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I Introduction

Much of the career of Herbert Solomon has been devoted to combining the
identification of important applications, the building of models for these applications
and the use of data to estimate the parameters of the models or to develop new
models. His activities have covered the vast territory of statistics, operations
research and the social sciences. He has considered problems arising in such diverse

areas as logistics, inventories and queueing, quality control and inspection, learning
and human factors, packing and geometrical probability. It is in this eclectic spirit

that we consider a problem area involving both probability modelling and statistical

inference.

This paper presents a natural generalization and a statistical analysis for a general

and important class of stochastic processes, simple Markov population processes

(SMPP). This class of processes is broad enough to encompass simple queues and
complex queueing networks, repair models, manpower models, labor mobility and

migration phenomena, and many others. The equilibrium theory for the SMPP is well
known. The reader should consult Kingman (1969) or Kelly (1979) for a thorough

treatment of tne probabilistic aspects of this theory. We will focus on statistical
inferences associated with random parameter versions of the SMPP.

Traditional formulations of applied probability models typically emphasize only one
of the many possible sources of random fluctuations that may influence system

Denavior. For example, extensive treatment has been given to a wide variety of
queueing modeis for congestion at service facilities. in these models, some simple
arrival or demand process confronts a given service process often presumed to nave

i.i.d. random variable, or possibly Markovian, character. The parameters of the

component arriva; and service processes are nearly always assumed to be few in
number, given and fixed. Consequentiv, tne predicted waiting times and queue

lengths vary olv in response to the inherent variability of the arrival and service
processes of tne parameters of tme latter are also fixed and known. It may be
argued that sucn internal or witnhin variability is not tne oniv source to be considered

under many circumstances: the fixed rates may be expected to change occasionally,
and additionally may well be unknown. Similarly. inventory control models typically

assume that parameters of demano distributions a'e fixed, as do reliability-
redundancy studies of faiiure-prone repairable systems, and the compartment models

of pharmacology.

Perhaps for reasons of mathematical tractawitv, inere has been far less attention

paid to models having time-dependent parameters, wnere the time dependence is
either deterministic or 'random.' Recently. nowever, models representing random
environments or douoi, stocnasic effects nave appeared in the literature. Such

models shoUld be usefui in system studies for descrai noi realistic situations in which
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', parameter values vary widely because of weather or other natural environmental

influences or because of the impact of client, patient, or opponent action, or various

other exogenous influences. Thus, the traditional models should be extended by
incorporating external or between variability components. Because it is often natural

to suppose first that the basic parameters of the model of interest are drawn from a

given (with unknown parameters) superpopulation, we refer to such models as

hierarchical.

The objective of this paper is to formulate and solve problems of statistical

*: inference for hierarchical models which arise in the context of Markov population

' processes. We will assume that we are given an observation of the sample path
' from a set of Markov population processes. Each of the processes is governed by

its own set of parameters. The vectors of parameters for each of the processes are

assumed to be drawn i.i.d. from a parent "superpopulation" distribution which may
itself have unknown parameters. The goal is to estimate the parameters of the

superpopulation, because these describe the population. Using this information, we
wish to estimate the parameters of each of the Markov population processes to

. make inferences about a particular instance of the system, population or

- compartment. If positive indications are present, it will be possible to pool

information from other processes to improve the estimates of one in particular, i.e.,
to "borrow strength" in John Tukey's words. On the other hand, we seek approaches

which are "discrepancy-tolerant" or "robust," i.e., which do not unjustifiably pool data

when counter-indications are presented by the data; Gaver (1985).

The general inference problem described seems to fall into the category of a
standard Bayesian analysis or, more ambitiously, an empirical Bayes or Bayes-

empirical Bayes analvsis. The reader might consult Morris (1983) for a review of

parametric empirical Bayes methods, Robbins (1983) and in much previous work, has

elucidated the non-parametric Bayes approach, or Deely and Lindley (1981).

Surprisingly, scant attention seems to have been paid to empirical Bayes methods for
. stochastic processes.

This paper is organized as follows. We introduce the notion of Markov population

processes in Section 2. Section 3 gives several examples of situations in which
random parameter versions of Markov population processes are important. Section 4

develops a likelihood function and Bayesian statistical inference for these processes.

Section 5 briefly discusses empirical Bayes approaches. Section 6 points out

important topics for future research, mucn of which is currently in progress.

r

• - .. .. . .. * '. .. . - .. _-.*.'. . ." *.. . . ... -...... . .. , . ..-.. o•.. . . , .•,• .
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2 Markov Population Processes

We are concerned with Markov population processes in n dimensions. Such a
process {Q(t),t 0 is a continuous time Markov process with state space S =
{(61.n 2 .... ,in), ij#Z+,l 1 j n). The components of the state space correspond to the
occupancy of each of the n populations or colonies. The possible transitions are
defined as follows. Let TJ(I) = Tq,(s, ... s n) = (s.... s.il,s,-1,s+ + 1- l + .... Sn). The

transition from state s to T, l corresponds to a migration of an individual or unit in
population (colony) i to population j . For a simple Markov population process the
flow rate for such transitions can depend on § only through s, . We specialize this
requirement further by requiring the flow rate to have the form X fu(si) , 1 K i,j n,

We also allow transitions from the outside into one of the colonies. Let Toj(k)
correspond to an arrival from the outside to colony j. This transition has flow rate
Aofoj(Sj) and depends on s only through s,. Finally, there can be departures from a
colony to the outside. We define Tio(S) = (s..... s,-1 .... Sn). The transition from s to
T,( ) has flow rate ) ,,fo(S,).

The functions {f, (k), O~in, O j~n) can often, but not always, be thought of as
known structural parameters. If one is studying a Markov population process such as
a queuein9 network or compartmental model, these parameters are determined
directly from knowledge of the structure (e.g., the compartment connectivity or the
number of servers at a node and the flow of traffic among the nodes). The rate

parameters .= ........ A,) are generally not known and must be estimated from
data. Several comments are in order. First, a single unknown input parameter may
not be sufficient, as there could be flows into different colonies whose relative
magnitudes are not known. The formulation can be easily extended to allow for as
many as n such parameters (one for each colony), but we do not do so here.
Second, one must introduce conditions on A and the structural parameters jointly to
ensure that an equilibrium distribution exists. Indeed, if an equilibrium distribution
were to exist, it would be of product form; see Kelly (1979). Fortunately, the
existence of an equilibrium is unnecessary for our analysis. There is no need for the
process to be in equilibrium or to even have an equilibrium distribution. We merely
observe a part of the sample path and then develop estimates even if the process is
transient. Similarly, it is usual to assume the state space is irreducible, but this is
not necessary for our purposes. For this reason, we define S = {(i .....iJ i iZ+, 1 K

j n) and do not address the possible boundedness of certain components.
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3 Examal 9f 2! wjj Markov Population proosse

We present several examples to illustrate a few of the important applications of

Markov population processes. We also describe the accompanying inference

problems.

3.1 Simple Markovian Queueing Systems: M/M/C

In this example, we let n - 1. The state variable, x, corresponds to the number of

customers in or awaiting service. The parameter A. corresponds to the arrival rate,

while A, is the service rate. The structural parameters are given by f 0 1 (x) x 1 and

f 10 (x) = min (x,C) where C is the number of servers. It is likely that either A or X1

or both are unknown and must be estimated from data. Not only may X0o be

unknown, but it can also exhibit fluctuations over time, e.g.. from day to day. This

is especially true in service systems where demands vary. It is reasonable to gather

data over relatively short periods of time during which A and A, can be considered

to be constant. By introducing a superpopulation distribution over the possible

(X 1) pairs, one can use these sample path fragments to estimate the

superpopulation parameters and the particular () 1 ) realizations. Finally, the

superpopulation distribution can be used to carry out a complete system performance

analysis.

3.2 Compartment Models in Pharmacology

Compartment models offer a broad class of models often used to represent the

movement of drugs or pollutants through a system such as the human body. The

compartments correspond to pools or tissue groups such as the blood stream or

body organs. Stochastic compartment models are often equivalent to an open or

closed Jackson network of infinite server queues. The compartmental structure is

usually defined by an n x n transition matrix P = (p j) With p.j 0, p,: , I and

Poz p,j. The structure functions are taken to be f,,(x?) = p x, 0 ,jn. If A0 = 0

and p,0 = 0, 1 g i n, then the system is closed. Otherwise, it is open. We assume

P is known, but the anaiysis can be carried out if we replace A.p x by XAx where

XAj = X, pli must be estimated.

it has been commented on by Koch-Weser. as quoted by Wagner (1975). that "drug

dosages needed for optimal therapeutic effects differ widely among patients. The
"usual dose' of most potent drugs accomplishes little in some persons, causes

serious toxicity in otners, and is fully satisfactory in a few." This observed

variability between patients strongly indicates that the model rate parameters X a

iA A1 i..... A) correspondingly exhibit substantial variabilitv. We imagine that each

individual draws a A from a superpopulatior distribution, and observe a sample path

from each of the compartment processes. One goal is to estimate the parameters of
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the superpopulation distribution, because this determines the variation between
members of the population. In addition, it is important to estimate each of the
individual X values, since they may be related to patient pathology or classification.
Knowledge of the between variability may be used to strengthen estimates of
individual ) values.

3.3 Logistic Support for a System Depending Upon Repairable Modules

Successful operation of each of a set of I vehicle systems (e.g., trucks, rental cars,
airplanes, or ships) depends upon the operability of important subsystems or modules
(tires, engines, communication and navigation subsystems). Suppose modules are
failure prone but repairable, and that each module type that is on a vehicle in
operation fails independently at an (unknown) Markovian rate A , where j refers to a
module of type j, 1!j J, and i refers to the ith vehicle, Ii l. Let the Markovian
repair rate for modules of type j be aj (unknown), meaning that repair times are
independently exponentially distributed. Suppose that, in addition, there are M
modules of type j on each vehicle, and that the more that are up or operable, the
more effective is the overall system operation. In addition there are Si spare
modules of type j in the system, and a repair system that contains Rj service
facilities (repair teams, equipment; spare parts and tools are considered separately).
Let Xp(t) represent the number of type j units up and either installed on, or awaiting
installation on, all systems 1<i l at time t. Then under additional stipulations
concerning the service protocol, {X ,(t), QO) is a multivariate birth and death process.
The total number of modules in the system is I (M + S) the total number of

J J=i
service facilities is I RJ, and the relevant problem is to specify near-optimal values=1

of Sj and R when data are available to estimate the rates A when j and a suitable
measure of effectiveness are specified.

4 Statistical Inference for Markov Population Processes

We first develop the likelihood function for simple Markov population processes.
Later in this section we consider Bayesian inference.

4.1 The Likelihood Function

A Markov population process behaves in a simple fashion. Suppose at time 0 it is
in state s. It will remain in state § for an exponential period of time with rate

parameter

n n r n
R (sl) :f o  (s - X 'f, sf. (,)s

n
where f(s)= f (s) andfs= f is.- = O - I=C

• ...... -..... -. .. . , . ... . . ...-. ? •.... ..... 7 .. .-..... .. . -.- . -... ,
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Of course, R(§) is the rate at which the process leaves state .

When this exponential period ends, the process moves to a new state. These

transitions are specified for 1 K i K n and 0 j K n by

To,(s) with probability X 0foi/R(§),

T j(s) with probability A. f q(s )/R(s).

The data from the sample path can be reduced to a sequence of states and sojourn
times in those states. This can be written as (s(1),S1 ),(s(2 ),S2 ).(s(m)' Sm) where s (t) is
the tth state occupied by the process. To remove certain minor difficulties, we will
assume that s(1) is not random but is deterministic. It is possible to assume that
the initial state is stochastic and is chosen by some distribution (usually the
equilibrium distribution, if one exists). We do not even assume the existence of an
equilibrium and so simplify matters by taking §( 1 ) to be deterministic. We have not
described the sampling interval [0,T] and prefer to leave it unspecified. T may be
deterministic, in which case the number of transitions (m-1) is stochastic.
Alternatively, one could observe the process until m-1 transitions have occurred, inm

which case T I S is stochastic. The likelihood, however, would not differ
t=1

substantially.

Thus, the sojourn times, S 1 ... Is m contribute a factor of

m -

rn R(s(") exp(-StR(s(t)))
1= I " t="

to the likel hood function for given X . The state transitions also contribute to the

likelihood function. If the transition from s (l ) to s ( ' + ' ) involves a departure from

colony I to colony j, 0 jgn, a term X fj (s,(k))/R(s(k)) is multiplied into the likelihood

function. A term A f ,(s(k))/R(s(k)) is included if an individual arrives to colony i from

the outside. We let M o = the total number of arrivals from the outside, and M = the

total number of departures from colony j As a consequence, the likelihood

function is proportional to

rn n M
exp(- I StR(sMt ))) n K (4.1)

t = I I k=o k

The quantity

•I -- [r r
I S R( 5())S is I A f iS (0))I S f (S'"'I XW
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There are many directions for future work, some of which are currently being taken.

Models that permit the between component of variability to arise from a multivariate

stochastic process, e.g., multivariate log-Gaussian process rates, are attractive when

endogenous influences may occur in a time-series-like manner, as may be true of

weather or economic effects. Hyperparameter estimation and model diagnosis again

present problems. Such problems promise to require the computer-intensive activity

that characterizes much of modern statistics and operations research. It is our hope

that the results will, in spirit, resemble the various interdisci inary statistical efforts

of Herbert Solomon, to whom this paper is dedicated.

%Z
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When a must also be estimated, we must introduce a second set of likelihood

equations.

K K
0 = I) (HItI +Mk))_H /(a) - I log((j+W)/8), 0 j n. (5.5)k=l k=l

Equations (5.3) and (5.5) must be solved simultaneously for a and . This problem
is the multivariate version of one discussed by Deely and Lindley (1981). Indeed the
multivariate problem separates into K univariate ones.

5.2 The Log-normal and Log-student Superpopulation

In order to estimate the superpopulation parameters (e,l) or (E,&) in the normal and

student cases an integrated likelihood must be formed, analogous to that for the
gamma model. There is no way of avoiding approximation or numerical integration
for trial parameter values, followed by a search of some sort to locate the maximum
likelihood estimates (M,1-) in the normal case, or (# ,k) in the Student case. Such a
program has been carried out and tested in the univariate case, both on simulated

and observational data, see Gaver(1985). The integration was conducted by taking a
preliminary Laplace method (quadratic approximation to the log-posterior) approach,
with correction furnished by Gauss-Hermite integration. Such a procedure appears
fairly satisfactory even for the Student superpopulation, although the latter
sometimes admits two posterior modes. Such a program becomes far more

ambitious in the multivariate situation addressed in this paper, and further

approximations may well be required in order to reduce computing. Of course, some
assessment of the sampling errors associated with superpopulation estimates will
also De desirable. It is likely that bootstrapping will be useful, and some
experiments in the univariate Poisson-log-Student case have already shown its

potential.

6 Summary and Further Remarks

We have presented here an enhanced version of a quite general familiar and useful
stochastic model. The enhancement recognizes between-version variation in process

parameters; such may be the result of endogenous influences. We have then
addressed the problem of process parameter estimation by characterizing the between

variability component with the aid of parametric superpopulations. In particular, it
has been shown that the familiar linear shrinkage effects often encountered in Bayes

analyses using priors of conjugate form are interestingly modulated when longer-
tailed, discrepancv-toierant priors or superpopulations are introduced.

..................................................
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5.1 Conjugate Gamma Superpopulatlon

In the previous section, we found that the conjugate gamma prior offered an

especially tractable estimation solution. We did, however, assume the

hyperparameters were known. Now we consider estimating them directly from the K

sample paths. This is done by finding the distribution of a sample path conditional

only on the hyperparameters - and ,, that is with a (X0 ... ) integrated out. This

takes on a multivariate independent negative binomial form,

f(M , bV a, ) a fl (5.1)
LaO

We now compute maximum likelihood estimators of g and 8 given the data from

the K sample paths, (M().V()) ..... ((K),yW(K)).

The log-likelihood function for - and § is given by

K n
( - I I (H( ))-H( .a))+a ,og8-(a+Mlk))Iog(,8 wk))(5.2)

-k= 

5.O

where H(x) - log r'(x).
The expression in (5.2) must be maximized over a and .

Let us assume for the moment that a is treated as known, hence only BO must be

estimated. This is done by solving the likelihood equations.

K

0 = I ( (a+M1.)/l,8,+Wk, 0 n. (5.3)k=1

K K
We assume that both I Wk and 2k M1 are positive. The case in which both are 0

can be handled separately in a straightforward fashion. It can arise only when there

is no activity in a particular colony in all the K sample paths.

Equation (5.3) cannot be solved in closed form; however, it does have a unique

solution which can be found numerically. This can be seen by rewriting (5.3) for a

particular i as

K
aK = (a.+MkH,/(,W,)). (5.4)

•he right side is monotone increasing in d. It is 0 for f8, 0 and increases to aK -

- M > A K as 8, approaches infinity, hence there is a unique root.=%L , ' kzl



:! 11

We define " = 2k(l+Q)A/(n1*k) and rewrite (4.14) as

-1-1(j-&) -DI - (1. (4.15)

It should be noted that (4.15) is identical to (4.7) which arises with the log-normal

superpopulation except that in (4.15) 1 is a function of I through Q.

The second derivative of (4.14) can be written as

- D - [a- - l,_.)(#E.U)Ty-1/n+1 k)]. 14.16)

"J

It is now possible for there to be multiple solutions of the likelihood equations

Q - 1 (--) - D1 + M. (4.17)

and there can be more than one local maximum in the posterior distribution. The use

of a posterior mean estimate becomes questionable. It will minimize a mean square

error criterion but will tend to give an estimate between the two if such modes

exist. An alternative approach is to take a data-based initial estimate of ', f(o)

logM l/W ). The t(o1 is used to compute an initial X(o). Equation (4.17) is replaced by

S -(1(o))-11-_L) - D2 M. (4.18)

which is a particular case of (4.17) and wnic has a unique solution. This solution

often gives useful results especially when dispersion between individual rates is

large; see Gaver (1985). The matrix & has been weighted by an initial discrepancy

factor 2k(lIQ)/(n+lk'. When this factor is large, then the shrinkage toward g is

reduced. This is a desired effect for the multivariate log-Student t superpopulation

whicn nas heavy tails. Values of # far from the mean are possible. consequently in

such cases tne procedure refuses to "borrow strength" when it is unwarrented. Such

a procedure is "discrepancy-tolerant" or robust.

5 Empirical Baves Methods

In this section, we discuss the empirical Bayes approach to these problems. We

consider tme previous formulation5 but assume that the superpopulation

. hyperparameters are not known. They must be estimated from all the observations.

-7e

. ..ap~A .-
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relatively short-tailed gamma and log-normal distributions, even if the parameters of

the latter are obtained from expert judgement. Such outliers may be the consequence

of recording errors or they may be the manifestation of unsuspected influences.

To obtain information about the joint or marginal posterior for and hence for X
s exp(- J), it is necessary to resort to numerical integration. It has been found that

an initial Laplace's method approximation, for which one should consult Mosteller and

Wallace (1964) or Kadane and Tierney (1984), followed by a few-point Gauss-Hermite

integration, can be quite effective; see Gaver (1985) for a discussion of the univariate

simple Poisson case. By this approach, one can assess the sampling error of the

point estimate achieved from the model estimate suggested above. One can also

compute alternative estimators such as the perennial favorite, the posterior mean, or

a weighted version thereof.

4.3.3 Multivariate Log-Student t Prior

In order to recognize the possible existence of rates of greater discrepancy than

admitted by a gamma or log-normal superpopulation, we introduce the multivariate

log-Student distribution. This superpopulation has longer tails than the normal, and

hence should yield interesting estimates for the rates. It can be obtained by scale

mixing the multivariate log-normal. A formula for the multivariate t appropriate here

Is

fkfuA,k) = C,+ 1(Det(A&) 1/ 2(i+Q(E)) t ri'-)/ (4.12)

where Q = Q(f) = - A is a covariance matrix, k is a degree of freedom

parameter, and Cr.i. is a normalization constant. See, for example, Mardia, et 8/
(1979), page 57 and associated references therein.

in order to determine the modes of the posterior distribution we proceed as before

by examining the log-posterior for X or equivalently for ±. By omitting irrelevant

constants we find

log f(lAt,X) -(n+l+k)log(1+Q)/2 - )TW+ !T.M. (4.13)

Tne first derivative of (4.13) with respect to I is given by

-r"-n 1 klA - 1 e- )/12k~llQ)) ( D l . (4.14)
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- M-D1 (4.7)

where D is a diagonal matrix with entries W exp(eo), and 1 is a column vector of

ones.

The second derivative of (4.6) with respect to f is given by

-- - D (4.8)

The matrix - (+-1 D) is clearly negative definite, thus one can find the unique

posterior mode by solving

0 - M1( .4) M- D1. (4.9)

Equation (4.9) cannot be solved in closed form, but a numerical solution may always
be obtained by a Newton-Raphson iteration approach. As a starting solution, one
might use the vector of logarithms of the raw rates, i.e., 00 ) = log(M./W). In case

I I I
small, occasionally zero, M values occur, one might replace M by M j+0.5. The
Newton-Raphson will take the form

(t+1 = (t) _( -+D)-I (Tl l *O ) 4.10)

If the suggested starting value f(0) = log(M !Wj) is used, the first iteration leads to
J J J

,11)= ,() .( -- D)- '-~e~o. )(4.11)

This improved estimate of f is only a first approximation to the true solution, but it

has a familiar form and intuitive content, namely a weighted combination of the raw
rates and the prior mean. As the variability of the superpopulation decreases, more

weight is put on the superpopulation mean, 0. Both (4.10) and (4.11) exhibit the
tendency for linear shrinkage of the raw estimate vector toward e, irrespective of the
relation of the iog observed rates to the superpopulation center. Such linear

shrinkage behavior also characterizes estimates obtained from the conjugate gamma
superpopulations. it appears to be inappropriate for highly discrepant observations

that may occur. Some observed rates may actually choose not to conforn to tne
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fPX ) s N 1o Xlij -exp-,X) Irla) j 0, 0 j n. (4.3)
J=o J x(,J i m 43

The hyperparameters are specified by - 1.,. For a likelihood function given by
(4.2), the posterior distribution of ,, given {(t), 0 t g T} is given by

f, n a +MJ a= +Mle(#+ x

f , Z lBW)aJJ j J J + jl, U )+ > 0, 0 j n (4.4)

The posterior distribution has independent gamma marginals. It is simple to estimate
any of the individual A or some function of them. The posterior mean of A is
given by (a JM j)I(, +W'), while the posterior mode is given by (a JM -1)/(, J+WJ)provided a, M, > 1. The posterior mode is seen to resemble the mean, and it turns

out to be a convenient approximation. We assume that the hyperparameters a =
(a ad .... ) ...... n) are known, presumably by elicitation and relevant0 n.

experience.

4.3.2 Multivariate Log-Normal Prior

The previous choice of conjugate prior offers considerable mathematical tractability;
however, it does not permit the A parameters to be correlated. Furthermore, a
common choice of prior for univariate Poisson process data in reliability and
probabilistic risk assessment studies is a log-normal distribution, see Rasmussen
( (1975), Hill, Heger and Koen (1984), or Kaplan (1983). We introduce f logX, and let
-*= 7 - N(QX) where B is an n+1 dimensional mean vector and - is an (n+1) x
(n-) positive definite covariance matrix. This formulation provides both log-normal
marginals and the possibility of correlated components in a familiar fashion.

The log-posterior distribution is obtained from the prior and equation (4.2) and is
given by

V' .. log f(AXt,X) =log C -A(L-)T-I- )' 2 - )JVV #TM

where C is a normalization constant and V= (Wo . Wn)T and M= (M0,...,Mn T

It follows that log f X) is given, up to constants, by

log f ,I = .(±_L)T - 1 . )fW + 4."M. (4.6)

One can consider finding the posterior mode by differentiating (4.6) with respect to
- ... The first derivative of 4.6) with respect to is

... ....................... ......................
,. . . .. .° . ., , . ... ....................... ..- ,....... . - .. • ... , . .- . .-. " -. . - -.. . . . . , -
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m
where W = Stf (§(t))

N The sufficient statistics are given by (N!I I where &I (Mo ...M)T and W

(WO .... Wn)
T. The likelihood function is of the multivariate independent Poisson type:

," X W ) (4.2)

J=o J =

4.2 Random Parameter Processes

The likelihood given in equation (4.2) is relevant to a single version or realization of

a simple Markov population process (SMPP). In many circumstances, it is reasonable

to suppose that the rate parameters X = (X. . ))T occasionally change, for example

in response to external events. Assume we are able to observe K such different

versions and wish to estimate the individual parameters on the supposition that

important between-version variability may exist. The simplest plausible way to

proceed is to introduce a superpopulation of parameters _ having density f(Q,)

where f denotes a hyperparameter vector. The K observed sample paths are then

analyzed as if the parameters of each version were selected at random using the

density f. Specifically, let X ),K) be i.i.d. random vectors with density f(lt).

Here X(k) corresponds to the rate parameters for the kt i' observed SMPP, {Xk(t),

O t<Tk).

The assumption of independent sampling allows one to simply construct an overall

likelihood that incorporates the information as well as that in the superpopulation

density f.

4.3 Bayesian Inference

Simple Bavesian inference assumes the superpopulation density f to be completely

specified. in the case of a superpopulation density f(.lt). the hyperparameters

: would be treated as known, presumably by elicitation. Estimation of X(k) is

accomplished oy finding the posterior density of X(k) given {Xk(t), O tT} and then

computing some appropriate estimator such as the posterior mean vector or the

posterior mode vector. In this section, we consider three particular parametric priors.

4.3.1 Conjugate Gamma Prior

Tne easiest situation occurs when we introduce a multivariate gamma prior

distribution witn independent marginals. Specifically, we assume



-. 
V -

W*-- 
,. -1U~7 

Z .
V: 

, I - - -- - I

Prof. Donald P. Gaver 20
Code 55Gv
Naval Postgraduate School
Monterey, California 93943-5100

Prof. Patricia Jacobs 1
Code 55Jc
Naval Postgraduate School
Monterey, California 93943-5100

Dr. Guy Fayolle
I.N.R.I.A.
Dom de Voluceau-Rocquencourt
78150 Le Chesnay Cedex
FRANCE

Dr. M. J. Fischer 1
Defense Communications Agency
1860 Wiehle Avenue
Reston, VA 22070

Prof. George S. Fishman
Curr. in OR & Systems Analysis
University of North Carolina
Chapel Hill, NC 20742

Prof. Guy Latouche
University Libre Bruxelles
C. P. 212
Blvd De Triomphe
B-1050 Bruxelles
BELGIUM

Library 4
Code 1424
Naval Postgraduate School
Monterey, CA 93943-5100

Dr. Alan F. Petty
Code 7930
Naval Research Laboratory
Washington, DC 20375

Prof. Bradley Efron
Statistics Department
Sequoia Hall
Stanford University
Stanford, CA 94305

Prof. Carl N. Morris
Dept. of Mathematics
University of Texas
Austin, TX 78712

21



Dr. John E. Rolph
RAND Corporation
1700 Main Street
Santa Monica# CA 90406

Prof. Linda V. Green
Graduate School of Business
Columbia University
New York, NY 10027

Dr. David Burman
Bell Laboratories - AT&T
Mountain Avenue
Murray Hill, NJ 07974

Dr. Ed Coffman
Bell Laboratories - AT&T
Mountain Avenue
Murray Hill, NJ 07974

Prof. William Jewell
Operations Research Department
University of California, Berkeley
Berkeley, CA 94720

Dr. Tom A. Louis
Biostatics Departmeiit
Harvard School of Public Health
677 Huntington Avenue
Boston, MA 02115

Dr. Nan Laird
Biostatics Department
Harvard School of Public Health
677 Huntington Avenue
Boston, MA 02115

Dr. Marvin Zelen
Biostatics Department
Harvard School of Public Health
677 Huntington Avenue
Boston, MA 02115

Dr. John Orav
Biostatics Department
Harvard School of Public Health
677 Huntington Avenue
Boston, MA 02115

22

, .- .. :. . ., -. . . .-. ... . .. ..... . .. .. .. .- ... .. .-.... . . --... . .... .. , . - . ... . . ... .... . .



4
I.

~Prof. R. Douglas Martin1

Chairman

Department of Statistics, GN-22
University of Washington
Seattle, WA 98195

Prof. W. Stuetzle
Department of Statistics
University of Washington
Seattle, WA 98195

Prof. F. W. Mosteller
Department of Statistics
Harvard University

* 1 Oxford Street
*Cambridge, MA 02138

Dr. D. C. Hoaglin
Department of Statistics
Harvard University
1 Oxford Street
Cambridge, MA 02138

.* Prof. N. D. Singpurwalla
George Washington University

*. Washington, D. C. 20052

Center for Naval Analyses
2000 Beauregard Street
Alexandria, VA 22311

* Prof. H. Chernoff
Department of Mathematics
M. I. T.
Cambridge, MA 02139

Dr. T. J. Ott
Bell Core
435 South Street

-i Morris Township, NJ 07960

- Alan Weiss
IAT&T Bell Laboratories

* Murray Hill, NJ

Operations Research Center, Room E40-164
Massachusetts Institute of Technology
Attnt R. C. Larson and J. F. Shapiro
Cambridge, MA 02139

23

. . .-- *



Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

.24



FILMED

11-85

DTIC


