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16. Ab,,ec t

--New computational methods have been applied in an investigation of the
nonlinear surge motions and springing loads in the tendons of tension leg
platforms (TLPs). The second-order wave drift forces as well as the
linear hydrodynamic coefficients and the wave-induced exciting forces are
computed by a three-dimensional hybrid-finite-element method (HFEM).
Both a new formula for predicting the viscous drag forces and the
conventional Morison drag formula have been used in a time-domain
computational procedure .to predict the nonlinear surge motions for two
TLP configurations due to wind, current and wave excitations. The
wave-induces first-and second-order pitch springing exciting moments and
the resulting springing tension.loads in the tendons are computed for
regular waves, two waves (wave groups) and irregular waves using a
short-wave approximation method. Upper bound estimates of the surge
motions and the tendon springing loads are computed for some selected
extreme environmental conditions. "Average" surge displacements and
"average" springing loads are also computed for some selected typical
operational conditions. Finally, the surge motions and the springing

loads of a TLP with one tendon removed have been predicted and compared
1j 7to the results for the same TLP withall of the tendons intact.
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ABSTRACT

New computational wethod have been applied ip 4n investiqgatan Q"
the nonlinear surge motions and springing loads in the tendons of tenian

leg platforms (TLPs). The second-order wave drift forces as well as the

linear hydrodynamic coefficients and the wave-induced exciting forces are

computed by a three-dimensional hybrid-finite-element method (HFEM). Both

a new formula for predicting the viscous drag forces and the conventional

Morison drag formula have been used in a time-domain computational procedure

to predict the nonlinear surge motions for two TLP configurations due to

wind, current and wave excitations. The wave-induced first- and second-order

pitch springing exciting moments and the resulting springing tension loads in

the tendons are computed for regular waves, two waves (wave groups) and ir-

regular waves using a short-wave approximation method. Upper bound estimates

of the surge motions and the tendon springing loads are computed for some

selected extreme environmental conditions. "Average" surge displacements

and "average" springing loads are also computed for some selected typical

operational conditions. Finally, the surge motions and the springing loads

of a TLP with one tendon removed have been predicted and compared to the

results for the same TLP with all of the tendons intact.

iv
. . . . . . . .. .. . . . . . . . . . . . .

. . .. . .. . . . . . .



Io

1.0 INTRODUCTION

1.1 Objectives

The main objectives of this project have been to investigate the

following nonlinear TLP responses:

0 surge motions due to nonlinear wave-induced drift forces, wind

loading and viscous interactions between current and oscillatory

motions

0 additional tension loads in the tendons due to nonlinear wave-

induced springing loads, and

* motions and loads for reduced number of tendons.

1.2 Background

1.2.1 Tension Leg Platform Concept

In order to minimize the wave-induced tension loads and the wave-

induced surge displacements, TLPs are designed in such a way that the natural

periods of oscillations for the vertical heave and pitch motions and for

the horizontal surge and yaw motions are far outside the range in which the

wave energy of the ocean is a maximum. TLPs usually have a natural period

in heave of about 2-3 seconds and a natural period in surge of about 100-

140 seconds.

When waves pass a floating body, it will be excited by two types

of forces:

• The primary linear exciting forces which have the same period as

the wave period, and

-
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The secondary nonlinear exciting forces which have steady and

oscillatory components with periods far outside the range of

the typical wave periods. These nonlinear forces are often

referred to as the slowly-varying drift and high-frequency spring-

ing exciting forces.

An important design aspect of the TLP is that the nonlinear springing and

drift forces may introduce excitation at the natural heave and surge fre-

quencies of the TLP. Therefore, it is possible that the high-frequency

springing forces can cause additional tension loads in the tendons and that

the slowly-varying drift forces can cause surge displacements which are as

large if not larger than the loads and displacements caused by the primary

linear wave-induced exciting forces.

1.2.2 Prediction of TLP Responses

It is relatively easy to predict the primary linear exciting

forces and the resulting motions and tension loads. Since these primary

motions occur at frequencies far removed from the TLPs natural frequencies,

they can be predicted accurately using a frequency domain approach with

linear coupled differential equations ignoring the nonlinear viscous damp-

ing.

On the other hand, the secondary motions and loads caused by the

nonlinear wave-induced excitation is very difficult to predict accurately.

The major problem areas are the three following:

* Accurate prediction of the nonlinear drift and springing excit-

ing forces in regular waves. (Prediction methods only exist for

the second-order forces.)

• Accurate prediction of the slowly-varying surge responses and the

high-frequency springing responses which both occur at the natural

1-2
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TLP frequencies and hence are governed by the nonlinear viscous

dampin forces. (The accuracy of existing methods for predict-

ing the viscous damping for TLPs is questionable.)

0 Accurate predictions of drift and springing responses in irregu-

lar seas is a very complicated problem. Not only is the viscous

damping nonlinear with complicated interaction effects between

the steady current and the oscillatory motions, but more impor-

tantly, the nonlinear forces in irregular seas is due to non-

linear interactions between the different wave components.

1.2.3 The TLP Motion and Load Computer Code System

A large-scale computer code system has been developed by SAI specif-

ically for the purpose of analyzing the nonlinear dynamics of TLPs. Figure

1-1 shows a schematic layout of the TLP Motion and Load Computer Code Sys-

tem. The system consists of a total of seven individual computer codes

which are grouped in three major parts:

Part I: Potential-Flow Predictions by a Hybrid-Finite-Element

Method (HFEM) Computer Program

Part II: Surge-Response Predictions by Time-Domain Integrations

Method

Part III: Springing-Response Predictions by a New High-Frequency

Method

This computer code system is a result of several man-years of research

work and code development. It is probably one of the most advanced TLP

dynamic response prediction systems presently in existence.

1-3
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1.3 Summary of Results

Surge motions and tendon tension springing loads have been corn-

puted for two TLPs. TLP #1 is a 2000-foot depth design and TLP #2 is a

3000-foot depth design. More detailed descriptions of their geometry are

given in Appendix A. The main underwater structure of both of the platforms

consists of four vertical corner legs and four horizontal pontoons. Both

platforms have four vertical tendons at each of the four legs.

Motions and loads have been predicted for extreme environmental

conditions as well as for a typical operational condition.

1.3.1 Surge Motion Results

The surge motions were computed by the nonlinear time-domain surge

motion code for a large number of wave, wind and current conditions. The

most important findings are as follows:

(a) Upper bound estimates

For TLP #1 it was found that for the environmental conditions --

considered here the maximum surge displacement is 152.3 feet (166.6

feet)*. This maximum surge displacement will occur in a condition

consisting of maximum unsteady wind, maximum steady current and

regular waves with period T = 9.5 seconds. This is the wave period

for which the steady wave-induced drift force is maximum. It is

here assumed that the wave steepness measured as the ratio between

the wave height and the wave length, H/A, is 0.10.

• In this section, the results given in parentheses have been obtained by
the conventional Morison drag formula, whereas the results not in paren-
theses have been obtained by a new drag formula.

1-5
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It should be emphasized that the surge displacement is smaller

for the maximum design wave condition (H = 80 feet and T - 14.0

seconds) than it is for the condition stated above. Our computa-

tions show that the maximum surge displacement is 102.4 feet

(127.4 feet) for the maximum design wave condition with maximum

current and maximum unsteady wind.

These are extreme upper bound estimates which will only occur

under extreme and rare conditions. Further investigations of the

probability of the occurrance of such rare events is needed.

(b) Typical operational estimates

The surge motions have also been computed for a "typical"

irregular wave condition with significant wave height, H1/3' .

equal to 10 feet and with steady current and steady wind of a

strength typical for this sea condition. For TLP #1 the total

averaqe" surge displacement is estimated to be about 26 feet.

Note that the estimates show that the amplitudes of the wave

frequency and the slowly-varying components are less than two and

four feet respectively and that the steady surge can be expected

to be about 20 feet.

Also it should be pointed out that the investigation

revealed a large difference between the surge results obtained

using the two viscous drag formulas. The large difference between

the two formulas is due to the fact that the conventional Morison

quadratic formula predicts a very large additional steady displace-

ment due to interaction effects between the wave frequency compo-

nents and the steady current. It is believed that this interac-

tion effect is overpredicted by the conventional quadratic drag

formula.

1-6
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such large slowly-varying motions, we need to know more about the probabil-

ity and statistics of such events (or events close to these events). For

typical general irregular sea conditions it can be expected that the slowly-

varying motions are quite small, probably less than say 4 feet.

The steady surge displacements, on the other hand, can be expected

to be much larger than the unsteady motions. For some of the conditions

investigated, we have the following results for the steady surge.

Steady Surge

0 Maximum current

(a) with zero unsteady surge 14.4

() with maximum wave-freuqency surge 42.3*

* Maximum steady wind 52.5

* Steady wave-induced drift

(a) regular wave with maximum drift 64.1

(b) typical irregular sea (HI/ 3 = i0') 2.3

Hence, for typical environmental conditions one may expect up to about 20

feet of steady surge. However, the extreme steady surge displacement may be

considerably larger.

2.2 HFEM Potential Flow Calculations

The three-dimensional linear diffraction analyses were performed

usin- the SAI Hydro-Finite-Element Method (HFEM) code utilizing the vertical

(perpendicular) planes of symmetry. The HFEM diffraction code is a powerful

numerical method for calculating the hydrodynamic forces and the wave-

induced responses and loads of three-dimensional offshore structures. The

* As predicted by Morison quadratic drag formula.

2-8
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These results show that large wave-frequency surge motions can only be A

expected for very extreme wave conditions as, for example, the maximum

design regular wave. For typical wave conditions it can be expected that

the amplitude of the wave-frequency component will be less than two feet.

The amplitudes of the slowly-varying sure motions are given below

for several environmental conditions:

Surge Amplitude

6 Unsteady wind

(a) zero current 40.9'

(b) maximum current : 20'

0 Two regular waves (wave grouping)

(a) zero current :=58'

(b) maximum current z 25'

0 Typical irregular waves (HI/3 = 10') 2.6'

Th2se results show that large slowly-varying natural-frequency surge motions

can be expected under "ideal" severe conditions when the excitation fre-

quency is precisely equal to the natural frequency. For the unsteady wind

case it is assumed that the unsteady part of the wind has one single fre-

quency component with amplitude equal to 10% of the maximum steady wind

speed and frequency equal to the natural frequency. For the two-wave case,

it is assumed that the difference frequency for the two wave components is

equal to the natural frequency:

w2 (01 =wn.

This implies that there will be a second-order slowly-varying wave-exciting

force with excitation frequency equal to the difference frequency. Both

of these natural-frequency excitation conditions are very "idealistic"

conditions. Before we can make any predictions about the probabiity of

2-7



to these viscous interaction effects can typically reduce the amplitude of

the slowly-varying motions by as much as a factor of four.

The steady surge displacement is due to

* steady wind forces,

* steady nonlinear wave-induced drift forces,

* steady current forces, and

a nonlinear interaction between current and wave-frequency motions

and slowly-varying motions.

In this project we have computed the surge displacement due to all of the

above-stated steady forces; however, of main interest in this study is the

computation of the steady surge due to the nonlinear wave-drift force and

the nonlinear viscous interaction.

We shall now present some results for the different surge dis-

placement components so that we can get a better feeling for the order of

magnitude of the different components and their relative importance. First,
we shall consider the wave-frequency sur e displacement components. The

amplitude of the wave-frequency component for three wave conditions is

given below.

Surge Ampl i tude

0 Maximum regular wave

(H = 80', A = 1000' and T 14 sec) 22.1'

* Steep regular wave with typical wave length

(H = 46', = 462' and T 9.5 sec) 1.7'

* Typical irregular waves (H 10') 0.9'1/3

2-6
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We shall now take a look at the different comiponents of the surge .1
displdcement, The surga motiop Qf a TLP can be separatc into three ojijn

parts:

x(t) =X + Xi coswit + __X. cos(.ti * j j  J"
01

The first term, Xo, is the mean steady displacement. The second term,

Xi coswit, consists of first-order frequency components which have fre-
1 "1".

quencies identical to the wave frequencies. We shall refer to these as the

linear wave-frequency components. The third and final term, Ex- coswjt,

consists of frequency components which have frequencies near or equal to

the natural surge frequency. Note that the natural frequency components

are far removed from the wave-frequency components. We shall refer to these

as the nonlinear slowly-varying components.

It is important to recognize that the linear wave-frequency com-

pon ents are caused by linear wave-induced excitation and that the motions

at these frequencies are governed by the inertia forces and, furthermore,

that viscous damping has practically no effect or. these frequency components.

Hence, the wave frequency motion can easily be predicted by th well estab-

lished linear superposition approach. -

On the other hand, the slowly-varying ccmp9onents at or near the

natural frequency are caused by nonlinear wave-induced excitation and/or

wind excitation.* Furthermore, since these motions are at or near the natu-

ral frequency, they are to a large extent governed by nonlinear viscous

damping forces. Note that the damping of the slowly-varying motions is very

much affected by nonlinear viscous interactions between the slowly-varying

motion, the steady current and the wave-frequency motions. The damping due

* Note that nonlinear viscous interactions between the steady current and
the wave-frequency components may also result in slowly-varying excita-
tion which has not been considered in this investigation.

2-5
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The results presented in Table 2-1 show that for the maximum regu-

lar wave condition with maximum steady wind and current, the maximum surge

displacement computed by the SAI drag formula is 92.7 feet and computed by

the quadratic drag formula is 118.8 feet. The large difference between the

two drag formulas is due to the fact that the quadratic formula predicts a

very large additional steady displacement due to interaction effects between

wave frequency and current. It is believed that this interaction effect is

overpredicted by the quadratic drag formula. Furthermore, for the maximum

regular wave condition it is seen in Table 2-1 that the unsteady wind

increases the surge by 9.7 feet when the SAI drag formula is used, whereas

it increases by only 8.9 feet when the quadratic drag formula is used.

The second wave condition presented in Table 2-1 is the regular

wave condition which will result in the maximum drift force. The results

presented in Section 2.2 show that the maximum drift force will occur for

a regular wave with T = 9.5 seconds. Our predictions show that the surge

displacement for this wave condition with maximum steady wind and current

will be 133.5 feet when using the SAI drag formula and 153.8 when using the

quadratic formula. The unsteady wind results show 152.3-foot surge displace-

ment for the SAI drag case and 166.6 feet for the quadratic drag case. Note

that the surge displacements are substantially larger for the maximum drift

wave case than for the maximum wave condition.

Significant surge displacements are also shown in Table 2-1 for

the typical irregular case as computed by the SAL drag formula. With zero

current the surge displacement is only 11.6 feet and with maximum current

it is 25 feet. Therefore, for typical general irregular wave conditions,

the surge displacements can be expected to be very small.

Total surge displacements were not computed for the two regular

wave case (wave grouping). For this case only the slowly-varying wave exci-

tation and response were investigated since these are the most important

aspects of wave grouping excitation.

2-4
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0 Typical irregular wave condition (111/3 lo ft)

Different combinations of wind and current conditions have been used with

these wave conditions.

A summary of the total surge displacements for the maximum regular

wave, the regular wave with maximum drift and the typical irregular wave

conditions is presented in Table 2-1 for the TLP #1 configuration (see

Appendix A for TLP dimensions). Results are shown as obtained by the new

SAI drag formula and by the quadratic Morison drag formula.

Table 2-1. Total surge displacements for TLP #1 for two regular

wave conditions and a typical irregular wave condition.

MaximumSurge Displacement
(in feet)

SAI Drag QuadraticSAI__ ___Drag___ Drac

SMaximum Regular Wave Conditions
Wave: Maximum Regular Wave

(H = 80 and T = 14.0)
Current: Maximum Steady
Wind: (a) Maximum Steady 92.7 118.8

(b) Unsteady 102.4 127.7

Re.;ilar Wjve with Maxim}um W ave_ Drift

Wave Regular Maximum Drift
(H = 46.4 and T - 9.5)

Current: Maximum Steady
Wino: (a) Maximum Steady 133.5 153.8

(b) Unsteady 152.3 166.6

Typical Irreaular Wave Conditions

Wave: Irregular Waves (H1  = 10)
Wind: Steady (39 ft/sec) /

Current: (a) Zero Current 11.6*
(b) Maximum Steady 25.0*

* This is the significant surge displacement, x

,- 3
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the linear wave-exciting forces and the second-order wave-drift forces are j
computed by the hybrid-finite-element method. These quantities are then

used as input for the nonlinear time-domain surge-motion computations.

Computations have shown that three-dimensional hydrodynamic inter-

action effects between the legs and the pontoons have an important influence

on-the values of the predicted added mass, wave damping and exciting forces.

Hence, the complete three-dimensional computation has to be performed. Com-

putations of hydrodynamic quantities that are made for the legs and for the

pontoons separately and then simply added will not be sufficiently accurate

to correctly predict the surge motion of the TLP.

The viscous forces are predicted by a new drag formula as well as

by the conventional quadratic Morison drag formula. This new formula has

been developed because it is believed that the Morison drag formula over-

predicts the magnitude of the viscous interaction effects between current,

wave-frequency motions and slowly-varying motions. The surge motions due

to simultaneous action of the wind, current and wave excitation are pre-

dicted by a numerical time-integration procedure which includes all of the

important nonlinear effects.

2.1.2 Summary of Surge Motion Results

In this study, we have investigated the surge motions for four

different wave conditions:

0 Maximum regular-wave condition (H= 80 ft, X = 1000 ft and T= 14 sec)

0 Regular wave with maximum steady drift force (H= 46.4 ft, X 462

ft and T= 9.5 sec)

* Two regular waves (Wave grouping) (T1 = 9.7 sec and T2  8.9 sec)

2-2
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2.0 SURGE MOTION INVESTIGATION

2.1 Introduction

2.1.1 Objective and Approach

The main objective of this part of the project has been to inves-

tigate the surge motions due to nonlinear wave-induced drift forces, non-

linear wind loading and nonlinear viscous interactions between current and

oscillatory motions. Two TLP configurations are analyzed for selected

severe and typical average wind, wave and current conditions. An extensive

evaluation and comparison of the surge displacements due to the important

nonlinear viscous interaction effects between current, wave-frequency motions

and slowly-varying motions as predicted by a new viscous force formula and

by the conventional Morison force formula are presented. Unfortunately,

there are practically no experimental ersults available for these important

nonlinear viscous interaction effects. There is also a lack of experimental

data for the nonlinear surge motions under controlled environmental condi-

tions for which computations can be performed. (See Appendix D for a dis-

cussion of comparisions between theory and experiments.)

A new computational method developed by SAI (Salvesen, et al.,

1982) is here used to investigate the nonlinear surge motions for TLPs. The -.

computations consist of three main parts:

* potential-flow computations;

* viscous-force predictions; and

0 nonlinear time-domain surge computations.

The potential-flow calculations are performed first by a three-dimensional

.,' hybrid-finite-element method. The added mass, the wave-damping coefficients,

2-1

"ft'," ... ' , . . -. ft ,t .-.- f--,'t. .- - . ..- - f-.- f..,. ,-, ,-.-, f•, . . .- f-.. . . ,-. .. " .. .-.. . .. . -',

. ... *ft* ftft... ... . . * *- - °,ftftftfft,,. f - ,-f . , . , ...... , ..- .. .. -. .. . ,



2R..

In this investigation we have only considered additional natural

frequency tendon loads due to periodic springing excitation. Wave impact

excitation may also result in large natural frequency tendon loads often

referred to as "ringing" loads. It is recommended that anr inV esti~jtiafl of

the wave-impact "ringing" problem should be conducted in order to establish

the magnitude of these loads and establish a general procedure for predict-

ing such loads.
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loads will occur in reqular waves in the tank which irc. of the same magnitude

as predicted by the theory. Also we need to determine experirentl ly t.he

springing loads for wave groups and irregular sea waves. Fhe springing experi-

ment could be conducted quite inexpensively by using a vertical cylinder which

can pitch about a fixed horizontal axis at the pitch center. The proper re-

storing coefficient can be mQdelled by a stiff horizoatti] S£rip j attachad st

the top. The most important aspect, at least for the initial experiment, is to

model correctly the physical concept of the springing problem and to do it

in a simple way so that the correct conditions can easily be modelled and

controlled.

Furthermore, improvements are needed in the prediction of the

extreme values for both the surge displacements and the tendon tension

springing loads. Both of these responses are natural frequency responses

which are governed by nonlinear viscous damping and caused by nonlinear

exciting forces with frequencies at or very close to the natural frequency.

Any conventional extreme statistics approach as used for linear responses

are not applicable.

Therefore, it is strongly recommended that a new general procedure

should be developed for predicting more accurately the extreme values of the

slowly-varying surge motions and the tendon tension springing loads. It is

anticipated that such a procedure would consist of the two following parts:

* A method for predicting the probability and the statistics for

extreme events which can cause linear or nonlinear excitation at

or near prescribed high or low frequency values.

0 Nonlinear methods which can predict with sufficient accuracy the

slowly-varying horizontal responses and the high frequency spring-

ing loads due to events as described by the above-stated method.

It is believed that the methods presented here or similar methods could be

used as a starting point for general extreme value prediction methods; how-

ever, a considerable amount of improvements and extensions would be required.
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On the other hand, the maximum springing loads for the three ten-

dons supporting the one leg may for natural frequency regul r Wdve excita-

tion be twice as large ds it is for i TLP with all sixteen tendons intdct.

1.4 Concludinq Remarks and Recommendations

The TLP surge-motion investigation conducted under this project

seems to show that the accuracy of surge displacement computations could

be improved by a better viscous force model. In particular, we need to

improve the accuracy of the prediction of the nonlinear viscous forces due

to interactions between the different modes of motion. At least, improve-

merits are needed for the three following components:

0 Additional steady surge displacement due to viscous interactions

between the steady current and the oscillatory motions.

* Additional viscous damping of the slowly-varying natural frequency

surge motions due to viscous interactions between these motions and

the steady current and the wave-frequency motions.

* Steady and slowly-varying nonlinear viscous "drift" excitation due

to viscous interactions between the different wave components.

It is recommended that experiments should be conducted with a

single large vertical cylinder in a towing tank. Tests should be conducted

schematically for a large combination of current speeds, wave-frequency

motions and slowly-varying motions. Most importantly, the results should

be made generally available.

Similarly, single vertical cylinder experiments are also recom-

mended for the springing problem. We need a much better basic understanding

of this problem. It is believed that a single cylinder test would give much

more useful data than a test conducted with a complete TLP model. It is
extremely important to determine experimantally if tendon tension springing

1-10
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(c) Sea-state investigations

Computations performed for different irregular wave condi-

tions seem to indicate that the second-order springing loads will

be substantially larger in a partially developed sea state than in

a fully developed sea state with the same significant wave height.

(d) Pitch center investigation

The pitch center investigation results show that a very

effective way to reduce the second-order tendon tension springing

loads is to move the pitch center closer to the free surface level.

However, the study shows that the first-order low-frequency tendon

loads may increase by moving the pitch center closer to the free

surface. Therefore, a careful investigation of the first- and

second-order tendon load results is required before any judgment

can be made with regard to the pitch center location.

(e) TLP size investigation

Springing loads were predicted both for the 2000-foot TLP #1

design and for the 3000-foot TLP #2 design. A comparison of these

results seems to indicate that the springing problem is much more

critical for a deep-water TLP which typically has a higher natural

period.

1.3.3 Results for Reduced Number of Tendons

The investigations presented here show that a TLP with one tendon

removed can only experience an external load 50-56';,, as large as a TLP with

all of the tendons intact if it is assumed that the maximum design load for

a tendon is twice the original pretension value.

The surge motion characteristics for a TLP with one less tendon

can be expected to be quite the same as for an intact TLP.

1-9
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Note that the tendon tension load due to first-order regular wave

excitation with wave frequency equal to the natural frequency is

only 470 kips per tendon.

If TLP #1 is excited by two simultaneous regular waves with

sum frequency precisely equal to the natural frequency

+ W2  n 2.508 rad/se(

the additional tendon tension load due to second-order wave exci-

tation is

(2)

T 780 kips per tendon

Again we must stress that these values must only be considered

as upper bound estimates. It is very unlikely that such precise

regular wave events will ever occur. We need to investigate the

probability and the statistics of such events in order to make

better estimates of the extreme springing loads.

(b) Typical operational estimates

For a typical partially-developed irregular sea condition

with significant wave height, H1/3 = 10', the significant ampli-

tude of the wave-induced nonlinear tendon tension load is

T1/3 = 102 kips per tendon.

This value has been obtained by a new irregular-wave method which

includes the second-order springing excitation due to the inter-

actions between the different wave components. It is believed

that this method will give reasonable estimates of the "average"

tendon tension loads for typical irregular-wave conditions. How-

ever, it is believed that extreme values may not be accurately

estimated by this approach.
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Furthermore, it is of interest to note that the predic-

tions show that if wave qroups with perfect tuninq do o((urj

in the ocean, they may result in slowly-varying sur(le miotiorns

of considerable magnitude and probably larger than those due to

the maximum unsteady wind conditions considered here.

1.3.2 Springing Load Results

We shall here refer to springing loads as the additional tendon

loads caused by wave-induced vertical motions at or near the natural fre-

quency of the TLP. The high-frequency vertical motions at the tendons is

due to natural-frequency pitch motions about the virtual mass center. The

pitch exciting moment is caused by linear and nonlinear wave-induced hori-

zontal forces acting on the four legs at a location close to the undisturbed

free-surface level.

Note that all of the springing load results presented here are

for zero degree headinj. It follows from the geometry considerations that

it can be expected that the springing loads will be approximately v2 times
larger at 45 degree heading than at zero degree heading.

(a) Upper bound estimates

For TLP #1 excited by regular waves with period precisely

equal to twice the natural period

T = 2Tn = 5.012 sec,
w: n

the additional tendon tension load due to natural frequency pitch

motions caused by second-order wave-induced excitation is

(2) =1020 kips per tendon.

1-7
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fundamental idea is to use conventional finite elements to approximate the

hydrodynamic solution in a fluid region near the body, whereas analytical

representations are employed outside this region. By using a variation

formulation, finite elements are necessary only in a region very close to

the body resulting in significant savings in computational effort (see

Figure 2-1). The flexibility and versatility of the finite element approach

and the virtual absence of tedious analytical preparation make the HFEM a

viable and, in many applications, superior alternative to the traditional

integral equation method using Green function (source-distribution method).

W.2-

Figure 2-1. Typical HFEM grid for a sample TLP configuration.

The various theoretical and application aspects of the HEEM are

well established (Vue, Chen and Mei, 1976; Yue, Chen and Mei, 1978; Aranha,

rei and Yue, 1979), and the method is now widely accepted among offshore

engineers. Further verification of the improved SAI HEEM code is also

F:: available in SAl Capability Report YSAI-83-463-O7.

2-9
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The second-order steady surge drift force is formulated using

momentum conservation relationships expressed in terms of the far-field

_ radiated or scattered velocity potential. The original idea is due to

Maruo (1960) and our derivation follows closely to that of Newnan (1967).

HFEM Result

The HFEM computer program has been used for all of the results

presented in this section. The TLP has in these computations been repre-

sented by the four vertical legs and the four horizontal pontoons. Special

attention has been given to three-dimensional effects and interactions

between the major members (legs and pontoons). Only 00 heading has been

considered. All of the HFEM results presented in this section are for

TLP #1.

Aside from the four vertical legs and four horizontal pontoons,

all other small submerged structural members and risers are ignored in the

diffraction theory. Such members constitute only about 5% of the total sub-

merged volume and their typical dimensions are so small compared to incident

wave lengths that diffraction effects can be ignored. (A term corresponding

to the hydrodynamic added mass of these small members is, however, included

in the equation of motion as a small correction.) Since the vertical dis-

placement of the TLP is much smaller than that in surge, its contribution

to horizontal drift forces is unimportant and is neglected in our drift

calculations.

The following HFEM results for TLP #1 are presented as function

of incident wave period:

o Figure 2-2a. Added mass in surge.

* Figure 2-2b. Wave radiation damping in surge.

• Figure 2-3a. First-order surge exciting force, RA0.

2-10
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Figure 2-3b. First-order surge exciting force amplitudes for

H/X as given by Figure 2-5.

Figure 2-4a. Second-order drift force, RAO.

Figure 2-4b. Second-order drift force amplitudes for H/A as
given by Figure 2-5.

Figure 2-5. Assumed relationship between maximum wave steepness,
H/X, and wave period, T.

The following are main highlights of our computer results.

For moderately long waves (T nu 20 seconds), the surge added mass
based on displaced mass (Morison's formula with inertia coeffi-

cient, Cm = 2.0) is almost 30% larger than predicted by the HFEM

code. This is mainly due to three-dimensional and interaction

effects.

For exciting force and linear surge motion, most of the effect ""

of multiple legs can be accounted for by relative phasing, and

the effect of hydrodynamic interaction is relatively small. The

presence of the pontoons is important for longer waves, T > 8 sec.

For example, for T = 14 sec, the pontoons increase the exciting

force by almost 20%.

For the surge drift forces, the effect of hydrodynamic interac-

tion is significant, and the results based on a single leg calcu-

lation are inadequate. The drift force is not greatly changed

by allowing the body to surge, and the pontoons have almost negli-

gible contribution. The heading angle of the TLP is found to have

an important effect on the drift force, but this aspect has not

been further investigated in this study.
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2.3 Equation of Motion

A computer program has been developed which predicts the nonlinear

surge motions in the time domain. A numerical time-stepping procedure is

used in which the time, t, is advanced in small time steps, At. The equa-

tion of motion which is solved at each time step is

(M + A + Bi_ + Cx f + fW+ fE(2-1)

where =total body mass

A = surge added mass

B =surge wave-radiation damping coefficient

C =nonlinear surge restoring coefficient

x surge acceleration

x = surge velocity

x = surge displacement

f =total hydrodynamic vi-:cous force
f vilstous wind-dray forcew

f total WdVC- iIndUCd exci ting force

2 15



The total mass of the TLP #1 design, including tendons and risers,

is (see Appendix A)

03"
M : 2,600 * slugs.

The linear spring constant, the value of C as x 0 0, is

CL = 18.32 kips/ft.

The added mass, A, and wave damping coefficient, B, have been com-

puted by the HFEM code (see Section 2.2). For the computations presented

here the infinite period values (T-* cc) have been used:

A(T- c)= 2,630 *103 slugs

and

B(T 0 .) = 0.

The total hydrodynamic viscous force, fv(t), is computed at each

time step by the SAI drag formula

fv(t) Z- pD CDs IVs VS [I + f(V1/I Vs, KCI)- f(V 2/ Vsl, KC2)]

+ CDI VjI(y1 , KCl) (2-2)

+ CD2 IV21 V2 (Y2, KC2) [I + f(V/ 2 , KC)]}

See Salvesen, et al. (1982) for more details. Note that the drag coeffi-

cients, C0, and the relative velocity components vary for the different

sections and that the summation is over all of the sections which the dif-

ferent members are divided into. For comparison purposes, the viscous drag

forces are also computed by the "quadratic drag formula",

fv(t) = E pD C D IVI V (2-3)

2-16
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where V is the fluid relative velocity at each section. The above formula

is often referred to as the Morison drag force.

The viscous wind-drag force is predicted by

fw(t) = y PCpA- WIWI (2-4)
po

where W is the wind speed. The maximum steady wind speed is

WO  70 knots,

and the most severe unsteady wind is assumed to be

W(t) = 70 + 7 cosw nt (knots). (2-5)

Here w is the surge natural frequency of the system. The maximum steady

wind force is

fw 960 kips

and the maximum unsteady wind force is

fw(t) = 960 kips + 190 kips cOSwnt. (2-6)

The total wave-induced exciting force is

fEo(t) F + Fi cos(Wit+ci) + - FE cos(wjt+cj) (2-7)*1 3 o

where FE steady wave Orift force
0

F.  amplitude of the primary wave exciting force components which
i-

has the same frequency wi as the frequency of wave components

2-17
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FE amplitude of the slowly-varying wave-drift exciting force

components.

For regular waves the steady drift force is

FE F(2)() [A(w)] 2  (2-8)

where F(2)(w) is the second-order steady drift force per unit wave

amplitude for regular waves

and where A(w) is the wave amplitude.

The amplitude of the primary wave-exciting force is

FE(w) = F(1 )(w) A(w) (2-9)
1

where F(1 )(w) is the first-order exciting force per unit wave amplitude

in regular waves.

Note that the slowly-varying drift force is zero in regular waves.

2.4 Regular-Wave Surge Displacement Results for TLP #1

The surge displacement in regular waves as computed here will

finally come to a steady-state condition after the initial transient motions

have died out. The final steady-state surge motions x(t) in regular waves

may be expressed as

x(t) = 0 + X1 coswIt X2 cosw 2t (2-10)

where X= mean displacement due to wind, wave drift and current

(including body and wave velocity interactions)
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X amplitude of the frequency components of [he primairy first-

order motions due to primary wave excitation only (primary

motions are dominated by inertia effects and are not affected

by current, wind or the slowly-varying motions)

X = amplitude of the slowly-varying motion components due to

unsteady wind (its magnitude is affected by current and the

primary motions through the viscous damping force).

The mean displacement X0 and the amplitude of the slowly-varying

motions X2 shall be further divided into parts which describe tne separate

contirbutions due to wind, wave drift, current and current-motion interac-

tions. The mean surge displacement can be divided into the following five ]

components:

X0 =X + Xo +xCP + CS (2-11)0 0 0 0 0

where X : displacement due to steady wind0

XD = displacement due to steady wave-drift
0

X 0 displacement due to current alone

XCP displacement due to steady viscous force caused by inter-
0

action between current, primary body and wave particle

velocities

Cs
X = additional displacement due to steady viscous force caused

by interactions between current and the slowly-varyinn body

motions.

The amplitude of the slowly-varying motions, X2 , can be divided into the fol-

lowing three components

2-19
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WDD "- I
x +xW X +C P (2-12)2 2 2 2

where X WD amplitude of the slowly-varying motions due to unsteady

wind with no current present and no primary motions

1CX = increase (or decrease) in amplitude due to current

IP
X = additional increase (or decrease) in amplitude due to the

primary motions.

An investigation of these different surge displacement components

is presented in Appendix B. The surge displacements are computed using both
0the SAI and the quadratic drag formula for the 0 heading case. The TLP is

excited by maximum current, maximum regular waves (H = 80.0 feet and T = 14.0

seconds) and unsteady wind (W = 70.0 + 7.0 coswnt (knots) where wn is the

natural surge frequency).

The computed time domain surge displacement for this wind, wave

and current condition is presented in Figure 2-6. Results are shown using

both the SAI drag formula and the quadratic formula. It is seen that the

SAI drag_ formula predicts that the three main surge displacement components

in this case are

Steady surge X= 70.5'

Amplitude of primary motion X= 22.1'

Amplitude of slowly-varying motion X = 9.7'

Total maximum surge displacement Xmax  102.4'

When the quadratic formula is used the components are
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Figure 2-6. Computed vionlinear time-domain responses for
TLP excited by current, unsteady wind and
maximum design wave with 00 heading.
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Steady surge X0 = 96.7'

Amplitude of primary motion X1 = 22.1'

Amplitude of slowly-varying motion X 8.9'

Total maximum surge displacement Xmax 127.7'

We shall now present results for the additional individual com-

ponents. The different surge displacement components have been determined

by performing runs with the time domain surge motion computer program using

different combinations of the above-stated current, wave and wind conditions.

The results for each of these computer runs are presented in Appendix B. A

summary of the results is given in Table 2-2.

The most important final conclusions which can be drawn from the

results presented in Table 2-2 and in Appendix B are:

S Stead surge displacement is 14.4 feet when the TLP is excited

by current alone. When the current and the maximum design wave

are both present the quadratic drag formula predicts an increase

of the steady displacement by 27.9 feet due to interactions be-

tween the current, the wave particle motions and the body motions.

Results obtained by the SAI formula show only a 1.8-foot increase.

Furthermore, the results in Table 2-2 show that if slowly-varying

motions are also present, then the steady surge is unchanged when

the quadratic formula is used and decreased by 0.1 feet when the

SAI formula is used. Note that there is an additional steady

surge component resulting from integration of the viscous forces

over the instantaneous wetted surface. This component which is

equal to about 3-4 feet is not included in Table 2-2.

Am 1pLitude of the primary wave-induced su e motions is 22.1 feet.

Computations have shown that the wave-frequency motion is affected

only slightly by viscous drag forces. These motions are essen-

tially completely dominated by inertia effects. This implies that

2-22
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_1 _TLP Size Investigation

.n this section we shall compare surge-motion results for the TLP

-C7 2 desien. S 5etoiled descriptions of the two T'L~s are included

L.'G;x A. Note 'That TLP =2 is 1.2 times larger than TLP ot1, and that
:s ue to be designed for 2000-foot depth whereas TLP t2 is

ces~~nezfo-r 300-foot depth.

re~~ saX VK)otential-flow data as p-ru.sented in Section 2.2 and

tre:;cc~cairrejular wave reslJts as presented in Section 2.4 and Appendix

for Tou 'or ILI*I have also been othta ined for TLP U2. how-ver, here

~i-I' 1, n re'9of the detailed resuLlts for TP -,,2. ' <C ,h~il only
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where A 0.0081 g2 and B 33.b6 hl/.The significant wave height, l3
1/3' /

10 feet. The average mean period for this is TI  6.73 seconds. We shall .1

assume that a typical wind speed for this sea condition is

W =39 ft/sec.

For this sample case we shall assume that the current is zero.

By equations (2-19), (2-20) and (2-21) and numerical HFEM results

given in Figures 2-2 through 2-5, we have that the significant first-order

surge motion amplitude is

X( ) = 2.0 u(1) = 0.92 feet. (2-33)1/3 x-'

The steady drift force is by equation (2-22)

F = 41 kips.
0

5,/ performing computations with the nonlinear surge time-domain code repre-

",fnting the wave-frequency surge motion by

x ()(t) 0.92'• cos6- t (2-34)
6..',

we nave ootained the nonlinear relationship between the damping and the

ampiitude of the natural-frequency slowly-varying surge motions. This

relationship is shown graphically in Figure 2-8.

From equation (2-28) it follows that the significant amplitude

of the slowly-varying motion, X(2) for an irregular sea is1/39

V (2)2_ (2) T
2 -X / (G) A 3 (2-35)4c, A21i

n°

where by applying equation (2-25) we have that
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i inear vis cous damping factor can be used and that this damping factor is

tne ,dime ac. the damping factor for natural f1-requency surge niotions with

ampli tude equol to tihe signi ficant second-order surgje motion, i.e.

x(2 (t) =x (2) cosoa t.
1/3 n

Isenoniner ellitionship between the significant surge displacem,.ent ampli-

t'duX>~,and the damping factor, (,, can then be obtained by runningj the

1:e -do0Mir surge motion computer program for several exciting force values.

However, since the viscous damping depends on nonlinear interac-

,rj i l ng from current and wave-f requency m,,otionl, the proper current

onn vjiive-frequency motions must be included in the time-domain com,.putations.

~e ~lfor simplicity, assume that the wave-frequency m-,otions effect on

:ev~iscous damping can be represented by using a single wave-frequency corn-

G~,rn t given by

x (t x 1)3 cosw I t (2-31)

...r.Is the averag4e mean frequency for the given sea ;pe2ctrui,, and X1/3
7tnIe ,ignificunt surrge amplitude for the first-order rmc ion.

Sirple Results -

ue ,ht i cs V tat a ti.,pica I seaway 1 s representeu ;,-y a ful i y-

erso-Mo Kow tzspec tru:,;
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The variance of the second-order surge displacement is given by

S(12 f 2) ) dw. (2-27)
x x"0

Now if we assume that the second-order surge motion is a "natural-frequency

motion" with a relatively small damping factor and that the surge natural

frequency is "small", we may write

ao(2)12 _f,(2)0O ( d

I =~ -¢2)() I H((,)) d

dw (2-28)f (o ) . ... .. ..2::
1 (r -2 + iB-

n

where the damping factor is

, B/2A n. (2-29)

Note that for surge motions at and near the natural frequency, the damping

is nonlinear and depends on the magnitude of the surge motions. Furthermore,

the surge damping depends on complicated nonlinear viscous interaction

between the slowly-varying motions and the steady current and also the first-

order wave-frequency motions.

We shall here obtain the nonlinear relationship between the damp-

ing factor, C, and the surge motion amplitude by using our nonlinear time-

domain surge motion computer program. This computer program assumes that

the surge motions only have two frequency components,

X(t) x o+ t + X( 2)sn (?-30)

2-32
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frequency, , as hown in Fi qures 2-2a and 2-2b. ;he vari6-ricc i 'ete

squore of the RMS value, u) of the f irst-order surge di sp] Lceii-ent is gilven

by -

0

,i :an steady second order drift force is

F 2f2 F (2) 4(W) dw (2-22)

0

.:c r( Fi) is the steady second-order drift force, RAO, for regular waves

:,,ee Hgiure 2-4a).

-The surge force power spectrum due to second-corder wave-induced

E.xC itation is

(Wa + W* 
9 a ( tW

C10 .~,~ is the second-order drift force RA6 f or cxc i tati or by two

W;6,, tioreorus wadves, w-th frequencies, w and w 2' If w* is small , we ina\Y aIppiy

t, j cri a r U Xim;a t io n a nd a s sum e t h at

2 2

(2) 2 F (2) (w) dw (2-25)

0

:2 c~iers;e'trimy due to seccond-order cxci ta t.-Ion is

~f "

2-31
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X 2  -4 0. 9 feet. ."

Hence if wave groups wi Lh perfect tuning do occur in the ocdean, they wi ;

result in slowly-varying surge motions which are considerably larger than

those due to the maximum unsteady wind condition considered here.

2.6 Irregular Wave Results for TLP #1 4

The main objectives with the irregular wave investigation are to

present a method for predicting the "average" surge motions in an irregular

seaway and to present results for a typical sea condition. This method is

not recommended for predicting extreme surge responses. It is believed that

the extreme responses can be predicted more accurately by computing the

nonlinear time-domain responses for particular extreme events which are

expected to result in large surge responses.

2.6.1 Theoretical Formulation

We shall assume that the seaway is unidirectional and represented

by a known power spectrum

a

The surge displacement power spectrum due to first-order wave-induced exci-

tation is

() F1)(1 ) 2  IH(w) 2  (2-19)

orere F I (u.) is the first-order surge exciting force, RAO (see

Figure 2-3a)

H( ;) is the "linear" surge displacement, RAO given by

-2 .. . . . (2-20)
(C - A 2 ) + iB

2-30
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I I 1( y d r i f I fr~ ( r K.J )

II I t. vld V(. IU I i I udt

-F (2Ir;~ i tude o f slIowlIy -va ry i nq f ort e f or Iwo wa ve c ompo ne n ts

+, (2)

ai:,pli ILude of thne 'spri ng i ng f rce for two wave components

,*.1

The results presented in Section 2.2 show 11hat tne riaximuw drift

force RAO is

FCZ- 2.5 kips when T 9.3 sec.

!(-r, o we hiive that the !second-order exci tation for the wave-rrouiping Condi-

Lion considered here I,

(2)

f t) 390 kips u390 kips co t. (2-18)
In

2r;;.cx iting force will result in a steady surce displacev Oent

X ~ 21.3 feeto .32

In i a Fovi iy-var/in i sure with in mplitude (estimated from the results

)cett in, Ai-pendix F,

X f feet.

!/'C es t -d ted A;y oe wrhen there is no current and when dami c

nteractions witrs th primdry motions is ignored. If current r

a:.r ic, wiif be decreased due to additional viscous o~r

&rc> c e by 1i-tera,.ctions between the current and the o.sci',1a Cr1'

it ,h 2 , (2 21 X~ i itoe axm'm a;> i JuI for toe f'I w Iy -

i:-l o- -Iu r~ic- .rc. :io xiriur, unsteady vii nd curdo L ion

2-29
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Correct to the second order in wave amfpl itude, the exc itinrg force

due to two regular waves is

f(t) f 0(t f M(t + (2-13)

where the first-order force

f1(t) F cOswA)t + F(1 2 o' 2t (2-14)

and the second-order force is

f( 2~) - (2)(w) 2~ (2 2
(t F (. +F 2(W) (I 2

+ 2L1 F (w 2 ) *W9 cos(w2 -

c1 (- (2)+
1 2i w2) cos(w'1 +(0 2 ) t

+ F() ,) cos2w t + Ot2 + F(2)( cos2wj t

We are here only interested in the steady and the slowly-varying part of tne

second-order force which may be written as

f t) F 1) 1+ F 2  ) 12

+ 2cv1 c~ 2 F~ 2 ~-1 +(2-16)

1- 2) cos(w2  I 1 )

wnere the Newman approximation has been applied. The Newman approximation

states that

-F(2) (A) I w F (2)(--1 --2. + O(w2  w,)' (2-17)

here F 1 ai i tude of first-order exciting force per unit wave

1 ampliitude

2-28
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2 .5 St Je{ Mo t. i )n ", Duw ' (u Wave( (rou p l'i ;

We sha 1 consider exci tation due to "WaVe group i :; Jit', perfct t,

Luning. That is two sinultaneous regular waves with difference frequency

equal to tne surge natural frequency and with fe,,n frequency equa; to the

frequency for which tne steady surge drift force is maximum. This particu-

lar wave condition will result in the largest possible slowly-varying wave-

induced excitation since all of the wave energy is concentrated at the idXi-

mum wave-drift frequency. However, it must be recognized that it has not

oeen established with any degree of confidence that wave groups with perfect

tLiflirC; will actually occur in the ocean. The wave-groupinq reults pre-

senLted here should be considered, therefore, as an estimate of the upper

iimit for the wave-induced slowly-varying excitation force.

We shall consider two waves:

WIM 1()= coswit
-. ,:, rid -:

• . '2( t )  = U COs1,L2t ::

2 2'

~ 2 1;

- 2-nat 106 0.0593

..'e rave two waves ,,ith frequencies aI = 0.646 (T 1 9.7 and X

Tt.1 anG (,,, ,'j.7G6 (T2  8.9 and A = 405. 9 ft). We shall assume

the ls x<ia;: s ope is given by

1 2)h/ :\ .. ..... . .08..'
!i;ea n

I I.H i. i' " .... fret-,
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I I) e - 3. i r'J i i d IWI t,. I tUA I ' i a I' IVI V t"
ov it I orI o. ur O he'd i rig

MaKximilum Des-ign _MaximumDrift
*Wave Wave

H =80.0 ft H =46.4 ft
T = 14.0 sec T = 9.5 sec

_SAL_ _Quad_ __SA1 Quad~
~Draj Dra

C
*Steady Current Displacement, X0  16.1 42.3 15.2 35.5

Steady Wind Displacement,. 52.5 52.5 52.5 52.50

Steady Drift Displacement, X02.0 2.0 64.1 64.1

Wive Frequency Am~pl i tude, x22.] 22.1 1.7 1.7

lol-ayn Motion Amplitude, X 9.7 8.9 18.8 12.8

Total Maximum Surge Displacement 102.4 127.7 152.3 166.6

The results summarized in Table 2-3 show that the largest surge
displacement will occur for the 00 heading angle with "maximum, drift wave"
and maximum current. When the quadratic drag formula is Used, the maximum
displacement is

X =166.6 feet.

Note that the resul ts presented in Table 2-3 show that for the miaximumr
d-e-sign wave case the surge di splacement (usi ng quadrati c drag) i s

X 1 27.7 feet

which is substantially smaller than the ue di spl acement for the "ila ximlulrn
drift wave" case.

2-26
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SAI DRAG [OkMULA

C

0~. W0.0Q 200. 0 300.0 100.0 500.0 600.0 700.0 fioC. Q 900.0 1000. 0

TIE(SECONOS)

0QUADRATIC DRAG FORMULA

0.0 100.0 200.0 300.0 400.0 500.0a 600.0 700.0 to.0 900 10.

7J1E(5ECONDS)

Fiqu-e 2-7. Surgje displacements for "inaxii~um drift wave" condition
with 00 heading (Condition 2).
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The results presented above indicate that the SAI drag formula

predicts values of viscous forces due to interactions between current and

wave-freuency motions that are much smaller than the values predicted by

the quadratic viscous force formula. They also show that the total surge

motions predicted by the SAI drag formula will, in general, have smlaller

steady displacements than the motions predicted by the quadratic drag formula.

It is difficult to determine the particular environmental condi-

tion and heading angle which will result in the largest maximum surge dis-

placement. Note, for example, that the current may decrease the amplitude

of the slowly-varying motions by a magnitude larger than the steady dis-

placement due to current. In such a case, the current will actually result

in a decrease in the total surge displacement. Several computer runs have

been performed in order to establish the most extreme condition. Of par-

ticular interest are the following two regular wave conditions for which

results are summarized in Table 2-3.

Condition 1
0
0 heading, maximum regular wave with H = 80.0 feet and T = 14.0 sec-
onds, maximum unsteady wind and maximum current. Motions computed by
SAI and quadratic drag. Results for the surge motions as functions of
time are presented in Figure 2-6.

Condition 2

0
0 heading, "maximum drift wave" with H = 46.4 feet and T = 9.5 sec-
onds and maximum unsteady wind. Surge motion plots for this condition
are presented in Figure 2-7.

The "maximum drift wave" in Condition 2 refers to the regular

wave which will produce the largest steady wave-induced drift force for the

heading in question. It is assumed in these cases that the wave amplitude . -

is determined from the maximum wave steepness given by H/A = 0.10. Note

that the maximum theoretical wave steepness for nonbreaking waves is H/A

0.14 and that waves with stqepness H/A 0.12 have in many cases been

recorded.

* As shown in Figure 2-4b, the maximum draft force in regular wave is 1,200

kips and occurs at T = 9.5 sec.

2-24
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the wave-frequency motions can be predicted very accurately by

linear theory ignoring viscous damping and interactions due to

current and slowly-varying motions.

s Amplitude of the slowly-varying motions due to unsteady wind exci-

tation alone ;. 40.9 feet. If current is present in addition to

the unsteady wind, then the amplitude of the slowly-varying

motions is predicted to decrease by 15.4 feet when the SAI drag

formula is used and 25.4 feet when the quadratic formula is used.

If wave-frequency motions are also present, then the SAI formula

predicts an additional decrease of 15.8 feet, whereas the quadratic

formula predicts an additional 6.6-foot decrease. The total

decrease in the slowly-varying amplitude due to current and wave

frequency motion is 31.2 feet when the SAI drag formula is used

and 32.0 feet when the quadratic formula is used.

Table 2-2. Surge displacement components for TLP#1 excited by current,,
maximum design regular waves and unsteady wind with 00
heading angle (values given in feet).

I~ Mori son SAI Moriso SAl Mori Son
Drag Drag Drag Drag Drag Drag

Formula Formula Formula Formula Formula roriula

Current alone 14.4 14.4

Increase due to

Due to current wave-frequency 1.8 27.9

& interactions . 42.3 motion

Steady 70.5 96.7 Increase due to
d,.pacmnent slowly-varying 9 . 0.0

"" iI motion .

Due to wind 52.5 52.5

Due to wave 2.0 2.0
Sdrift

Wave-freouency 22.1 22.1
amplitude,

Slowly-varying 4.

excitation alone 40.9 40.9

Slowly-varying . . Increase due to -15.4 -25.4
amplitude current

Increase due to -15.8 -6.6

Yae-f requency
motion

Total surge 102.4 127.7

displ ace ent

Slowly-varying due to unsteady wind excitation alone.
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summari ze the TI P fl? 'LrI e o010 i on re;ul ts anrd lakt, &Olpj,,li,, ' t. 1w hweci the

Lwo platforms. Nole( I.h, no ir'reqtubiar wdVc reC Ll i,, ih V b 'wilo Ii ll f'((ir
I'Ll" 112[lP /12..'

Table 2-4 shows the main surge motion component for TLP #2 excited

by the maximum design wave and the regular wave condition which results in

the maximum steady drift exciting force (referred to as the "rnaxi!;iwn arift

wave"). Note that the maximum design wave, the maximui , current and the

maximum wind conditions are assumed the same for TLPs #1 and #2. Comparing

the results presented in Table 2-4 with the TLP #1 results ,.i,own in Table

2-3, it is seen that the surge motions for TLP #2 are slightly larger than

for TLP #1. However, if we normalize the surge motions with respect to

water depth, the TLP #2 motions are in general smaller than for TLP 41. It

is not possible to make any specific comparisons between the the two TLPs.

We have here assumed that the dimensions for TLP #2 are 1.2 times the

dimensions for TLP #1. However, it is difficult to evaluate if 1.2 is the

correct scaling between a platform operating in 2000-foot depth and a plat-

form operating in 3000-foot depth. Therefore, we must be careful in drawing

,,nry ceneral conclusions from a comparison between the surge motions for

fnese two platforms.

Table 2-5 shows the surge displacement components for TLP v 2

eXc ed L,,y current, maximum design wave and unsteady wind. Comparing these

rc,u ts with the results presented in Table 2-2 for TLP #i it is seen that

tre viscous -,nteraction effects as computed by the Morison quadratic drag

. and the SA7 drag formula are about of the same relative magnitude.

uv.ver, ae d1o note that the additional damping of the slowly-varying niotions

c,. tG vicous interaction effects between the slowly-varying motions and

trcj current are substantially larger for TLP '2 than for TLP il1. When the

JI\, orl% formula is used this additional damping effect is 2.5 times larger

or .::2 than for TLP :i, and when the Morison drag formula is used, it

., .- e larcor. 't is difficult to pinpoint any specific reason for

ae ,]i' fferences.
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Table 2-4. ',u rge di 'p i cements: f 8 r TLP 112 for Nwo x tromc rr'qu 1dr
wave conditions for 0heading.

Maix imum DesIVgn MdximumDrf ireua I

H 80. 0 ftL b5.9 ft Lh =10 ft
T 14.0 sec 1O1.5 set:l

S§Al 7FQuad sml T (uad - SA I

______________ _____ ______ Drag? Dr'ag Urag ____

Steady Current Displacement, X C 18.5 53.7 1772 46.5~ 0
0

Steady Wind Displacein~ert, X W 66.9 66.9 66.9 66. 9 5.8

StayDitDisplacement, X Q 8.0 8.0 96.9 96.9 2.

Wave Frecquency Amplitude, X1 8. 1.3 .3 .3 09

Slowly-Varying Motion Amplitude, X 2  9. 79 219 41 20

Total Maximum Surge Displacement 1i21.2 154.6 205.0 226.6 11.6

*For the irreqular ,ea,, case the current is assumed zero and the wind :,

strength is only -)' ft/sePc.

.~ - 8
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Tiable 2-5. Surge displacement components for TLP /#2 excited by
current, ma~imum design regular waves and unsteady
wind with 0 heading angle (values given in feet).

SAI Mo ri son n SAi Mori son
Drag~ Drag Dra SA Druag raq Drag

Formul a Formul a Formul a Formul on a Formul a

Current alone .11.1 17.1

Increase due to
Due to current 53 wave-frequency 14 36.4
& interactions 18.5 .7 motion

S *eady 93.3 i281. 5 Increase due tod! splacement Det wid_ ____ slowl y-varying 0.0 U.2

Du o id 66.9 66.9

Due to wave 8.0 8.0
drift

-j18.3 18.3

excitation alone

S , ry g 96Increase due to -3. -46
96 7.9 current

Ircrease due to *-ah*

wa ve-frequency -5.7 -.
moion

7fct3 s,
u: Cem I 121 .2 154.6

V i J varyi n 6 cue to unsteudy wind excitation alone.



3.0 SPRINGING TENDON LOAD INVESTIGATION*

3.1 The TLP Springing Problem

3.1.1 General Discussion of the Springing Problem

Linear and nonlinear wave-induced high-frequency springing excit-

ing forces can result in large oscillatory loads in the tendons at the nat-

ural frequency of the TLP. The natural periods for heave and pitch motions

for most deep-water TLPs are typically between 2 to 3 seconds. For the

discussion in this section let us assume that the vertical motions natural

periqd, Tn, equals 2.5 seconds.

Regular wave excitation shall be considered first. The wave-

induced springing exciting forces can be divided into

0 first-order forces resulting from a wave with period, Tw, equal

to the natural period of the TLP:

Tw  T= 2.5 seconds

a second-order forces resulting from a wave with period equal to

twice the natural period of the TLP:

Tw = 2Tn = 5.0 seconds

a -third-order forces resulting from a wave with period equal to

three times the natural period of the TLP:

T = 3T = 7.5 seconds

r r, or higher order excitations.

, he soringing lcc; ru, sults presented in this section are for zero
Sr cadiicj. The spr'nTiDn; loads for 450 heading can be expected to

Z ires iarer.
3-1 ,
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It is important to recognize that the second- and third-order

excitations are caused by waves which have a larger period and consequently

are much longer and have much more energy than the waves giving rise to

the linear excitation. If we consider a constant wave-height/wave-length

ration, H/X, it follows that the waves causing the second- and third-order

excitation have 16 and 81 times, respectively, the energy of the waves

causing the linear excitation. It can be expected, therefore, that the

second- and third-order springing forces may be much larger than the first-

order forces.

Another important fact is that the springing loads in the tendons

will mainly be caused by pitching motions resulting from horizontal wave

excitation. The vertical springing excitation due to short waves is so

small that it can practically be ignored.

For a typical 2000-foot depth TLP configuration excited by regular

Leriodic waves with H/X = 0.075, our computations show that it can be ex-
pected that the first-order surge springing exciting force is of the order

of magnitude of

f(l) = 50 kips
1

and that the second-order springing force may be of the order of magnitude of

f I = 200 kips

and that both act very close to the free surface (about three feet below).

The effective pitch center for a TLP can be expected to be about 20 feet

below the free surface resulting in a pitch moment arm of about 17 feet.

Hence, the amplitudes of the first- and second-order pitch springing moments

may be of the order of magnitude of

3-2
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f 800 kip,-feet

f(2) = 3400 kips-feet
5

Note that the waves causing the first-order excitation have a period equal

to the natural period, whereas the waves causing the second-order excita-

tion have a period equal to twice the natural period of the TLP.

Another critical aspect is that there is very little viscous damp-

ing and practically no wave damping for the high-frequency pitch motions.

Te amplification factor is very large resulting in tendon loads which may

i be of the order of magnitude of 600 kips per tendon. Figure 1-3 shows

. scrematically the total springing surge exciting force of 250 kips and the

resulting 5,000 kips load or the eight left-hand side tendons and -5,000

kips load on the eight right-hand side tendons. These are approximate results

for a 2000-foot depth TLP with typical dimensions as shown in the figure.

20'
Ft iJ 250 kips .. Eflective

Pltch Center
T !af Spr ing"n

I xcililng Force 50

4- 5-'-00

S.O00 bIps 5.000 kips

oal Loa d Total Load
on 8 Tendons an 8 Tendons

K -. Tta. sprin nnc 5ure () citing force and resulting
tendon load for TLP wih typical dimensions.

-3

L..... ....... -........... .



We have at the present time made no attempt to predict the third-

or higher-order springing excitation. It is believed that the higher-order

excitations may be as important as the second-order; however, we need to

have a better understanding of the second-order excitation and, in particu-

lar, as it applies to realistic irregular sea conditions before we can

advance to the more complicated higher-order excitation problem.

3.1.2 Problem Formulation

We shall here refer to springing loads as the additional tendon

loads caused by wave-induced vertical motions at or near the natural fre-

quency of the TLP. Since the wave lengths for both the first- and second-

order springing wave excitations are smaller or of the same order of magni-

tude as the depth of the TLP, it can be concluded that the heave springing

excitation forces are small and can be ignored. The springing loads in the

tendons at or near the natural frequency of the system must result, there-

fore, from a pitch moment about the virtual mass center caused by wave-in-

duced horizontal forces acting on the four legs at a location close to the

undisturbed free-surface level.

.

We shall here assuem that the pitch springing exciting moment for

the TLP at or near the natural frequency can be obtained from the springing

excitation for a single leg. In fact, we shall assume that the pitch ex-

citing moment with respect to the virtual mass center is

F5 = 4(F* + ZcF) (3-1)

whe e = (1) (2)
where F 5 F + F pitch springing moment for a single leg with

respect to a coordinate system located at the
undisturbed free surface.

1 ) F (2)
F_ F + F = surge springing force for a single leg.

zc = vertical distance from undisturbed free sur-
face to the virtual mass center.

3-4
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The factor "4' in equation (3-1) has been used assui;iingl Lltl 0;c m

forces for the four legs are in phase. This is a conscrvihvc (-,tiwotc.

Figure 3-2 shows schematically the springing excitation in the two refer-

ence systems.

FF

Figure 3-2. Total TLP pitch moment about effective
pitch center.

A formal derivation of the first- and second-order springing

forces are presented in Salvesen, et al. (1983). It is shown that both

the first- and the second-order forces can be expressed in terms of the

first-order velocity potential, ('). The contribution from the second-

or r potne'Liai, 2, can be shown to be small for the vertical cylinder case.

by ap )2ying an approach similar to the method used by M~acCarny and Fuchs (1954)

an'd by assuming that the waves are short, )X/H << 1, and that the water depth

is larre, A/d << 1, it can be shown that the first-order velocity potential ,

~cr t'he vertical cylinder case can be expressed in terns of a series
expansion. Then by using this expansion it can be shown that the first-

a r! secand-order surrje forces and pitch moments can be expressed in terms

or f~ ja~ 's function. By applying this approach we have been able to

'JeVC 6'- very eiff-,c~lent computational methods for predicting the wave-

,,,~rnin: exciting force!, ind moments.



3.2 Regular Wave Results for TLP #1

3.2.1 Pitch Springing Moment Results

In this section we shall present wave-induced pitch springing

moment results for the TLP #1 design excited by regular sinusoidal waves.

The first-order springing moment is

f(1)F(1)(t) = cos Wet (3-2)

where we is the exciting frequency. Note that for first-order excitation,

the excitation frequency is the same as the wave frequency. The second-

order springing moment is

_ (2)F 2 (t) f co, Wet (3-3)

For the second-order excitation, the excitation frequency, we' is equal to

twice the wave frequency. Note that the pitch moments are about the virtual

mass center which is 21.8 feet below the undisturbed free-surface level.

Figure 3-3 shows both the first-order and second-order pitch

springing moment amplitudes as function of the exciting period. Results

are shown for two wave steepnesses, H/X= 0.050 and 0.075. It is seen from
the figure that the second-order moment, f2) is substantially larger than

(1) f5
the first-order moment, f5  This is partly due to the fact that the waves

causing the first-order moment have the same period as the exciting period,

W, T TE whereas the waves causing the second-order moments have periods

t~qice the exciting period, TW = 2TE. This implies that the wave height for

the waves causing the second-order moments at a given excitation period is

tour times the wave height for the waves causing the first-order moment

(assuming a constant H/X value). Furthermore, it is seen from the tabu-

lated values in Figure 3-3 that at the natural pitch period (T = 2.506n
sec) and for wave steepness, H/X 0.075, the first-order moment is 1600

3-6
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ft-kips, whereas the second-order moment is 5680 ft-kips. In other words,
the second-order moment is in this case about 3.6 times larger than the
first-order moment.

I'Du L O I rr .&jQNMOMENT VT7Klp~,

FPST-ORDER 00l~

R EG.U LTS, 5~ 2530 5680

0.

-0 -, -d 3 0 .

1(2

1) and ff) for H/X .050 and

H/A .075.

0-7



3.2.2 Equation of Motion

If we consider the pitch motion about the virtual mass center,
the motion is uncoupled and the equation of motion is

K6 + B6 + Ce = f5" e-iWt (3-4)

Here 0 is the pitch angle, A is the virtual mass moment of inertia, B is
the damping coefficient which is typically a function of the pitch angle,

C is the restoring coefficient and f5 is the pitch moment amplitude. As

shown in Appendix A, for the TLP #1 design

A 4.06 * 1010 slug-ft2  (3-5)

11 :'

C = 2.553 * 10 lb-ft (3-6)

The pitch natural period is

T 2r A = 2.506 seconds. (3-7)n C

Of interest here is the additional tendon tension load due to

pitch springing motion rather than the pitch motion itself. The tendon

tension load per tendon is linearly proportional to the pitch angle

c= ce(3-8)

where the coefficient

a = ° C33 16 = 1.45 * 105 kips/rad. (3-9)

Therefore, the tendon tension load per tendon can be expressed as

3-8
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1A f5

( ) =(3-10)

(-w2A+C)-iwB 
(-0

I

The tendon tension load can also be expressed in terms of the magnifica-

tion factor, n, as

T(W) = n(f5  -. ) (3-11)

where f5 c/C is the zero frequency tendon tension. The magnification fac-

tor is defined as

n1

1- (. ) 2  C -- (3-12)
n Wn

where the damping factor is by definition

B B (3-13)
2Aw B

n c

Here Bc is the critical damping coefficient.

Note that when the TLP is excited by a pitch moment at the natural

frequency, wn' the amplification factor is

n (3-14)

-i2 C

3.2.3 Tendon Springing Loads

3y equations (3-11) and (3-14) if follows that the additional

tvoccr, tension oac per tendon is

f5 -4J, -Cn~ = ¢ 2.84 * kips (3-15) ."

3-9
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when the TLP is excited at the natural period, Tn 2.506 seconds. Here,

the pitch exciting moment amplitude, f5 9 is in kips-ft units. Note that if

the damping factor, C, is a constant independent of the pitch motion ampli-

tude, the tendon load, T, is directly proportional to the pitch moment, f5 "

For the TLP in the high frequency range, the damping is mainly due to

0 viscous forces,

0 wave generation, and

0 structural damping.

In this study, we have included damping only due to viscous forces and wave

generation. It is expected that the structural damping is of the same order

of magnitude as the viscous damping; however, it is difficult to obtain ac-

curate estimates for the structural damping without a complete knowledge of

the details of the design of the tendons.

Figure 3-4 shows the damping factor, C, as a function of tendon

tension load, T (not that T is linearly proportional to the pitch angle,

equation (3-9)). Also shown in Figure 3-4 is the tendon tension load, T,

as a function of the pitch moment, f5 " These curves have been obtained by

a computer program which models the viscous forces for high frequency pitch

motions as well as includes the wave generation damping. Note that Figure

3-4 is only applicable to the TLP #1 design when pitching at the natural

period, Tn = 2.506 seconds.

Example Results

Consider first-order regular wave excitation at the natural

period and assume that H/, = 0.075. From Figure 3-3 it follows that the

first-order pitch moment amplitude is

f~l) = 1600 kips-ft.5

3-10
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DAHI':NG FACTOR, C *10?

1000 ii--- J1TtT i

~0O TC~- PrH vCOmEN4T, S

600F

4004

DA M~ PI GFACTOR, .

02.0 2.0 3.0 4,0 5.0 6.0
PITCH MOMENT AMPLITUDE, f, in kip-ft *10~

Figure 3-4. Tendon tension load, T, as a function of
pitch moment, f5, and damping factor, ~
as a function of t.endon tension load, T.

Fr. iure 3-4 we have that the additional tendon tension loiad is

=470 kips per tendon.

Then 'et us consider second-order regular excitation with exci-

*period equal to the natural period and wave period

2 5.31~2 secon s.

.7*



PARTIALL.Y DEVtL0I'ED (HURRICANE) SEA (1';). 1 U.K)

CFULLY 1M OVI'D 514 (a): T 04 1/M. 131 )
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n

.00.5 1.0 1.5 2.0 2.5 3.0 715

WJAVE FREQUENCY, RHO/SEC

Figure 3-10. Sea spectra, fully developed (FD) and partially
developed (PD).

(Z)
FD ,ec

(2) -

PD ec

6. 55- 2 . .

e; cuc 3-r c. rc r-or r -ch -,xc- ti r.7j momoint power spec tra.
Fll ly deveio.;ed(ED) and Partially developed (PD)
se. Sta t S.

3 -25

............... %



Simplified Prediction Method

The contribution to the variance (i.e., the square of the RMS

value, a2) for second-order excitation can be estimated by the following

simple procedure. -

2 12 (2)(
¢0 00-

am dw

:Z(2) (W f IH,(w)12Cm wn  1dw (3-36)

0

(2) 2 1j
m ~n A 4 m

Applying this relationship to the irregular sea condition con-

sidered here, we have approximately the same result as obtained by numeri-

cal integration, namely

2
02 1980

3.5 Sea State Investigation

In this section we shall present irregular sea results for TLP #1

using a fully developed (FD) Pierson-Moskowitz sea spectrum as well as the

partially developed (PD) Bretschneider storm sea used in Section 3.4. For

both cases the spectrum is given by equation (3-34) with h = 10 feet.
1/3

For the FD case

T = 8.73 seconds
0

and for the PD case To is the same as used in Section 3.4, namely,..."

To = 7.04 seconds.

Figure 3-10 shows the sea spectra for the two cases considered,

and Figure 3-11 shows the second-order pitch exciting moment power spectrum,

3-24
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0 the high frequency rdnge.

Table 3-2 shows the square of the RMS values, 02 (see equation 3-28) for the

first- and second-order tendon tension response spectrum for the high- and

low-frequency ranges separately.

The results presented in Table 3-2 seem to demonstrate that the

first-order contribution in the low frequency range dominates the total

contribution to the RMS value for the tendon tension response. Considering

only the low frequency range contribution, we find that the significant

tendon tension value for this sea condition is

1/3 = 2.0 a 75 kips.

If we consider only the high frequency range, we have

1/ 2.0 7 = 102 kips.1/3

It should be stressed that the main objective with this investi-

gation has been to estimate the high frequency tendon tension load. The

low frequency computations were only included to demonstrate that the low

frequency tension loads may be as important as the high frequency part.

Area and RMS values for tendon tension
response spectrum, 02 and a in kips2

and kips T T

High Frequency Range Low Frequency Range

Area RMS Area RMS

First-Order Contribution 610 24.7 1420 37.6

Second-Order Contribution 1980 44.5 0 0.0

T Ct a 1 2590 50.9 j 2 0 37.6

I o 3-2. First- and second-orde;- contributions to area and RMS
val ues for t"hne tendcr, tension response spectrum for
the high and loaw frequency ranges.
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Figure 3-9b. First- and second-order tendon tension response
power spectra.

3--



=0.05 *10o

Figure 3-8 shows the tendon tension RAO, H (w), for this assumed constant

damping factor.

7

CD

2

C

2Cr_

2.SO 2.SS 2 1

FREJU[NbY, R/t

Figure 3-8. Tendon tension RAO, HT, for TLP #1,
w= 2.508 rad/sec and damping factor
=.0005

Figures 3-9a anc 3-9b show the first- and second-order tendon ten-
s~ior resionse power spectrums. As indicated .i these figures, the response
power sdectrum car conveniently be divided into two parts:

a i~eow frequency range, aid

3-*21
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Figure 3-7b. First- and second-order pitch exciting moment
power spectra.
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3.4.2 Computed TLP Results

In this section we shall present computed results for the TLP #1

design in an irregular seaway represented by a Bretschneider energy spectrum

for a partially developed storm sea

A B/W4"'
5() = e- (3-34)

2 4 4where A = 486 h1 3/T and B 1948.18/T For the example case presenter
here

h = 10 feet and To = 7.04 sec.
1/3

Fiqure 3-7a and 3-7b showthe first- and second-order pitch exciting moment
power spectrum as obtained by equations (3-23) and (3-25). Please note

that for this investigation, the first-order pitch moment RAO values,

have been estimated by using single vertical leg results, the

approach d~scussed in Section 3.1.2. This approach is only valid in the

high frequency range. Therefore, any results shown here in the low frequency

rdnge should only be considered as an order of magnitude estimate. It is

seen in Figure 3-7a that in the low frequency range the first-order exciting

moment power spectrum, M is as expected, an order of magnitude larger

than the second-order spectrum, (2) However, as seen in Figure 3-7b in

ttle high frequency range, near the pitch natural frequency, 2m is sub-

stantially larger than M

,he tendor. tension load response power spectrum is given by equa-

tion (3-26) and i;

(~2() =H (u) . ( (1) (w) (2)(w))(35
12(w )  : IH T (W) 12 I l)m m (3-35

where .) is the terdon tension RAC For simplicity we shall assume that

for tne -rr 5uWar wave results presented here the damping factor is

3.19
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and the average of the 1/10 highest amplitudes of the tendon tension load is

T /0=25 (3-31) 1'T
In predicting the RMS value for the tendon tension load, it is

important to recognize that the pitch damping coefficient is nonlinear. It

is here suggested that the nonlinear damping can be adequately represented

by using an equivalent linearization method where the damping coefficient

is assumed constant and equal to the same value as for harmonic motions

at the natural frequency with motion amplitude equal to the significant
motion amplitude for the irregular wave case.

In other words, the following procedure is used in predicting

the tendon springing load in an irregular seaway.

First assume a value for the significant tendon tension load,

which we shall label T 1/3- Then by using this value, the

first estimated damping coefficient is obtained from Figure

3-4. The significant tendon tension load is then computed

following the above steps with the estimated damping coeffi-

cient. This procedure is repeated until satisfactory accu- %

racy has been obtained.

Note that if the free-surface elevation for the unidirectional

seaway is given by

y(t) = EAneiwnt (3-32)
n

then the second-order pitch springing moment as a function of time can be

expressed as

F 2)(t) E EAAm (w wi) ei(n +wm)t (3-33)
n mfn

S7
3-18
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H (3-24)
mA

The pitch moment power spectrum due to second-order wave-induced excita-

tion is

w/ 2

(w 2f a + AW) ~a (Aui))

o (3-25)

(.+ AW, -AW) I d(Aw)

where J(w. 2)is the second-order two-wave pitch springing moment per

unit wave amplitude.

The tendon tension load response power spectrum is -

4~(w =H(J2 *( 1))+ 0(2)(w)) .(-6

where the tendon tension per unit pitch moment excitation is defined by

H (W) =T (3-27)

and where -(w) is given by equation (3-10). The variance (i.e., the square

of the RMS value) of the tendon tension load is

G~ f (w) dw (3-.28)

0

The average tendon tension load amplitude is

T =1.25* - , (3-29)
avg T

the s~gniflcant value of the tenc'on tension load amplitude is

2 00a (3-30)

3-1
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From Figure 3-5 it is seen that the RAO value for the second-order sum-fre-

quency moment,(w 1 , w2 ) = 260 kips-ft/ft
2 for w, = 1.054 and w2 = 1.454 rad/

sec. Hence, the amplitude of the second-order springing moment component

with exciting frequency equal to the natural frequency is
41.

2 [f ( 2  2AA 2'-5(wl, 2)=3620 kips-ft.5 12 w2)

From Figure 3-4 it follows that the tendon tension load for the above two-

wave case is

(2) = 780 kips per tendon.

3.4 Irregular Wave Results for TLP #1

3.4.1 Theoretical Formulation

We shall assume that the seaway is unidirectional and represented

by a known power spectrum

Ma(m) (3-21)

and that the wave-induced pitch exciting moment has a power spectrum given by

-m(w) (1) + ( + (3-22)

Here the pitch-moment power spectrum due to first-order wave-induced exci-

tation is

(I) IH• 2 a(W) (3-23)

where the first-order pitch exciting moment amplitude per unit wave ampli-

tude, RAO, is

3-16
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Figure 3-6. Two-wave, second-order pitch moment per
unit wave amplitude,,j (wl, w2).

Tw.,c-.ave Example (see Figure 3-5)

Consider two waves with frequencies

=1.054 and w2 1.454 rad/sec.

nsum frequency of these two waves is equal to the natural freqUency for

tIcLr-

+o 2.503 red/sec

,-at thicy both Ki.ve the san-,e wajve slope

HI- 0.04

3-15
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e-jw +2)Jt 3-02 12+ w2 t = * AA 2~(wit w2  ei'(wl + w2)t (-0

where A1 and A2 are the wave amplitudes for the two waves with frequencies

Wand wj respectively. Here J(w1 , iW2 is defined as the two-wave pitch
springing moment amplitude per unit wave amplitude (RAO).

Figure 3-5 shows 4 (.wl, w)for TLP i#1 for sum frequencies equal

to the pitch natural frequency:

W1+ w02 w 2.508 rad/sec.

Figure 3-6 shows ,(Wit w2) for the four following sum frequencies:

W+ W 2 =2.0, 2.5, 3.0 and 3.5 rad/sec.

Recall that for this component of the second-order pitch moment, the exci-

tation period is equal to the sum frequency.

- - EXCITING FREQUENCY

0]

N,

1 .5 2.5

WAVE FREQUJENCY, RAD/SEC

Figure 3-5. Two-wave, second-oder pitch moment per
unit wave amplitude for wl + w2 =wn

2.508 rad/sec.
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The second-order springing exciting force is given by

F =2 ( t f(')] eZ'wlt + ~f(2)] e- iw2tJ J II J 22

2jf,2)J e-i(wl + w2)t (3-17)

12

Note that the amplitudes for the double frequency components, if (2)J and -.
j f(2) are identical to the amplitude for the single regular wave case.

J 22

The amplitude of the sum frequency component of the second-order springing

force which is due to interactions between the two wave components is

S12 (l 2

By following a formal procedure as used for the single-wave case, it can be

shown that the amplitude of the sum frequency component (3-18) can be ex-

pressed in terms of the first-order potentials for the two individual waves,(1 (1)

I and .2 By expressing these potentials in terms of series expansions

a very efficient computer program has been developed for computing the two-

wave amplitude, f2) (w1 , w2) for a single vertical cylinder. The total pitch

moment for the two-wave case is obtained by equation (3-1). Note that a

term containing the second-order potential, 212 ,has been ignored in this

approach. It is believed that this term will result in a very small contri-

bution to the total force.

Now consider two regular waves with sum frequency equal to the

naturai frequency

(3-19)

tr, r. the second-order sum frequency component of the pitch moment will have

., ation Fr quecy identical tu the natural frequency and may be expressed ->

3-'3
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If we assume that H/X = 0.075, it follows from Figure 3-3 that the pitch

moment amplitude is

f(2)-
f2 5680 kips-ft.

From Figure 3-4 we have that the tendon tension load is

(2)-
= 1020 kips per tendon.

The above results for first- and second-order regular wave exci-

tation are summarized in Table 3-1.

Pitch momentapithuoen Tendon tension
amplitudes inlodiniploads in kips

kips-ft

First-order
regular wave 1600 470
excitation 1-

H/A = 0.075

Second-order
regular wave 5680 1020
excitation
H/X = 0.075

Table 3-1. Pitch moment amplitudes and tendon tension
loads due to first- and second-order regu-
lar wave excitation.

3.3 Two-Wave Results for TLP #1

Consider a body excited by a wave train consisting of two regular

waves with frequencies w1 and w2 " The first-order exciting force is

() f( 1) ilwt fl) iw2t (3-16)F' Fl(t)j f NO( e)  + f (W2  e-

3-12
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(2)"m(W) for these two sea spectra. It is seen in Figure 3-11 that the pitch

exciting power spectrum value at the pitch natural frequency (wn 2.508 rad/ -

sec) is almost three times as large for the PD sea as it is for the FD sea

condition. According to equation (3-36),this implies that the variance,

a2 should also be approximately three times larger for the PD case than for
the FD case.

Table 3-3 shows the first- and second-order contribution to the
RMS values for the tendon tension responses for the high- and low-frequency
ranges both for the RD and the PD sea states. It is seen that for the

high frequency range the first- and second-order RMS values for the PD sra 
state are about v3times as large as they are for the RD sea state. Whereas

for the low frequency range where only the first-order contribution is of a

!significant magnitude, the RMS values for the FD sea state are larger (by a

factor of two) than those for the PD sea state.

These results seem to indicate that it is imporLant to consider

both partially developed and fully developed sea states when predicting the

tendon tension responses due to wave-induced springing. In general, it can

be expected that the second-order contribution will be substantially larger

in a partially developed sea state than in d fully developed sea state with

the same significant wave height.

RMS values for the tendon tension

response spectrum, in kips

High Frequency Range Low Frequency Range

FD Sea PD Sea FD Sea PD Sea

First-Order Contribution 16.1 24.7 75.7 37.6

Second-Order Contribution 26.3 44.5 0.1 0.0

Total 3G.9 50.9 757 37.6

Table 3-3. First- and second-order contributions to RM.S values for
the tendon tension response spectrum for the hijh and
low frequency ranges for fully developed (FD) and par-
tially developed (PD) sea states.

3-26
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3.6 Pitch Center Investigation

In this section we shall investigate the effect of the location

of the pitch center for TOP #1. Note that the pitch center is defined as

the virtual mass center (including both the mass of the TOP and the hydro-

dynamic added mass). We shall consider two pitch center locations: the

actual location for the TLP #1, namely

z -21.8 feet

and 25%/. of this distance,

z= 0.25 z= -5.5 feet.

3.6.1 Regular Wave Results

Figure 3-12 shows the first- and second-order pitch springing

moments for TLP #1 with the two stated pitch center locations. It is seen

fromn this figure that at the natural period the second-order pitch moment is

reduced by a factor of about 10 by decreasing the pitch center to 25% of

the design value. The first-order moment is reduced by a factor of about 50.

Table 3-4 shows the p~itch moment amplitude values at the natural

period as obtained from Figure 3-12. Also shown in Table 3-4 are the tendon

tension loads due to these pitch moment values. The loads have been obtained

using the nonlinear relationship between the pitch moment and tensic.n loads

as given by Figure 3-4. It is seen from the tendon tension values given in

Table "'-4 that the second-order tendon tension load is reduced from 1020

kips to 240 kip,, by decreasing the pitch center to 25% of the design value.

.Sir;~'ythe first-order tendon tension load is reduced from 470 kips to

24 k i;

3-27
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7!4

H/A =0.075j

C3

01

EXCITING PERIOD, SC

Figure 3-12. First- and second-order pitch moments for
pitch center zc =-21.78 ft and Zc =-5.45 ft.

T =2.506 sec

Zi -21.8 ft z -5.5 ft

____ _____f 5 , ft-kip -r, kip f 5 1 ft-ki p -r, kip

First-Order Single-Wave 10 7 02
Excitation, H/A =0,075

Second-Order Single-Wave 80125024
Excitation, H/X 0.075

Table 3-4. Pitch moment amplitudes, f and tendon tension loads,
T, due to first- and secon -order excitation at the
natural period for vertical pitch center at zj = -21.8 ft
and at z2 =-5.5 ft.

3-28



-j

3.6.2 Irregular Wave Results

Figure 3-13 shows the power spectra for the second-order pitch

springing exciting moments for the two pitch center locations. It is seen

that the second-order power spectrum has been reduced by an order of magni-

tude by decreasing the pitch center to 25% of the design value.

Table 3-5 shows the RMS values for the tendon tension response for

the two pitch-center locations. It is seen that there is a large reduction

in the tendon tension RMS values for the contribution from the high frequency

range. However, for the low frequency range, where the loads are dominated

by first-order excitation, there is actually a substantial increase in the

tendon tension when the pitch center is decreased to 25% of the design value.

The reason for this difference between the high frequency and the low fre-

quency range is that the high frequency range excitation is caused by short

waves with exciting force locations close to the free surface, whereas the

low frequency excitation is caused by longer waves with exciting force loca-

tions below the design pitch center. Hence, in the low frequency range

the pitch exciting moments are actually increased when the pitch center is

moved closer to the free-surface.

In summary, the pitch center investigation results show that a

very effective way to reduce the second-order tendon tension springing loads

is to move the pitch center closer to the free surface level. However, the

first-order tendon loads in the low frequency range will most likely increase

by moving the pitch center closer to the free surface. Therefore, it is

very difficult to determine if it is advantageous to move the pitch center

location. A careful investigation of the first- and second-order tendon load

results for both the high and the low frequency ranges is required before any

judgment with regard to the pitch center location can be made.
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3.7 TLP Size Investigation

In this section we shall compare springing results for the TLP #1

and TLP #2 designs. A detailed description of the two TLPs is included in

Appendix A. Note that TLP #2 is 1.2 times larger than TLP #1 and that TLP

#1 is assumed to be designed for 2000-foot depth whereas TLP #2 is designed

for 3000-foot depth.

3.7.1 Regular Wave Results

Figure 3-14 shows the first- and second-order pitch moment for TLP

#1 and TLP #? in regular waves with wave steepness, H/A = 0.075. It is

seen that the pitch moments are somewhat larger for the larger TLP. However,

more importantly is the fact that the natural period for the larger, deep-

water TLP #2 is 3.134 sec, whereas for the smaller TLP #1 it is only 2.506

sec. The longer waves exciting TLP#2 at its natural period have much more

energy than the shorter waves exciting TLP #1 at its natural period.

The numerical values for the pitch moment amplitudes and the

resulting tension loads at the natural periods are presented in Table 3-6.

it is seen that the second-order pitch moment for TLP #2 is about three

times as large as for TLP #1 and that the resulting tendon loads for TLP #2

are about twice a, large as for TLP #1.

These results seem to indicas.e that the springing problem is much

more critical for a deep-water TLP w'th a higher natural period.
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3.7.2 Irregular Wave Results

Figure 3-15 shows the power spectrum for the second-order pitch

springing exciting moment for both TLP #1 and TLP #2. It is seen that at

the natural frequencies for the two platforms the value of the power spec-

trum is about twice as large for TLP #2 as for TLP #1.

Table 3-7 shows the RMS values for the tendon tension response for

both TLP #1 and TLP #2. It is seen that the RMS values are somewhat larger
for the larger TLP, but not as much larger as the springing exciting moments.-

-i

for TLP#1 and LPP #2



IV_';

RMS values for the tendon tension
response spectrum, aT in kips

High Frequency Range Low Frequency Range

TLP #1 TLP #2 TLP #1 TLP #2

First-Order Contribution 24.7 71.9 37.6 40.5

Second-Order Contribution 44.5 51.8 0.0 0.0

Total 50.9 88.6 37.6 40.5

Table 3-7. First- and second-order contributions to RMS values for
the tendon tension response spectrum for the high and low
frequency ranges for TLP #1 (X = 1.0) and TLP #2 (X 1.2).
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4.0 REDUCED NUMBER OF TENDONS INVESTIGATION

4.1 Objective

The main objective of this part of the project has been to inves-

tigate the surge motions and the tendon tension loads for the case of tendon

failure, i.e. only three tendons for one of the legs.

4.2 Non-Rigid TLP Structure

First, it shall be assuemd that the TLP is not completely rigid

so that all of the loads from the broken tendon are taken up by the three

remaining tendons at that leg.

4.2.1 Maximum External Loading

If we let to equal the pretension value per tendon for a normal

operational condition, then the pretension value for each of the three

remaining tendons is

t*  1.33 to. (4-1)

We shall use an asterisk to indicate that the value is for the case with

one tendon removed. We shall assume that the tendons are designed to take

an additional loadirg equal to the pretension value. This implies that the

maximum tot.l load4vig at the leg with three tendons is

3 tmx =6to. (4-2)

Subtractinc the pretension value f'.r these three tendons we have that the

total additional loading which can he taken up by these three tendons is

6t° - 3t*= 2t. (4-3)
0 0 0

4-1
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Since the total additional maximum loading at a leg with four intact legs is

4t 4tO  (4-4)

it is seen by comparing (4-3) and (4-4) that the leg with three tendons can

only experience half the external loads as a leg with four tendons if it

is required that the total load per tendon shall not exceed a value which

is twice the pretension value.

4.2.2 Surge Motion Characteristics

If we consider the coefficients and the exciting forces for the

surge equation of motion (see equation (3-1)) it is easily recognized that

the mass, added mass and damping coefficient will remain about the same with

one less tendon. Similarly, the excitation forces will be about the same.

There will be some reduction in the viscous drag due to the elimination of

one tendon; however, this effect is small compared to the total viscous

force. Also note that the (linear) surge restoring coeffiicent which is

given by

wtwt) (T (4-5) "
c11 = (To - -) g (4-5)

will be approximately the same. Here TO, which is the total pretension

value, is unchanged and wt. which is the weight of the tendons, is only

reduced by about 6%. Note also that the wt/2 term is small relative to

the 0 term.

It can be concluded, therefore, that the surge motion characteris-

tics of the TLP will remain practically the same with one less tendon. No

additional computations are needed to confirm this.

4-2
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4.2.3 Springing Loads

If we consider the heave restoring coefficient separately for each

of the four legs, we have that the heave restoring coefficient for the leg c-I
with three tendons is 75% of the restoring coefficient for the other legs,

hence

,^leg rleg '- ,
c33 - 0.75 C33g (4-6)
33 33*

This implies that the natural heave period for the leg with three tendons is

T* = T /0.75 = 1. 15. T (4-7)
n n n

where Tn is the natural heave period for the other three legs. Hence, the

leg with only three tendons has a 15% larger natural period than the other

legs.

The springing laods are caused by vertical motions at the individ-

ual legs resulting from natural frequency pitch motions of the total TLP.

With three legs having a natural period of T and one leg having a naturaln
period equal to 1.15 Tn, it is clear that the pitch motion will not have a

single distinct natural pitch period. Therefore, it can be concluded that -

thc springing load problem which is mainly due to a very distinct natural

frequency will not be as critical as it is for the case with all of the

tendons intact.

4.3 Rigid fLP Structure

It shall now be assumed that the TLP structure is completely

rigid and that the load from the broken tendon is taken up by all of the

re-iaining 15 ttndons. f we use a numbering system as shown in Figure 4-1

where I c5 -;I is i-2 le with only three tendois, we have that the pretension

val e is iicreased as shown below:

4-3
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Pretension Increase

Three tendons at leg #1 25%

Eight tendons at legs #2 and #3 6.25%

Four tendons at leg #4 -6.25%

In this case the maximum external load which the total platform

can experience is 56% of the load if can experience with all of the tendons

intact if it is assumed that the maximum design load per tendon is twice

the pretension value. This result was obtained by recognizing that the .-

three tendons at leg #1 can only experience an additional load given by

3(0.75 to) = 2.25 to (4-8)
0 0

whereas four intact tendons are designed for 4 t additional load.

Again, for the rigid TLP case the surge motion characteristics

will be practically unchanged by eliminating one single tendon.

The springing problem in this case becomes a little more compli-

cated. First, it can be shown that the pitch center will move a distance

of 0.047 L (where L is the leg spacing) as shown in Figure 4-1. Further-

more, it can be shown that the pitch restoring coefficient for the case of

one less tendon is

C = 0;864 C55  (4-9)
55 5

where C55 is the restoring coefficient with the tendons intact. The pitch

natural period will be

T* - I T = 1.076 T (4-10)n 0 n n

where Tn is the intact pitch period.
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Consider springing tendon tension loads caused by natural fre-

quency pitch motions excited by second-order wave-induced forces. Since

the second-order excitation is proportional to the wave height squared, and

the wave height is proportional to the period squared (assuming a fixed wave

slope, i.e., H/ equal to a constant), it follows that the second-order

pitch springing moment at a natural period equal to 1.076 Tn is approxi-

mately

f: (1.076)4 " = 1.34 f5  (4-11)

where f is the pitch moment at a natural period equal to Tn. In other
5~n*

words, the pitch springing moment in this case is about 34% larger.

For natural frequency motions with all of the tendons intact, the

pitch angle is given by (see Section 3.2.2)

0 f5/W B. (4-12)

For the case with one tendon removed, the pitch angle is

0* f*/w* B. (4-13)
5n

It can be assumed that the damping, B, remains the same. Since ti-e new
natural frequency is

S* 0.929 w (4-14)
n n

it follows from equation (4-13) by introducing equations (4-11) and (4-14)

that

0* (1.34 f )/(0.929 wn )B = 1.440.
6• n

Hence the pitch angle will be 44% larger than for the intact case. The

loading in the tendons is proportional to the pitch angle

4-6
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T

where the proportionality factor, cx, for the case with one less tendon is

*= 1.067 - = 1.42x.

Therefore, the springing tendon tension per tendon at leg #1 will be

* * = 1.42( x 1.440 = 2.04T.

This implies that if we consider regular wave springing excitation, the TLP

with one less tendon will experience tendon laods at the leg with only three

tendons which are 2.04 times the springing load in the tendons for a TLP

with all of the tendons intact.

Now considering that the pretension value for the three tendons

at leg #1 has already been increased by 25%, it seems as if the additional

loading due to springing can become quite critical for the case with one

less tendon.

4-p7
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Appendix A

PRINCIPAL DIMENSIONS AND NATURAL PERIODS FOR

TLP #1 AND TLP #2

Two TLP designs are considered in this investigation. They are

referred to as TLP #1 and TLP #2 with the following principal dimensions:

TLP #1 TLP #2

Vertical Leg Diameter, D1  57.0 ft 69.0 ft

Pontoon Diameter, D2  31.0 ft 37.0 ft

Leg Centerline Spacing, L 220.0 ft 260.0 ft

Draft of Leg, H 121.0 ft 145.0 ft

Depth to Ocean Floor, d 2000.0 ft 3000.0 ft

Note that the two platforms have the same geometry with a scaling factor

of approximately 1.2; however, the depth for TLP #2 is 1.5 times the depth

for TLP #1. The two TLPs have a configuration as shown in Figure A-1 with

K four vertical legs connected with four horizontal pontoons and some kind

of deck structure. In addition to this main structure, there is also an

S appropriate number of braces for which volume and mass are included by

adding an estimated percentage factor. In the hybrid-finite-element

method (HFEM) computations only the legs and the pontoons have been

included. There are four vertical tendons at each of the four legs.
L J "L

-~ 4 tendons
at each leg

Figure A-1. TLP Geometry.

A-i

. . . "



The buoyancy of TLO #1 is

AB = 116,880 kips

and the total pretension value (including tendons and risers) is

To 40,100 kips

with the weight given by

WO A1 -To =76,700 kips.B o

The total weight of the tendons and risers in air is

wa 13,900 kips

and in water

ww 12,700 kips.

The effective mass of the total TLP system is

w

M = (W + ~ 2.60 * 10 slugs
0 2 g)

and the surge restoring coefficient is

C~ ~ (T w) 183 kips/ft

where

Z. d -H E 1840 ft.

Here c 39 is the height of the bottom tendon mounting.

A- 2
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From the HFEM calculations presented in Figure 2-29,the surge

added mass value for large periods is

Al= 2.63 * 106 slugs.

Hence, the surge natural period is

2 A1+ M -,

T 2 A1CIM - 106.12 sec.
c11

The heave restoring coefficient which depends on the tendon material and

the tendon cross-sectional area shall be assuemd to be

C33 = 21.1 * 106 lb/ft.

The heave added mass is

A3 3  1.44 * 106 slugs

and the heave natural period is

T33 = 2 A 33  M 2.738 sec.

33 = -q- 33

The pitch restoring coefficient is approximately

C55  (L/2)2 C33 = 25.53 * 100 ft-lb.

It is assumed that the pitch center (the vertical center of the virtual

mass) is

zc = 21.8 feet

below the water level and that the virtual pitch mass moment of inertia

about this center is

A-3
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M5 5 + A5 5 =4.06* 1010 slugs-ft2

and hence the pitch natural period is

T5 2 55 + A"5
= 2 2.506 sec.C55

All of the above results are for TLP #1. Table A-I shows the
results for both TLP #1 and TLP #2.

Table A-i. Mass, restoring coefficients, and natural periods for
TLO #1 and TLP #2.

TLP #1 TLP #2

Buoyancy, A, (kips) 116,800 202,000
Pretension, T (kips) 40,100 69,000

0
Weight, W (kips) 76,700 113,000

Tendon weight in air, wa (kips) 13,900 23,200

Tendon weight in water, ww (kips) 12,700 21,900

Mass, M (slugs) 2.60 * 10 4.44 * 10
Surge restoring coef., Cl1 (kips/ft) 18.32 20.7
Surge added mass, A11 (slugs) 2.63 * 106  4.28 * 106

Surge natural period, T11 (sec) 106.12 128.96

Heave restoring coef., C33 (lb/ft) 21.1 * 106 24.05 * 106

Heave added mass, A33 (slugs) 1.44 * 106  2.64 * 106

Heave natural period, T33 (sec) 2.738 3.37
Pitch restoring coef., C55 (ft-lb) 25.53 * 1010 40.6 * 1010
Pitch center location, zc (ft) 21.8 26.2

2) 1010Pitch virtual mass, M5 5 + A5 5 (slg-ft 2) 4.06 * 1010 10.1 * 10
Pitch natural period, T55 (sec) 2.506 3.13

A-4
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Appendix B

DETERMINATION OF SWAY DISPLACEMENT COMPONENTS BY

SAI AND QUADRATIC DRAG FORMULAS

B.1 Computer Run Descriptions

A systematic series of computer runs was performed with the non-

linear time-domain surge motion computer code. The individual surge dis- ".

placement components were determined in order to evaluate the differences

in each component using the SAI and quadratic drag formulas, and for TLP #1

and TLP #2. The following current, wind and wave conditions were selected

for this investigation:

(i) Current - The current was input as a function of depth below the

free surface as follows:

Z, ft Current, knots

0. 2.70

121. 1.70

1000. 0.60

2000. 0.30

(ii) Wind - Steady wind: W= 70 knots

Unsteady wind: Wus 7 knots coswn t

where wn is the natural frequency of the system.

(iii) Waves - Maximum design wave: H = 80 ft, T = 14.0 sec

For this wave, the primary wave exciting force and phase are

F(1) 22,870 kips and E(1)  1.596
E
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The steady second-order drift force is

(2).

F( 2 ) = 36 kips.

For the given wind conditions, with steady and unsteady components

present, the wind force is

Fw = 960 kips + 191 kips cOSwnt.n

The computer runs were conducted both with the SAI drag formula

(referenced by the letter "A") and the quadratic drag formula (referenced

by the letter "B"). The following runs were performed:

1A and B Current alone (no wind or waves)

2A Maximum design wave, primary excitation only (no drift force,

current or wind)

3A Maximum design wave (primary excitation only), with inte-

gration up to the disturbed free surfece (no drift force,

current or wind)

4A and B Current and maximum design wave, primary excitation only

(no wind or drift force)

5A and B Current, maximum design wave including steady drift and

steady wind (no unsteady wind)

6A Unsteady wind only (no current, wave or steady wind)

7A and B Current and unsteady wind (no wave or steady wind)

B-2
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8A and B Maximum design wave (primary excitation only) and unsteady

wind (no drift force or steady wind)

9A and B Current, maximum design wave including steady drift, steady

and unsteady wind

The conditions stated above are tabulated in Table B-1.

Table B-I. Conditions used for surge-displacement component
investigation.

Drag Wind

Run # Formula Current Unsteady Steady Steady Unsteady

SAI Quad Primary Drift Steady Unsteady

1A 

IB / /

2A / /

3A / /*

4A / V /

4B V / /

5A / / / / /

56 / /' / /' / 1.

6A / V

7A V / V

76 / V /

8A / / -'
/ 1"

9A // / / / /

9B V V V ¢ V / .

• Integration up to free surface

B-3
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B.2 Discussion of Results

The numerical results for the cases stated above are given in

Table B-2, in terms of the steady state amplitudes of surge at the wave

frequency, the natural frequency and the steady surge. The corresponding

time-domain plots of the surge motion are shown in Figures B-I through B-9.

Runs 1A and 18

Figure B-i shows the surge response for runs 1A and 1B with cur-

rent only. As should be expected, the final steady displacement is the

same for both the SAI and quadratic drag formulas,

X0 = 14.4 feet.

The only difference between the results for the two current only cases is

the transient motions die much slower with the SAI drag than the quadratic.

It is believed that the quadratic drag dies out much too rapidly.

Run 2A

Figure B-2 shows the results for Run 2A, regular maximum wave

only (no drift force). It is seen that the primary motion amplitude is

X= 22.1 feet.

Note that this primary motion amplitude remains the same throughout these

computations which shows (as we had expected) that the primary motions are

not in any way effected by the current or by the slowly-varying motions.

Furthermore, viscous damping has an extremely small effect on these motions

(lest than 1") and does not need to be included in primary motion predic-

tions. The primary motions are dominated by inertia effects and hence are

linear with respect to wave amplitude. This implies that linear superposi-

tion and linear statistics can be applied to the primary motions.
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Run 3A

Figure B-3 shows the results for Run 3A. The only excitation is

the primary wave excitation (no drift force), but in this case the hydro-

dynamic pressure is integrated over the instantaneous wetted surface area.

It is seen that in this case there is an additional steady sway displacement -*

X 0 7.7 feet.

This is the maximum additional displacement due to integration over the

instantaneous wetted surface rather than over the undisturbed wetted sur- 7

face. The difference is so small that we shall not include this effect in

any of the other computations.

Runs 4A and 4B

Figure B-4 shows the results for Runs 4A and 4B, current and pri-

mary wave excitation. It is seen that the quadratic damping formula predicts

that the steady displacement is

X= 42.3 feet

whereas the SAI drag formula predicts the steady displacement to be

X= 16.1 feet.0 "'

The difference is due to the quadratic damping predicting a much larger

additional drag force due to the interaction between the current and the

rv-ar•y and the wave-particle velocity than the SAI formula prediction.

In summary, the quadratic damping predicts that the displacement

due to the current will be magnified by the primary motions by the factor

n 42.3 - 2.9414.4 29
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comparisons for the linear results. It should also be kent in mind tnat

the HFEM computations cost at least $6,000 per TLP configuration of whict"

about $4,000 is for the computer time and $2,000 is for preparing the

input data.

For the "Nonlinear Drift Forces and Surge Responses" (Part 2)

extensive verification only exist for the second-order steady drift forces

in regular waves (Part 2a). See for example Figure 2 of Salvesen et al.

(1982) where three different theoretical approaches are compared with

experimental results. Extensive comparisons between the drift forces

computed for TLP configuration and experimental results have been pre-

ferred by Chevren, but these results are unpublished.

There is a great need for verification of:

# the nonlinear surge response (Part 2a), and

e the nonlinear springing forces and responses (Part 3a and b).

This is where we had hoped to perform some valuable new comparisons between

theory and experiments. But there is almost a complete lack of published

experimental data for controlled environmental conditions for which computa-

tions can be performed. In order that a useful validation can be performed,

it is essential that not only precise geometry data be available, but also

that tne environmental condition be accurately known. It should be pointed

out that we have not been able to locate any springing data whatsoever.
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Appendix D

DISCUSSION OF COMPARISONS BETWEEN

THEORY AND EXPERIMENTS

The computed TLP results presented in this report can be divided

into three main parts:

Part 1: Linear Forces and Responses

Linear frequency-domain potential flow results obtained by the

HFEM computer program. These results include added-mass coefficient,

damping coefficient due to wave generation and first-order wave exciting

forces and moments as well as the linear wave-frequency components of the

motions.

Part 2: Nonlinear Drift Forces and Surge Responses

a) Second-order steady draft forces for regular waves

b) Nonlinear surge responses.

Part 3: Nonlinear Springing Forces and Responses

a) Second-order high-frequency springing forces in regular

waves and in wave groups consisting of two regular waves.

b) High frequency springing response load in the tendexes.

A careful verification of all of these computed results would be

desirable and in particular it would be useful to compare such results to

experimental results. Fortunately, quite satisfactory comparisons have

already been completed for the "Linear Forces and Responses" (Part 1).

See for example the User's Manual for the HFEM Computer Program (Yue, 1982).

In our opinion it would not be too valuable to perform extensive additional

D-1
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For the SAI drag formula the following sectional viscous drag

coefficients were used for all of the computations presented in this

report. (Note that the drag coefficients were reduced due to sheltering

effects in the same way as for the quadratic drag fomrula discussed on

the previous page.)

Member CDs CD1 CD2

Legs 0.5 0.5 0.5

Pontoons 0.45 0.5 0.5

Horizontal Brace 0.4 0.7 0.65

Vertical Member 0.42 0.7 0.65

Diagonal Brace 0.4 0.7 0.6

Tendons: Top 0.7 0.55 0.5
Botton (1000 ft) 1.2 0.55 0.5
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Appendix C

VISCOUS DRAG COEFFICIENTS

In all of the computations with the quadratic drag formula the

following sectional viscous drag coefficients were used:

Legs

CD = 0.50 for legs exposed to current

C0 = 0.25 for legs which are directly behind another leg

Pontoons

CD = 0.45 for pontoons exposed to current

C = 0.45/2 for pontoons which are behind other pontoonsCD"
C= 0.20 for the smaller 10' horizontal member between the pon-

toons

Vertical Member

CD = 0.42

Other Small Members

CD 0.40

Tendons and Risers

CD = 0.60 at free surface for the risers

C = 0.60 at the bottom of the legs for the tendons

CD = 1.20 at 1000-ft depth for both tendons and risers

The drag coefficient varies linearly from top to 1000-ft depth
and is constant from 1000-ft depth and down to the bottom. -
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Figure B-8. Sway displacement for inaximurn regular wave and
unsteady wind (no current, drift or steady wind).
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Figure B-5. Sway displacement for m,.aximum regular wave, current,
steady wind and wave drift force.
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RUN 2A

0

0.0 X' zIA Yi 0' 0

0. 0.Q 200.0 300. 0 00 . 0 500.0 600.0 700.0 80o0.0 900. 0 1U00.
TIMELSECOND5)

Figre -2.Sway displacement for maximum regular wave only
(no wind, current or wave drift force).
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Figure B-3. Sway displacement for maximum regular wave only,
with integration up to disturbed free surface level
(no wind, current or wave drift force).
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Figure B-i. Sway displacement for current alone (no wind or
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Table B-2. Surge displacement components

Run # xIft* 1 ft**

2A0 221 .

IA 74.4 22.1 0.0

1A 16.1 22.1 0.0

2A 42.3 22.1 0.0

3A 7.3 22.1 0.0

5A 96.4 22.1 0.0

4A 15.3 02.0 25.6

5A 70.0 22.1 15.0

5B 06.0 22.1 2.0

8A 70.5 22.1 95.7

9B 96.7 1 22.1 8.9

* X0 = steady displacement
X, = first-order (wave frequency) amplitude
x second-order (natural frequency) amplitude

Wave frequency = .450 rad/sec
Natural frequency =.600 rad/sec



smaller for the interaction between the low frequency motion and the current

than for the high frequency motion and the current. (see Runs 4A and 4B).

Runs 8A and 8B

The results for Runs 8A and 8B, with the maximum regular wave and

the unsteady wind, are shown in Figure B-8. These runs show the interaction

between the low and high frequency motions. Comparing with Run 6A, it can

be seen that the low frequency motions are much reduced by the presence of

the high frequency motions. For the SAI drag formula, the change in the

low frequency amplitude is

X= 15.0 -40.9 = -25.9 feet (SAI drag)

and for the quadratic drag, .

2.5- 40.9 =-38.4 feet (quadratic drag).

Runs 9A and 9B

Figure B-9 shows the results for Runs 9A and 9B, including the

maximum design wave, steady and unsteady wind, current and wave drift. By

comparing with Run 5B, it can be seen that the low frequency motion has

little effect on either the high frequency or the steady surge.
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whereas the SAI displacement only shows a small increase. It is believed

that the quadratic drag fomrula may be inadequate in predicting this inter-

action effect.

Runs 5A and 5B

Figure B-5 shows the results for Runs 5A and 5B, current, steady

wind and maximum design wave, including the steady second-order drift force.

As expected, the increase in steady displacement is the same for

both drag formulas,

Xo= 54.1 feet.

The increase due to the wave drift force was about 2.0 feet, or approximately

9% of the primary motion amplitude.

Run 6A

Figure B-6 shows the motions for the unsteady wind only, Run 6A.

The amplitude of the motion at the surge natural frequency is

X2 :40.9 feet.

Runs 7A and 7B

Figure B-7 gives the results for Runs 7A and 7B with current and

unsteady wind. Comparison with Run 6A shows the change in the low frequency

motion due to the current. For the SAI drag formula, this change is

AX = 25.6 - 40.9 = -15.3 feet (SAI drag)

and for the quedratic drag the change is

C
LX 20.7 - 40.9 = -20.2 feet (quadratic drag).

It can be seen that the discrepancy between the two methods is ccnsiderably
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