ON THE INTEGRATION OF LOGIC PROGRAMMING AND FUNCTIONAL 1/1
PROGRAMMING(U) NRYAL POSTGRADUATE SCHOOL MONTEREY CA

R E RHODES JUN 85

UNCLASSIFIED F/G 9/2 NL

56—8159 751




|0 ¥k =2 3
= 'Els-z' 22
=4iE
o 2o
But =

B =7 %

N2 s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A P

S

p—
weawrwred




TP T Y ——

L4
1
:
<i E) b
.
;
s
o & 1
j{ t{""‘"'
AN

e oW O, e ettt
Pl i & . A S, P N

- . H . . . - .

U ATS N SCYSS. 2 .

Y
S
“2'a

-

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

WAI59751

. e,

’ . L

1, -,
! A

THESIS

ON THE INTEGRATION OF LOGIC
PROGRAMMING AND
FUNCTIONAL PROGRAMMING
e by

é‘ Randy E. Rhodes

) June 1985

&

gy Y '\TT
bl &
€. Thesis Advisor: B. J. MacLennan o
F"_: ol
£ Approved for public release; distribution is unlimited BNy

85 10 04 006 o




T A s as el - TR ks
g gy > ity S mbaiioptiny S A S ailis - ekl Rl Al SRR

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

: REPORT DOCUMENTATION PAGE BEF o O S ORM
LIWN’GWEE 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
| -5 7
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
. Master's Thesis

On The Integration of Logic Programming

and Functional Programming June 1985

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORC(s) 8. CONTRACT OR GRANT NUMBER(s)

Randy E. Rhodes

.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 1o mszsx
Naval Postgraduate School

Monterey, CA 93943
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School June 1985

Monterey, CA 93943 M. NUM78§R OF PAGES

8. SECURITY CLASS. (of this report)

UNCLASSIFIED

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. OISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abatract enatered in Block 20, If ditferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aside if necesaary and Identity by block number)

logic programming, functional programming, integration

20. ABSTRACT (Continue on reverse side if neceseary and identify by block number)

Two programming paradigms, logic programming and functional
programming, are discussed in detail with emphasis on the particu-
lar advantages and disadvantages of each paradigm.
The integration of these two programming paradigms is explored
based on the notion that declarative sorts of knowledge (facts
and logical relationships) should be expressed in a declarative
way, and that procedural sorts of knowledge émanipulation,

ili i should b ontinued

DD ,‘an'ss 1473  eoimion oF 1 NOV e8 18 OBsOLETE
SN 0102- LF- 014- 6601

1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

R
,,%':‘: ABSTRACT (Continued)

fgf expressed in a procedural.way. Toward this end, the conceptual
B framework for an integrated language is established, and the
basic features of the language are outlined.

Accession For
N e

A8 (DA

TIC TAR

s Y
O

s
.

-t
»
PO 2 Ny
§ .

g
0
W A_E_e_ b

nr
A

s, v R,
4

S
a 4 A4

-
LN

-
2

.
ﬂji .’

B
&y

g

S e

[y

DN RN

N
¢ g
e

L ]
v n e

-
M AR A

SN 0102- LF- 014- 6601

N
»

2 SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

!
o
Sl

5nm$ﬁw;5h»:fw§¢x TR TS,

%‘v . ..‘ !fk 1

2 ALY,




N AT e e e % T O N TN RN SO "-‘-"'P. .~
e -. _ l‘- RS TR ATV AR R LR o R C TR, N RALTLNY Ll

Approved for public releasej distribution unlimited.

On The Integration of Logic Programming
and
Functional Programming

by

Randy E. Rhodes
Lieutenant, United States Navy
B.S., Aurburn University, 198a

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1985

Anthor:

Appraoved by:

Bruce J. acLerinan, Chairman
Department of Computer Science

— N

\('W-‘lu(\ \. \\%‘Q‘_‘

“neale T. Marshall, Dean 3(§Informatian
and Policy Science

P P
.‘1 “\“
| RV gl R

‘: ‘:": ~:"i {

)t

-‘l "‘ " "

AN



\ : ABSTRACT
2} Two programming paradigms, logic programming and
functional programraing, are discusgsed in detail with
emphasis on the particular advantages and disadvantages of
each paradigm.
The integration of these two programaing paradigms is
explored baased on the notion that declarative sorta of

knowledge (facta and 1logical relationashipa) ahould be

expresgsed in a declarative way, and that procedural sorts of
knowledge (manipulation, control, and utilization of
knowledge) sashould be expreased in a procedural way. Toward
thisa end, the conceptual framework for an integrated

language is established, and the basic featureas of the *

language are outlined. (f

o ~* (,..\44'514('1- A U e Y X .;,)‘ ‘;t‘,_..'-\.“-b:‘.". }.“.';_‘:

SRR GO

4 W § n WY




- T o e ool S amdug K b i Lotk i B Al B s Ao ol A ML AR A S L SR A A AT BT b i R

ﬁﬁf~ Caa ~v

TABLE OF CONTENTS

o T.  INTRODUCTION «oueeeeeseeevencoanseaneceasancnanee 8
A. PROGRAMMING LANGUAGE DESIGN «eeeveceveneeces 8
B. PROBLEM COMPLEXITY ceveeeeeecnencocnesansees 8
0 C. SAPIR-WHORF HYPOTHESIS +veveveveceensencanee 9

D. NON-CONVENTIONAL PROGRAMMING LANGUAGES ..... 10

\“ h E- RESEARCH FOCUS ® 8 68 0069800608880 0880¢08s080ss0e080s0e 11

e I1. LOGIC PROGRAMMING vveueeveocscncascoanncannanes 12
)
.\-
-“ AI BACKGROUND ® 0 5 & 0 8 0 5 9 9S5O S S PR S OO S B S O 0 S SR S e e e s 12
:Ir: B. HORN CLAUSE ® ® © 9 5 & 8 0 A9 9 S & e " Qe S 8 T E S S e e s e s asns 13

.::'_: CU GOAL SATISFACTION P 6 s I T s L PRSI SEBREERSEBDOEBRER OO 14

- ‘ 1. Resaolution and Unification ...ccececnceee 1a
::":j 2- "on-d.t.r.inis. 4 0 ® 08 ¢ 0 5008 OB " OO S > O e e 15

T 3. PROLOG EXAMPL@ evevvecenvronsensacscenes 16
D. ADVANTAGES .c.¢cccscnnccscscsesssasccscsssssnscs 19
¥ 1. NON-pProcedural ....ccccevecconssscnscssse 20
2. Simple Semantics ....ccccvncrscscccnnnas 20

N\ 3. Separation of Logic and Control .....s.. 20

oy E. DISADVANTAGES ..ciivvvecrnesanecassnannsannns 21
Y

E;; 1. Undecidability and the

f: Halting ProbleMm ....ccceeveecocncncacsse 22
:i 2. Combinatorial-Explosion ....ceccccccsnns 23
e 3. Axiomatise All Knowledge? .....c.seeeees 23
lfi; a. HeUristics ....cccecscescacnsasceass 23
e s

i

........... R DRI VR ".1‘.*’--‘.-.-.- SN AN
a . ,\..'-_.-_. Sl e T e aaN .-‘.-{
T e e e L e e L L B e L




T T P T T T P T T T A R N T IR O TN TN WS T W W o8

b. No Expression of State® c.ccccescveccces 23

4. Imaplementation Considerations .....c:... 24

a. Backtracking and Efficiency cetecnes 24

b. Unification ....ccccccccasecscucncns 24

c. Aagsertion/Retraction ..cccsevscccecsns 24

F. SUMMARY c.cccecccccccsccancossocscscssncscnnasns 25

III. FUNCTIONAL PROGRAMMING ...cccccvccccccacssccccss 27
A. BACKGROUND .cccccccncossssasscnasascsscnnnnas 27

B. EXPRESSIONS .c.cccccccaccocnsccnssasscssansons 28

1. Evaluation Order Independence ......c..s. 29

2. Refarential Tranaparency .sccscecssccossase 31

C. FUNCTIONS .ccccccecccncacccscasccncansssanncss 32
1. Function Application ...cccccescesccscscas 33
2, Function&l@ .c.ssccccovcsssescascscncsannse 33
D. PROOF OF CORRECTNESS ...ccecccsccascasscscass 34
1. Hoare’s Axiomatic Hodol........;........ 35
2. Mill’s Functional Model ......ccecacease 36
E. ADVANTAGES ...¢cccceccccacccassnsssssnnanssns 36
1. Higher Level of Absatraction ....cceccocee 36
2. No Side Effects .....cocecescacsanscasseas 37
3. Verification and Proof Techniqueas ...... 38
4. Parallelism .....ccccoccccccsssscnssccse 39
F. DISADVANTAGES ..c:scccececcaccascccccancansans 40
1. Limitad Problem Domain ...cccevsccencccs 40
2. Recuraion and Inof{icioncy cosceseasssncae 40

3. 1Industry Resistance to Change .....cccs¢ 41

N AT R
<P



% x4, -7 N
R ICAN

out 1

-
.
s s & a

=
b

7

R
| WA

G. SUMMARY ...

IV. FEASIBILITY OF
A. PROCEDURAL
B. EXAMPLES OF
1. Declara

2. PROLOG

C. INTEGRATION

1. Procedu
Compone
2. Declara
Compone

V. FEATURES OF AN
A. SYNTAX ISsSu

B. QUALIFICATI

C. QUERIES AND

1. Context

2, Context

D. MODIFICATIO

E. AN INTEGRAT

F. SUMMARY ...

VI, CONCLUSIONS AND
A. CONCLUSIONS

B. RECOMMENDAT

LIST OF REFERENCES ..

INITIAL DISTRIBUTION

AN INTEGRATED LANGUAGE ....covve.
AND DECLARATIVE COMPONENTS ......
CONTRAST ® @& % & © & 0 00 & U S S B E s 60 e 8

tive Versuas Procedural ....ccccee

uae °£ ..CUT'. " s s 00 eGSO RTSOEBSISERTAns

ral Call from Daclarative
NL cecvcvecncscscssccscsnsasnccsnnscnsnsnas
tive Call from Procedural
NE ccesccscasecssossossccsscsscsnas
INTEGRATED LANGUAGE ...cccecvveces
ES DEFERRED .cccccecccccscceanancs
ON OF A QUERY ..cccececcccncnanasna
THEIR CONTEXT .sccescccsscasseacs
Description ....cecssseesssenaas
Algorithm ..ccccecccccnssoncsana
N TO THE RESOLUTION PROCESS .....
ION EXAMPLE ......cvovcasvcasssnces
RECOMMENDATIONS .....cccencocanse
IONS ...ceceeeccovancancanacanans

LIST % ® 0089000000 eseTBEBEESEEEAEDN

41

43

43

44

44

46

48

49

50

S3

S3

54

=1=]

55

=1}

57

60

63

64

64

66

68

71




R . A R S ST AR LG

WRCRRRSENL S, T Sl

[ PTG PRI MATLERE FLPRT AU PR

R |

e Te e "W .

I. TR T

A. PROGRAMMING LANGUAGE DESIGN

Programaing language design representa both an effort to
provide the necessary interface with the hardware of the
computar and an effort to better capture the ideas of the
programmer. As higher order programming languages evolve, a
key factor in each language designed is the level of ab-
atraction afforded the programmer. Current conventional
languagea have removed the programmer from the hardware
level of the machine. For inatance, inatead of being con-
cerned with which registera to uae, the programmer can be
more concerned with solving the problem at hand. For
certain classes of problems, this higher level of abatrac-
tion increases the aemantic power of the language and better
captures the problea solving concepts of the programmer.
The evolution of programming language design has resulted in
solutions to a broader clasa of problema and even new
approachea toward the soclution of presently unsolved

problens.

B. PROBLEM COMPLEXITY
The features of the language are the toola with which

the programmer tackles a host of complex problema. As the

problen complexity increases, the manner in which 6ne works




4
’
i
.
L9
.
!
»
N
i
N
p

« I .

c PR Te 0L 00"

»

MOBRTEEN - N g, 2 L7 ute VIR

T e

toward a solution can be aff;cted by the tool or tools
available. Conaider the analogy of an automobile mechanic
working on an automobile engine; a aimple tune-up,
adjustment, or amall part reaplacement can be parformed with
ainple handtools and devicea. How.v.r,.if the problem is
mnore complex, say involving the cylindera, camshaft, or
drive train, then the mechanic cannot asolve auch problemsa
with simple tools. The solution now requires more advanced
tools like hydraulic lifts, pneumatic tools, and precision
instruments. In fact, without more advanced tools, the job,
if satill possible, is solved through improvisation with the
simpler tools and r;.ults in a less efficient and imprecise

solution.

C. SAPIR-WHORF HYPOTHESIS

Similarly, the features of the programming language can
effect th.' mnanner in which the programmer approacheas the
solution to a particular problem. This can be considered an
application of the controveraial Sapir-Whorf hypotheaia
which originated in linguistic theory (Ref. 11]. Assuming

this hypothesis, the programmer attempting to solve complex

' probleas with a limited programming language cannot realize

his full problem solving potential and muat improvise with

the available language features to work toward an acceptable

aolution.

e Y. e A “a Y- . .
LD D IO TP W G Wl S g,




D. NON-CONVENTIONAL PROGRAMMING LANGUAGES

Conventional programming languages do not offer the
programnner a very high level of abstraction, have a
restrictive "word-at-a-time” [Ref. 5: p. 404] programming
style, and result in what B;ckua refera to as an
“intellectual Dbottleneck” (Ref. 31. The aequential nature
of these imperative languages, through use of asaignment
atatementa to alter memory, results in a von Neumann “mind
ast”, and places limitations upon the level of abatraction
availabla to the programamer. Efforta to provide more
semantic power to thease languagea haa resulted in the
d.velopn.nt' of the Ada (Ref. 6] programming language. This
very large and very complex language providea increased
saemantic power at the cost of aimplicity, clarity of
understanding, and programmer mastery of his tool [Ref. 61].

Non-conventional programming languagea, on the other
hand, offer a break from the von Neumann aind aet and help
the programmer approach and aolve problema from new
persapectives. Such non-conventional programming languages
are illuatrated by PROLOG [(Ref. 2,7], Backus’ FP language
[Ref. 3], and SMALLTALK (Ref. 4]1. Each of these languagesa
represents an implementation of a particular programming
language paradigm, namely, 1logic programming, functional
programaing (applicative programming with emphasis on
functions as arguments), and object-oriented programming,

respectively. Iasues such as semantics, computational

10

...................




power, parallelism, aside effectas, flexibility, aimulation,

and knowledge representation exemplify some of the basis for
davelopnént of language design in each of these programming

paradignms.

E. RESEARCH FOCUS

With these iaauei in =mind, two programming paradigms,
logic programming and functional programming, are discuased
in detail. The emphasis of the diacusaion will be in terma
of the particular advantagea or disadvantagea of each
programming paradigm, often aexemplified by the PROLOG or
“pure®” LISP implementation. The focus of thias atudy will be
toward the development of a theoretical foundation for the
design of an integrated programming language which, of
course, maximizes the advantages of both paradigms and
minimizes their disadvantagea. Such an integrated language
should broaden the scope of the programmer’s problem solving
capability by providing a tool that is both aemantically and
computationally powerful, and offers improved control

characteriastics.

11

AR L. YN AN R




Ll

degree rests with those portions of PROLOG which embody the

features of predicate logic. For example, the uae of
‘assert’ and ‘retract’ predicatea in the language allowsa the
asaertion and retraction of axioma based upon conditionsa
within the logic program.

This violates the principle of predicate logic
that each assertion ia an independent truth. Therefore, in
the resoclution procesa, there are different mseta of axioms
at different pointe in time (Ref. 3]. This dependence of
some axioms and the addition or deletion of others divergesa
from the notion of separation of logic and control. In
order to provide the programmer with a means to alter a
database of facts, the advantagea of separation of logic and

control (diacuased above) are sacrificed.

F. SUMMARY

The logic programaming paradigm offera the programmer a
high level, non-procedural approach to problem solving
enhanced by the aimple saemantics of Horn clausea. The
resolution of goal atatementa and the unification of
variables within that goal is at a level below that of the
programmer. Additionally, the inherent capability to
separate the logic of the problem solution from the factors
which control the solution, allows the programmer to focus
attention upon the 1logical relationships of the problenm

solution and program correctneaa.

25

- T . e T
IR P I S L UL I N WO wERE. RSP WY, P WL W TP UL L PP L. PRSI TR P L PO TR

- . - .- P

........

- .-~ ST
PRI U A U S D el Y 8




ha' At It e e * R e}

automata and systems prograaming become much more diéficult
to aolvae.
4. ) ne on C o
The moat notable implementation of logic programming
is PROLOG, and thae drabacks noted here are factors that
affect efficiency or sacrifice some of the power of the
language in favor of more efficient execution.
a. Backtracking and Efficiency
As mentioned earlier, backtracking through a
very large search apace can be very costly to the search
atrategy, vyet, for such resolution-type aystems as PROLOG,
it is very necessary. Unfortunately, it 1; this vast amount
of time spent backtracking by the PROLOG interpreter that
makes solutions to goal statements very slow in coming.
b. Unification
In order to regain some of this lost efficiency,
many PROLOG implementationsa do not provide full unification.
For instance, the resolution procesa would allow the
unification of f£f(x,x) with £(y, g(y)), and would bind x to
g(x) [(Ref. 7]. The problem, of course, is that the attempt
to prune the search tree allowa circularity and the
generation of infinite loops.
c. Assertion/Retraction
In the vein of predicate logic problem aoclving,
there have been clainms thgt PROLOG programs have no aide

effects (Ref. 7]. To some degree this is true, and that

24

ISP P Wit O] W ST U e . - L PP ST N SO W TP UYWL APUE. WL I AP WOUR WA S S




not halt on a non-theorem (Ref. 18: pP- 139). Such

procedures are said to be semidecidable.
2. Gcombinatorial-Explosion

All resolution atrategies are subject to the problenm
of combinatorial-explosion, since the search trees gsesnerated
can grow very unpraedictably (Ref. 19: P. 229). Somewhat
akin to the halting problea, it means that a succeas for the
proof of an actual theorem may be prevented due to the
tremendoua aize and shapa of the aearch apace.

3. Axiomatize All Knowledge?

The use of logic programming toward the solution of
all problema 1leads to the reatriction that all #nowledge
associated with the problem muat be embodied in axioms
(Ref., 19: p- 231]. Such a proceass nmight require an
enormous effort.

a. Heuristics

A considerable portion of this effort can be
attributed to the fact that there is, as mentioned above, no
provision for heuristica in the knowledge representation.
Therefore, such notions as best, next best, worst, etc.
reaist representation in logic. and make a logical statement
of the problem difficult or imposaible.

b. No Expression of State

Another drawback of 1logic programrming is the
absence of a method for ropr.s.nt%ng astate tranaitionas.

Without such representation many problems embodied in finite

23




+ a eI

CEASCE S Ma g S 200 Bl M & gnl Wil Nk el e B sl el 4

knowledge, it is dimportant to consider whether predicate
logic providea adequate support for reasoning about that
knowledge (Ref. 18: p. 1391.

1. Undecidability and the Halting Problem

A major drawback of predicate 1logic is the absence
of a decision mechanism for dealing with the knowledge that
can be inferred from atated aasertiona. Without euch a
mechanisa, the resolution procedure blindly searchea for a
solution.

Pure 1logic does not allow the axpression of
heuristics, which hinders the search for a path to a
aolution during the resoclution process (Ref. 19: p. 231].
Therefore the resolution strategy may allow numerous
unnecessary and divergent paths to be taken during the
search. This can become a grossly inefficient method of
search.

Additionally, given a goal statement, using
resolution to reason backward will produce a proof if the
proposed goal astatement ias, in fact, a theorem based upon
the assertions and clauses in the logic program. However,
there is no guarantee that guch a search will terminate if
there ia no proof [(Ref. 19: p. 229). This is a version of
the halting problem and 1is one that the AI community haa
coma to live with in their purauit of proof methoda, being

content with a method that proves theorems even if it nmay

22




D R i Y
oty

e W
L -i
I".. -

s 2 e

vy

f
.‘.l-

F T A S
e 2,

o Lo
108, 0
LR I

I
- : "4." )

s

~

» .l’.'
» S s

»
p A

N

l..

S
‘,l -

¥
I

L2
8
e tvh

X <

interrelationship of those control structures with the
actual logic of the program [Ref. S5: p. 35101.

Logice progralning, on the other hand, allowa a much
greater separation of logic and control. Since the order of
the clauses of a logic program haa no effect upon the
correctnasa of the program, the meaning of the program isa
tied to the logical relationahip of the program clauases, not
the order in which they are executed [Ref. 2, 5, 8].

This separation of logic and control introduces the
notion of separate analysis. Logical analysis ia a concern
for the correctness of the program, whereas, control
analysis is a concern with the efficiency of the progranm
{Ref. S, 81.

An obvious advantage of this separation, with regard
to logic programming, ias that the programmer can focus
attention upon the detaila of the logic component when
concerned with program correctness. Once a correct program
has been established, the programmer can then focusa upon the
control component for efficiency conaiderationa. Thia
disjoint analysis asaimplifiea the programmer‘’s task by
removing the previously dependent relationships between the

two components.

E. DISADVANTAGES
Although predicate logic offers some advantages to the

programmer in terms of representation of certain kinda of

21




>

pt

1 1. Nen-Procedural

.’.‘

3% The notion of a non-procedural language ia one in
- which the festures of the language allow the programmer to
iz concentrate more on “vhat” the program will do and not on
}E “*how" it will be done [(Ref. 35: p. 499]. The goal-directed
;: nature of logic programming eabodies this notion, in that
f: the programmer expresses the facts, in clause form, which
f: assert the existence of the desired result (Ref. 5: p. 500].
a: B The con;truction of the desired result, then, ia based upon
ﬁz the resolution process of the logic programming language and
EF removes the burden of “how" it will be done from the

programmer.

2. Simple Semantics

Much of the power behind the semantics of

R

t_'_l

programaing rests with the notions of truth and inference
(Ref. 18]. Assertions within the logic program are accepted
as truth, and the clauses within the program are facts that

allow inferences to be made based upon those assertions.

".

"\
:: 3. Separation of Logic and Coptrol
4
- Closely related to the non-procedural notion of
T programming is the notion of a logic component and a control
l
%z component within the language (Ref. 8). The control
R
- structures of conventional languages determine the order in
B
- which actiona within the program take place. The fact that
ﬁj statementa within that program muat be executed in a
'2 apecified order to ensure correctness illustrates the
:'J
o 20
b

: }l.l..'

if

-




1a) A R Ay

"y 8§ R
B

Pl
K _a A

o e = g,
A4 A

lv. ‘_‘ [ 8 r

.
.
.
.

for matching [Ref. 12]. This process is called backtracking
and the node at which backtracking atops is called a
backtracking point. The search continues from the
backtracking point purauing the unsearched alternativea. A
success requires that every path of the proof tree end with
the empty clause (Ref. 12].

For example, in Figure 2.2(a), the leaf D can be
rasolved with the empty clause, but the leaf E cannot,
aincethere are nb clasuaes within the logic program that have
a head to match it. Therefore the ayatem must backtrack to
node B since an alternative choice within the search tree
(see label (3), Figure 2.1) ia atill available. That choice
is depicted by the proof tree in Figure 2.2(b).

This backtracking is necessary  because of the non-
deterministic characteristics of the resolution of subgoals.
Yet it is easy to see that fairly large and complex programs

would require considerable backtracking.

D. ADVANTAGES

Logic programming offers aeductive advantagea when
dealing with certain classes of problems. Ideas of logic
have matured for centuries and have a conciae and
universally understood semantics. For bodies of knowledge
that can be represented in a logical form, logic programming
offers a mneans to prove things about that body of knowledge

(Ref. 20].

19




Faibiit

s

SN W SN

A

15 ‘l

alatl

b
<
by

L el ™ i e ™ ettt g i i o gt ae ) - andt el s g sk 4

proof tree tR.fl 121. A proof tree is generated for each
node in the search tree. It is an AND-tree where the root
is the original goal and the leaves are the corresponding
subgoalas of the search tree {(Ref. 12]. The proof trees for

nodeas <¢-~- D,E,C and <-- F,C are illustrated in figure 2.2

L e—
”~

Figure 2.2 Proof Treesa

During the resolution procsas, .if a leaf cannot be
unified or resolved with the head of another definite clauae
within the 1logic program, then a portion of the tree is
erased. That portion is from the unresolvable leaf back to

the moat recent node that has not exhausted ita potential

i8

. ae LW - - PRI S I P e T P By T v} "% ™ LIRS ] H"“"'*J" 2 3%
-'.‘ -r. LR “ “y-'\-'f ‘.“«(ﬂyfxf ' AT




v — . T WO W T TSI S e ;.‘:‘—\‘.vvx-cnw*v-;.vt1‘1""‘.v1vvﬂl"xt‘ll‘.ﬂl.‘lr"r‘\ﬂl b Salit gL Ar ¢ I‘T:!'ﬂ

statement. Each edge oé the tree is labeled by the index to
the particular clause of the 1logic program (above) that was
uaaed in the resoclution process based upon the selection
component previously deacribed. The aearch component
progresses through the entire tree until either the empty
cleause isa found or the entire tree is aearched [Ref. 12].
Although the unifying substitutions are ignored here, thoae
subatitutions, made along a successful path, yield an anawer

for the goal statement.

- D D S G R D P D e D L D R S D R P D ED S D R R ) D WD P G WP D D D WS WD D ED WS N D GRS D SR o NS D ap G D WA G em W

Figure 2.1 Search Space Depicted as a Tree

In order to avoid the redundancy of repeated

subgoals in the search tree, many PROLOG asyatema construct a

17

- .'l "l JI '.tr

————




W W N W e T T R W N T d e

search space or because of finite patha that do not lead to
the empty clause [(Ref. 16].
3. PROLOG Example

The aelection component of PROLOG provides a rule
that alwaya selects the laeftmost literal ([Ref. 3, 16].
Therefore, the negative literals of a clause muat be ordered
and fixed, and only those aearch saspaces (or developing
treea) can be implemented (Ref. 16]. The search component
in PROLOG provides a depth-firat strategy Qith the leftmost-
descendant firat (derived by the above salection rule). The
ordering of deacendenta is determined by the ordering of the
definite clauses within the logic prograna.

Conaider the following logic program (ignoring the
atructure of the clauses and the unifying aubatitutiona)

(Ref. 121:

(1) A <-- B, C
(2) B <-- D, E
(3> B <-- F
(4 C

(3 D

(6) F <-- G
(7) F

Given the goal atatement <-- A, the search space for
resolving thias goal 4ia depicted aa a tree in Figure 2.1
(Ref. 12]. Thia search tree is an OR-tree whose nodes are

possible goals that may occur during resolution of the goal

16




- & o daie g TR TR CTW T T o i B A~ hare i ot M-t e - RSl Rl o = e et T o R AL St - e ol e b At adtiomitd e - aib g * o gl o i'T?"T‘i’TTT

PR

-A1 VeaaV -An, and that the subgoal being resolved is -Ai'

Since the head of the clauvse is the positive literal, the

s R

o
£y

unification of the subgoal and the definite clause resolves

-

the literal A and replaces it with the body of the clause

i'
(Ref. 10, 16]. This derivation is possible, of course, only

B

if some general substitution function, mapping variables to
terms, makes the .ubgoai and the head of the definite clause
identical [Ref. 101.

2. Non-determjinism

Pradicate logic ia non-deterministic in that the

AT R A

¥ 4 R

L~ unification proceas follows a pattern matching scheme for
resolution of aubgoala and more than one definite clause may

have a head that will match [Ref. 10, 12]. Therefore, a

. reaolution procedure like LUSH requires a selection
‘ﬂ component and a search component ([Ref. 16], where the
‘f ’ selection component is the rule to determine the =search
space, and the search component is the atrategy whereby that

space is searched. This search apace can be thought of as a

"‘.'- L4 9

tree with the goal satatement as the root and deacendant

» 2y
L

P

nodes determined by the selection component. The paths of

this tree are then traveraed according to a atrategy given

o & .l;l 1'.'
Lt )

by the aearch component.
Such a non-deterministic aystem, then, requires

somevhat restrictive selection and asearch components because

¥

S 1g

etete
P

»> o

of the poasibility of an infinite number of patha in the

&
‘A

13

.‘.'\.‘-\(}::\_.:,&.-_ Fon”
A L) .

A I I -"'.": A T T L LSRR, e TE N TR JApye | ‘.
0 .. .- '-.."’ "“" 2 '_." '\'l‘ 53 "'(' v '-.‘"-.':".'--‘\.“}"hlk":" "‘:C'F $.‘F \‘:\-‘“ﬁ“'\‘u*ﬁ{"‘fi&
" . o e Bl ) . »

_-' " -,-.

e

"o T
V%) u“"-'\-

43




P
“

A

.-',r'{- £

C. GOAL SATISFACTION

A logic program consistas of a nuaber of these Horn
clauses, as axioma, upon which the attempted satisfaction of
a particular goal is based [Ref. 12]. An important point
here is that these axioma are user defined and basically
provide the ayatea interpreter with the facts required to
determine whether a given goal is satisfiable.

1. Resclution and Unifigation

A logic programming interpreter attempta to solve a
particular goal atatement by resclving any subgoalg within
the statement with the heada of definite clauses of the
logic program. Since the resolution process is one of proof
by refutation, a goal is satiafiable if the empty clause
(contradiction) can be derived. During the derivation
certain bindings for variables may be made which become the
solution for the given goal atatement [Ref. 121,

There are several algorithma (Ref. 13, 141 for
performing such unifications, the foundation of which ia
described by Kowalaki {Ref. 9] and detailed by Hill (Ref.
15], where he names the process LUSH (Linear resolution with
Unreatricted Selection for Horn clausea).

The LUSH rule of inference takea a given goal
statement Al,...,An and attempts to reaclve a subgoal Ai
with a definite clause within the 1logic program that
contains an identical form of A, aa the head of the clause.

i
Recall that the actual form of the goal atatement ia

14




RRRERRR | 008

e
A RN

o0 v B e
A

A logic program consists of the explicit use of Ho;n
clauses in the process of goal satisfaction. Both Horn
clauasa and the proceaa of goal satiafaction are deacribed
below. Additionally, the advantages and disadvantages
.££ordod the prog.samer by using logic programming are

detailed.

B. HORN CLAUSE
A Horn clause is a subset of the full predicate logic
ayastem that is quantifier-free and contains at most one
positive literal. It is the preferred logical formula in
the expression of logic programs. Horn clauses can be
represented by both the logical foram, where "-" means
negation, and the standard convention, <head> <-- <body>,
called a definite clause. The following four
classificationa of clauses are illuatrated by both:
1) Aasertion (only one.positiv. literal)
B or B <--
2) Declaration (one positive literal and one or more
negative literals)
BV -Al VeeoV -An or B <-; Al"""n
3) Denials (no positive literals)
-A_ V...V -An or <== Al""'“n

1
4) Contradiction (the empty clause)

e or €=~




T
a
LS

. 0 -
r{n't‘a‘v'.'
gl CRF SR N

LIS S
M

O

S
.‘ R R

II. LOGIC PROGRAMMING

A. BACKGROUND

The foundation for the development of a programming
language based upon the rigors of predicate logic seemsa to
have grown out of early attempts to automate thodron proving
[Ref. S, 7, 111 and has subsequently been bolstered by the
demands of the artificial intelligence (AI) comaunity in an
effort to live up to their rather ambitious name. Haewitt’as
PLANNER [Ref. 111, a language designed for theorem proving
and robot model =manipulation, utilized sasuch concepta asa
backtracking and a database of assertiona (Ref. 7], which
would later be aeambracad by the deaignara of PROLOG. The
theoretical foundation for programaing in logic, howaver, ia
probably bast deacribed in Kowalaki’as work [Ref. 8, 9, 101.
In particular, hia paper in the Communications of the ACM
(Ref. 8], though concerned with predicate logic as a tool
for algorithm analysis, introduces the aeparation of the
logic and control components of an algorithm and strongly
suggests the usefulneass of this concept in programming
languages. Additionally, Kowalaki defines the sesmantics of
predicate logic programs (Ref. 9], in a collaboration with

van Emden, ragarding proof theory and model theory.

12




3 o st e e gt gl gl BN el -t g SR et w ael mie

ce, s
AP

LRI

Disadvantages seem to arise from the fact that all
knowledge is not declarative in nature and does not lend
itself to axiomatized representation. Furthermore, certain
control and efficiency issuea are required to curb or
contain the aearch of the knowladge basa during the
resolution procesa, and are more naturally raepresented

proceaedurally.

26

.-, ."_N.‘\:.“ St s
R -
PICREIE RIS A




III. FEUNCTIONAL PROGRANMING

" A. BACKGROUND

N The foundation of functional proéranning lies in the
notion of general recursive functions, which can express any
computable function (Ref. 20: pp. 1-8]. McCarthy’s “pure”
LISP first illustrated this concept by showing that a number
e - of asaignificant programs could be expressed as pure
o functiona. These pura functions in LISP, of course, operate

" on list structures, but the notion may be generalized to

o other structures.
The importance of the recursive function concept is the

DL impact that it heas on the nature of programmaing. In

;ﬁ conventional languages imperative statements are used to
N, )

‘{j - alter contrcl flow and update memory. These statementa (as
o

mnentioned in chapter 2) are dependent upon the order in

fé which they are executed. The recursive use of pure
}g functiona eliminates the requir¢aent for these imperative
aﬁ atatementas and, as a result, is often called *"assignment-
ﬁl lesas" or "variable-lesa" programaming. This 'value-oriented”
;? program-ming is based upon the use of pure expreassiona
;E (diacusaed below) and offers‘the advantages of arithmetic
3: and algebraic expresaiona to the programming language (Ref.
20: p. 1-11.

;j . 27

‘EE

N

VNN YOO RO, L L AT
s s S R R

R SR AR




s < AMEAREE LA AL S Tl T L TR TR TS T T e T CEEVR T e T AT R & W -
PR T T Y R T T R AT A TN TR TR T AT T N T T Y O W LN WL W T W T e RS s a VSN Wt TSR E®E 'R < " & & "% & -T

Probably one o? the most critical attacks upon the
conventional programming languages of the von Neumann atyle
came from Backus’ Turing Award Lecture, where he deacribeas
thean as "fat and flabby"” (Ref. 3: p. 6141, His criticiam of
the framework, the "word-at-;-tino“ programming, and the
lack of useful =mathematical properties of conventional
programaing languages [Ref. 3! p. 617) led toc the design of
hia Functional Programming (FP) Syatenm.

An important contribution in Backua‘’ FP paradigm ia

the emphaaia on the uae of functionala (deacribed below).

The use of functionals allowa the programmer to raiase
himgelf .above the recursive nature of the function by
providing a higher 1level of abstraction. At this higher
lavel, the programs can be made more understandable and

thereby much easier to maintain.

B. EXPRESSIONS

Expresaions may be arithmetic, relational, or boolean,

as illustrated in Figure 3.1. In conventional
I |
I arithmetic: (a + b) » ¢ {
| [
t relational: a + b =0 {
i : |
{ boolean: -(a V b) 1
[ !

Figure 3.1 Typesa of Expressions

28

- .. . . .o . . . P L. .
. . . . e v I I R LR PRI .
“ - . el e e - . . o e e I . Y e e e e L I L e e e e TN (N L
S v e T e e v - .'-'u‘ ’-'-‘ ......... - '.4" » R Y T R SR S SR Y . “!f - - GO L . e R
S TR e A A e T e T RS -._---_,:. -“.- e e T T
. P S A A RN N A I A T . LR A A IR .'\- N
o 2 o 4 A g R




languages these types of expressions appear on the right-
hand aide of an asaignment atatement. By eliainating the
use of the assignment atatement we can concern ourseslves
with “pure"” expreasions and the properties associated with
tham [Ref. 27: p. 281. These properties are listed in

Figure 3.2 and several are discussed below.

# value is independent of the evaluation
order

» referential tranaparency

# inputs to an operation are obvious in
the written form

» effects of an operation are obvious in

[

I

|

|

|

|

I # no side effects
|

|

|

{

|

I the written fornm
‘ .

O h s O R e e D P D S AR P D R WD SN D R e e Er AR D D W D AR S WP G D AR D S WGP P WP W D L P Eh D W D W S S W e e

Figure 3.2 Properties of Pure Expresaiona

1. Evaluation Qrder Independeance
An important property of pure expressiona ia the
fact that within a given context, an expression has the same
value regardlesas of the order in which it is evaluated. 1In
fact, the aevaluation of subexpressiona within a given
expression will not effect the evaluation of other
subexpressions, and the order in which they are evaluated

will not alter the final value of the overall expression.

29




1t Al »
AR o PR RN
PRV RV S IR LIS NEENA A

This independence of evaluation order (also called
the Church-Rosser property [(Ref. 20: p. 1-3) is illustrated
in Figure 3.3. Here a pure expression (yith subexpressions)
is ahown in tree form, where the evaluation begins at the

leaves of the tree. As soon as the leavesa below an operator

Figure 3.3 Pure Expresaion as a Tree

node have valuea, that operator can bhe applied to those
valuea and that subexpresaion is evaluated. Once evaluated,
those subexpresaiona, as in this example, may beacome one of
the arguments to another operator. Note that whether the
"+* operator or the "-* operator is evaluated first doesa not

alter the value of the entire expreaaion.

30




e " Iy

The importance of context can be illustrated sy an
“iapure” expression, as in figure 3.4, where assignments to
varjables can be made. If memory outside the context is
allowed to be altered, then the expression is not "pure" and
aido4o££oct- can result. In this casse the value of the
variable “a” can be altered by the evaluation of the

function call.

a * b » F()

i i
| 1
| 1
[ where F(z!integer): integer !
| bagin !
| I
1 |
t i
1 |

a := O;
F =2 » z
end:;

Figure 3.4 Impure Expression

2. Referential Transparency

The property that the replacement of an expression
(or subexpression) by its value is entirely independent of
the surrounding expression in which it occura is called
referential transparency (Ref. 20: p; 1-3)]. This property
mneans that having evaluated an expreasion, it need not be
evaluated again. This provides the univeraal ability ¢to
substitute equals for equals within a given context.

For example, given the context b=3 and c=4 for the

expressaion in Figure 3.5, referential transparency means




<, PR

-

-

o

LIE N g Sy

¢:

TSN

.".ygrlu

that having evaluated (b + ¢) to the number 7, the
aubatitution of 7 for the other occursnce of (b + c) will

not affect the value of the overall expression.

Figure 3.5 Pure Expression as a Tree

C. FUNCTIONS

Mathematical aappings from inputas to outputs are “pure"
functiona. Such pure functiona are the *"+*, "“»", and *“-*“
operators of the pure expression in Figure 3.4. The results
of these operationa dependa oﬁly upon the inputa. In fact,
the notiona of pure expressions and pure functiona form an
interesting dependency. In order for an expresasion to be
pure (thus having the properties stated above) it nust
consiat of pure functiona. Additionally, if functiona can

be conatructed with pure .xpr.a.ibn. (containing no

32

“pLL . . S T L TP I WL S DA A -
s ‘ 1,. ,.,'_,:_‘ er _‘:.‘.‘".._.._,. . x e \._ '\.} '\‘p,\ \_\ "~ \\ \_:

- \ .\.

+4




explicit or hidden assignaent statements), then the
function will retain the properties of pure expresaiona
(Ref. 20: p. 1-3).
1. Function Application

An applicative prograas takes the form of an
expreasion that consiata of the application of pure
functions to their argumenta. Thua function aéplication is
the fundamental operation of applicative programming and is
illustrated, in Figure 3.6, by the prefix function form of

the expression in Figure 3.93.

- NS W P R D G R A R R Y S D W W AR eh D R R D T R WD NS T L G VR G s W D Gh W G UG s e OB W e A G e W W

Figure 3.6 Prefix Fora

Within the applicative programming language
functions nay be defined explicitly, conditionally,
recursaively, or as the compoaition of other functiona. The
important point, however, ia that theae functiona operate
only on data (characters, numbers, etc.).

2. Functionals

In order to provide a higher level of abstraction,
functionals are functions that take other functions as
arguaents. Functionals result from identifying recurring

patterna in function definitions and abatracting them to a

33

TV
.

P
Ba g

LSS
'\_1’.‘.,‘\“I

RLYES
PRV P




-

3

<

7

A
-.. .

~Ay

RPN

)
I 3
a s

I VI W 2 e Y W
ARSI O

.:-.":-".l. L

.

sy

5

PETTE T T L ey Laeng i A oo s ek ey

s

higher level. The “map” functional is an excellent example,
saince, it accepts functions such as “times”, “plua®, etc.
and maps them onto a 1list of ordered pairs. Such a
functional elininates the requirement to explicitly define
“map_tisea'", “"map_plus’, etc. functions.

Functional programming, then, is a fora of applica-
tive programming that makes oxtonliv. use of functionala.
Not only does it aimplify the programaming proceas (fewer
explicitly defined functions), but also offeras additional

propertiea which are liated in Figure 3.7 (Ref. 27: p. 301].

= g@asy to use existing functions to build
new ones

= e@asy to combine functions using composition

» easier to prove correct

i i
I i
I I
{ |
| !
| }
i » subject to algebraic manipulation |
| l
| |
i |
i #» aeasier to understand |
| I

Figure 3.7 Properties of Functional Progranms

D. PROOF OF CORRECTNESS

The mathematical properties of functional programming
lend themselves to much more straightforward proof of
correctness than either imperative languages or logic-based
languages. Most often, the recursive function definitiona

of the functional program can be individually proved by

34




induction. Additionally, the functional programs themselves

are subject to algebraic manipulation. A detailed analysaia
of auch algebraic properties is presented in Backua’ Turing
Award Paper [Ref. 31.

A comparison of Hoare’s axiomatic modal of correctneas
(Ref. 28] with that of Mill’s functional model of
correctnesa [Ref. 29] helps to illuatrate thia more
straightforward proof of correctness method.

1. Hoare’s Axiomatic Model

Hoare’s axio-a£ic model of correctness uses the
notation

(P} S (Q)

to state the required connection between the input assertion
P, output assertion Q, and the program (or part of a
program) S. Partial correctness of program S results if and
only if for every aubstitution of values which makea P true,
then after execution of S, Q muat be true. Total correct-
ness r.suli. if it is proven that if P is ¢true then S
termninates (Ref. 211. Hoare’s rules of inference, very
similar to the rules of predicate logic, are used to prove
correctness of particular programa. By aassuming the pre-
and postassertions of avery program statement, as well as
the progras itself, the rules of inference are uaed on each
piece of the hierarchy to establish the proof. The problensa
arise froa the fact that moat statementa of a program do not

annotate their pre- and postconditions and that the proof of

39




LS i i 16 0 e i it At s e B S et -mbi - e it g0 e 2 .'ﬂ'l'!"!'!'!"!l!!'."ﬂ!'lHF'M‘““!‘“I!F"“M'!'!'-l!‘1

iterative po;tions of the program requires recognition of a
“loop invariant” that is often difficult to ascertain.
{Ref. 211].
2. ’ onal

Mill’s functional model of correctness states the
intended function of a program as a functional absatraction
which summarizes the outcomes of the program (or part under
conaideration). Thia functional sbatraction is independent
of the control atructures and data operationa and reduces
the queation of correctnesa to one of function composition
and function equivalence {Ref. 21]. Partial correctness of
program S means that "with respect to function F, every
argument X, for which F is defined and F(X)>=Y, then 1if
program S is executed with initial input vector X, ita final
output vector is Y." Total correctness is proven by ahowing
that if X is in the domain of F then S terminatas [Ref. 211].
The problem of determination of the 1loop invariant is
minimized since the intended function of the loop may be
easily converted to a loop invariant.The problem still
remaina that in moat conventional programming languages moat

statements of the program do not annotate their function.

E. ADVANTAGES
1. Higher Level of Abstraction
The advantageas to be gained by functional program-

ming are aomevhat analagous to the advantages of atructured

36




L a2 o s

programming. The higher level of abstraction afforded by
“goto-leas” programaing nakes it easier to reason about and
understand programs. The gotos exist at a lower 1level of
abatraction and the programmer is not burdenad with those
details. Similarly, the "asaignment-leas'” property of
functional programming encourages an aeven higher level of
abatr.ction,. providing a more ayatematic derivation of
prograna and resulting in greater understandability
{Ref, 20: p. 3-4]. Asaignmenta, of course, exiat but are
hidden from the higher leval of abatraction.

Additionally, the functionals within the language
provide a mechanism for achieving an even higher level of
abatraction. Common patterns among user-defined functionse
can be abatracted out, named, and thereafter referred to
without concern for the underlying function composition.

2. No Side Effects

Many of the side effecta associated with imperative
programa result from the assignment atatement and its use in
altering variablea <(local and non-local). This results in
hidden interfacesa within the program, which degrade both
program correctness and understandability. In functional
programming the assignment ;tatenont is eliminated and the
interfacea manifeat themselves in the expresaiona of the
program. This =meanas that the input-output connectiona of

the subexpressions within an expression are visually obvious

37




[ SN arE o 20 o & At i in 2ol i i Wt A Do Aaciin il At M L A R §i SO R R R R~ S 4

{Ref. 20: p. 1-4] and confer no hidden interfaces or side
effecta.
3. Verification and Proof Techniques

The functional model has saeveral advantagea over the
axiomatic approach. By atating apecificationa and aub-
specificationas as functiona from an input apace to an output
space, the functional model ia a mathematical model in the
satricteat sense. The axiomatic approach organizes such
specificationa into Boolean functions represented by

assertiona on program variablea, assertiona given in terms

of the relationahip of the variableas involved. The
functional approach is in terms of the relationship of the
two value setas involved. This meana that the axiomatic
approach maps from the current valuea of the variablea into
the two-tuple (True, False] instead of the more mathematical
functional model which maps from the input value apace to
the output vaslue spasce. Another advantage ia that changes
in a program that do not affect another program segment do
not require a new proof of correctneas for that segment.
This results from the fact that the proof of a functional
specification ia in terma of the behavior of the program
atatement independent of the history of variables in the
segrnent. The asssertions of the axiomatic approach, however,
are reatricted by variable history and interdependence with
other variables (Ref. 211. Additionally, different

implementationa of a particular apecification can be

38

AT N e s
PRI G 2 W




SR Rl U i

substituted without requiring new proofs of other progranm
aagrents.

Functional programming and the functional model
deacribed go hand-in-hand toward meeting the goals of
atructured programming. The decomposition of the larger
programming structure into simpler atructures (stepwise

refinement) is eaaily afforded with functional programming

in which larger progranmns or functions are merely
compositiona of aimpler functions. The problem mentioned
above regarding conventional languages and how each

atatement rarely annotatea its function ia eliminated with
functional programming. Therefore, the functional progranm
lends itaelf to proof of correctneas with the diascusaed
model in a convenient manner.
4. Parallelisms

The ability to perform parallel execution in
functional programming is a direct reault of the property of
evaluation order independence inherited from pure
expressions. The various nonoverlapping subexpressions
within an expression can be evaluated saimultaneously since
the evaluation of one is not dependent upon the evaluation
of another. Therefore, a nmultiprocessor could asaign
various processora to evaluate different parts of an
expresaion in parallel.

Unlike conventional languages which require the

programmer to identify the portiona of a program which can

39




b AR ik oo o b ae o B s Latinar'4 ke - Cal A e i i g Y i ol ki e e i i ¥ e WO W T T T e e Ry Hr’\'ﬁ'l"'i‘.".‘-‘j

v. ' N ANGUAG

A. SYNTAX ISSUES DEFERRED

Whether the syntax of an integrated language should be
uniform (either ‘functionally baged or logically based), or
whether it ahould be mixed, ias an isaue that will be
deferred at thia point. The intention ia to deacribe the
important features of an integrated language and discuss the
mnodificationa required of the resolution proceaas within the
declarative component. In keeping with the examplea of the
previous chapter, tha use of PROLOG and LISP syntax can
adequately represent the points to be made, and the mixed
ayntax will better illuatrate the tranafer of control fronm
procedural interpretation to declarative, and vice verasaa.

With this tranafer in mind, the "#'" asaymbol will
represent the tranafer of control from one component to the
other. The results from a procedural call (function
application) within the declarative component mwmust be the
value of the evaluated function, and will be used to
inatantiate <(or unify) a variable within the clause. The
resultas from a declarative call (resolution procesa) within
the procedural component, on the other hand, musat return a
list of solutions to the quary. Each solution is itself a
list of variable bindinga that provide a asolution to the

given query.

353

. . oo g a0 N L% T R U A IO
PRI IR . . ' . AP IR T ST I S I Team e e T T e e T T v T AT AT ".“}.‘gl
S SN IP SIS  GELEI Sy e W e . RS ST . T P S NP T wOir W e w i SO it T SR LIS U, Sy LT U, IS i, o,




A St g el Sl A i~ M i i - = uA Aol it St Sl alapt e St iae B et el M ) Wy W T W W TR TR AT e e

the previous example:

Theae

Queries (calls to the declarative coaponent) muat be
qualified. Qualificationa such as ‘all’, ’‘any’, etc.
nust be made explicitly in the query.

Unification must be based upon the given context (or
environment) in which the declarastive call is made. A
context is a list of unificationa (or bindinga) which
provide a conatraint upoen the resolution of the
declarative clause.

observationa form the foundation wupon which the

features of a truly integrated language can be deacribed.

S2

ot ot o




L JhgeCI il S oAt - BINN h s B ) s A b e eate e Btk ntert n stk pae & e dne

(defun append ( L M)
(cond

(¢ null L) M)

| !
i I
| |
t |
[ [
| |
I |
[ (T (cons (car L) (append (cdr L) M )) )) ) [
i |
| |
] v |
{ append ( #(weekly_Tax(X,30), weekly_tax(Y,30)), |
| i
| ‘¢(John_Smith) > ]
1 |
| i

Figure 4.4 Call to Declarative Component

the procedural component expects the declarative call to
return a liat of employees which pay 30 dollars in weekly
tax. However, suppose the uninstantiated variable Z was in
place of the 30. The rasulting list of employees would be
dependent upon the various inatantiationa of 2, and without
knowing which employees were aassociated with those values of
2, the resulting liat would be meaninglesa. What about a 3-
tuple liat which yields the X, Y, and 2Z insatantiations of
every solution? Such a 1list c¢could become a rather large
list of permutations with, posasibly, redundant information.
Here the resulta to be returned are more complicated and
require modification to the resolution mechaniam within the
declarative interpreter.

Such modification, discussed in the following chapter,

is based upon two important obaervationa that arise fronm

S1

.o .__'.._.._ e
. P A A SV P
NSRS V. WUE, WA . WL,




advantages gained by backtracking within a single clause

become cumbersome, tedious, and expensive when backtracking
aust occur through several clauges that have the same head.
In an integrated approach, the ability to define weekly_tax
(Figure 4.3) with a procedural call (denoted by the "#"
aymbol), which performa the conditional conﬁrol, allowa the
inatantiated valuesa of the variables 2 and B, unified
through resclution, to be used in the function to
inatantiate the variable Y. The requirement for three
clauses with the same head haa been reduced to one clause
where resolution is no longer needlesaly replicated.

In such an example, note that the functional call
from the declarative component merely returns the value of
the evaluated function. Such a function can be evaluated by
theprocedural interpreter and 1is regarded as a standard
functional expressaion.

2. De v 1l From Procedu mponent

A call to the declarative component from the
procedural coaponent, on the other hand, requires a
rethinking of the resolution procesa. For example, Figure
4.4 illustrates such a call in an attempt to use the
advantages of resolution, instead of explicitly defining a
function, to search the knowledge base and perform the
unifications which provide a solution. But in this case the
call to the declarative component cannot merely return the

result of an evaluated expression. In thia simple example,

30




to Kowalski’s concepts (described in chapter 2) of separa-

tion of logic and control, and LUSH resolution of Horn .
clausea.

In keeping with these concepts, a procedural component,
nasely functional programming, can provide the control
characteriastica for an effective and efficient declarative
component, as waell as provide a meana for repreaenting non-
declsrative knowledge.

1. e a all From Decla iy mponent

To illustrate thias notion, consider firat the
ability to call the procedural component from the
declarative componant. For example, the 1logic program in

Figure 4.1 used three clauses ¢to define weekly_tax. The

- D D D e T D R L G DGR S G P D D WD G P P S G - G e R P WA G AR R Em G St G GE MR W S M A R e T R e W A e

waekly_tax(X,Y) <-- weekly_asalary(X,B),
annual_asalary(X,2),
Y ia #(COND
((GEQ 20000 2)
(TIMES .06 B)
((GEQ 10000 2)
(TIMES .04 B)

(T (TIMES .02 B) )>)) )

- P > e R D Gh G D TP G G ED E D R D D S GR D ED D P A D G GG AP N SR W WD G P SR S R P P D R A Ge S AR W e G T

Figure 4.3 Call to Procedural Component

49




clause vYyielding X = ()] and Y = {a,b,cl. The cut would

preavent any further resolution and no other anawers could be
genarated even though others exiated (Ref. 2: pp. 65-661.
Aa the cut is placed deeper in the body of a clause, to
freeze unification made to that point, the aide effects
become more difficult for the programmer to predict.

In an attempt to provide a means of controlling the
coat of backtracking, the PROLOG implementation of logic
programming requires the programmer to be awvare of the
underlying backtracking mechanism, introduces possible side
effects, and negates the advantage gained by keeping the
reaolution mechanism at a lower level than that of the

programaer.

C. INTEGRATION

The previous exaamples help to 4illustrate certain
problems and inadequacies that result from either a atrictly
procedural approach to programming, or from a declarative
approach interspersed with procedural eatures for efficient
control. The PROLOG implementation of logic programaing is
a somevhat integrated approach, though to a very amall
degree, and the major problems with that approach have been
desacribed. The existence, and utility, of PROLOG gives some
credence, then, to the feasibility of an integrated

language. However, the problems with PROLOG seem to atenm

from the features of the language which are somewhat foreign




o

s LT

S EASS
L

A
»

%

el |

programaing that offers this abstraction also requires the
use of the "cut®” symbol. The cut symbol is a means of
halting unnecessary or unwvanted backtracking. Itas uae
within the clauses of a 1logic prograns requires the
programmer to be intimately familiar with the method of
backtracking, or aide effecta may be introduced into the
program. This is because the cut aymbol altera the way
backtracking worka after its use. The effect of the cut ia
to remove the place markara for certain goals aso that they
cannot be resatisfied, and commita the ayastem to every
unification made aince that clauae was entered (Ref. 2: pp.
64-681.

The side affecta of uaing the cut aymbol arjise from
the fact that a clause may be used in a manner for which it
was not intended. For instance, consider the two clauses:

append([],X,X) <-- "cut”.
‘appaend([AIB]),C,[AID]) <-- append(B,C,D).
where the cut prevents unnecesaary backtracking. When
resolving goala like
<-- append(({a,b,cl,(d,el, X)
or
<-- append((a,b,cl,X,Y)
the cut works as intended and is appropriate from an
efficiency standpoint. However, if the goal
<-~- append(X,Y, [(a,b,cl))

is resolved, it would be =matched and unified with the firat

47




T LAl e s o g oo At a gt aeadhgh B ae S A ab i e A fe-al ardh B AL S Rt Al Cl Siah e d atdt Sl S s e e aiul i o mibh il abi St i aiiic ol AT e A )

without defining a nested function that explicitly checks
the database againat a conditional expression and conatructa

a nevw liat with the results.

(SETQ@ weekly_salary(cons ‘John_Doe 500)
(cons ‘Jim_Jones 3350 ...))
DEFUN( ¢
(weekly_ tax(Name)

(PROG (W3)

(COND

| [
i [
| t
| I
) I
[ i
| !
I [
| |
! i
I |
| 1
| (SETQ WS (cdr (sassoc Name weekly_salary))) |
{ l
{ [
[ l
I (¢ GEQ 20000 (TIMES 48 WS ) [
| l
I (TIMES .06 WS ) I
| {
[ (( GEQ 10000 (TIMES 48 WS )) |
1 i
1 (TIMES .04 WS ) i
i |
[ (T (TIMES .02 WS )>) )» )) |
t [
I l

Figure 4.2 LISP Program

2. PROLOG Use of Cut
This 1illuatrates that the pattern matching in
PROLOG, resaulting from the resclution of aubgoala, ia an
advantage during the search of the database, because the

mnethod of search is at a lower level than that of the

progranm, However, the same PROLOG implementation of logic

N
s &

46

O
[ AR

S}

B A
’N'.l.

........

Nl .

T

...........
D ) PR L I A R



b}
%?
Lff by one function (with a conditional) in the functional
M program, both programs performa the same function and their
?y difference is primarily syntactical.
gil
" i i
€ [ weekly_salary<(John_Doe,S00). |
L™ | ]
L { weekly_salary(Jim_Jones,350). |
::' ' - l
- I . |
l . |
‘ ! |
:3 ! annual_salary(X,Y) <-- weekly_salary(X,2), I
~ i i
QI i Y is (2 = 48). ]
o ! I
a | weekly_tax(X,Y) <-- annual_salary(X,2), 2 >= 20000, |
S | |
" I weekly_salary(X,B), I
. | |
7. I Y ia (B » .06). ! J
. | |
. | waekly_tax(X,Y) <-- annual_salary(X,2), 2 >= 10000, |
i | ]
. | 2 < 20000, weekly_salary(X,B), |
Ar ] i
s ! Y ia (B » .04). [
| |
; | waekly_tax(X,Y) <-- annual_salary(X,2), 2 < 10000, {
L | |
1 | veekly_salary(X,B), 1
S | |
- | Y i (B » .02). |
2 ] l
o
jt Figure 4.1 PROLOG Progranm
)
K
f: However, & query to the logic program such as
[
L <-- weekly_tax(X,Y), weekly_tax(2,Y) ,
O
Qf which will return all pairs of employees that pay the sane
{f weakly tax, is not possible in the functional program
45

YRPRRLY LR
SN

\“ -"'h
WA




L
,..

L AR ahah Aoat B ot 8" o sl S d sk Gl dad ik died da i Sak/se ho all b e Lt

such instances it is not only unnatural to define thea
declaratively, it is less afficient (Ref. 25].

By contraat, the non-declarative aspect of functional
programaing can make the manipulation of information in a
knowledge base very tedious and inconvenient. Since the
search of such a knowledge base is explicit, the programaer
nuat define functions that perform the search or comparisona
required. These contrasting aspects of both programaing
paradigms will be illustrated and explained in the following

aexamnples.

B. EXAMPLES OF CONTRAST
1. Declar ve Veraus P u
Consider the PROLOG program in Figure 4.1 and the
LISP program in Figure 4.2. The program in figure 4.1 can
be ugsed to find out such information as the annual salary,
weekly tax, etc. of an employes asserted in the database.
By merely satisfying the goal
<-- weekly_tax(John_Doe, X)
the syaten will perforna the necessary resolution,
backtracking and unification to produce the weekly tax of
John Doe. Similarly, the LISP program in Figure 4.2 will
return that individuals weekly tax when the function
weekly_tax(John_Doe)
is called. In comparison, note that although the three

clauaes for weekly_tax in the logic program can be defined

14




- T N RO W T I W W T W g TR TR TR G T W e T O TR TR TR T T

Iv. F N G

A. PROCEDURAL AND DECLARATIVE COMPONENTS

Having described both the logic programming and
functional programming paradigms, we now consider the
feasibility of a language which integrates aome of the
featurea of both programming paradignma. It ahould be noted
here that both logic programming and functional programming
are within a clasaification of programming which MacLennan
refaera to aa ‘*“value-oriented" programming [Ref. 22]. He
includeas equational programming [Ref. 23] and relational
programmaing aa wall (Ref. 24], but here we conaider
equational programaing a more resastrictive form of functionel
programming and relational programming a form of functional
programming (since a function is a relation) which can deal
with multi-valued functionas. The focus, then, is on the
feasibility of integrating a procedural component
(functional programming) and a declarative component (logic
programming) within a single language.

The non-procaedural aaspecta of logic programming make it
very advantageous  for stating facts (or axioma) from which

knowledge can be inferred, or about which queries can be

made. Yet it is unnatural to defina aeverything
declaratively. For example, moat PROLOG implementationa
define numbera and the operations on them procedurally. In

43




3
,\

ng
t s a

RN AR " DOODODOD

L8 A8 Mm St iss Aub bus a

\ it Mo 0 am s fonman s Lug ”"‘-Lm

evaluation order independence, lends its.;f to parallel
axecution in a multi-processor environment. |

The disadvantages of the functional programming paradigm
rest with itas somewhat limited problem domain, because of
ita weakneas in repreaenting temporal relationahips.
Although functional languages lend themselves to parallel
axecution, without more effective use, in terms of hardware

aupport, of the parallel nature of the language, the coat of

numerous recursive calls is inefficiency.




W el e

Unfortunately, such multiprocessor support for functional
languages is not widespread and the use of such a language
as "pure" LISP on a uniprocessor can be very slow depending
upon the neated levela of recursion. Without the support
for Dparallel execution, efficiency can quickly become a
major factor in the effectiveness of the prograsaing
language.
3. duatr nce

As with most new concepts, the resistance to change
asurfaces whenever the statua quo ia threatened. Moat of
industry is still tied to the von Neumann architecture and
“mind set” (both financially and intellectually). Until the
decisionmakers within the induatrial complex are convinced
that the advantages afforded by new conceptas will outweigh
the expenditure in time, personnel training, and money,
these new concepta will remain at the theoretical or

experimantal level.

G. SUMMARY

The functional programaing paradigm provides the

programmer with a very high level of abatraction, making it

v )
a2 oAt
'.‘.".

easier to reason abhout and underatand programs. In contraat

es e

to von Neumann languages, functional languages are free from

E! side aeffects resulting <from heavy dependance upon the
Ef assignment atatement. Additionally, the non-sequential
-,
b nature of functional programming, based upon the property of
[" B

FEC RS A TN

“'-o.
ST A -

[ AR Y et - Y

. . ca M e LN A &

Ce oot VNN RN A L i AR L S NP
‘\*..":}..'\l AL A IR VR R P v




B!
. H S
.

¢ \‘

'\\.ll .
‘h‘ - ‘.\1

o ST Y i X der e gl SN B R g  ENA ik g pidl - Aot g - A

*.w‘

n.{'\. \.‘-‘“ﬂ, ‘. .'-.:'..

be run concurrently, a functional 1language can handle as
many processors as there are aubexpressions to evaluate, and
whe order in which the processors are assigned, or

aubexpreasiona are evaluated will not alter the £final

‘evaluation (it may, of course, affect the efficiency of

exacution).

F. DISADVANTAGES
1. aited (1.} R
Although the mathematical properties of functional
programming offer advantagesa, certain tradeoffs do result
from those properties. These tradeoffs have a limiting
effect upon the problen domain to which functional
programaing solutions are practical, or even feasible.
Functional programming provides no notion of atate
nor doeas it provide any notion of time. Thisgs weakneas in
maintaining temporal relationa reatricts the use of
functional programming for such state-oriented applications
as operating aystema, database management, or diacrete
simulation.
2. Re on _and Ineffic c
The recursive function definition is an important
component within & functional programming language and ia
probably the most expenaive. The expense of numerous
recuraive calla can be ainimized if the hardware support can

take advantage of the parallelism afforded by the language.

40




o B A don nd 4o Ais Lo o o e San e fum Lo et am Mfaaes iy 4 am i o s did gud S a s e M an Dca o alih e i hic ey fos 4am fan an e S da Lo anchicas o avme -4l |

|y

AP

B. QUALIFICATION OF A QUERY

X
f} As deacribed in the previous chapter, a call to the

E; declarative component amust be qualified to ensure that

;g expected, and ameaningful, results are returned to the

ﬁﬁ procedural component. In general, the programmer mnay |
‘% require .scv.ral differeant types of reasults from the J
 %§ declarative component. In aome instances the programmer may

i? require a list of all posaible solutions to a given query.

R - But in other instances, the programmer might require only a

éﬁ limited number (or even one) of all the posaible aolutions.

'% Based upon the functions described in Robinson’s LOGLISP

(Ref. 26] theaa qualifiera can be repreasented by the
following:

ALL - returna, aa a reasult of the declarative call, a

list of all tuples which satisfy the queary within

" the consatraintas of the current context (detaila of

s resolution within a context are in a later section).

o ANY K - returns a liast with no more than K of the tuples
- returned by ALL.

0 With theae ¢two qualifiers as the foundation, the

2 programmer may use the functional component of the language

\ to define, for convenience, functiona which perform special,
‘}: or redundant, cages of the basic qualifiers. For example,
,ﬁ the qualification ANY 1 to the given goal atatement, will
v,

Ej raturn a 1list containing the single 1list of variable

bindinga that providea one aoclution. A function THE, which

g
.“
T

)]
-

. S4

o~




will return those bindings in a single list, and may be
defined by

THE (Q) = #ANY 1 <(Q.

C. QUERIES AND THEIR CONTEXT
Assocjiated with each query, or goal atatement to be
resolved, ia an implicit context within which certain
conastraints are placed upon the resolution procesae. These
conatrainta are variablea which are already bound to values.
I1f variables that are part of the goal astatement are already
bound, then those variables cannot be re-inatantiated during
the resolution proceass. For those variableas that are not
defined in the current context of the query, they are
conaidered free variables and can be instantiated (or bound)
during the reasolution proceas.
1. cContext Deacription
The context associated with each query contains all
bound variables, of local scope, which may be bound to terms
or to other variables. The fact that variablea may be bound
to other variables makea the unification somewhat more
complicated, but ia neceasary to allow the reaolution of the
goal to progress as intendad. It should be noted, however,
that such indirect binding must eventually terminate with a
binding to a term within that context.
The bindings within a given context can be denoted

in a manner that lends itself to LUSH resolution (see

59

......




LA Mo ch a2 b g i gl e i e Anta g pacatal i i mC b Br- 20 sane M Sl 4

Chapter 2), which will simplify the checking of variables
within that context. For exanmple,
X <~-~- Y
Y ¢<-- a
2 <~- b
represaents the context (variables in uppercase, terms in
‘lowcrca-a) of a given query Q, within which X is bound to Y,
Y, in turn, ia bound to "a", and 2 ia bound to "b".
Therefore, a query such as
P(T,X,V
would have two free variables, T and V, and the variable X
would be bound to the term "a” during each reaolution
process in the search for a solution.
2. context Algorithm
For a given query Q and its associated context C,
the constrainta placed upon the rasolutiop of Q are
represented by the variablea that are already bound. The
following algorithm ias concerned with a query of the forna

acp, ,P

1' 2’ e s s ’p.)

where
Picxl.xz, cee ,xn)
represents each predicate, and C is the context of the

query.

56

D Vs P IR Y S
. .- e A BRI
r . o

E Y
AR L S YRR A A - TR I -




s T Vi W)
AP it

rl

¥

e ek e oan haa bas Bac lac o md - aak Lbg-ard ALe aiioare ol aru aca l o by B aed WHWWBWMW'-."!'ﬂl"H!HW

Algoritha:

repeat
for (each variable XJ of every predicate Pi. in @

resolve C(XJ) {perform LUSH resolution on }
(database C }
if C(XJ) = nil
then xJ is a free variable and do nothing
else instantiate XJ to tera tk' returned from
resolution of C(XJ>. within the query Q
place the binding tuple in the list S0 that
will contain all such bindinga
until (all variables are checked).
Once these consatreinta have been placed upon 4, the

query can then be resolved (aubject to the modificationsa

desacribed below).

D. NMODIFICATION TO THE RESOLUTION PROCESS

Most PROLOG implementationa provide for the reaolution
of goal atatements based upon the LUSH resolution desacribed
in Chapter 2. When a programmer mnaskes a query to the
knowledge base and a solution ia provided, the programmer
may then induce a failure (usually by hitting return) which
invokea backtracking in search of another distinct solution.
For our integration purposea, the qualifiera ALL and ANY K

determines at the outaset whether one, more, or all asoclutiona

are required.

57




From the above context algorithm, the constraints placed
upon the query Q are defined in the list of bindings So.
This list contains the instantiated variables of @ (if any),
and have been ao inatantiated in Q. The query Q may now be
raeaclved by the declarative coaponant, the PROLOG
interpreter for this example, until a solution is found or a
failure ias obtained. Given a solution ia found, let the
associated liat of all solutiona be denoted by

S = (81,82, see ’Sk’ ...,S‘)
where S1 is the first solution obtained in the resolution
proceaa.

In conatructing auch a aoclution, the following algorithnm
represaenta the modification to the resolution mechaniam of
the declarative interpreter that will allow ita
conatruction. The algorithm modifies the baaic declarative
interpreter asuch that the entire reasults of the qualified
query are returned as a list of bindinga which satisfy that
query. Once the declarative resolution mechanism returns a
failure, there are no more asolutions to be obtained, and the
search ia halted. If it is the first attempt at a solution,
then the empty 1list 1ia returned, otherwise the liat of
solutions to that point are returned.

Algorithm:

Given the qualifier to the query, the query Q, and the

conatraint bindinga in C,

S8

Lt At A abdt b Ak ekl ok xo pho pas . e M I Soas il S0 I 4l A 0D 4Ae Aen LiE T b ius Radedde SRS A Na e e mn e tep i m ais gb b e 8 sk et - Bl fie Ml e Braiadc Al Ben o ot priss~n ol - mlt i o af




s e

;

YR ’

3
o}

Iy

K

A3

] - . .

Pl 8% Jy 4 2 ] P % R P AN AP WP " _rr P P A A A DLt Ny T R IR L WA
it a2 D0 < ' ) g -\. ‘ o0 e KASS I A TN, ’

J_‘,‘A_.'{:'Il.' 3!‘;'!‘»'1 ,';5,' .?Ik O o I ' A. :" lﬁl.l‘.. WAl LS, A AL ,.l&.‘q‘h :“‘%"'~g ‘ ¥y Lt 'L j‘ } ) h v» 'X ",\ V4RI “’

T 3 . 4 ¥ad -y T T TTw T Wy T r e oo g e oW ow

Firat §,
repeat
resolve Q
if FAIL (from resoclution of Q)
then £ 41 =1
then S, = ©

place S, in S

i
HALT;
else (have a solution)
place binding tuplesa of solution in a liat
{returned from resolution of Q)
append this liat to So
{to include initialization bindinga}
let S1 denote new list
place Si in S
induce FAILURE (standard PROLOG mechanism to )}
{search for another solution )
if qualifier = ANY K {check qualifier)
then 4if 1 >= K
then HALT;
Next 1
until HALT
return S.
Notice that the binding conatraints placed upon the

initial query must be explicitly included with the asoclution

bindings resulting from the resolution of Q. These bindings

39

TT T IR o R woY .1"7.




Bk am b e Gl ke b by A o el A e b

vwere saved in So when the constraint ipstantiations were

made in Q. They must be returned as part of solutions in S

iy ) aince they provide variable bindings that are part of the .
\"‘

N

o aolution.

e

o

o Although there is no explicit check for the ALL
') qualifier in the algorithm, it is felt that its ayntactic
5

ﬁi inclusion, aa part of the qualification to the gquery, will
',.:;:

provide more reaegularity and structure to the integration

L)

P TR
P

. P
PRI S

P % et NN T

interface.

E. AN INTEGRATION EXAMPLE

To illustrate the extensibility offered the programmer

-(.
.

from the functional component, consider the function in

PR
‘1.
’

Figure 5.1. This function tekes the 1liat of aclutions

S = (S sS_

Ii obtained from the declarative call, represented by -
g
1.- 182 ® a8 e ‘

where
S, = (X, t.) (Xz t

i 11 2
and allows the programmer to specify which variables within

) v Xt D)),
n n

the declarative call will be returned aa aeaningful results.

Thisa general function provides the programmer conaiderable

o CTIOOLL B

:i flexibility in utilizing or manipulating the resulta
%; obtained from the declarative call.

!: For example, consaider a knowledge baase of facts
iz concerning the armed forces of various countries, their
I~

.
e

mobilization status, geographical relationashipa, etc.

-
»

60

GO0 7'_‘-:'_\-'
NN



TR T e A0 L ARl el Sa ke e el O 2o B S Mt Ml i e B 2B g 23

- T S G D R WD Y S GG R W S TR Y b WS I GR D WD WD WP D WS G TS TR G e T WL TP WD WS WL WA P GD D T GD R WP W YD D Wb P G W W .-

Return_list = ((NLAMBDA L)
(PROG ( S VARLIST RESULTS )
(SETQ S (EVAL (LAST L)>»))

(SETQ VARLIST (LDIFFERENCE L

(SETQ@ RESULTS
(MAPCAR S ‘LAMBDA (Si)
(MAPCAR VARLIST ‘LAMBDA (XD

(ASSOC X S1 ) ) M

WO EUA NN, JSEPAFARRAINR SRR RS A V-r':‘u"'fr's‘r-'.'.'x'r]
. . i

' :

!

l [
| |
i [
i |
i i
1 |
| [
| |
| i
| 1
1 (LAST LY» i
| |
| i
| |
i l
{ |
I i
! |
i !
| [
i |

Figure 5.1 Function Cefinition

Then a question of the fora

s EE YOI,
1)

“Which Warsaw Pact countries have exercised armored

e

divisiona within the past six months, and what divisions
were they?"
could be handled by the following function (which makes a

call to the declarative component):

THEEF e 20 TA s AR A

Return_list (X Y (#ALL (country(X), warsaw_pactX),
armored_division(X,Y),
aobilizecY,D), D > Z )))

Here we assume that the varijable 2, representing a Julian
date, haa been bound outside the function call (perhaps

based upon a previous query regarding information within the

61

- - - - DR », - fom
. vpone.s R ey e % . R LI SN
Ser . B P

P .Y A P S R Y 5 ST TS




s PR PN
b )
AT AN S

last six months). Therefore, the variable 2 is in the

current context C, isa instantiated in the query, and

saved 1in So, based upon the context algorithm described '

above.

Turning to the function in Figure 5.1, the solutions
returned in S (based upon the modified resoclution algorithm
above) are, 1in effect, asgsociated with the variables
explicitly liasted as an argument to Return_liat, and only
these values are returned. In thia case the variables X and
Y are listed, and may be exemplified by reaulta asuch as

((Poland Fifth_armored) (Poland Seventh_armored)
(Hungary Second_armored) (DDR Second_armored)).

Other querieas can be mnade to the declarative component
based upon the solutions provided by the previous results.
For inatance, a follow-on question like

“Where is the Second armored division of the DDR

currently located?"
could be resolved by first instantiating variables X and Y
outside the query (possibly uaing SETQ) and using the
function Return_liat again with a different call to the
declarativae componant. Therefore, the function call

Return_list (W (#ANY 1 (armored_diviaion(X,Y),
current_location(Y,W))) )
would return the current location (given such information ia

in the knowledge base) of the instantiated armored diviaion.

62

T '-“v"')‘- Y ‘)‘?\"-'s'\ -.p';p-' T S S e Y P
PGN Y ot 8 IR PLOh P A AU CROR CATRY AR SRR
JPE AN, 3' |!'l'~'l w'lg ls, ." . *" VR, J’ ‘.h A ". = L ". "‘

.......
BORRAN




F. SUMNMARY

The previous examples illuatrate the notion of a
procedural component providing the control for logical
relationshipa 1in the declarative component of an integrated
language. They demonatrate the concept of resolution within
a context, deacribed above, and illustrate the flexibility
provided the programmer, in that user defined functions can
be created to beat utilize or manipulate the reaults
provided by a query to the declarative component.

By atrict enforcement of the separation of logic and
control, the use of the “cut"™ symbol can be eliminated. 1Its
use in PROLOG is based upon the fact that the programmer is
required to provide control mechaniams within the logical
rclationships that are created. A logical relationahip that
ia 80 complex that a cut ia used by the programmer (to
effectively sasave information to that point by halting the
backtracking mechanism) must be simplified in a way that
nakea each logical relationahip a separate entity.
Therefore, the programnmer atill has the burden of
underatanding the manner and method with which 1logical
relationships are defined in the declarative component, but,
more importantly, the requirement to underatand the low-

lavel details of backtracking is removed.

63




TR R R W TR E N N U R T I R TE IR TR T N R TR T Oy N R e e e e VRIS TR TS RITRAR AT TARTRTATRT AT AL SR LTSRS RS 4 1‘:1
\

vI. TION

A. CONCLUSIONS

The previoua chapter deacribed the initiasl features to
be consaidered in the integration of logic programming and
functional prograaaming. Praaented haa been an argument that
an integrated language better supporta Kowalaki’a notion of
saparation of logic and contral [Raf. 8l. Thia argument haa
beaen baaad upon tha idea that declarative aorta of knowladge
(factas and logical relationahipa) should be expressed in a
declarative way, and that procedural asorta of knowladge
(manipulation, control, and utilization of data) should be
expressaed in a procedural way.

Toward this end, the declarative component of an
integrated language establishea a knowledge baae of facta
(or aasertiona) as well aas rulea £for aasociating thoae
facta, deteraining logical relationships among them, or aven
inferring naw knowledge and 1relationships. The procedural
component, then, is the interactive tool for explicitly
controlling those logical relationships and the knowledge
base of facts upon which they are built.

The explicit control afforded by the procedural
component has eliminated redundant and unnecessary
backtracking. Since aultiple rules are no longer required

to define a single logical relationsahip, radundant

64

L.t S TSN LN NP R A e T S e o 2 T
A e A e A A R I N R



L ahas ao aras s s or

a0 s e it 2 B LB LS Mk MEadh Mot e B MB A el uadl el oul

backtracking through the bodies of several clauses with the
same head is avoided. Thisa allows the programmer to
associate one clause with one logical relationship,
providing clearer understanding and easier modification and
raintenance.

The necessary control for utilizing and manipulating
results obtained from a query to the declarative knowledge
base ias provided by the programmer. This control, however,
is no longer at the low level requirad when uaing the “cut"
aymbol. The control ia now concerned with logical
relationahipa and avoida the side effecta resulting from the
use of the “cut®.

Additionally, the programmer is no longer concerned with
explicitly defining the search of a knowledge base of
assertions and rules. By using the procedural component to
manipulate the results obtained from a query to the
declarative component, the programmer can focus on higher-
level issues of interrelationahipa among the raesults of such
a gquery, not on the lower-level details of how that aearch
was performed.

All of these conclusiona aupport the ideas of
abstraction, higher-level focus, and information hiding,
discussed in Chaptera 1 through 4. The argument for an
integrated language, basaed upon the features deacribed in
Chapter 35, is conceptually sound, and has further qupportod

the idea that representing varied forms of

635




knowledge in a strictly procedural, or strictly declarative,

manner forcea the programmer to contort the representation
of one form of knovlodg§ to fit its expression in another

form.

B. RECOMMENDATIONS

Having provided a conceptual ftauoﬁork for the design of
an integrated language, future emphasis should be placed
upon more detailed design, and eventual implementation, of
esach of the procedural and declarative componenta of the
language. A decision muat be nade regarding the choice of
asyntax <(uniform or mixed) of the language, and the detailed
features of each component must be baased upon that deciaion.
For instance, the choice of a functionally-based uniforn'
syntax would require a redesign of thae =manner in which
logical assertiona and telet;onshipa are represented and
interpreted. Such a redesign, however, may greatly simplify
the integration interface described in the previoua chapter.

Additionally, emphasis muat be placed upon issues which
were of concern regarding each programming paradigm in and
of itself. Such issues are efficiency conasiderationa and
parallelism. With f.g.rd to efficiency, both the functional
programming language and the logic programaing languages are
inherently slow without adequate hardware support. Thia

slownesa is a result of recursion in the functional language

66




| e aat paun sat b aan oog smed o man ass

and searching in the 1logic language. Having an integrated
language with both features emphasizesa the necesaity for the
hardware support for parallel execution.

Fortunately, both functional programaing and logic
prograaaing asupport the notion of parallel execution, and
with adequate hardware support, an integrated 1aﬁguage could
provide the best featurea of a functionally-baaed procedural
component, as well as the beat featuraea of a logically-based
declarative component, and that is sufficiently efficient to

provide timely calculations and resulta.

67

LR AL N

ST e T g

. T e BRI N
L ELRAYR LS LIS S



v i v l".l’.'“':"*" A

e ety
V:$,'~‘l Fet

'l
N}

- .;‘-,'-

) 1
A
.

5
’3

Ylalsl

- B
Ly -

.

10.

11.

12.

LIST OF REFERENCES

Whorf, Benjamin L., Language, Thought, and Reality,
MIT Preas, 1956.

Clockain, W. F. and Mellisah, C. S., nmi i
Prolog, Springer-Verlag, 1981.

Backua, John, "Can Programming Be Liberated from the
von Neumann Style? A Functional Style and its Algebra

of Programs,” Communicatjons of the ACM, Vol. 21,
No.8, pp. 614-640, Auguat 1978.

Bartimo, J., "“SMALLTALK with Alan Kay," Information
Worilid, Vol. 6, No. 24, June 1984,

MaclLennan, B. N Principles of Programming
- n Ev nd Implementation,

Holt, Rhinehart, and Winaton, 1983.

Booch, Grady, Software Engineering with Ada, Benjamin
Cumminga Publication Co., 1983.

McDermott, Drew, “The Prolog Phenomenon,* SIGART
Newsletter, pp. 16-20, July 1980.

Kowalski, Robert, ‘'"Algorithm = Logic <+ Control," ‘
o ACM, Vol. 22, No. 7, pp. 424-
436, July 1979.

Kowalski, Robert, ‘'Predicate Logic as a Programming
Language,* ormation rocess 74, pp. 569-574,
North-Holland, 1974.

Van Emden, M. H. and Kowalski, Robert, “The Semantics
of Predicate Logic as a Programming Language,"™ Journal
of the ACM, Vol. 23, No. 6, pp. 733-742, October 1976.

MIT Technical Report 258, Descri on and Theoretical
(u e a) of PLANNER: a Langquage for

Proving Theorems and Msnipulating Models in a Robot,
by Carl Hewitt, 1972.

Smith, Bruce, "Logic Programming on an FFP Machine,"

IEEE International Symposium on Logic Programming,
PP, 177-183, February 1984,




13.

14.

1S.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Martelli, A. and Montanari, u. “An Efficient
Unification Algorithm, " ACM ___ Transactjone on

Programming Languages and Systems, Vol. 4, pp. 258-
282, 1982.

Paterson, NM. S. and Wegnan, M. N., "Linear
Unification," J n and Syatenmna
w. Vol. 16' PP-. 158-167' 1978.

Hill, R., "LUSH Resolution and its Completenesa," DCL
Memo 78, Univeraity of Edinburgh, 1974.

Van Emden, M. H., "Programming with Resolution Logic,”

Machine Intelljgence 8, Ellis Horwood, 1977.

Barr, A. and Feigenbaum, E. A., The Handbook of
» Volume 1, Heuriatic Pressa,
pp. 170-179, 1981.

Rich, Elaine, Artjfjciel Intelligence, McGraw-Hill,
1983.

Winaton, Patrick Henry, Artifjcial Intelligence,
aecond edition, Addison-Wealey, 1984.

Maclennan, B. J., F ogramming Methodology:
Theory and Practice, (tentative title), to be
published by Addison-Weslaey.

Basili, V. R. and Noonan, R. E., "A Comparison of the
Axionmatic and Functional Models of Structured

Programming,” IEEE Transactions on Software
Endineering, Vol. 6, No. S5, September 1980.

Naval Postgraduate School Technical Report 52-84-004,

A_ Simple Software Environment Based on Objecta and
Relatjiona, by MacLennan, B. J., 1984.

Hoffman, C. M. and 0‘’Donnéll, M. J., “Programming with

Equations,*” ACM Transactiona on Programming Lanquages
and Syatems, Vol. 4, No. 1, pp. 83-110, 1982.

MacLennan, B. J., “Introduction to Relational
Programmaing,” Procee the 1981 Conference on
n Proqram anquages and Computer

Architecture, ACM Order No. 556810, 1981.

Barbuti, R., Bellia, M., Levi, G., and Martelli, M.,
*On the Integration of Logic Programming and
Functional Programming,* ]IEEE International Symposiun

on Logic Programming, IEEE Computer Society Preas,
pPp. 160-167, 1984.

69

DR TR
- L -

AR P
R P A I R,
OOV SR WA 'q-\-{- A

.......




YW YR T W U X

R
[

'd
\"
o 26. Robinson, J. A. and Sibert, E. E., “LOGLISP: an
e alternstive to PROLOG," NMachine Intelligence 19, Ellisa
b Horwood, pp. 399-419, 1979, '
- 27. McGrath, Thomas R., The Enhancement of Concurrent
:: . n as,
N N.S. Thesais, Naval Postgraduate School, Monterey,
o California, June 1984.

28. Hoare, C. A. R., "An Axiomatic Basis for Computing
L - Programs,” communications of the ACM, Vol. 12,
L PP. S576-3583, October 1969. .
;{ 29. Mills, H. D., "The New Math of Computer Programming,”
n Communications of the ACM, Vol. 18, pp. 627-64S,

January 197S.

N,
-
N
N
~ v
™
4‘1
o
-




INITIAL DISTRIBUTION LIST

No. Copiea
* 1. Defense Technical Information Center 2
Cameron Station
Alexandra, Virginia 22304-6149

Py 2. Dudley Knox Library, Code 0142 2
Ay, Naval Postgraduate School
N Monterey, California 93943-5100

3. Department Chairman, Code 52 1
Departaent of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

p )
RANDI

R

4. Office of Research Administration 1
Code 012A

- Naval Poatgraduate School

- Monterey, California 93943-5100

- 5. Computer Technologies Curricular Office 1
a Code 37

] Naval Poatgraduate School

X% Monterey, California 93943-5100

; 6. Bruce J. MacLennan 1
Code S5S2NM1
Naval Postgraduate School
Monterey, California 93943-5100

¥ 7. Captain Bradford Mercer, USAF 1
Code 5224

Naval Postgraduate School

Monterey, California 93943-5100

o
* l‘. ., 1
ottt

N

8. Randy E. Rhodes 3 {
4720 Marlborough Drive
Virginia Beach, Virginia 23464

71




T—-vw:w- -y Y W T U TR TN T I T TN ST ST T TU, VN T TSN UL T TR I U e ma e e e e e ey

.

PR AR SRR

11-85

A
%
.
s
.
=
.
.
.

e S LT Ry .‘. '... '.‘

AT N ;j
AT I
RSSIS RS NS PO RN




