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ABSTRACT

—JlProntal techniques offer the potential for processing
the assembly and the/factorization phases of finite element
analysis in parallelXJh:;wever,‘the rows of the stiffneas
matrix are assembled and factored in different orders, thus
depriving frontal solvers of the uniformity desired in
parallel processing. On the other hand, band solution tech-
nigques handle the factorization phase in a very uniform way
but do not interleave assembly and factorization./;:;>this
papegjf;:\éuggestQa technique that borrows from both frontal
and band solvers those characteristics that are advantageous
for parallel processing. Moreover, book keeping and data

manipulation are simpler in the suggested technique than in

the classical frontal method. This makes the suggested

‘technique also attractive for sequential systems.
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1. INTRODUCTION

The frontal solution technigque [5] is a very effective
means for reducing the computer time and the storage
requirement for finite element analysis. [ts central concept
is the alternation between the assembly of the stiffness
matrix H and its factorization. In order to be more
specific, let the elements in the finite element grid be
labeled by unique integers 1l,...,m, and processed in that
oidet. That is the corresponding element matrices

Hl RERY H® are accumulated in the global matrix H in the

given order. Also let the nodes in the grid be numbered by
the integers 1,---,n. 1If d is the degree of freedom at
each node, then we may associate node i with the rows (i-
l)d+l,---,id@ of H. 1In this paper, we will simplify the dis-
cussion by assuming that 4 = 1. However, it is easy to see

that the results apply to the case ds1 as well.

After the processing of an element e (the accumulation

of He

into H) and before the processing of element e+l, we
may define the following two sets of rows of H

1) The set of partially assembled rows (i | i € 1 u---uU e
AND i € e+l U---U m), where i € e denotes that i is a node
in element e.

2) The set of ready rows (i | i ee AND i £ e+l U --- U m}.
Any row in this set will not be modified by the processing

of future elements. The union of the above two sets is

called the active front at element e and is denoted by

Pa(e).




A frontal solver identifies, after the processing of

each element e, the rows in Fa(e) that are ready and uses
each ready row i of H to eliminate the sub-diagonal ele-
ments in column i and then removes the ready rows from core

memory. Hence, if :Pa(e) | is the cardinality of Fa(e), and
F = nax(:?.(e): : e=1l,'-+,m}, then the frontal solver needs

to provide core storage for only F rows of H.

For large problems, frontal solvers have two advantages
over band solvers, namely 1) they interleave the assembly
and factorization of H, and hence eliminate the need to
store H in secondary storage during the assembly and then

to retrieve it during the factorization, 2) They require

less cor; memory than band solvers because F is usually
smaller than the bandwidth of the matrix H {2,4). However,
Fa(e) consists of non-contiguous rows of H, which requires
some indexing to keep track of the location of each row in
memory. Also, some preprocessing is needed in order to
determine the instant at which each row becomes ready (com-

pletely assembled).

ASSEMBLER | |  FACTORIZER

Figure 1

Clearly, the rows of H do not become ready in sequential
order, which is a serious problem if the assembly and fac-

torization are to be executed in parallel on different
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hardware units (Pig l1). For example if an array processor

is used for the factorization, then indexing becomes a
source of inefficiency. The same applies if different pro-
cessors are used for the assembly and the factorization in a
multiprocessor system. Moreover all the special purpose
hardware that are suggested in the literature for matrix
factorization expect to receive the rows of H in a sequen-

tial order (see for e.g. [6] and (7] ).

iln this paper, we suggest a variation of the frontal
technique that does release the ready rows of H in order.
This variation has the added advantage that the instant at
which each row is to be released to the factorizer is
uniguely determined by a parameter 8, that is no preprocess -
ing is needed to generate information about the instant at

which each row becomes ready.

The size of the core memory needed by the assembler is
proportional to the value of the parameter 8, which, then,
has to be chosen in an optimal way. In Section 3, we

describe an algorithm for the determination of omi + the

n
optimal 8 for a given problem, then, in Section 4, we res-
trict our attention to the sub-class of finite element grids

that are commonly used in practical applications, and we

derive an upper bound on omm for this sub-class.




2. An order preserving frontal technique

In the rest of this paper we will not distinguish
between the application of the frontal technique to conven-
tional or parallel architectures. More specifically, we
will use the term "a row is consumed” to indicate that the
row is factorized 'in core' in conventional computers, or
that the row is passed to the factorization unit, in the

case of parallel processing.

Let \A(e) = max{i | i eFa(e)}. That is, immediately

after the assembly of element e, A(e) is the row with the
largeat index in the active front. Also, let & be an
integer such that, after the precessing of any element e,
rows 1l,---,\(e) - 8 are ready (completely assembled), and

hence, may be consumed.

l

The basic idea in our modified frontal technigue is to —

find the minimum value of the integer 8. This value is .
called the width of the delayed front and is denoted by w
omin' Given omin' the assembly of H and its factorization o~

R

may be interleaved as described by the following algorithm:

Last-consumed := 0 ; -

For elements e=1, ... , m do g

(] Assemble He into H and determine \(e) ; )

(] If e < m, n

Then consume rows Last-consumed , ... , )\(e)-om.m "

™

Else consume rows Last-consumed , ... , n ; b

(] Last-consumed := )‘(e)-omin ; _

/
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Clearly, after any iteration e, rows A(e)-
bmin+l,~--,x(e) of H are not consumed and have to be stored

in memory. A circular buffer of size °mi may be used to

n
store these rows in segquential order. Here, note that even

if a row p, X(e)--bmi < p € \(e), is ready after the process-

n
ing of element e, its consumption is delayed until after

the processing of an element e with \(e)-0 2 p. This is

min
different from the classical frontal technigue where rows

are consumed as soon as they are ready.

The purpose of delaying the cgnsumption of the ready
rows of H is two folds: 1) to ensure that the rows of H are
consumed in sequential order and 2) to allow for an
automatic determination of the instant at which each row is
to be consumed. The price to be paid is a larger memory
requirement. However, with today's technology, this price
is affordable as long as reasonable bounds may be imposed on

. Such bounds will be

the width of the delayed front omin

discussed in Section 4.

In any frontal technique, the order at which the ele-
ments are processed is crucial because it determines the
size of the active front. Hence, an element numbering is
first chosen to minimize the active front, then the nodes
are numbered according to their occurrences in the elements.

More specifically, given an element numbering, the following

algorithm is usually used to number the nodes:
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last-number := 0 ;
For elements € = 1,---,m Do
1) For each node v in e that is not numbered yet Do
'1.1) last-number := last-number + 1 ;

1.2) Give v the number last-number ;

This type of two phase node numbering scheme has been
studied in (3] where it is shown that if the elements are
numbered using the reverse Cuthill-Mckee algorithm [1l] then
the profile, bandwidth and anticipated fill-in of the matrix
H resulting from the two phase node numbering are compar-
able to those resulting from the best known heuristic node
numbering scheme, namely the reverse Cuthill-Mckee algo-

rithm.

[f ALGl is used to number the nodes in the grid, then

the width of the delayed front omin

provided that the element numbering is proper in the sense

may be easily determined

of the following definitions:

Def inition 1: Given a specific numbering of the elements, an
element e, 1 < e < m is called “"wrapped” if any node in e is

also in one of the previous elements 1l,---,e-1l.

Definition 2: An element numbering is called "proper" if it
does not result in any wrapped element. That is, it satis-
fies the property that any element e, 1 < e < m, contains at

least one node that is not in elements 1,---,e-1.
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Proposition 1l: Given a finite element grid and a proper ele-

ment numbering, let the nodes in the grid be numbered by
ALGl, and let the half-bandwidth of the resulting matrix H

be B, = max [\Sg(e)-s(e):}, where g(e) and s(e) are the
h e=1,..,m

largest and smallest node numbers, respectively, in element

e. If each element contains at most k nodes, then

Bh-k<6min<8h

Proof: Consider the situation after the processing of any
element e. From the proper numbering, any element r, r > e,
contains at least one node not in elements 1l,-:--,e. Hence,
g(r) >g(e), where g(r) and g(e) are the largest node
numbers in elements r and e, respectively. But, from the
definition of Bh' the smallest node number in element r
satisfies s(r) 2 g(r)-Bh > g(e)-Bh. That is rows 1, ~---,
g(e)—Bh are not affected by the assembly of element r. Nol-
ing that this is valid for any r > e and that \(e) = g(e) in
a proper labeling, we conclude that‘omin<8h.

Next, let e be the specific element that satisfies

B, = g(e) - s(e), and let e = e-1. Clearly, at most k-1

nodes may be numbered in element e, that is g(e) € g(e)+k.

Now, after the processing of element e, rows 1,---,g(e) -
(Bh - k) are not completely assembled because element e > e
contains a node s(e) = g(e) - B, € g(e) + k - B . Hence, row

s(e) will be affected by the assembly of element e, which

proves that o . > B - kB
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(a) Proper labeling (b) Non-proper labelin.
Figure 2

Proposition 1 states that if we chose 6 = B, , then we

will be away from the optimal L by at most k. In Figure

in
2.a and 2.b, we give a proper and a non-proper element
numbering, respectively, for the same grid (element numbers
are enclosed in circles). The node numbering resulting from
ALGl is also shown. In both cases Bh = 9, but in the non
proper case, after the assembly of element 9, row g (9)-
Bh=20—9=ll is not completely assembled and will be affected
by the assembly of element 10. In other words, amin > Bh’

which proves that proper element labeling is essential for

the result of Proposition 1 to hold.

I1f the elements in the grid are of the Lagrangian type
with k > 4, then each element contains at least one center
node, and hence, any element labeling is proper. lHowever,
general conditions for the existence of proper labeling arec
hard to obtain. In Figure 3, we show two grids for which no

proper element labeling exist. The choice of 8 1in such

cases is discussed in the next section.
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3. Chosing 0 for general element labeling

Consider the triangular grid of Fig 3.b. Clearly, the
elements that are hashed in the figure are wrapped, and
hence the given element 1labeling 1is not proper. The
corresponding node numbering (shown also in the figure)
yields Bh = 7. For this numbering, row 16 is partially
summed after the assembly of element 30, and hence
6 . 2 g(30)-16 = 26-16 = 10. That is, some criteria other

min
than 8 = Bh should be used if the element labeling is not

proper.
» k] b)) B 12 2
® o Je Ne e
®
'@ u@ ﬂ@ u@ l‘® 14
44 0 €3 22
] Aa 2 ] @
e Ao Ne Se N'e /|
R 7 Axfu 77 / ®
» Al’ Ali , A @
o e e o o/
® /@ 0| 0| 0

a1 ] 3 1

(a) (b)
Figure 3 - Grids that do not have proper labeling

The method that we suggest for the choice of 6 is based
on the idea of augmenting the given grid with dummy nodes so
that no elements are wrapped. Each dummy node is given the
same number as the last numbered node and the band width,
Ba' corresponding to the augmented grid is computed. Then 8

is taken to be equal to B, - For example, applying this




procedure to the grid of Fig 3.b gives the grid of Fig 4,

from which the augmented band-width is found to be 10.

» L) n <4 n 2

N, B . 'o ﬂ.
» n a o » "

!l. - , I. ﬂ.
3 » % u 1n 9

» ] ] 1

4 . . . .
» -4 » 1” 7 5

- » . 0, 14 ’.
._: » 19 13 8 4 2
i n 1% » [} 3 1

Figure 4 - The grid of Fig 3.a augmented with dummy nodes

Note that the augmented grid does not have to be con-

structed in order to compute Ba‘ It suffices to keep track,

«
.

Q while numbering the nodes in ALGl, of the last node that has
E been numbered. More specifically, we may modify ALCl to
N compute B_ as follows:
ALG2
% last-number := 0 ; B, ~0;
] For elements e = 1,---,m Do

1) For each node v in e that is not numbered yet Do

1.1) last-ﬁumber := last-number + 1 ; '

3 1.2) Give v the number last-number ;
3 2) g(e) := last-number ;
2 ' Find s(e) ; the smallest node number in e ;
.; 1f (Ba < g(e) - s(e)) Then Ba = g(e) - s(e) ;

- l'l'l')

. R T
...........

1L

------
----------
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It is easy to check that if the element numbering is

- proper, then B a computed in ALG2 reduces to Bh' the half-
. bandwidth of the matrix H.

. Proposition 2: For a general element numbering, if Ba. > Bh
X then 8 . =B_ + 1, else, if B, = B, then

? Ba-k<bmin<8a+l

where kK is the number of nodes in each element.

Proof: Consider the situation after the assembly of a partic-
ular element e. For any element r > e, ALGZ2 implies that
any node number v in r satisfies v 3 g(e) - Ba' where g(e)

is the largest node number in e. This is valid for any
'::'Z r > e, and hence rows l,--~,g(e)-Ba—l are completely assem-

bled and °mi < Ba + 1.

n
. Now, for Ba = Bh the lower bound is proved as in Proposition

- 1. This bound may be tightened if B a > Bh' because this
implies that there exists an element e such that a dummy
. node, say u, was added to e and B, = & - s(e). But from

ALG2, there exists an element e < e such that g(e) - u.

# ‘ Hence, after the processing of element e, rows .l.,---,g(e)-ﬁa

are not completely assembled, because row s(e)=g(e) - B,

will be modified during the assembly of element e. This

implies that %nin > Ba [

Proposition 2 shows that the choice of 8 - B+l is

optimal if Ba > Bh and is away from the optimal by at most k




The next question to be asked is: How large can B a be
compared to Bh?. This is important because it determines the

maximum storage needed by the assembler. However, it seems

impossible to obtain any bound on Ba if complete freedom is

allowed in the construction of the grid and in the numbering
of its elements. For this reason, we define in the next
section the class of W-proper element numbering that

excludes arbitrary strange grids and numberings.

£
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4. Upper bounds on Ba for W-proper element numbering

The results reported by Law and Fenves (3] suggest the
use of the Cuthill-Mckee (bM) algorithm or its reverse for

numbering the elements in two phase node numbering schemes.

ey, 4l

In their paper, the following definition of adjacency is

‘ used:
E Definition 3: Two elements in a finite element grid are called
adjacent if they share a common edge.

. With this definition, the CM algorithm may be described
L as follows:
; = ALG3 - The Cuthill-Mckee algorithm

- i = 0 ; Level{0] = ( a specific starting element } ;
:: ﬁepeat until all elements are numbered
i=14i+1;
J . Consider the elements in Level{i-l] in order of
2 E;ﬁ ascending numbering. For each element e, determine
: the elements that are adjacent to e, number them and

.' include them in Level(i]

The specification of the scheme used to number the ele-

: - ments does not exclude grids with arbitrary strange shapes.
N The following definition imposes some regularity on both the
o grid topology and the numbering scheme:

.-
Z- _ Definition 4: An element numbering is called W-proper, if each
A wrapped element e shares a node v with an adjacent element
: L e, such that v is not in elements l,---,e-1l. Note that this
3
 ,
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implies that e < e and that e is not wrapped.

More descriptively, if ALGl is used to number the nodes

in the grid, then each element e that does not contain a
new node should contain at least one node v that have been
numbered in an adjacent element e. For example, the
numberings in Figure 3 are W-proper, while the CM numbering
of the grid shown in Figure 5 is not W-proper. More specif-
ically, in Fig S5, element 25 is wrapped and its only adja-
cent element, namely 24, is also wrapped. For this example,

it is easy to see that Bh-lO and Ba-22.

)] 2 9 »

@

® 'u
@ 32@3
2 22C) zaf? 23

QD
1 17

®
lo|®
8
b3

8 3 8 4
o\e|

19

®

=_
-

@ e e
o0 @ ‘oo

18 ’ 2 1 7 12
Figure 5 - A non W-proper element numbering
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As is clear from the above example, non W-proper number-
ing may be obtained only on very strange grids. Moreover,

the following may be proved:

Proposition 3: If the elements in the grid are of the serendi-
pity type, that is contain nodes on the edges of the ele-

ments in addition to those on the corners, then any element

numbering of the grid is W-proper.
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Proof: Let e and e be two adjacent elements, and let e > e.

From the hypothesis of the proposition, there is a node v on

the common edge of e and e so that v cannot be in any other
element in the grid. Hence v is not in elements-l,'--,e-l

and hence e cannot be wrapped B

Now, we are ready to establish a bound on Ba‘

Proposition 4: If the CM algorithm is used to number the ele-
ments of a grid, and the resulting numbering is W-proper,

then

Ba €2 Bh

Proof: Let e be the element that satisfies

B, =nu - s(e) =g(u) - s(e) (1)

where u is the dummy node added to e and u < e is the first

element before e that is not wrapped.

From the hypothesis, there is an element e adjacent to e

such that e < e, and there exists a node v in both e and e
such that v is not in elements 1,:--:-,e-1. By the definition
Of Bh'

v - s(e) < B ’ (2)
Given that Level(0]) in CM algorithm contains only one node,

then u is in a level i » 1 and there exists an element u in

level i-1 such that u is adjacent to u. In other words,

.............. et
RSO COA -.‘.-.':\"!\'_\‘!\' 0




there is a node A\ in both u and u that satisfies

g(u) - ) < By (3)
A € g(u) (4)

Moreover, u e because if u > e then the CM algorithm

would not number u before e. Hence, any node not in ele-
ments 1,---,e~-1 has a number larger than g(u). In particu-

lar
v 2 g(u) (%)

From (2), (3), (4) and (5) we get

g(u) - s(e) € 2 By,

The result then, follows directly from (1)@

1k
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5. Conclusion

We presented a method for interleaving the assembly and
solution stages of the finite element analysis. This method
differs from the classical frontal technique in the follow-
ing:

1) The rows of the assembled matrix are made available for
factorization in order. This is important for parallel

processing.

2) The instant at which each row is made available is
determined automatically, rather than through elaborate
preptocéssing.

3) The storage required by the assembler is determined by

the width of the delayed front omin rather than the max-
imum size of the active front F. Although Onin 1S usu-

ally larger than F, we proved that, for the type of
meshes encountered in practical applications,

n € 2B < B, where B is the bandwidth of the stiff-

°mi h
ness matrix H.

4) The rows of H are stored in order. Hence, no indexing
is needed to keep track of the location of each row in

memory.

In other wotds, features from both frontal and band

solvers are combined in a method that is easy to implement

on either parallel or uniprocessor systems.
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