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ABSTRACT

i Two programming paradigms, logic programming and

functional programming, are discussed in detail with

emphasis on the particular advantages and disadvantages of

each paradigm.

The integration of these two programming paradigms is

explored based on the notion that declarative sorts of

knowledge (facts and logical relationships) should be

expressed in a declarative way, and that procedural sorts of

knowledge (manipulation, control, and utilization of

knowledge) should be expressed in a procedural way. Toward

this end, the conceptual framework for an integrated

language is established, and the basic features of the

language are outlined.
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I. INTRODUCTION

A. PROGRAMMING LANGUAGE DESIGN

Programming language design represents both an effort to

provide the necessary interface with the hardware of the

computer and an effort to better capture the ideas of the

programmer. As higher order programming languages evolve, a

Ikey factor in each language designed is the level of ab-

straction afforded the programmer. Current conventional
5'

languages have removed the programmer from the hardware

level of the machine. For instance, instead of being con-

cerned with which registers to use, the programmer can be

more concerned with solving the problem at hand. For

certain classes of problems, this higher level of abstrac-

tion increases the semantic power of the language and better
captures the problem solving concepts of the programmer.

The evolution of programming language design has resulted in

d solutions to a broader class of problems and even new

approaches toward the solution of presently unsolved

problems.

B. PROBLEM COMPLEXITY

The features of the language are the tools with which

the programmer tackles a host of complex problems. As the

problem complexity increases, the manner in which one works

i
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I

toward a solution can be affected by the tool or tools

available. Consider the analogy of an automobile mechanic

working on an automobile engine; a simple tune-up,

adjustment, or small part replacement can be performed with

simple handtools and devices. However, if the problem is

more complex, say involving the cylinders, camshaft, or

drive train, then the mechanic cannot solve such problems

with simple tools. The solution now requires more advanced

tools like hydraulic lifts, pneumatic tools, and precision

instruments. In fact, without more advanced tools, the 3ob,

if still possible, is solved through improvisation with the

simpler tools and results in a less efficient and imprecise

solution.

C. SAPIR-WHORF HYPOTHESIS

Similarly, the features of the programming language can

effect the manner in which the programmer approachea the

solution to a particular problem. This can be considered an

application of the controversial Sapir-Whorf hypothesis

which originated in linguistic theory (Ref. 1]. Assuming

this hypothesis, the programmer attempting to solve complex

problems with a limited programming language cannot realize

his full problem solving potential and must improvise with

the available language features to work toward an acceptable

solution.

9
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D. NON-CONVENTIONAL PROGRAMMING LANGUAGES

Conventional programming languages do not offer the

programmer a very high level of abstraction, have a

restrictive "word-at-a-time" [Ref. 5: p. 404] programming

style, and result in what Backus refers to as an

"intellectual bottleneck" CRef. 32. The sequential nature

of these imperative languages, through use of assignment

statements to alter memory, results in a von Neumann "mind

set", and places limitations upon the level of abstraction

available to the programmer. Efforts to provide more

semantic power to these languages has resulted in the

development of the Ada CRef. 63 programming language. This

very large and very complex language provides increased

semantic power at the cost of simplicity, clarity of

understanding, and programmer mastery of his tool (Ref. 63.

Non-conventional programming languages, on the other

hand, offer a break from the von Neumann mind set and help

the programmer approach and solve problems from new

perspectives. Such non-conventional programming languages

are illustrated by PROLOG CRef. 2,73, Backus' FP language

[Ref. 32, and SMALLTALK (Ref. 42. Each of these languages

represents an implementation of a particular programming

language paradigm, namely, logic programming, functional

programming (applicative programming with emphasis on

functions as arguments), and object-oriented programming,

respectively. Issues such as semantics, computational

10



power, parallelism, side effects, flexibility, simulation,

and knowledge representation exemplify some of the basis for

development of language design in each of these programming

paradigms.

E. RESEARCH FOCUS

With these issues in mind, two programming paradigms,

logic programming and functional programming, are discussed

In detail. The emphasis of the discussion will be in terms

of the particular advantages or disadvantages of each

programming paradigm, often exemplified by the PROLOG or

"pure" LISP implementation. The focus of this study will be

toward the development of a theoretical foundation for the

design of an integrated programming language which, of

course, maximizes the advantages of both paradigms and

minimizes their disadvantages. Such an integrated language

should broaden the scope of the programmer's problem solving

capability by providing a tool that is both semantically and

computationally powerful, and offers improved control

characteristics.

11
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degree rests with those portion& of PROLOG which embody the

features of predicate logic. For example, the use of

'assert' and 'retract' predicates in the language allows the

assertion and retraction of axioms based upon conditions

within the logic program.

This violates the principle of predicate logic

that each assertion is an independent truth. Therefore, in

the resolution process, there are different sets of axioms

at different points in time [Ref. 33. This dependence of

some axioms and the addition or deletion of others diverges

from the notion of separation of logic and control. In

order to provide the programmer with a means to alter a

database of facts, the advantages of separation of logic and

control (discussed above) are sacrificed.

F. SUMMARY

The logic programming paradigm offers the programmer a

high level, non-procedural approach to problem solving

enhanced by the simple semantics of Horn clauses. The

resolution of goal statements and the unification of

variables within that goal is at a level below that of the

programmer. Additionally, the inherent capability to

separate the logic of the problem solution from the factors

which control the solution, allows the programmer to focus

attention upon the logical relationships of the problem

solution and program correctness.

25
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automata and systems programming become much more difficult

to solve.

4. Implementation Considerations

The most notable implementation of logic programming

is PROLOG, and the dra-ibacks noted here are factors that

affect efficiency or sacrifice some of the power of the

language in favor of more efficient execution.

a. Backtracking and Efficiency

As mentioned earlier, backtracking through a

very large search space can be very costly to the search

strategy, yet, for such resolution-type systems as PROLOG,

it is very necessary. Unfortunately, it is this vast amount

of time spent backtracking by the PROLOG interpreter that

makes solutions to goal statements very slow in coming.

b. Unification

In order to regain some of this lost efficiency,

many PROLOG implementations do not provide full unification.

For instance, the resolution process would allow the

unification of f(x,x) with f(y, g(y)), and would bind x to

g(x) (Ref. 7]. The problem, of course, is that the attempt

to prune the search tree allows circularity and the

generation of infinite loops.

c. Assertion/Retraction

In the vein of predicate logic problem solving,

there have been claims that PROLOG programs have no side

effects (Ref. 7]. To some degree this is true, and that

24
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not halt on a non-theorem [Ref. 18: p. 139]. Such

procedures are said to be semidecidable.

2. Combinatorial-ExDlosion

All resolution strategies are subject to the problem

of combinatorial-explosion, since the search trees generated

can grow very unpredictably (Re£. 19: p. 2293. Somewhat

akin to the halting problem, it means that a success for the

proof of an actual theorem may be prevented due to the

tremendous size and shape of the search space.

3. Axiomatize All Knowledae?

The use of logic programming toward the solution of

all problems leads to the restriction that all knowledge

associated with the problem must be embodied in axioms

(Ref. 19: p. 231]. Such a process might require an

enormous effort.

a. Heuristics

A considerable portion of this effort can be

attributed to the fact that there is, as mentioned above, no

provision for heuristics in the knowledge representation.

Therefore, such notions as best, next best, worst, etc.

resist representation in logic, and make a logical statement

of the problem difficult or impossible.

b. No Expression of State

Another drawback of logic programming is the

absence of a method for representing state transitions.

Without such representation many problems embodied in finite

23



knowledge, it is important to consider whether predicate

logic provides adequate support for reasoning about that

knowledge CRef. 18: p. 1392.

1. Undecidability and the Halting Problem

A major drawback of predicate logic is the absence

of a decision mechanism for dealing with the knowledge that

can be inferred from stated assertions. Without such a

mechanism, the resolution procedure blindly searches for a

solution.

Pure logic does not allow the expression of

heuristics, which hinders the search for a path to a

solution during the resolution process CRef. 19: p. 2313.

Therefore the resolution strategy may allow numerous

unnecessary and divergent paths to be taken during the

search. This can become a grossly inefficient method of

search.

jAdditionally, given a goal statement, using

resolution to reason backward will produce a proof if the

proposed goal statement is, in fact, a theorem based upon

the assertions and clauses in the logic program. However,

there is no guarantee that such a search will terminate if

there is no proof CRef. 19: p. 2293. This is a version of

the halting problem and is one that the AI community has

come to live with in their pursuit of proof methods, being

content with a method that proves theorems even if it may

22



interrelationship of those control structures with the

actual logic of the program [Ref. 5: p. 5103.

Logic programming, on the other hand, allows a much

greater separation of logic and control. Since the order of

the clausei of a logic program has no effect upon the

correctness of the program, the meaning of the program is

tied to the logical relationship of the program clauses, not

the order in which they are executed [Ref. 2, 5, 83.

This separation of logic and control introduces the

notion of separate analysis. Logical analysis is a concern

for the correctness of the program, whereas, control

analysis is a concern with the efficiency of the program

[Ref. 5, 82.

An obvious advantage of this separation, with regard

to logic programming, is that the programmer can focus

attention upon the details of the logic component when

concerned with program correctness. Once a correct program

has been established, the programmer can then focus upon the

control component for efficiency considerations. This

dis3oint analysis simplifies the programmer's task by

"* removing the previously dependent relationships between the

two components.

IE. DISADVANTAGES

Although predicate logic offers some advantages to the

programmer in terms of representation of certain kinds of

21



1. Mon-Procedural

The notion of a non-procedural language is one in

which the features of the language allow the programmer to

concentrate more on "what' the program will do and not on

"how" it will be done CRef. 5: p. 499]. The goal-directed

nature of logic programming embodies this notion, in that

the programmer expresses the facts, in clause form, which

assert the existence of the desired result CRef. 5: p. 500].

The construction of the desired result, then, is based upon

the resolution process of the logic programming language and

removes the burden of "how" it will be done from the

programmers

2. Simple Semantics

Much of the power behind the semantics of

programming rests with the notions of truth and inference

CRef. 183. Assertions within the logic program are accepted

as truth, and the clauses within the program are facts that

allow inferences to be made based upon those assertions.

3. Senaration of Logic and Control

Closely related to the non-procedural notion of

programming is the notion of a logic component and a control

%Izcomponent within the language CRef. 83.* The control

structures of conventional languages determine the order in

which actions within the program take place. The fact that

statements within that program must be executed in a

specified order to ensure correctness illustrates the

20
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for matching CRef. 12]. This process is called backtracking

and the node at which backtracking stops is called a

backtracking point. The search continues from the

backtracking point pursuing the unsearched alternatives. A

success requires that every path of the proof tree end with

the empty clause CRef. 123.

For example, in Figure 2.2(a), the leaf D can be

resolved with the empty clause, but the leaf E cannot,

aincethere are no clauses within the logic program that have

a head to match it. Therefore the system must backtrack to

node B since an alternative choice within the search tree

(see label (3), Figure 2.1) is still available. That choice

is depicted by the proof tree in Figure 2.2(b).

This backtracking is necessary because of the non-

deterministic characteristics of the resolution of subgoals.

Yet it is easy to &s that fairly large and complex programs

would require considerable backtracking.

D. ADVANTAGES

Logic programming offers seductive advantages when

dealing with certain classes of problems. Ideas of logic

have matured for centuries and have a concise and

universally understood semantics. For bodies of knowledge

that can be represented in a logical form, logic programming

-! offers a means to prove things about that body of knowledge

(Ref. 203.
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proof tree CRef. 123. A proof tree La generated for each

node in the search tree. It a an AND-tree where the root

is the original goal and the loaves are the corresponding

subgoola of the search tree [Ref. 123. The proof trees for

nodes C-- D,EC and <-- F,C are illustrated in figure 2.2

A

,. I \ I

I/ \ I

D E C

(a)

A

F I

IB I

IF CI

(b)

Figure 2.2 Proof Trees

During the resolution process, if a loaf cannot be

unified or resolved with the head of another definite clause

within the logic program, then a portion of the tree is

erased. That portion is from the unresolvable leaf back to

the most recent node that has not exhausted it& potential

518 N'



statement. Each edge of the tree is labeled by the index to

the particular clause of the logic program (above) that was

used in the resolution process based upon the selection

component previously described. The search component

progresses through the entire tree until either the empty

clause is found or the entire tree is searched CRef. 123.

Although the unifying substitutions are ignored here, those

substitutions, made along a successful path, yield an answer

for the goal statement.

----- A-

A I

B,

(2) (3)

-D, E, C -F, C

I /\
/ \ \

(5) () () (7)

I / I
I / I

<-- E, C -- G, C C

(4) 1

-- -- - -- - ---- -- -- -- -- ---- --- - -- - -- - -- -

0I

Figure 2.1 Search Space Depicted as a Tree

In order to avoid the redundancy of repeated

subgoals in the search tree, many PROLOG systems construct a

17
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search space or because of finite path& that do not lead to

the empty clause (Ref. 163.

3. PROLOG Example

The selection component of PROLOG provides a rule

that always selects the leftmost literal (Ref. 3, 163.

Therefore, the negative literal& of a clause must be ordered

and fixed, and only those search spaces (or developing

trees) can be implemented MRef. 16] . The search component

in PROLOG provides a depth-first strategy with the leftmost-

-> descendant first (derived by the above selection rule). The

ordering of-descendents is determined by the ordering of the

definite clauses within the logic program.

Consider the following logic program (ignoring the

structure of the clause* and the unifying substitutions)

(Ref. 12]:

(1) A ]a- , C

(2) B (-D, E

(3) B8- F

(4) C

(5) D

(6) F -- G

(7) F

Given the goal statement <-- A, the search apace for

resolving this goal is depicted as a tree in Figure 2.1

CRef. 12] . This search tree is an OR-tree whose nodes are

possible goals that may occur during resolution of the goal

16



-A V...V -An, and that the subgoal being resolved is -Ai.
1n

Since the head of the clause is the positive literal, the

unification of the subgoal and the definite clause resolves

the literal Ai, and replaces it with the body of the clause

(Ref. 10, 162. This derivation is possible, of course, only

if some general substitution function, mapping variables to

terms, makes the subgoal and the head of the definite clause

identical (Ref. 102.

2. Non-determinism

Predicate logic is non-deterministic in that the

unification process follows a pattern matching scheme for

resolution of aubgoals and more than one definite clause may

have a head that will match [Ref. 10, 122. Therefore, a

resolution procedure like LUSH requires a selection

component and a search component [Ref. 163, where the

selection component is the rule to determine the search

space, and the search component is the strategy whereby that

space is searched. This search apace can be thought of as a

tree with the goal statement as the root and descendant

nodei determined by the selection component. The paths of

this tree are then traversed according to a strategy given

* - by the search component.

Such a non-deterministic system, then, requires

somewhat restrictive selection and search components because

of the possibility of an infinite number of paths in the

15



C. GOAL SATISFACTION

A logic program consists of a number of these Horn

clauses, as axioms, upon which the attempted satisfaction of

a particular goal is based CRef. 123. An important point

here is that these axioms are user defined and basically

provide the system interpreter with the facts required to

determine whether a given goal is satisfiable.

1. Resolution and Unification

A logic programming interpreter attempts to solve a

particular goal statement by resolving any subgoals within

the statement with the heads of definite clauses of the

logic program. Since the resolution process is one of proof

by refutation, a goal is satisfiable if the empty clause

(contradiction) can be derived. During the derivation

certain bindings for variables may be made which become the

solution for the given goal statement (Ref. 123.

There are several algorithms (Ref. 13, 143 for

performing such unifications, the foundation of which is

described by Kowalski (Ref. 93 and detailed by Hill [Ref.

153, where he names the process LUSH (Linear resolution with

%nrestricted $election for arn clauses).

The LUSH rule of inference takes a given goal

statement Al,...,A n and attempts to resolve a subgoal Ai

with a definite clause within the logic program that

contains an identical form of A as the head of the clause.
i

Recall that the actual form of the goal statement is

14



A logic program consists of the explicit use of Horn

clauses in the process of goal satisfaction. Both Horn

clauses and the process of goal satisfaction are described

below. Additionally, the advantages and disadvantages

afforded the prog,&amer by using logic programming are

detailed.

B. HORN CLAUSE

A Horn clause is a subset of the full predicate logic

system that is quantifier-free and contains at most one

positive literal. It is the preferred logical formula in

the expression of logic programs. Horn clauses can be

represented by both the logical form, where m- means

negation, and the standard convention, <head> <-- <body>,

called a definite clause. The following four

classifications of clauses are illustrated by both:

1) Assertion (only one positive literal)

B or B <--

2) Declaration (one positive literal and one or more

negative literals)

B V -A1 V . . .V -An  or B <-- A ,O..,A n

3) Denials (no positive literals)

.-AiV... V -A n  or <-- A 1 ,..., An

5_ 4) Contradiction (the empty clause)

"" or --

13
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II. LOGIC PROGRAMMING

A. BACKGROUND

The foundation for the development of a programming

language based upon the rigors of predicate logic seems to

have grown out of early attempts to automate theorem proving

,Ref. 5, 7, 11] and has subsequently been bolstered by the

demands of the artificial intelligence (AX) community in an

effort to live up to their rather ambitious name. Hewitt's

PLANNER [Ref. 11], a language designed for theorem proving

and robot model manipulation, utilized such concepts as

backtracking and a database of asertions Ref. 7], which

would later be embraced by the designers of PROLOG. The

theoretical foundation for programming in logic, however, is

probably best described in Kowalski's work CRef. 8, 9, 10].

In particular, his paper in the Communications of the ACM

CRef. 8], though concerned with predicate logic as a tool

for algorithm analysis, introduces the separation of the

logic and control components'of an algorithm and strongly

suggests the usefulness of this concept in programming

languages. Additionally, Kowalaki defines the semantics of

predicate logic programs CRef. 9], in a collaboration with

van Emden, regarding proof theory and model theory.
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Disadvantages seen to arise from the fact that all

knowledge is not declarative ini nature and does not lend

itself to axiomatized representation. Furthermore, certain

control and efficiency issues are required to curb or

contain the search of the knowledge base during the

resolution process, and are more naturally represented

procedurally.
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III. FUNCTIONAL PROGRAMMING

A. BACKGROUND

The foundation of functional programming lies in the

notion of general recursive functions, which can express any

computable function CRef. 20: pp. 1-8]. McCarthy's "pure"

LISP first illustrated this concept by showing that a number

of significant programs could be expressed as pure

functions. These pure functions in LISP, of course, operate

on list structures, but the notion may be generalized to

other structures.

The importance of the recursive function concept is the

impact that it has on the nature of programming. In

conventional languages imperative statements are used to

alter contrc¢ flow and update memory. These statements (as

mentioned in chapter 2) are dependent upon the order in

which they are executed. The recursive use of pure

functions eliminates the requirtment for these imperative

statements and, as a result, is often called "assignment-

. les" or "variable-less" programming. This "value-oriented"

program-ming is based upon the use of pure expressions

(discussed below) and offers the advantages of arithmetic

and algebraic expressions to the programming language CRef.

20: p. 1-11.
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Probably one of the most critical attacks upon the

conventional programming languages of the von Neumann style

came from Backus' Turing Award Lecture, where he describes

them as "fat and flabby" CRef. 3: p. 6143. His criticism of

the framework, the "word-at-a-time" programming, and the

lack of useful mathematical properties of conventional

programming languages CRef. 3: p. 6173 led to the design of

his Functional Programming (FP) System.

An important contribution in Backus' FP paradigm is

the emphasis on the use of functionals (described below).

The use of functionals allows the programmer to raise

himself above the recursive nature of the function by

providing a higher level of abstraction. At this higher

level, the programs can be made more understandable and

thereby much easier to maintain.

B. EXPRESSIONS

Expressions may be arithmetic, relational, or boolean,

as illustrated in Figure 3.1. In conventional

I I0

I'-arithmetic: (a * b) * c

I'relational: a b 0 0

boolean: -(a V b)

Figure 3.1 Types of Expressions

w-'. "
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languages these types of expressions appear on the right-

hand side of an assignment statement. By eliminating the

use of the assignment statement we can concern ourselves

with "pure" expressions and the properties associated with

then CRef. 27: p. 283. These properties are listed in

Figure 3.2 and several are discussed below.

I value is independent of the evaluation
I order

,I * referential transparency

no aide effects

Iinputs to an operation are obvious in
the written form

I * m effects of an operation are obvious in
Ithe written form

Figure 3.2 Properties of Pure Expressions

1. Evaluation Order IndeDendence

An important property of pure expressions is the

fact that within a given context, an expression has the same

value regardless of the order in which it is evaluated. In

fact, the evaluation of subexpreasions within a given

expression will not effect the evaluation of other

asubexpressions, and the order in which they are evaluated

will not alter the final value of the overall expression.

29
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This independence of evaluation order (also called

the Church-Roaser property CRef. 20: p. 1-31 is illustrated

in Figure 3.3. Here a pure expression (with subexpressions)

is shown in tree form, where the evaluation begins at the

leaves of the tree. As soon as the leaves below an operator

I I

I/ \I
I/ I
I/ I

I/ I

I /\ /\I

I/ \ / \I

-" a b c -I / \I

-. ,/ I

d e

(a + b) * (c (d -e))

Figure 3.3 Pure Expression as a Tree

node have values, that operator can be applied to those

values and that subexpression is evaluated. Once evaluated,

those subexpressions, as in this example, may become one of

the arguments to another operator. Note that whether the

•'" operator or the "-" operator is evaluated first does not

alter the value of the entire expression.
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The importance of context can be illustrated by an

"impure" expression, as in figure 3.4, where assignments to

variables can be made. If memory outside the context is

allowed to be altered, then the expression is not "pure" and

side effects can result. In this case the value of the

variable *a" can be altered by the evaluation of the

function call.

-- - - - - -- - - - - -- - - - - - -- - - - - -- - - - - -

a + b * F(c)

where F(z:integer): integer
begin

I a :*0;I

end;

-- - - - - - - - - -- - - - - - - - - -- - - - - - - - - -

Figure 3.4 Impure Expression

2. Referential Tranpaerencvy

The property that the replacement of an expression

(or subexpression) by its value is entirely independent of

the surrounding expression in which it occurs is called

referential transparency CRef. 20: p. 1-33. This property

means that having evaluated an expression, it need not be

evaluated again. This provides the universal ability to

substitute equals for equals within a given context.

For example, given the context b-3 and c=4 for the

expression in Figure 3.5, referential transparency means

31

--•



that having evaluated (b * c) to the number 7, the

substitution of 7 for the other occurence of (b + c) will

not affect the value of the overall expression.

/ I
/ \

/ \

II I

I/ \ I\ I
I \ / \I

I a d *

I/ \ / \I
I/ / I

b c b I

(a (b c)) * (d (b + c))

Figure 3.5 Pure Expression as a Tree

C. FUNCTIONS

Mathematical mappings from inputs to outputs are "pure"

functions. Such pure functions are the "+", "w", and ...

operators of the pure expression in Figure 3.4. The results

of these operations depends only upon the inputs. In fact,

the notions of pure expressions and pure functions form an

interesting dependency. In order for an expression to be

pure (thus having the properties stated above) it must

consist of pure functions. Additionally, if functions can

be constructed with pure expressions (containing no
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explicit or hidden assignment statements), then the

function will retain the properties of pure expressions

(Ref. 20: p. 1-53.

1. Function Application

An applicative program takes the form of an

" expression that consists of the application of pure

functions to their arguments. Thus function application is

the fundamental operation of applicative programming and is

illustrated, in Figure 3.6, by the prefix function form of

the expression in Figure 3.5.

. I I

I times((times(plus(b,c),a)),(times(plus(b,c),d))) I
I i

-I I

Figure 3.6 Prefix Form

Within the applicative programming language

functions may be defined explicitly, conditionally,

recursively, or as the composition of other functions. The

important point, however, is that these functions operate

only on data (characters, numbers, etc.).

2. Fuinctinl

In order to provide a higher level of abstraction,

functionals are functions that take other functions as

arguments. Functional& result from identifying recurring

patterns in function definitions and abstracting them to a
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higher level. The "map" functional is an excellent example,

since, it accepts functions such as "times", "plus", etc.

and maps them onto a list of ordered pairs. Such a

functional eliminates the requirement to explicitly define

"maptimes", "mapplusl, etc. functions.

Functional programming, then, is a form of applica-

tive programming that makes extensive use of functional&.

Not only does it simplify the programming process (fewer

explicitly defined functions), but also offers additional

properties which are listed in Figure 3.7 (Ref. 27: p. 30].

* easy to use existing functions to build
new ones

* * easy to combine functions using composition

s subject to algebraic manipulation

• easier to prove correct

• easier to understand

Figure 3.7 Properties of Functional Programs

D. PROOF OF CORRECTNESS

The mathematical properties of functional programming

lend themselves to much more straightforward proof of

correctness than either imperative languages or logic-based

languages. Most often, the recursive function definitions

of the functional program can be individually proved by

34
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induction. Additionally, the functional programs themselves

are subject to algebraic manipulation. A detailed analysis

of such algebraic properties is presented in Backus' Turing

Award Paper CRef. 3].

A comparison of Hoare's axiomatic model of correctness

CRef. 283 with that of Mill's functional model of

correctness (Ref. 29] helps to illustrate this more

straightforward proof of correctness method.

1. Hoare's Axiomatic Model

Hoare's axiomatic model of correctness uses the

notation

(P) S (Q)

to state the required connection between the input assertion

P, output assertion 0, and the program (or part of a

program) S. Partial correctness of program S results if and

only if for every substitution of values which makes P true,

then after execution of S, 0 must be true. Total correct-

ness results if it is proven that if P is true then S

terminate& (Ref. 212. Hoare's rules of inference, very

similar to the rules of predicate logic, are used to prove

correctness of particular programs. By assuming the pre-

and postassertions of every program statement, as well as

the program itself, the rules of inference are used on each

piece of the hierarchy to establish the proof. The problems

arise from the fact that most statements of a program do not

annotate their pre- and postconditions and that the proof of
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iterative portions of the program requires recognition of a

"loop invariant" that is often difficult to ascertain.

CRef. 211.

2. Hill's Functional Model

Hill's functional model of correctness states the

intended function of a program as a functional abstraction

which summarizes the outcomes of the program (or part under

consideration). This functional abstraction is independent

of the control structures and data operations and reduces

the question of correctness to one of function composition

and function equivalence CRef. 21]. Partial correctness of

program S means that "with respect to function F, every

argument X, for which F is defined and F(X)=Y, then if

program S is executed with initial input vector X, its final

output vector is Y." Total correctness is proven by showing

that if X is in the domain of F then S terminates [Ref. 21).

The problem of determination of the loop invariant is

minimized since the intended function of the loop may be

easily converted to a loop invariant.The problem still

remains that in most conventional programming languages most

statements of the program do not annotate their function.

E. ADVANTAGES

1. Higher Level of Abstraction

The advantages to be gained by functional program-

ming are somewhat analagous to the advantages of structured

36
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programming. The higher level of abstraction afforded by

"goto-leas programming makes it easier to reason about and

understand programs. The gotos exist at a lower level of

abstraction and the programmer is not burdened with those

details. Similarly, the "assignment-lesa" property of

functional programming encourages an even higher level of

abstraction, providing a more systematic derivation of

programs and resulting in greater understandability

(Ref. 20: p. 3-43. Assignments, of course, exist but are

hidden from the higher level of abstraction.

Additionally, the functionals within the language

provide a mechanism for achieving an even higher level of

abstraction. Common patterns among user-defined functions

can be abstracted out, named, and thereafter referred to

without concern for the underlying function composition.

2. No Side Effects

Many of the side effects associated with imperative

programs result from the assignment statement and its use in

altering variables (local and non-local). This results in

hidden interfaces within the program, which degrade both

program correctness and understandability. In functional

programming the assignment statement is eliminated and the

interfaces manifest themselves in the expressions of the

program. This means that the input-output connections of

the subexpressions within an expression are visually obvious
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(Ref. 20: p. 1-41 and confer no hidden interfaces or side

effects.

3. Verification and Proof Technicu2a

The functional model has several advantages over the

axiomatic approach. By stating specifications and sub-

specifications as functions from an input space to an output

space, the functional model is a mathematical model in the

strictest sense. The axiomatic approach organizes such

specifications into Boolean functions represented by

assertions on program variables, assertions given in terms

of the relationship of the variables involved. The

functional approach is in terms of the relationship of the

two value sets involved. This means that the axiomatic

approach maps from the current values of the variables into

the two-tuple CTrue, False] instead of the more mathematical

functional model which maps from the input value space to

the output value space. Another advantage is that changes

in a program that do not affect another program segment do

not require a new proof of correctness for that segment.

This results from the fact that the proof of a functional

specification is in terms of the behavior of the program

statement independent of the history of variables in the

segment. The assertions of the axiomatic approach, however,

are restricted by variable history and interdependence with

other variables (Ref. 21]. Additionally, different

implementations of a particular specification can be

38



substituted without requiring new proofs of other program

segments.

Functional programming and the functional model

described go hand-in-hand toward meeting the goals of

structured programming. The decomposition of the larger

programming structure into simpler structures (stepwise

refinement) is easily afforded with functional programming

in which larger programs or functions are merely

compositions of simpler functions. The problem mentioned

above regarding conventional languages and how each

statement rarely annotates its function is eliminated with

functional programming. Therefore, the functional program

lends itself to proof of correctness with the discussed

model in a convenient manner.

4. Parallelism

The ability to perform parallel execution in

functional programming is a direct result of the property of

evaluation order independence inherited from pure

expressions. The various nonoverlapping subexpressions

within an expression can be evaluated simultaneously since

the evaluation of one is not dependent upon the evaluation

of another. Therefore, a multiprocessor could assign

various processors to evaluate different parts of an

expression in parallel.

Unlike conventional languages which require the

programmer to identify the portions of a program which can
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V. FEATURES OF AN INTEGRATED LANGUAGE

A. SYNTAX ISSUES DEFERRED

Whether the syntax of an integrated language should be

uniform (either functionally based or logically based), or

whether it should be mixed, is an issue that will be

deferred at this point. The intention is to describe the

important features of an integrated language and discuss the

modifications required of the resolution process within the

declarative component. In keeping with the examples of the

previous chapter, the use of PROLOG and LISP syntax can

adequately represent the points to be made, and the mixed

syntax will better illustrate the transfer of control from

procedural interpretation to declarative, and vice versa.

With this transfer in mind, the "#" symbol will

represent the transfer of control from one component to the

other. The results from a procedural call (function

application) within the declarative component must be the

value of the evaluated function, and will be used to

instantiate (or unify) a variable within the clause. The

results from a declarative call (resolution process) within

the procedural component, on the other hand, must return a

list of solutions to the query. Each solution is itself a

list of variable bindings that provide a solution to the

given query.
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the previous example:

- Queries (calls to the declarative component) must be
qualified. Qualification& such as 'all', 'any', etc.
must be made explicitly in the query.

- Unification must be based upon the given context (or
environment) in which the declarative call is made. A
context is a list of unifications, (or bindings) which
provide a constraint upon the resolution of the
declarative clause.

These observations form the foundation upon which the

features of a truly integrated language can be described.
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(defun append ( L K

(cond

((null L) )

(T (cons (car L) (append (cdr L) M))))) )

I append ( #(weeklyTax(X,30), weekly tax(Yo30)),

'(JohnSmith) )

Figure 4.4 Call to Declarative Component

the procedural component expects the declarative call to

return a list of employees which pay 30 dollars in weekly

tax. However, suppose the uninstantiated variable Z was in

place of the 30. The resulting list of employees would be

dependent upon the various instantiations of Z, and without

knowing which employees were associated with those values of

Z, the resulting list would be meaningless. What about a 3-

tuple list which yields the X, Y, and Z instantiations of

every solution? Such a list could become a rather large

list of permutations with, possibly, redundant information.

Here the results to be returned are more complicated and

require modification to the resolution mechanism within the

declarative interpreter.

Such modification, discussed in the following chapter,

is based upon two important observations that arise from
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advantages gained by backtracking within a single clause

become cumbersome, tedious, and expensive when backtracking

must occur through several clauses that have the same head.

In an integrated approach, the ability to define weeklytax

(Figure 4.3) with a procedural call (denoted by the "#"

symbol), which performs the conditional control, allows the

instantiated values of the variables Z and B, unified

through resolution, to be used in the function to

instantiate the variable Y. The requirement for three

clauses with the &ame head has been reduced to one clause

where resolution is no longer needlessly replicated.

In such an example, note that the functional call

from the declarative component merely returns the value of

the evaluated function. Such a function can be evaluated by

theprocedural interpreter and is regarded as a standard

functional expression.

2. Declarative Call From Procedural Comoonent

A call to the declarative component from the

procedural component, on the other hand, requires a

rethinking of the resolution process. For example, Figure

4.4 illustrates such a call in an attempt to use the

advantages of resolution, instead of explicitly defining a

function, to search the knowledge base and perform the

unifications which provide a solution. But in this case the

call to the declarative component cannot merely return the

result of an evaluated expression. In this simple example,
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to Kowalski's concepts (described in chapter 2) of separa-

tion of logic and control, and LUSH resolution of Horn

clauses.

In keeping with these concepts, a procedural component,

namely functional programming, can provide the control

characteristics for an effective and efficient declarative

component, as well as provide a means for representing non-

declarative knowledge.

1. Procedural Call From Declarative Component

To illustrate this notion, consider first the

ability to call the procedural component from the

declarative component. For example, the logic program in

Figure 4.1 used three clauses to define weeklytax. The

-- - - - - - - - - - - - - - - - - - - -- - - - - - - - - -

I weeklytax(X,Y) <-- weekly_salary(X,B),

annual-aalary(X,Z),

Y is #(COND

((GEQ 20000 Z)

(TIMES .06 B)

((GEQ 10000 Z)

(TIMES .04 B)

(T (TIMES .02 B) )) ))

Figure 4.3 Call to Procedural Component
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clause yielding X E l] and Y a Ca,boc. The cut would

prevent any further resolution and no other answers could be

generated even though others existed Ref. 2: pp. 65-66].

As the cut is placed deeper in the body of a clause, to

freeze unification made to that point, the aide effects

become more difficult for the programmer to predict.

In an attempt to provide a means of controlling the

coat of backtracking, the PROLOG implementation of logic

programming requires the programmer to be aware of the

underlying backtracking mechanism, introduces possible side

effects, and negates the advantage gained by keeping the

resolution mechanism at a lower level than that of the

programmer.

C. INTEGRATION

The previous examples help to illustrate certain

problems and inadequacies that result from either a strictly

procedural approach to programming, or from a declarative

approach interspersed with procedural :eatures for efficient

control. The PROLOG implementation of logic programming is

a somewhat integrated approach, though to a very small

degree, and the ma3or problems with that approach have been

described. The existence, and utility, of PROLOG gives some

credence, then, to the feasibility of an integrated

language. However, the problems with PROLOG seem to stem

from the features of the language which are somewhat foreign

48

-. , - - .. .,.,.. ...-........ .. .. .. ......- /,/ . ; . -. ,.\... . - ,. . . ,.. I ,-h -A. ,



programming that offers this abstraction also requires the

use of the "cut" symbol. The cut symbol is a means of

halting unnecessary or unwanted backtracking. Its use

within the clauses of a logic program requires the

programmer to be intimately familiar with the method of

backtracking, or side effects may be introduced into the

program. This is because the cut symbol alters the way

backtracking works after its use. The effect of the cut is

to remove the place markers for certain goals so that they

cannot be resatisfied, and commits the system to every

unification made since that clause was entered (Ref. 2: pp.

64-681.

The aide effects of using the cut symbol arise from

the fact that a clause may be used in a manner for which it

was not intended. For instance, consider the two clauses:

append(C],X,X) <-- "cut".

append([AIB],C,LAID]) <-- append(B,C,D).

where the cut prevents unnecessary backtracking. When

resolving goals like

4-- append(a,b,c],d,e],X)

or

-- append(Ca,b,c],X,Y)

the cut works as intended and is appropriate from an

*eficiency standpoint. However, if the goal

<-- append(X,Y,[a,b,c])

is resolved, it would be matched and unified with the first
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without defining a nested function that explicitly checks

the database against a conditional expression and constructs

a new list with the results.

I (SETO weekly_salary(cons 'JohnDoe 500)

(cons 'Jim-Jones 350 ...))

I DEFUN((

(weeklytax(Naae)

I (PROG (WS)

(SETO WS (cdr (saasoc Name weeklysalary))) I

(COND

(( GEO 20000 (TINES 48 WS ))

(TINES .06 WS )

44 GEQ 10000 (TINES 48 WS ))

(TINES .04 WS )

(T (TIMES .02 WS )) )) ))

Figure 4.2 LISP Program

2. PROLOG Use of Cut

This illustrates that the pattern matching in

PROLOG, resulting from the resolution of subgoals, is an

advantage during the search of the database, because the

method of search is at a lower level than that of the

program. However, the same PROLOG implementation of logic
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by one function (with a conditional) in the functional

program, both programs perform the same function and their

difference is primarily syntactical.

I I
I weekly_aalary(JohnDoe,500).

I weekly_salary(Jim_Jones,350).

I annualsalary(X,Y) <-- weeklysalary(X,Z),

"Y is (Z * 48).

I weekly tax(X,Y) <-- annualalary(X,Z), Z >= 20000, 1
I Iw

I... weeklysalary(X,B),

I-. Y is (B * .06).

I weeklytax(XY) <-- annualsalary(X,Z), Z >x 10000, 1

I Z < 20000, weeklyalary(X,B), I

I ' iY is (B * .04).

I weeklytax(X,Y) <-- annualsaalary(X,Z), Z < 10000, 1

weeklysalary(XB),

I Y is (B * .02).

-----

Figure 4.1 PROLOG Program

However, a query to the logic program such as

* <-- weeklytax(X,Y), weeklytax(Z,Y)

which will return all pairs of employees that pay the same

' . weekly tax, is not possible in the functional program
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such instances it is not only unnatural to define them

declaratively, it is less efficient (Ref. 253.

By contrast, the non-declarative aspect of functional

programming can aske the manipulation of information in a

knowledge base very tedious and inconvenient. Since the

search of such a knowledge base is explicit, the programmer

must define functions that perform the search or comparisons

required. These contrasting aspects of both programming

paradigms will be illustrated and explained in the following

examples.

B. EXAMPLES OF CONTRAST

1. Declarative Versus Procedural

Consider the PROLOG program in Figure 4.1 and the

LISP program in Figure 4.2. The program in figure 4.1 can

be used to find out such information as the annual salary,

weekly tax, etc. of an employee asserted in the database.

By merely satisfying the goal

<-- weekly_tax(JohnDoe, X)

the system will perform the necessary resolution,

backtracking and unification to produce the weekly tax of

John Doe. Similarly, the LISP program in Figure 4.2 will

return that individuals weekly tax when the function

.3 weeklytax(JohnDoe)

is called. In comparison, note that although the three

clauses for weeklytax in the logic program can be defined
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IV. FEASIBILITY OF AN INTEGRAT&D LANGUAGE

A. PROCEDURAL AND DECLARATIVE COMPONENTS

*Having described both the logic programming and

functional programming paradigms, we now consider the

feasibility of a language which integrates some of the

features of both programming paradigms. It should be noted

here that both logic programming and functional programming

are within a classification of programming which MacLennan

refers to as "value-oriented" programming ERef. 223.* He

includes equational programming ERef. 233 and relational

programming as well CRef. 243, but here we consider

equational programming a more restrictive form of functional

programmintg and relational programming a form of functional

programming (since a function is a relation) which can deal

with multi-valued functions. The focus, then, is on the

feasibility of integrating a procedural component

(functional programming) and a declarative component (logic

programming) within a single language.

The non-procedural aspects of logic programming make it

very advantageous for stating facts (or axioms) from which

knowledge can be inferred, or about which queries can be

&ad*. Yet it is unnatural to define everything

declaratively. For example, most PROLOG implementation&

define numbers and the operations on them procedurally. In

'43

e r



evaluation order independence, lends itself to parallel

execution in a multi-processor environment.

The disadvantages of the functional programming paradigm

rest with its somewhat limited problem domaip, because of

its weakness in representing temporal relationships.

Although functional languages lend themselves to parallel

execution, without more effective use, in terms of hardware

support, of the parallel nature of the language, the cost of

numerous recursive calls is inefficiency.

.
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Unfortunately, such multiprocessor support for functional

languages is not widespread and the use of such a language

as "pure" LISP on a uniprocessor can be very slow depending

upon the nested levels of recursion. Without the support

for parallel execution, efficiency can quickly become a

major factor in the effectiveness of the programming

language.

3. Industry Resistance to Change

As with most new concepts, the resistance to change

surfaces whenever the status quo is threatened. Most of

industry is still tied to the von Neumann architecture and

"mind set" (both financially and intellectually). Until the

decisionmakers within the industrial complex are convinced

that the advantages afforded by new concepts will outweigh

the expenditure in time, personnel training, and money,

these new concepts will remain at the theoretical or

experimental level.

G. SUMMARY

The functional programming paradigm provides the

programmer with a very high level of abstraction, making it

easier to reason about and understand programs. In contrast

to von Neumann languages, functional languages are free from

* side effects resulting from heavy dependance upon the

*assignment statement. Additionally, the non-sequential

nature of functional programming, based upon the property of

41.



be run concurrently, a functional language can handle as

many processors as there are subexpressions to evaluate, and

tiehG order in which the processors are assigned, or

subexpressions are evaluated will not alter the final

evaluation (it may, of course, affect the efficiency of

execution).

F. DISADVANTAGES

1. Limited Problem Domain

Although the mathematical properties of functional

programming offer advantages, certain tradeoffs do result

from those properties. These tradeoffs have a limiting

effect upon the problem domain to which functional

programming solutions are practical, or even feasible.

Functional programming provides no notion of state

nor does it provide any notion of time. This weakness in

maintaining temporal relations restricts the use of

functional programming for such state-oriented applications

as operating systems, database management, or discrete

simulation.

2. Recursion and Inefficiency

The recursive function definition is an important

component within a functional programming language and is

* probably the most expensive. The expense of numerous

recursive calls can be minimized if the hardware support can

*.... take advantage of the parallelism afforded by the language.
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B. QUALIFICATION OF A QUERY

As described in the previous chapter, a call to the

declarative component must be qualified to ensure that

expected, and meaningful, results are returned to the

procedural component. In general, the programmer may

require several different types of results from the

declarative component. In some instances the programmer may

require a list of all possible solutions to a given query.

But in other instances, the programmer might require only a

limited number (or even one) of all the possible solutions.

Based upon the functions described in Robinson's LOGLISP

[Ref. 26] these qualifiers can be represented by the

following:

ALL - returns, as a result of the declarative call, a
list of all tuples which satisfy the query within
the constraints of the current context (details of
resolution within a context are in a later section).

ANY K - returns a list with no more than K of the tuples
returned by ALL.

With these two qualifiers as the foundation, the

programmer may use the functional component of the language

to define, for convenience, functions which perform special,

or redundant, cases of the basic qualifiers. For example,

the qualification ANY 1 to the given goal statement, will

return a list containing the single list of variable

• ,bindings that provides one solution. A function THE, which
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will return those bindings in a single list, and may be

defined by

THE (0) -#ANY 1 (0).

C. QUERIES AND THEIR CONTEXT

Associated with each query, or goal statement to be

resolved, in an implicit context within which certain

constraints are placed upon the resolution process. These

constraints are variables which are already bound to values.

If variables that are part of the goal statement are already

bound, then those variables cannot be re-instantiated during

the resolution process. For those variables that are not

defined in the current context of the query, they are

considered free variables and can be instantiated (or bound)

during the resolution process.

1. Context Description

The context associated with each query contains'all

bound variables, of local scope, which may be bound to terms

or to other variables. The fact that variables may be bound

to other variables makes the unification somewhat more

complicated, but is necessary to allow the resolution of the

goal to progress as intended. It should be noted, however,

that such indirect binding must eventually terminate with a

* binding to a term within that context.

The bindings within a given context can be denoted

in a manner that lends itself to LUSH resolution (see
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Chapter 2). which will simplify the checking of variables

within that context. For example,

Y <-- a

Z C-b

represents the context (variables in uppercase, terms in

lowercase) of a given query Q, within which X is bound to Y,

Y, in turn, is bound to "a", and Z is bound to "b".

Therefore, a query such as

4.4 P(T,X,V)

would have two free variables, T and V, and the variable X

would be bound to the term "a" during each resolution

process in the search for a solution.

2. Context Algorithm

For a given query Q and its associated context C,

the constraints placed upon the resolution of Q are

7represented by the variables that are already bound. The

following algorithm is concerned with a query of the form

P IPP20 ... 'P )

where

Pi(X ,X2 P ... ,X n )

represents each predicate, and C is the context of the

query.
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Algorithm:

renekat

2L (each variable X3 of every predicate Pi, in Q)

resolve C(X,) (perform LUSH resolution on )

(database C

L. C(X). nil

then X3 is a free variable and do nothing

21el& instantiate X3 to term tkv returned from

resolution of C(X ), within the query Q

place the binding tuple in the list S that

will contain all such bindings

Suntil (all variables are checked).

Once these constraints have been placed upon 0, the

query can then be resolved (subject to the modifications

described below).

D. MODIFICATION TO THE RESOLUTION PROCESS

Most PROLOG implementations provide for the resolution

.. oo goal statements based upon the LUSH resolution described

in Chapter 2. When a programmer makes a query to the

knowledge base and a solution is provided, the programmer

may then induce a failure (usually by hitting return) which

invokes backtracking in search of another distinct solution.

For our integration purposes, the qualifiers ALL and ANY K

determines at the outset whether one, more, or all solutions

are required.
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From the above context algorithm, the constraints placed

upon the query Q are defined in the list of binding& So.

This list contains the instantiated variables of g (if any),

and have been so instantiated in 0. The query Q may now be

resolved by the declarative component, the PROLOG

interpreter for this example, until a solution is found or a

failure is obtained. Given a solution is found, let the

associated list of all solutions be denoted by

S = (S 1S2 "'. ,Sk .. Sm

* where S is the first solution obtained in the resolution
1

process.

In constructing such a solution, the following algorithm

represents the modification to the resolution mechanism of

the declarative interpreter that will allow its

construction. The algorithm modifies the basic declarative

interpreter such that the entire results of the qualified

query are returned as a list of bindings which satisfy that.

query. Once the declarative resolution mechanism returns a

failure, there are no more solutions to be obtained, and the

search is halted. If it is the first attempt at a solution,

then the empty list is returned, otherwise the list of

solutions to that point are returned.

Algorithm:

Given the qualifier to the query, the query 0, and the

constraint bindings in C,
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First i,

repeat

resolve 0

j FAIL (from resolution of Q)

A. then. LL±U a1

then Si  ()

place S in S

HALT;

else (have a solution)

place binding tuplea of solution in a list

(returned from resolution of Q)

append this list to S0

(to include initialization bindings)

let Si denote new list

place Si in S

induce FAILURE (standard PROLOG mechanism to )

(search for another solution )

jj qualifier = ANY K (check qualifier)

.then U i >a K

then HALT;

*> Next i

until HALT

return S.

Notice that the binding constraints placed upon the

initial query must be explicitly included with the solution

bindings resulting from the resolution of Q. These bindings
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were avedin 3 whenthe constraint instantiations were

made in 0. They must be returned as part of solutions in 5

since they provide variable bindings that are part of the

solution.

Although there is no explicit check for the ALL

qualifier in the algorithm, it is felt that its syntactic

inclusion, as part of the qualification to the query, will

provide more regularity and structure to the integration

interface.

E. AN INTEGRATION EXAMPLE

I To illustrate the extensibility offered the programmer

from the functional component, consider the function in

Figure 5.1. This function take& the list of solutions

obtained from the declarative call, represented by

S.: S ....

S C 1  2  S

* - where

S * ((X ItI ) (X 2t2(I
anMlosteporamrtIpcfShihvralswti
the declarative call will be returned as aeaningful results.

This general function provides the programmer considerable

flexibility in utilizing or manipulating the results

obtained from the declarative call.

*For example, consider a knowledge base of facts

concerning the armed forces of various countries, their

*mobilization status, geographical relationships, etc.
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mI

I Return-list = ((NLAMBDA L)

,', (PROG ( S VARLIST RESULTS )

., (SETO S (EVAL (LAST L)))

(SETO VARLIST (LDIFFERENCE L

(LAST L)))

°- (SETO RESULTS

(NAPCAR S 'LAMBDA (SI

(MAPCAR VARLIST 'LAMBDA (X)

,)~~(ASSOC X S ) )) )

Figure 5.1 Function Lfinition

Then a question of the form

"Which Warsaw Pact countries have exercised armored

divisions within the past six months, and what divisions

were they?"

could be handled by the following function (which makes a

S. call to the declarative component):

Return-list (X Y (#ALL (country(X), warsawpact(X),

armored division(X,Y),

mobilize(Y,D), D > 2 )))

Here we assume that the variable Z, representing a Julian

date, has been bound outside the function call (perhaps

based upon a previous query regarding information within the
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last six months). Therefore, the variable Z is in the

current context C, is instantiated in the query, and

saved in So, based upon the context algorithm described

above.

Turning to the function in Figure 5.1, the solutions

returned in S (based upon the modified resolution algorithm

above) are, in effect, associated with the variables

explicitly listed as an argument to Return_list, and only

these values are returned. In this case the variables X and

Y are listed, and may be exemplified by results such as

((Poland Fifth-armored) (Poland Seventh-armored)

(Hungary Secondarmored) (DDR Secondarmored)).

Other queries can be made to the declarative component

based upon the solutions provided by the previous results.

For instance, a follow-on question like

"Where is the Second armored division of the DDR

currently located?"

could be resolved by first instantiating variables X and Y

outside the query (possibly using SETO) and using the

function Returnlist again with a different call to the

declarative component. Therefore, the function call

Return-list (W (#ANY 1 (armored-division(X,Y),

current location(Y,W)))

would return the current location (given such information is

in the knowledge base) of the instantiated armored division.
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F. SUMMARY

The previous examples illustrate the notion of a

procedural component providing the control for logical

relationships in the declarative component of an integrated

language. They demonatrate the concept of resolution within

a context, described above, and illustrate the flexibility

provided the programmer, in that user defined functions can

be created to best utilize or manipulate the results

provided by a query to the declarative component.

By strict enforcement of the separation of logic and

control, the use of the "cut" symbol can be eliminated. Its

use in PROLOG is based upon the fact that the programmer is

required to provide control mechanisms within the logical

relationships that are created. A logical relationship that

is so complex that a cut is used by the programmer (to

effectively save information to that point by halting the

backtracking mechanism) must be simplified in a way that

makes each logical relationship a separate entity.

Therefore, the programmer still has the burden of

understanding the manner and method with which logical

relationships are defined in the declarative component, but,

more importantly, the requirement to understand the low-

level details of backtracking ia removed.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLVSIONS

The previous chapter described the initial features to

be considered in the integration of logic programming and

functional programming. Presented has been an argument that

an integrated language better supports Kowalski's notion of

separation of logic and control Mai$. a]. This argument has

been based upon the idea that declarative sorts of knowledge

(facts and logical relationships) should be expressed in a

declarative way, and that procedural sorts of knowledge

(manipulation, control, and utilization of data) should be

expressed in a procedural way.

Toward this end, the declarative component of an

integrated language establishes a knowledge base of facts

(or assertions) as well as rules for associating those

facts, determining logical relationships among them, or even

inferring new knowledge and relationships. The procedural

component, then, is the interactive tool for explicitly

controlling those logical relationships and the knowledge

base of facts upon which they are built.

The explicit control afforded by the procedural

component has eliminated redundant and unnecessary

backtracking. Since multiple rules are no longer required

to define a single logical relationship, redundant
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backtracking through the bodies of several clauses with the

&ame head is avoided. This allows the programmer to

associate one clause with one logical relationship,

providing clearer understanding and easier modification and

maintenance.

The necessary control for utilizing and manipulating

results obtained from a query to the declarative knowledge

base is provided by the programmer. This control, however,

is no longer at the low level required when using the "cut"

symbol. The control is now concerned with logical

relationships and avoids the side effects resulting from the

use of the "cut".

Additionally, the programmer is no longer concerned with

explicitly defining the search of a knowledge base of

assertions and rules. By using the procedural component to

manipulate the results obtained from a query to the

declarative component, the programmer can focus on higher-

level issues of interrelationships among the results of such

a query, not on the lower-level details of how that search

was performed.

All of these conclusions support the ideas of

abstraction, higher-level focus, and information hiding,

discussed in Chapters 1 through 4. The argument for an

integrated language, based upon the features described in

Chapter 5, is conceptually sound, and has further supported

the idea that representing varied forms of
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knowledge in a strictly procedural, or strictly declarative,

manner forces the programmer to contort the representation

of one form of knowledge to fit its expression in another

form.

B. RECONMENDATIONS

Having provided a conceptual framework for the design of

an integrated language, future emphasis should be placed

upon more detailed design, and eventual implementation, of

each of the procedural and declarative components of the

language. A decision must be made regarding the choice of

syntax (uniform or mixed) of the language, and the detailed

features of each component must be based upon that decision.

For instance, the choice of a functionally-based uniform

syntax would require a redesign of the manner in which

logical assertions and relationships are represented and

interpreted. Such a redesign, however, may greatly simplify

the integration interface described in the previous chapter.

Additionally, emphasis must be placed upon issues which

were of concern regarding each programming paradigm in and

of itself. Such issues are efficiency considerations and

parallelism. With regard to efficiency, both the functional

programming language and the logic programming languages are

inherently slow without adequate hardware support. This

slowness is a result of recursion in the functional language

66

A-. . .... ..



and searching in the logic language. Having an integrated

language with both features emphaaizea the necessity for the

hardware support for parallel execution.

Fortunately, both functional programming and logic

programming aupport the notion of parallel execution, and

with adequate hardware support, an integrated language could

provide the beat features of a functionally-based procedural

component, as well as the beat features of a logically-based

declarative component, and that is sufficiently efficient to

provide timely calculations and results.
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