
RAD-A159 739 DESIGN AND IMPLEMENTATION OF INVENTORY DRTAASE(U) V/2
NAVAL POSTGRADUATE SCHOOL MONTEREY CA 0 SARI JUN 95

UNCLSSIFIED F/G 9/2NL

I EEEEEEEEEEEEE

L-

1goo

In, frz*

1.8'

* 4 5 '&i .,
-liii.- -.

SIIIt"U-1 -

1.125 11.4 11.64'III ¢

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANOAROS - 1943 - A

A]

rIt

~4-4*-4

* :

• - . *,*-- -.- . . --. - -. * - 4- % * , .. - - - - . .

'"". ." "'" .",".
I. "

•" Z "" "" " ""'"" " " " "'"''""" '""' " ' " ""''''" '. """"" ' ". . "-' """' '

:... . ,,;,:_, ,. .:,, . ,:. ., . . ., ..,., ... ,,.. ,. ...?.:;.... .,, 4..
. . .-- ' p *, "'' ' " , i. . " . . . " . .. ""'K "'t'", :K .".

gNAVAL POSTGRADUATE SCHOOL
4 Monterey, California

II

THESIS TE
DESIGN AND IMPLEMENTATION cO U -

INVENTORY DATABASE

by

Osman SARI

L~a..'June 1985

Thesis Advisor: Samuel H. Parry

Approved for public release; distribution is unlimited

-~~~~R; K -7 z c.7 - *.- .- -.

SECURITY CLASSIICATION OF THIS PAGE 1h Dal& garea

REPORT DOCUMENTATION PAGE EA ISTRUCTONSBEFORE COMPLETINMG FORM %'.

1. REPORT NUMRER i. OVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
4 /(,5.

4. TITILE (and Subtitle) S. TYPE OF REPORT & PERIQO COVERED

Design and Implementation of Inventory Master's Thesis
DaaaeJune 1985

Database S. PERFORMING ORG. REPORT NUMBER

PP

7. AUTHOR(q) 4. CONTRACT OR GRANT NUMBER(.)

Osman SARI

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK,
AREA S WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, CA 93943-5100

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School June 1985
Monterey, CA 93943-5100 13. NUMBER OF PAGES %

108
14. MONITORING AGENCY NAME A ADDRESS(f dilerent frm ControllngI Office) IS. SECURITY CLASS. (of this report)

UNCLASS IF IED
IS. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IW. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on reverse side it necessary ind Identify by block number)

Database, Base Tables, Relations, Attribute

20. ABSTRACT (Continue on reversee side It necessary and identify by block number)

This thesis presents the design and implementation of the inventor'
database system. In order to effectively command and control the
inventory of an Air Force, the commander must know the status of
his resources. The use of a database management system can
significantly increase his access to information regarding resourcE
availability, location, state of operational readiness, and also
increase end-user productivity, and decrease staff effort. The

DO F 1473 EDITION OF mOveS IS OeSOLETE
S N 0102- LF- 014- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (When Date Enieed)

%,. * *'.. • .

SUCUMTT CLASSI ICAITiON OF THIS PAGI Mbm Due DMWMu

ABSTRACT (Continued)

Semantic Data Model (SDM) was chosen as the method for designing
the database. SDM provides an effective base for accommodating

*the evolution of the content structure and use of the database.--
After logical design of the inventory database, records are

* rearranged in order to satisfy relational database management
system requirements. The inventory database is implemented by
using the ORACLE relational DBMS.

S,N 0102- LF- 014- 6601

?gCuRITV CLASSIFICATIOW OF THIS PAGEt[bnm Doee ntmre)

Approved for public release; distribution is anlimited.

Design and Im lementation

Inventory Database safe
m• t

by

Osman SARI Aeen on For
Lieutenant Turkish Air Force

B.S., Turkish AIR War Academy, 1978 r,&.

U:c: a: . 17]'".

Submitted in partial fulfillment of the J Ci:'c ic'1 -'
requirements for the degree of - "

ByV-

MASTER OF SCIENCE IN COMPUTER SCIENCE Distribution/
Availbility Codes

from the iAvail and/or

Dist Special
NAVAL POSTGRkAUATE SCHOOL

June 1985 -A

~4.il

Author:

A~pproved by:_4
Samuel,~~ a.r Ie

c/ n

Department of Computer Science

Dean of Information and Policy Sciences

3 I.

ABSTRACT

J This thesis presents the design and implementation of

the inventory database system. In order to effectively

command and control the inventory of an Air Force, the

commander must know the status of his resources. The use of

a database management system can significantly increase his

access to information regarding resource availability,
location, state of o~erational readiness, and also increase

end-user productivity, and decrease staff effort. The

Semantic Data Model (SD3) was chosen as the method for

designing the database. SDM provides an effective base for

accommodating the evclution of the content structure and use

of the database. After logical design of the inventory

database, records are rearranged in order to satisfy

relational database management system requirements. 7he
inventory database is implemented by using the ORACLE

relational DBMS.

-4

-°

*. S

.

.I %w ij2. L. T A Y..*'4* .-

TABLE O .CONTENTS

I. INTECDUCTION 10

I. BASIC CONCEPT CF DATABASE .1.......... 12

A. WHAT IS A DATABASE? 12

2. Data 13

2. Hardware 13

3. Software 13
4. Users 14..

B. OPERATIONA1 DATA 14
C. WHY DATABASE?.

1. Advantages of Database Systems 15

2. Disadvantages of Database Systems 16

D. DATA INDEPINDENCE 17

E. DATA DICTIONARY 18

III. DATABASE DESIGN 19

A. LOGICAL DAtABASE DESIGN 19

1. Inputs to Logical Database Design 21

2. Outputs of the logical Database Design . . 21

3. Stages of Logical Database Design 22

B. PHYSICAL rATABASE DESIGN 24

1. Physical Design Steps 25

2. Stored Record Clustering 26

3. Access Method Design 26

4. Physical Design Environment 27

5. Performance Measures 28

C. DATABASE MODELS 30

IV. SEMANTIC DATA IODEL (SDM) 33

A. INTRODUCTICN 33

5

B. THE DESIGN OF SD 34

C. A SPECIFICATION OF SD 36

1. Classes 0 . . 0 0 a a . 36

2. Attributes 40
D. ADVANTAGES OF SDM 42

V. SEMANTIC DESIGN OF INVENTORY DATABASE 44

VI. RELATIONAL MODEL 56

A. BASIC STRUCTURE OF THE RELATIONAL MODEL . . . 56

1. Terminclogy 57

2. Consistency 59

3. Functicnal Dependency 60

4. Normal Forms 62

B. ADVANTAGES AND DISADVANTAGES OF RELATIONAL

MODELS . . o 65

1. Advantages o 65

2. Disadvantages o 66

VII. RELATIONAL DATABASE DESIGN o . o 67

A. RELATIONAL DESIGN CRITERIA 67

1. Representation Criteria 68

2. Lossless Decomposition 69

3. Redundancy Criteria o . . o . . 72

B. RELATIONAL DESIGN PROCEDURE o 73

C. PHYSICAL DESIGN OF INVENTORY DATABASE 73

1. Mapping from SDN into Relational Model . . 74

VIII. SYSTEM R: RELATICNAL APPROACH TO DATABASE

MANAGEMENT 77

A. ARCHITECTURE AND SYSTEM STRUCTURE 77

B. THE RELATIONAL DATA SYSTEM 78

1. Data Definition Facilities 80

2. Data Ccntrol Facilities 82

3. Data Eanipulation Statements 85

6

4. Optimizer6.. * 86

C. THE RELATICNAL STORAGE SYSTEM 87

1. Segments... 88

2. Files and Records 88

3. Images and Links 89
4. Transaction Management 90

5. Concurrency Control 90

6. Locking 91

7. Deadlock 93

IX. IlPlEMENTATIOW BY USING ORACLE 94

A. INTRODUCTION 94

B. SAMPLE QUUEIES o o . 99

X. CONCLUSIONS AND RECOMENDATIONS 105

lIST OF REFERENCES o 106

INITIAL DISTRIBUTION IIST 107

7

. . o

LIST OF PIGURES

3.1 Database and Program Design Flov 20

1.2 Physical Design Process 25

3.3 Physical Design Environment ; 29

3.4 Query Response 7ize Compcnents 30

3.5 Relationships of Six Important Data Model 32

4.1 Format of SDM Entity Class Description 39

5.1 Interclass Relationships of SDM Design 47

5.2 Identification Entity Class 48

5.3 (ccnt' d.) 49

5.4 Unit Entity Class 59

5.5 Order Entity Class 51

5.6 Order Entity Class 52

5.7 Supplier Entity Class 53

5.8 Domain of Attributes 54

5.9 (cont'!) 0 55

6.1 A Sample Relaticn Form 58

6.2 Functional Dependency Diagram 61

6.3 Ncrmal Forms a . 63

7.1 Decomposition

7.2 Decomposition 71

7.3 Records of Relational Schema 75

7.4 Attritutes and Eomains 76

8.1 Architecture of System R 78

8.2 Precompilation Process

8.3 System R as Seen by an User. 83

8

ACKNOWLEDGMLENTS

My Country, Republic of Turkey, gave me a chance to

study the graduate course of computer science in the Naval

Postgraduate School. I am very grateful to many people for

teir help.

I would like to express my gratitude to my thesis

advisor, Professor Samuel Parry and to my second adviscr Dr.

David K. HSIAO, for their enthusiastic guidance and supFort.

I am very thankful to my wife SENGUL, daughter ISIL, ani

son AKIN, for their understanding and enccuragement during

studyirg in the Naval Postgraduate School. It is time for me

to work harder than before for my country.

9

1. INTRODUCTION

Databases are essential to an organization's information

system. The information system supports the organization's

functions, maintaining the data for these functions and

assisting users to interpret the data for decision making.

The database has a central role in this process. Database

structures must be flexible to meet changing organizational

needs. is new functions arise in an organization, new

decisions follow in their wake. it should include facilities

to allow the changes to be easily made, Characteristics of

the database system will be discussed in the Chapter 2.

Meanwhile, it is not easy to develop database systems

which perform in an cptimal fashion. Different users will

have different request about structuring data in the

database. it is hard to satisfy all of the users with cne

type of structuring. There are different ways in which data

can be structured. For that reason, in the database

development phase all requests which come from

users/organizations should be evaluated carefully by the

designer (s) .

Fcr logical design of the inventory database the

Semantic Data Mlodel will be used. After that, the normal

form ccncept of the Relational Database will be used to

develop an inventory database.

Chapter 3 describes the basic concepts of datdbase

design which includes the lcgical and physical database

design, and database mcdels. Chapter 14 addresses the design

of SDII and specifications of SDM. Chapter 5 describes how

the inventory database is design by using the SDM. Chapter

6 addresses the basis structure of the relational model

which includes functional dependency and normal form

10

concepts of the relational model. Chapter 7 describes the

relational design criteria and relational design procedure.

Also, in this chapter SDM for the inventory database will be -

transformed into a relational model. In Chapter 8, as a

relational approach to database system, System R is

described which contains architecture and system structure,

the relational data system, and the relational storage

systen of System R. Chapter 9 describes the implementation

of the inventory datakase by using ORACLE. Finally, Chapter

10 addresses the ccnclusions and recommendations ot this

thesis.

11

11. B 9C.EP, or DQATl

1. VEIT IS I DITABISE?

Database technology has been described as "one cf the

most rapidly growing areas of computer and information

science." As a field, it is still comparatively young.

Despite its youth, however, the field has guickly become one

of considerable importance, both practical and theoretical.

Today, many organizations have become critically dependent

on the continued and successful operation of a database

system.

Basically, a database is nothing more than a

computer-based record keeping system: that is, a system

whose overall purpose is to record and maintain inforaation

that may be necessary to the decision-making processes

involved in management of that organization. In a database

the data definitions and the relations between the data are

separated from the piccedural statements of a program. The

questicn to be asked here is,"Vhat is the major distinction

between a database and a data file?" A database may have

more than one use, and the multiple uses may satisfy

multiple "views" of the data stored. A data file may have

more than one use, but only one "view" of the stored data

can be satisfied. Multiple views of a data file can be

satisfied only after the data have been sorted. In a

database environment, multiple uses may be the result of

multiple users; for example, in a banking environment the

information about customers may have several users, such as

checking, savings, and installment loan. Thus data sharing

is a major objective of an enterprise database system. A

database system involves four major components:

databardware, software, and users.

12

• .: ,." .-. ." *'.." 5'S.. *', ..'-''.... : . . " .. ,.... " ".,

1. rata

A database is a repository for shared data. In

general, it is both integrated and shared. " Integrated "

means that the database may be thought of as a unification

of several otherwise distinct data files, with any

redundancy among those files partially or wholly eliminated.

"Shared " means that individual pieces of data in the

database may be shared among several users, in the sense

that each of those users may have access to the same Fiece

of data. Such sharing is really a consequence of the fact

that the database is integrated. The term "shared" is

frequently extended tc cover not only sharing as described

above, but also concurrent sharing: that is, the ability of

several different rsers to be actually accessing the

database at the same time.

2. Hardware

The hardware consists of the secondary storage

volumes - disksdrumsetc -on which the database resides,

together with the associated devices, control units,

channels, and so forth.

3. Software

Between the physical database itself (i.e, the data

as actually stored) and the users of the system is a layer

of software,usually called the database management system or

DBMS. A database management system makes it possible to

access integrated data that crosses operational, functional,

or organizational boundaries within an enterprise. As an

example of a Relaticnal DBMS System R will be evaluated in

Chapter 8.

13

.. . ..°*-.*.***.....**o. . . .

4. Users

Three classes of users can be. considered. First,

there is the application programmer, responsible for writing

application programs that use the database, typically in a

language suck as COBCI or PL/I. The second class of user is

the end-user, accessing the database from a terminal. An

end-user can use a query language which as an integral part

of the system. The third class of user is the database

administrator, or EPA who is the person (or a group of

persons) responsible for overall control of the database

system.

B. OPERATIONIAL DATA

Any enterprise such as a bank, hospital, university, or

company must necessarily maintain large amounts of data

about its operation, termed "operational data". The

operaticnal data for the enterprises would probably include

account data, patient data, student data, product data, and

planning data. Operational data does not include input or

output data, work queues, or indeed any purely transient

information. Input data refers to the inforaation entering

the system from the outside world; such information may

cause a change to be zade to the operational data but is not

itself part of the database. Output data refers to messages

and reports emanating from the system; such a report

contains information derived from the operational data, but

is not itself part of the database.

C. VEY EATABASE ?

The broad answer to this guestion is that a database

system provides the enterprise with centralized control of

its operational data. This is in sharp contrast to the

14

,°, %t

4 t . . h h P q *t
* .* * '

situation that prevails in many enterprises today where

typically each application has its own files so that the

operational data is widely dispersed, and therefore prokably

difficult to control. In the database system, the DBA has

this central responsibility for the operational data. Some

of the advantages that accrue from having centralized

control of the data are described below.

1. Advantacies of Database Sjjtems

An important advantage of database processing is the

elimination or reduction of data duplication. In nondatabase

system each applicaticn has its own private files. This can

often lead to considerable redundancy in stored data, with

resultant waste in stcrage space. In the database, it need

cnly be recorded once. Elimination of duplication saves file

space and to some extent can reduce processing requirements.

In some cases there may be some business reasons for

maintaining multiple copies of the same data. In the

database, however, redundancy should be controlled. The most

serious problem of data duplication is that it can lead to a

lack of data integrity. A common result of a lack of

integrity is conflicting reports.

Data integration offers several important
advantages. First and foremost, database processing enables

more information to be produced from a given amount of data.

Data are recorded facts or figures; information is knowledge

gained ty processing data.

Creation of program/data independence is ancther

advantage of a database system. For the database

application, application programs will obtain data from an

intermediary, the DBPS. The application programs need not

contain data structure, only the DBMIS will need this

structure. Another advantage of database processing is

better data management. When data is centralized iB a

,',,, '. .. , ; .. .;,.. -.. :. ; - .. . :. . . .:, -, , .., ; ,.-. - .' ,., , -], :,. . ; .; . .-1. --5, '

datakase, one department can specialize in the maintenance

of the data. That department can specify data standards-and

ensure that all data adhere to the standards.

Database processing creates another type of econcmy

of scale. Since there is only one DBMS processing a shared

database, improvements made to the database or to the DBMS

will tenef it many users.

2. Disadvantagel 21 Database Systems

A major disadvantage of database processing is that

it can be expensive. The DBMIS may cost as much as $100,000

to buy. The database management system may occupy so much

main memory that additional memory must be purchased. Even

with more memory, it may monopolize the CPU, thus forcing

the user to upgrade to a more powerful computer. Conversion

from existing systems can be costly, especially if new data

must le acquired.

Another major disadvantage is that the database

processing tends to be complex. Large amounts of data in
many different formats can be interrelated in the datatase.

Both the database system and application programs must be

able tc process these structures, requiring more
sophisticated programming. Backup and recovery are difficult

in the database environment because of increased com~plexity
and because databases are often processed by several users

concurrently. Determining the exact state of the database

at the time of the failure may be a problem. A final

disadvantage is that integration, and hence centralization,

increases vulnerability. A failure in one component cf an

integrated system can affect the entire system.

16

D. DITA IND PBUDENCE

In the conventional data set environment, the

application programmer has to know answers to the following

questions before manipulating the data :

1. What is its format?

2. Where is it located?

3. How is it accessed?

Changes in any of these three items may affect the
application program and result in other changes, since the

details of these three points may reside in the application

code. The users of the database system should be oriented

toward the informaticn content of the data and should nct be
concernel with details of the representation and location.

The ability to use the database without knowing the

representation details is called DATA INDEPENDENCE. Data

independence provides that the individual application

programmer no longer must change the application programs to

accommodate changes in access method or location or format

of the data. The reasons for data independence are as

follows:

1. To allow the DBA to make changes in the content,

iccation, representation and organization of a

database without causing reprogramming of application

programs which use the database.
2. To allow the supplier of data processing equi~aent

and software to introduce new technologies without

causing reprogramming of the customer's application.

3. To facilitate data sharing by dllowiag the same data

to appear to te organized differently for different

application prcgrams.

4. To simplify application program development and,in

particular, to facilitate the development cf programs

for interactive database processing.

17

................

a *

5. 'To provide the centralization of control needed by

the DBA to insure the security and integrity of the

d atabase.

E. DATA DICTIONARY

A data dictionarl is a central repository of information

about the entities, the data elements representing the

entities, the relationships between the entities, their

origins, meanings, uses, and representation formats. A

facility that provides uniform and central information about

all the data resources is called a DATA DICTIONARY (DD). The

benefits of using a data dictionary are related tc the

effective collection, specification, and management of the

total data resources of an enterprise. A data d~icticnary

should help a database user in:

1. Communicating with other users.

2. Controlling tie data elements in a simple and

effective manner; that is, introducing new elements

into the system, or changing the descriptions of the

elements.

3. Reducing the data redundancy and inconsistency.

4. Determining the impact of the changes to the data

elements on the total database.

5. Centralizing the control of the data elements as an

aid in database design and in expanding the design.

. 18

A database is the interface between people and machines.

The nature of these components is very different. The

difficulty is to develop a database design which meets the

needs of the people who will use it and which is practical

in term of technology and hardware. Since the database is

the bridge between humans on one side and hardware on the

other, it must match the characteristics of each.

There is no algcrithm for database design. Database

design is both art and science. Dealing with people,

understanding what they want today, predicting what they

will want tomorrow, differentiating between individual needs

and community needs, and making appropriate design tradeoffs

are artistic tasks. There are principles and tools, but

these must be used in conjunction with intuition and guided

by experience.

Database design is a two-phased process. The first phase

of the database design is usually called the Logical

Database Phase in which the designer examines the users'

requirements and builds a conceptual database structure that

is a model of the organization. Once the logical design of

the datalase is completed, this design is formulated in

terms cf a particular DB.IS. Usually compromises must be

made. The process of formulating the logical design in terms

of a rBMS facility is called Physical Database Design. This

chapter considers both phases of the database design.

A. LOGICAL DATABASE rESIGN

Typically, database design is an iterative process;

during each iteraticn, the goal is to get closer to an

19

'. ,":-'. '. ".-" .''.,-''-.'-.'-':--'.''..":," -.'-'. ":.":.-." ;--. -"-"",- .'.-',.". ',-.-".-"...---.-,....-.....-.....-,....-..-..,.-,.,-..-..."-........ -.".. '. '

acceptable design. 7hus a design will be developed and then

reviewed. Defects in the design will be identified, and the

design will be revised. This process is repeated until the.

development team and users can find no major defects. This

-. does not mean the design will work; it simply means no one

can think of any reason why it will not work. Figure 3. 1

illustrates the steps in a typical database design

project[ef. 4).

DESIGN

-- J eon sI-.,- , -FT ogical DE - Physical DE
- -> Design /Design

]Requirements -T I, Ilp lement

m ' Detail ii I Program I r g a < -------------1 Primn>~ Program I
Design _Design

Figure 3.1 Database and Program Design Flow.

User requirements are studied and a logical database design

is developed. Concurrently, the preliminary design of the

database processing Irograms is produced. Next, the logical

database and the preliminary program designs are used to

develop the physical database design and the detail program

design specifications. Finally, both of these are input to

the ispementation phase of the project.
'd

m 2O

:

*. . .

1. IU.2iP.§ to Logical .atabase esicia

The inputs tc the logical database design are the

system requirements and the project plan. Requirements are

determined by interviews with users, and then they are

approved hy both users and management. The project plan

describes the system environment, the development plan, and

constraints and limitations on the system design. Policy

statements can be used to develop the descriptions of the

logical database design.

2. O of tbl Logical Database Desiqn

A logical database design specifies the logical

format of the database. The records to be maintained, their

contents, and relationships among these records are

specified.

To specify logical records, the designer must

specify the levels of the detail of the database model. If

the model is highly aggregated and generalized, there will

le few records. If the model is detailed, there will be many

records. The designer must examine the requirements to

determine how coarse or how fine the database model should

be. The contents of these are specified during logical

design. Names of fields and their formats must be

determined. As the reguirements are evaluated and the design

progresses, constraints on data items will be identified.

These are limitations on the values that data can have.

These types of constraints are common. Field constraints

limit the values that a given data item can have.

Intrarecord constraints limit values between fields within a

given record. Also, record relationships are specified

during lcgical design. The designer studies the application

envircnment, examines the requirements, and identifies

necessary relationships. Finally, output of the logical

21

database design is the specification of the database

records, their contents, constraints, and relationships.

3. Stages 2f Lo atabae Design

Many techniques have been developed for logical

database design. Scme techniques are completely intuitive

and others involve s~ecific procedures for processing a data

dictionary. Others are between these extremes. The major

steps in the logical database design are as follows.

a. Identify Iata to be Stored

First, the data dictionary is processed and data

that is to be stored is identified and segregated. This step

is necessary because the data dictionary will contain the

description of the reports, screens, and input documents

that will not be part of the database.

h. Consolidate and Clarify Data Names

The next step is to clarify the terms used for

the data. One task is to identify synonyms, to decide on

standard names for synonyms, and the record aliases.

Synonyms are two or acre names for the same data item. They

arise because of tle terminology differences within the
organization. In this case the designer will need to select

a single , standard name for the data item in the logical

schema of the database. In some cases synonyms can not be

eliminated because the users want to maintain their own

terminology.

Another task related to terminology is to ensure

that data items having the same name are truly the same. If

not, unique data item names must be developed. Consider the

data item DATE. This can be the date of shipment, the date

of employee terminaticn, or the date of order. The designer

must determine if all of the uses of the DATE item are the

same. If not, new and unigue names must be determined.

22

-7

c. Develop the Logical Schema

The third step in the design process is- to

develcp the logical schema by. defining records and

relationships. Records are defined by determining the data

items they will contain. The designers examine the data flow

diagrams and data dictionary, apply intuition to the

business setting of the new system, and determine that

certain records will need to exist. After this

determination, some of the files may need to be combined and

some of them may not.

The second step in developing the logical schema

is to determine the relationships among database records. At

* that point, representation of the relationships by the

database system is nct important. instead, the design team

wants to model how the users see the relationships. We do

* not need to consider physical limitations at this point.

* Doing so makes the logical schema too complex and may

constrain our thinking so that we miss good design

alternatives. At that point, the design team must

discriminate between theoretical and useful relaticnashi~s. A
theoretical relationship can exist logically, but never be

needed in practice. In general, if there is any guestion

regarding whether a relationship is useful or not, then the

relationship should be included in the logical schema. The

relationship always can be omitted later in t he physical

design, whereas if the relationship were omitted du~ring

logical design, it would be difficult to add later.

d. DefL-ine Processing

The next step is to define the processing cf the

database. The requirements are examined to determine how the

database should be manipulated to produce required results.

The processing definitions can be developed in several ways.

23

v ~ . ..7.7

Cne method is to describe transactions and data to be

modified. Another method is to develop structure charts of

the programs that will access the database. This process is

important because ccncurrent design of the programs and

database will improve the database design. It is also clear

that concurrent design improves the guality of programs.

e. Design Review

The final stage of the logical database design

is a review. The logical schema and users' views are

examined in the light of the requirements and program

descriptions. Every attempt is made to identify omissions

and unworkable aspects of the design. Typically, a panel of

independent data processing people is convened for this

review. Documentation of the logical schema, users' views,

and program descriptions are examined by the panel, and oral

presentations are evaluated.

At the conclusion of the design review, the

panel produces a list of problems discovered and a

recommendation regarding the next step to be taken.

B. PHYSICAL DATABASE DESIGN

The second stage of the database design is physical

design which is a stage of the transformation. The logical

schema is transformed into the particular data constructs

that are available with the DBMIS to be used. As mentioned

before, the inputs to the physical database design are the

outputs of the logical database design, the system

reguirements, and the preliminary design of programs.

'Whereas the logical design is DBMS independent, the physical

design is very much LEMS dependent. Detail specification of

the database structure is produced. These specifications

will be used during database implementation to write source

2L4

statements that define the database structure to the DBMS.

These statements will be compiled by the DBS and the object

form cf the database structure will be stored withir-the

database as shown in Figure 3.2 [Ref.4].

Logical Physical Physical
Database Da---> D Design
Design Design Specifications

Figure 3.2 Physical Design Process.

1. Physical Design Steps

Practical experience has shown that neither the

starting point nor the order of steps can be definitely

stated for a given design problem. On the other hand, the

physical design phase can he regarded as an iterative

process of initial design and requirement. Each step needs

to he performed several times, but succeeding analysis

should be done more quickly because the procedure is known

and the number of unchanging performance variables should

increase between iterations. Steps of physical design are as

follovs.

25

.. ".".....," " ,," .' v 4" , +

a. Stored Record Format Design

Assuming that the logical record structure-has

been defined, this process addresses the problem of

formatting stored data by analysis of the characteristics of

data item types, distribution of their values, and their

usage by various applications. Certain data items ate cften

accessed more frequently than others, but each time a
particular piece of data is needed, the entire stored

record, and all stored records in a physical block as well,
must be accessed. Record partitioning defines an allocation

of individual data items to separate physical devices of the

same or different types, or separate extents on the same

device, so that the tctal cost of accessing data for a given

set of user applications is minimized. Logically, data items

related to a single entity are still considered to be

connected, and physically they can still be retrieved

together when necessary.

2. Stored Record Clusteriag

Record clustering refers to the allocation of the

records of different types into physical clusters to take

advantage of physical sequentiality whenever possible.

Associated with both record clustering and record

partitioning is the selection of physical block size. Blocks

in a given clustered extent are influenced somewhat by

stored record size, but also by storage characteristics of

physical devices. Choice of block size may be subject to
considerable revision during an iterative design process.

3. Access Method Design

An access method provides storage and retrieval

capabilities for data stored on physical devices, usually

secondary storage. The two critical components of an access

26

method are storage structure and search mechanism. Storage

structure defines the limits of possible access paths

through indexes and stored records, and search mechanisms

define which paths are to be taken for given applications.

Access method design is often defined in terms of primary

and secondary access path structure. The primary access

paths are associated with initial record loading, or

placement, and usually involve retrieval via the primary

key. Secondary access paths include interfile linkages and

alternate entry-point access to stored records via indexes

and secondary keys. The trade-off is that access time can be

greatly reduced thrcugh secondary indexes, but at the

expense of increased storage space overhead and index

maintenance.

A fourth step of physical design trade-offs among

integrity, security, and efficiency requirements alsc should

be considered.

a. Program resign

The goal cf the physical data independence, if

met, pioduces application program modification due to

physical structure design decisions. Standard DBMS routines

should he used for all accessing, and query or urdate

transaction optimization should be performed at the system

software level. Then, application program design should be

completed when the logical database structure is known. When

physical data independence is not guaranteed, program
modification is likely.

4. Physical e1sgn Environment

The design environment is basically the same for

both file design and physical database design. Major

categories of inputs and outputs for the physical design

phase are illustrated in Figure 3.3. The logical database

27

.- • .- . . ° , - • . .° ° - - ° . - - - . .- - -. . . % " % ° . . - % " - • ' ' ', ° .

structure resulting from the implementation design phase

defines the framework from which the physical designer
works. If no catastrophic inefficiency is detected, it will

remain unchanged during physical design. In general, new

parameters will be considered, but previous tentative

decisions on access paths and record allocation are

finalized in this phase. New parameters are those specific

to DBMS and operating system access methods, those specific

to describe physical device capacity limitations and timing

characteristics, and all operational requirements which are

constraints imposed cn integrity, security, and response

time under static conditions and for dynamic growth

projecticns. During the design process, consideration of

efficiency issues can take place only the after varicus

constraints are satisfied and a feasible solution has been

obtained.

5. Performance Measures

The determination of performance measures for

physical design is most critical to the design process. They

affect not only the design choices, but also the techniques

employed to determine those choices.

Multiple performance measures provide the designer

with flexibility for decision making for both the initial

design procedure and for future modifications. If we

describe the database system performance in terms of cost we

should ccnsider life cycle cost in terms of following items:

1. Planning cost

2. Design cost: Frograms, databases

3. Ixplementation and testing cost:programs, databases

4. Operational cost:users, computer resources

5. Maintenance ccst:program errors, data integrity loss.

The major Froblem that the physical database

designer must address is how to minimize present and future

28

t M M

IMPLEMENTATION DESIGN

Logi ca se e on program
structure access rth construction

Application
frequency-

and>
operational
sequence

Data -- >
volumes

DBS and O.S ->Physical
constraints--> database

structure:
Hardware -- > * Stored record
characteristic format

* Stored record
placement

OpErational--> * Access methodsrequirements

Figure 3.3 Physical Design Environment.

operational costs in terms of user needs and computer

resources. The remainder of the life cycle phases' costs are

well defined for general software systems. Operational costs

are unigue to physical design and can be categorized as

follows:

1. Query response time

2. Update transaction cost

3. Report generation cost

4. Reorganization frequency and cost

5. Main storage ccst

6. Secondary storage cost

29

Each of these components is important to the

designer; typical considerations are shown in Figure 3.4.

CPV Communication

CPU queue
delay

ser Com- i a. - .ser
in put delay output I
e rI/O service

I/O gueue

Locking delay

Figure 3.4 Guery Response Time Components.

C. EAIAEASE HODELS

A database model is vocabulary for describing the

structure and processing of the database. There are two

reasons for studying database models. First, they are

important database design tools. Database models can be used

for both logical and physical database design - much as

flowcharts or pseudccode are used for programs design.

Second, database mcdels are used to categorize DBMS

products. Database models have two major components. First,

the data definition language (DDL)is a vocabulary for

30

defining the structure of a database. The DDL must include

terms for defining records, fields, keys, and relationships.
Also it should provide a facility for expressing a variety

of user views. As a second component, data manipulation
language (DML) is a vocabulary for describing the processing
of the database. Two types of DML exist: procedural and
nonprccedural DEL. facilities are needed to retrieve and

change data for both. Procedural DML is language for
describing actions to be performed on the database. It
obtains a desired result by specifying the operations to be

performed. Nonprocedural DEL is language for describing the

data that is wanted without describing how to obtain it.

Figure 3.5 illustrates six common and useful database

models. The models are arranged on a continuum. models on

the left-hand side cf this figure tend to be oriented to

humans and human meaning, whereas those on the right-hand
side are more oriented toward machines and machine

specifications[Ref. 4: p. 215].

The primary purpcse of this thesis is to design and

implement an inventory database. For the logical design of

this database, the Semantic Data Model (SDM) will te used

and for physical design a Relational Model will be employed.

For this reason, SEM and the Relational model will be

discussed in detail in the following chapters.

31

HUMAN (logical) <-------->MACHINE (physical)

Semantic Entity Relational CODASYL DBMS
data model relationship data model DBTG Specific

Csun model (E-R) model model

AN SI/13/SP ARC

Figure 3.5 Relaticnships of Six Important Data Model.

32

IV. , UTI DAT.A -4O_.D.. 2 _2..1

A. I1EODUCTION

The Semantic Data Model was developed by M. HARMER and

D. MclOED in 1981[Ref.13J. SDM is a high-level

semantics-based database description and structuring

formalisa for databases. This database model is designed to

capture more of the meaning of an application environment

than is possible with contemporary database models. An SDN

specification describes a database in terms of the kinds of

entities that exist in the application environment, the

classifications and groupings of those entities, and the

structural interconnections among them. SDM provides a

collection of high-level modeling primitives to capture the

semantics of an application environment. SDM is designed to

enhance tle effectiveness and usability of database systems.

An SDM database description can serve as a fcrmal

specification and documentation tool for a database.

Every database is a model of some real world system. The

contents of a database are intended to represent a snapshot

of the state of an application environment and each change

to the database should reflect an event occuring in that

environment. It is appropriAte that the structure of the

database mirror the structure of the system that is being

modelled[Eef.131. A database whose organization is Lasel on

naturally occuring structures will be easier for a database

designer to construct and modify than one that forces him to

translate the primitives of his problem domain into an

artificial specification construct. Similarly, a database

user shculd find it easier to understand and emplcy a

database if it can be described to hia using concepts with

which he is already familiar.

33

Ccntemporary database models provide the data structures

which do not adequately support the design, evolution, and

use of complex databases. These models have significantly

limited capabilities for expressing the meaning of a

database. The semantics of a database defined it terms of

these mechanisms are not readily apparent from the schema

which is the global user view of a database; instead, the

semantics must be separately specified by the database

designer and consciously applied by the user.

B. TBE DESIGN OF SDB

SDM has been defined with a number of specific kinds of

uses in mind. First, SDM is meant to serve as a formal

specification mechanism for describing the meaning cf a

database; an SDM schema provides a precise documentation and

communication medium for database users. For a new user of a

complex database, it is easy to find out what information is

contained in the database. Second, SDM provides the basis

for a variety of high-level semantics-based user interfaces

to a database; these information facilities can be

constructed as front-ends to existing database maragement

systems, or as the guery language of a new DBIS. Such

interfaces improve the process of identifying and retrieving

relevant information from the database. Finally, SDM

provides a foundaticn for supporting the effective and

structured design of databases and database intensive

application systems.
SDM has been designed to satisfy a number of criteria

that are not met by contemporary database models, but are

essential in an effective database description and

structuring formalism. They are as follows[Ref. 13]:

"The cgnstructs of .atabase model should provide for the
explicit specification of a large portion of the meaning
of a database. Many contemporary database models (sucn

34

* *" "" * .* *"" ' " " ' ° " "" "" . *"" - - ° ""°° ° . """"" *" ' ' " " * .""""'""""° ° *"" "" - " "°"" "

as the CODAS L DB7G network model and the hierarchical
model) exhibit compromises between the desire to provide
a user-oriented database organization and the need to
support efficient database storage and manipulation
facilities. By contrast, the relational database model
stresses the separation of user-level database
specifications and underlying implementation detail(data
independencel. However, the semantic expressiveness of
the hierarchical mcdel, network and relational models
are limited they do not provide sufficient mechanisms.
to allcw a iatabase schema tc describe the meaning of a
database. They employ overly simple data structures tomodel an afplicaticn environmsent. In so doing, theyinevitably ose information about the oatagase. hs is
a cone iuence of the fact .that their structures are

essentially all record-oriented constructs; the
appropriateness and adequacy of the record construct for
expressing database semantics is highly limited. It is
essential that the database model provide a rich set of
features to allow, the direct modeling of application
environment semantics. A database model must support a
relativest view of the meaning of a database , and allow
the structure of a database to support alternative ways
of locking at the same information. Flexibility is
essential in order to allow for multiple and coe ual
views of the data. In a logically redundant data ase
schema the values of some database components can be
algcrithmically derived from others. Incorporating such
derived informaticr into a schema can simalify the
user's manipulation of a database by statically
embedding in the scbema data values that would otherwise
have to be dynamically and repeatedly computed. Finally,
an inte rated schema explicitly describes the
relationships and similarities between multiple ways of
viewinS the same information. Contemporary database
models do. not adequately support relativism. In these
models, it is generally necessary to impose a single
structural organization of the data, one which
inevitably carries along with it a particular
interpretation of the data's meaning."

A database model must support the definition of schemata

that are based on atstract entities. Specifically, this

means that a database model must facilitate the description

of relevant entities in the application environment,

collections of such entities, relationships among entities,

and structural interconnecticns among the collections.

Moreover, the entities themselves must be distinguished from

their syntactic identifiers; the user-level view of database

should be based on actual entities rather than on artificial

entity names. Allowing entities to represent themselves

makes it possible to directly reference an entity from a

related one. In record-oriented database models, it is

35

j o, .'° "....-............ °.".- . °° -. -. -. '... •"- -, . -. -. -.. " - .•

, ml-,bmi.......................................,-...................... "".. "°*.• °• ., .2' - .."°,- . " . . '.° .. ' - -. %.- °.•°•o%°%% %*. ." 'o". . - -" -° ".°,°•-"°• •

1-. - Nu.

necessary to cross reference between related entities by

means of their identifiers[Ref.11].

C. A SPECIFICiTION OP SDN

The following general principles are specified by McLoed

and Hamner in 1981:

1. A database is to be viewed as collections of entities

that correspcnd to the actual objects in the

application environment.

2. The entities in a database are organized into classes

that are meaningful collections of entities.

3. The classes of a database are not generally

independent, but rather are logically related by

means of interclass connections.

4. Database entities and classes have attributes that

describe their characteristics and relate them to

other database entities. An attribute value may be

derived from cther values in the database.

5. There are several primitives for defining interclass

ccnnections and derived attributes, corresponding to

the most common types of information redundancy

appearing in database applications. These facilities

integrate multiple ways of viewing the same tasic

information, and provide building blocks for

describing ccmplex attributes and interclass

relationships.

1. Classes

As mentioned above, an SDM database is a collection

of entities that are organized into classes. Figure 4.1

shows a lasic format cf an SDM entity class description. 7he

structure and organization of an SDM database is specified

36

.

by an SDM schema, which identifies the classes in the

database. Each class in an SDM schema has the following

features.

1. A class name identifies the class. Multiple

synonymous names are also permitted. Each class name

must be unique with respect to all class names used

in the schema.

2. She class has a collection of members: the entities

that constitute it. Each class in an SDH schema is a

hcmogeneous ccllection of one type of entity at an

appropriate level of abstraction. The entities in a

class may correspond to various kinds of objects in

the applicaticn environment.

3. An optional textual class description describes the

meaning and ccntent of the class. A class description

should be used to describe the specific nature of

entities that constitute a class and to indicate

their significance and role in the application

environment.

4. The class has a collection of attributes that

describes the uembers of that class or the class as a
whole. There are two types of attributes, classified

according to applicability.

5. A member attribute describes an aspect of each member

of a class by logically connecting the member to one

or more related entities in the same cr cther

classes. A class attribute describes a property of a

class taken as whole.

6. The class is either a base class or a nonbase class.

A base class is one that is defined independently of

all other classes in the database; it can be thought

of as modeling a primitive entity in the application

environment. Ease classes are mutually disjoint in

that every entity is a member of exactly cne base

37

class. A nontase class is one that does not have

independent existence; rather, it is defined in terms

of one or more other classes. In SDH, classes are

structurally related by means of interclass

connections. Each nonbase class has associated with

it an interclass connection. If class is base class,

it has an associated list of groups of member

attributes; each of these groups serves as a logical

key to uniquely identify the members of a class. If

the class is tase class, it is specified as either

containing duplicates or not containing duplicates.

a. Interclass Connections

There are two main types of interciass

connections in SDM: the first allows subclasses to be

defined and the second supports grouping classes. The

subclass connection specifies that the members of nonbase

class (S) are of the same basic entity type as those in the

class to which it is related via interclass connection. This

type of interclass connection is used to define a subclass

of a given class. A subclass S of class C is a class that

contains some, but not necessarily all, of the members cf C.

In SDM, a subclass S is defined by specifying a class C and

a predicate P on the member of C; S consists of just those

members of C that satisfy P. Several types of predicates are

permissible. A predicate on the member attributes of C can
be used to indicate which members of C are also mem.bers of

S. The predicate "w.ere specified" can be used to define S.

This means that S contains at all times only entities that

are members of C. It is also possible to define subclass S

as an intersection of database classes (C1,C2)

The other type of interclass connection allows
for the definition of nonbase class, called a grouping class

(G), whose members are of a higher-order entity type than

38

ENTITY CLASSNA HE

fdescripticr:)

[interclass connection:)

member attributes:

Attrilute-name

value class:

[Mandatory]

[multivalued][no overlap in values]

[exhaust value class]

[not changeable]

[inverse: Attribute-name]

[match: Attribute-name of ENTITYCLAS

on Attributename2]

[derivation:]

[class attributes:

Attribute-name

[Description:

value class:

[derivation:]

[identifiers:
Attribute-namel [Attribute-name2+[..]]]

Figure 4.1 Format of SDM Entity Class Description.

those in the underlying class (U). A grouping class is

second order, in the the sense that its members can

themselves be viewed as classes; in particular, they are

classes whose members are taken from U.

39

" *. . . ".. . . a .." ' " . " " " '" * """
° " "

'' " "
' ' ' . ' ' - ' ' - " °

.- 7.

2. At trib ut es

Each class has an associated collection - of

attributes. Each attribute has the following features.

1. An attribute name identifies the attribute. An

attribute name must be unique with respect to the set

of all attribute names used in class, the class's

underlying base class, and all eventual subclasses of

that base class.

2. The attribute has a value which is either an entity

in the database or a collection of such entities. The

value of an attribute is selected from its underlying

value class, which contains the permissible values of

the attribute.

3. The attribute is either a member attribute which

applies to each member of the class, and so has a

value for each member, or a class attribute which

applies to a classes a whole, and has only one value

for the class.

4. Tlhe attribute is specified as either single valued or

multivalued. The value of a single-valued attribute

is a member of the value class of the attribute. The

value of a multivalued attribute is a subclass of the

value class. Thus, a multivalued attribute itself

defines a class, that is, a collection of entities. A

multivalued member attribute can be specified as

nonoverlaping which means that the values of the

attribute for two different entities have no entities

in common; that is, each member of the value class of

the attribute is used at most once.

5. An attribute can be specified as mandatory, which

means that a null value is not allowed for it.

6. An attribute can be specified as not changeable which

means that once set to a nonnull value, this value

40

cannot be altered except to correct an error.

pcintend

a. Member Attribute Interrelationships

(1) Inverse. The first way in which a pair

of member attributes can be related is by means of

inversion. Member attribute 1l of class YI can be

specified as the inverse of member X2 of Y2 which means

that the value of Xl for a member Ml of YI consists of

those members of Y2 whose value of X2 is MI. The

inversion interattribute relationship is specified

symmetrically in that both an attribute and its inverse

contain a description of the inversion relationship. A

pair of inverse attributes establish a binary association

between the members of the classes that the attritutes

modify.

(2) Hatching. The second way in which a
member attribute can be related to other informaticn in

the database is by matching the value of the attribute

with some member(s) of a specified class. The value of

match attribute Al for the member Ml of class Cl is

determined as follows.

1. A member SI2 of some class C2 is found that has Ml as

its value of member attribute A2.

2. The value of member attribute A3 for M2 is used as

the value of Al for Mi.

If Al is a multivalued attribute, then it

is permissible for each member of Cl to match the members of

C2; in this case, the collection of A3 values is the value

of attribute Al.

Matching permits the specificaticn of

binary and higher degree associations, while inversion

permits the binary associations. The combined use of

41

.'.......................-.-......." o' "o .'. ° .*.'', -. •.- '.",.'..-"- .%°- .'. '-"- ., , °- - °%..- - -, ,.-.".° "

inversion and matching allows an SDM schema to acccmmodate

relative viewpoints of an association.

(3) Derivation. SDM provides the ability to

define an attribute whose value is calculated frcm cther

information in the database. Such an attribute is called

derived, and the specification of its computation is its

associated derivation. The following rules are formulated by

HAMNER and McLOED, in order to allow the use of derivaticns

while avoiding the danger of inconsistent attribute

specifications.

1. Every attribute may or may not have an inverse; if it

does, the inverse must be defined consistently with

the attribute.

2. Every member attribute Al satisfies one of the

fcllowing cases:

1. Al has exactly one derivation. In this case, the

value Al is completely specified by the derivation.

The inverse of Al, if it exists, may not have a

derivation or zatching specification.

2. Al has exactly one matching specification. In this

case, the value of Al is completely specified by its

relationships with an entity to which it is matched.

The inverse of Al, if it exists, may not have a

derivation.

3. Al has eitler a matching specification or a

derivation. In this case, it may be that the inverse

of Al has a matching specification or a derivation;

if so, then one of the above two rules applies.

D. AEVANTAGES OF SDI

1. SD!M provides an effective base for accommodating the

evolution of the content structure and use of a

database. Relativism, logical redundancy, and derived

42

information support this natural evolution of

schemata.

2. SDX supports a basic methodology that can guide-the

Database Administrator (DBA) in the design process by

providing him vith a set of natural design templates.

The DBA can approach the application in question with

the intent of identifying its classes, subclasses,

and so on. Then he can select representations for

these constructs.

3. It provides a facility for expressing meaning abcut

the data in the database. During logical database

design, the designer needs such a facility to avoid

confusion and to document learning, design decisions,

and constraints. SDR provides better facilities for

such documentation than other data models.

4. It allows data to be described in context. Users see

data from different perspectives.

5. In SDR, constraints on operational data can be

defined. For example, if a given item is not

changeable, SLE allows this fact to be stated.

6. An SDH schema for a database can serve as a readable

description of its contents, organized in terms that

a user is likely to be able to comprehend and

identify.

43

". .°-.. - -. . . , . . -. - - - - '. ' - .. - . • . - . • . .. • . . ., - . ..-- . .

V. S TIC DESIG OF IMINTORY DATABASE

Figures 5.2, 5.3, 5. , 5.5, 5.6 and 5.7 describe the

logical schema of the inventory database. There are five

records in the logical schema. IDENTIFICATION record gives
all the information about a given item in the Air Force

inventory such as national stock number, document which

provides technical information about the item, total

quantity in the inventory, total amount used in the Fast,

maximum authorized quantity to keep in the inventory, who is

authorized to use, depot in which item is stocked, total

number of the item used by units, supplier name who supflies

item, and amount purchased in the past. The second record is

UNIT which provides information about units in which an item

is used. It has several fields such as unit code, superior

command, national stcck number of item which is used in the

unit, quantity on hand, used amount, required amount,

location of unit and subordinate command. The third record
is the ORDER. This record describes the ordering process of

the item. Supplier name, Nsnno, date, amount and shiFment

type are the member attributes of the ORDER. The fourth

record is DEPOTSTOCK LEVEL which provides data about stock

status of the item. Its fields are depoid,

Nsn-no registered, stock-amount, and supplier name. 7he

SUPPLIER record provides data about suppliers who supply the
items to the Air Force. Supplier name, country, city and

address are the member attributes of the SUPPLIER.

In the logical schema of the inventory database all

classes and their member attributes are informally defined

and special remarks are written. The purpose of this process

is tc present the semantic of the database which will let

the user easily understand the database. Figure 5.1 shows

44.

".'" '" "- -"'-"- "'"-"'-"."'-'-'"-"-" ""2. "."- "-'" •"'-'" "'."-"'-"- 'i-)"-'----------------------"-"-"----"--"-----'----'---.---------.----"----

the general structure of the records and the member

attrikute interrelaticnships. As mentioned in the previcus

chapter SDM provides three facilities for defining

relationships. All three facilities use the SDN

characteristic that entities can be contained within

entities. Derivaticn, inverse, and match facilities are

discussed in Chapter 5.

In the IDENTIFICATION record there is a derivation

letween Totusedinpast and and SumofusedUnits. This

means that Totasedinpast is derived from

Sum-of-usedUnits by summation as specified. Also there is

match between pastamcuntpurchased of IDENTIFICATION class

and amount of ORDER class. This means that when the crder

occured, the value of this member will move the

past_amountpurchased of IDENTIFICATION. On the class

level, a member of IDENTIFICATION is to be matched with a

member of ORDER. This is physically meaningful as well as

logically. When the logistic department ordered an item and

receives this order, this value should be moved to the

pastamountpurchased in order to keep the correct data. For

this reason, the member in the IDENTIFICATION class must

match the value in the amount of the ORDER. Otherwise there

can be an inconsistercy in the database.

There are three inverse relationships in the logical

schema. First, between auttouse of IDENTIFICATICN class

* and Nsn no use of UNIT class, secondly between

depot_of-registry of IDENTIFICATION class and

Nsn-no-registered of DEPOT STOCKJ.EVEL class, and third

between superiorcoms of UNIT class and subordinate ccmm of

UNIT class. The logic is the same for all. The inverse

facility causes two entities to be contained with each

other. As [Ref.4] specified, this is physically impossible,

so this idea may seem a bit strange. Consider the first

inverse. The attributes of IDENTIFICATION and UNIT are

45

inverses of each other. In IDENTIFICATION, the attribute

aut-to use has the value class UNIT and the inverse

attribute Esnno-use. In the UNIT, the attribute Nsn-nouse

has the value class IDENTIFICATION and inverse attribute

aut-to-use. As menticned in the previous chapter, inverses

are always specified by such pairs. In the second inverse,

depot-of -registry cf IDENTIFICATION has the value class

DEPOI.STOCKLEVEL and inverse attribute snno-registry;

Nsn-nc-registry of DEPOTSTOCKLEVEL has the value class

IDENTIFICATION and inverse attribute depotofregistry.

It is also possible in the SDR to define an inverse

relationship between two attributes which are in the same

class. This case occurrs in UNIT class. Superior comm and

subordinate-comm are the inverse of each other. Both of them

have the same value class, UNIT. Here, the inverse

interattribute relationship is specified symmetrically.

Supericr command ccamands the subordinate command ani

subordinate-command is commanded by the superior-command.

Users can describe the data in a manner which fits their

logical view.

46

% ***% **! ***** %

ID PNTIFICATION

Tot-used sun of* autkato Dep9t-of past-amountI..

I<ERIVATION - IN VR St

UT 1F

ns- njuI orIuo ~t command' I coaman -johr

- --1NYV5. jINVERSE -

DIPOT STOCK LEVEL T
fdepo-ID IStock jSappNs.n

M~ATCH __

C2EDES

jSupIE.naae iNsnnojDatel ShiptypelIAmount

SUP P11ER

Supp-name ICountry 1Address Icity

*Figure 5.1 Interclass Relationships of SDM Design.

47

ILEN7FIICATION

Description : Overall information abgut a given
item which is in the Air Force
inventory

Member attributes:

Nsn no
d~scription:National stock number of a given

item.
value class: NATIONALSTOCKNUMBER
mandatory
not chanSeable

Document

descripticn:Technical Order[TO] for a given
item. It specifies technical
information about item(s).

value class:DOCUMENTATION
mandatory

TotQty onBand
description:It specifies quantity which is

currently available for a given
item in the Air Force (AF) logistics
system.

value class: QUANTI TY ONHAND
mandatory

lotUsedInPast

descripticn:Total amount which is used in the
past.

value class:TOTAL USED IN PAST
derivation :Sum oT useUITS

Max_AuthQtyOn_Hand

Description:Maximum number of items that AF
logistics department authorized to
hold not more than this capacity.

value class: MAX_IUTHCAPACITY
mandatory

Auth-to-use

Descripticn:It specifies the unit that are
authorized to use given item.

value cl ass:UNIT
mandatory
aultival ued
inverse :NsnNoUse

Figure 5.2 Identification Entity Class.

48

Depot ofRegistry

Descripticn:Specifies the depot in which item
is registered.

value class: DEPOTSTOCKLEVEL
mandatory
multival ued
inverse : NsnNoRegistered

SupplierName

Descripticn:Supplier name that supplies the
item (s

value class:SUPPLI RN ES
mandatory
multival ued

PastAmo un tPurchased

Description:It specifies an amount that is
. urchased in the past.

value class:PAST AMOUNT PURCHASED
match :Amount of ORDER

Sum ofUsedUNITS

value class: TOTALUSEDINPAST
mandatory

identifier:

Nsn No + Eocument + Depot ofregistry

Figure 5.3 (cont'd.).

I4

io49

,. ., . , " . - -." . .'. , •. % '. "% " * -. ' " ' . " V .. " " . -. , . ., .", -"%' "-'-""' -", ". % % -

UNIT
Description: All units i the Air Force that are use

the item which are in the AF inventory.

member attributes:

Unit-Code

value class: UNIT
mandatory
not changeable

Superior-Co s

descripticn:The unit which has command and
control of this unit.

value class:UNIT
mandatory
inverse :SubordinateComm

NsnNO_ Use

description:National stock number that are used
in the unit(s).

value class:IDENTIFICATION
inverse : Auth-toUse

QtyOnHand

value class: QUANTITONHAND
Used-Amount

descripticn:Number of items that are previously
used in the unit.

value class:TOTALUSEDINPAST

Req_Amount

descripticn:specified number of items are
required in the unit for operational
readiness.

value class:RREQUIREDAMOUNTINUNIT

Location

descripticn:Location of unit in geographical
coordinate system.

value class:LOCATIONS

Subordinate-Comm

value class:UNIT
inverse :SuperiorComm

identifier:

Unit-Code + Nsn-NoUse

Figure 5.4 Unit Entity Class.

50

• ".-- -.' .' ''""" '"-" ... "- '- ''. "" "'" . .-.-....-.- '.''-" -"." ' " - -'.•. ' ''.. " .'." "..-". -." : '

CIDEB

Description:Dependent up on the requests from the
urit and depot all ordered items by
Department of Logistics of AF.

member attributes

Supp_Name

description:Supplier name(s) that supplies the
item (s).

value class: SUPPLIR 2NAES
mandatory
not changeable

NsnNo

descripticn:National stock number of item that
is ordered to supplier(s).

value class:NATIONALSTOCK_NRBER
mandatory

Date

descripticn:Date of order
value class:DATES
mandatory

Amount

descripticn:ordered amount for a given item.
value class:ORDERED_AMOUNT

Shipmenttyre

value class:SHIPMENT
multivalued

identifier:

Nsn_No

Figure 5.5 Order Entity Class.

51

l,.... _ --- - ***

......................

I~ w I

DEPO7STOCKLEVEI

description:Pxcvides information about stock level
of a given item in the depot.

member attributes

Depo_ID

value class: DEPOTID
mandatory
not changeable

BsnNoRegister

descripticn:Different groups of items are
registered into different de~ots
such as communication items and
.eafon items are stored into
dif erent depots. This attribute
specifies registered item into
depot.

value class:IDENTIFICATION
mandatory
inverse :Depotcf_Registry

Stock-Amount

descripticn:Number of items that are currently
available as stock in the depot.

value class: STOCK-STATUS

Suppliername
value class:SUPPLIERNAME

identifier:

Ns_NoRegister + repo_ID

Figure 5.6 Order Entity Class.

52

......................................
.o..-

SUPFPIER
description:411 suppliers that are currently supply

itemso theAF

member attributes:

Supp_N ame

value class:SUPPLIER-NAME
Ccuntry

descripticn:Country of supplier(s) that is/are
currently supply (ies) item(s).

value class:COUNTRY
mandatory Imultival ued

city

description:Supp lier location as city.
value class:CITI ES
multivalued

Address

descripticn:Address of supplier that supplies
part.

value class:ADDRESSES

identifier

SuppN ame

Yigure 5.7 Supplier Entity Class.

53

. . .-.. ..

NATIONAL STOCK NUMEER
*inter~lass aonnection:subclass of STRING where it has

13 numbers which are divided into four(4) groups:
3020- 00-001-0072

DOCPENTATION
interclass connection:subclass of STRING where speci-

fied format.

QUANTITY ONHAND
interlass connection:subclass of STRING where format

is positive integers.

TOTA1 USED IN PAST
infercliss-connection:subclass of STRING where format

is positive integers.

MAl AUTHORIZED CAPACITY
interclass connection:subclass of STRING where format

positive integers.

AUTHORIZED TO USE
interclEss-connection:subclass of STRING where format

is five (5) characters

DEPO OZ REGISTRY
iMteTclass connection:subclass of STRING where format

is five(5) characters

SUFPLIER NAME
inter~lass connection:subclass of STRING where format

is two(2) characters

PAST AMOUNT PURCHASID
interclas connection:subclass of STRING where format

is positive integers.

UNIT
interclass connection:subclass of STRING where speci-

fied.

USED AMOUNT IN UN17
i~tercla§s Uonnection:subclass of STRING where format

is positive integers.
RE.CT -AMOUNT IN UNITinterclass con~ection:subclass of STRING where format

is positive integers.

LCCAICN OF UNIT
interlags connection:subclass of STRING where speci-

fied.

Figure 5.8 Domain of Attributes.

54
.P.J.........................

interclass connection:subclass of STRING where format
is :
month : number where =>1 and <=12
"/If
dax : numher where integer and =>1 and <=31

year : nuaber where integer and =>1900 and <=2000
where (if (month=4 or =5 or =9 or =11)then
day < =30) and if (month=2 then day<=29)
or ering by year,month,day.

OPDR AMOUNT
in'erclass connection:subclass of STRING where format

is positive integers.

SHIENENT
interclass connection:subclass of STRING where speci-

fied.

DErOT ID
in'erclass connection:subclass of STRING where speci-

fied.

STCCK STATUS
in~erclass connection:subclass of STRING where speci-

fied.

COUNTRY
interclass connection:subclass of STRING where speci-

fied.

ADERESSES
interclass connection:subclass of STRING where speci-

fied.
CI7Y

interclass connection:subclass of STRING where speci-fied.

Figure 5.9 (cont'd).

55

V1. RELAT~IA& !2DZ&

The relational mcdel was introduced to the database

community by E.F. Codd (1970). This innovation stressed the

independence of the relational representation from physical

computer implementation such as ordering on physical

devices, indexing, and using physical access paths. The

model thus formalized the separation of the user view of

data frcm its eventual implementation; it was the first

model to do so. In addition, Codd proposed criteria for

logically structuring relational databases and

implementation-independent languages to operate on those

databases. There have been many further developments in its

. theory and application. Relational design procedures have

* also received considerable attention in the last few years.

._ P.A. Bernstein (1976) had proposed synthesizing relations
from functional dependencies, and Fagin's work in 1977 then

drew attention to the decomposition approach to design.

A. BASIC STRUCTURE OF THE RELITIONAL MODEL

Usefulness of the relational model in data analysis can

te measured by considering several objectives. To meet the

first okjective-identify user requirements- the model must

serve as a communication medium between the users and the

computer personnel, giving them an interface that can be

clearly and unambigucusly understood. The independence of

this interface from computer implementation is of the utmost

importance. The relational model uses tables to provide this

interface. The tabular representation of relations satisfies

the first objective of data analysis. The second objective,

the conversion to physical implementation, is also satisfied

56

" - ~ ~~~~~~~~~~~. . ,•. .-.-. . . .-. . .. -. . ,..*. . - * . . - •°.% % % , . * .•. •.. -.. . ,•,•°. °

by the relational model. One obvious approach is to directly
implement the relaticnal model on a machine. To do this a

DBMS that supports the relational model must be available on

the ccuputer system. A particular set of relations can then
be directly declared by using the definitional language
provided'by the system. Direct conversion was not feasible
when the relational model was first proposed by Codd in
1971, but today direct conversion from a relational

- specification to physical implementation is becoming
* increasingly possible. The third objective deals with the

following criteria fcr logical data structures:

1. Each fact should be stored once in the database

2. The database should be consistent following database

operation

3. The database should be resilient to change.

The first criterion not only removes storage redundancy

but also improves database consistency. If the same fact is

stored twice, it is possible that during execution of a

complex operation, cnly one of the copy will be updated.

The datakase then becomes inconsistent. In an inconsistent

datakase, it is possible to get different database outputs

for the same fact, thus creating a reliability problem. She

second criterion requires that the database be consistent at

all times. The third criterion deals with a different

* aspect. It is a consequence of the environment in which the

* database exists. This environment is usually in a state of

- constant change; consequently, the database must be

"* continually redesigned to meet continually changing user

reguirements.

1. 12minology

Informally, a database is made up of any number of

relations. A relation is simply a two-dimensional tahle that

57

d

* . * - . -L . . . ' L - I ', - - - - 'p . -. *',.. . . l: . .- . . - . . _ .- -

has several properties. First, the entries in the tables are

single-valued; neither repeating groups nor arrays are
allowed. Relations are flat files. Second, the entries in

any cclumn are all of the same kind. Columns of a relation

are referred to as attributes. Finally, no two rows in the
table are identical in all attribute values and the order of

the rows is insignificant. Figure 6.1 shows an example of a

* relation.

* j IDENTIFICATION

NIIN FICHE-NO FRAME-NO ITEM-NO -- >Attribute

2335-00-679-0033 001 L1O 05 -- >Tuple

2835-00-682-5360 001 A10 05 -->Tuple

2345-00-680-9876 002 B77 08 -- >luple

Figure 6.1 A Sample Relation Form.

Each row of the relation is known as a tuple. If the

relation has n columns, then each row is referred to as an

n-tuple. Also, a relation that has n columns or n
attributes is said to be of degree n. Each attribute has a

domain, which is a set of values that the attribute can

-. have. Fcr example, in figure 6.1 the domain of the item-no
is all positive integers less than 100. Sometimes it is

.. possible that the domains of two attributes can be the same.
". To differentiate between attributes that have the same

- domain, each is a given a unique attribute name. The
* generalized format:

58
S

RELkTICN NAME (attribute name, attribute name,....)

IDEN1IFICATION N MIII, FICHE-NO, FRAME-NO, ITEM-NO),

is called the relation structure. If we add constraints

on allowable data values to the relation structure, we

then have a relational schema [ref. 6].

a. Keys of Relations

The key is the attribute or set of attributes

that uniquely identify tuples in a relation. A relation key

is formally defined as a set of one or more relation

attributes concatenated so that the following three
properties hold for all time and for any instance of the

relation:

1. Uniqueness: The set of attributes takes on a unigue

value in the relation for each tuple.

2. Nonredundancy: If an attribute is removed frcs the
set of attritutes,the remaining attributes do not

possess the unique property.

3. Validity: No attribute in the key may be null.

It is possible for relations to have more than

one relation key; each key is made up of a different set of

attributes. The relation key is often called the candidate
key. If a candidate key is the only key of the relation, it

is generally referred to as primary key. When an attribute

in one relation is a key of another relation, the attribute

is called a foreign key. Foreign keys are important when

defining constraints across relations. A prime attribute is

an attribute that is part of at least one candidate key. A

nonprime attribute is not part of any candidate key.

2. Consis tenc

7he goal of relational design is to choose the

relations that preserve consistency following database

59

operations and that store each fact at most once in the

database. Relations that do this are said to be in normal

form. In nonnormal relations, anomalies can arise after

database tuple operation. The three tuple database

operaticns are as follows:

1. ADD TUPLE (relation name, <attribute name>).

This operation adds a new tuple to a relation. The attribute

values of the tuple are given as part of the operation. For

example:

add tuple (identification,<2835-00-678-4520,,001,B1,05>)

would add a new row to the relation in Figure 6.1. An

add-tuple operation will not be allowed if it duplicates a

relation key.

2. DELETE TUPLE (relation name,<attritute value>).

This operation deletes a tuple from a relation. For example:

delete tuple (IDENTIFICATION,<2335-00-679-0033,001,L1O,05>)

would delete the first row from the IDENTIFICATION relation.

3. UPDATE IUPLE (relation name,<old attribute

values>, <new attribute values>). This operation changes the

tuple in the relation. For example:

update tuple (IDENTIFICATION,<2835-00-682-5360,001,AO1,05>

<2835-00-682-5360,002,L11,06>) This would change FICHE-NO,

FRAE-NO, and ITEM-NO for NIIN value equal 2835-00-682-5360.

Any utdate will not be allowed if it duplicates a relation

key.

In a normal relational structure no anomalies arise

after tle applicaticn of any one of the three preceding

operations with any set of attributes values.

3. Functional D erendencl

Functional dependency [FD] is term derived from

mathematical theory; it concerns the dependency of values of

60

I'-" -'.'-'." " "-""-" .".""-" -" "- - . " " ." "" ".""." -" '. " ". .-......................................-"."....""-".".."-."...-"."...-""-"-.'-'.." "" ".....

.- :',- /'-." " -'J -_ - - ' " '", >' ".'" :.' ,".' . '"-" " . . ," ," " -." "-' , -'".' "-" ' : - '",-: -" "*-."- --

one attribute or set of attributes on those of anctber

attribute or set of attributes. Formally, a set of

attributes X is functionally dependent on a set of

attributes Y if a given set of values for each attribute in

Y determines a unique value for the set of attributes in X.

The notation Y-->X is often used to denote that X is

functionally dependent on Y. Sometimes Y is called a

determinant of the FD Y-->X. In the simplest case, bcth X

and Y are made up of cne attribute as shown in Figure 6.2.

NIIN >..... FICHE-NO I

__~----------V

ligure 6.2 Functional Dependency Diagram.

It is also possible to have two attributes that are

functionally dependent on each other. It is important to

realize that functicnal dependency is a property of the

information that is represented by relations. That is,

functional dependency is not determined by the use of

attributes in the relations or by the current contents of a

relation.

Given a functional dependency Y-->X (where X and Y

are both sets of attributes), a unique value for each

attribute in X is determined only when the values fcr Y

attributes are known. However, it is possible that values of

X can he uniquely determined by only a subset of the

attributes of Y. The term full functional dependency is used

to indicate the minimum set of attributes in a determinant

61

..': "" ' - -. ". " ' " .-,-. -:*
'- " " " "\ '. ..- *, *"""- --- '."" -'-..". -*

of an TD.' Formally a set of attributes X are fully

functionally dependent on a set of attributes Y if

1. 1 is functionally dependent on Y.

2. X is not functionally dependent on any subset of Y.

like functional dependency, full functional

dependency is a prcperty of the information that is

represented by the relation.

4. Normal Forms

'hen determining whether a particular relation is in

normal form, we should examine the FDs between the

attributes in the relation. In the notation first proposed

by C. Beeri and co-wcrkers (1978), the relation is defined

as made up of two ccnponents: the attributes and the FDs

between them. El = ([X,Y,Z), (X-->Y., X-->Z)) The first

component of the relations is the attributes, and seccnd

component is the FDs. For example,

IDENTIFICATION = ((NIIN,FICHE-NO,FRAME-NO, ITEM-NOI

(NIIN-->FICHE-NO , NIIN-->FRALE-NO , NIIN-->ITEM-NO]

The functional dependencies between attributes in a relation

are obviously important when determining the relation's key.

There are a number of normal forms as shown in

Figure 6.3. Relations are in first normal form (iNF) if all

domains are simple. In other words all legitimate relations

are in 1NF.

A relation is normalized by replacing the nonsimple

domains with simple domains. A relation R is in second

normal form(2NF) if every nonprime attribute of R is fully

functionally dependent on each relation key.

A relation R is in third normal form if it has the

follcwing properties:

1. The relation R is in second normal form, and

62

Universe of relations (normalized and unnormalized)

SI NF relation (normalized relation) 7

BC- relation

2NF relation

:) 3'-F relation

II

Figure 6.3 Normal Forms.

2. The nonprime attributes are mutually independent;

that is, it has no transitive dependency.

In other words, a relation R is in third ncrmal form

(3NF) if and only if it is in 2NF and every ron rime

attribute is nontransitively dependent on the primary key.

For examEle, suppose

63

• ." " ."." , .* * ,*." , ." " ," " °"," , . ." ."........-.......... "......... "- * ,*." . "." .. " ° ,".."," °

R (JABCD], (A->C, C-->D}) AB is primary key.

AB-->C C-->D by transitivity AB-->D hence relation R is

not in 3NF, because, there is a transitivity tetween

nonprine attributes.

In the definition of the third normal form we

assumed that the relation had only one relation key.

Problems arise with the definition when applied to relaticns

that have more than one relation key. The original

definition of 3NF was modified by a stronger definition

which was proposed by Boyce and Codd. It is known as BCNF. A

relation R is in BCNF (Boyce/Codd Normal Form) if and only

if every determinant is candidate key. For example, suFpose

R = ([A,B,D,EJ , [A-->BED , D-->A) Here relation R will

be in BCNF if both A and D are keys of R. Fcrmaily,

multivalued dependency is defined as follows; in relation

R(XY,Z), X === > Y if each X value is associated with a set

of Y values in a way that does not dependent on Z values.

A relation is in 4NF if it is in BCNF and has no

multivalued dependencies. This definition means that if a

relation has multivalued dependency and is in 4NF, then the

multivalued dependencies have a single value. In others

words, all independent attributes have single value.

A relation is in 5NF if and only if every join

dependency in a relation R is implied by the candidate keys

of relation R.

A relation is in Domain-Key normal form (DK/NF) if

every constraint on the relation is a logical consequence of

the definition of the keys and domains. A constraint is any

rule on the static value of the attributes that is precise

enough that we can evaluate whether or not it is true.

Examples of the constraints are inter-relation constraints,

functional dependencies, multivalued dependencies, and join

dependencies. DK/NF means that if we can define keys and

64

domains in such a way that all constraints will be

satisfied, then mcdification anomalies are impossible.

Unfortunately, there is no known way to convert a relation

to DK/NF automatically, nor it is even known which relations

can be converted to DK/NF. In spite of this, DK/NF can be

exceedingly useful for practical database design.

B. ADVANTAGES AND DISADVANTAGES OF RELATIONAL MODELS

1, Advantages

a. Simplicity

The end user is presented with a simple data

model. User requests are formulated in terms of the
information content and do not reflect any complexities due

to system-oriented aspects. A relational data model is what

the user sees, it is not necessarily what will be

implemented physicallylRef.11].

b. Nonprocedural Request

Because there is no positional dependency
tetween the relations, requests do not have to reflect any

preferred structure and therefore can be nonprocedural.

c. Data Independence

This should be one of the major objectives of

any datalase management system. The relational data zodel

removes the details of the storage structure and access

strategy from the user interface. The relational model

provides a relatively higher degree of data independence

than do network and hierarchical models. However, the design

of the relations must be complete and accurate for making

use of this property of the relational model.

65

: *.;, *: - *. *-;- .. **-;,. i :..;L: ,. *-.*-*.. ***,***** -********.;."~ - .- .- .. ; -.. -- :. ". - -.-.-:-- .:-.-: ..-- '. -. - :. :..-,- . -

d. Theoretical Foundation

The relational data model is based on -the-

well-developed mathematical theory of relations. The

rigorous method of designing a database using normalization

gives this model a solid foundation. This kind of foundation

does Dot exist for the other two models.

2. flisadvantages

A disadvantage sometimes cited for a relational

model is machine performance. With present-day hardware the

JOIN operation is likely to take substantial machine time.

* It is feasible with small relations, but some commercial

*files are hundreds of millions of bytes long. In.

understanding the performance issue, it is very important to

* remember that the relations and the operations on them such

* as the JOIN will never occur physically. Instead, equivalent

* results will be produced by means of pointer structures or

indices. It appears tcday that technological improvements in

*providing faster and more reliable hardware may solve this

problem.

66

VII. RILATI0NL DATABASE DESIGN

The relational model is attractive in the database

design because it provides formal criteria for logical

structure, namely, normal form relations. The problem, then,

is to choose a design procedure to produce normal form

relations. Two different approaches have been proposed:

1. Decomposition procedures: These commence with a set

of one or more relations and decompose ncnncrual

relations in this set into normal forms.

2. Synthesis procedures: These commence with a set of

functional dependencies and use them to construct

ncrmal form relations.

Most designs ccmmence with an information gathering

phase in which a set of data elements and FDs between them

are identified. The information is then used to produce

normal relations. On the other hand, one could conceive of a

procedure where all the data attributes are considered to

form cne relation, which is then decomposed in subsequent

design steps.

A. REfAI7ONAL DESIGI CRITERIA

Beeri and co-workers (1978) have identified three

relational design criteria:

1. SEPARATION: The original specifications are separated

into relations that satisfy certain condi iors.

2. REPRESENTATION: The final structure must correctly

represent the original specifications.

3. REDUNDANCY: The final structure must not contain any

redundant information.

67

The separation criteria is that the database must be

separated into a number of normal relations. The other two

criteria are relatively general. In specific terms each can

be applied to attributes, PDs, or data. Here, criteria will

be defined more specifically. For example, given the

relation R = ([AB,C) , [A --> B , A --> C)).

Here R comprises three attributes,,B, and C. The

functional dependency between these attributes are A-->B and

A-->C. The notation used to describe the input and output of

the design process is Sin and Sout. Sin and Sout are sets of

relaticns. Here Sin is the input to the design process and

Sout is the output of the design process.

1. Representaticn Criteria

One goal of any design process is to produce an

output design, Sout, to accurately represent Sin. All the

relations in Sout must satisfy the conditions for normal

form. Eeeri and co-workers (1978) have defined three

representation criteria for the representation of Sin by

Sout:

1. REPI: The relations Sout contain the same attritutes

as Sin.

2. REP2: The relations Sout contain the same attrihutes

and the same EDs as Sin.

3. REP3: The relations in Soat contain the same
attributes and the same data as Sin.

REPI requires all the attributes in Sin to also

appear in the relations in Sout. But it does not consider

any dependencies between the attributes. According to REP2

Sin will contain a set of attributes and a set of functional

dependencies. Sout will also contain a set of attributes and

a set of FDs. Representation REP2 requires that each FD in

Sin be either:

1. Ccntained as an FD in one of the relations in Sout or

68

°...............................

2. Derived from the FDs in the relations in Sout, using

the FD inference rules. For example in Figure 7.1,

Sin = ((&,B,C] , [A -> B , C -- > B 3) and

Sout = (R2, R3) where R2= ((A,B), [A-->Bl) and
E3= (iOCc], (c-->B.]).

Thus R2 and R3 constitute the decomposition by

projection of Sin. Each of the functional dependencies in

Sin is contained in Sout; hence we can say that Sout is a

REP2 representation of Sin. It is interesting that Figure

7.2 shows a decomposition that is not a REP2 representation

of Sin[Ref.lO].

Figure 7.1 includes a relation Rl that is decomrosed

by projection into twc relations, R2 and R3, in Sout. Note

that P2 and R3 do not contain the same information as Sin

since different responses are obtained to the same guestion

applied to Sin and Sout. Hence Sout is not an REP3

representation of Sin. Because if we ask: To what c is al

related? In Sin the answer is (ci); in Sout the answer is

cl,c2]. This join in Figure 7.1, contains additional tuples
to those of Sin and is sometimes known as a CROSS JCIN. Note

that in Figure 7.2 the two relations Y1 and Y2 in Sin are an

REP3 representation of Sin because their join contains

exactly the same tuple as in the original relation, R.

2. lossless Decomposition

Formally, a lossless decomposition can be described

as follows. The deccuposition of a relation R(X,Y,Z) into

relations R1 and R2 is defined by two projections: Rl =

projection of R over X,Y and P2 = projection of R over X,Z

where X is the set of ccmmon attribures in Ri and R2. The

decomFosition is lossless if B = join of El and R2 over X.

The decomposition is lossly if R is a subset of the Join of

El and R2 over X.

69

• • _ _ _ • , o o - . . , o . o - . . , ,

3-7 W . - 7% --.- - .- * . -

- -- >B El A B C

C--> B al bl cl

Sil < a3 bi c2
a2 b2 c3

- t - -

D ECOMPOSITION

1-- 1 --
v v

R2 A B R3 B C
al bl bl ci

Sout < A-B a3 bl bl c2
C--> B-

a2 b2 b2 c3

a4 b2 b2 c4

I....> OIN 7 7..
A B C

al bl cl

al bl c2

a3 bl cl

a br c3a

a2 b2 c3

a2 b2 c 14

a4 b2 c3

a:4 -b2 -c-1

Figure 7.1 Decomposition.

70

.: ..-. . .. " ".'.',.,,', .:.* . , . *..... -.. .. .".-..','. -".."-'-"

jx ->y X1 yl zi

Sin < x--Z x2 y2 z2

x3 y2 zi

DECOMPOSITION

V -i
F l Ai I B Y21 X Z

X-> 1 yi X1 Z1
Sout < X> x2 y2 -x2- -z2-

x3 y2 AX3 zi

x4 l x4 z2

xl y zi

22 -y2 z2

x3 y2 --1

Figure 7.2 Decomposition.

71

[.

I ~:~:.> '*** *~.*:.:..-~---~~&Jfi~fL>1m

CCNDITIONS: The decomposition of R(X,Y,Z) in R1(X,Y)

and P2(XZ) is lossless if for attribute X, common to both

11 and R2, either 1-->Y or X-->Z. Thus in figure 7. 1 the

common attribute of E2 and R3 is B, but either B-->A or

E-->C is true, hence decomposition is lossly. In Figure 7.2

the common attribute of Y1 and Y2 is X, both X-->Y and X-->Z

is true, hence decomposition is lossless.

3. undanc riteria

Redundancy can be defined in various ways. One set

of redundancy criteria is as follows [Ref.7]:

1. REDI : A relation in Sout is redundant if its

attributes are contained in the other relations in

Scut.

2. RED2 : A relation in Sout is redundant if its FDs are

the same or can be derived from the FDs in the other

relations in Scut.

3. RED3 : A relation in Sout is redundant if its content

can be derived from the contents of other relations

ain Sout.

REDi is not a powerful criterion, because during

separation it is cften necessary to create separate

relations that represent FDs between attributes, which may

appear in other relations. RED2 and RED3 can be quite useful

criteria. Any design algorithms should in particular avoid

-ED3 because it would keep the same data in more than one

relation. Such relations could all be in normal form and no

anomalies would occur in relations. But, interrelation

anomalies would arise if the same fact were updated in one

relation but not the other. RED2 would cause the same

problEm.

72

B. RELflIILL DESIGI PROCEDURR

It is interesting to note that in Figure 7.1 the design

Sout is on REP2 but not on REP3 representation of Sin

whereas in Figure 7.2 the design Sout is on REP3 but not on

REP2 representation of Sin. This situation creates prctlems

of relational research; namely, to find a design procedure

that yields an Sout that is both on REP2 and REP3

representation of Sin. Similarly, design procedures should

aim to reduce redundancy, but here again different design

procedures can result in either RED2 or RED3 representations

of Sin [Eef.8].

There are two classes of algorithms: decomposition and

synthesis. Decomposition algorithms ccmmence with one

relation and successively decompose it into normal form

relations. The concepts of 3NF and BCNF are not sufficient

for deccmposition algorithms, so the ideas of multivalued

dependency and a 4NF have to be introduced.

Synthesis algorithms use FDs to produce normal form

relations. For these algorithms to be successful it is

necessary to ensure that:

1. FDs in Sin correctly represent user semantics,

2. Algorithms can be devised to produce relations in

Sout that correctly and nonredundantly represent Sin.

if synthesis algorithms are to be effective, their input

must describe those ncnfunctional relationships that cannot

be expressed as FDs between attributes. Perhaps the

best-known synthesis algorithm is the one devised by

Bernstein. It is premised on grouping all FDs with the same

determinant and constructing a relation for each such group.

73

, ° c. Aj.!x' . ! m .P-. " e

C. PHYSICAL DESIGN 02 INVENTORY DATABASE

1. gapping from Sf1 i Relational Model

The logical design of the inventory database cannot

be used as the physical design of a relational database. For

example, in the IDENTIFICATION and UNIT records, there are

some multivalued attributes which are not allowed in a

- relation. The relations must be transformed so that each

!: attribute has only one value per tuple. Also, the logical

* design in Chapter 5 allows tuples to be contained in cther

tuples which cannot be done physically. Relations in the

*Z logical design have to be redefined to eliminate this

*. problem.

Consider the relations UNIT and IDENTIFICATICN.

Actually, Auth-to-use of IDENTIFICATION is a collection of

tuples representing UNIT which are using a specified item.

We can eliminate Auth to use of IDENTIFICATION, because,

whenever we need this information we can get it by use of

the Data Manipulation Language (DNL). It is possible to

construct contained tuples by DML joins. In this case,

Auth to use will be constructed and not stored.

The process Just described can be used to transform

the logical schema into a relational schema. All contained

tuples have been replaced using the same logic. Auth tcuse

of IDENTIFICATIOU is deleted and interrelation constraints

are added. Similarly, Depot of-registry of IDENTIFICATION
and Subordinate comm of UNIT and Past-amountpurchased of

IDENTIFICATION are deleted and interrelation constraints are

added.

!he resulting design is shown in Figure 7.3 and 7.4.

Figure 7.3 shows relation, attributes, and interrelation

constraints, and Figure 7.4 shows the domains and

attribute-domain correspondences.

74

* *-..*.. % ..'* * *.. % ~~~ .. *. - .-.. -. ' 2* -

.. . ." . ._. '! :*-.. . "......... , *. . * * ,- . *. - . * , . ..

PART-IDENTIFICITICN (Nsri No.Tot Qty-Qn Hand,
Sun-of use3_unit,laxzkuthQtyand)
KEY: Isn no

DOCUMNT3IDENTIFICATION (Nsn No, Document, Suppname)
KEY : JsuNlo

UNITINVENTOR! (Unit Code,Ns..NoUse,ty__.OnHand,

KEY T Unit F6od + Nsn-no Use

UNIT-ID (Unit Code,SuperiorCommn,Location)
KEY :flnit-Coge

OEEP~Nnjio, Suppnvame,Datelamount, ShipType)

DEPOTESTOCKlEVEL (Lepo Id Stock amount,Suppname,
fish T No fiegistfy)

KEY .- D5poID

SUPELIER(Su pp nameCountry, Address, City)
KEY :Suppjiane

Figure 7.3 Records of Relational Schema.

75

Attribute Domain

NsnNo NATIONAL STOCK NUMBER

Document DOCUMENTATION

Tot qtyon han'd TOTAL QUANTITY

Max-authqtyiand MAXIMUM QUANTITY

Sua of-used-umits SUM OF USED

Suppname SNAME
Unit-code UNIT-NAME

Superior-com UNIT-NAME

Nsmfno use NATIONAL STOCK NUMBER

Qtyon hand TOTAL QUANTITY

Used amount SUN OF USED

Req amount REQUIRED AMOUNT

location LOCATIONS

Date DATES

Amount ORDER AMOUNT

Ship_type SHIPMENT-TYPE

Depo_id DNAME
Nsn-no-registry NATIONAL STOCK NUMBER

Stock-amount TOTAL AMOUNT

Ccuntry CNAME

Address ADDRESSES

City CITIES

Figure 7.4 Attributes and Domains.

76

• "•° -"- •"- '. . " °° u I " " o" . - ',•, -,, - - - . ..° .- " " " """"- •"". .""." " . ": ' " " " - , .'" .' ' . ,'' . '" "" " "'."; .

VIII. S _: ILATIONAL APPROAC TO DATABASE BAA RENT

System R is a database management system which provides

a high level relational data interface. The system provides

a high level of data independence by isolating the end-user

as much as possible from underlying storage structures. The

system permits definition of a varity of relational views on
common underlying data. Data control features are provided,

including authorization, integrity assertions, triggered

transactions, a lcgging and recovery subsystem, and

facilities for maintaining data consistency in a

shared-uldate environment. System R supports a relational

database,i.e., a database in which all data is perceived by

users in the form of tables. All access to this database is

via a data sublanguage called SEQUEL.

A. ARCHITECTURE AND SYSTEM SZEUCTURE

Figure 8.1 gives a functional view of the system

including its major components and interfaces. The

Relational Storage Interface (RSI) is an interface which

handles access to single tuples of base relations.

This interface and its supporting system, the Relational

Storage System (RSS), is actually a complete storage system

in that it manages devices, space allocation, stcrage
buffer, transaction consistency and locking, deadlock

detection, backout, transaction recovery, and system

recovery. Also it maintains indices on selected fields of

Lase relations and pcinter chains across relations.

The Relational Data Interface (RDI) is the external

interface which can be called directly from a programming

language, or used tc support various emulators and other

77

various interface:
Stand-alone SECDE1
Query By Example,etc.

<--- Relational Data
--- Interface (RDI)
Relational Data

System (RDS)
<--- Relational Storage

I Interface (RSS
I Relational Storage

System (ESS)

Figure 8.1 Architecture of System R.

interfaces. The Relational Data System (RDS), which supports

the RDI, provides authorization, integrity enforcement, and

support for alternative views of data. The high level SEQUEl

language is embedded within the RDI and is used as the tasis

for all data definition and manipulation. In addition, the

RDS maintains the catalogs of external names, since the PSS

uses only system generated internal names. The RDS contains

an optimizer which chooses an appropriate access path for

any given request frcz among the paths supported by the RSS.

ESS and EDS will be evaluated in detail the following next

two sections.

* B. THE RELATIONAL D17A SYSTEM

The Relational Data Interface (RDI) is the principal

external interface of. System R. The data definition

facilities of the EDI allow a variety of alterrative

relational views to te defined on common underlying data.
7he RDS is the subsystem which implements the RDI. The RDI

78

* .-... ..:.-.-.-.-.... ,...-:: 9: . .- . .K-,,.-. -..-...-.... - --..-.- , -- - . - ... ,- .- .. , -,%- . . ,- .. - -, !

consists of a set of operators which may be called from PL/I

or other host programming languages. All facilities of the

SEQUEL data sublanguage are available at the RDI by means of

the RDI-called SEQUEL. SEQUEL is designed to be used both as

a stand-alone language for interactive users and as a data

sublanguage embedded in a host programming language such as

PL/I. In the latter case the SEQUEL statements in the

program are identified by a precompiler which replaces them

with valid PL/I calls to a run-time module which provides

the environment for executing an application program that

has been through the precompilation process. The

precompilation process is described below[Ref.6].

1. The precompiler scans the source program and locates

the embedded SEQUEL statements.

2. For each statement it finds, the precompiler decides

on a strategy for implementing that statement in

terms of RSI cperations. Having made its decisions,

the precompiler generates machine language routines

(including ca]ls to the RSS) that will implement the

chosen strategy. The set of all such routines

together constitutes the access module for the given

scurce program. The access module is itself stored in

the database.

3. The precompiler replaces each of the origir.al

embedded SEQUEL statements by an ordinary PL/I

statement to the run-time module of the RDS.

The modified source program can now be compiled by the

PL/I compiler in the normal way. This process is depicted in

Figure 8.2.

In terms of query facilities, SEQUEL provides extensive

query facilities based on English key words. As a

relational DBMS we have ORACLE in our school. In terms of

Query facilities there is no big difference between System R

and ORACLE. Query, data manipulation, and data definition

79

. *.. .. *,.,,,_...- ;... ... , :.-.-.., -. ... -.,.....* .a.., - -..

p-T

I P/Isource 1program

Modified EI/I Access module fcI
program soreprogram

Lsource E ua -9~including RSS cails

J PL/I Compiler i

7__1D-njec t
Iprogram

____ ____ii I EXECUTICN

Figure 8.2 Preconpilation Process.

facilities of ORACLE mill be illustrated over the Inventory

lEatalase by a series cf examples in Chapter 9.

1. Lata Definiticn Facilities

7he primary data structure in System R is the Base

Relation (Base Table). The base relation is a table that

has its cwn independent existence and is represented in the

physical database by a stored file. Base table can be

created at any time by executing the SEQUEL DDL statement

CREATE TABLE, which takes the general form:

CREATE TABLE base-table-name

(field-definition

(IV SEGMENT segment-name }

where a field-definition, in turn, takes the form

field-name (data-type (, NONULL))
Successful execution of the CREATE TABLE statement causes a

new, empty base table to be created in the specific segment

80

" with the specific base-table-name ani specific field

-T definiticn. The user may now proceed to enter data into that

table using the SEQUEL INSERT statement. A System R database
is partitioned into a set of disjoint SEGMENTS which

provides a mechanisa for controlling the allocaticn of

storage and the sharing of the data among users. Any given

base table is wholly contained within a single segment and

indices on that base table are also contained in that same

"* segment. However, a given segment may contain several base

* tables and their indices. A public segment contains shared

data that can be simultaneously accessed by multiple users.

A private segment contains data that can be used by only one

user at a time. If the CREATE TABLE statement does not

specify the segment, then the base table will go in a

private segment belonging to the user that issued the CREATE

"* TABLE. This specification is an option in the CREATE TABLE

statement. Each field definition in CREATE TABLE includes

three items: A field-name, a data-type for the field, and

optionally a NONULL specification. The field name has to be

unique within the base table. The System R supports the

concept of nonull field values. Null is a special value that

is used to represent "value unknown" or "value

inapplicable".

By using the EXPAND TABLE statement, an existing

base talle can be expanded at any time by adding a new

column at the right :

EXPAND TABLE Ease-table-name

ADD FIELD filed-name (data-type)
The izportant point is that the specification NONULL is not

permitted in EXPAND TABLE. It is also possible to destroy

an existing base table at any time:

DROP TABLE base-table-name
All records in the specific base table are deleted, all

indexes and views on that table are destroyed, and the table

81

d.

itself is then also destroyed; that is, its description is
removed from the dictionary and its storage space is

released[Ref. 7].

The query power of SEQUEL may be used to define a

view as a relation derived from one or more other base

tables. This view nay then be used in the same ways as a

base table: queries may be written against it, other views

may ke defined on it, and in certain circumstances described

below, it may be updated. Any SEQUEL query may be used as a

view definition by means of a DEFINE VIEW statement:

DEFINE VIEW view-name

((field-name ,) j
AS SEIECT - statement

Views are dynamic windows on the database as shown in Figure

8.3. In System R, a view that is to accept updates must be

derived from a single base table. Moreover, it must satisfy

the fcllcwing constraints:

1. Each distinct row of the view must correspond to a

distinct and uniquely identifiable row of the base

table.

2. Each distinct column of the view must correspond to a

distinct and uniquely identifiable column of the base

table. If a view does satisfy constraints I and 2,

then any update against it can easily be mapFed into

an update on the corresponding base table.

There is another SEQUEL command for data definition

facility: KEEP TABLE. It causes a temporary table to beccme

permanent. Normally, temporary tables are destroyed when the

user who created them logs off.

2. Data Control Facilities

System R has extensive data control facilities that

enable users to control access to their data by other users,

82

* B*~** % * .-

-EXTERNAL LEVEL

SEQUE11
TVIEWV-1 IT FEW V2

SCOCEPTUAL lEVEL

JBase Tablel B ase Table3 T

INTERNAL LEVEL

Stored File, Stored File21 Stored File31

Figure 8.3 Systen R as Seen by an User.

and to exercise control over the integrity of data values.

7he data control facilities have four aspects: transactions,

authorization, integrity assertions, and triggers.

A transaction is a series of the statements which

the user wishes to be processed as an atomic act. The

meaninc of the "atomic" depends on the level of consistency

specified by the user. The user controls transactions by the

operator BEGIN-TRANS and END-TRANS. The user may specify

save points within a transaction by the operator SAVE. As

long as a transaction is active, the user may block up to

83

.- '.....".".",-.....-,, . ..-..,-.-.,-..-- --,,,,,.. ..,,.-., , .-.-, ,.,-,- , ,,'.-,,'

the begining of the transaction or to any internal space

point by the operator RESTORE.

System R allows for an extremely simple method of

authorization checking. System R maintains two tables for

the use of the authorization subsystem: SYSAUTH and

SYSCOCAU7H. The SYSAUTH table has up to two rows for each

combination of relaticn (base or view) and user. The columns

in the SYSAUTH table correspond to user ID, base relation or

view name, type (base or view), a column for each of the

privileges on the relation (Y OR N) and a column for grant

cpticn (Y or N). For each relation on which a user is

authorized to perform some action, there are up to two

tuples in SYSAUTH: one for grantable and the other for

non-grantable privileges. In case the user has update rights

on a relation, the table SYSCOLAUTH indicates precisely

those columns of the relation on which the user has the

update privilege. TLese two tables, SYSAUTH and SYSCOIAUHT,

are updated whenever a new base relation or view is created

or an authorized user executes a GRANT statement, thereby

granting a set of privileges to one or more other users. The

two tables are referenced immediately before the execution

of any SEQUEL statement[Ref. 51.

The third impcrtant aspect of data control is that

of integrity assertions. Any SEQUEL logical expression

associated with a base table or view may be stated as an

integrity assertion. At the time an assertion is made by an

ASSERT statement, its truth is checked; if true, the

assertion is enforced until it is explicitly dropped by a

DROP ASSERTION statesent. Any data modification by any user

which viclates an active integrity assertion is rejected.

Assertions may apply to individual tuples or to sets of

tuples.

The fourth aspect of data control, triggers, is a

generalization of the concept of assertion. A trigger causes

814

4..

a prespecified sequence of SEQUEL statements to be executed

whenever some triggering events occurs. The triggering event

may be retrieval, insertion, deletion, or update of a

particular base table or view. RDI can monitor such events

by simply scanning a transacticn for a SEQUEL statement that

corresponds to a particular triggering event. After each of

these statements, immediately a call statement is included

to invoke the appropriate trigger routine.

3. Data lanipulation Statements

7he RDI facilities for insertion, deletion, and

update tuples are also provided via the SEQUEL data

sublanguage. SEQUEL operates on both base tables and views.

It can be used to manipulate either one tuple at time or a

set of tuples with a single command. By using these

facilities, it is possible to assign the result cf a query
to newly created relation.

An insertion statement in SEQUEL may provide only

some of the values for the new tuple, specifying the names

of the field which are provided. Fields which are not

provided are set to the null value. The physical position of

the new tuple in storage is influenced by the "clustering"

specification made on associated RSS access paths.

eletion is done by means of a DELETE statement
accompanied by a WHERE clause. The WHERE clause specifies

the conditions that sust be satisfied by the records to be

deleted. The EDI can translate the UPDATE statements in cne

of two ways:

1. By using the RETRIEVY command to determine the

addresses of the selected records, and then using the

REPLACE command to modify these records one at a

time.

2. By using the REPLACE command to modify all the

selected records simultaneously.

85

°-e -. . °e . ., *--,o .v - . - &:K. . -- K.f o..-, o.,. . :Qo,, . K-, ..- - . .. \ v- . *. . -.° . o,

Ihich of these two methods is to be used depends on

the actual SEQUEL statement. If the SET clause makes

identical changes to all the selected tuples, then only-the -

second method should be used. The SEQUEL assignment

statement allows the result of a query to be copied into a

new permanent or temporary relation in the database. This

has the same effect as a query followed by the RDI operator

KEEP. The execution of an assignment statement by the RrI is

done in two parts:

1. The records satisfying the query are retrieved,

2. A new relation is created with the records retrieved

in (1). These records are then stored in the

database.

A series of examples will be given for inventcry

database by using ORACLE relational DBMS in Chapter 9.

4. Cptimizer

The objective of the optimizer is to find a low cost

means of executing a SEQUEL statement, given the data

structures and access paths available. The optimizer

attempts to minimize the expected number of pages to be

fetched from the secondary storage into the ESS buffers

during execution of the statement. Only page fetches made

under the explicit ccntrol of the RSS are considered. If
necessary, the RSS buffers will be pinned in real memory to

avoid additional paging activity caused by the operating
system such as the VN/370 operating system. The cost of the

CPU instructions is also taken into account by means of an

adjustable coefficient which is multiplied by the number of

tuple ccmparison operations tc convert to equivalent page

accesses. The adjustable coefficient can be adjusted

according to whether the system is computation-bound or I/O

bound[Ref. 6].

86

• °o .-- . .-i°.-. - °'',o°*t b - -°. -o.

~~~~~~~~~~...'.... ..... ......... ** *'-* .. :'.'.-.,---....... -. .°,.. ,. . -, .- ,' - '. %'..: ' ,,., , '. -
• -, ' ,a,"i- ,,,,,,a ,l, ,, ,la ,w,,,, am,,ah ,,, nl -,**l l . m ,m,, d ~ n d ... . .. . .



After analyzing any SEQUEL statement, the optimizer

produces an Optimized Package (OP) containing the parse tree
and a plan for executing the statement. If the statement is

.' a query, OP is used to materialize tuples as they are called

* for by the fetch ccmmand. If the statement is a view
* definition, the OP is stored in the form of a Pre-Optimized

Package (POP) which can be fetched and utilized whenever an
access is made via the specified view. If any change is made

to the structure of the base table or to the access Faths

maintained on it, the POPS of all views defined on that base

table are invalidated, and each view must be reoptimized

from its defining SEQUEL code to form a new POP.

C. TEE RELATIONAL STORAGE SISTER

The ESS is essentially a powerful access method. Its

primary function is to handle all details of the physical
level and to present its user with an interface called the

RSI. The user of the RSS is ncrmally not a direct user, but

is code generated b7 the RDS in compiling some SEQUEL

- statement. The RSI was specifically designed to be a good

*~i target for the SEQUEl compiler.

As shown in Figure 8.3, the basic data object at the HSI
is the stored file which is the internal representation of a

base table. Rows of the table are represented by records of

the file; the stored records within one stored file need not

be physically adjacent in storage. An arbitrary number of

indexes over any given stored file is supported by the PSS,

thus Froviding the additional access paths to that file. The

ESS objects (stored files,indexes,etc.) and the associated

operators together constitute the Research Storage

Interface(ESI). As rentioned above it is the interface used

as the target by the EDS in precompiling SEQUEL requests.

The user of the RSI needs to know what stored files and

87

| . .. .- *-....*...~ - . -. ... . . . .. . . . .,, ,-. . '" "';". ,- '-.'..-.-' ,' .. ,..,.. , '"-.. ..--. .-..- - ,3.-,.,.., -,,..,.,. . ,' .- '..' . -'.-" ." ",, .. ".. ,,'-"".-"- '. '-"- - -,., • . . , .,, ." -"'"' ,.,. ... ,..." . - - , -.*,.,--.*,-,, ,,",-'. . .. '



indexes exist, and must specify the access path(index or

system sequence) to be used in any given RSI access request.

1. Segment

In the ESS, all data is stored in a collection of

the logical address space called SEGMENTS, which are

employed to control physical clustering. Segments are used

for storing user data, access path structures, internal

catalog information, and intermediate results generated by

the RDS. All the tuples of any relation must reside within a
single segment chosen by the RDS, but a given segment may

contain several relations. Three types of segment are

supported, each with its own combination of functions and

overhead: shared (or public) , private, and temporary data

segments. Basically data in shared segments are recoveratle

and sharable; data in private segments are recoverable but

not sharable; and data in temporary segments is neither

recoverable nor sharatle. Segment type is fixed at the time

of the system installation and cannot be changed. Each

segment consists of a sequence of equal-sized pages which

are referenced and formatted by various components of the

RSS. The BSS maintains a page map for each segment which is

used to map each segaent page to its location on disk. At

RSI, segments are identified by a numeric segment

identifier. Pages are identified by page number within

segment. Pages are never directly referenced in SEQUEL.

2. Files and Records

Each base talle is represented as a stored file. A

stored file is identified at the RSI by a numeric identifier

called as RID. In cther words, a RID identifies a stored

file. The RDS is responsible for mapping SEQUEL table-names

to RDIs. Records in the stored file represent rows of the

table. Each record is stored as byte string. The byte string

88



consists of a prefix, (containing control information, such

as the RID of the containing file), followed by the stored

representation of each field in the record. Like segments

and files , individual tuples have their own numeric

identifier, called a TID. The TID for a tuple consists of

two parts: page number of the page containing tuple, and a

byte offset from the bottom of the page identifying a slot

that contains, in turn, the byte offset of the tuple from

top of the page. Operators are available to INSERT and

DELETE single tuples, and to FETCH and UPDATE any

combination of fields in a tuple.

3. Images and Links

An image in the RSS is a logical reordering cf an

n-ary relation with respect to values in one or more sort

fields. Images combined with scans provide the ability to

scan relations along a value ordering for low level support

of simple views. An image provides associative access

capability. The RDS can rapidly fetch a tuple from an image

by keying on the sort field values. A new image can be

defined at any time on any combination of fields in a

relation. Each of t.e fields may be specified as ascending

or descending. An image can also be dropped at any time.

* The RSS maintains each image through the use of multipages

index structure. A new page can be added to an index when

needed as long as one of the pages within the segment is

marked as available. The pages for a given index are

organized into a balanced hierarchic structure. Each page

is a node within the hierarchy and contains an ordered

sequence of index entries.

A link in the RSS is an access path which is used to

connect tuples in one or more relations. The RDS determines

which tuples will te on the link and determines their

relative position by using explicitly the CONNECT and

89

ftoo - .- • ft ° . . o . . • . . . • -, • . . , , ft •



* DISCONNECT operations. The ESS maintains internal pointers

so that newly connected tuples are linked to previous and

next twins, and previous and next twins are linked to each

other when a tuple is disconnected.

4. Transaction Management

A transaction at the RSS is a sequence of RSI calls

in behalf of one user. In general, an RSS transaction

" consists of those calls generated by the RDS to execute all

RDI operators in a single System R transaction, including

the calls required to perform such RDS internal functicns as
authorization, catalog access, and integrity checking. An

ESS transaction is marked by the START-TRANS and END-TRANS

operators. A transaction save point is marked as the

SAVE-7RANS operator, which returns a save point number of

subseguent reference. In general, a save point may be

. generated by any of the layers above the RSS. An RDI user

may mark a save point at a convenient place in this

transaction in order to handle backout and retry. The RDS

may mark a save point for each new set oriented SEQUEL

expression. Transaction recovery occurs when the RDS or

Monitor issues the RESTORE-TRANS operator, which has a save

point number as its input parameter, or when the RSS

initiates the procedure to handle deadlock. The transaction

.. recovery function is supported through the maintenance of

the time ordered lists of log entries, which record

information about each change to recoverable data. Those

changes include all the tuple and image modifications caused

- by INSER7,DELETE, and UPDATE operations and all the link

*: modifications caused ky CONNECT and DISCONNECT operations.

5. Concurrencv Control

Since System E is a concurrent user system, locking

*technigues must be employed to solve various synchronization

90

o - .-.-o° - ..- •N .........%...-........,.,,.............-......,..............- . . ° °.. -°o-°.-. °*°°°, .



II

problems, both at the logical level of objects like

relations and tuples and at the physical level of pages. At

the logical level, such classic situations as the "lost

update" problem must be handled to insure that two

concurrent transactions do not read the same value and then

try to write back an incremented value. If these

transactions are not synchronized, the second update will

overwrite the first, and the effect of the increment will be

lost. At the physical level of pages, locking technigues are

required to insure that internal components of the RSS give

correct results.

6. jogina

Cne basic decision in establishing System E was to

handle both logical and physical locking requirements within

the ESS, rather than splitting the functions across the RDS

and ESS subsystem. Physical locking is handled by setting

* and holding locks on one or more pages during the execution

of a single RSI operation. logical locking is handled by

setting locks on such objects as sequence, relations, tuple

identifiers (TIDs), and key value intervals and holding them

until they are explicitly released or to the end of the

transaction. Another basic decision in formulating System R

- was to automate all of the locking functions, both logical

* and physical, so that a user can access shared data and

delegate some or all lock protocols to the system.

In order to provide reasonable performance for a

wide spectrum of user requirements, the RSS supports

multilevels of consistency which control the isolaticn of a

user from the actions of the other concurrent users [Ref.2].

When a transaction is started at the ESI, one of three

consistency levels must be specified. Different consistency

levels may be chosen by different concurrent transactions.
?or all of these levels, the RSS guarantees that any data

91

p_



modified by the transaction is not modified by any cther

until the given transaction ends. The differences in

consistency levels occur during read operations. Level-I

consistency offers the least isolation from the other users,

but causes the lowest overhead and lock attention. With this

level, dirty data may be accessed, and one may read

different values for the same data item during the same

transaction. In level-2, the user is assured that every item

read is clean. However, no guarantee is made that subsequent

access to the same item will yield the same values or that

associative access will yield the same item. For the highest

consistency level (which is level-3) the user sees the

logical equivalent of a single user system. Every item read

is clean, and subsequent reads yield the same values,

subject to updates by the given user. Level-3 consistency

eliminates the problem of lost updates and also guarantees

that one can read a logically consistent version cf any

collection of tuples, since other transactions are logically

serialized with the given one.

The RSS components set locks automatically in order

to guarantee the logical functions of these various

consistency levels. 1he RSS employs a single lock mechanism

to synchronize access to all objects. This synchronization

is handled by a set cf procedures in every activation of the

ESS, which maintains a collection of queue structures called
GATES in shared, read write memory. An internal request to

lock on an object has several parameters: object name, lcck

mode, and indication of lock duration. There are several

factors which will effect the choice of lock duration such

as the type of action requested by the user and consistency

level of the transaction. Data items can be locked at

various granularities to insure that various applications

run efficiently. Lock on a single tuple will be effective

for transactions which access small amounts of data. locks

92



on entire relations cr even entire segments will be more

reasonable for transactions which cause the RDS to access

large amounts of data. For accomplishing these situations, a

dynamic lock hierarchy protocol has been developed so that a

* snail number of locks can be used to lock both few and many

objects.

7. Deadlock

Since locks are requested dynamically, it is

*possible fcr two or more concurrent activations of the RSS

to deadlock. The RSS has been designed to check for deadlock

situations when requests are blocked and to select cne or

*more victims for backout if deadlock is detected. The

detection is done by the Monitor on a periodic basis by

* looking for cycles in a user-user matrix. The selection of

* victim is based on the relative ages of transactions in each

* deadlock cycle as well as on the duration of the locks. In

* general the ESS selects the youngest transaction whose lock

is of short duration, since the partially completed call can

* easily he undone. If none of the locks in the cycle are of

short duration, the youngest transaction is chosen. This

* transaction is then backout to the save point preceding

* offending lock request, using the transaction recovery

* scheme.

93



IX. IqjUNET&TIOl BY USING ORACLE

A. INTRODUCTION

The CRACLE Relational Database Management System is a

computer program that manages pieces of data stored in a

computer. ORACLE allows access to this data by providing

sets cf commands that tell the computer what to do. These

commands are in a language that is called SQL. SQL has

several facilities fcr data manipulation. Some of them will

, be used for the Inventory Database.

All data in ORACLE are stored as tables. Tables are made
up of columns and rows. The SUPPLIER table shown below has

four cclumns (SUPP_NAEE, COUNTRY, ADDRESS, and SHIPTYPE)

and four rows. A icw is made up oi fields. Each field

contains a data value stored where a column and row meet.

For example, the first row in the SUPPLIER table has the

data value ITT stored in its SUPPNAME field, the data value

USA stored in its CCUNTRY field, PO.BOX.9 stored in its
ADDRESS field, and the data value S.F stored in its CITY
field. A database can coiitains many tables. ORACLE allows
the creation of as many tablzs as needed. All the tables

stored in ORACLE make up the database.

We can create a table using the CREATE TABLE command.
The ccmmand that creates the PARTIDENTIICATION table is as
follows:

UFI) r

I eeate table o3rt-1je~ rifi:4t0on
2 nsn.-n3 chr(CJU),
3 tot-qty-o-hand m.mner(b),
'4 mOKa:*' j:tM3yt vha d numer(b),
5* Su Ofus u.MU t numoer(b) )

Table Ceeated.

94

., .,.; .,.%.,,....,.. ,...,, .. ,.,. , ..... ,..t.., "'.'t'," .'''', ','''' ' """" '*'' '""' "" " " " "" "" " " '" ""' "2"* " """' " "



In the CREATE 7ABLE command we name the table

PART-IDENTIFICATION and the columns of the table (NSN-NO,

TO_QTY_ON_HAND, MAXAUT _QTYHAND, Su._OFJSEDUNIr) . We

specify if the coluin is to contain only numeric values

(NUMBER) or character (both numbers and letters) values

(CHAR). We also specify the maximum length of the value

that can be stored in the column. For example, no NSNNO can

le longer than 14 characters- nsnno char(14).

After a table is created, rows cani be entered into the

table using the INSEET command . The following ccmmand is

used to enter the first row into the PARTIDENTIFICATION

table.

oil
)  

insert into oarto-ii'ent i fication

2 values ('13'J2-2l 4" 1 1 , 15000,20000,3000o);

r vecord created.

In the INSERT command we name the table

PARTIDENTIFICATION into which the row is to be inserted and

list the data values that go into each column.

In a similar manner using the CREATE TABLE command, all

tables in the inventcry database are created and using the

INSERT command all data are inserted into tables. The final

version of the tables are shown below.

PARTIDENTIFICAT ICN

UFI) select a
2 from Oartcidentfl ication;

• SN.N0 T01 -T Y*-0N-HAN ) 'A4-AUT H- T Y.iAN ) S(IM e.0F 0.US E -tN I T

-------------- --------------- ----------------- ----------------
1142-241- I11 15000 2000n 300o )
2'21-311-ulli 10000 1500o 2n00
251-312-1 15 5000 10000n qo0o
51il-II -I 5IIi 25000 10000 15000
2511-StI-451I 10000 15000 2o000
1015-512-5312 2000 no0 1500
751 -b32-5332 15000 25000 125000

7 records selected.

95



AD-A159 ?38 DESIGN AND IMPLEMENTATION OF INVENTORY DATABASE(U) 2/'2

NAVAL POSTGRADUATE SCHOOL MONTEREY CA 0 SARI JUN 05

UNCLASSIFIED F/O 9/2 N

I EEEEEEE



-A 

-7

IMI

12.0

1.25 1134 11.6

M ICRCP RESOUTO TETCHR
NAIOA GUEUO 38rN~OS16-

. .120...



rCCUIIE HT..IDENT IF ICATICH

UF130 select
2 feaOU dcjmeflt*-idetifiCCC1~n;

NSN4N2DOC'J SLJPP

2a21.311-4115 toml itt

2Sl-111-I11 toel as&,

2551.51l-541t toni Jec
I111?15-Si11 tOMS ib"
IOIS-S12-5112 torn? Joe
7S511b32-S332 tOmS 6981

8 records selected.

UNIIKNVENTORY

uP1I, select
2 fr~m 4it..iflveflCOvj

U4[7*C 4S'4fr'40sUSE 21Y~d)No.AND uSED*A40JNT 4E2..AP40uNT

base 1342-241-4111 7500 30000 2500
loss* 2421-311-4115 2000 10000 3000
Zoasse 2412-3t1-411S 3000 10000 2000
2oase 2451-312-4115 t250 4000 750
lbase 24il1312-"117 1250 4000 750
124se 2511-511-Qsi 5300 ?0000 2000
4jae I5t1.215-5111 62S0 IS00 3200
5~ase 1511-215-Slit 5000 20000 2000
boost 7511-652-8532 600 1000 400
7*ase IOIS-512-5112 '400 son 200
Soose 1015-512-5I12 125a 5000 3250

9a.5111-111-5111 7500 2S000 10000

96



UFI3- select
2 #PON ulit~id;

U41I1.C. SUDERI LOCATI0,4

loam. 2taf 2S340E

Reese, Rtat ?5I430E
So*$* Ste ZIN2ZE

boas. Itet 31N42SE
7 *40e tef 37442SE
Bssem Ztat 38N2SE
q305 * Stat 414421E

9 recorss selected.

PA ET..ER

UF13 select
2 from i6arte-order;

NSN. 440 SUP&J DATES AMOUNPT SHIP

1342-241-4111l *tt 031all5 2500 air
24SI-l-it ma l?~ 5000 sea
Silil-ISII5 itt 0316AS 3250 air
1311-2is-5ltl dec 0 116 L5 5250 sea
2511-512-5111 anal 0311MS s0on sea
201S-512-5112 itt n42*595 boo air
2015-632-0332 ibm f5270S 10000 air

7 Pecorls selected.

97

....................... . b. " % . . . . . .



DEFOISTOCK-LEY El

iF12. select
2 f*Mo d&P~t**toCk*'].vel

DEPO* STOCKAIUNI SUPP *ISN*Nt3*REGIST

Igoal 7500 itt 134a2-241-4a11
d*002 5000 8581 2421-311-UIIS5
dqoo3 2500 ith. ea51-312-41ls
deooll 5000 dec 2S11I312ll5
deo5 3000 lti 1015-512-5112
dooob 7500 Jcc 7s1i-68?-8332

deooS 1250 *$at 5111-111-5111

6 recorsselectej.

SD PP II E

Urz3. select'
2 from sJo~lier;

SJPP CO'jTR~ ADDRESS CITY

itt use 031o. S.F
iom Use 05.0oU.I2 L.A
10c use 03.0aM.11 N.Y
0941 tur 00.00ii.? irmi

98



B. SIMPl QUERIES

1. List national stock nuater of the. items .fo-r which -the-

quantity on hard 'v.udi 10000.

UlrI2 slect none-no
2 from Dafrteidentification
3 .ehre tOt4Qt4onhand x 10000;

45N*.NO

?Q21-311-4111i
2311-51 1-'51 2

2. Display nsnno which is in the lbase and rejuirel

ilacunt greater than 2500.

UP13. select e"Sneno&usP
2 frnm unit*-iflvemtor
3 .eheie utnito'cae 2 'lragc'
4 Snti req~a1,ount 1,2500;

NS4*N3.JSE

99



3. List all bases Mhich are under command of 2taf.
.9'

UFI* select uiito-cod&
.9.2 from ulit'id

3 wiheres *erio8Pcom9 * 2tat'

l oose

4. List all locations of tases which are unier ccffmand
of itaf.

JF1* select uit~coje9I3cdtf,

2 from Ujjt..d3 whtere %U~ro.co.,, Cl*taf'

U'd11..C LCAI J3
--------------------------

"OegO 3142SE

100



5. list all suppliers names and their addresses in the

U51:0 select sjioOnOte adlresseci ty

2 fro ajoier
3 where COjfltry 2 usO

SJPP ADDRESS CITY

itt 3O.bOU.9 S.F
i*m oo.bou.12 L.A

e¢ oo.box.11 N.V

6. Find total quantity on band, document, and supplier

name for items for which the sum of used amount is

greater than 1000.

JFt " select t3toqtYt'OethSnde
' 3j J e nt@$ U D o e'

2 fr m oart identi fic tion,tlocument ei1*entifiation
I 4 here suve-ofo-usel'sunit D 1300
4l ant lentiftcatof.'I~ efO S dCu e'tiCfoeettificatiffniflSne'l°

t3T.QTY,.-4A0 DOLCJ SUPP
------------- ----

15000 tol i tt
5000 tom2 asal

2000 too2 lec
15030 togs asal

101

. .. . . . . . .. ....- . .,.. .- . . ..- .- ..-.. .. . ., .. . . .,.. .. .. ".,'..=,. '. . ..%_'



7. Find total used amount for ibase.

UFI1J select gjrn(uselfgmount)

3 where initicode a Ilfase

SU'4CJSED*.A4OJNT)

40000

8. Find nsn no and total quantity on hand in descending

order by tottonhand for items for which the

maximum authorized quantity on hand is greater than
~1500.

.. o0

UFZ). select gnoto't m.Npv
2 from Dart*-identif )cation~
3 Where %&W*'&Uth*-QtYGmh~v ), 1500
4 or-er Dy tot*qty*one4hand Oese 5

NSNeN0 TOT*gTY.ONNHAND

-------------------------- -----------------
51110111015111 25000
1342-241-I11 15000
7511-b32-833? 15000
2021l-311-4111l 10000
"511-511 -511 10000
2451-312-'115 5000
IOIS-512-5112 ?000

7 recouIS Selecte'i.

a 102



9. Display total quantity on hand and sun of used amount

for items sapflie3 by 1511..

UF1r select t~~tvnhnoivf'sdui
2 from oart..tdentittcation
3 where Is"'nof irn

* C select nsnono
5 1from doCuumft4td~ftiftC~$Ofl
6 ..here SUOO~name 'aal)

T31..GTY.*O4"4A40 SUM*.OF.-LhSED*4U1dT

5000 90000
15000 125000

10. Find order amount, dates, and shipment type for

items which are in the 1BASE inventory.

OF3 sel ect a~ountv latess j aft tvoO
2 fr~o oaret-1oe1.
3 where Isjono J-%
4 Cselect nSMVMOnoo
S from gut'flV*ft2rV
6 where jflitwo@ z stbagg.)U

A4UJP4T )ArcS s"rO

2500 031685 air

103



11. lind required amount and order amount for items in
thle 2BASE inventory.

UPI), select PR*eontaon
2fP~o Ulits.nvntoey~arttorlee.
w here inite-inventoiv.un.it.Ceda 2 *bese,

4 ani unit$-iav itOrv.asn*,n**-.e x Oaptseorder.MnsnO

REO.AaaJNT A~4fuqY
------------------ ----------

750 5000

12. Find total guantity om hand and maximum authorize
amount on hand for items for wkiich nsnnac is
10 15-512-5112.

JF1' gel eCt t 3t$tVOnand WaRaUtht4h&~

3 whr ig*'~mO v 'l0S.S12-S11,2,

rJr..QTY"4*J..4A4D 4AX*'AUTHr)Y*-pA,4D
----------------------- -----------------

2000 14000

104l

~ *-*~~-*%



I. CONCIusIoUS Ms L402AMD2TIONS

an inventory database system is complex and important.

In order to effectively command and control the inventory of

an Air force, the commander must know the status of his

resources which will present the state of operational

readiness of the Air Force. It is difficult to obtain

accurate information from the inventory system by using the

manual systems. The database management system must be used

in the inventory systems in order to increase end-user

productivity, decrease staffand enable work to be done more

efficiently.

The complex task of a logical database design for a

relational database management system can be greatly

simplied by use of the Semantic Data Model. SD is a

high-level semantics-based database description and

structuring formalism for the database and enhances

usability of the datatase system. Using the output of SDM iL

the Inventory Database, the records are rearranged in corder

to fit a relational model. ORACLE DBMS was used for

implementation. Functionality of ORACLE DBMS is very high

and provides User Friendly Interface ( UFI ). It is easy to

use fcr all potential users.

Finally, database machines are being developed in

universities and research laboratories. It is obvious that a

great deal of effcrt is being devoted to developing,

studyirg and analyzing database computers. These efforts

will result in quality hardware and software for all

potential users of relational database management systems.

105

4° ,°- , *o *. . % ,** -. . . -. .° ••'.•.-.* . . - . .* . . . .*. . * .. *..*t*'° ".*" **. *.* ". ,.*,_. . , ,-. -. _% *, " *"'.,



LIST OF RIPERENCRS

1. C. J. Date An Introduction to Database System, IBM
Corporationi9U2 , pages M23= .

2. Atre, S. , atabase: StrUCture4 Techniques for Desin
Performang2j cement csei d caseusiness
Data rocessing: A Vi.eg serles, 193, pages 231-236.

3. Ronald G.Ross Eatabase Systms: Design Implementation
A Manag,>Temen -96 ---

4. David Kronke, Database Processing: Fundamentals
Design IMi lementa1'n , Sc -HencW search- 3s-a-,
Inc. T191

5. Jayanta Banarjee and David K. Hsiao, DBC Software
Re ireuent fqr uaportin Relational DaE--7
November 1977,

6. 1. M. Astrahan et al "System R: Relational Aprroach
to Database Management7 ACM Transactions on Database
_ estems, No.2, June 197 --

7. H. M. Astrahan et el, "System R, A Relational Database
Management System", IEEE Comuter Society: CompjKr,
12 No.5, May 1979, .

8. R. F. Boyce and D. D.Chamberlain, "Using a Structured
English Query language as a Data Definition Facility",
I Research RSjort RJ131, December 1973,

9. E. F.Codd,"Recent Investigations Into Relational
Database System" ACg Pasific Conference, San

Francisco, April 175,

10. Toty. J. Teorey and James P. Fry, _esiq of Database
Structure, 1982

11. Hawryszkiewycz, I.T, Database Analysis and Desin
Siene esearc As -lnZ 19,pages 123-13. -

12. Atre, S., Database: Structure Technique for Design
Peformance ang m-n- ei=nn, ....

13. M.Hammer and D. McLoed, "Database description with
SDM: A Semantic Database Model" ACM Transacticn on
database gst, Vol.6 No.3, SepteMb-r T"--T'p.ages'

106



INITIAL DISTRIBUTION LIST

No. Copies

1. library, Code 0142 2
Naval Post qraduate School
Monterey, alifornia 93943-5100

2. Departaent Chairsan, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, Califorria 93943-5100

3. Professor S. H. Parry, Code 55Py 2
Department of Operation Research
Naval Postgraduate School
Monterey, Califorria 93943-5100

4. Department of Logistics 2
Turkish Air Force Headquarters
Bakanliklar, Ankara, T#RKEY

5. Osman SARI 9
Zafer Mahallesi Kaymakci
Odemis, Izmir, TUKEY

6. Division of Education 2
Department of Personal
Turkish Air Force Readquarters
Bakanliklar, Ankara, TURKEY

7. Ugur OZKAN 1
Hukumet caddesi
Sunullah Be Apt. No: 7/4
Kayseri, TURKEY

8. Hava Harp Okulu Komutanligi 1
Kutuphan
Yesilyurt,Istanbul, TURKEY

9. Hava Harp Academisi Komutanligi 1
Kutuphane
Ayazaga, Istanbul, TURKEY

10. rIB. Komutanligi 1
CEIM MudurluquEskisehir, TURKEY

11. AIBM Komutanligi I
CEIM Mudurlugu
Etimesgut, Ankara, TURKEY

107

......................... ..... .....



-.

*12. ODTU Bilgisayar Huhendisligi
Dekanligi
Ankar~a, TURKEY

13. IIU ilgisayar Euhendisligi
Dekanligi
Guussuyu.Istanbul, TURKEY

14.o aiciUniversitesi
14. saar Huhendisligi

Dekanhigi
Bumelikavagi.Istanbul, TURKEY

15. Hava Egitim Konutanligi 2
Egitim Sb. lid.
Guzelyaili, Izair, 7URKEY

*16. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

108



FILMED

1-85

DTIC


