
AD-AIS9 821 THE RAND-ASEL PRORAMNG LANGUIAGE: HISTORY RATIONALE 1/0
AND DESIONMU RAND CORP SANTA MONICA CA

N SHAPIRO ET AL. AUG SI *AND/1-2274-MA ODASG2-SI-C-003G

UNCLASF PIED FO /2 NL

mhhhhhmhhhhhl

1=113.5 22

14I 1-8
1jl*.2 5 1111~ ~1.6

C

AD-A 159 821

The RAN DwABEL T
Programming Language

History, Rationale, and Design

Norman Z. Shapiro, H. Edward Hall,
Robert H. Anderson, Mark LaCasse

A Reporttfrom
The Rand Strategy Assessment Center

d;n-

41-4 11 ol)lI it hs IeIIporl kv &, Jwut.woed 1~, ow

Library of Congress Cataloging in Publication Data
Main entry tinder title:
The RANI)-ABEL programming language,

"Prepared for the Director of Net Assessment,Offi.e of the Secretary of Defense."
"August 1985.",
Bibliography: p.
"R-32744-NA."
I.- ABEL (Computer program language) 1. Shapiro,Norman Zalmon, 1932)- 11i. Rand Corporation.I11. U~nited States. Dept. of Defense. Director ofNet Assessment.

QA76.7'3.A14R36 198.5 00,513'3 85-19187ISBN 0-8330-0674-6

The Rand Publicationi Series: The Report is the principalPublication documenting and transmitting Rand's majorresearch findings and final research results. The Rand Notereports other outputs of sponsored research for generaldistribution. Pub)lications of The Rand Corporation do notnecessarily reflect the opinions or policies of the sponsors ofRand research,

Copyright C 198,"
The Rand Corporation

Published by The Rand Corporation

SECurIT-Y CLASFICATION OM ThIS PAGE (1ha, Do, Efe__

REPORT DOMIAENTATION PAGE BEFOE A UPTc'FONs
. EPONT NUMBEN 2. GOVT ACCESSION NO. 3. NECIPICIrTS CATALOG NUNGER

R-32 74-NA I_____D_-__A;____!____I?__

4. TITLE (0nd S.utife) S. TYPE OF REPORT & PERIOD COVERED

The RAND-ABEL Programming Language Interim

History, Rationale, and Design 6. PERFORNGNG. REPORT NUMBER

7. AUTHOR(c) 5. CONTRACTOR GRANT NUMER($]

Norman Shapiro, H. Edward Hall, Robert Anderson MDA903-85-C-0030

Mark LaCasse

3. P19RORMING ORGANIZATION NAME ANO ADDNESS 10. PROGRAM ELEMENT POOJECT. TASKAREA 6 WORK UNIT NUMBERS
The Rand Corporation

1700 Main Street

Santa Monica, CA 90406

$I. CONTROLLING OFFICE NME ANO AooREUS 1. REPORT DATE

Director of Net Assessment August 1985

Office of the Secretary of Defense i3. NUMUER OPAGES

Washington. DC 20301 43
S M4IONITORING AGNCY NAME S AOORr.S(II dUlmi bm ColbwJlh on S) Is. SECURITY CLASS. (of cli. epon)

Unclassified

, 0 o .CLASSI'ICATON/O0,1NGWAOING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of Id. Repad)

Approved for Public Release; Distribution Unlimited

I7 OISTRIBUTION STATEMENT (61 . abo~ aEmd i Bloc k "1. it EeWai m ue)

No restrictions

I. SUPPLEMENTARY NOTES

19. EY IWORDS (C4M . an muewgeo aide II leosoro OW mdietty hr weak emaosokr)

Programming Languages

War Games

30 ABSTRACT (Conom anW eovwae sdde It neco em md Id.II b a lee smoin)

see reverse side

DDI jA00N 71 1d73 4DITION OF I NOV 6S IS OBSOLETE

SECUAITY CLASSIFICATION Ol THIS PAGE (Whon Data Ent td)

SECURITY CL.ASSIFCATION OF T1i4S PV*IALWhus D41 Okel 8.6

This report describes the motivations
/ behind the development of the RAND-ABEL

programminy language and some of its novel
features. hAND-ABZL was designed to meet
the needs of the Rand Strategy Assessment
Center, whicl is building a larle system
for automated war gaming in which separate
rule-based mcdels represent U.S., Soviet,
and third-country benavior. To satisfy the
requirements for speed an'd transparency,
tho lanquaqe was designed to be: (1)
rapidly coopilible and ex cutacLe; (2)
self-docu,,enting; (3) understandable by
nonpcoqrammer domain experts after modest
instruction; (4) reasonably easy to learn
and use, espccially for modifying or
incrementaliy extending existinq code; (5)
portable acrcss different computers; and
(6) well suited to development of larle and
complex rule-based simulations. Certain of
its features are unilue: the ability to
express directly in PAND-ABEL source code
such natural structures as decisiou tables
(isomorphic Pith decision trees) and order
tables, whict lay out orders to be executed
sequentially, dnd its novel
declaration-ty-example feature, wiich is
useful far rule-based programs with
enumerated variaoies and many distinct data
types. PAND-A3EL has built-in support for
a data dicticnary for communication between
separate Aodules.

SuCUMITY CLAWaIPICATION O r T1IS PAGI[(Wh DmW 8ieMOe6

R-3274-NA

The RAND-ABELT
Programming Language

History, Rationale, and Design

Norman Z. Shapiro, H. Edward Hall,
Robert H. Anderson, Mark LaCasse

August 1985

Prepared for the
Director of Net Assessment
Office of the Secretary of Defense

A Report from
The Rand Strategy Assessment Center

Rmnd
1700 MAIN STREET

P 0 BOx 21I
SANTA MONICA CA 90406, 218

A POU PM PUUC MIAMSEI DISTIINDLM UNLIMITED

PREFACE

This report describes the motivations behind the development of the
RAND-ABELTM programming language and some of its novel features.
The RAND-ABEL language was developed at The Rand Corporation
for use in writing complex rule-based models as part of a system for
automated war gaming. The language was designed and implemented
for use by the Rand Strategy Assessment Center (RSAC), which is sup-
ported by the Director of Net Assessment, Office of the Secretary of
Defense.

RAND-ABEL is an evolving operational language. This report
describes some of RAND-ABEL's features as of July 1985. It is
intended for military analysts, modelers, and software engineers
interested in new programming languages suitable for large rule-based
simulations, including those using expert system techniques. It also
serves as an introduction to the principles underlying the design of
RAND-ABEL for programmers using the language. A complete
description of the RAND-ABEL language is contained in the authors'
forthcoming Rand Note, The RAND-ABEL Programming Language:
Reference Manual.

Inquiries and comments on this report are welcome. They may be
made directly to the authors or to Paul K. Davis, director of the Rand
Strategy Assessment Center.

((
_ _ _ Ii ''

•~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~t •.C,~mmmmm~.-.ram.- m~,,mnmm, -,,p mmmmmn

SUMMARY

This report is one of a series describing a new programming
language called RAND-ABEL. The principal objective here is to
explain in some detail the rationale underlying RAND-ABEL's design
and to describe certain RAND-ABEL features that are unique or
unusual. A secondary objective is to describe RAND-ABEL's develop-
ment history, which may be of interest to computer scientists because
there are so few discussions in the literature of how such developments
actually proceed.

RAND-ABEL was designed to meet the needs of the Rand Strategy
Assessment Center (RSAC), which is building a large system for
automated war gaming in which separate rule-based models represent
U.S., Soviet, and third-country behavior. The decisions from those
models then become inputs to a simulation of large-scale crisis and
conflict. Primarily because of requirements for speed and trans-
parency, it was necessary to design a new language. Upon reflection,
we determined that the language should be: (1) rapidly compilable and
executable; (2) self-documenting; (3) understandable by nonprogram-
mer domain experts after modest instruction; (4) reasonably easy to
learn and use-especially for modifying or incrementally extending
existing code; (5) portable across different computers; and (6) well
suited to development of large and complex rule-based simulations.
Later, we concluded that it is highly desirable to add interpretive
features and incremental compiling, especially if RAND-ABEL pro-
grams were to be written by analysts with only modest programming
skills.

To a substantial degree, RAND-ABEL's design derived logically
from these requirements coupled with certain beliefs we hold concern-
ing languages for RSAC-like applications. Throughout RAND-ABEL's
development we have emphasized: (1) language features thought
natural to the intended users, with particular emphasis on two-
dimensional structures, such as decision tables, that are cognitively
efficient and logically transparent; (2) readability (even at the expense
of efficient initial coding); (3) strong type checking; (4) syntactic con-
ventions minimizing the scan-ahead needed to resolve ambiguity; and
(5) orthogonality in the sense of not using Ln operator such as "+" to
represent two different concepts.

Certain features resulting from this approach are unique and, we
believe, a contribution to the state of the art. In particular, the ability
to express directly in RAND-ABEL source code such natural structures

V

Vi I HE PAN) ABEL. 'IR(,iAMMIN(, I,.\(I .\,F

as decision tables (isomorphic with decision trees) and order tables,
which lay out orders to be executed sequentially, have proved in prac-
tice to be enormously valuable-to both writers and reviewers of code.
RAND-ABEL also uses a novel declaration by example feature, which is
especially useful for rule-based programs with enumerated variables
and many distinct data types that otherwise would require separate
names. Associated with RAND-ABEL is built-in support for a data
dictionary for communication between separate modules.

RAND-ABEL is currently implemented as a preprocessor for the C
programming language under the UNIX operating system, which
makes it quite portable across different computers. In its present
environment at Rand, RAND-ABEL is used with a data dictionary, a
data editor, and a special capability permitting co-routines. This has
been essential for representing naturally in computer code the various
objects of a hierarchically structurcd system (i.e., various military and
national command levels). It has also been essential in permitting
RAND-ABEL code to accommodate scripts (time sequences of com-
mands or actions to be performed), which are important in many
expert systems.

Although it is too early for a definitive assessment, RAND-ABEL
appears to be successful in achieving most of its goals. In particular, it
can execute a rule-based program of approximately 4000 lines in about
a second or less, corresponding to approximately 1 millisecond per rule,
on an unloaded VAX 11/780. It produces succinct readable programs,
and has been used successfully by a multi-team development project.
Its principal shortcoming so far has been that it has proved more diffi-
cult to learn and write than we had hoped. We are quite confident
that this shortcoming will be greatly reduced with the imminent addi-
tion of interpretive features and incremental compiling of the data dic-
tionary. Even then, writing complex programs will be more difficult
than we had expected, but the difficulties we observe are increasingly
related to fundamentals such as the inherent complexity of the
phenomena we are simulating. Other improvements planned for
RAND-ABEL in the very near term (during summer 1985) include.
sets, structures (i.e., records), pointers, transcendental functions, more
succinct declarations, and many more applications of the two-
dimensional Table statement.

Based on our experience, we expect that RAND-ABEL will be of
value for other applications requiring a highly readable language, fast
performance, and early discovery of errors. It is especially suitable, we
believe, for complex models in which these requirements are especially
stringent.

ACKNOWLEDGMENTS

The design and implementation of RAND-ABEL to date have bene-
fited from comments, usage, and suggestions by Paul Davis, Herbert
Shukiar, Steven Bankes, William Jones, ,Jean LaCasse, Arthur Bullock,
David Shlapak, and William Schwabe. Bill Jones "walked on grass"
(see the subsection "Build the Sidewalks Where the People Walk"); his
use of tables of information in particular inspired our development of
the Table statement. ,Jean LaCasse's study of ROSIETM use by the
Rand Strategy Assessment Center (RSAC) was particularly helpful,
and she wrote the first RAND-ABEL program with content.

We especially wish to acknowledge strong and continuing support
for the development of RAND-ABEL by Paul Davis and Herb Shukiar
of RSAC. Paul's stubborn refusal to be satisfied with anything less
than our best effort at meeting RSAC's real needs, Herb's effective and
knowledgeable guidance, and their allocation of resources to RAND-
ABEL when its future was uncharted are responsible for RAND-
ABEL's success to date.

vii

CONTENTS

PREFACE ill

SUMMARY v

ACK NOW LE)G MENTS vi'

Sect ion
I . INTRODUCTION I

11. RSAC D)EVELOPMENT PRIOR TO RAND-ABEL. 4

Ill. REQUTIREMENTS FOR A NEW PROGRAMMING
LANGUAGE................................... 7

IV. THE EVOLUTTION OF RAND-ABEL 12
Psuedo-ROSIE................................. 12
RANI)-ABEL as a Language...................... 14

V. SOME PHILOSOPHICAL UNDERPINNINGS
GUIDING, RAND-ABEL DEVELOPMENT............ 17
Build the Sidewalks Where the People Walk............ 17
Languages S-'hould Be Self-Documenting............... 17
Minimize the Scan-Ahead Needed to Understand
a RANI)-ABEL Statement........................ 18
Two-IDimensional Language Structures Are Good
for People and Therefore Good..................... 19
Orthogonality.................................. 20
Emphasize Readability over Writability............... 21
Strong Type Checking Is Good..................... 21
D~efault D~eclarations Should Not Be Used.............. 22

VI. IMPORTANT FEATURES IN THE RAND-ABEL
LANGUAGE................................... 23
The Table Statement............................2:3
Declaration by Example.......................... .31
Translation of RAND-ABEL into C Source Code........ 33
[Data Dictionary................................ 34
Co-Routines.........................35
Documentation as an Integral Part of
Language Development.......................... 36

ix

x ll.,' PA\\ I) \ I-'A ll1((J(;1 1 ', 1 { ' , { |

VII. CURRENT STA'I' IST AN) FUTURE I)IRECTIONS :18
Preliminary Assessment of' RAND-AHEI. 38
Future I)irectiO(ns 39

VIII. CONC L "USIO N 42

REFERENC ES 4:3

I. INTRODUCTION

This report discusses RAND-ABEL,' a new programming language
developed during the past 18 months at The Rand Corporation. One
question must be asked and answered immediately upon making that
statement: Why does Rand, or the world for that matter, need another
programming language'? In essence, this whole report is a response to
that question; it presents the background leading up to the decision to
develop RAND-ABEL, the requirements that could not be met by an
existing language, and the novel features of RAND-ABEL that resulted
in meeting these requirements.

For now, the short answer to "Why RAND-ABEL?" is: A team of
people developing a complex rule-based ' simulation system, who were
experts in the subject matter of the simulation but not in program-
ming, needed a highly readable, fast-executing simulation development
system that was portable across computing machines. Existing
languages were not adequate. Also, as will become clear below, the
time and cost for developing a new language were relatively low,
because we stood on the shoulders of a giant: the C language and its
supporting UNIX :' system.

Beyond answering the "Why RAND-ABEL?" question, we believe it
is important to present a case study of the development of a new pro-
gramming language, to show the real-world considerations involved, the
compromises inevitably made, and the extensions and insights that
occur in mid-process that enrich the final result. These considerations
do not traditionally appear in a language reference manual (and, fol-
lowing tradition, do not appear in the RAND-ABEL Reference Manual
[Shapiro et al., 1985a], but affect the design and applicability of a
language and should therefore be understood by its users.

This report also discusses the novel features of the RAND-ABEL
language, which we feel are a contribution to programming language
design. These features include: use of two-dimensional tables of infor-
mation as a programming language construct; declaration of identifiers
by giving examples of their usage; translation of RAND-ABEL code

'The name RAND-AHIEL stands for nothing in particular.
'The term "rule-based" is sometimes reserved for programming systems having a

built-in inference mechanism interpreting a set of rules having a standardized form. In
this report, we use the term more generally to mean the specification of logic that is pri-
marily in an "If.. then" form or else is described by decision tables.

! NIX is a trademark of AT&T Bell Laboratories.

L. it,,t the lprot(tY!)t oersion ti lRAN I) AlRlAl heitamy i~iel for tithe
colist ruct ion of agents. aasts thli.'ii-,tle utgge"tedl new facilities. ()r
sonlet ImIes Ine w hacII II its suggested I t tiiiscl% c I hrmuigh I he II pat terns we(
tibse rved [Ii their usage. S in-e HA\ND) A BEL. a iiea nt fromti the start

ats at languiage ft r st rat egitc arm \st s, ariakv- %%e re t aken ats arn inimr
tant ttiiulistt e ti all dlesigni ct tisidltrat im is. The' pIint Is well niiide h\

a torv relatedi c! ri rig des in 'lisctissit Irs

Onie ila\. Ulilt'rt Huitchins. then lt resiiltii (It t' I ii\vrslt\ (d ('II
cago. voas, talking Ait h t he camus D irectr it Hiiliirg. mnid
irinds. The I irecoor handed Illtthins, an aerial 1) iot.raph tit IhII(

camiils. sho~wintg where the stud~ents had worni hrtwri path., ihrotigh

thIe heatit i il lawnis 1)- K taking shortcuts arig t he sidtwalks.
Humtt-hjns exclaimied. "T'hen, that's where %iti shiull buildithe .idti

w.a 1k s'

Perhaps the most important "sidewalk" inI the RANDI ABFIl
language is the concept itt at st atemnent t hat di retkl i nt- rltorates a
two)-dimiensional table of' int'ormiat ion. A senYilor Rand anial\ st Bill

Iiie.was observed earl. in RAND)ABEI.s uisage I regiirl. rely on
tables o4 infitrirat ion as aI concise vet toriiplet, eiisili, Fn it1 the
opt (ins, to he considered in at part icuilar situnat ion, (or the t-ct tif orders

to he protcessedl in some consecttive mian ner. Hle t hen rp~ent 1inme
translating this inftormnation into itre verlitse and less i~~ii 5 rules (or
stat ernent. -in RA NI)-AB1E1 L Members of the design team decided t hat
hese tables were a nat ural con~struict that shtui 1(be direct lv i nt-or-

po rated, although their two-dimensional structurie is co mplex anl can-
riot he handled i)w normal left-to-right parsing algorithms.

In our first at tempt. tabular information was handled quite (hf'-
ferentlv from the current mechanism: at sequence of' one-line "tabular
funct ion calls" cotnsist ing of' a f'unction name fitilowed by a s;pace-
separated list itd parameters. This allowed function calls to be orga-
nized into a tabular f'Orm if' desired, but did not make tabular no~tat ion
aI part of' the language syntax. We then observed that the most c(im-
mnon use oft this featunre was toi create a block oft calls, all using the
sarne fiinctitmn namne. but with varying parameter values. InI our con-
tinning attempt to make these "proto-tables" as terse as possible, we
then replaced the multiple ~cc'urrences oif the function name within the
table bodY with at single occurrence in the table header.

We utriginall-v used "Begin Table" and "End Table" brackets.
Within the table's header, the order in which parameter names were
listed as cotlumn headings determined the matching of columns to fiinc-
t.ion parameters,. (That is. the first -- leftmost -- column was assumed to
contain values f'or the first -mentioned parameter. etc.) The next step
in the table statement's evolution was the Macro Table, in which a

ven bhx t hiese earlv steps. (iirrent lv. c mipi !cd RA NI) Y ABF k I ruleI
ltasedl programus can execuite ailplrtxiniatelv 4000)(lilies III about aI seottt

o)r les s. o)r aithotit at rIii sec(utti per rulev, onl an killIoa ded %A AX I I /,'S(1.

I uring" tis t inre. I it get ,otIne cajpabl iv tjticklv, thle U agug
itself wais uised to d(ecla re dat a it ems and perfu rir o t her h(ousekeepinrg
cho res. Moidelinrg logic was writ ten in the higher- level pseudo R(S IFr,
language, linked wit h C programs. The translator extracted t hese
li gher -lev~el statements and replaced theml with Ci language equilvalents .
W\ithIiin one or two(mo nths f'rom thle decision to create anl intermiediate
pseudo- ROS IF language, the oogic of the Scenario Agent wasI, sit i
cessfull liv t ranslat ed into inl Intermediat e language t hat coul bI1(.

aitoaicallv translated 'ito C . From this p oint onI, extenlsitl. Mo nid
ni1(fif icat io ns to the Scenario Agent could be fperl'Orifled direct lv In thbe

nitermediate language. Pseudo- ROS I took onl at Iife of' Its own, freedl
t'romi its R(SI F ancestor. This new language was cal led Ak Fl . (Thle
pretix RAND - was later added to (list inguish the language f'romi other
Systems and prod(ucts with similar names.)

RANI)-ABEI. AS A LANGUJAGE

The ev olut ion of' thle I{ANI)-AEL language, once RANI)-ABEL
was perceived as a separate entity, was driven by f'Our different themies,
although not necessarily all at otnce, and with varying priorities. First,
design discussions began shift inig f'romn "How dto we handle ROSIE con-

st ructions' to "What should a modeling language really contain.?
Second. the initial versictn of' I{ANI)-AIEL relied onl the C language to
protvide such fatcilit ies as Iterat ion and declaration of' local variables
(since the initial goal of' quickly creating a jpseudh)-ROSfE did not
require or Just If. r-Inventing sonme commotn programmiing co(nstructs
already available). Trhis, however, required a programmer's intimiate
knowledge of' the C language. violatirig the goals of' readability and
writalbiliv of' RANI)-AI3FL code. So a secoind theme of' RANI)-ABEI.
language development was to make RAN[)-AB-EL a self-conta ied,
consistent, and high -level language that could be understood as a single
c'onceptual ent itY.

Third. the expanding concept of' a dat a dictionary linking all
modules together, and the needl fIOr co-routines, required new suppo)(rt -
.Ing facilities in the RANI)-AI3EL language.

a toad iii bet ween itt and 21) users. Regret nahix. we never bo t hered ejither to runr
bectde c% IN)~ ftimtoes for a more precise walt (lock timing, or to) separate its exection
from its interactive aspects so that the tUNI f ttm! command coufd be run on it

E Even if' H()SIF-in-(" was developed sticcessfully, on lime, Ilhe
resulting speed icrease might still riot be adequate for H{SA(
needs.

* We fel that the requirements o the RSA(' might best he
served by some new language features; experimentation with
new language facilities might well be easier while contiming t
pursue a specially designed language, nrot trying to ret rofit these
features into the existing language ROSIE.

* Finally, the RSA(' team dealing with these language issues had
"a head of steam up" toward developing a language tailored for
RSA('. tAt this time, using yacc and l'x, the design team
already had a kernel of the new language running as a test.)
Giving a go-ahead for a new language development would main-
tain the interest and morale of the RSAC system design team.

After reviewing the situation, the RSAC program director concluded
that we should go ahead on language development because the resulting
system had the potential to) be an order of magnitude faster even than
ROSIE-C, which could be critical for the RSAC's unusual objectives
(gaming and simulation); also, we were far enough along by that time
to be confident of being able to develop an operational language
reasonably soon, while considerable uncertainties still existed regarding
the difficulties in reprogramming the ROSIE language into C. Finally,
we had begun to discuss a number of new language features that
seemed especially attractive, features that were not likely to exist in
ROSIE for some time (e.g.. tables).

Development of the new language continued, with continued reliance
on the UTNIX tools vacc and lex. By using these general-purpose tools,
we were able to achieve both speed and generality. (Generality was
important because we had some new features in mind for the Mark III
versiI)n of RSAC, and wanted to create a system into which they could
be gracefully introduced.)

Results of initial tests of the new language were dramatic: Although
precise timings were not done, it was clear that the resulting compiled
C code executed thousands of times faster than the equivalent ROSIE
code. Run time was similarly dramatically improved. The new code
ran on a time-shared VAX 11/780, which we estimate to be about 10
times slower than the dedicated I)EC-20 formerly used. In spite of this
machine disadvantage, the new Scenario Agent ran on the VAX in
tinder a tenth of a second.2 At least the efficiency goal was being met,

'On a DEC 206(with a single user, the Scenario Agent's main function,
Decide 'p tcx. toKk ten minutes of clock time. The same function, recoded into the first
version of RAND AHEl,, took less than 0.5 seconds of clock time on a VAX 11/780 with

....

IV. THE EVOLUTION OF RAND-ABEL

PSEUDO-ROSIE

The Scenario Agent within the Mark 11 version of RSAC, which
described the actions of other parts of the world except for Blue
(United States) and Red (UTSSR), was written in the ROSIE language.
ROSIE is a rich, complex language whose parsing is necessarily com-
plex. But recall that only a sulbset of ROSIE was in practice being
used. Therefore, a tactic suggested itself:

1. Hand-translate existing ROSIE code for the Scenario Agent
into a much simpler "pseudo-ROSIE"'

2. Write an automatic translator that could turn pseudo-ROSIE
statements into valid C language statements

The hand translation step did not translate ROSIE directly into C
because of the goal of having statements readable by analysts. This
two-step strategy was thus adopted. A first version of a pseudo-ROSIE
to C translator was written, relying on the UNIX yacc program for syn-
tactic analysis and on a lexical analysis program written earlier.

Some initial experiments were run using this translator and the
results were very encouraging. At this point, a major management
decision was required: whether to (1) risk the RSAC on the develop-
ment of a new language, (2) continue using ROSIE (which existed, and
was much liked by users), or (3) await a scheduled reprogramming of
ROSIE in the C language and thereby ameliorate the speed problem.
This decision was complicated by several factors, among them:

" It was not clear how long the reprogramming of ROSIE would
take; the problem was hard and the opportunities for delays
legion.

" The code for the Scenario Agent in ROSIE was not as readahle
and transparent to analysts as desired; it contained excessive
prose, making it difficult to tell whether all cases were really
covered, and what the essential decision tree lurking within the
rules really was.

'The definition of a simple pseudo-ROSIE language gradually emerged from a series
of meetings attended, in addition to most of the authors, by Jean LaCasse, Jim Gillogly,
and (sporadically but importantly) Bill Jones.

12

i(FII-kF M 1I"1-A I , Ffbl M \ NFV-H I RA M %I AIN(; L.ANG I .AG F

standability of the translator, since they force a table-driven coding
style that separates the unique features of the language being
translated from the details of lexical analysis and parsing algorithms.

As a result of the above design considerations, a translator was to be
developed that could take certain statements describing a model, con-
sidered to be understandable by policy analysts, and turn them into
statements in the C programming language. This leaves open the ques-
tion of what form those statements should take, and whether those
statements should form a complete modeling language or else be an
extension to the C language. In the next section, we describe how a
language now called RAND-ABEL emerged from the process of
developing such a translator.

10 THI. RANI AHEI. 'IR(GRAMMIN' IAN;I AGE

executed in a computerized political-military war game between Red
and Blue (the Soviet Union and the United States). In this case, each
line requires that a simulated diplomatic message be sent to the coun-
try shown requesting that that country take sides, cooperate, partici-
pate in the European war, and participate in the Southwest Asian war
Rs indicated. The order table is a part of a simulated Red war plan.
The second line, for example, corresponds to Red sending Austria a
message saying "Stay neutral and do not cooperate with Blue!"

Define RGCL3-intI-communication-action

Table Red-to-3rd-countries

european- swa-
country side cooperation involvement involvement

Afghanistan Red Reinforcement

Austria White Uncooperative Normal Normal
Bahrain White Uncooperative

I...1

Poland Red Reinforcement Combatant

I...]

Yugoslavia Red Reinforcement Combatant

End.

The above table meets our criterion for being a self-documenting state-
ment. It is also a valid statement in the RAND-ABEL language; Table
statements are discussed in more detail in later sections.

To handle the needs for modularity and team development of com-
plex systems, the system should have a data dictionary that defines all
global data, so that communication between separately compiled
modules always uses common terminology and assumptions. It should
also allow co-routines,2 permitting processes to become dormant and
reawaken while retaining context.

The following additional design consideration is not really a goal,
but rather a practical strategy: Use the UNIX tools lex (a lexical
analyzer) and yacc (Yet Another Compiler-Compiler) to aid in develop-
ing this preprocessor for the C language. Use of these tools speeds up
the development process, and aids portability because of the
widespread availability of the UNIX system on a variety of computing
machines. They also contribute to a certain cleanliness and under-

2Co- routines are discussed further in a later section of this report.

h}Itt I FM I"\ I H F H I \ \I\'\ I'H 'H. \MMIN . I *,\I ..\,I .i

The C language does riot meet the goals of' readability and easy writ-
ability. Therefore, there should be some higher-level language tailored
to creating complex simulations; processing of this new language
should result in C code, which can then be compiled in the normal
nanner.

The goals of' readability and writability should be met by a language
that is "self-documenting." We use the term self-documenting to mean
a language whose meaning can he understood by someone not inti-
matelv familiar with the details of the syntax of the language. We
deliberately do not use the term "English-like" here, because that term
has been misused enough to create complications-a situation that is
exacerbated by ambiguity in the term: Do we mean using English
words, syntax, and grammar, semantics, pragmatics, or all of the
above? We mean none of' the above, but rather: An English-speaking
person that is familiar with the subject matter being modeled should be
able to read the programming language in which the model is expressed
and understand what is meant.

Another reason that "English-like" is inappropriate to describe a
language like RAND-ABEL is that the twriter of RAND-ABEL pro-
grams does not rely on his knowledge of English in writing those pro-
grams (unlike such programming languages as ROSIE). This is delib-
erate, so that there is no confusing assumption made by the writer of a
RANI)-ABEI. program that some rules of English apply as valid
RAND-ABEI. syntax. It is interesting that we explicitly do not want
to confuse writing of RAND-ABEL with English, yet we expect to rely
on the reader's knowledge of English to help interpret RAND-ABEL
statements -even to the extent that someone totally unfamiliar with
the RAND-ABEl. language, but familiar with the subject matter of a
RANI)-ABEL. program, should be able to interpret that program. In
fact, precisely this has occurred in RSAC demonstrations: military
officers have stopped the demonstration, looked at the RAND-ABEL
logic defining an agent, understood it, and recommended changes in
the logic as an interesting exercise.

We note that a "self'-documenting" language might differ in other
Important ways from an "English-like" language. The syntax of the
English language (or any other natural language, for that matter) is not
commonly considered to include many constructions that are under-
standahle to every educated English speaker; examples are simple
mathenatical notation, tables, and charts. The following excerpt does
not foll,,w any English language syntax that we are aware of, yet
',hoild be immediately understandable to the reader (who, having got-
tel thw, tfar. qualifies as an English reader). This is an example of an

rdlr til," each line of which corresponds to an instruction to be

I I I F .A%1I \i I lF I i100. AI 1%11"+,(, I *,(,I \14

or some equivalent. Yet an important goal was that, even for
these complex programs, any interested person familiar with
the subject matter of an agent should be able to read the
(source) code for an agent and understand the assumptions and
logic underlying its behavior. It would also be highly desirable
for them to be able to make straightforward changes to the
code, once the underlying structure for an agent had been
developed.

* Easy to write with little training. Programmers or strategic
analysts knowing one high-level programming language fairly
well should be able to learn this new language easily, and be
able to write agents after some study and practice (especially
when using existing agents as a guideline and example) albeit
with consultations with professional programmers.

* Allow creation of complex simulations by groups of
developers. The language must be rich enough to allow com-
plexity and subtlety in models, and to handle large models.

The RSAC system consists of several agents acting together--
ideally overlapping each other in processing. Therefore, it
should be possible to create modular systems in which the vari-
ous modules operate in a multiprogramming mode on a single
CPU, or else execute in parallel on separate CPUs with some
intercommunication between agents.

o Solution required quickly. If an existing language is to be
modified or a new programming language developed, it should
not require a major diversion of project resources. A quick, effi-
cient solution is needed.

The RSAC system design team concluded that no existing program-

ming language adequately met all these requirements. Therefore, the
design team now concentrated its attention on options for developing a
new language. From the above set of requirements, the following
design goals were synthesized.

C is a good language for satisfying the requirements for portability,
execution speed, and compilation efficiency. C, and its associated
operating system, UNIX, were well known to system developers at
Rand, since UNIX has been operational within Rand for over 12 years.
Therefore, the new language should be related to C in some manner.

'Other languages that might be considered are: BASIC (portable, but not powerful
enough), FORTRAN and COBOL (not sufficiently structured), LISP (full version not
available on the VAX when we needed it), PL/I (restricts portability primarily to IBM
mainframes). Pascal (similar advantages and disadvantages to C. with C better known at
Rand), and Ada (no compiler had yet passed the DoD standard, and there were insuffi-
cient program development tools available when the development effort began).

III. REQUIREMENTS FOR A NEW
PROGRAMMING LANGUAGE

The previous section outlined a set of problems, constraints, and
needs for a programming language arising from the RSAC project.
Project discussions about these needs led to a first conclusion: moving
the entire ROSIE system onto a VAX minicomputer would not meet
all project needs.

Project members therefore distilled the earlier discussions into a set
of requirements for a programming language:

" Speed in execution. The new language should execute at
least hundreds of times faster than did the same rule-based
models in ROSIE.

* Speed in recompilation. RSAC "agents" are developed and
enhanced over time. Writing a new agent requires perhaps
thousands of compilations of the code at various stages of
development to achieve a stable, useful agent. (We are planning
an interpretive version of RAND-ABEL for developmental pur-
poses, but it is meant to supplement, not replace, compiled
RAND-ABEL.)

" Portable. The inability to move existing code easily from a
DEC-20 to a VAX computer helped precipitate a remedy. Proj-
ect members did not want to be in the same situation again,
and the RSAC had a requirement that its programs be transfer-
able to government agencies. Thus, the language chosen to
represent RSAC agents should be available on a number of
popular computers, and easily portable to new ones.

* Readable by "real people." Real people are defined here as
civilian or military strategic analysts with knowledge of a sub-
ject domain (e.g., NATO defense forces, Soviet command and
control systems) or the RSAC project's Department of Defense
sponsors interested in studying models developed by Rand
analysts. Almost all such people are not professional program-
mers. Yet major parts of the programs being developed for the
RSAC were large, complex systems similar to "expert systems"
in artificial intelligence, containing hundreds or thousands of
rules. This type of program was written with heavy use of
enumerated variables (so that lists of choices and other finite
lists of elements could be highly readable) and If ... then rules,

7

I*1lK IRANI) A L II(P(N;IAMM IN(; I..N(;I ,I.

In considering how to move, or recode, the Scenario Agent's ROSIE
code, our colleague Jean LaCasse studied the actual ROSIE (ode
representing the agent, and found that it did not use all of the special
features of ROSIE, such as the built-in "inference engine" that
automatically applies rules to a situation represented by a data base. It
might therefore be possible to reprogram the agent(s) in a simpler
language, so it would not be necessary to move all of the ROSIE sys-
tern onto the VAX. Thus began a set of language design and discus-
sion meetings regarding new programming options.

HN,"-V 1K I'F\IV \ I IPRI(M< I'0)I,.NI) AIH I,5

Blue Team Control Team Red Team

Force orders Force orders

Force

Military Operations Military
situation situation

Military
SIttuation

Political Political

situation situation

Blue Requests Scenario Requests Red
Agent I Agent U Agent

Nonsuperpower Nonsuperpower
responses responses

Time
advance

Time advance Time advance

Systems
Requests Monitor Requests

Fig. 1-Structure of RSAC automated political -military gaming

At about this same time, we began studying how agents representing
the Red and Blue forces could be programmed within a next-generation
Mark Ill version of RSAC. The notions suggested in a conceptual
model design [Steeb and Gillogly, 1983J required many rules, games
within games, and effective communication between agents. Also
required were explanatory facilities for debugging and to aid analysis of
a model. All this led to the need for some new programming features
that were not then available, or that could be constructed only with
difficulty.

rI

II. RSAC DEVELOPMENT PRIOR
TO RAND-ABEL

The Rand Strategy Assessment Center is, at this writing, operating
the Mark III version of a war-game modeling and simulation system
[Davis, forthcoming]. The Mark I version was demonstrated in 1981.
The Mark 11 version was begun in January 1982. It consisted of a Blue
Agent, a Red Agent, a Scenario Agent, a Force Operations module, and
a Systems Monitor [Davis and Winnefeld, 1983J. Figure 1 shows the
overall architecture of the Mark II RSAC system.

By late 1982, the Mark II system was operating as a collection of
computers and programs, with people acting as manual links between
the various system components. The Scenario Agent, containing logic
for the behavior of countries other than the Soviet Union and the
United States, was written in the ROSIE' language [Fain et al., 1981;
Hayes-Roth et al., 1981]. ROSIE is a general-purpose artificial intelli-
gence language developed at Rand for the building of expert systems
and other Al applications. It is interactive and interpretive with a
built-in inference mechanism for applying the rules comprising a pro-
gram. The rules are written in a fixed grammar that resembles a styl-
ized kind of prose English; the rules therefore appear quite readable,
although the meaning a human reader extracts from a ROSIE rule and
the logic a computer extracts from it might differ in subtle but impor-
tant ways. A typical ROSIE rule used in the Mark II version of RSAC
is the following:

If Strait-of-Hormuz is blocked and the actor is
economically dependent on Strait-of-Hormuz,

let the actor's threat be indirectly serious
and record serious [threat] as "economic
losses from Hormuz blockage".2

The [I brackets in the above example delimit an unexecuted comment.
The ROSIE language satisfied some of the RSAC's goals (namely,

flexibility and readability) but it had some shortcomings: (1) Most
importantly, it ran too slowly for this application, requiring minutes for
each cycle of "play" of the scenario model within the simulation; (2) it
was written in the LISP language, operating on a DEC-20 computer,
and the DEC-20 was being replaced by a slower VAX computer.

'ROSIE is a trademark of The Rand Corporation.
'From Schwabe and ,Jamison, 1982, pg. 43.

4

1IN IFROM ("H q I ION

The function is delimited by the Define and End statements. The
Record statement generates an execution-time trace file. The table, a
simplified example, is executable code. It orders 10 percent of U.S.
tactical aircraft to Southwest Asia. It also orders deployment of one
division of U.S. airborne troop

Although RAND-ABEL should be more generally applicable, the
reasons for its character are best understood in the context of the
RSAC project, as it existed just prior to RAND-ABEL's development.
The next section describes this RAND-ABEL prehistory. With this
background, we then describe the resulting requirements for a new pro-
gramming language, our attempts to meet those goals, and our assess-
ment of our success to date in doing so.

|I

2 THE RAND) ABEL. PROGRAMMING~ IANW)A) E

into C language source code, rather than complete compilation of it;
and very strict type checking.

The RAND-ABEL language cannot be understood without some
understanding of the Rand research project whose requirements led to
its development and test: the Rand Strategy Assessment Center
(RSAC). The RSAC is an ambitious effort to develop a war-game
modeling and simulation system composed of programmed "agents"
representing the devisionmakng of the hierarchical command struc-
tures (,I the United States and the USSR, as well as third parties
involved in the scenario. iThe purpose and design of RSAC are
described in)avis and Winnefeid, 1983; Davis, 1984.) The logic
governing the agents' behavior should he describable in RAND-ABEL
by policy analysts and he modifiable and extendable by them. The
resulting code should bw readable by persons knowledgeable in the sub-
ject matter but unfamiliar with programming in general and RAND-
ABEL in particular. Professional programmers or computer scientists
should, however, e involved in the implementation of complex simula-
tions to create a sound, modular foundation that permits graceful
modification and extension.

The reader can assess whether some of these goals have been
achieved by reading examples of RAND-ABEL code. Here is a typical
example of a RANI)-ABEL statement:'

If Deployment-authorization of SWA (Southwest Asia] is Yes

then perform order-SWA-deployment.

Deployment-authorization is an array indexed by military theater, here

the Southwest Asian theater. Brackets enclose comments, used here to
indicate the mean ng of the acronym SWA. "Perform" is a call to the
function Order-SWA-deployment, which is operationally defined by the
following RAND-ABEL function:

Define Order-SWA-deployment:

Record "Deploying forces to Southwest Asia.".

Table Deploy

qty #-% unit-type unit-owner to-area

10 . Tacair US SWA
I # Airborne US SWA

End.
4Reserved words in RAND-ABEL are shown in bold type in this report as an aid to

the reader's understanding the structure of the language.

Id t I~II If \NI' * I4FI[. Iff ,% IIf N E\1i ,t .

compound RAND-ABEL statement, containing both declarations and
executable statements, could be used in place of a function call in the
table header; the order of the declarations of identifiers determined
their matching with the columns of data values. Finally, the link
)etween identifiers and table columns was made much more flexible by

creating column headers that were readable by both user and machine.
These "text islands" (later extended to allow abbreviations and
hyphens) name RAND-ABEL identifiers, and can therefore be
matched by name, independent of their ordering, with declared var-
ables or ftunction parameters.

Throughout this process, a major contributing factor to RAND-
ABHEl tables derived from Paul Davis' continuing interest in decision
trees as a natural means of logic representation. Although direct
representations of tree structures have yet not been made available in
RANI)-ABEL, decision tables are providing a useful compromise as a
natural and relevant means of communication. In discussions with the
RSA(' system design team, it became clear that the Table statement
had become encompassing enough to include decision tables as a spe-
cial case. The fbrm and content of table statements in RAND-ABEL
are discussed further in a subsequent section of this report.

V. SOME PHILOSOPHICAL UNDERPINNINGS
GJIDING RAND-ABEL DEVELOPMENT

RANI)-AEL,. or any other language, would quickly evolve into a
hodgepodge it' new features were tacked on as needed or as conceived.
From the beginning, our development of RAND-ABEI, has been
st ronglv guided by a set of philosophical principles we have come to
believe in through combined decades of the use of' programming
languages and the observation of others' use of them. We give here the
main principles we believe have affected the design of RANI)-ABEL.
Some of these principles should be of general interest, others are more
specific to formal language design.

BUILD THE SIDEWALKS WHERE THE PEOPLE WALK

This principle was discussed earlier, and is perhaps the most impor-
tant. The RAND-ABEL, language has been conceived first as a pro-
gramming language for a particular class of users (in our case, strategic
analysts, both within Rand and within the government), and second-
arily for other simulation modelers. How these users conceive of their
models, how they express them, and how it is natural for them to read
and write code expressing these models are the primary criteria to be
used in deciding what facilities RAND-ABEl. has, and how those facil-
ities are called upon. (An interesting but different approach from ours
to designing user interfaces in response to user requirements is
described in Good et al., 1984.)

LANGUAGES SHOULD BE SELF-DOCUMENTING

We have discussed our distinction between "self-documenting" and
"English-like" languages. Programming languages should be self-
documenting because the code rarely stays put; it is inevitably modi-
fied, extended, and rewritten -- usually by people other than the original
authors. This is especially true for the complex models worked on by
teams of analysts and programmers in concert, as in the case of the
RSA('. Effective use of tables, matrices, charts, and mathematical (or
chemical, etc.) notation can often condense pages of verbose English-
like code into succinct but eminently readable instructions for both
man and machine.

17

lt' I'}t'IF IRANH) ABEL, P'RO RIAMMN1ING; IANG;I MoV

MINIMIZE THE SCAN-AHEAD NEEDED TO
UNDERSTAND A RAND-ABEL STATEMENT (*)l

A growing body of literature indicates that people understand sen-
tences by absorbing k words, making a hypothesis about the meaning,
then reading the next word. If the successive words confirm the
hypothesis, they go on; otherwise they go back and rehypothesize. In
earlier RAND-ABEL statements, such as the assignment statement:

Let country be choice using readiness as criterion .

it was difficult to make an early, correct hypothesis about a RAND-
ABEL statement's meaning. (In the above example, it becomes clear
that "choice" is a function only after reading ahead and detecting the
keywords "using" and "as".) We therefore undertook to redesign parts
of the language to minimize the scan-ahead that was needed to
correctly parse a RAND-ABEL statement. To accomplish this, we
have started all RAND-ABEL statement forms with a keyword to indi-
cate the type of statement. For example, the above assignment state-
ment now is written:

Let country be report from choice using readiness as criterion

in which the phrase report from provides prior notice that a function
call is involved. It turns out that minimizing scan-ahead for readers of
RAND-ABEL has a serendipitous effect: it also makes parsing of
RAND-ABEL easy for computers. Almost all of RAND-ABEL is
LR(1), meaning that the interpretation of a statement can proceed
from left to right, never requiring a scan more than one lexical token
ahead to resolve any ambiguity. (The big exception to this is the table
header, which is handled by a specially written program, not an LR(1)
parser.)

It seems quite clear that people are adept at scanning and interpret-
ing a linear language, such as normal English sentences. But they use
a different mechanism to understand tabular displays-a mechanism
much more akin to picture or pattern interpretation. By creating for-
mal languages rich in two-dimensional patterns (now made possible by
ubiquitous CRT displays, tablets, mice, and graphics printers) we can
tap onto this other nonlinear information-absorbing mechanism people
possess, and thereby transfer more information, faster and more suc-
cinctly, between man and machine. Candidates for such two-

'Design principles marked with an asterisk (*) are technically oriented and may be
skipped by readers without a background in programming or language design.

tHIIAIS'HIP'Al. I NI)l*f'INNI ;S ()W. .*}H, I)PVH.(IMIKNI 19

dimensional information representation include: tables and matrices,
two-dimensional mathematical notation, and networks and graphs.
One of the authors [Anderson, 19771 has discussed an extension of nor-
mal computer parsing methods to handle the interpretation of such
two-dimensional constructions.

TWO-DIMENSIONAL LANGUAGE STRUCTURES ARE
GOOD FOR PEOPLE AND THEREFORE GOOD

Most computer languages do not use two-dimensional structure; for
example, if they are indented to show nesting of statements, that
indentation is ignored by the compiler. In this sense, the languages are
not self-documenting, because the structure of the language itself does
not aid in the interpretation. We believe that information conveyed by
such two-dimensional forms as indenting should be interpretable
equally well by man and machine. However, in spite of our enthusiasm
for two-dimensional constructs in programming languages, RAND-
ABEL at present pays no attention to indenting of programs; RAND-
ABEL's compiler (called the RAND-ABEL Translator) therefore would
not prevent misunderstandings such as in the following program:

If condition-1 then
{

For alpha:

Let r be report from function-1
using alpha as argument].

If r > 2.5 then
Perform function_2.
Let s be report from function_3

using alpha as argument-3.
Let p be report from function-4

using r as argument_4.
I

Perform function_5 using n as argument-5.)

In this example, it appears at first glance that three statements are
executed in the iterative loop headed For alpha:

Let r ...
If r > ...
Let p ...

In fact, the third statement, "Let p ... ", is buried within the "If r
." statement, and is not on the same level as the other two state-

20 1 1 tI P \ ,1 14 1 1',If % \ % .I-

ments. Similarly, the last statement, "Perform function 5 . is
really within the scope of the For loop, not the next sequential slate
ment after it.

For twenty y'ears, programming language designers have made
languages easy fo(r machines to parse, because machines were expensive
ani slow. Also , language users were tuirned off by such t rniattig re
strictions as F()RTRAN statenents that had to start in co lunin 7 (it a
punched card, and vowed to make all future languages just a string of
text with no artificial boundaries or restrictions, in addition, in an era
of line-oriented text editors (putnched cards being the lowest irmn od
such), it was difficult to create two-dimensional structures. All of these
constraints have been greatly reduced, if not eliminated.

Finally, we are reaching a stage where machines are fast enough anti
cheap enough that we can begin to optimize for people, not the
machines. Two-dimensional text editors allow the cursor to be moved
to any spot on a page, so that tabular arrays of data can he created in a
natural manner. We have observed that people are very good at
absorbing the meaning of a two-dimensional construct. 2 (The
widespread popularity of interactive spreadsheet programs, especially
with nonprogrammers, is one indication of the naturalness oft two-
dimensional information presentation.) By employing these constructs
in our programming languages, we often can make the languages more
concise and more readable. RAND-ABEL's Fable statement is a first
step. We believe much more can be done in this area, as our emphasis
shifts away from the machines and toward people.

ORTHOGONALITY

The word orthogonal, in its simplest definition, means mutuallv per-
pendicular. In mathematics, two functions that define orthogonal
planes are independent of each other. In the computer and other sci-
en('es, the term has come to mean that two concepts are independent
of each other within one or more categories of interest.

We have strived for orthogonality among the various concepts and
constructs of RAND-ABEL. More precisely, we believe that semanti-
cally independent const ri|t ions should have syntactically independent
representations. For example, the "+" sign is used to represent addi-
tion of both integers and real numbers, because the underlying concept
of' mathematical addition is the same for both. The "+" sign is not,
however, used in RANI)-ABEI, for string concatenation as it is in
some languages because that is a semantically independent concept.

"Some interesting o servations on the human predilection for two-dimensional recti
hnear constructs is contained in Hayes. 1985.

Inl the niani discussj(iis dunrig thle design alrid mjplernerit al loin od

HAND) ABI3F , or desire to achieve and preserve orthogonalitv ()I
language concepts was a cnitimal touichst one oA thle quaiit od our
design.

EMPHASIZE READABILITY OVER WRITABILITJY

I ri gramm ing languages are, Itth written and read. Th'le at tributtes
oft readability\ and writahilitv\ are not synionyimus. A language such as

AIT1 might be qjuite w&rit ale btY s"1trite familijar with the language.
because ()f its t rernendius ec'minuii'v ()f st vie; however, APL is famous
b in al h~io\ug thle jprtdutction otf "one -line pni)grarns that are hard to
read, heicause it this same ext reme terseness o)fst vie.

W henever aI 1 iice had to be made, we emphasized readabil ity ()of
I{ANI VABEFl . oer writability for the simple reason that programs are
read much moiiire o)ft en than writ ten. We note that in addition to

mit npri gran mners wanti ng to u nderst and their 1lic existing prograims
are alsoi ohfen read by programmers attempting to recall their lo)gic and

to mi difyN o)r extend the programs. We know of' no statistics on this.

bult It is- likelyv that once a line o)f co)de is written, it is read ten to o)ne

hundred tunes during its existence, o)ften 1)' people with less knowledge
i)t the pri igrai ni rig lanrguage than the writer.

STRONG TYPE CHECKING IS GOOD) (*)

A stmningl tyvped Iangriage Is onle in which the dat a tyvpe oft each

identifier must lie, decla red, with the usual rest rit (it i that it miust lhe

dlecla red beti ire th first uise o)f that ident ifier. M tilt ipass ci mu ilers

(art relax t his sec' md rest rictio n, but suc(h relaxatinl leads, t i suip
programming pract ites. sio it is not encouraged. In R~AND ABLV. it is

no t all' iwvd.)
S t riirg t vpt' check inrg alit tws the tyvpes itt all identiftiers being uisedl in

tipe rat i'is t(hi e checked. tisia lly' at cimiipil I i e, t1ii be sutre t hat the\
are ci insist ent. F n example, a string cannot be added to art inrd ger;

ink1h It igicai dlat a t vpes cartn he A NI ed and ()Red toi get her: an

en umerat ed dat a t v ca;n niit bei assijgned to a real 0(number t variable.

Somrie lanrguiages I most ml(ttiiv uk''I ,/l allo)w auto mat ic ctiercion
of da t a t v pes. si i that if' al Inappro priat e dlata type is uise(I. the con)

piler tries to "rniake it right" (e.g., bY co)ercing a string o)f digits inti) a
number, i~ in i nteger Into a tfit tinrg pi mt number). W~e believe imp/i-

2 ' 2 1 it ! kIIF \ 1 'lu-] Pll /\\M Nll%4. I \% .1, \(,1I

cit :' coercion of" data types in a programming language is not good prac(

tice, because I! it leads to mistakes in interpretation)etween ithe

writer an(t the reader (and due to the self-documenting natutre of

RANI)-ABEI,, each might assume they understood the meaning,

altho ugh each iinlerstan(s a different ineaning): (2) it leads t Iniis

takes in interpretation bet ween the writer and the compiler; and (31

re)resentation of information is important (for example, whether a

number is represented internally as an integer or floating point), and

coercions change rel)resentat ion wit hout informing anyone. RANI)-

AIEI does n() coercion, with one excepltion: in certain cases, if an
integer is used where a real number is required, that integer is inter-

preted as if it were a real number. RANL)-ABEL does not coerce a real
number into an integer, because it could well silently lose precision in
the process.

DEFAULT DECLARATIONS SHOULID NOT BE USED

RAND-ABEL does not permit def'ault declarations of' data values;
that is, there are no implicit declarations of identifiers, by their spell-
ing or first usage, or whatever. We believe it is good programming

practice to clearly define all terms in advance, and we require this dis-
cipline in RAND-ABEL programs.

We use the term nph (t coercion here in c(ontrast to x'XphcLt coercion in which the

programmer clearly signals which change of data type is to take place. as in the (

language statement: "in var = (int) char ptr.". This type of explicit coercimn of data
tNpes is occasionally useful, although at times overused.

VI. IMPORTANT FEATURES IN THE
RAND-ABEL LANGUAGE

There are features of the RAND-ABEL language that should be of
interest to persons interested in modeling and simulation, to program-
mers, and to programming language designers. In approximate
decreasing order of novelty, they are: two-dimensional constructs like
order tables and decision tables; declaration by example; RAND-
ABEL's translation into another high-level language; integral use of a
data dictionary for linkage between modules; and facilities for co-
routines. In addition, our use of very strict type checking, mentioned
in the previous section, distinguishes RAND-ABEL from many current
languages.

THE TABLE STATEMENT

General Comments

As mentioned earlier, one of the most important features of the
RAND-ABEL language is its use of two-dimensional table statements.
In fact, we currently (July 1985) have three types of RAND-ABEL
tables: (a) function tables, (b) macro tables, and (c) decision tables. In
each case the table includes a key word (Table or Decision Table),
header names for the various table columns, and a series of lines
within the table, each of which defines a separate RAND-ABEL state-
ment. The table types differ only in the way they convey to the com-
puter how to "read" each line of the table.

The Function Table

An example of a function table was shown above, on p. 10. It is a
function table accomplishing the job of issuing a series of orders to be
performed by a simulation model. The function Red-to-3rd-countries
results in a series of messages being sent from Red to various third
countries with particular requests (e.g., Red asks Afghanistan to take
the Red side and to cooperate by allowing reinforcement. It makes no
requests pertaining to Afghanistan participating in the war itself, either
in Europe or Southwest Asia).

23

24 IP:. ANOj MOT.I VW)GRAMMING ILANGI'AGK

The Macro Table

By contrast with function tables, macro tables are self-contained,
i.e., the instructions for how the computer is to read each of the table's
lines are contained within the table header. In this particular example,
we have a decision table. The material following the key word Table
includes: declarations of local variables needed for the table construc-
tion; the macro itself (the inner If... then statement); and the column
headers. In this example, only the last variable is the result of a deci-
sion and the other If variables are all connected by "and"s. More gen-
erally, however, the macro could use "and"s and "or"s (or even , s and

s) and could have several dependent variables (decisions). The
Break appearing in the macro means that as soon as the computer
reaches a line for which the conditionals prove to be true, the decision
is made and control shifts to the first line of code following the table.
This had advantages in writing certain types of succinct decision
tables-advantages similar to the If-then-else construction.

If Current-situation is Eur-demo-tac-nuc

["Etir-demo-tac-nuc" represents the situation that one or both
superpowers have used some tactical nuclear we ?ons in Europe,
but have done so primarily for demonstrative purposes -- i.e.,
to coerce the opponent into terminating]

Then

Table

Declare Basic-statust by example: Let Basic-status# be Basic-status.
Declare Other-status# by example: Let Other-status# be Other-status.
Declare Prospects# by example: Let Prospect# be Prospects.
Declare Risks# by example: Let Risks# be Risks.
Declare Escalation-guidance# by example: Let Escalation-guidance#
be Escalation-guidance.

If (Basic-status# is Basic-status or
9asic-status# is Unspecified) and

(Other-,tatus# is Other-status or
Other-s;tatus# iS Unspecified) and

(Prospectst is Prospects or Prospects# is Unspecified) and
(Risks# is Risks or Risks# is Unspecified)

Then
{

Let Escalation-guidance be Escalation-guidance#.
Break.

--)--------------------------

IMPOH I'ANT FEA I'RES IN THE HAND AiEI. IAN);1'A(;E 25

Es(_ a I at iol -
Bas ic-status# Other-statusit Prospet.ts# Risks# / gu idance P

goals-met Eur-term
progress good good low Eur-demo-t a -nuc
progress marginal good low Eur-demo-tac-nuc

progress good good low Eur-gen-tac-nuc

progress marginal good low Eur-gen-ta -nuc

progress good good marginal Eur-demo-tac-nuc

progress marginal good marginal Eur-demo-tac-nuc

progress good good marginal Eur-gen-tac-nuc

progress marginal good marginal Eur-gen-tac-nuc

The Decision Table

Our next example is representative of a great deal of actual RANI)-
ABEL code in current Rand work. It accomplishes precisely the same
thing as the macro table given earlier, but without the complex header.
In this case, the key word Decision Table coupled with the separator
/ (separating the independent variables from the dependent variables)
in the header line are sufficient to define the logic. Note, however,
that all tables headed by Decision Table have the logic of If...
and ... and .. Then ... and ... and ... Break, whereas other combi-
nations are possible with macro tables.

The decision table structure is very powerful, for both programmers
and subject area specialists developing program logic. Note, for exam-
ple, that the decision table is isomorphic with a decision tree, and that
decision trees have long been an especially effective way to work
because they break problems down into pieces and allow one to keep
track of whether all the cases are being considered. Furthermore, deci-
sion trees (and to a similar degree, after practice, decision tables) are a
highly effective way to communicate logic. Indeed, the motivation for
decision tables in our work arose when the program director found
himself very unhappy trying to review the logic of models written in
long series of If-then-else statments: the individual statements were
clear enough (either in ROSIE or RAND-ABEL), but comprehending
the whole was quite another matter. Moreover, in practice, his review
demonstrated that important cases were being excluded--which is a
notorious problem in If-then-else code.

26E
RAND ADRI(M;AMM1N(; iAN;I AGE

The following examples illustrate the differences among expressionsof decision logic as a typical computer program, as a decision tree, and
as a RAND-ABEL decision table:

(1) Programming language form (e.g., in RAND-ABEL without
use of the Table statement):

If X = xl
Then

If Y= yl
Then

If Z = zI
Then Let D be dl.

Else [Z = z2]
Let D be d2.

Else 1Y = y2]

If Z = zI
Then Let D be d3.

Else
Let D be d4.

Else IX = x2l

If Y = yl
Then

If Z. = Z

Then Let D be d5.
Else (Z=z2]

Let D be d6.

Else [Y = y2l
If Z = zI

Then Let I) be d7.
Else IZ=z2]

Let 1) be d8.

imp()wrANTIT AFlIES IN !HI RAND) ABEI, iAN(.IA(G 27

(2) Expressing the logic as a decision tree. (Note that this is nota programming language statement, merely a display of thelogic that humans find useful in understanding the logic of a
decision.)

Independent variables:

X = x1,x2 ; Y = jy 1,y2 1; Z = Jz1I,z2~

Dependent variable (the decision):

D = d1,d2,d3,d4,dd6d7,d8}

Y? Y?

viy2

yi
-

Ai z2 Z1 z2 Z1 z2j jz z2j

D: dl d2 d3 d4 d5 d6 07 d8

2A I HI HANI) AHLI IPRO(RAMMIN; IAN(I'A(4F

(3) RAND-ABEL code representing the same logic, using the
I)eclsion Table statement:

Decision Table

xl v i '.1 11

vdi

.,2 '14
.' vi zl.1

x .' v i .2 /41

, /I d7
d8.

Although we shall not discuss the matter here, we should also note
that the decision table construction makes it especially easy to produce
..explanation logs" that are rigorous statements of what logic path the
computer followed.

As one additional example of a decision table, the following is
equivalent to the macro table illustrated in the previous subsection:

Decision Table
Escalat ion-

i. t'i, -sti ,t , 1 tO or-sttus 'r(_)sv)(ts Risks / gllidanh:e

*:,-I -met .. Eur-term
progress god 5(10(1 low Eu r -demo- tac - nuc

progress m i, g I nla 1 good low Eur -demo- tac- IIU c

pr g 'g ss good go od low F1 r -gen -t ac -nuc
r , r. ' s mi rg i 11 1 good low Vur - gen -t a C-nuc
Tr)4 r s s good go.,,olt mI rgin1,l Eur-demo-t ac-nuc

progr(ss ml rg i nal good ma rg i)1 Eur -demo - t ar - nuc
pr,)gress god 4.,) ma rg i n,l I Eur-gen-tac-nuc
jrogr,,ss margi Tal >good maiginal Kur-gen-tac-nuc

Complications and Fine Points

In practice, there are many complications in using tables-
complications that could prove lethal if not resolved. Because of this,
we spent considerable time developing techniques for handling them
rather easily. The next example shows, for instance, how we can deal
with long variabk names heading up table columns. This particular
table happens to be an unusual function table that calls a function. Ini-
tialize, that makes a decision (it establishes how long it takes the vari-

ous named ('ountries to make decisions in the simulation, with this
tine being a function of soime 12 variables). This table does nut
include all the cases needed to cover the complete space of possibilities.

Table rit i

- is t ,i Pt, ?, s i ,/ ,

I l

I I I A h . I , L. itr it I

I ' I -1

I I I r P sJirj'.' rI ,

AvAth' t iii Y N Y Y N N I .R -- K,.d FIt I' v l r vne
\'.t h.,' t In Y N Y N N I .'SR -- k d (:,I t i, , " koi None b
A t;h r ' tin Y N Y Y N N IS.S -- Ked Cap t Ivye N, rue(None 10
Ar j:i n -S,'i N N N N N N
A,. r l Y N Y N N N r K ANZS P ue Moder itI. N,i:(Token 2
A r Y N Y Y N N . 1. Whit 4 R IlMt]rt t None None 4

Y. ,n Y N Y N N N (S NAIO Iue jkoihihl Nor TripW I

(In the above table as in other RAND-ABEL, statements, unexe-
cuted comments are delineated by square brackets. The three separate
table rows dealing with Afghanistan are deliberate, showing as an
example handling special cases of differing Red-presence. As special
situations arise requiring "tuning" of such decision tables, additional
rows can easily be added to describe the desired response to these
situations.)

Our final example shows how long variable values within the table
itself can be accommodated by a "wraparound" feature. Although it is
uglier than our basic examples, the wraparound feature can be very
useful.

Table l'irit t i-,lf-f

itSt- 'I 'll- T i rd- Four h1-
It: Irnot 'r , r I In' I ' Ir fuiriot or pAIlImet or

I i tt - ". -

I IT I rrm-t+ .DJ rm ~ o

SI pI r iter

Ai ' ,, 221 St r ng 2"

REFERENCES

Anderson, Robert H., "Two-Dimensional Mathematical Notation," in
K. S. Fu (ed.), Syntactic Pattern Recognition. Applicatioons.
Springer-Verlag, New York, 1977, pp. 147-177.

Davis, Paul K., and J. A. Winnefeld, The Rand Strateg) Assessment
Center: An Overview and Interim Conclusions about ('tht'N and
Development Options, The Rand Corporation. k :945-)NA,
March 1983.

Davis, Paul K., "Concepts and a Prototype System for Game-
Structured Strategic Analysis," The Rand Corporation (forthcom-
ing).

Davis, Paul K., Experience in Applying Artificial Intelligence Tech-
niques to Strategic-Level Military-Political War Gaming, The Rand
Corporation, P-6977, April 1984.

Fain, J. E., D. M. Gorlin, F. A. Hayes-Roth, S. J. Rosenschein, H. A.
Sowizral, and D. A. Waterman, The ROSIE Language Reference
Manual, The Rand Corporation, N-1647-ARPA, December 1981.

Good, Michael D., John A. Whiteside, Dennis R. Wixon, and Sandra J.
Jones, "Building a User-Derived Interface," Communications of
the ACM, Vol. 27, No. 10, October 1984, pp. 1032-1043.

Hayes, Brian, "Rank-and-File Thinking," Lotus, Vol. 1, No. 2, June
1985, pp. 73-77.

Hayes-Roth, F. A., D. M. Gorlin, S. J. Rosenschein, H. A. Sowizral,
and D. A. Waterman, Rationale and Motivation for ROSIE, The
Rand Corporation, N-1648-ARPA, November 1981.

Schwabe, William, and Lewis M. Jamison, A Rule-Based Policy-Level
Model of Nonsuperpower Behavior in Strategic Conflicts, The
Rand Corporation, R-2962-DNA, December 1982.

Shapiro, Norman, H. Edward Hall, Robert H. Anderson, and Mark
LaCasse, The RAND-ABEL Programming Language: Reference
Manual, The Rand Corporation, 1985a (forthcoming).

Shapiro, Norman, H. Edward Hall, Robert H. Anderson, and Mark
LaCasse, The RAND-ABEL Programming Language: An Interac-
tive Tutorial, The Rand Corporation, 1985b (forthcoming).

Steeb, Randall, and James Gillogly, Design for an Advanced Rod Agent
for the Rand Strategy Assessment Center, The Rand Corporation,
R-2977-DNA, May 1983.

43

VIII. CONCLUSION

The Rand Strategy Assessment ('enter required a programming
language for the development of complex strategic simulations that was
fast, portable, easy to read and write, and permitted modular develop-
ment of a large system by separate teams of developers. No existing
language was found to have all the needed qualities. By creating a
very-high-level language that is translated into C source code, it was
possible quickly to tailor a language to the needs of these analysts,
while retaining some major advantages inherent in the C language and
its supporting U NIX system.

The RAND-ABEL language contains some novel features that we
believe are important to its success. Perhaps most important is the
Table statement, having a fully two-dimensional syntax that is difficult
to describe as a traditional programming language, yet is understand-
able to any educated person. Also of interest are declarations using
only examples of' usage of identifiers, very strict type checking, a data
dictionary facility for intermodule communication, facilities for co-
routines, and processes as a RAND-ABEL data type.

The RAND-ABEL language is important for its understandability
-y specialists in the subject matter being modeled, combined with exe-

cution efficiency and facilities for handling complex models that are
primarily qualitative, not quantitative. RAND-ABElT is a young
language, still evolving. However, we feel it has been very successful in
its intended application.

42

I I NI H,1. \1 -1 , i i(I1 I<E I~ Io"(41

Explanatory facilities are critical in a language designed for building
large, symbolic models. This is especially true when they involve com-
plex control structures with co-routines. In models of this complexity,
a "dump" or "trace" of all system behavior (even if selectively turned
on and off) is inappropriate; it is too hard for the model developer to
find key data at the right level of abstraction. RAND-ABEL allows
reporting of system actions controlled by the user, in conjunction with
a "stack" mechanism whereby the stored trace of entire lines of' logic
that do not prove fruitful can be discarded before they become part of
the final explanatory output. The current explanatory facilities in
RAND-ABEL are possibly adequate, but new approaches will be
explored in the future that provide better selectivity and control over
the level of abstraction desired.

Programming in current RAND-ABEL sometimes requires some
knowledge of the C language (for example, to set wakeup rules for co-
routines that are dormant). By completing the support environment
for RAND-ABEL as part of the RAND-ABEL language itself, it should
be possible to allow strategic analysts to perform their work within one
consistent language, thereby reducing the entry barrier for persons
developing RAND-ABEL programs.

i0

40 I iiF HANI) *\I, II()(;I(AMMN(; A.BE(LI A

" Incremental compilation of RAND-ABEL programs
" Better explanatory features
" Use of sets and their operations within RAND-ABEL
" A major generalization of the Table statement to succinctly per-

form groups of declarations
" Incorporation of structures (i.e., records)
" Extension of pointer facilities
" Transcendental functions
" Completion of a stand-alone environment for RAND-ABEL, so

that it becomes a complete programming system not requiring
the application programmer to know or use its underlying C
language.

Sets are viewed as a useful supplement to the current enumerated
variables of RAND-ABEL, in particular permitting a more easily
understood form of "For" statement than currently exists. They will
also allow writing decision tables succinctly by permitting construc-
tions such as "< good" or "-.marginal" to be values in the table-
meaning that any value in the ordered set occurring before the value
"good" or after the value "marginal" is acceptable in that position.

By using the Table statement to declare identifiers, the same suc-
cinctness that has been achieved in iteration and selection can be
applied to the declaration of a sequence of identifiers. An example of a
tabular declaration is contained in Sec. VI; that particular form, how-
ever, is unlikely to be the final version of this feature. We are begin-
ning to recognize in the Table statement a great expressive power that
we intend to exploit. Indeed, if we are successful, entire programs
might be recoded as a series of tables in a fraction of their current size
and seeming complexity.

Structures are groups of data composed of differing data types. In
some languages, they are known as records, in which each field may
have a distinct data type. Structures have been found useful in the C
language, and we are planning an implementation that mirrors their
use in C.

Pointers will be able to point at essentially all RAND-ABEL data
types; they are based on the existing pointer facility of the C language.

Interpretive RAND-ABEL will be an extremely useful supplement to
the current compiled version, permitting program changes and testing
without lengthy intermediate compilations. In a separate but related
development, we will be providing an interactive version of RAND-
ABEL. We expect that the RAND-ABEL tutorial document will rely
heavily on interactive RAND-ABEL to provide the reader with a set of
exercises introducing language features in a "hands-on" manner.

I I I I I , \\r I I I II ll R N 3q

For all the above reasons and others of less criticality, we believe
RAND-ABEL, is a success. It is being used at Rand by a broad range
of strategic analysts and programmers on a daily basis for the develop-
ment of complex models.

However, not all of our goals have been completely met. Although
translation of RAND-ABEL into C and the subsequent compilation of
that C code was initially very fast, it has become somewhat slower due
to features being added to the language; on the other hand, with the
continuing evolution of the language we have not concentrated on
translation efficiency. It is therefore possible that considerably greater
efficiency can be gained when we turn our attention to that area.

From our experience to date, it is now clear that an interpretive
RAND-ABEL should be available for program development. In addi-
tion, the data dictionary should not require total recompilation every
time some data item is changed; incremental compilation of the dic-
tionary must be added so that delays in compiling do not impede the
development process.

The most difficult area to assess is the readability and writability of
RAND-ABEL programs. The Table statement, in particular, makes
RAND-ABEL programs easy to understand by casual users and pro-
grammers alike. Important RAND-ABEL programs are being written
by strategic analysts with some FORTRAN or BASIC familiarity who
are not professional programmers, based on general control structures
and data organizations established by programmers. In this sense, we
have succeeded. However, we frankly had goals beyond these, which
may well have been too idealistic; we hoped that RAND-ABEL pro-
grams would be transparent, not just readable. Such totally self-
documenting transparency has not been achieved; portions of RAND-
ABEL agents still look too much like computer programs, with nested
If... thens, "For" loops, pages of declarations, and all the other bag-
gage of programming languages. However, as analysts become more
familiar with the power of the Table statement, major portions of their
programs are being encoded in highly readable and succinct tables.
There is some chance, however, that the level of complexity of these
agents simply cannot be expressed much more simply than RAND-
ABEL already permits.

FUTURE DIRECTIONS

Extensions of RAND-ABEL are planned in the following areas:

9 An interpretive version of RAND-ABEL and an interactive
RAND-ABEL that will aid in learning the language and in pro-
gram development

VII. CURRENT STATUS AND FUTURE
DIRECTIONS

PRELIMINARY ASSESSMENT OF RAND-ABEL

The HANI)-ABEI. language has been in serious use as a develop-
mental t(o(l tJr nl v about 18 months. It is therefore too early for a
definitive statement regarding our successes and failures in achieving

,)ur goals. However, enough has been learned to provide an initial
assessment. An overview is provided by the following table:

Success Less Than Success

1. Runs tast 1. Incrementally compilable
2. People like it data dictionary required
3. Succinct programs 2. Compilation too slow

that have proven 3. Not as easy to learn and
in practice to be use as hoped
readable by 4. C code unreadable
nonprogrammers . Good programming still requires

4. Portable among a sense of style
1'NIX systems

5. Allows creation of
complex simulations
by groups of developers

6. Initial RANL)-ABEL language
developed quickly

Certainly the greatest success of RANI)-ABEL is its ability to run
complex simulation agents many times faster than their equivalents in
ROSIE. This alone has made RSAC goals achievable that otherwise
would not have been. Perhaps the next most important success has
been the Table statement. It compresses into a succinct, easily read-
able form logic that previously took pages of verbose text. More and
more of the logic defining RSAC agents is being put into tabular form
(for both iterative calculations and decision tables) as analysts become
more familiar with its power. Third, the data dictionary is successful
in recording the necessary information to allow teams of developers,
working at different times and places, to communicate and coordinate
in developing their interrelated processes.

38

IMPORFANT IIA I'RI. IN THE RANP A1I. L.AN(HTA(; 37

same structure. Each section of the reference manual will be
mirrored by a section with the same number and title in the
tutorial. Each section of the tutorial will present interactive
exercises on the subject matter in the corresponding section of
the reference manual. Also, importantly, we plan to include in
the tutorial descriptions of how to access and use the informa-
tion in the reference manual, so that learning to use the refer-
ence manual is in fact an integral part of learning the
language.

9 Examples as templates. The RAND-ABEL reference manual
contains examples of the various language statements, as do
similar manuals. What is somewhat unique about our approach
is that the examples deliberately and explicitly are not designed
to explain the subject matter, but rather are templates that can
be used as examples to be filled in when one needs that form of
statement in a program. We have observed that the most com-
mon use of examples in a manual is as examples to be copied in
programming, and have tried to accommodate this "learning by
example" process. We have set the examples apart from the
rest of the reference material typographically, but have placed
them consistently below each statement's syntax description, so
that one can scan and quickly find the example of a RAND-
ABEL statement when that is needed.

These experiments in language documentation are being published
approximately coincidentally with this document, so it is too early to
assess their success. However, they are indicative of our feeling that
experiments with language documentation should be performed, in an
attempt to increase the effectiveness of this important and often over-
looked aspect of computer languages.

36 THE RAND AHEI. PROGRAMMING IAN(IA(E

facility, so we created a co-routining facility in C to support RAND-
ABEL co-routines. These C language co-routine functions are a gen-
eral feature that could be used by other C programs. They were writ-
ten in C itself, using essentially no assembly language coding, and
correspond closely with the UNIX primitives that manipulate
processes; for this reason, they can be quickly understood by someone
knowledgeable of the UNIX system.

RAND-ABEL functions are available for the following actions
involving co-routines:

" Spawn a new process
" Terminate a process
" Put a process to sleep
" Associate wakeup rules with a co-process
" Remove wakeup rules from a co-process

DOCUMENTATION AS AN INTEGRAL PART OF
LANGUAGE DEVELOPMENT

Part of learning to use a language is learning to use its documenta-
tion. Therefore, we feel the form and content of documentation for a
programming language are an integral part of that language. In think-
ing about our intended users and how we have used language documen-
tation in the past, we decided on a set of strategies and innovations in
RAND-AREL language documentation. The following steps have been
taken to date:

o Parallel tutorial and reference manuals. Many languages have
quite decent tutorial manuals that lead new users through the
features of a language. They also have separate reference
manuals that give a terse but complete description of language
features, in alphabetical or some other categorized order. The
problem is that in using the tutorial manual, the new user
becomes very familiar with its contents and organization; but as
he or she outgrows the tutorial and needs to access the refer-
ence manual, all the learning about efficient information
retrieval in the tutorial manual is wasted, even counterproduc-
tive, in finding information within the reference manual. A
discontinuity is introduced into what should be a smooth learn-
ing process.

We are planning to address this problem by providing a
RAND-ABEL reference manual [Shapiro et al., 1985a] and a
tutorial manual (Shapiro et al., 1985bi that have exactly the

IMPFHTAN'f)EA I'I xES IN FI RAND AHEiI. AN('A);1: 35

CO-ROUTINES

A strategic simulation, as developed within the RSAC, consists of a
number of agents-for example Red, Blue, Scenario-all pursuing cer-
tain logic and reacting to events communicated to them via the World
Situation Data Set. There are times in such a simulation when a pro-
cess can proceed no further and must await later events caused by
other processes. It becomes dormant and awakens at a later time.
(We omit in this discussion how it might be awakened.) Upon awaken-
ing, a process might operate one of two ways:

9 Total reassessment. It awakens with no knowledge of its, or any
other processes', prior decisions, accesses a data base to deter-
mine the current status of the simulated "world," and deter-
mines on that basis what, if anything, to do.

* Marginal changes to existing plans. It awakens "remembering"
the context in which it became dormant, discovers what has
changed during its dormancy, and makes appropriate incremen-
tal changes to the plan(s) it had been pursuing.

In the first case, the normal mode of behavior for a simulated plan-
ning agent would be to totally "rethink" the situation upon awakening,
perhaps embarking on a totally new plan that seemed to fit the current
situation best. The new plan might in fact be best in some sense, but
this sort of "optimize afresh at each stage" behavior is very nonhuman.
People and their organizations are strongly biased toward continuing
plans previously decided upon, making marginal changes to fit new cir-
cumstances.

Although RSAC agents are not necessarily programmed to mimic
the behavior of humans or human decisionmaking organizations at
each stage of their planning, these agents should nevertheless mirror
some of the inertia inherent in the planning processes of people and
their organizations.

If "total reassessment" were an acceptable mode of behavior, co-
routines would not be necessary. Co-routines are, however, a very
natural way to allow processes to wake up in context and thereby exhi-
bit consistent, incrementally changing behavior.

The RSAC can be considered a series of co-routines, each running
independently of the others, with the World Situation Data Set as the
integrating link among them all. Indeed, the RSAC Red and Blue
Agents are themselves a hierarchical series of co-routines, each written
in RAND-ABEL.

As described earlier, the RAND-ABEL language is in one sense a
preprocessor built upon the C language. C does not have a co-routine

:14 TIHE HAND AHBF. IH'I(HAMMIN(G LAN(;! TA-E

DATA DICTIONARY

In the large simulation models being developed within the RSAC,
individual modules are often revised, or new modules created, that
must communicate with other established modules. Traditionally, it
has been possible to compile separate components of a program and
then to "link-edit" them together, resolving external references. There
has also been the notion of a "common" data area into which all
modules can read and write, for communication between separately
developed modules.

These simple mechanisms are not nearly enough for the RSAC
environment. A source of problems in the old FORTRAN common
area is differing assumptions or perceptions by different programmers,
possibly at various times during a complex program's development,
regarding the size, type, and meaning of data in this common area.
Since there was no type checking possible, or even a record of what
assumptions were made by whom and when, subtle errors could arise
that might be undetectable until unlikely combinations of events
arose-and then the culprit module can be hard to trace, since many
different modules could read and write into the common area.

To address these problems, a common data area for intercommuni-
cation among RAND-ABEL modules was established. In the RSAC,
this data area is called the World Situation Data Set (WSDS). Entries
in the WSDS are defined by a data dictionary, somewhat analogous to
a data dictionary within a modern data base management system
(DBMS). The data dictionary is established by means of data item
declarations describing external data within individual RAND-ABEL
programs.

The data item declarations in a RAND-ABEL program that estab-
lish entries in the data dictionary fall into three categories:

" Defining attributes- Information that actually affects the object
code. Among the declarations possible in this category are
method of access, owner, read/write permissions, read/write
preferred formats for the data item, validation range or function
to be used in checking for proper data, and prompt string to be
used in requesting this data item.

" Identifying attributes-Information that is documentary but
mandatory, such as author, date, and a prose description
explaining the purpose and use of the data item.

" Informative attributes-Information that is optional. Examples
are bibliographic references for further description of the data
item, comments, and whether the form and content of the data
item is under consideration and subject to change, or is con-
firmed as definite.

IMPORTANT YEAFI' ., IN 11W RAND ABEL. iAN(;I A ,E 33

Table

Declare ., i . by example: Let i. ii h . be np1,,.

t-1 1 t -1 Ss
I Iii -! I'*'

i :t -l.'\ l 1 0

This table is equivalent to writing:

Declare t t t -: by example: Let tjurt)r- I be I
Declare d. by example: Let no-,f-, ides be I
Declare , t-lIvl by example: Let cont-level be 1.0
Declare r." ,, It-iis by example: Let rvsi1lt-n,,g be "Suti(ess"

TRANSLATION OF RAND-ABEL INTO C SOURCE CODE

Goals for the development of RAND-ABEL included a high degree
of portability, compilation speed, and efficient execution. Existing
languages such as C met all these goals, although they did not meet
others. However, a great deal of time and effort was saved by translat-
ing RAND-ABEL source code into C source code, so that the advan-
tages of C could be enjoyed without reinventing a major, fast, portable
compiler. By using the UNIX functions lex and yacc as the basis for
our translator, still greater implementation efficiencies were made pos-
sible; the RAND-ABEL-unique portion of the translator in effect
becomes the set of syntax rules for RAND-ABEL, plus a set of lexical
functions to extract identifiers, operators, constants, and handle special
constructs such as the table syntax.

We hoped at the start of the project that the C code resulting from
RAND-ABEL translation would itself be easily readable by any C pro-
grammer. However, especially with the development of the data dic-
tionary, this goal has not been met. The resulting C code is quite
arcane. In practice, this has not been a significant problem.

12 i I t RAND ABEL. IROGRAMMING ,ANW A(;

of the declaration. RAND-ABEL's declaration is an extension of' this
concept, eliminating the need for a keyword like int.

The following are all valid RAND-ABEL declarations:

Declare confidence- level by example: Let (onfidence-level be 6.5.

Declare Evaluate-situation by example:
Let Success be report from Evaluate-situation
using red as side and 5.5 Jkm] as distance .

This declaration method does require some care in use. The data
type of the expression used in the example within the declaration-by-
example must be determinable at the time the declaration is encoun-
tered. It must also be unambiguous. For example, one cannot write:

Declare .(-nfidenice-level by example: Let confidence-level be 8 .

and then later assign the value 6.5 to confidence-level. If a number
can take on non-integral values, it should be indicated as a decimal in
the declaration, even though an integer is a special case of a decimal
number. (Note that the "." at the end of the declaration is a statement
delimiter, not a decimal point.)

Another advantage of declaration by example is that the reader need
not learn any new special syntax for declaring a data item, once he or
she knows how to use that item in a RAND-ABEL statement; giving
an example of its use suffices, once the uniform "Declare x by exam-
ple:" method of declaring is known. (This property is another example
of orthogonality in the language, because each statement represents
itself, and no other means is required.)

Our current form of the declaration tends to be quite verbose,
especially when a number of variables are being declared, each requir-
ing a separate RAND-ABEL statement. It is natural to ask: Why not
offer declaration-by-example as an option, but allow more traditional
forms of declaration as well? Our answer is two-fold: (1) We believe a
language becomes harder to learn and use when there are several ways
of accomplishing the same thing, and (2) we are currently designing
extensions to the Table statement permitting its use as a succinct
means of representing groups of declarations. For example, the follow-
ing table (almost certainly not the final form to be chosen, but illustra-
tive of the idea) declares four variables in what we feel is a succinct,
readable manner:

SI INM I AN I +AI I F. I\ IIIFH NI %IF0 I i. 3

In general, we have found that the Table statement is useful in
situations where a number of statements need to be made, each having
a parallel structure, but differing in details. Examples of such situa-
tions include a series of similar function calls (e.g., to generate orders
to countries having varying characteristics) and decision tables that are
equivalent to a series of' rules, each having slightly varying conditions
and resultant actions. Because of the success of the Table statement
in representing these situations, we are planning to expand its use in
other areas having similar parallel structure. We also recommend that
programming language designers seriously consider the addition of
table structures to other languages, even though this might require
selective "breaking away" from the linear parsing algorithms in
widespread use. We see no reason why table statements could not be
integrated into commonly used programming languages, such as C,
Pascal, or Ada.

DECLARATION BY EXAMPLE

In essentially all programming languages, identifiers can be declared
to have a specific data type by explicitly listing the name of the data
type. For example,

C: int int-variable;
FORTRAN: INTEGER INTVAR
Pascal: VAR int-variable: integer;

This approach requires the programmer and the reader of such
languages to learn a new set of keywords and syntax that represents
syntactic concepts. The problem is greatly magnified in a language like
RAND-ABEL, which allows enumerated values. Since each
enumerated variable is itself a new data type, taking on a finite range
of enumerated constants as its range, for consistency one should make
up a new name for each of these user-defined new data types. For our
community of users, who are not professional programmers, this is
excess baggage. We have also observed that most people rely heavily
on examples in understanding programming languages. Combining
these observations, in a further attempt to make RAND-ABEL code
self-documenting, even to the casual reader, all identifiers are declared
by giving examples of their use; in fact, this is the only means
currently available for declaring identifiers.

We got the idea of declaration-by-example from the C language. In
C, to declare / to be a pointer to a function returning an integer value,
one writes: int (*f)). Note that one uses a call on the function as part

30 I IE IANI A1I4I IIIRO AMMIN. I.AN(I AI,.

The mechanism for allowing such complications is one of the more
novel features of the table facility. The table header contains a set of
column headings used to match table columns to parameter names or
variable names. In making this match, extra hyphens used to create a
column heading are ignored, as are various other "spacing" characters.
Also, an apostrophe () can be substituted for one or more characters in
a variable's name to create abbreviations within a column heading.
Essentially, a column heading can be thought of as an island of text
within a field of white space, where the island can have isthmuses and
peninsulas as long as it retains its connectivity. In determining this

connectivity, the following characters are treated as "white space":
space, tab, newline, comments enclosed in square brackets,/, and

The syntax of RAND-ABEL tables is actually richer than these
illustrations indicate. The interested reader is referred to the RAND-
ABEL language reference manual [Shapiro et al., 1985a] for a more
complete description of this statement.

It is important to note that we have introduced a table statement
into RAND-ABEL, rather than treating tables as pure data to be read
in. At first glance, data residing in a file would seem simpler: it could
be changed without recompiling the program, it could be accessed by
multiple programs, and a simple linear syntax could represent all
RAND-ABEL statements.

We believe the data approach is not the correct one for our users'
applications for several reasons: (1) Separating tabular data from the
statements that read it violates our principle of self-documenting pro-
grams. The meaning of the table is buried in the program that reads
it, with the data and the program usually residing in different places.
(2) Our use of column headers meaningful to both user and computer is
made possible by the intimate association of program and tabular data.
(Headers are usually only comments, if present at all, in data files
because they do not have the same form and content as the data they
elucidate.) (3) As we extend the power of the Table statement to han-
dle declaration of variables and other programming constructs, the dis-
tinction between program and data within the Table statement will
become blurred to the point where separation would seem artificial and
contrived. (4) Perhaps most importantly, having a uniform syntax for
tables means that they can quickly be interpreted by the reader. Pro-
grams lacking this unifying principle read data in a variety of ways,
each of which is uniquely crafted for the situation. Creating these spe-
cial cases takes extra programming and debugging time, as well as com-
plicating the task of reading and interpreting them.

