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ABSTRACT

New computational wethods have been appljed ip an inyestigatian of
the nonlinear surge motions and springing loads in the tendons of tension
leg platforms (TLPs). The second-order wave drift forces as well as the
Tinear hydrodynamic coefficients and the wave-induced exciting forces are
computed by a three-dimensional hybrid-finite-element method (HFEM). Both
a new formula for predicting the viscous drag forces and the conventional
Morison drag formula have been used in a time-domain computational procedure
to predict the nonlinear surge motions for two TLP configurations due to
wind, current and wave excitations. The wave-induced first- and second-order
pitch springing exciting moments and the resulting springing tension loads in
the tendons are computed for regular waves, two waves (wave groups) and ir-
regular waves using a short-wave approximation method. Upper bound estimates
of the surge motions and the tendon springing loads are computed for some
selected extreme environmental conditions. "Average" surge displacements
and "average" springing loads are also computed for some selected typical
operational conditions. Finally, the surge motions and the springing loads
of a TLP with one tendon removed have been predicted and compared to the
results for the same TLP with all of the tendons intact.
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1.0 INTRODUCTION
]
1.1 Objectives fi

P
0 B

The main objectives of this project have been to investigate the

following nonlinear TLP responses:

° surge motions due to nonlinear wave-induced drift forces, wind
loading and viscous interactions between current and oscillatory

motions

° additional tension loads in the tendons due to nonlinear wave-

induced springing loads, and

. motions and loads for reduced number of tendons.

1.2 Background

1.2.1 Tension Leg Platform Concept

In order to minimize the wave-induced tension loads and the wave-
induced surge displacements, TLPs are designed in such a way that the natural
periods of oscillations for the vertical heave and pitch motions and for
the horizontal surge and yaw motions are far outside the range in which the
wave energy of the ocean is a maximum. TLPs usually have a natural period
in heave of about 2-3 seconds and a natural period in surge of about 100-

140 seconds.

When waves pass a floating body, it will be excited by two types

of forces:

(] The primary linear exciting forces which have the same period as
the wave period, and

1-1
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() The secondary nonlinear exciting forces which have steady and
oscillatory components with periods far outside the range of
the typical wave periods. These nonlinear forces are often
referred to as the slowly-varying drift and high-frequency spring-
ing exciting forces.

An important design aspect of the TLP is that the nonlinear springing and
drift forces may introduce excitation at the natural heave and surge fre-
quencies of the TLP. Therefore, it is possible that the high-frequency
springing forces can cause additional tension loads in the tendons and that
the slowly-varying drift forces can cause surge displacements which are as
large if not larger than the loads and displacements caused by the primary
linear wave-induced exciting forces.

1.2.2 Prediction of TLP Responses

It is relatively easy to predict the primary linear exciting
forces and the resulting motions and tension Toads. Since these primary
motions occur at frequencies far removed from the TLPs natural frequencies,
they can be predicted accurately using a frequency domain approach with
linear coupled differential equations ignoring the nonlinear viscous damp-
ing.

On the other hand, the secondary motions and loads caused by the
nonlinear wave-induced excitation is very difficult to predict accurately.
The major problem areas are the three following:

0 Accurate prediction of the nonlinear drift and springing excit-
ing forces in regular waves. (Prediction methods only exist for
the second-order forces.)

(] Accurate prediction of the slowly-varying surge responses and the
high-frequency springing responses which both occur at the natural

1-2
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TLP frequencies and hence are governed by the nonlinear viscous e
damping forces. (The accuracy of existing methods for predict- 2
ing the viscous damping for TLPs is questionable.)

) Accurate predictions of drift and springing responses in irrequ-
lar seas is a very complicated problem. Not only is the viscous
damping nonlinear with complicated interaction effects between
the steady current and the oscillatory motions, but more impor-
tantly, the nonlinear forces in irregular seas is due to non-
linear interactions between the different wave components.

1.2.3 The TLP Motion and Load Computer Code System

A large-scale computer code system has been developed by SAI specif- ey
ically for the purpose of analyzing the nonlinear dynamics of TLPs. Figure .;ﬂ
1-1 shows a schematic layout of the TLP Motion and Load Computer Code Sys- -

tem. The system consists of a total of seven individual computer codes
which are grouped in three major parts:

Part I: Potential-Flow Predictions by a Hybrid-Finite-Element
Method (HFEM) Computer Program

Part II: Surge-Response Predictions by Time-Domain Integrations
Methaod

Part II1: Springing-Response Predictions by a New High-Frequency Tl?
Method .,ﬂ

This computer code system is a result of several man-years of research ;fi

work and code development. It is probably one of the most advanced TLP

dynamic response prediction systems presently in existence.

1-3 - |
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1.3 Summary of Results =
Surge motions and tendon tension springing loads have been com- :;j
puted for two TLPs. TLP #1 is a 2000-foot depth design and TLP #2 is a =)
3000-foot cepth design. More detailed descriptions of their geometry are :jj
given in Appendix A. The main underwater structure of both of the platforms R
consists of four vertical corner legs and four horizontal pontoons. Both . j
-. ‘1
platforms have four vertical tendons at each of the four legs. "
. . _ =]
Motions and loads have been predicted for extreme envivoniental 1
conditicns as well as for a typical operational condition.
]
N
1.5.1 Surge Motion Results ]
. g
,<}
The surge motions were computed by the nonlinear time-domain surge )
motion code for a large number of wave, wind and current conditions. The -
most important findings are as follows: :

(a) Upper bound estimates

For TLP #1 it was found that for the environmental conditions
considered here the maximum surge displacement is 152.3 feet (166.6 .
feet)*. This maximum surge displacement will occur in a condition
consisting of maximum unsteady wind, maximum steady current and .
regular waves with period T = 9.5 seconds. This is the wave period ]
for which the steady wave-induced drift force is maximum. It is -
here assumed that the wave steepness measured as the ratio between ﬂ
the wave height and the wave length, H/X, is 0.10.

* In this section, the results given in parentheses have been obtained by
the conventional Morison drag formula, whereas the results not in paren-
theses have been obtained by a new drag formula.

1-5




It should be emphasized that the surge displacement is smalier
for the maximum design wave condition (H = 80 fect and T = 14.0
seconds) than it is for the condition stated above. Our computa-
tions show that the maximum surge displacement is 102.4 feet
(127.4 feet) for the maximum design wave condition with maximum
current and maximum unsteady wind.

These are extreme upper bound estimates which will only occur
under extreme and rare conditions. Further investigations of the
probability of the occurrance of such rare events is needed.

Typical operational estimates

The surge motions have also been computed for a "typical"
irregular wave condition with significant wave height, H1/3,
equal to 10 feet and with steady current and steady wind of a
strength typical for this sea condition. For TLP #1 the total
"average" surqge displacement is estimated to be about 26 feet.
Note that the estimates show that the amplitudes of the wave
frequency and the slowly-varying components are less than two and
four feet respectively and that the steady surge can be expected
to be about 20 feet.

Also it should be pointed out that the investigation
revealed a large difference between the surge results obtained
using the two viscous drag formulas. The large difference between
the two formulas is due to the fact that the conventional Morison
quadratic formula predicts a very large additional steady displace-
ment due to interaction effects between the wave frequency compo-
nents and the steady current, It is believed that this interac-
tion effect is overpredicted by the conventional quadratic drag

formula.

1-6

...............

K
PRV DU

| P

L PR ]
e [P TR
FTRLNETIGTTY S G WSS W WOy




such large slowly-varying motions, we need to know more about the probabil-
ity and statistics of such events (or events close to these events). for
typical general irregular sea conditions it can be cxpected that the slowly-
varying motions are quite small, probably less than say 4 feet.

The steady surge displacements, on the other hand, can be expected

to be much larger than the unsteady motions. For some of the conditions
investigated, we have the following results for the steady surge.
Steady Surge

0 Maximum current

(aj with zero unsteady surge 14.4 :
(b) with maximum wave-freugency surge 42.3*% b

° Maximum steady wind 52.5
. '4
) Steady wave-induced drift :
(a) regular wave with maximum drift 64.1 B
(b) typicai irregular sea (H1/3 = 10') 2.3 ”:
‘_l‘]
Hence, for typical environmental conditions one may expect up to about 20 ﬁf
feet of steady surge. However, the extreme steady surge displacement may be fﬁ
considerably larger. 71
2.2 HFEM Potential Flow Calculations ‘;j
The three-dimensional linear diffraction analyses were performed mj
using the SAI Hydro-Finite-Element Method (HFEM) code utilizing the vertical ;
(perpendicular) planes of symmetry. The HFEM diffraction code is a powerful If
numerical method for calculating the hydrodynamic forces and the wave- ]
induced responses and loads of three-dimensional offshore structures. The ﬁ:
* As predicted by Morison quadratic drag formula. 3
.
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These results show that large wave-frequency surge motions can only be 3;}
expected for very extreme wave conditions as, for example, the maximum EN
design reguiar wave. For typical wave conditions it can be expected that 52;
the amplitude of the wave-frequency component will be less than two feet. ;Ei
The amplitudes of the slowly-varying surge motions are given below :ii
for several environmental conditions: ]
Surge Amplitude
° Unsteady wind ]
(a) zero current 40.9"' - j
(b) maximum current = 20" :
R
) Two regular waves (wave grouping) ii
(a) zero current x 58’ -
(b) maximum current = 25" ‘}
) Typical irreqular waves (H1/3 = 10') 2.6

Th2se results show that large slowly-varying natural-frequency surge motions
can be expected under "ideal" severe conditions when the excitation fre-
quency is precisely equal to the natural frequency. For the unsteady wind
case it is assumed that the unsteady part of the wind has one single fre-
quency component with amplitude equal to 10% of the maximum Steady wind
speed and frequency equal to the natural frequency. For the two-wave case,
it is assumed that the difference frequency for the two wave components is
equal to the natural frequency:

U)Z = (ul = wn.

This implies that there will be a second-order slowly-varying wave-exciting
force with excitation frequency equal to the difference frequency. Both

L .
A RS
VI S PP ST ISP

of these natural-frequency excitation conditions are very "idealistic"

,“”
v . . r) ] A ]
BURSORI N TN

conditions. Before we can make any predictions about the probabiiity of
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to these viscous interaction effects can typically reduce the amplitude of
the slowly-varying motians by as mych as a factor of four,

The steady surge displacement is due to

® steady wind forces,

(] steady nonlinear wave-induced drift forces,

) steady current forces, and

(] nonlinear interaction between current and wave-frequency motions

and slowly-varying motions. o

In this project we have computed the surge displacement due to all of the
above-stated steady forces; however, of main interest in this study is the
computation of the steady surge due to the nonlinear wave-drift force and

the nonlinear viscous interaction. -

We shall now present some results for the different surge dis-
placement components so that we can get a better feeling for the order of
magnitude of the different components and their relative importance. First,
we shall consider the wave-frequency surge displacement components. The

amplitude of the wave-frequency component for three wave conditions is

LA
IR

given below.
Surge Amplitude

. Maximum regular wave 5
(H =80', A = 1000' and T = 14 sec) 22.1" 7

) Steep regular wave with typical wave length :
(H=46"', A = 462" and T = 9.5 sec) 1.7 B

. Typical irregular waves (H1/3 = 10') 0.9’

2-6
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We shall now take a look at the different components of the surge o
displacement. The surge maljop of a TLP can be separated into three main e
parts: -

e

-~ :.:.:

x(t) = Xo * E:Xi cosw;t + 2 X, cosw,t e

L)

The first term, X , is the mean steady displacement. The second term, fié
2: X; cosw, t, cons1sts of first-order frequency components which have fre- 1jg
quenc1es 1dent1ca] to the wave frequencies. We shall refer to these as the 04

linear wave-frequency components. The third and final term, 22X, cosw. t,
T i : j J
consists of frequency components which have frequencies near or equal to

the natural surge frequency. Note that the natural frequency components

are far removed from the wave-frequency components. We shall refer to these

as the nonlinear slowly-varying components.

It is important to recognize that the 1linear wave-frequency com-
ponents are caused by linear wave-induced excitation and that the motions
at these frequencies are governed by the inertia forces and, furthermore,
that viscous damping has practically no effect or thase frequency components.
Hence, the wave frequency motion can easily be predicted by thé well estab-
lished linear superposition approach.

On the other hand, the slowly-varying ccmponents at or near the

natural frequency are caused by nonlinear wave-induced excitation and/or
wind excitation.* Furthermore, since these motions are at or near the natu-
ral frequency, they are to a large extent governed by nonlinear viscous
damping forces. Note that the damping of the slowly-varying motions is very
much affected by nonlinear viscous interactions between the slowly-varying
motion, the steady current and the wave-frequency motions. The damping due ' ﬁ
=
1

* Mote that non]1near viscous interactions between the steady current and
the wave-frequency components may also result in slowly-varying excita-
tion which has not been considered in this investigation.

2-5 {
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The results presented in Table 2-1 show that for the maximum requ-
lar wave condition with maximum steady wind and current, the maximum surge
displacement computed by the SAI drag formula is 92.7 feet and computed by
the quadratic drag formula is 118.8 feet. The large difference between the
two drag formulas is due to the fact that the quadratic formula predicts a
very large additional steady displacement due to interaction effects between
wave frequency and current. It is believed that this interaction effect is
overpredicted by the quadratic drag formula. Furthermore, for the maximum
regular wave condition it is seen in Table 2-1 that the unsteady wind
increases the surge by 9.7 feet when the SAI drag formula is used, whereas
it increases by only 8.9 feet when the quadratic drag formula is used.

The second wave condition presented in Table 2-1 is the regular
wave condition which will result in the maximum drift force. The results
presented in Section 2.2 show that the maximum drift force will occur for
a regular wave with T = 9.5 seconds. Our predictions show that the surge
displacement for this wave condition with maximum steady wind and current
will be 133.5 feet when using the SAI drag formula and 153.8 when using the
quadratic formula. The unsteady wind results show 152.3-foot surge displace-
ment for the SAI drag case and 166.6 feet for the quadratic drag case. Note
that the surge displacements are substantially larger for the maximum drift

wave case than for the maximum wave condition.

Significant surge displacements are also shown in Table 2-1 for
the typical irregular case as computed by the SAI drag formula. With zero
current the surge displacement is only 11.6 feet and with maximum current
it is 25 feet. Therefore, for typical general irregular wave conditions,
the surge displacements can be expected to be very small.

Total surge displacements were not computed for the two regular "‘
wave case (wave grouping). For this case only the slowly-varying wave exci-
tation and response were investigated since these are the most important ﬁfq

aspects of wave grouping excitation.

2-4




° Typical irregular wave condition (“1/3 = 10 ft)

Different combinations of wind and current conditions have been used with

these wave conditions.

A summary of the total surge displacements for the maximum regular

wave, the regular wave with maximum drift and the typical irregular wave
conditions is presented in Table 2-1 for the TLP #1 configuration (see
Appendix A for TLP dimensions). Results are shown as obtained by the new

SAI drag formula and by the quadratic Morison drag formula.

Table 2-1. Total surge displacements for TLP #1 for two regu}ar
wave conditions and a typical irregular wave condition.

Maxinu

(T MaximumSurge Displacement |
. linfeet)
Quadratic
B 7 o B SAI Drag Drag
aximum Regular Wave Conditions
Wave: Maximum Regular Wave
(H=80and T = 14.0)
Current: Maximum Steady
Wind: (a) Maximum Steady 92.7 118.8
(b} Unsteady 102.4 127.7
Reular wWave with Maximum Wave Drift
wWave: Regular Maximum Drift
(H=46.4 and T - 9.5)
Current: Maximum Steady
wind: (a) Maximum Steady 133.5 153.8
(b) Unsteady 152.3 166.6
Typical lIrregular Wave Conditions
Wave: Irregular Waves (H1/3 = 10)
Windg: Steady (39 ft/sec)
Current: (a) Zero Current 11.6*
(b) Maximum Steady 25.0* .

* This is the significant surge displacement, X1/3"

Ao ..




i e Siing “Ble, Nutnt it By P T ——— B Ml AR e jenth Mt e g g e g Seade 2 e T T T T

the linear wave-exciting forces and the second-order wave-drift forces are
computed by the hybrid-finite-element method. These quantities are then
used as input for the nonlinear time-domain surge-motion computations.

Computations have shown that three-dimensional hydrodynamic inter-
action effects between the legs and the pontoons have an important intluence
on-the values of the predicted added mass, wave damping and exciting forces.
Hence, the complete three-dimensioral computation has to be performed. Com-
putations of hydrodynamic quantities that are made for the legs and for the
pontoons separately and then simply added will not be sufficiently accurate
to correctly predict the surge motion of the TLP.

The viscous forces are predicted by a new drag formula as well as
by the conventional quadratic Morison drag formula. This new formula has
been developed because it is believed that the Morison drag formula over-
predicts the magnitude of the viscous interaction effects between current,
wave-frequency motions and slowly-varying motions. The surge motions due
to simultaneous action of the wind, current and wave excitation are pre-
dicted by a numerical time-integration procedure which includes all of the
important nonlinear effects.

2.1.2 Summary of Surge Motion Results

In this study, we have investigated the surge motions for four

different wave conditions:

° Maximum regular-wave condition (H=80 ft, A = 1000 ft and T= 14 sec)

° Regular wave with maximum steady drift force (H=46.4 ft, A = 462
ft and T=9.5 sec)

. Two regular waves (Wave grouping) (T1 = 9,7 sec and T2 = 8.9 sec)
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2.0 SURGE MOTION INVESTIGATION 0

AN 0

2.1 Introduction

& 4 ¥ »
LU N AR

v .
(Rt ]

2.1.1 Objective and Approach

—
[4

{

The main objective of this part of the project has been to inves-
tigate the surge motions due to nonlinear wave-induced drift forces, non-
linear wind loading and nonlinear viscous interactions between current and

' oscillatory motions. Two TLP configurations are analyzed for selected -
severe and typical average wind, wave and current conditions. An extensive 2}J
evaluation and comparison of the surge displacements due to the important ;;&

N nonlinear viscous interaction effects between current, wave-frequency motions EE

i and slowly-varying motions as predicted by a new viscous force formula and 53

) by the conventional Morison force formula are presented. Unfortunately, - 4

there are practically no experimental ersults available for these important
nonlinear viscous interaction effects. There is also a lack of experimental 1
data for the nonlinear surge motions under controlled environmental condi- -j

tions for which computations can be performed. (See Appendix D for a dis- 1

cussion of comparisions between theory and experiments.)
I A new computational method developed by SAI (Salvesen, et al., -

1962) is here used to investigate the nonlinear surge motions for TLPs. The =
E computations consist of three main parts: .
. ‘.'1
" . potential-flow computations; -ﬁ
f; ) viscous-force predictions; and ]
{ ) nonlinear time-domain surge computations. 5
.E The potential-flow calculations are performed first by a three-dimensional :3
:: hybrid-finite-element method. The added mass, the wave-damping coefficients, i;
I" .
) 1

2-1
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In this investigation we have only considered additional natural i{j

s'_'!

frequency tendon loads due to periodic springing excitation. Wave impact ‘1
excitation may also result in large natural frequency tendon loads often :h
referred to as "ringing" loads. It is recommended that an investigation af ;E
the wave-impact "ringing"” problem should be conducted in order to establish ﬁi
v“"d

the magnitude of these loads and establish a general procedure for predict- - -
ing such loads. }?;
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loads will occur in reqular waves in the tank which arc of the same magnitude
as predicted by the theory. Also we need to determine experimentally the
springing loads for wave groups and irregular ses waves. The springing experi-
ment could be conducted quite inexpensively by using o vertical cylinder which
can pitch about a fixed horizontal axis at the pitch center. The proper re-
staring coefficient gan be mgdelled by a stiff horizoptal spripg attached at
the top. Themost important aspect, at least for the initial experiment, is to

model correctly the physical concept of the springing problem and to do it

in a simple way so that the correct conditions can easily be modelled and e
controlled.

Furthermore, improvements are needed in the prediction of the
extreme values for both the surge displacements and the tendon tension
springing loads. Both of these responses are natural frequency responses
which are governed by nonlinear viscous damping and caused by nonlinear

exciting forces with frequencies at or very close to the natural frequency.
Any conventional extreme statistics approach as used for linear responses
are not applicable.

Therefore, it is strongly recommended that a new general procedure
should be developed for predicting more accurately the extreme values of the
sTowly-varying surge motions and the tendon tension springing loads. It is
anticipated that such a procedure would consist of the two following parts:

(] A method for predicting the probability and the statistics for
extreme events which can cause linear or nonlinear excitation at
or near prescribed high or low frequency values.

) Nonlinear methods which can predict with sufficient accuracy the

[

- slowly-varying horizontal responses and the high frequency spring-

- ing loads due to events as described by the above-stated method.

. It is believed that the methods presented here or similar methods could be

s used as a starting point for general extreme value prediction methods; how- }j
;‘ ever, a considerable amount of improvements and extensions would be required. ZQf

1-11 ﬂ
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On the other hand, the maximum springing loads for the three ten-
dons supporting thc one leg may for natural frequency reqular wave excita-
tion be twice as large as it is for a TLP with all sixteen tendons intact. i]

e
FR R R R
R

a'a'as’e

1.4 Concluding Remarks and Recommendations 2

The TLP surge-motion investigation conducted under this project .Y
seems to show that the accuracy of surge displacement computations could
be improved by a better viscous force model. In particular, we need to
improve the accuracy of the prediction of the nonlinear viscous forces due
to interactions between the different modes of motion. At least, improve- 3
ments are needed for the three following components: ]

. Additional steady surge displacement due to viscous interactions

. e -
e % T T
s

between the steady current and the oscillatory motions.
2
. Additional viscous damping of the slowly-varying natural freguency )
surge motions due to viscous interactions between these motions and "
the steady current and the wave-frequency motions. ;;
() Steady and slowly-varying nonlinear viscous "drift" excitation due g
to viscous interactions between the different wave components. g
.
It is recommended that experiments should be conducted with a -
single large vertical cylinder in a towing tank. Tests should be conducted l}
schematically for a large combination of current speeds, wave-freguency B
L motions and slowly-varying motions. Most importantly, the results should 5
- be made generally available. .
E?f Similarly, single vertical cylinder experiments are also recom- ) S
' mended for the springing problem. We need a much better basic understanding Ei
of this problem. It is believed that a single cylinder test would give much -~
more useful data than a test conducted with a complete TLP model. It is Ez
extremely important to determine experimantally if tendon tension springing j
8
-

..................
......................
.................
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: (c)

(d)

(e)

Sea-state investigations

Computations performed for different irregular wave condi-
tions seem to indicate that the second-order springing loads will
be substantially larger in a partially developed sea state than in
a fully developed sea state with the same significant wave height.

Pitch center investigation

The pitch center investigation results show that a very
effective way to reduce the second-order tendon tension springing

loads is to move the pitch center closer to the free surface level.

However, the study shows that the first-order low-frequency tendon
loads may increase by moving the pitch center closer to the free
surface. Therefore, a careful investigation of the first- and
second-order tendon load results is reduired before any judgment
can be made with regard to the pitch center location.

TLP size investigation

Springing loads were predicted both for the 2000-foot TLP #1
design and for the 3000-foot TLP #2 design. A comparison of these
results seems to indicate that the springing problem is much more
critical for a deep-water TLP which typically has a higher natural
period.

1.3.3 Results for Reduced Number of Tendons

The investigations presented here show that a TLP with one tendon

removed can only experience an external load 50-56% as large as a TLP with
all of the tendons intact if it is assumed that the maximum design load for
a tendon is twice the original pretension value.

The surge motion characteristics for a TLP with one less tendon

can be expected to be quite the same as for an intact TLP.
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Note that the tendon tension load due to first-order regular wave
excitation with wave frequency equal to the natural frequency is
only 470 kips per tendon.

If TLP #1 is excited by two simultaneous regular waves with
sum frequency precisely equal to the natural frequency

w9 + W, =W, = 2.508 rad/sec

the additional tendon tension load due to second-order wave exci-
tation is

1(2) = 780 kips per tendon

Again we must stress that these values must only be considered
as upper bound estimates. It is very unlikely that such precise
reqular wave events will ever occur. We need to investigate the
probability and the statistics of such events in order to make
better estimates of the extreme springing loads.

Typical operational estimates

For a typical partially-developed irregular sea condition
with significant wave height, H1/3 = 10', the significant ampli-
tude of the wave-induced nonlinear tendon tension load is

T3 T 102 kips per tendon.

This value has been obtained by a new irregular-wave method which
includes the second-order springing excitation due to the inter-
actions between the different wave components. It is believed
that this method will give reasonable estimates of the "average"
tendon tension loads for typical irregular-wave conditions. How-
ever, it is believed that extreme values may not be accurately
estimated by this approach.

..............




Furthermore, it is of interest to note that the predic-
tions show that if wave qroups with perfect tuning do occur
in the ocean, they may result in slowly-varying surqge motions
of considerable magnitude and probably larqger than those due to
the maximum unsteady wind conditions considered here.

1.3.2 Springing Load Results

We shall here refer to springing loads as the additional tendon
loads caused by wave-induced vertical motions at or near the natural fre-
quency of the TLP. The high-frequency vertical motions at the tendons is
due to natural-frequency pitch motions about the virtual mass center. The
pitch exciting moment is caused by linear and nonlinear wave-induced hori-
zontal forces acting on the four legs at a location close to the undisturbed

free-surface level.

Note that all of the springing load results presented here are
for zero degree heading. It follows from the geometry considerations that
it can be expected that the springing loads will be approximately v@?times
larger at 45 degree heading than at zero degree heading.

(a) Upper bound estimates

For TLP #1 excited by regular waves with period precisely

equal to twice the natural period Zj%
T =2T_=5.012 sec, .

w n

the additional tendon tension load due to natural frequency pitch i:
S

motions caused by second-order wave-induced excitation is 51
(2) : =]

T = 1020 kips per tendon. 4

:\.1

]
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fundamental idea is to use conventional finite elements to approximate the
hydrodynamic solution in a fluid region near the body, whereas analytical
representations are employed outside this region. By using a variation
formulation, finite elements are necessary only in a region very close to
the body resulting in significant savings in computational effort (see

- Figure 2-1). The flexibility and versatility of the finite element approach

and the virtual absence of tedious analytical preparation make the HFEM a
viable and, in many applications, superior alternative to the traditional

inteqral equation method using Green function (source-distribution method).

Figure 2-1. Typical HFEM grid for a sample TLP configuration.

The various theoretical and application aspects of the HFEM are
well established (Yue, Chen and Mei, 1976; Yue, Chen and Mei, 1978; Aranha,
Mei and Yue, 1979), and the method is now widely accepted among offshore

engineers. Further verification of the improved SAI HFEM code is also
available in SAI Capability Report #SAI-83-463-07.

2-9
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The second-order steady surge drift force is formulated using
momentum conservation relationships expressed in terms of the far-field
radiated or scattered velocity potential. The original idea is due to
Maruo (1960) and our derivation follows closely to that of Newman (1967). -

HFEM Result

The HFEM computer program has been used for all of the results
presented in this section. The TLP has in these computations been repre-

| Pt

sented by the four vertical legs and the four horizontal pontoons. Special

attention has been given to three-dimensional effects and interactions

between the major members (legs and pontoons). Only 0° heading has been

considered. A1l of the HFEM results presented in this section are for .
TLP #1. i

Aside from the four vertical legs and four horizontal pontoons, =
all other small submerged structural members and risers are ignored in the lﬂ
diffraction theory. Such members constitute only about 5% of the total sub-
merged volume and their typical dimensions are so small compared to incident -
wave lengths that diffraction effects can be ignored. (A term corresponding -
to the hydrodynamic added mass of these small members is, however, included N
in the equation of motion as a small correction.) Since the vertical dis-
placement of the TLP is much smaller than that in surge, its contribution “
to horizontal drift forces is unimportant and is neglected in our drift
calculations. i}-

The following HFEM results for TLP #1 are presented as function
of incident wave period: -

] Figure 2-2a. Added mass in surge.
. Figure 2-2b. Wave radiation damping in surge. N

° Figure 2-3a. First-order surge exciting force, RAD.

¢ 2-10 ':f
“




T S Mt S S e B osh e e ra e g

. Figure 2-3b. First-order surge exciting force amplitudes for e
H/A as given by Figure 2-5. e

) Figure 2-4a. Second-order drift force, RAQ.

. Figure 2-4b. Second-order drift force amplitudes for H/A as
given by Figure 2-5.

. Figure 2-5. Assumed relationship between maximum wave steepness,
H/A, and wave period, T.

The following are main highlights of our computer results. h,'

° For moderately long waves (T ~ 20 seconds), the surge added mass _
based on displaced mass (Morison's formula with inertia coeffi- i;l
cient, ¢, ° 2.0) is almost 30% larger than predicted by the HFEM ..
code. This is mainly due to three-dimensional and interaction

effects.

) For exciting force and linear surge motion, most of the effect
of multiple legs can be accounted for by relative phasing, and
the effect of hydrodynamic interaction is relatively small. The
presence of the pontoons is important for longer waves, T > 8 sec.

For example, for T = 14 sec, the pontoons increase the exciting
force by almost 20%.

Y MATREARE
[ ]

For the surge drift forces, the effect of hydrodynamic interac-
tion is significant, and the results based on a single leg calcu-
lation are inadequate. The drift force is not greatly changed N
: by allowing the body to surge, and the pontoons have almost negli- . ﬂ
] gible contribution. The heading angle of the TLP is found to have 2~E
an important effect on the drift force, but this aspect has not =z
been further investigated in this study. ;fi
f}}
) %
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EXCITING FORCE RAQ (KIP/FT)
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Figure 2-3a. First-order surge exciting force, RAO.
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Figure 2-3b. First-order surge exciting force amplitudes for
H/X as aiven by Fiaure 2-5.
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v 2.3 Equation of Motion =
] o
v A computer program has been developed which predicts the nonlinear "
% surge motions in the time domain. A numerical time-stepping procedure is ;f
: used in which the time, t, is advanced in small time steps, At. The equa- f
. tion of motion which is solved at each time step is 2
. —
' + X X = + - -
- (M + A)X + Bx + Cx fV + fw fE (2-1) o
! where M = total body mass -
: {
A = surge added mass ™
]
- B = surge wave-radiation damping coefficient e
w C = nonlinear surge restoring coefficient -]
. ~ Y
b X = surge acceleration -
& X = surge velocity 3
- X = surge displacement d
" f = total hydrodynamic viscous force p
] - v ; . )
; fw = viscous wind-drag force _
- fe = total wave-induced exciting force -
- 215 &3
2 =
e e -




A

The total mass of the TLP #1 design, including tendons and risers,
is (see Appendix A)

3

M=2,600 * 10 slugs.

The linear spring constant, the value of C as x + 0, is -

C, = 18.32 kips/ft.

L

The added mass, A, and wave damping coefficient, B, have been com-
puted by the HFEM code (see Section 2.2). For the computations presented
here the infinite period values (T - «) have been used:

A(T + ) = 2,630 * 103 slugs
and

B(T » =)

1]
(e

The total hydrodynamic viscous force, fv(t),is computed at each
time step by the SAI drag formula

fv(t) = Z%QD{CDS IVS] Ve [1+ f(Vl/I VS| , KCl)+ f('\72/| Vsl , KCZ)] i
=

+ Cpp V1 VBlyys Keq) (2-2) -]

1

See Salvesen, et al. (1982) for more details. Note that the drag coeffi-
cients, CD’ and the relative velocity components vary for the different
sections and that the summation is over all of the sections which the dif- :
ferent members are divided into. For comparison purposes, the viscous drag =
forces are also computed by the "quadratic drag formula",

fyt) = 2 %00 cylv| v (2-3) oS

2-16
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where V is the fluid relative velocity at each section. The above formula
is often referred to as the Morison drag force.

The viscous wind-drag force is predicted by
' f(t) = Dk pC A« W W] (2-4)
where W is the wind speed. The maximum steady wind speed is

wo = 70 knots,

and the most severe unsteady wind is assumed to be
W(t) =70+7 - coswnt (knots). (2-5) & =y

Here W, is the surge natural frequency of the system. The maximum steady A

wind force is

1

i

f, = 960 kips i

o4

and the maximum unsteady wind force is TS;
ey

fw(t) = 960 kips + 190 kips - cosw t. (2-6)

The total wave-induced exciting force is

o ; E S

fE(t) =F + :z:Fi cos{wst+ey) + :i:Fj cos(wjt+>ej) (2-7) -

1 J ;;;

where Fg = steady wave drift force :
F% = amplitude of the primary wave exciting force components which R

has the same frequency w; as the frequency of wave components
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Fg = amplitude of the slowly-varying wave-drift exciting force
components.

For regular waves the steady drift force is
2
iS5 = F W) - (AW (2-8)

(2)

where (w) is the second-order steady drift force per unit wave

amplitude for regular waves
and where A(w) is the wave amplitude.

The amplitude of the primary wave-exciting force is

FEw) = F M w) - Agw) (2-9) =

]

where F(l)(w) is the first-order exciting force per unit wave amplitude :“;
in regular waves. S

Note that the slowly-varying drift force is zero in regular waves. ﬁgi

2.4 Regular-Wave Surge Displacement Results for TLP #1

The surge displacement in regqular waves as computed here will
finally come to a steady-state condition after the initial transient motions
have died out. The final steady-state surge motions x(t) in regular waves

L

. .
o S e .
PR NS W SN SO )

o

may be expressed as

x(t) = Xo * Xy Coswt + X5 COSw,t (2-10)

where X, = mean displacement due to wind, wave drift and current

(including body and wave velocity interactions)

2-18




X, = amplitude of the frequency components of the primary first-
order motions due to primary wave excitation only (priumary
motions are dominated by inertia effects and are not affected
by current, wind or the slowly-varying motions)

X, = amplitude of the Slowly-varying motion components due to
unsteady wind (its magnitude is affected by current and the
primary motions through the viscous damping force).

The mean displacement X0 and the amplitude of the slowiy-varying
motions X2 shall be further divided into parts which describe tne separate
contirbutions due to wind, wave drift, current and current-motion interac-
tions. The mean surge displacemnent can be divided into the following five

components:
X = K40 4G 1P x> (2-11)
where Xﬁ = displacement due to steady wind
Xg = displacement due to steady wave-drift
Xg = displacement due to current alone

X P. displacement due to steady viscous force caused by inter-
action petween current, primary body and wave particle

velocities

xgs = additional displacement due to steady viscous force caused
by interactions between current and the slowly-varying body

motions.

The amplitude of the slowly-varying motions, XZ’ can be divided into the fol-

lowing three components

2-19
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Xy = X5+ Xy" + Xy (2-12) -
where XgD = amplitude of the slowly-varying motions due to unsteady

wind with no current present and no primary motions

Xéc = increase (or decrease) in amplitude due to current
X;P = additional increase (or decrease) in amplitude due to the

primary motions.

An investigation of these different surge displacement components
is presented in Appendix B. The surge displacements are computed using both
the SAI and the quadratic drag formula for the o° heading case. The TLP is
excited by maximum current, maximum regular waves (H = 80.0 feet and T = 14.0
seconds) and unsteady wind (W = 70.0 + 7.0 cosw, t (knots) where w, is the :
natural surge frequency). '52

The computed time domain surge displacement for this wind, wave ) }

and current condition is presented in Figure 2-6. Results are shown using o
both the SAI drag formula and the quadratic formula. It is seen that the :gj
SAI drag formula predicts that the three main surge displacement components ;j:
in this case are T.T
Steady surge Xo = 70.5" .i

Amplitude of primary motion X1 = 22.1 #
Amplitude of slowly-varying motion Xy = 9.7' K

»

Total maximum surge displacement Xpax = 102.4 ;;

When the quadratic formula {s used the components are Y
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Figure 2-6. Computed ponlinear time-domain responses for

TLP excited by current, unsteady wind and :
maximum design wave with 00 heading. - 3
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Steady surge X = 96.7'

0
Amplitude of primary motion Xl = 22.1'
Amplitude of slowly-varying motion Xy = 8.9'
Total maximum surge displacement Xmax = 127.7"

We shall now present results for the additional individual com-
ponents. The different surge displacement components have been determined
by performing runs with the time domain surge motion computer program using
different combinations of the above-stated current, wave and wind conditions.
The results for each of these computer runs are presented in Appendix B. A

sunmary of the results is given in Table 2-2.

The most important final conclusions which can be drawn from the
results presented in Table 2-2 and in Appendix B are:

. Steady surge displacement is 14.4 feet when the TLP is excited

by current alone. When the current and the maximum design wave
are both present the quadratic drag formula predicts an increase
of the steady displacement by 27.9 feet due to interactions be-
tween the current, the wave particle motions and the body motions.
Results obtained by the SAI formula show only a 1.8-foot increase.
Furthermore, the results in Table 2-2 show that if slowly-varying ij
motions are also present, then the steady surge is unchanged when
the quadratic formula is used and decreased by 0.1 feet when the
SAT formula is used. Note that there is an additional steady -1
surge component resulting from integration of the viscous forces
over the instantaneous wetted surface. This component which is
equal to about 3-4 feet is not included in Table 2-2.

. Amplitude of the primary wave-induced surge motions is 22.1 feet.

Computations have shown that the wave-frequency motion is affected o

only slightly by viscous drag forces. These motions are essen- -~

tially completely dominated by inertia effects. This implies that
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Tigure 2-8. Damping factor, ¢, as function of surge exciting
force amplitude and as function of surge dispiaecc-
ment amplitude, Xo.
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TLP Size Investigation

in this section we shall compare surge-motion results for the TLP
=1 anc TP 22 desions.  Getailed descriptions of the two TLPs are included
nosg,erncix Al hote Lhat TLP F72 1s 1.2 times iarger than TLP #1, and that
L0 el is assuned to be designed for 2000-foot depth whereas TLP £#2 is
aosigned far 3000-foot depth.

Tne same i potential-Tlow data as presented in Section 2.2 and
tne tinc-a0tain reguldr wave results as presented in Section 2.4 and Appendix

B obtainedg for TuP =1 rave also been obtained for TLP #2. However, here

we snall not present o0 of the detailed results for TuP #2. wWe shali only

7-36
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Now uning Tiqure Z-4, equation (2-35) is easily woived by iteration and the S
.".“
|

results are

A2 .
A( l 2.6 feet and ¢ = 0.06.
1/3 .
The final surge displacement results tor the sanplce irreguiar R
sea condition are :

Steady Jispiacement L
bue to wind 5.0 5]

- . . g

Oue to wave drift 2.3 _r

-

rimary wave-frequency motions
C . o e
significant amplitude, Xi}% (0.9 "

Stowly-varying natural-frequency motions

Significant amplitude, X&?% ERn

Total "significant” displacement 1.0’

v vac Inctuded moxainum current, this would have resuited in an adoiticnal
Coaty Larve disoiacenent of about 12 feet and probabiy have reduced the
siviiy-varying cation anplitude by a factor of 0.5, Hence, in the same

Troend ol sea conditics with current, the total “significant” surye dispiace-

coT Wi no apurozanately 2o feet.
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where A = 0.0081 g2 and B = 33.56 h§/3.

10 feet. The average mean period for this is T1 = 6.73 seconds. We shall
assume that a typical wind speed for this sea condition is

The significant wave height, h1/3 =

W= 39 ft/sec.
For this sample case we shall assume that the current is zero.

By equations (2-19), (2-20) and (2-21) and numerical HFEM results
given in Figures 2-2 through 2-5, we have that the significant first-order

surge motion amplitude 1is

xg}% - 2.0 oil) - 0.92 feet. (2-33)

The steady drift force is by equation (2-22)

2) . 41 kips.

£

0
5y performing computations with the nonlinear surge time-domain code repre-
senting the wave-frequency surge motion by

(e - e cos, 20 .

x ' (t) = 0.92 COSg™5 t (2-34)
we nave obtained the nonlinear relationship between the damping and the
ampiitude of the natural-frequency slowiy-varying surge motions. This
reiationship is shown graphically in Figure 2-8.

From equation (2-28) it follows that the significant amplitude

of the siowly-varying motion, ngg, for an irregular sea 1is

2

, (2)1" . .(2) u -
2 X = o2 (ur) T (2-35)
[ 1/31 4(, AZ(A)r\;3

where by applying equation (2-25) we have that

2-34
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wrore tne bieot frequency cosponent 1y o binear wave-feesaency comnponent and
the socond compoanent 1y a slowly-varying second-order component with fre-

cuency equal to Lthe netural surge frequency.

We snall assume that for an irregular seaway, an equivalent
Pinear viscous damping factor can be used and that this damping factor 1is
tne sdiie as the damping factor for natural frequency surge notions with
amplitude cqual to the significant second-order surge motion, i.e.
(2)(

v ooy (2)
t) = X1/3 COSwnt.

e nonlinecar relationship between the significant surge dispiaccient ampli-
(2 i '
thde, Xi;%, and the damping factor, r, can then be obtained by running the
v

time-domain surge motion computer program for several exciting force values.

However, since the viscous damping depends on nonlinear interac-
tion resulting from current and wave-frequency motion, the proper current
and wave-frequency motions must be included in the time-domain computations.
we rail, for simplicity, assume that the wave-frequency motions effect on
e viscous damping can be represented by using a single wave-fregquency com-

LGrent given by

(l)r\ \(1) 4
X = X cosm, t 2~31
SURRSVE IS (2-31)
(1)
anir2 . is the averaqge mean frequency for the given sea spectrum and X1/3
i
o tne significant surge ampliitude for the first-order mciion.
2.6.¢ Sample Results
we Shita 1 oassume that a typical seaway 1S representea by a fuily
AoV s Prarson-Moskowity spectrun
. R A
Lol s T {(¢-32)
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The variance of the second-arder surge displaccment is ¢given by %E
, . o d
[()(Z)I = /rp(z)(m) dw. (2-27) “-
X X 5
¢} S
o
-
Now 1f we assume that the second-order surge motion is ¢ "notural-frequency {q
motion" with a relatively small damping factor and that the surye natural ‘1
frequency is "small", we may write :ﬂ
2 2 =
o @17 < [ o @y hoyt” a 2
o 3 %
2 -
= ¢1(c2)(w*)/lH(w)l dw o
A S
Y P
0 (C - A(l) ) + 1Bw -3
2 =
= ¢f(: )((U*) . -..1[2_ —— ~:_.¢
4t Aw .S
n o
where the damping factor is ]
oo
¢ = B/2hw, . (2-29) ]
A
Note that for surge motions at and near the natural frequency, the damping -
is nonlinear and depends on the magnitude of the surge motions. Furthermore,

the surge damping depends on complicated nonlinear viscous interaction
between the slowly-varying motions and the steady current and also the first-

order wave-frequency motions.

We shall here obtain the nonlinear relationship between the damp-
ing factor, ¢, and the surge motion amplitude by using our nonlinear time-
domain surge motion computer program. This computer program assumes that
the surge motions onlyhave two frequency components,
( =
] (1) 2) .
x(t) = X0 + X1 cosw,t + X2 cosw t (2-30) :“i
._~:..1
-
2-32 Y
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Hote that the odded meas and damping coefficients, foand b, are funclions of

frequency, w, as shown in [Figures 2-Za and 2-2b.  ihe variance (iLe., tne

square of the RMS value, o) of the first-order surge displacement is given

S
SN
. .-.
.A‘:.
SN
AR

by
R L2 o Y
(V] -/(pf(“(m) du. (2-21)
0

Tre rean steady second order drift force is

( . .'..’
(2) ZfF(Z)((u) g, w) do (2-22) N
0 o

where F\z)(m) is tne steady second-order drift force, RAO, for regular waves
{see figure 2-4a). ii}
1

The surge force power spectrum due to second-crder wave-induced

excitation 1s

w
2
(o * * * *
\C) I % _ W W fa) W (s 1 7 A
¢ = + = -5 Hw + - V- o dw. (2-23
§ { La ) 2—/;)6((15 2 ) ¢a(m 2 ) }‘ (w 2 u ? ), W \ ) . '4
0 3;;
ere #{wg, wy) 15 the second-order drift force RAD for excitation by two NS
il teneous waves with frequencies, wy and 0, - If w* is small, we may apply ]

rosian's apnroximation and assume that

* *
A w¥y _ 2) AN .
£ (w4 J o Ty )= F (w) ARy "
9
:
ann, furteriore, that
-

3\
BEUBE z/‘[%(m) F(2) ()7 da (2-25)
0

- e

. P
PR

LA

r
-y

“oonrce nower spectrem due to second-order excitation is

s

Seala e
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X, - 40.9 feet.

2
Hence if wave groups with perfect tuning do occur in the ocean, theoy wiii j
result in slowly-varying surge motions which are considerably larger than :?
those due to the maximum unsteady wind condition considered here. 3
=
P
2.6 Irregular Wave Results for TLP #1 4
:
The main objectives with the irregular wave investigation are to -
present a method for predicting the "average" surge motions in an irreqgular ]
scaway and to present results for a typical sea condition. This method is ‘
not recommended for predicting extreme surge responses. It is believed that
the extreme responses can be predicted more accurately by computing the
nonlinear time-domain responses for particular extreme events which are "
expected to result in large surge responses. 'f
g
2.6.1 Theoretical Formulation -
-y
We shall assume that the seaway is unidirectional and represented _f
by a known power spectrum o~
‘ 2
’wa(w) -4
The surge displacement power spectrum due to first-order wave-induced exci- 1
tation is g
X
{
1 1 2 2 -
o) = oy FH W) P )] (-19) ]
-:::]
where F(l)(uJ is the first-order surge exciting force, RAD (see E:
Figure 2-3a) N
.._‘\
SN
H(w) is the "linear" surge displacement, RAO given by ")
s':q
1 o
H(w) = e (2-20) _
(C - Au™) + iBw i
2-30 o
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r }\Z) cocond-order teady drift foooe Tor cognar waves o
urit wove ampiitude ..
: _F(Z’ = amplitude of slowly-varying force for wwo wave components
+(2) N T, X _ ) 1
F = amplitude of the "springing” farce for {iwo wave components o
The results presented in Section 2.2 show that tne maxinum drift :Zf
I force RAQ 1is ZJi
-
(2) | ]
F - 2.5 kips when T = 9.3 sec. T
i dence we hdave that the second-order excitation for the wave-grouping condi- 2
: Liun considered here is
K (2),, . Y . _
; f1°7(t) = 390 kips + 390 kips - cosu t. (2-18)
B
[
inis cAciting force will resull in a steady surge displacement
: 390 S
. X = 5y = 21.3 feet
A o 1w Tl
: and a Siowiy-varying surge with an amplitude (estimated from the results ~
grcsented in Appendic B o
X, = 56 feet. -

T LR eSThad tCG anpiitude when there 1S no current and when damping
< o onteractions witn the primary motions is ignored. 1f current s
N crescnt the o anniitude witl be decrcased due to additional viscous damning

forcos ceused by antecactions between tie current and the osciilatory

CLono o ceLa dul Wi the maxdmum ampiitude for o tne siowly-

Voo, T onIon ress g Jron Lne maxitun unsteady wind cundivion s
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Correct to the second order in wave amplitude, the exciting force

due to two regular waves is

fle) = F 8 0 f @y v (2-13)

ey - F(l)ul cosu t + F(l)az Cosia, L (2-14)

and the second-order force is

#2e) = F2 () o2

(2 2
Lt F )(mz) K

+ 2a1u2 _F(Z)(wl, wz) . Cos(w2 - wl)t
(2-15)
+ 2u1u2 +F(Z)(wl, wz) . COS(u)1 + mz)t

y ol

g +F(2)(w1) cosZwlt + a; +F(Z)(mz) cosZth

We are here only interested in the stcady and the slowly-varying part of tne
second-order force which may be written as

(2-16)

wrere the Newman approximation has been applied. The Newman approximation

states that

2 2),%1 " 92
8wy = PR s oy - w)). (2-17)
Here F(l) = amplitude of first-order exciting force per unit wave
amplitude
2-28
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2.5 Surge MoCions Due Lo wWave Grouping i;
We shali consider cxcitation due to "wave grouping' with perfect §§
tuning. Thaet 1s two sinultancous regular waves with difference frequency 55
: equai to the surge natural frequency and with nean frequency equa: to the i
frequency for which tne steady surge drift force is maximum. This particu- -;;
Tar wave condition will result in the largest possible siowly-varying wave- :;i

induced excitation since all of the wave energy is concentrated at the fiaxi-

mum wave-drift frequency. However, it must be recognized that i1t has not

veen esiablished with any degree of confidence that wave groups with perfect
tuning will actually occur in the ocean. The wave-grouping rewults pre-
sented here should be considered, therefore, as an estimate of the upper
iimit for the wave-induced slowly-varying excitation force. o d
]
We shail consider two waves: Ny
-"-‘
=
B
wl(t) = oy COSwlt .
nd .
o,z(t) = Uy COSu)Zt fj:ij
LAY -
] \ Zh
AN + ‘s = = -..-1
g(‘)l )2) (A,\max 9 3 0 676 4
R 4 S (X ﬁ
2 : nat 106
Penoe w0 nave two waves with freguencies wy = 0.0646 (Tl = 9.7 and A=
sodia thy dnd w., = 0.706 (T2 = 8.9 and AZ = 405.9 7t). We shall assume =
: Lol the maxinun Siope 1S given by -
[ o
3 . . o
b 2\(L1 Y <]
3 = -
g F/a = Ty E 0.08. 4
e mean -~
L 3
E: Tvis daniies that oty .00 feet. Eié
. =
» o
¢
-7-1
..‘
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fable 7-3. Surge displacements Tor Lvo o brome b equiar wave
condition, for 09 heading.

“Maximum Design | Maximum Drift

Wave Wave
H = 30.0 ft H = 46.4 ft
|__T=18.0sec | T=9.5sec _
SAI Quad SAI Quad
e e oo} Drag | Drag | Orag | Orag |
Steady Current Displacement, Xg 16.1 42.3 15.2 35.5
SR ——— e — — - ———— .—-v__* st e ———
Steady Wind Displacement, Xj 52.5 | 52.5 | 52.5 | 52.5
. i mm e e e e e m i e e e Y e L 4o A_._.}_ ———— e
Steady Drift Displacement, K. 2.0 2.0 | 64.1 | 64.1
S U ST PRSI CU SRR
I Wave frotrmncy I\m;_)j_i.tind(': )(1 st 22‘_]____ A__Z.Z,‘_l&,_ . 1.7__L___1_Z_M
Slowly-Varying Motion Amplitude, Xo 9.7 8.9 18.8 12.8
Total Maximum Surge Displacement 102.4 127.7 1152.3 166.6

The results summarized in Table 2-3 show that the largest surge
displacement will occur for the 0° heading angle with "maximum drift wave"
and maximum current. When the quadratic drag formula is used, the maximum

displacement is

Xmax = 166.6 feet.

Note that the results presented in Table 2-3 show that for the maximum

design wave case the surge displacement (using quadratic drag) is

Xmax = 127.7 feet

which is substantially smaller than the surge displacement for the "wmaximum

drift wave" case.
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1
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figure 2-7. Surge displacements for "maximum drift wave" condition
with 00 heading (Condition 2).
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The results presented above indicate that the SAI drag formula
predicts values of viscous forces due to interactions between current and

wave-frequency motions that are much smaller than the values predicted by

the quadratic viscous force formula. They also show that the total surge ?é
motions predicted by the SAI drag formula will, in general, have smaller i?
steady displacements than the motions predicted by the quadratic drag formula. ;;
It is difficult to determine the particular environmental condi- c;
tion and heading angle which will result in the largest maximum surge dis- Zij
placement. Note, for example, that the current may decrease the amplitude if
of the slowly-varying motions by a magnitude larger than the steady dis- ;;
placement due to current. In such a case, the current will actually result
in a decrease in the total surge displacement. Several computer runs have
been performed in order to establish the most extreme condition. Of par- :
ticular interest are the following two regular wave conditions for which o
results are summarized in Table 2-3. B
Condition 1 -;q

) . .
0" heading, maximum regular wave with H = 80.0 feet and T = 14.0 sec- .
onds, maximum unsteady wind and maximum current. Motions computed by o

SAI and quadratic drag. Results for the surge motions as functions of :Eﬁ

time are presented in Figure 2-6. -

=N

Condition 2 i
0n° heading, "maximum drift wave" with H = 46.4 feet and T = 9.5 sec- g

onds and maximum unsteady wind. Surge motion plots for this condition -
are presented in Figure 2-7. g

The "maximum drift wave" in Condition 2 refers to the regular
wave which will produce the largest steady wave-induced drift force for the
heading in question.* It is assumed in these cases that the wave amplitude
is determined from the maximum wave steepness given by H/A = 0.10. Note
that the maximum theoretical wave steepness for nonbreaking waves is H/X =
0.14 and that waves with stqepness H/X » 0.12 have in many cases been

. e e e e e s - .
i T e R A
. R T T TN DEENEN .
[ERE N . ) . - L » _»
4 mtnttnd o e " Adan s L * -

. recorded. D
3 ;:?
5 * As shown in Figure 2-4b, the maximum draft force in reqgular wave is 1,200 E:f
’ kips and occurs at T = 9.5 sec, RN
ﬁ ..*.Ti
e 2-24 N
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;
b the wave-frequency motions can be predicted very accurately by
h
linear theory ignoring viscous damping and interactions due to

current and slowly-varying motions.

. Amplitude of tre slowly-varying motions due to unsteady wind exci-
tation alone i< 40.9 feet. If current is present in addition to
the unsteady wind, then the amplitude of the slowly-varying

motions is predicted to decrease by 15.4 feet when the SAI drag
formula is used and 25.4 feet when the quadratic formula is used.
If wave-frequency motions are also present, then the SAI formula C;;
predicts an additional decrease of 15.8 feet, whereas the quadratic :
formula predicts an additional 6.6-foot decrease. The total
decrease in the slowly-varying amplitude due to current and wave
frequency motion is 31.2 feet when the SAI drag formula is used

and 32.0 feet when the quadratic formula is used.

Table 2-2. Surge displacement components for TLP#1 excited by current,
maximum design regular waves and unsteady wind with 00
heading angle (values given in feet).

SAI Morison SAl Morison SAL Morison
Orag Drag Drag Orag Drag Drag
formula | Formula Formula | Formula Formyla | Formula
[ Current alone 14.4 4.4
Increase due to
Due to current wave- frequency 1.8 21.9
‘ § interactions 16.1 42.3 motion
Steady 70.5 9.7 In
; : . crease due to
displacement slowly-varying 0.1 0.9
motion
Due to wind 52.5 52.5
—
Due to wave 0
drift z. 2.0
Wave-freouency o
amp 1 tude 22.1 22.1 T
Slowly-varying * . ..\
excitation alone 40.9 40.9 N
- . N
Slowly-varying Increase due to 215.4 .25.4 o
ool 1 rude 9.7 B.9 | corrent 15. 25. i
Increase due to -
wave-frequency -15.8 -6.6 =3
motion - ]
_J -
F -.'1
Total surge 102.4 | 1277 "
Ld!sphcement . '1
_ e
* ; "
(; Slowly-varying due to unsteady wind excitation alone. —4
-" ~\-
L ) AN
§ 2-23 ™
k- R
. oy
b. ot
b =
(-
r-. -
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F '\ -.'
summarize the TIP 72 surge wotion results and make cowparisons between the 'ii

two platforms. Nole thal no drvreqular wave results have bheen obfaied for |

TLp #2. t}

L Tl
)

Table 2-4 shows the main surge motion cowponent for TLP #2 excited “
by the maximum design wave and the regular wave condition which results in
the maximum steady drift exciting force (referred to as the "maxiuium arift
wave"). Note that the maximum design wave, the maximum current and the -
maximum wind conditions are assumed the same for TLPs #1 and #2. Comparing
the results presented in Table 2-4 with the TLP #1 results siiown in Table
2-3, 1t is seen that the surge motions for TLP #2 are slightly larger than
for TLP #1. However, if we normalize the surge motions with respect to
water depth, the TLP #2 motions are in general smaller than for TLP #1. It
is not possible to make any specific comparisons between the the two TLPs.
We nhave here assumed that the dimensions for TLP #2 are 1.2 times the

- dimensions for TLP #1. However, it is difficult to evaluate if 1.2 is the
= correct scaling between a platform operating in 2000-foot depth and a plat-
form operating in 3000-foot depth. Therefore, we must be careful in drawing
any reneral conclusions from a comparison between the surge motions for

tnese two platforms.

Table 2-5 shows the surge displacement components for TLP =2
aacited oy current, maximum design wave and unsteady wind. Comparing these .
'ﬁ results with the results presented in Table 2-2 for TLP #i it is seen that :
tne viscous nteraction effects as computed by the Morison quadratic drag ;

oridia and the SAL drag formula are about of the same relative magnitude.

suwover, we do note that the additional damping of the slowly-varying motions

" G Lo oviscous interaction effects between the slowly-varying motions and

tne current are substantially larger for TLP #2 than for TLP #1. When the :
- A drag formula is used this additional damping effect is 2.5 times larger :j
J{ for 7.7 «2 than for TLP #1, and when the Morison drag formula is used, it i}
'; iooL.6oudres larger. it s difficult to pinpoint any specific reason faor '
f trese Jitferences.
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Table 2-4. Surge dispiacements for TLP #2 for two oxtreme reqgular
wave conditions for 07 heading.

Wave Wave seds ‘ 1

H = 80.0 ft T 55.9 ft !hl =10 fU -

T =14.0 sec 1= 10.5 sec ! M/3 ; o

SAI Quad SAT T " Quad SA] : 2

Drag Drag Drag | Dr%&~4<~_9féﬂ_“ ] . LY
*

" Maximum Design |- Maximum Drift | Irregular |
i

o

o}

Z ) l

i Steady Current Displacement, x 18.% 53.7 1 17.2 ( 46.5, 0

i % .
f

Steady Wind Displacement, X 66.9 | 66.9| 66.9

Steady Drift Displacement, Xg 8.0 8.0 96.9 96.9

2 1
|
S S S

|
|
|
|
]
!

| Wave Frequency Amplitude, X 18.3 18.3 2.3 2.3 1 0.9

H
b ——f e ——— —

I \"
} Slowly-Varying Motion Amplitude, X, | 9.6 7.9 21.9 14.1 | 2.0
4

o} e

Total Maximum Surge Displacement 121.2 154.6 | 205.0 ‘ 226.6 1.6

R A

: e
¢
D

.Y/"

‘¢

*  for the.ifreqular seas case the current is assumed zero and the wind
strength is only 39 ft/sec.
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Table 2-5. Surge displacement components for TLP #2 cxcited by
current, maéimum design regular waves and unsteady
wind with 0° heading angle (values given in feet).

-4
- .
I SAL , Morison: SAI Morison | . SAi Morison | .
, Orag | Drag i Orag Orag [ " D2rag Drag -
iFormula . Formula ) Formula @ Formula | Formula | Formula ' . ]
r t t 1 4 - ] L
‘ } ; ! Current alone | 1/.1 7.1
3 i I ; K
] } ' Increase due to ! _zi
‘ | Due to current wave-frequency 1.4 36.4 .
f I & interactions | 185 53.7 motion ! i ]
Steady Co9n3loizes | 1 ? ] a;
s 3.9 . ncrease due to 1
dispiacement | siowly-varying @ 0.0 . 0.2
; motion ! X i >
| L i | -~
: Due to wind ! 66.9 66.9 | “-
’ Due to wave 0 o
i drift 8.0 8- o
we o frooLengy ! i '
o e 18.3 | 18.3
: ! -
- P : L o
jT i Slow’ly-varying* 53.3 53.3 R
‘ ! i excitation alone ’ ! e
ST 6a’ { { due t A | l }
CH'y-ViTyIrg : increase due to I 3
; ' 4 r
: I Ircrease due to ! : -
' i wave-frequency | -5.7 | -4.8 ‘ -
' ! motion L i :
Tata. surge L | |
dispiacement BTSN 154.6 e
{
™
5
.9
3
*  Sioyiy varying due to unstesdy wind excitation alone, ™
X
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3.0 SPRINGING TENDON LOAD INVESTIGATION* =

-~

F\q

3.1 The TLP Springing Problem o

;

3.1.1 General Discussion of the Springing Problem ﬂg

& '1
- Linear and nonlinear wave-induced high-frequency springing excit- Cj
hi ing forces can result in large oscillatory loads in the tendons at the nat- :

ural frequency of the TLP. The natural periods for heave and pitch motions -s
for most deep-water TLPs are typically between 2 to 3 seconds. For the :

discussion in this section let us assume that the vertical motions natural U

perigd, Tn, equals 2.5 seconds. 5

Regular wave excitationshall be considered first. The wave- 2

induced springing exciting forces can be divided into ]

(] first-order forces resulting from a wave with period, Tys equal
to the natural period of the TLP:

Tw = Tn = 2.5 seconds

] second-order forces resulting from a wave with period equal to

twice the natural period of the TLP:

Tw = 2Tn = 5.0 seconds

»
Lo L . . -
L ) third-crder forces resulting from a wave with period equal to :
L . o
3 three times the natural period of the TLP: -]
g K
L T = 3T = 7.5 seconds o
L W n -
\.- 'u
" arc 6 on for higher order excitations. -
> Tt N . ) ;
" * .01 of the springing lcaa results presented in this section arc i0r zero

carce heading.  The springing loads for 459 heading can be expected to

ceJe Uimes aarger,




It is important to recognize that the second- and third-order
excitations are caused by waves which have a larger period and consequently
are much longer and have much more energy than the waves giving rise to
the linear excitation. If we consider a constant wave-height/wave-length
ration, H/A, it follows that the waves causing the second- and third-order
excitation have 16 and 81 times, respectively, the energy of the waves
causing the linear excitation. It can be expected, therefore, that the
second- and third-order springing forces may be much larger than the first-

order forces.

Another important fact is that the springing loads in the tendons
will mainly be caused by pitching motions resulting from horizontal wave
excitation. The vertical springing excitation due to short waves is so
small that it can practically be ignored.

For a typical 2000-foot depth TLP configuration excited by regular

periodic waves with H/A = 0.075, our computations show that it can be ex-
pected that the first-order surge springing exciting force is of the order

- of magnitude of

i f§1) = 50 kips

and that the second-order springing force may be of the order of magnitude of

L-
N f§2) = 200 kips

and that both act very close to the free surface (about three feet below).
The effective pitch center for a TLP can be expected to be about 20 feet
below the free surface resulting in a pitch moment arm of about 17 feet.
Hence, the amplitudes of the first- and second-order pitch springing moments
may be of the order of magnitude of

3-2
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[ fél) = 800 kips-feet ';
p o
! féz) - 3400 kips-feet

Note that the waves causing the first-order excitation have a period equal

to the natural period, whereas the waves causing the second-order excita-

DNMASY  aca a0

1ion have a period equal to twice the natural period of the TLP. iij
: Another critical aspect is that there is very little viscous damp- oy
i ing and practically no wave damping for the high-frequency pitch motions. ;5
- Tre amplification factor is very large resulting in tendon jocads which may jii
- be of the order of magnitude of 600 kips per tendon. Figure 1-3 shows E;
- scrematically the total springing surge exciting force of 250 kips and the ji

resuiting 5,000 kips load on the eight left-hand side tendons and -5,000
kips loacd on the eight right-hand side tendons. These are approximate results
for a 2000-foot depth TLP with typical dimensions as shown in the figure.

- ! ”*‘T:::%

4 v
—L—f—’ 1 ===
tq1 P 20
. File i 2-250 kips 1 @ Ettective
; Pltch Center
= T~tal Springing '

>
‘t. Lxciting Force , _-..‘.‘
. l — 50" —»{ 100

2N
. L -y
: -
. O

. )

1771
v 4 =1
+5.000 kips -5.000kips
Total Load Total Load
on & Tendons on 8 Tendons q
R
s '4
- . . ‘-ﬂ
Foouoe 2-10 Total springing surge cociting force and resulting i
tendon icad for TLP with typical dimensions. o
:1
Y
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We have at the present time made no attempt to predict the third-

or higher-order springing excitation. It is believed that the higher-order
excitations may be as important as the second-order; however, we need to
have a better understanding of the second-order excitation and, in particu-
lar, as it applies to realistic irregular sea conditions before we can

advance to the more complicated higher-order excitation problem.

3.1.2 Problem Formulation

We shall here refer to springing loads as the additional tendon
loads caused by wave-induced vertical motions at or near the natural fre-
quency of the TLP. Since the wave lengths for both the first- and second-
order springing wave excitations are smaller or of the same order of magni-
tude as the depth of the TLP, it can be concluded that the heave springing
excitation forces are small and can be ignored. The springing loads in the
tendons at or near the natural frequency of the system must result, there-
fore, from a pitch moment about the virtual mass center caused by wave-in-
duced horizontal forces acting on the four legs at a location close to the
undisturbed free-surface level.

We shall here assuem that the pitch springing exciting moment for
the TLP at or near the natural frequency can be obtained from the springing
excitation for a single leg. In fact, we shall assume that the pitch ex-
citing moment with respect to the virtual mass center is

- * * - -
F5 = 4(F5 + ZcFl) (3-1) T
where Fg = Fél) + Féz) = pitch springing moment for a single leg with
respect to a coordinate system located at the -
undisturbed free surface. ]
F; = Fgl) + ng) = surge springing force for a single leg. ' ij
z_ = vertical distance from undisturbed free sur- i

face to the virtual mass center. N
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The factor "4" in equation (3-1) has been used assuming Uhat the springing
forces for the four leqs are in phase. This is a conscrvalive estimate.
Figure 3-2 shows schematically the springing excitation in the two refer-

ence systems.

<
ll."ﬂ

T

Figure 3-2. Total TLP pitch moment about effective
pitch center,

A formal derivation of the first- and second-order springing
forces are presented in Salvesen, et al. (1983). It is shown that both
the first- and the second-order forces can be expressed in terms of the
first-order velocity potential, ¢(1). The contribution from the second-
order potnet1a1,¢(2{ can be shown to be small for the vertical cyiinder case.
by apnlying an apprcach similar to the method used by MacCamy and Fuchs (1954)
ard by assuming that'the waves are short, A/H << 1, and that the water depth
large, A/d << 1, it can be shown that the first-order velocity potential,

, Tor the vertical cylinder case can be expressed in terns of a series
expansion. Then by using this expansion it can be shown that the first-
arns second-order surqge forces and pitch moments can be expressed in terms
of .o ienxel's function. By applying this approach we have been able to

develun very efficient computational methods for predicting the wave-
p p

ing Lo osaringing exciting forces and moments.
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3.2 Reqular Wave Results for TLP #l

3.2.1 Pitch Springing Moment Results
In this section we shall present wave-induced pitchspringing -
moment results for the TLP #1 design excited by regular sinusoidal waves. ) -Ti

The first-order springing moment is S

F () = #1) cos w,t (3-2)

where We is the exciting frequency. Note that for first-order excitation,
the excitation frequency is the same as the wave frequency. The second-
order springing moment is

Féz)(t) = féz) cos w,t (3-3)

For the second-order excitation, the excitation frequency, we, is equal to
twice the wave frequency. Note that the pitch moments are about the virtual
mass center which is 21.8 feet below the undisturbed free-surface level.

Figure 3-3 shows both the first-crder and second-order pitch
springing momeni amplitudes as function of the exciting period. Results
are shown for two wave steepnesses, H/A = 0.050 and 0.075. It is seen from
the figure that the second-order moment, féz), is substantially larger than
the first-order moment, fél). This is partly due to the fact that the waves

causing the first-order moment have the same period as the exciting period,

W

twice the exciting period, Tw = ZTE. This implies that the wave height for

= TE’ whereas the waves causing the second-order moments have periods

the waves causing the second-order moments at a given excitation period is
tour times the wave height for the waves causing the first-order moment ;:
(assuming a constant H/A value). Furthermore, it is seen from the tabu- .
lated values in Figure 3-3 that at the natural pitch period (Tn = 2.506 o
sec) and for wave steepness, H/) = 0.075, the first-order moment is 1600 :
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Yt-kips, whereas the second-order moment is 5680 ft-kips. In other words, SQ

the second-order moment is in this case about 3.6 times larger than the i:
first-order moment. S
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Figure 3-3. First- and second-order pitch moments,
£11) and #2), for H/x = .050 and
H/A = .075.

’)__7
o)
,
N O "\
. N e - - . . o B
. - B .t - . .
. ~ - '
e AR - AT -
G e Tt e . o [ B
Au, L N S SOy VAT L N A A At - h -




3.2.2 Equation of Motion

If we consider the pitch motion about the virtual mass center,
the motion is uncoupled and the equation of motion is
-iwt

AB +BH +CO=f_-e¢e

5 (3-4)

Here 6 is the pitch angle, A is the virtual mass moment of inertia, B is
the damping coefficient which is typically a function of the pitch angle,
C is the restoring coefficient and fg is the pitch moment amplitude. As
shown in Appendix A, for the TLP #1 design

A= 4.06 * 1010 s1yg-ft? (3-5)

¢ = 2.553 * 101 1p-ft (3-6) i
The pitch natural period is i{

T, = 2w % = 2.506 seconds. (3-7) .

Of interest here is the additional tendon tension load due to

pitch springing motion rather than the pitch motion itself. The tendon -
tension load per tendon is linearly proportional to the pitch angle :

T = af

where the coefficient

a= 5 Gy i%—: 1.45 * 10° kips/rad.

There fore, the tendon tension load per tendon can be expressed as

3-8
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= 5 - . (3—10)
(-w A+C)~iwB

The tendon tension load can also be expressed in terms of the magnifica-

tion factor, n, as

ww) = n(fg 2) (3-11)

where f5 %/C is the zero frequency tendon tension. The magnification fac-

tor is defined as

1
n =
1o (98 i2g = (3-12)
W “n

where the damping factor is by definition

cs-2_ -8 (3-13)
2hy B
n c

Here Bc is the critical damping coefficient.

Note that when the TLP is excited by a pitch moment at the natural

frequency, Wy » the amplification factor is

L. (3-14)

3.2.3 Tendon Springing Loads

3y equations (3-11) and (3-14) if follows that the additional

tendon teasion .oac per tendon is

f
2o.ea 107 Kips (5-15)
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when the TLP is excited at the natural period, Tn = 2.506 seconds. Here,
the pitch exciting moment amplitude, f5, is in kips-ft units. Note that if
the damping factor, ¢, is a constant independent of the pitch motion ampli-
tude, the tendon load, T, is directly proportional to the pitch moment, f5.
For the TLP in the high frequency range, the damping is mainly due to

° viscous forces,
° wave generation, and
] structural damping.

In this study, we have included damping only due to viscous forces and wave

generation. It is expected that the structural damping is of the same order
of magnitude as the viscous damping; however, it is difficult to obtain ac-

curate estimates for the structural damping without a complete knowledge of

the details of the design of the tendons.

Figure 3-4 shows the damping factor, ¢, as a function of tendon
tension load, T (not that T is linearly proportional to the pitch angle,
equation (3-9)). Also shown in Figure 3-4 is the tendon tension load, T,

as a function of the pitch moment, f5. These curves have been obtained by
a computer program which models the viscous forces for high freguency pitch
motions as well as includes the wave generation damping. Note that Figure
3-4 is only applicable to the TLP #1 design when pitching at the natural

Example Results

period, Tn = 2.506 seconds. i
3

Consider first-order regular wave excitation at the natural ) }
period and assume that H/X = 0.075. From Figure 3-3 it follows that the Vo

first-order pitch moment amplitude is

fél) - 160G kips-ft.

LU W N S W
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Figure 3-4. Tendon tension load, 1, as a function of
pitch moment, fg, and damping factor, ¢z,
as a function of tendon tension load, T.
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frow rigure 3-4 we have that the additional tendon tension load is

WP RV

)
“r

T<l) = 470 kips per tendon.

Then let us consider second-order regular excitation with exci-
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Simplified Prediction Method ;E
4
The contribution to the variance (i.e., the square of the RMS j
value, 02) for second-order excitation can be estimated by the following .
simple procedure. §
=) :4‘
2 2 -
o =ﬁHT(w)) . ¢,$, )(w) dw ._1:
o w 3
=~ (2) f 2 3-36 "-'
o (wn) |HT(m)] dw ( ) -i
0 %
o (2), oy 1 -
= O (wn) (a) 4 EB% -3

Applying this relationship to the irregular sea condition con-
sidered here, we have approximately the same result as obtained by numeri- -
cal integration, namely -
o? = 1980 . N
3.5 Sea State Investigation "
- 1
.
.‘J
In this section we shall present irregular sea results for TLP #1 ;j
using a fully developed (FD) Pierson-Moskowitz sea spectrum as well as the 3
partially developed (PD) Bretschneider storm sea used in Section 3.4. For :j
.3
both cases the spectrum is given by equation (3-34) with h1/3 = 10 feet. .
For the FD case =
4

T = 8.73 seconds

° =1
S
and for the PD case To is the same as used in Section 3.4, namely, ;f
T, = 7.04 seconds. ﬁi
-9
R
Figure 3-10 shows the sea spectra for the two cases considered, }q
and Figure 3-11 shows the second-order pitch exciting moment power spectrum, ff
-4

3-24
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. the high frequency range. ;;E
Table 3-2 shows the square of the RMS values, of (see equation 3-28) for the _
first- and second-order tendon tension response spectrum for the high- and Q{f
low- frequency ranges separately. ;3;

The results presented in Table 3-2 seem to demonstrate that the fig
first-order contribution in the low frequency range dominates the total j:i
contribution to the RMS value for the tendon tension response. Considering }ﬁf
ornly the low frequency range contribution, we find that the significant ;Ei
tendon tension value for this sea condition is LJJ

T)3 = 2.00 = 75 kips,

>4

If we consider only the high frequency range, we have ]
Tyy3 = 2.00 = 102 kips. '{.’-‘_;

3

It should be stressed that the main objective with this investi- i:%
gation has been to estimate the high frequency tendon tension load. The N
low freguency computations were only included to demonstrate that the low %:}
frequency tension loads may be as important as the high freguency part. ;ij

Area and RMS values for tendon tension ‘il
response spectrum, o% and o, in kips? -

and kips -

High Frequency Range | Low Frequency Range .i

Area RMS Area RMS %

| First-Order ontribution 610 24.7 1420 37.6 ]
" Second-Order Contribution 1980 44.5 0 0.0 : ;
{FHW'.‘;;’. 2590 50.9 1420 37.6 -
Yabie 3-2. First- and second-order contributions to area and RMS ﬁ%:
values for the Llendon tension response spectrum for 79

the nigh and iow frequency ranges. o
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Figure 3-8 shows the tendon tension RAQ, HT(w), for this assumed constant "o d
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Figure 3-8. Tendon tension RAO, H«, for TLP #1,
wp = 2.508 rad/sec and damping factor
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Figures 3-9a anc 3-9b show the first- and second-order tendon ten-

sion response power spectrums. As indicated :n these figures, the response S
power sypecurum car conveniently be divided into two parts: -]
NS

.

¢ tne tow freguency range, and
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3.4.2 Computed TLP Results

In this section we shall present computed results for the TLP #1
design in an irreqgular seaway represented by a Bretschneider energy spectrum
for a partially developed storm sea

e-B/w“

¢ (w) = (3-34)

A
a 5
w
_ 2 4 _ 4
where A = 486 h1/3/T0 and B = 1948.18/T0. For the example case presenter
here

h = 10 feet and To = 7.04 sec.

1/3
Figure 3-7aand 3-7b show the first- and second-order pitch exciting moment
power spectrum as obtained by equations (3-23) and (3-25). Please note
that for this investigation, the first-order pitch moment RAD values,
Hél)(m), have been estimated by using single vertical leg results, the
approach d*scussed in Section 3.1.2. This approach is only valid in the {;f

nigh freauency range. Therefore, any results shown here in the low freguency -

ranGge should only be considered as an order of magnitude estimate. It is

seen in Figure 3-7a that in the low frequency range the first-order exciting i:i

moment power spectrum, ¢;1) is as expected, an order of magnitude larger

than the second-order spectrum, ¢é2). However, as seen in Fi?ure 3-7b in o
2) o

tne high frequency range, near the pitch natural frequency, ¢m is sub-

stantially larger than ¢é1). - §

The tendor. tension load response power spectrum is given by equa-

tion (3-26) and is T

2 1 2) -1

sp00) = ()2 (olH W) - 6{F(w) (3-35)

Wherce ..y is the tendon tension RAC For simplicity we shall assume that ﬁfj

' for tne Trrigurar wave results presertec here the damping factor is :j
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and the average of the 1/10 highest amplitudes of the tendon tension load is 5
"

Ty/q0 = 2-55 0, - (3-31) ’

In predicting the RMS value for the tendon tension load, it is 5

important to recognize that the pitch damping coefficient is nonlinear. It . %
is here suggested that the nonlinear damping can be adequately represented ?
by using an eguivalent linearization method where the damping coefficient 2
is assumed constant and equal to the same value as for harmonic motions 1&
at the natural frequency with motion amplitude equal to the significant %
motion amplitude for the irregular wave case. -
In other words, the following procedure is used in predicting ;f

the tendon springing load in an irregular seaway. v
g

First assume a value for the significant tendon tension load, ;i

which we shall label 1’1'/3. Then by using this value, the

first estimated damping coefficient is obtained from Figure -

=1

3-4. The significant tendon tension load is then computed oy
following the above steps with the estimated damping coeffi-

"
cient. This procedure is repeated until satisfactory accu- -
racy has been obtained. . |

=3
Note that if the free-surface elevation for the unidirectional ,

seaway is given by -

-

y(t) = z:Ane'“""t (3-32) B

n o]

then the second-order pitch springing moment as a function of time can be o

o expressed as -
- (2),,1 . il tw )t =
2 Fl(t) = ; Zm:AnAmJ(wn, w ) e tuglt (3-33) 3
b ]
»
X .4
n:‘: 3-18 ':q.
e 5
o =
[ ] v Y

R .. e '! .;'-..' ".s‘-_v '-“f.n.')-:' :
EN I ETER NI DN
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The pitch moment power spectrum due to second-order wave-induced excita-
tion is
(2) w/?2
2 . w w
¢m (w) = 2 f¢a(2+Aw) ¢)a (—2~-Am)
Y (3-25)

- 85+ du, - tw)|° d(tw)

where xJ(wl, wz) is the second-order two-wave pitch springing moment per
unit wave amplitude.

The tendon tension load response power spectrum is
o-w) = [ @)%+ (P w) + ol (w) . (3-26)

where the tendon tension per unit pitch moment excitation is defined by

H () = Tlw) (3-27)
T fs

and where t(w) is given by equation (3-1Q). The variance (i.e., the square
of the RMS value) of the tendon tension load is

2 = -
o -f¢T(w) dw . (3-28)
0
The average tendon tension load amplitude is

Tavg = 1.25- O (3-29)

the significant value of the tendon tension load amplitude is

T2 " 2.00 - o (3-30)
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From Figure 3-5 it is seen that the RAO value for the second-order sum-fre-
quency moment,xd(wl, wz) = 260 kips-ft/ft2 for w; = 1.054 and w, = 1.454 rad/
sec. Hence, the amplitude of the second-order springing moment component

with exciting frequency equal to the natural frequency is

(2) = = 1 -
2 [fs ]12 2R A, (w1, w,y) = 3620 kips-ft.

From Figure 3-4 it follows that the tendon tension load for the above two-
wave case is

T(Z) = 780 kips per tendon.

3.4 Irregular Wave Results for TLP #1

3.4.1 Theoretical Formulation

We shall assume that the seaway is unidirectional and represented
by a known power spectrum

¢a(w) (3-21)

and that the wave-induced pitch exciting moment has a power spectrum given by

- ol W)« glB) L (3-22)

O lw) M

Here the pitch-moment power spectrum due to first-order wave-induced exci-
tation is

ol = )| 2+ g, ) (3-23)

where the first-order pitch exciting moment amplitude per unit wave ampli-
tude, RAOD, is
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where A1 and A2 are the wave amplitudes for the two waves with frequencies fL
Wy and W, respectively. Here -X(wl, wz) is defined as the two-wave pitch E
springing moment amplitude per unit wave amplitude (RAQ). by
Figure 3-5 shows z¥(w1, mz) for TLP #1 for sum frequencies equal jj
to the pitch natural frequency: -
e
=
Wy +wy = w, = 2.508 rad/sec. N
Figure 3-6 shows ‘f(ml, w2) for the four following sum frequencies: >
-4
wy + w, = 2.0, 2.5, 3.0 and 3.5 rad/sec. 1
Recall that for this component of the second-order pitch moment, the exci- Ei
tation period is equal to the sum frequency. -]
: ]
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The second-order springing exciting force is given by

F§2)(t) - [f§2)]lle~2w1t + [f§2)l zze-iszt

2[#(2)] eilurtwelt )
b1

Note that the amplitudes far the double frequency components, [f§2)] and
[f§2)]22 are identical to the amplitude for the single regular wave Case.
The amplitude of the sum frequency component of the second-order springing
force which is due to interactions between the two wave components is

2[f§2)] =2f§.2)(m1, w,) (3-18)

12
By following a formal procedure as used for the single-wave case, it can be
shown that the amplitude of the sum frequency component (3-18) can be ex-
pressed in terms of the first-order potentials for the two individual waves,
le) and ¢é1). By expressing these potentials in terms of series expansions
a very efficient computer program has been developed for computing the two-
wave amplitude, f{z)(wl, wz) for a single vertical cylinder. The total pitch
moment for the two-wave case is obtained by equation (3-1). Note that a

term containing the second-order potential, ¢§§),has been ignored in this
approach. It is believed that this term will resuit in a very small contri-

bution to the total force.

Now consider two regular waves with sum frequency equal to the

naturai frequency

(3-19)

Wy T Wy T Wy

iner the second-order sum frequency component of the pitch moment will have
saitation frequeicy identical to the natural freguency and may be expressed
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.- If we assume that H/A = 0.075, it follows from Figure 3-3 that the pitch o
. moment amplitude is )
D féz) - 5680 kips-ft.

From Figure 3-4 we have that the tendon tension load is ’

1(2) = 1020 kips per tendon.

The above results for first- and second-order regular wave exci-
tation are summarized in Tahle 3-1.

Pitch moment Tendon tension :
amplitudes in . .
Kips-ft loads in kips
- First-order
- regular wave -
excitation 1600 470 .
H/A = 0.075 R
. Second-order %
o regular wave -
* excitation 5680 1020 -
H/A = 0.075 -
- Table 3-1. Pitch moment amplitudes and tendon tension
- loads due to first- and second-order regu-
lar wave excitation.
- 3.3 Two-Wave Results for TLP_#1

Consider a body excited by a wave train consisting of two regular -
waves with frequencies wq and Wy - The first-order exciting force is

3-12 K
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¢;2)(w) for these two sea spectra. It is seen in Figure 3-11 that the pitch
exciting power spectrum value at the pitch natural frequency (wn = 2.508 rad/
sec) is almost three times as large for the PD sea as it is for the FD sea
condition. According to equation (3-36), this implies that the variance,

02, should also be approximately three times larger for the PD case than for

the FD case.

Table 3-3 shows the first- and second-order contribution to the
RMS values for the tendon tension responses for the high- and Tow-frequency
ranges both for the RD and the PD sea states. It is seen that for the
high frequency range the first- and second-order RMS values for the PD sea
state are about Jg—times as large as they are for the RD sea state. Whereas
for the Tow frequency range where only the first-order contribution is of a
cignificant magnitude, the RMS values for the FD sea state are larger (by a
factor of two) than those for the PD sea state.

These results seem to indicate that it is imporiant to consider
both partially developed and fully developed sea states when predicting the
tendon tension responses due to wave-induced springing. In general, it can
be expected that the second-order contribution will be substantially larger
in a partially developed sea state than in a fully developed sea state with

the same significant wave height.

— e

RMS values for the tendon tension

response spectrum, in kips
High Frequency Range Low Frequency Range
FD Sea PD Sea FD Sea PD Sea
First-Order Contribution 16.1 24.7 75.7 37.6
Secund-0Order Contribution 26.3 44 .5 0.1 0.0
———
{ Total | 36.9 50.9 75.7 37.6
- L N .-_J
Table 3-3. First- and second-order contributions to RMS values for

the tendon tension response spectrum for the high and
low freguency ranges for fully develaped (fD) and par-
tially developed (PD) sea states.
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3.6 Pitch Center Investigation

In this section we shall investigate the effect of the location
of the pitch center for TLP #1. Note that the pitch center is defined as
the virtual mass center {including both the mass of the TLP and the hydro-
dynamic added mass). We shall consider two pitch center locations: the
actual location for the TLP #1, namely

2y = -21.8 feet

and 25% of this distance,

22 = 0.25 zy = -5.5 feet.

3.6.1 Regular Wave Results

Figure 3-12 shows the first- and second-order pitch springing
moments for TLP #1 with the two stated pitch center locations. It is seen
from this figure that at the natural period the second-order pitch moment is
reduced by a factor of about 10 by decreasing the pitch center to 25% of

the design value. The first-order moment is reduced by a factor of about 50.

Table 3-4 shows the oitch mcment amplitude values at the natural
perioa as obtained from Figure 3-12. Also shown in Table 3-4 are the tendon
tension loads due to these pitch moment values. The loads have been obtained
using the nonlinear relationship between the pitch moment and tensicn Toads
as given by Figure 3-4. It is seen from the tendon tension values given in
Table 3-4 that the second-order tendon tension load is reduced from 102G
kips to 240 kips by decreasing the pitch center to 25% of the design value.
Simiiariy, the first-order tendon tensicn load is reduced from 470 kips to

26 Kips.
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Figure 3-12. First- and second-order pitch moments for
pitch center z_ = -21.78 ft and z. = -5.45 ft.
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