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PAAL- ABSTRACT [o " o ...

.-" Frontal techniques offer the potential for processing

the assembly and the factorization phases of finite element

analysis in parallel However, the rows of the stiffness

: matrix are assembled and factored in different orders, thus
depriving frontal solvers of the uniformity desired in

parallel processing. On the other hand, band solution tech-

niques handle the factorization phase In a very uniform way
but do not interleave assembly and factorization. th s

paper,ie suggestina technique that borrows from both fronta

and band solvers those characteristics that are advantageous

for parallel processing. Moreover, book keeping and data

manipulation are simpler ine thatan In

the classical frontal method. This makes the suggested

technique also attractive for sequential systems.
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The frontal solution technique [5] is a very effective

means for reducing the computer time and the storage

requirement for finite element analysis. Its central concept

is the alternation between the assembly of the stiffness

matrix H and its factorization. In order to be more

*specific, let the elements in the finite element grid be

labeled by unique integers l,...,m, and processed in that

order. That is the corresponding element matrices

1 . m
..H , , are accumulated in the global matrix H in the

given order. Also let the nodes in the grid be numbered by

r the integers l,--.,n. If d is the degree of freedom at

each node, then we may associate node i with the rows (i-

l)d+l,---,id of H. In this paper, we will simplify the dis-

.! cussion by assuming that d - 1. However, it is easy to see

that the results apply to the case dAl as well.

After the processing of an element e (the accumulation

of H into H) and before the processing of element e+l, we

may define the following two sets of rows of H

. 1) The set of partially assembled rows (i i 1 u-..u e

AND i £ el U---u m), where i e e denotes that i is a node

in element e.

- 2) The set of ready rows {i i e e AND i I e+I u u m).

Any row in this set will not be modified by the processing

of future elements. The union of the above two sets is

called the active front at element e and is denoted by

F a(e).
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A frontal solver identifies, after the processing of

each element e, the rows in F a (e) that are ready and uses

each ready row i of H to eliminate the sub-diagonal ele-

ments in column i and then removes the ready rows from core

memory. Hence, if I Fa( e ) I is the cardinality of F'a (e), and

j max( IFa (e) : e-l,--.,m), then the frontal solver needs

to provide core storage for only F rows of H.

For large problems, frontal solvers have two advantages

over band solvers, namely I) they interleave the assembly

and factorization of H, and hence eliminate the need to

store H in secondary storage during the assembly and then

to retrieve it during the factorization, 2) They require

less core memory than band solvers because :F is usually

smaller than the bandwidth of the matrix H (2,4). However,

F a(e) consists of non-contiguous rows of H, which requires

some indexing to keep track of the location of each row in

memory. Also, some preprocessing is needed in order to

determine the instant at which each row becomes ready (com-

pletely assembled).

ASSEMBLER FACTORIZER

Figure 1

Clearly, the rows of H do not become ready in sequential

order, which is a serious problem if the assembly and fac-

torization are to be executed in parallel on different

~* I41 ~_*4 _ k,-;' K~$ %



-3-

hardware units (Fig 1). For example if an array processor

is used for the factorization, then indexing becomes a

source of inefficiency. The same applies if different pro-

cessors are used for the assembly and the factorization In a

multiprocessor system. Moreover all the special purpose

hardware that are suggested in the literature for matrix

factorization expect to receive the rows of H in a sequen-

tial order (see for e.g. (61 and [7) ).

in this paper, we suggest a variation of the frontal

technique that does release the ready rows of H in order.

This variation has the added advantage that the instant at

which each row is to be released to the factorizer is

uniquely determined by a parameter 8, that is no preprocess-

ing is needed to generate information about the instant at

which each row becomes ready.

The size of the core memory needed by the assembler is

proportional to the value of the parameter 8, which, then,

has to be chosen in an optimal way. In Section 3, we

describe an algorithm for the determination of 8 min' the

optimal 8 for a given problem, then, in Section 4, we res-

trict our attention to the sub-class of finite element grids

that are commonly used in practical applications, and we

derive an upper bound on 8min for this sub-class.

A.
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2. An order preserving frontal technique

In the rest of this paper we will not distinguish

between the application of the frontal technique to conven-

tional or parallel architectures. More specifically, we

will use- the term ma row is consumed" to indicate that the

row is factorized 'in core' in conventional computers, or

that the row is passed to the factorization unit, in the

case of parallel processing.

Let )(e) max(i I i e F a(e)). That is, immediately

after the assembly of element e, X(e) is the row with the

largest index in the active front. Also, let 0 be an

integer such that, after the precessing of any element e, -7

rows l,• •,)(e) - 8 are ready (completely assembled), and -t

hence, may be consumed.

The basic idea in our modified frontal technique is to

find the minimum value of the integer 8. This value is

called the width of the delayed front and is denoted by

8min* Given 8min' the assembly of H and its factorization

may be interleaved as described by the following algorithm:

Last-consumed :-0 ;

For elements e-l, .. , m do

[ Assemble He into H and determine k(e)

[1 Ife < m,

Then consume rows Last-consumed , ... , )(e)-Omin

Else consume rows Last-consumed , ... , n

(] Last-consumed :- X(e)-Omin

/
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Clearly, after any iteration e, rows X(e)-

0 mi+,.--,.(e) of H are not consumed and have to be stored

in memory. A circular buffer of size 0min may be used to

store these rows in sequential order. Here, note that even

if a row p, X(e)-8 min < p 4 X(e), is ready after the process-

ing of element e, its consumption is delayed until after

the processing of an element W with k(e)-Omin 0 p. This is

different from the classical frontal technique where rows

are consumed as soon as they are ready.

The purpose of delaying the consumption of the ready

rows of H is two folds: 1) to ensure that the rows of H are

consumed in sequential order and 2) to allow for an

automatic determination of the instant at which each row is

to be consumed. The price to be paid is a larger memory

requirement. However, with today's technology, this price

is affordable as long as reasonable bounds may be imposed on

the width of the delayed front 0 min  Such bounds will be

discussed in Section 4.

In any frontal technique, the order at which the ele-

ments are processed is crucial because it determines the

size of the active front. Hence, an element numbering is

first chosen to minimize the active front, then the nodes

are numbered according to their occurrences in the elements.

More specifically, given an element numbering, the followinq

algorithm is usually used to number the nodes:

%_*%,,* .-,-% ,,%, .,,-,,', -,* .,,,,. ..... '.... ... ._ ' . -....: -..-... . .. , ........ ... .. ... .'
t iat 
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A~LG

last-number :- 0 ;

For elements e - 1,...,m Do

1) For each node v in e that is not numbered yet Do

1.1) last-number :- last-number + 1

1.2) Give v the number last-number ;

This type of two phase node numbering scheme has been

studied in (3] where it is shown that if the elements are

numbered using the reverse Cuthill-Mckee algorithm [1) then

the profile, bandwidth and anticipated fill-in of the matrix

H resulting from the two phase node numbering are compar-

able to those resulting from the best known heuristic node

numbering scheme, namely the reverse Cuthill-Mckee algo-

rithm.

If ALGl is used to number the nodes in the grid, then

the width of the delayed front 8min may be easily determined

provided that the element numbering is proper in the sense

of the following definitions:

Definition 1: Given a specific numbering of the elements, an

element e, 1 4 e 4 m is called "wrapped" if any node in e is

also in one of the previous elements 1,--.,e-l.

Definition 2: An element numbering is called "proper" if it

does not result in any wrapped element. That is, it satis-

fies the property that any element e, 1 4 e 4 m, contains at

least one node that is not in elements 1,--,e-i.

. .
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Proposition 1: Given a finite element grid and a proper ele-

ment numbering, let the nodes in the grid be numbered by

ALGI, and let the half-bandwidth of the resulting matrix H

be Bh - max ( Jg(e)-s(e), where g(e) and s(e) are the
e-l, .. ,M

largest and smallest node numbers, respectively, in element

e. If each element contains at most k nodes, then

8h k < 6 min ( 8h

Proof: Consider the situation after the processing of any

element e. From the proper numbering, any element r, r > e,

contains at least one node not in elements 1,.-,e. Hence,

g (r) > g (e), where g (r) and g (e) are the largest node

numbers in elements r and e, respectively. But, from the

definition of Bh , the smallest node number in element r

satisfies s (r) > g(r)-Bh > g(e)-B h . That is rows 1, -,

g(e)-B h are not affected by the assembly of element r. Not-

ing that this is valid for any r > e and that X(e) g(e) in

a proper labeling, we conclude that 8min4Bh'

Next, let e be the specific element that satisfies

Bh - g (e) - s(e), and let e - e-l. Clearly, at most k-1.

nodes may be numbered in element e, that is g(e) 4 g(e)+k.

Now, after the processing of element e, rows 1,---,g(e) -

(Bh - k) are not completely assembled because element e > e

contains a node s(e) - g(e) - Bh 4 g(e) + k - 8h* Hence, row

s(i) will be affected by the assembly of element e, which

proves that 8min > Bh k

.. , ., ,.C.- ... , .. , -.. .. ..- . ....- , .-..:...., . .... .-.-. . -. ..... . . -.;... - . .... -.-.-. . .. '
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(a) Proper labeling (b) Non-proper labelinm.
Figure 2

Proposition 1 states that if we chose 6 - Bh, then we

will be away from the optimal 6min by at most k. In Figure

2.a and 2.b, we give a proper and a non-proper element

numbering, respectively, for the same grid (element numbers

are enclosed in circles). The node numbering resulting from

ALZl is also shown. In both cases Bh = 9, but in the non

proper case, after the assembly of element 9, row g(9)-

Rh 20-9-11 is not completely assembled and will be affected

by the assembly of element 10. In other words, 6 min > 8h

which proves that proper element labeling is essential For

the result of Proposition 1 to hold.

If the elements in the grid are of the Lagrangian type

with k > 4, then each element contains at least one center

node, and hence, any element labeling is proper. However,

general conditions for the existence of proper labeling are

hard to obtain. In Figure 3, we show two grids for which no

proper element labeling exist. The choice of 6 in such

cases is discussed in the next section.
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3. choeing 8 for general element labeling

Consider the triangular grid of Fig 3.b. Clearly, the

elements that are hashed in the figure are wrapped, and

hence the given element labeling is not proper. The

corresponding node numbering (shown also in the figure)

yields Bh - 7. For this numbering, row 16 is partially

summed after the assembly of element 30, and hence

8 g(30)-16 - 26-16 - 10. That is, some criteria other:-" rain

than 6 - Bh should be used if the element labeling is not-

-- proper.

* U

1 4 (D 1

(a) (b)
. Figure 3 - Grids that do not have proper labeling

The method that we suggest for the choice of 8 is based

on the idea of augmenting the given grid with dummy nodes so

that no elements are wrapped. Each dummy node is given the

same number as the last numbered node and the band width,

B a , corresponding to the augmented grid is computed. Then 8

is taken to be equal to 8a* For example, applying this
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procedure to the grid of Fig 3.b gives the grid of Fig 4,

from which the augmented band-width is found to be 10.[ ' I 4n V In SO

/35. /32 /Ma, 2 3

38 It 1

U~1 * S14 _

Figure 4 -The grid of Fig 3.a augmented With dummy nodes

Note that the augmented gr id does not have to be con-

structed in order to compute B a* It suffices to keep track,

ma

while numbering the nodes in ALGi, of the last node that has

been numbered. More specifically, we may modify ALC]1 to

compute B aas follows:

ALG2

lastnumber :-0 ;Ba-0;

For elements e - 1,---,m Do

1) For each node v in e that is not numbered yet Do

1.1) last-number :- last-number +- 1

1.2) Give v the number last-number

2) g(e) :- last-number;

* Find as(e) the smallest node number* in e

if (B a< g (e) - (e)) Then B a g g(e) s s(e);

.... ... ... ....... /..
.** ...- '..9. ;' .%./ '%. . /','.-* * *
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, It is easy to check that if the element numbering is

proper, then Ba computed in ALG2 reduces to Bh , the half-

3 bandwidth of the matrix H.

Proposition 2: For a general element numbering, if Ba > Bh

then 8min 0 Ba + 1, else, if Ba - Bh ' then

SBa -k <min Ba + 1

where k is the number of nodes in each element.

Proof: Consider the situation after the assembly of a partic-

" ular element e. For any element r > e, ALG2 implies that

. any node number v in r satisfies v. )t g(e) - Ba , where g(e)

is the largest node number in e. This is valid for any

r > e, and hence rows l,-,g(e)-Ba-i are completely assem-

bled andmin 4 B + 1.

. Now, for Ba -B h the lower bound is proved as in Proposition

1. This bound may be tightened if B > B because thisa hr easeti

, implies that there exists an element " such that a dummy

IL
node, say A, was added to e and B - s (e). But from

ALG2, there exists an element e < e such that g(e) -.

Hence, after the processing of element e, rows I,• ,g(e)-8a

are not completely assembled, because row s(e)-g(e) -

will be modified during the assembly of element e. This

implies that 8min > a

" Proposition 2 shows that the choice of - Ba +1 is

optimal if Ba > Bh and is away from the optimal by at most k

V o

5"
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if a a B h"

, The next question to be asked is: How large can B bea

compared to B h?. This is important because it determines the

maximum storage needed by the assembler. However, it seems

impossible to obtain any bound on a if complete freedom is

allowed in the construction of the grid and in the numbering

* of its elements. For this reason, we define in the next

- section the class of W-proper element numbering that

excludes arbitrary strange grids and number ings.

-°.a

a.

-a°

5%
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4. Upper bounds on Ba for W-proper element n smbering

The results reported by Law and Fenves (31 suggest the

:, .use of the Cuthill-Mckee (CM) algorithm or its reverse for

numbering the elements in two phase node numbering schemes.

In their paper, the following definition of adjacency is

used:

[" " Definition 3: Two elements in a finite element grid are called

adjacent if they share a common edge.

With this definition, the CH algorithm may be described

as follows:

ALG3 - The Cuthill-Mckee algorithm

i - 0 ; Level(O] - [ a specific starting element )

Repeat until all elements are numbered

i + ;

Consider the elements in Level[i-l] in order of

-' ascending numbering. For each element e, determine

the elements that are adjacent to e, number them and

IL
S,-. include them in Level(i]

* The specification of the scheme used to number the ele-

ments does not exclude grids with arbitrary strange shapes.

. .. The following definition imposes some regularity on both the

grid topology and the numbering scheme:

Definition 4: An element numbering is called W-proper, if each

*" wrapped element e shares a node v with an adjacent element

e, such that v is not in elements l,--'e-l. Note that this

" -F

• ,P
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implies that e < e and that e is not wrapped.

More descriptively, if ALGI is used to number the nodes

in the grid, then each element W that does not contain aai

new node should contain at least one node v that have been

numbered in an adjacent element e. For example, the

numberings in Figure 3 are W-proper, while the CM numbering

of the grid shown in Figure 5 is not W-proper. More specif-

ically, in Fig 5, element 25 is wrapped and its only adja-

- cent element, namely 24, is also wrapped. For this example,

it is easy to see that Bh-lO and Ba- 2 2 .

41 41 40 39S@ @ @
'34

1" ® ' 0 ' ' --"

r- Figure 5 - A non W-proper element numbering".

~As is clear from the above example, non W-proper number-

i" ing may be obtained only on very strange grids. Moreover,_"

r;.r;-the following may be proved: .

. Proposition 3: If the elements in the grid are of the serendi-

. pity type, that is contain nodes on the edges of the ele-- '

. ments in addition to those on the corners, then any element,

- numbering of the grid is W-proper.

7..:

-27
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Proof: Let e and W be two adjacent elements, and let e > e.

From the hypothesis of the proposition, there is a node v on

Athe common edge of e and W so that v cannot be in any other

element in the grid. Hence v is not in elements 1,---,e-1

and hence e cannot be wrappedO

Now, we are ready to establish a bound on Ba '

Proposition 4: If the CM algorithm is used to number the ele-

.- ments of a grid, and the resulting numbering is W-proper,

then

B a h 2 Bh

Proof: Let e be the element that satisfies

B a =t-s(e) - g( 6) -se) (1)

where / is the dummy node added to e and u < e is the first

element before e that is not wrapped.
P

From the hypothesis, there is an element e adjacent to e

• -such that e < W, and there exists a node v in both e and e

such that v is not in elements l,.-.,e-l. By the definition

of Bhr

v - s(e) Bh  (2)

- Given that Level(0] in CM algorithm contains only one node,

then u is in a level i ) 1 and there exists an element u in

I. level i-l such that u is adjacent to u. In other words,

V:.

- -~** - -~ *.,
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there is a node k in both u and u that satisfies

g(u) - ( Bh (3)

g(u) (4)

Moreover, u < .e because if u > e then the CM algorithm

would not number u' before e. Hence, any node not in ele-

ments 1,---,e-1 has a number larger than g(u). In particu-

lar

v ) g(u) (5)

From (2), (3), (4) and (5) we get

g(i') - s(W) 4 2 Bh

The result then, follows directly from (1)2

Of.

"-4
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5. Conclusion

We presented a method for interleaving the assembly and

solution stages of the finite element analysis. This method

differs from the classical frontal technique in the follow-

ing:

1) The rows of the assembled matrix are made available for

factorization in order. This is important for parallel

processing.

2) The instant at which each row is made available is

determined automatically, rather than through elaborate

preprocessing.

3) The storage required by the assembler is determined by

the width of the delayed front 8min rather than the max-

imum size of the active front i. Although amin is usu-

ally larger than F, we proved that, for the type of

meshes encountered in practical applications,

amin < 2 Bh < B, where B is the bandwidth of the stiff-

ness matrix H.

4) The rows of H are stored in order. Hence, no indexing

is needed to keep track of the location of each row in

memory.

In other wotds, features from both frontal and band

solvers are combined in a method that is easy to implement

on either parallel or uniprocessor systems.

,, .-... *. *****-.* --e- -.m . ; . - . - ' .- , -. .- - . .%'; , .. " * ,', - " ." ' . b ,," - ... ,'o.* . b:.* ", " %



- 18 -

Acknowledgement

I am pleased to thank Werner Rheinboldt and Kincho Law

for helpful discussions and comments.

Ref or once

1. E. Cuthill and J. Mckee, ''Reducing the Bandwidth of

Sparse Symmetric Matrices.,'' Proc. of the 24th National

Conference of the ACM, pp.157-172 (1969).

2. 1. S. Duff, ''Design Features of a Frontal Code for

Solving Sparse Unsymmetric Linear Systems Out-of-core,''

SIAM J. on Scientific and Statistical Computing 5(2), pp.270 -280  '

(1984).

3. S. J. Fenves and K. H. Law, ''A Two Step Appoach to Fin-

ite Element Ordering,'' Int. J. for Numerical Methods in

Engineer ing (1983).

4. P. Hood, ''Frontal Solution Program for Unsymmetric

Matrices,'' Int. J. for Numerical Methods in Engineering 10,

pp.379-399 (1976).

5. B. Irons, ''A Frontal Solution Program for Finite Ele-

ment Analysis,'' Int. J. for Numerical Methods in Engineering 2,

pp.5-32 (1970).

6. K. H. Law, ''Systolic Arrays for Finite Element

Analysis,'' Computers and Structures 20 (1985).

7. R. G. Melhem, ''On the Design of a Pipelined/Systolic

Finite Element System,'' Computers and Structures 20, pp. 6 7 -

75 (1985).



30m.~

FILMED

1 1-85

DTIC


