantly, having a uniform syntax for
tables means that they can quickly be interpreted by the reader. Pro-
grams lacking this unifying principle read data in a variety of ways,
each of which is uniquely crafted for the situation. Creating these spe-
cial cases takes extra programming and debugging time, as well as com-
plicating the task of reading and interpreting them.

