
D-i59 B3 REUSABLE SOTWRE: TRDE-OFF
ANALYSIS AND A NEW

i/i
AlPPRORCH(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

C A MURNAN JUN 85

UNCLASSIFIED F/6 9/2 NEhEEEEhh

'p

1111 I.OII~' IL- 12 *

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURE U OF STANDARDS-I963-A

L ul

%I

NAVAL POSTGRADUATE SCHOOL
Monterey, California

p,,,, OCTO 7

THESIS
REUSABLE SOFTWARE:

TRADE-OFF ANALYSIS AND A NEW APPROACH

by

Cynthia A. Murnan

June 1985

Thesis Advisor: Gordon H. Bradley

Approved for public release; distribution is unlimited

85 10 04 .

:r - . ; • :'" -': "" "..o-"-"e" ."-'-"-" " .' .' ,' " .-. " " ."-'-'- .-. ' '-'-.- .- ".'-"-.-.'' ', '-. .' ,'.'. 2 ... '..'..-

SECURITY CLASSIFICATION OF THIS PAGE (e. Dte 86mt0 ,"

RP TD UEAqi#gIONI READ INSTRUCTIONSREPORT D PAGE BEFORE COMPLETING FORM

SREPORT NUMBER 2. GOVT ACCESSION NO 2. RECIPIENT'S CATALOG NUMBER '--3
4. TITLE (ad Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Reusable Software: Trade-off Analysis Master's Thesis
and a New Approach June 1985

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMUER(e)

Cynthia A. Murnan

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, CA 93943

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School June 1985
Monterey, CA 93943 13. NUMSEROF PAGES

63
14. MONITORING AGENCY NAME & AOORESS(If different from Controlini Office) IS. SECURITY CLASS. (of thie report)

UNCLASSIFI.D

15a. OECLASSIFICATION/DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

t7. DISTRIBUTION STATEMENT (o1 the abstract entered In Block 20, it different froe Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse side If neceseary and Identify by block number)

reusable software, reusability, software engineering

20. ABSTRACT (Continue on reveres side if necessary end identify by block number)

Software reusability is seen as a resource which can assist in
resolving the current software crisis. This thesis discusses
issues that Are relevant to the concept of reusable software.
It reviews the definition of reusable software and presents
software development scenarios to describe possible guidelines
for performing a trade-off analysis in determining the pros
and cons of incorporating reusable software concepts (Continued)

DD I ,RM 1473 EDrION OF, 1 OV 65 IS OBSOLETE
S'N 0102- LF- 014- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (When Date ntferod)

........ ,.

S9CUNTY CLASPUICATION OF THIS PAGE (ft De aMM

BSTRACT (Continued)

nto a software product. The thesis also suggests the need for
ew and dramatically different methodologies to make software
eusability a viable concept.

-N,

.5
55

9.-

S,N 010- LF-014-6601

2 SECURITY CLASSIPICATIO OP THIS PAGlRlhM D814 Enter@*

, \I.:°S% . ~S %~%. .. %~ V

Approved for public release; distribution unlimited.

Reusable Software:
Trade-Off Analysis

and
A New Approach

by

Cynthia A. Human
Lieutenant, United States Navy

B.S., State University Of New York, 1975

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1985

Author: - - - - - - -
/ Cynt ia A. Humnan

Approved by:
rdon H. dl Thesis Advisor

B uc I.T on Second Reader

Bruce 3.acLennan, Chairman,
Department of Comput r cience

-------------------Kneale T. Marsh
Information and Policy i.nces

3

', "" o .,. ', . . %2 /- ' . -./ ,-.• "• .". " . : ,- .' '," .. . - . ,. " .. . ,",aa .,."._,

AhHIBAC

Software reusability is seen at a resource which can

assist in resolving the current software crisis. This

thesis discusse% issues that are relevant to the concept of

reusable software. It reviews the definition of reusable

software and presents software development scenarios to

describe possible guidelines for performing a trade-off

analysis in determining the pros and cons of incorporating

101 reusable software concepts into a software product. The

thesis also suggests the need for new and dramatically

different methodologies to make software reusability a

v iableo concept.2- ''3-J: > 6.'-AIe.'

*C C e :i!I

* k/i '7J

ti!

* r- ~.Dist

#~4

UI QF CONTEmi

1. INTRODUCTION - - - - - - - - - - - - - - - - -- 6

A. DEFINITION OF REUSABLE SOFTWARE--------------- 6

B. MOTIVATING FACTORS FOR REUSABILITY------------ 7

C. SCOPE OF THESIS--------------------------------8a

Ii. SOFTWARE REUSABILITY LIFE CYCLE CONCEPTS-----------14

A. REUSABILITY THROUGHOUT THE LIFE CYCLE----------14

B. CURRENT DEVELOPMENT CONCEPTS / PROBLEMS ---- 20

Ill. GETTING REUSABILITY STARTED----------------------- 22

A. INITIAL CAPITAL INVESTMENT-------------------- 22

B. POSSIBLE SOLUTION -------------------- 24

IV. TRADE-OFF ANALYSIS--------------------------------- 28

A. BACKGROUND------------------------------------- 28

B. REUSABLE COMPONENTS---------------------------- 29

C. DEVELOPMENT SCENARIOS------------------------- 30

D. DISCUSSION------------------------------------- 42

E. GUIDELINES------------------------------------- 46

V. NEW APPROACH--------------------------------------- 48

A. SOFTWARE ENGINEERING CONCEPTS----------------- 48

B. PROPOSED NEW APPROACH--------------- ---------- 50

VI. CONCLUSIONS AND RECOMMENDATIONS------------------ 5

LIST OF REFERENCES--------------------------------------- 60

INITIAL DISTRIBUTION LIST-------------------------------- 63

I. IBQ~!JQIQU

A. DEFINITION OF REUSABLE SOFTWARE

There has been increasing attention given to the concept

of "reusable software". The Joint Logistics Commanders

Joint Policy Coordinating Group on Computer Resource

Management held a software workshop in June, 1981 which

contained a panel devoted to an evaluation of reusability

CRef. 1]. ITT Programming sponsored a workshop on

reusability in programming in September, 1983 [Ref. 2].

Papers from this workshop were incorporated into the

September, 1984 IEEE Transactions on Software Engineering

[Ref. 3].

A clear definition of what is meant by "reusable

software" is necessary if we are to pursue the value of

reusable software as a resource in the development of

software products. The JLC report of the panel on software

reusability defined reusable software as "...existing

software, including specification, design, code, and/or

documentation, which can be employed or adapted, in part or

total, into a new end use." [Ref. 4] The important point

to notice in this definition is that reusable software is

seen as encompassing any information produced throughout the

life cycle of the software product, from specification to

design, from coding to maintenance. It must be realized

that software reusability is not just relevant for program

6

code generation and, in fact, is possibly least concerned

with that aspect as an element for reusability.

The definition does not include reuse of software by

multiple users on multiple occasions, such az the use of an

operating system or a compiler on several different types of

processors. The definition of reusable software given above

focuses on software for which the end-use is totally, or in

part, new.

B. MOTIVATING FACTORS FOR REUSABILITY

The primary motivating factor for researching the

viability of reusability in software development is the

current software crisis. Presently, the development of

computer systems is delayed by the development of the

software for those systems. The production of the software

is very labor intensive. There are no standard, reusable

components, such as can be found for the hardware of the

system. The software components are basically developed

from scratch. Software products are also continuing to

grow, both in size and complexity. There are not, however,

enough software engineers available to deal with these

increases without added delays in the development of

software applications. It is felt that reusable software

could assist in alleviating these problems.

Another factor involved, especially for the Department

of Defense, focuses on embedded computer systems. VLSI

7

technology and microcomputers have pushed for ... complex

embedded software implementing specific functions in these

small hardware elements." [Ref. 51 If the software can

not be reused, the hardware will not be easily extendable

for different applications, and the technological gains for

system development will be lost in the development of the

software.

An additional motivating factor is that reusable

components may be more reliable. More effort must be placed

on testing and documenting components that will be reused.

Also, maintenance will be performed on these software

elements at each location that chooses to use them. Thus,

if they have not undergone many changes to meet the various

applications, repeated maintenance will be performed, with

any pertinent information from one site being available to

others that may reuse those same components.

C. SCOPE OF THESIS

We must recognize that, at the present time, the use of

reusable software may simply not be practical in every

situation. A software engineer must be able to ascertain

and study the pros and cons, and perform a trade-off

analysis to make the best possible decisions regarding

software reusability. An effective trade-off analysis must

concentrate on the benefits, if any, which can be obtained

by incorporating reusable components. The development

8

manager must consider all the issues of reusability and

trade off the possible economic savings of using previously

devised software components with the possible economic

costs of trying to locate such reusable components. If

reusable components are not available, it may not be cost

effective to expend additional time and effort to extract

the information from manuals, listings, and other documents.

If the product being developed is completely new in all

regards, reusable components may not yet exist. A

software manager must be able to consider the entire

project itself and trade off the possible benefits of

reusability with any increased man-hours spent on the

project in attempting to use reusable components, which may,

in turn, result in increased costs and schedule delays.

Additionally, the extra cost of developing reusable

components that may then be used on later projects must be

considered. Designing components for later reuse creates a

need for more generalization, more documentation, and more

thorough testing. For the initial projects within a

development office to incorporate reusable software

components, increases in time, effort, and initial cost

outlay will occur. It will take foresight and enlightenment

to be able to see beyond one's own individual project to the

possible benefits for many projects.

It is, therefore, important that the software engineer

or software development manager have some guidelines with

9

..- .' ." . . .- "- .- .- .- . . ', " - ° - "
°
= " " " ' " . . _ . . . , . . , -- % - .

which to make an informed decision. The entire life cycle

of the software system to be developed must be considered

for reusability. A life cycle model, as described by Barry

Boehm, is depicted in Figure I ERef. 63. It presents the

various phases involved in the development of a software

product. The software manager must consider reusability for

each of these phases: reusability of requirements/specifi-

cations, reusability of preliminary and detailed design

information, reusability of code, and reusability of

maintenance information. Reuse of test and integration

plans must also.be considered. This thesis presents

software development scenarios to delineate the areas which

must be studied in a trade-off analysis. These will then

project some guidelines which the software development

manager can consider when faced with the issue of reusable

software for the project at hand.

Beyond the issue of determining the pros and cons of

reusability for systems currently being developed, we must

consider the future of software reusability, and what can be

done to make it a more practical reality. The initial

concept of reusability can be traced back to 1968 ERef. 7].

Since that time, much discussion on the topic has followed,

with much agreement as to the positive value of reusability.

However, few systems have been developed by incorporating

reusable software. In addition, new systems have not been

developed to better allow for future software reusability.

10

I System I
I Feasibility I

I Validation I I
I ----------- I I

I_>1 Software
I Requirements14_
I _______ - - I I

I Validation I I
S ----------I I

1>[Product I
I Design

I Verificationl I

- -------------I I
I I _ _
1_>1 Detailed I

I Design
I ------------- I I
I Verificationi I
I I I
----------------- iI I Cod

I_>1 Code I

I 4-T

I Unit Test I I
I- ----------- I

I I _ _

I_,I Integration I

I Product I T
I Verificationl I
I I I

I_>I Implementa- I
I tion 1<

I System Test I I
I I I

I I

I->I Operation & I
I Maintenance I
I I

I RevalidationI

Figure 1. Life Cycle Model

2.2

A possible solution to this problem of how to get

reusability started on a wide-scale would be to create a

project specifically designed for this purpose. This

project would be tasked with determining what components

could be reused, how to write the information down in a

standard, understandable, easily retrievable form, and

producing a cataloging system for DOD-wide usage. By being

specifically assigned as a project in its own right, we

avoid the problem of determining who will assume the burden

of the initial cost investment. If the Department of

Defense is to get software development under control, the

importance of reusability must be comprehended and assured.

The notion of a separate project to develop standard,

reusable software components may be viewed as being

analagous to the Navy's development of standard shipboard

computers. The Navy has pursued, as a specific task, a

standardization program for tactical computers to decrease

problems of maintenance and logistics [Ref. 19]. The

AN/UYK-7 was developed by UNIVAC as a general purpose

standard for shipboard and shore use. It was designed for

maximum modularity to allow adaption to various

applications [Ref. 20]. Thus, the design of this standard

computer incorporated modularity which, in effect, allowed

reuse of standard parts for different end uses. This

standardization of Navy computers was intended to

"...eliminate intersystem incompatibilities, complex

25

B. POSSIBLE SOLUTION

The question now becomes, "How do we invest the initial

capital and thereby get reusability rolling?" We have seen

throughout history that the method of increasing

productivity involved standard components and the capability

of mass production. We must be able to incorporate these

same ideas into software development. To generate software

components, including code or Qther development information,

that will be flexible enough to be used in many

applications, we must be able to look beyond one project to

the software industry in total. We must expend capital at

the outset to generate reusable components and a viable

reusability methodology to be able to avoid the duplication

of effort and the basic inefficiencies of having a single

person or group develop a software product from scratch,

producing one product at a time.

Our present practices do not lend themselves easily to

incorporating reusability. We generally emphasize cost

reduction and product optimization. A software manager

is basically only concerned with the development of the

system for which he is responsible and accountable. He is

unlikely to strive to create a flexible product or one that

employs new techniques which will assist in future

reusability as this would undoubtedly result in additional

costs, effort, and time spent on his project.

24

* --. .% ~ * U --

is because, at the present time, we resort to measures such

as increasing the number of personnel involved on a project

in the hopes of increasing the production rate, which, in

turn, increases costs. We must be willing to learn from

history and attempt to determine whether past successful

techniques can apply, or be modified to apply, to the

current software production problems.

If we are to attempt to resolve the software crisis, we

must view software development as being capital-intensive.

According to Wegner, "A production process is capital-

intensive if it involves expenditures early in its life

cycle for the purpose of increasing productivity later in

the life cycle." [Ref. 173 Thus, a capital-intensive view

of software development is vital to the issue of reusabilty.

As Wegner further noted, "The long term objective of

capital-intensive software technology is a systematic

process of capital formation that provides a stock of tools

from which application programs can be cheaply and reliably

constructed, and allows flexible enhancement in response to

changing requirements and replacement in response to changes

in the technology." [Ref. 18) By investing capital up-

front, we will be able to design software components that

will allow for reusability in the future. Flexibility will

be enhanced as components will be able to be used in

producing different end-products.

23

• . . , --,.-..-..,- .,-.." .--......' -, .- '. . - ..

III. ETTING REUSABILITY STARTED

A. INITIAL CAPITAL INVESTMENT

Much of what we are currently experiencing in the

production of software today was confronted in the 18th

century by early manufacturers. These early craftsmen

discovered that the problems created by their expanding

industries, such as how to find enough qualified personnel,

how to improve methods to keep costs down and increase

performance, and how to increase production while decreasing

costs, could be resolved by mass production techniques.

Thus, we find that they invested capital to create mass

production tools and to develop standards, which, in turn,

led to the appearance of interchangeable parts. This

initial cost outlay was recovered in the increased

productivity which resulted. Products, such as clocks,

which were initially handmade by a single skilled craftsman,

one at a time, could, with the advent of mass production

techniques, be produced much more quickly, and at a reduced

cost CRef. I63.

The software industry currently faces some of these same

issues. There is a shortage of qualified software engineers

and programmers. It is difficult to find methods which will

decrease costs. In fact, software costs continue to rise

dramatically. Also, it is difficult to increase the

production rate and yet maintain or decrease custs. This

22

extensive training and experience to thoroughly understand.

Much of the present emphasis on reusability is focused on

reuse of code, since this can be encouraged without first

having to resolve all of the above listed problem areas.

Code is developed using a modular approach. This can be

very effective for similar types of projects, and should be

actively pursued. As Horowitz and Munson related, "Input

and output routines, report generating routines,

computational and processing routines are all designed and

written by the staff of analysts and programmers on the

project. This is clearly an unfortunate situation as much

of the code of one system is virtually identical to code

which was previously written." [Ref. 15] This is a

situation that we can and should, at least, be working

toward resolving.

The economic value of reusability beyond just reuse of

code warrants a concerted effort to resolve the above

problems. The software development process must incorporate

measures to include reusability, and the software managers

and engineers must necessarily involve themselves in this

issue if we are to ever alleviate the ever-expanding

software crisis.

21

with a system such as SADT which requires extensive training

to comprehend.

B. CURRENT DEVELOPMENT CONCEPTS / PROBLEMS

Current practices for the development of a software

product involve very little consideration for reusability.

Most people will agree that the term *reusable software"

presents a very appealing notion, however, the reality and

practicality of it presently do not exist.

There are several problems which create a hindrance to

the use of reusability. As Horowitz and Munson pointed out

[Ref. 14], in order for reusable software to become a

reality, we must be able to determine which components are

capable of general usage and of being specified so that they

can be used by others on different projects. We must also

be able to write the information in a descriptive form that

is readily understandable. The method of cataloging these

reusable components must also be delineated, so that others

will be able to discern what information is available for

reuse.

Inasmuch as we have not yet addressed these problems on

a wide scale, we cannot hope to see the reality of

reusability on anything but a limited basis. Currently, in

a development project, most of the information generated is

recorded on masses of paper, in manuals, using a locally-

developed methodology, or using a system that requires

20

U *..ILL

Software products are changed when the current

programs, after going operational, are found to be

inappropriate, incorrect or ineffective. Problems

corrected during the maintenance phase could have originated

anywhere in the life cycle. Those created earliest are the

most costly to fix during the maintenance phase. Thus, if

the maintenance information for one product could be reused

perhaps similar problem areas could be avoided earlier on in

the development process, resulting in great overall savings.

As the above discussion relates, there is much that can

be reused from each of the various life cycle phases in the

development of a software product. We should not limit

ourselves to reuse of code alone. We need to recognize that

we must be able to reuse ideas and concepts and thought

processes. This information must be made readily available

so that we can avoid previous mistakes, duplication of

effort, or simply time consuming determination of

specifications and designs.

This information must also be easily retrievable in a

form that is readily understandable. If it is not, people

will find it more advantageous to duplicate the effort than

to spend the time and energy necessary to discern the

information from some source. Often, data is retained from

the various processes of the development of a product.

However, it may be written in a voluminous document or

19

... :.-.. . . .*-b~:c:-
. -.-.. .-. , - .

decisions and difficulties encountered during this phase

could prove useful to future software development projects.

7. IlmRlementation Phase

It is in this phase that the fully functional system

is assembled and tested to ensure that it meets the

requirements. The information generated during the

implementation phase could show others the validity of

different aspects of the system and thereby assist in the

initial requirements phase of other products.

8. Maintenance Phase

The maintenance phase includes everything concerning

the software product that is done to it after it becomes

operational. This includes error correction and
,r',

modifications. This phase is important because so much of

the cost of generating a software product is consumed by the

maintenance phase. Figure 2 shows that, on the average,

about 40% of the overall hardware-software dollar goes

toward maintenance. This also represents an average of

approximately 70% of the overall cost of the software

[Ref. 13]. The information generated during this phase

should be well documented and readily available for reuse.

b.. Maintenance plans used on one project may be applicable to

another. Errors or inadequacies encountered during this

phase could be considered and accounted for in creating new

products.

a.o

IL t

Rr.

testing is carried out effectively and efficiently. These

plans could prove to be reusable for the testing of systems

which may be similar in some regards to the system for which

the plans were originally devised.

. Coding fhSle

It is during the coding phase that the software

product is actually implemented in a specific programming

language. If the code is developed using recognizably

useful techniques, such as modularity and abstraction, the

code may be able to be reused. It is this aspect of

reusability that R. Lanergan and his associates had so much

success with. They felt that "...there are some business

*. functions which are universal routines and others which are

common to a company or functional area. These routines,

can, therefore, be prewritten." ERef. 12] They produced

logic structures, prewritten for each of six types of

business application programs, such as update, select/edit,

and report, and found that they could reduce 40-60%

redundancy in business application development. This type

of reusability has potential for locally-applicable usage at

the present time with little more than a directive to do so,

combined with the management and effort to make it work.

6. Integration Phil

It is in the integration phase that the individual

components are combined into the final product. The

b .J

17

A' A . . .k " %.. ... " .

Thus, it can be seen that techniques presently

available for recording requirements analysis information

are insufficient for increasing the use of reusability.

Rhat is needed is a more universal, more understandable

method for saving this information.

3. r24Mu! 922109 Phise

The product design phase defines the overall

hardware-software architecture, the parts of the system and

their relationships, the basic algorithms that will be used,

and major data representations. There is not much detail

generated in this phase, but the general information

developed could be vital for producing other software

products. The ideas that lead to the determination of the

information used in this overall product design phase should

be recorded so that following projects will be able to

benefit from the work of others and duplication of efforts

can be avoided.

4. Detailed Design hase

Greater detail is generated during the detailed

design phase. Precise algorithms, data structures, control

structures, and interfaces are developed. This design

information should be retained for reusability purposes.

This phase leads into the coding phase so the information

could be useful for coding in various different languages.

Also developed during the design process are test

plans for the system, which will be used to ensure that

9.6 Y.-

_ . • . .. ,

software product is generated. Much discussion and effort

goes on in this phase to ensure the best possible

description of what the system is to do. The pros and cons

of various requirements are discussed as decisions are made.

This information should be recorded and readily available

for reusability, as many of these same initial questions are

asked over and over again in the development of other

software products.

There have been efforts to present systems which

capture this requirement information, however, these systems

are not universal or wide-spread in use. One such system is

the Software Requirements Engineering Methodology (SREM)

CRef. 10]. It was developed for real-time systems by TRW

and is driven off a centralized relational database. SREM

is a message oriented system that uses a stimulus-response

model of real-time systems. SREM is a viable system, but it

is not cost effective for small and medium sized projects.

Extensive training is also required to effectively use it.

Another methodolgy for requirements analysis and

definition is the Structure Analysis and Design Technique

(SADT) (Ref. 11]. This technique uses diagrams to model

processes or data. There are problems with this system

also. The models built in SADT are often difficult to

immediately transform into designs. The diagrams are also

complex and difficult to understand, requiring much training

to become adept at using them.

15

Jr:

I,

II. SOFTWARE IAMIL1 LIE!QgLE QNCEPTS

A. REUSABILITY THROUGHOUT THE LIFE CYCLE PROCESS

In keeping with the previously discussed definition of

reusable software, which encompasses all aspects of the

software product, the various life cycle phases should be

examined to determine their potential for contributing to

reusability. (See Figure i for diagram of life cycle

phases).

1. Feaqibility Phase

The first phase in the life cycle model of the

development of a software product is the feasibility phase.

It is concerned with defining a basic approach for the

entire development project and determining the feasibility

of that approach throughout the life cycle. Much of the

information discerned in reviewing various approaches could

prove to be very useful to the development of other

software products. If the information could be effectively

saved and readily retrieved, it could be reused in other

projects. The superiority of one approach to another would

be recorded, along with the reasoning behind this

determination. In this way, the information would not have

to be reproduced and much effort would be saved.

2. Reguirements Phase

During the requirements phase, the specification of

the required functions, interfaces, and performance of the

14

100 1 -

Sol- hardware

OF 601- sfwr

COST I

401-

1955 1970 19:85

Figure 2. Hardware-Software Cost Trends

4.3

6L

The need for reusable software exists, the reality presently

does not.

There have been limited success stories. Robert

Lanergan, manager of advanced software development at

Raytheon Company's Missile Systems Division, announced in

1979 successful use of reusability [Ref. 8]. That effort,

though, centered around reusable code for products

performing very similar functions. It did demonstrate,

however, that reusability is effective, at least on a

limited basis.

A greater need exists, though, to expand this

capability. DOD software costs continue to grow

extensively. Figure 2 shows the trend for the increasing

software percentage of total system costs CRef. 9]. We

must be able to develop reusable software, and a

corresponding support system, so that reusable components

will be available to personnel throughout the Department of

Defense, not just in one development shop. This thesis

suggests the need to recognize that new and dramatically

different methodologies must be devised if we are to see

the development of reusable software on a large scale.

Otherwise, we will have to be content to incorporate

reusable software on a more or less "local" level, that is,

basically code, within one relatively small development

shop, for similar functions.

12

personnel and logistic support problems, and uneconomical

procurement programs." Mef. 21] It can be noted that these

same problems exist today for software systems.

The standardization program for non-tactical computers

currently involves replacing some older systems with more

advanced ones. For example, the AN/UYK-5 computers are being

replaced with AN/UYK-65 computers. This, too, is being

*accomplished via a specific program. Additionally, another

project has been tasked with supplying computers to ships

that do not presently have non-tactical computers.

Thus, it can be seen that the idea of a specific project

to handle such a broad scope is not new. It may be that

this approach presents the only logical plan for getting

reusability started on a wide scale.

Another point to notice is that more mature industries

have increased productivity by a division of labor, or

specialization. It may be worthwhile to ponder the benefits

of doing the same in the software industry. We might

develop software specialists in the fields of

specifications, designs, maintenance, or code production.

These specialists could be involved in generating the

initial reusable components from existing software systems

within a specified project, as described above.

Additionally, personnel might perform specialized tasks on

individual software development projects.

26

It has been obvious from the past and present lack of

the widespread adoption of reusability that current

practices toward this end are insufficient. Thus, it

becomes imperative to contemplate alternative measures.

These must look beyond traditional methodologies to more

inventive means of reaching the primary goal: resolving the

software crisis.

27

-,, -., - ,- . -, - .., . .- . -. . . . - - ' - '- . -- .- .- ., - - , .- .*

IV. TRADE-OFF ANALYSIS

A. BACKGROUND

Using current practices, it is not feasible to achieve

reusability on every software development project. This

V' includes both trying to incorporate previously developed

software components into the project at hand and attempting

to develop the software components of the present project

with future reusability in mind. The software manager must

perform a trade-off analysis to determine if reusability

will be economically justified. To accomplish this, he must

first know what factors should be considered. Presently,

there are no guidelines set forth which would assist in

making the necessary trade-off decisions. Thus, reusability

is often employed in a project today only when an effort is

made to expressly direct personnel to do so. The result is

", that most development projects continue to be basically

started from scratch, and any economic gain which may be

obtained by using reusable components is lost.

A trade-off analysis must focus on the costs and

benefits to be attained on a software development project by

having reusability. For reusability to be appropriate, the

benefits must be balanced against the costs of developing

the system with reusable components.

This thesis now presents various scenarios designed to

offer insight into the important issues of a trade-off

4%,2

analysis. These scenarios are used to represent different

development situations which define varying degrees of

the ability to incorporate reusability. Accordingly, the

types of analysis which must occur to determine whether

reusability is practical for a particular project are

depicted. The outcome of the presentation is an outline of

possible guidelines to use in evaluating the reusability

trade-off decisions.

B. REUSABLE COMPONENTS

Before introducing the scenarios, it is worthwhile to

reconsider exactly what software components have the

potential for reuse. These should be kept in mind, as the

scenarios presented below will attempt to show the

appropriateness of reusing certain components in various

different situations.

One aspect of a software project that has potential for

reuse is the information that has been generated during the

feasiblity phase of past projects. This information is

useful in determining an overall approach to a project, and

can assist in accelerating the start of the succeeding

phases in the development of a new product.

Next, the requirements and specifications of previous

projects may be determined to be appropriate for reuse.

Design information as well as test plans for the system may

29

SMt

.

be available. Also, the code itself may be suitable for

reuse, including subroutines, functions, and modules.

Information produced as the result of the operation of a

previous system may prove useful to a new system.

Maintenance data generated as past systems are supported may

also provide insight and guidance for a new project.

In general, any information that can be documented in an

understandable and retrievable manner has the potential for

reuse in a totally, or partially, new end product. Any new

project that can reuse some, or all, of the above

components, from past projects may benefit by a decrease in

system development time and effort, decreased development

costs, and/or the production of a more effective system.

C. DEVELOPMENT SCENARIOS

Development scenarios are now presented to better

illustrate the trade-off analysis necessary to determine

whether reusability for a project is appropriate.

.. Scenario I.

Command Alpha has just received computer graphics

hardware to increase their capabilities. They desire the

graphics facility to be able to produce technical drawings

for the command. The computer came with some software, but

did not come equipped with a figure generation package. The

development office of the command is therefore tasked with

producing an interactive figure generation system to meet

a.

" 30

a'.

4

- " -a a " . - - " - - ° - . *- .o. " . " .,-. =" .a " - , *

the needs of the command. A software development team is

formed to accomplish the task.

Since the team is part of the command which will use

the finished product, they can be viewed as end users of the

system themselves. Thus, they sit down to determine how to

proceed, what the requirements of the system should be, and

so forth.

The initial deliberations center on the basic

approach to be taken for the entire project. The team

leader discovers that little has been documented in the past

as to how other groups have determined what the best

approach is in producing a figure generation capability.

Therefore, much discussion on this topic ensues. The team

leader appoints one member of the team to record all

considerations and conclusions made as the project

progresses. Different approaches are analyzed, with the

group finally deciding to proceed with a menu-driven system,

with selection provided via mouse controls.

At this point, the team leader must determine

whether to proceed on this project with future reusability

in mind. That is, he must decide if it will be beneficial

to expend more money now to achieve savings later. He

considers the following:

- Since graphics is an ever-expanding facility, the
likelihood of follow-on graphics projects, especially
within Command Alpha, is high.

.3. .

If the team develops a straightforward system, that is,
does not attempt to develop reusable components, it will
require an initial investment of $40,000. With this
type of development process, the new system is projected
to produce savings to the command of $20,000 a year for
the next 5 years. These savings would mostly result
from the reduced paperwork and the reduced amount of
man-hours necessary to produce technical drawings.

- If the system is developed by generating reusable
components, it is expected to require an initial

investment of $65,000. The additional money would be
needed to provide more extensive documentation of all
phases in the life cycle of the system, to develop more
generalized modules for use in the coding process, and
to develop the system with a virtual machine approach to
hide the details of the hardware. It would also be
needed to encapsulate design decisions that are likely
to change in the future, to allow more extensive
testing, and to create a library and cataloging system
for maintaining the reusable information. The savings
to the command over the next 5 years are projected to be
$35,000 per year. These savings would include reduced

costs for future development projects due to the
availability of reusable components.

Using these projections, the team leader proceeds to

determine which development method to use. He therefore

computes the net-present-value coefficients for the two

positions, using a discount factor of 12%. Following are

his calculations: [Ref. 22].

- For Method I (no reusability):

Investment Returns 12%pvf Present Value
Year 0 $40,000 1.000
Year 2 $20,000 x .893 = $17,860
Year 2 20,000 x .797 = 15,940
Year 3 20,000 x .712 = 14,240
Year 4 20,000 x .636 = 12,720
Year 5 20,000 x .537 = 10,740

$40,000 $71,500

Thus, the net present value is $71,500 minus $40,000, or

32

$31,500. The net-present-value coefficient in this case is

given by $31,500/$40,000 and is thus equal to .7875.

- For Method II (with reusability):

Investment Returns 22%pvf Present Value
Year 0 $65,000 1.000

Year 1 $35,000 x .893 = $31,255
Year 2 35,000 x .797 = 27,895
Year 3 35,000 x .712 = 24,920

" Year 4 35,000 x .636 = 22,260
Year 5 35,000 x .537 = 18,795

$65,000 $125,125

In this case, the net-present-value is $60,125 and the

coefficient is $60,125/$65,000, or .925.

The results indicate that Method II will give a

higher return on the initial investment. The team leader

therefore concludes that it would be advantageous in the

long run to expend the capital now to develop reusable

components for later use.

For the next step, the team must determine what the

requirements of the system will be, that is, what the system

should do. There are many questions to consider, such as:

- What menus should be available?

- Should an on-line help facility be provided?

-- - Should there be a file system to enable the user to save
and re-edit at a later time?

* - Should predefined shapes be made available?

- Should translation, rotation, and/or modification be
available?

- How many different line widths should be made available?

- Should it be possible to include text in a drawing?

33

%-.; * * -* *- .

- What symbols are important for this command's specific
needs?

- What colors, textures, and line styles should be

provided?

- Should there be an erase feature?

- Should there be an undo feature to remove only the
effects of the last executed command?

- Should there be a fill feature to allow the user to fill
in an enclosed area?

- Should freehand drawing be permitted?

- Should different sized text be made available?

The team leader knows that other personnel have

previously developed figure generation packages, but he

cannot locate any documentation as to how the requirements

were determined. Articles on computer graphics relate what

is available, but not how these requirements were decided

upon. Commercial graphics packages also show what is

available, with no information as to how the determination

to provide those facilities was made. The team leader

concludes, therefore, that his team must evaluate the above

questions and formulate their own conclusions. Some gains

can be made by ascertaining what is available in other

systems, but the determination of the reasons for

incorporating some features as opposed to others must be

made anew.

Some decisions made in the requirements phase must

await the operation of the system to learn whether or not

the decision was the best. Unfortunately, except for

34

critical reviews of some systems, the team can find little

or no documentation of what is lacking or insufficient in

the operation of similar past systems.

The development team next proceeds to the design of

the product. At this point, questions regarding how the

system will function must be answered. These include:

- Should the menu(s) remain on the screen at all times?

- Where will the menu(s) be located on the screen?

- How will a selected item be denoted?

- How will straight lines be provided?

- How will line ends be joined?

- How will a file be saved, stored, and retrieved?

- How will help information be provided?

- How will selection be accomplished?

- How will text be entered?

- How will freehand drawing be performed?

The team leader notes that design information is

available, however, it is contained in thousands of pages of

documentation. Rather than spend the man-hours necessary to

determine if any of it can be reused on this project, the

team leader decides it will be more cost-effective for the

team to proceed on its own in developing the design of the

system. He bases this decision on the estimate that the

additional man-hours needed to locate possible reusable

components from past projects could cost an additional

$10,000. Assuming an initial investment of $65,000, this

35

would represent approximately 13% of the investment, and

would account for dubious benefits.

After the design is completed, the software team

looks for previously devised test plans that could be reused

to verify that the final product meets the requirements.

Once again, no data of this sort can be located from prior

projects, so the team must produce its own test plans for

the system.

The group then proceeds to generation of the

code. The team leader determines that the code from

previous projects is readily available. Here, he must

ascertain whether or not the personnel on the development

team will be able to readily understand the previously

written code and thereby modify it to meet the needs of

their system, or if it will be more advantageous to have the

team generate its own code. The team leader concludes that

some of the previously generated code has been well

documented and is very modular and thus directs the group to

use any of these modules, subroutines or functions that can

be modified to meet their requirements.

Little operational or maintenance information on

past systems can be located by the team. Some data exists

in critical reviews found in publications and journals,

though, and this data does provide for some reuse. For

example, the team learns that users desire an online

36

prompting so that there is less that must be remembered or

looked-up in manuals, so they incorporate this facility.

2. Scenario II.

Command Bravo is a data processing center. It has

found that incoming personnel are inexperienced in

operating the equipment at hand, and therefore has recently

procured computer graphics hardware to devise an interactive

training program. A software development team has been

formed to produce the graphics package necessary to

implement the training program.

The development team leader discovers, through the

company representative, that the hardware his command has

purchased is quite similar to that purchased by Command

Alpha some time ago. He therefore contacts personnel in the

development office at Command Alpha to see if any

information generated by them can be reused on the present

project. Documentation on Command Alpha's figure generation

system is sent to Command Bravo.

The Command Bravo team must first select an overall

approach to their project. They review the feasibilty

documentation of Command Alpha to try to obtain some

initial direction for their project. This information

proves to be quite useful, especially since the two

commands' hardware are so similar. The Command Bravo team

discovers that the Alpha personnel reviewed many aspects

before selecting an approach. These same issues are

37

.... ,,-:-. --. , -. .,.,...' -. -.. . .. -. , - . ." -. - -.- .-. ,-

relevant to the current project. From this review, the

Bravo personnel decide on a menu-driven, mouse-controlled

system.

Next, the team must determine the requirements for

the system. Here, there are differences between the two

commands since the new system will be used in a different

manner, that is, for projecting graphics displays on the

computer screen for interactive training simulations. The

Bravo development personnel will not themselves be end users

of the finished product, as was the case for Command Alpha.

Thus, the Bravo team now interacts with the Operations

Division personnel to determine what will be most effective

capabilities for the new system. A review of the data from

the requirements analysis of the Command Alpha group shows

that little of this information can be reused since the

analysis necessarily concentrated on different aspects.

Proceeding to the design phase of the new system,

the Bravo development team determines that some of the

previous design information can be reused, although most

must be created anew. Data concerning the menus and

selection, for example, can be used on the current project.

This is due to the fact that the some of the additional

funds expended on Command Alpha's project were used to

develop generalized menu and selection routines. The team

leader determines that reusing this information will provide

38

......................

a cost savings due to the man-hours that will be reduced on

the design development.

Since the new system is being designed to provide

different capabilities than the previous system, the testing

of the system will be changed. Thus, alternate test plans

must be generated. However, unit testing of modules which

were developed by reusing Command Alpha modules will be

simplified. These modules have basically already been

tested in the previously developed system.

The Bravo development team leader notes that very

little of the code from the Alpha project will be

appropriate for reuse on this system. Modules that

implement menu presentation, provide help information, and

perform selection can be modified to meet the needs of the

new project.

Once again, since the present system is so divergent

from the past one, the operational and maintenance

information from Command Alpha will basically be

inappropriate for reuse.

3. Scenario III.

Command Alpha personnel have been functioning well

for some time with their computer graphics equipment and

software. They now receive additional, less expensive,

graphics hardware to enable them to expand their graphics

capabilities throughout the command. The new hardware was

competitively procured and is from a different vendor than

39

... drawings are the language by which construction

personnel communicate." ERef. 301 We must recognize that

the written word has not been an effective "language" by

which software personnel have communicated to

make reusability more of a reality. We need to develoT a

dramatically different methodology, therefore, and one that

can alleviate some of the fundamental obstacles to

reusability.

A software blueprint would be written using standard

symbols and notation. It might consist of different types

of diagrams to explain various aspects of a software

project. For example, there could be a requirements diagram

which would describe not only the requirements, but how they

they were decided upon. There could be design diagrams to

describe both the product and the detailed designs of the

system. Then, there could be an integration diagram to show

the interfaces, a testing diagram to show the test plans,

and a maintenance diagram to describe what has occurred in

maintaining the system.

The idea of using diagrams to provide information is

supported by the fact that visual aids often assist in our

comprehension and thinking processes. "A well-illustrated

article is easier to understand and recall because the mind

has more material to work with, more external support. Good

illustrations help you conjure up your own images and

diagrams, making it easier to understand and absorb the

53

• , ° .

++.~~~~~~~~~~ ~~~~~ -,+ '; . . .+ . + , , +- . -- . .. -, V PT W . . + RI+ +.m

documentation of information produced throughout the life

cycle phases of a software development project is crucial to

making reusability a reality.

Once a standard form of documentation is developed, we

can proceed to the new approach that this thesis proposes,

which is the use of software blueprints. The objective of

this approach is to develop blueprints, or diagrams, using

standardized notation, in which the information generated

throughout the development of a software system could be

displayed.

Consider the blueprints or diagrams used in architecture

or in the development of computer hardware systems. There

are floor plans, wiring diagrams, plot plans, circuit

diagrams, and more. The advantage of these diagrams is that

they present information in a clear, concise manner. This

has been a problem area for reusability in software

development. We have much information retained from

previous projects, but it is not easily retrieved, nor is

it understandable. The data is stored in manuals, in

volumes of paper, or with automated systems that not

everyone can comprehend. Blueprints have the advantage of

displaying the necessary information understandably,

completely, and in detail. They allow individuals to

communicate more effectively about projects because they

are able to see what they were discussing in a concise

form. Diagrams are used extensively in other professions,

52

comprehensible to all personnel. The use of standards has

long been recognized as vital to other professions:-

Recognized standards are a major aid to all concerned with

building construction. They reduce the amount of
definitive material to be produced for each project....
Standardization does imply that universally familiar
indications, symbols, and terms are more foolproof than

untried versions. It requires the consistent use of the
same identification for each item in the specifications
and on all the drawings. [Ref. 28]

This kind of standardization in architecture, for example,

has enabled all personnel involved in the building process

to understand the documentation. This, in turn, has allowed

them to be able to reuse drawings and thus avoid duplication

of effort:

A productive source of construction know-how for
experienced as well as new draftsmen is the office file of
completed drawings.... Frequently you will be able to find
solutions to problems quite similar to the ones you are
facing.... [Ref. 291

The lack of standard documentation in software engineering

will continue to make reusability difficult. There are

problems noted today with the systems that are in use which

attempt to document certain life cycle phases, most notably,

the requirements and design phases. Consider, for example,

the Structure Analysis and Design Technique (SADT) and the

Software Requirements Engineering Methodology (SREM), which

were previously discussed. These systems, even on a local

level, have not gained widespread usage due to difficulty in

understanding them and the extensive training needed to do

so. Thus, the need to develop a standard notation for the

reusability in mind. Ne must plan for additional

development time and effort, and, thus, additional

development cost, to make reusable components available in

the future. Hence, we must consider the need to spend

additional dollars today for savings tomorrow.

It is evident that software engineering can benefit by

applying some of the methods that have been long practiced

and have been of great use to other engineering fields. We

need to devote our efforts toward making the construction of

software systems an effective engineering discipline.

B. PROPOSED NER APPROACH

Software reusability will always remain a basically

local effort unless we make a concerted effort to develop a

new methodology to provide a support system for generating

the reuse of software components. The first step is to

incorporate the best concepts from the more experienced

engineering fields. Then we must expand these to find the

most advantageous approach for software production. This

thesis now proposes ideas for that approach.

For reusability to gain widespread adoption, standards

must first be developed. One of the main stumbling blocks

to reuse of software components has been a lack of

readability, and, therefore, understandability, of

previously developed components. There are no standards

to follow which would make the documentation more

50

..•

work. Additionally, the drawings for a specific project are

saved and are then available for reuse where appropriate.

Also, prior to the actual erection of a building, a

great deal of time and effort is expended in preparing the

necessary drawings or documents to gather together all the

information required to build the structure ERef. 26]. A

similar approach is not always taken in the field of

software construction. The problem was succinctly stated by

Yaohan Chu:

In engineering methodology, engineers build by a plan,
whether the product is intended for mass production or for

one-time use only. First, the engineer develops the
design; then, the product is constructed. In addition,
a design document--the engineering blueprint--is
produced.... This long-practiced methodology contrasts with
the current practice of programmers, who attempt to write
a program without a comprehensive design and (equally
important) an understandable, concise design document.
[Ref. 273

Often, only minimal information regarding the requirements,

design, and testing of a system is collected before actual

coding is begun. The emphasis is placed on meeting the

schedule for having the system available. This is

especially evident when work is being done in-house, where

it is sometimes felt that the greatest need is to get the

system operational, with additions or corrections easily

incorporated later. It is this type of thinking that

provides an obstacle to reusability. If specific effort is

not taken with the development aspects of a software

project, the system cannot hope to be produced with future

49

V. !H AZnjgh&i

A. SOFTWARE ENGINEERING CONCEPT

The American Heritage Dictionary describes engineering

as "th* application of scientific principles to practical

ends as the design, construction, and operation of efficient

and economical structures, equipment, and systems."

[Ref. 253 In this regard, we consider the design,

construction, and operation of computer software systems to

constitute an engineering discipline. Correspondingly,

definitions of software engineering have been presented,

such as the following by Barry Boehm: "Software Engineering

is the application of science and mathematics by which the

capabilities of computer equipment are made useful to man

via computer programs, procedures, and associated

documentation." [Ref. 26] Thus, we speak of "software

engineering* and "software engineers" when discussing the

development of computer software systems. However, we do

not approach the task with the same types of tools, or with

the same conviction, that other engineering fields exhibit.

Consider, for example, the field of architecture,

involving the design and construction of buildings. In

practice, for this profession, there exist blueprints, floor

plans, wiring diagrams, standard symbols, and so forth.

These tools are produced in a standard way, so that

personnel in the same profession can understand another's

48

•....

p
by using those components, reusability may create more
of a loss than a gain. Also to be considered in a
cost/benefit study is whether to expend additional
capital now to develop reusable components for future
use. This is a difficult aspect to contemplate on
anything but a local level at the present time, since
most software managers must consider their own
projects foremost in order to be considered effective
and efficient at their jobs. This type of analysis
should be actively pursued within development offices,
though, to generate as much reuse of software as
possible.

2. Determine if any information that could be reused on
the project at hand exists. The type of system being
developed may be so new that no previous project can
provide useful information. In such a situation,
extra care should be taken to document all efforts on
the current project for the benefit of future
applications.

3. Consider the maturity of the type of system being
developed. A more mature system will be able to
provide not only more, but more reliable, reusable
components.

4

I

q4

task." CRef. 253 This type of information should be well

documented and readily available to enable future

development personnel to make the best, most informed

decisions.

The basic maturity of the type of system being developed

must be considered when contemplating reusability. Scenario

I illustrates a situation in which the type of system being

developed is basically new. In such a case, very little

information can be found and, thus, little will be available

for reuse. As a system matures, more information regarding

it becomes available, for each life cycle phase, and more

components become suitable for reuse.

E. GUIDELINES

The scenarios presented and the above discussion suggest

certain aspects which should be considered in performing a

trade-off analysis to determine if reuse of software

components is applicable to a certain development project.

These are outlined below as possible guidelines for the

software development manager:

1. Perform a cost/benefit analysis. This should be a
computational analysis based on the best possible
estimates of the values of costs and benefits. Since
the economic issue of reusability is the most
important one, this type of analysis is crucial for
any trade-off decision. It includes several aspects.
First, one must consider the expected man-hours of
effort necessary to locate reusable components versus
the expected man-hours needed to develop the project
from scratch. Additionally, if incorporating reusable
components will generate more work in modifying the

components to meet the user's need than will be saved

46

' :, ,,.. , ,,. . .-..... .;..;.-..*.. ** *..,

example, benefits recognized in the maintenance phase must

be discounted to account for the time difference.

Additionally, as Scenario I depicts, it may not be cost

effective to attempt to locate reusable components from

prior projects. If more man-hours would be expended to

discern the necessary reusable information from massive

volumes of documentation than would be to develop the

project without the reusable information, then trying to

incorporate reusability is not cost effective. According to

Wagner and LaHood, u...unpublished materials...those in

files...represent the project documentation of about 15

software design projects concerned with computer graphics,

and contain somewhere between 10,000 and 20,000 pages."

Ref. 24] Thus, for a situation such as related in

Scenario I, it would not be cost-effective to try to find

reusable data.

It is also important to consider all information about a

software project as available for reuse at any time during

the development of a new system. Operational or maintenance

information may have a bearing on the requirements or design

of future systems. As Foley and Van Dam pointed out, "A

classic study demonstrated 100% differences in speed and

200% differences in error rates among several techniques for

picking displayed words. Two different interactive graphics

drafting systems, designed to do the same job, have shown

differences of 100% in the overall time to complete a given

45

Sq.. .

so much of the art of programming, very little of it is

recorded in the published literature." CRef. 233

Also to be considered is whether to develop a system for

future reusability. To make this determination, as

demonstrated in the first scenario, a cost/benefit analysis

must be performed. This is most effectively done by

computing the net-present-value coefficients for the

situations being compared. First, the potential costs and

benefits must be identified, and values assigned to these.

Then, because the value of money changes over time, the

future values are discounted backward in time by multiplying

them by a discount factor, or present value factor (pvf).

This net-present-value (NPV) technique, therefore, discounts

the costs and benefits to the present year and compares

them, by way of a NPV coefficient. The coefficient is the

ratio between the net-present-value and the initial

investment. These calculations provide an effective means

of determining how to proceed with a project.

There are other factors to keep in mind in a trade-off

analysis. An important issue is whether one can anticipate

follow-on projects which will benefit from reusable

components. If the indication is that the system being

developed is likely to be a single effort, there is no point

in developing the system by designing reusable components.

It is also important to identify not only what the costs

and benefits are, but where in the life cycle they are. For

44

capabilities. Here, some reuse may be warranted. It also

presents a situation in which a decision for future reuse

is not made. More reusability can be seen with a situation

such as Scenario III illustrates. In this instance, the

hardware is different but the requirements for the software

are basically the same. The most reuse of software

components can be seen with an example such as Scenario IV

presents, in which both hardware and software are generally

the same as a past developed system. Much more information

could be reused in a case such as this if the original

system were developed for future reusability.

Scenario I also raises other points about the issue of

reusability. Even if other similar systems exist elsewhere,

that is, external to the command, software components are

only effectively available for reuse if they have been well

documented and are easily retrievable. Thus, if a

development team cannot locate documentation on a particular

phase for a project, they should ensure that their efforts

are well recorded for the benefit of future projects. This

should include all information, such as ideas, reasons for

decisions, and the decisions themselves. This factor has

been found to be the biggest deterent to using reusable

software components, that is, little or nothing is

documented from past experiences. As Wagner and LaHood

noted in discussing the design of computer graphics, "Like

43

must be regenerated for a complete understanding of the

project. The one aspect that allows reuse of Command

Bravo's work is that the systems are so similar.

Since this system is to be used onboard ships, there

will be some differences. The requirements must be changed

to reflect the need for increased system reliability and

to provide for the new information which is to be used in

the training program. The team leader decides that the

previously devised test plans will be appropriate, but must,

however, be expanded to more rigorously test the system for

shipboard use.

The development team recognizes that, as a shipboard

system, this software can expect to remain in use for some

time. Hence, more emphasis is placed on developing an

extremely reliable and effective system.

D. DISCUSSION

The above scenarios describe several situations in which

varying degrees of reusability are appropriate. Scenario I

is indicative of a situation in which the hardware and the

software for the system being developed are new. In such a

case, little from past projects can be reused as the systems

are so dissimilar. This scenario also describes the

situation in which an explicit decision is made to develop a

"- system for later reuse of components. Scenario II presents

the case for similar hardware with differing software

42

" €.- J

changes would be warranted for the new system. Using this

data, they discover some minor design changes that will

effectuate improvements in the speed of the system.

4. Scenario IV.

Command Charlie has been tasked with developing an

interactive computer graphics system for shipboard use.

This system is to be used to train personnel in the use of

various shipboard equipment. The development team leader

finds that the contract for the computer hardware has been

won by the same company which provided graphics hardware to

Command Bravo. He also notes the similarities in the

requirements of the systems for both commands, and thus

contacts personnel at Command Bravo to determine if any of

their development information can be reused.

The development team determines that some of Command

Bravo's data can be reused since the hardware and software

for the new system will be basically the same as the

previous one. The overall approach will be generally

identical, as will much of the requirements. The design of

the system will also be similar, and much of the code can be

modified to meet the new demands. The Charlie team becomes

aware, however, that the Bravo personnel did not develop

their system with future reusability in mind. Thus, much of

the documentation which would have greatly assisted the

Charlie team does not exist. Some duplication of effort

results since many of the ideas considered by the Bravo team

41

7..,...........-...............

the previous equipment. A graphics figure generation system~.

must also be devised for this hardware as none was provided

with % equipment. A development team is formed to

accomplish this task, consisting of different personnel than

those who originally developed a graphics package for the

command.

The development team leader notes that the present

project is exactly like the previous project, except for

some variations due to the differences in the hardware.

- . Therefore, the team retrieves all the documentation from the

past project. Since the command desires to retain the

features of the system at hand, the development team

determines that it will be able to reuse much of the

information previously generated.

Very little effort must be expended on determining

the approach. It will be the same as that of the previous

project. Additionally, the requirements will be identical,

as will be the test plans. Since the original system was

developed with future reuse in mind, the team leader

determines that it will be very cost-effective to use the

previously designed components. He estimates that

developing a system from scratch would require an investment

of $40,000 and developing the system with reusable

components will generate a reduction of $20,000.

The development team now looks at operational and

maintenance information of the older system to decide if any

40

|.-°*

material.* CRef. 313 Consider the following description

of a triple-bus- microprocessor architecture:

Two input-buses named A-bus and B-bus are provided. The
A-bus is connected to the right input of the ALU, and the
B-bus is connected to the left input of the ALU.... Also,
results can be gated on the D-bus independently of the two
source-buses. If the result must be written back to one
of the source registers, a buffering is required. This
buffering must be provided on the D-bus or directly within

the registers.... CRef. 323

This description becomes much easier to comprehend by

reading the words and viewing the illustration given on the

next page [Ref. 331.

If we can, therefore, develop an effective notation and

blueprint scheme for describing the construction of software

systems, we will have taken the first definitive step toward

supporting reusability. Personnel will be able to more

easily retrieve data from past projects, and it will be

provided in a form that all software engineers can

understand.

The task of developing a software blueprint and notation

will not be an easy one and should not be underestimated.

To be effective, the blueprint must contain large amounts of

information about each of the various life cycle phases.

Ways of presenting procedural information, data structures,

interface information, and data concerning other development

issues, must be devised. Thus, there is a need for a

standard notation to enable us to present information by

symbols, and in a way that will be understandable to all

54

A-BUS (source)

-- - --- -IF - --- - ---- --- - ----

I I B-BUS (source)

IWEN,I I RO I ... I RN I Istatus I
11/0 1 1 1 1 1 1 1 aI
I I I I I I I C- - ALU

I IregistersiI
-- - - - -- - - - - I
D-BUS (destination)

Figure 3. Triple-Bus Architecture

55

'SL

software personnel. We must also consider the difficult

questions of how to process the information that would be

available in a software blueprint and how to retrieve that

information. Thus, developing a reusable software support

system will be an arduous and complex process, but a

necessary one if widespread reusabilty is ever to become a

reality.

The current software crisis makes it imperative to

become inventive, to not become mired in old techniques that

have not supported reusability in the past, and cannot be

expected to do so in the future. Logically, a good place to

start to find a plausible approach is with techniques that

are effective in other engineering disciplines, and

techniques, such as standardization, that have proven

to be responsive throughout history.

The basic idea of a drawing to present information is

not new. It has been attempted in software development with

flow charts, HIPO charts, SADT diagrams, and so forth. What

is new is the idea of standardizing the presentation of the

information, and using diagrams to represent as much of the

life cycle documentation as possible. Both of these

concepts have been successful in the past in other areas and

may provide the answer to increasing the availability of

reusable software components.

56

, , ,, - -. ,,., >

VI. CONCLUSIONS A RECOMMENDATIONg

As this thesis suggests, the incorporation of

reusability into software development projects may not

currently be a practical consideration. There is a danger

in assuming that reusability is of definite economic
J1

advantage and should, therefore, be pursued in all cases.

The tendency in most articles on the topic, up to this

point, has been to embrace the concept of the reuse of

software as a cure for the software crisis. In fact, using

present methodologies, it may have the opposite effect.

That is to say, by attempting to locate reusable components

we may actually expend more time, effort, and cost than we

wnuld by producing the product from scratch. There are many

factors to consider--cost, benefits, human factors, the

maturity of the type of system being developed, and the

-availability of reusable components. Thus, it is

imperative, with present methodologies, that an effective

trade-off analysis be undertaken to determine if reusability

is advisable. It is important to recognize that it may not

be.

We can see that although reusability was first discussed

in 1968, not a great deal of progress has been made. True,

we perceive that the reuse of software components would be

valuable in alleviating the software crisis. However, we

have not made great strides toward that end. Inasmuch as we

57

4 . %P. .

cannot find widespread application of reusability, we must

look toward developing new approaches for advancing its use.

This thesis suggests that we adopt some effective tools from

other engineering disciplines, namely standardization and

blueprints, and forge ahead. Too many years have been

wasted in only discussing how great the concept of

reusability is, without actively and vigorously trying to
,.1

make it a reality on a wide scale.

We must now seek to get the project underway. This

could be accomplished by setting up a specific project for

developing reusable software. Some form of standard

notation should be developed, as well as the format for

-*.- software blueprints. The initial development of components,

which are currently frequently produced in separate

projects, into a reusable form should be undertaken. A

library and cataloging system must also be devised so that

development personnel will be able to rapidly locate

reusable components.

The only way reusable software is going to be a reality

on anything but a local level, is by developing a strong

support system for it. Also important is the need to

educate personnel on the new methodologies, once they are

completed. The system should be documented, personnel

should be trained, and managers should insist upon its use.

Until such measures are taken, however, we must be

realize that trade-offs are involved, and attempt to make

58

• .
' ., . , , : , ; ., o

the most informed decisions about reusability. We should

try to incorporate reusable components and develop them,

whenever possible, at the local level. In that way, even

with the drawbacks of today's techniques, we will be able to

achieve as much benefit as possible from reusability.

S. 5.

-'I

I. Joint Logistics Commanders Joint Policy Corrdinating
Group on Computer Resource Management, "Report of the
Panel on Software Reusability," Z12.gqingg 2f th

I~j1tjgrs jj.j~?p I November 1991.

2. orkh oR 2 on Peosrailit 10 EE ! Einq, ITT, September
1983.

No. 5, September 1984.

4. Joint Logistics Commanders Joint Policy Coordinating

Group on Computer Resource Management, p. 3.

5. Ibid, p. 2.

6. Boehm, Barry U., Software Engineering Economics, p. 36,
Prentice-Hall, Inc., 1981.

7. Standish, Thomas A., "Software Reuse," Y2orksho 2

Rs j in Programming, ITT, p. 45, September 1983.

9. Leavitt, Don, "Reusable Code Chops 60% Off Creation of
Business Programs," Q2RPornpj !4, Vol. 13, p. 1,
29 October 1979.

9. Boehm, p. 18.

10. Freeman, Peter, "Requirements Analysis and Specifica-

tion: The First Step," Tuto riA on Software Desi gn
Tojhnigegs, 4th ed., pp.80-I, 1983.

11. Ibid, pp. 82-3.

12. Lanergan, Robert G. and Dugan, Denis K., "Software
Engineering with Reusable Designs and Code,"

622GIA12 12K 929ing dSiixj jj_9Sg9 of the
b DM 1 Conference, p. 296, Fall 1981.

13. Boehm, Barry N., "Software Engineering," IEEE Trans.
QgnRgR , pp. 1226-41t, December 1976.

14. Horowitz, Ellis, and Munson, John B., "An Expansive
View of Reusable Software," NorkshoR on Reusability i

2gt[!W!ning, ITT, p. 254, September 1983.

15. Ibid, p. 250.

60

II I 3 L L .. ,-.; ." . . ' .% % L -'''i ' '' .. ,\ x.....I-. " ''' L-.. ''' .. '''

16. Bruton, Eric, The History 9t Clocks and Watches,
p.145, Crescent Books, 1979. ----

17. Wegner, Peter, "Reflections on Capital-IntensiveI . Software Technology," Software Engineering Notes,
Vol. 7t p. 24, October 1992.

18. Ibid, p. 25.

19. Cooper, John D., CDR, USK, 'Computers in Tactical
Systems,* QMqMtEj lp the1 ft p. 122, 1976.

20. NAME! M2 112EAE 202Dc3 QL~iEiLA P-19-121 Co0Mputer
fxtLa, NAVELEX 0101,111, Vol. I, p. 3-7, March 1972.

21. Perry, Oliver H., III, LT, USN, and Fox, Richard 3.,

LT, USX, "Computers in Naval Fire Control Systems,"

22. Powers, M. X., Adams, D. R., Hills, H. D., Comp~uter
Int2EM9iogD Syltes Deve i oMentz Anal ysis and De2ign,
pp. 194-208, South-Western Publishing Co., 1984.

23. Wagner, F. V., and LaHood, J.9 "Computer Graphics,"

92M!R2E ftLhiR~c!L 911_xL.Eroducti on/Art,
Thompson Book Company, 1967.

24. Ibid.

25. Foley, J. D., and Van Dam, A., E904IL0201912 2t
Q~~ii~i *p~zpp. 222-42, Addison-Wesley

Publishing Company, 1994.

26. Thg 6Mgplican Heritage Dictionary of jt Engls
L~ngqfig27,P p. 239, ell Publishing Co., Inc., 1972.

27. Boehm, p. 16.

28. Chu, Yoahan, i~IVE k1gRPIEnt- and ExAMR1i, P. I,
I Lexington Books, 1982.

29. Hooper, Lee, --rou t-n-o-ostucin--at

p. 125, Prentice-Hall, Inc., 1971.

Ii.30. Ibid, p. 229.

31. Huth, Hark W., Basic Construction Bll~n Readinq,
p. 39, Delmar Publishers, 1990.

32. Benzon, Bill, "The Visual Hind and the Macintosh,"
* 3y~tf, Vol. 10, No. 1, p. 120p January 1995.

33. Zak*, Rodnay, Erge ghipa 19 1II999Lt! fin jI2Ul
12 B15121~2[' P. 49, Sybex, 1981.

34. lbid, p. 49.

62

No. copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5100

3. Prof. Gordon H. Bradley, Code 52Bz 4
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. Prof. Bruce T. MacLennan, Code 52M1 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

5. CAPT Crandall I
Naval Sea Systems Command (SEA 61Y)
Department of the Navy
Hashington, DC 20362-5101

6. LT Cynthia A. Murnan 2
232-B North Spruce St.
Batavia, NY 14020

7. Computer Technologies Curricular Office I
Code 37
Naval Postgraduate School
Monterey, California 93943-5100

63

FILMED
'1

11-85

DTIC
4N

