"AD-ALS9 738 DESIGN AND IMPLENENTATION OF INVENTORY DATRBASECU)
NAVAL POSTGRADUATE SCHOOL MONTEREY CA O SARI JUN 85

UNCLASSIFIED F/6 9/2

I -

N Wb i n e T

—_— E t 22
——— u 3.6
E o

—
—
Er
i
.N
il o

I

2 s

I

N
o
»
-
o

NATIONAL BUREAU OF STANDAROS - 1963~ A

LR

I3

MICROCOPY RESOLUTION TEST CHART

T P Ve T PR S Ve Wit W AT W W W P 2

MR A gy

PRt e

H
VY W o A i)

’

o N AT o S BN P P e, " pavin N »

P g

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A159 738

THESIS

DESIGN AND IMPLEMENTATION
OF
INVENTORY DATABASE

a by
-
£> Osman SARI
La! June 1985
oo
L.
&
Eg” Thesis Advisor: Samuel H. Parry

Approved for public release; distribution is unlimited

...................... .« n o
.................

K T P R
. . IOADIA LA AL AL S WA B ST X S S SRS TR PR ISR,
PN S ARSI AT B AACPCAL P S8 W C AT NN, O, PRy alary

pv'v I\ S e
- . PN

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF o R P ORM

TTTﬁE#??ﬁﬁfi lizaFWEEfﬁEﬁ1ETT7&?5ﬁﬁ7??75ﬁ3?ﬁﬁﬁ?7-__—

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIQD COVEI-lD)

. . Master's Thesis
Design and Implementation of Inventory Jzn: §9:5T
Database 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) = 8. CONTRACT OR GRANT NUMBER(e)
Osman SARI
— —
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::sil.A%!.LKlnzryT'zr"O.J.!.C: TASK

Naval Postgraduate School
Monterey, CA 93943-5100

11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE S
Naval Postgraduate School June 198
Monterey, CA 93943-5100 u.luausnun OF PAGES

T4. MONITORING AGENCY NAME & ADORESS(i! different from Controlling Office) 18. SECURITY CLASS. (of thts repert)

UNCLASSIFIED

[1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

ar

I8, DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution is unlimited

LA

I

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, ! different from Report) v,
i
\ ::'.'-

*_4

18. SUPPLEMENTARY NOTES :}
19. KEY WORDS (Continue on reverse side il necessary and ldentify by block number)]
. "" "‘
Database, Base Tables, Relations, Attribute fﬂﬂ
.':1
——y
20. ABSTRACT (Continue on reverse side If necessary and identify by block number) ..‘-'.'i
This thesis presents the design and implementation of the inventory oy
database system. In order to effectively command and control the)
inventory of an Air Force, the commander must know the status of ﬁuﬂ
his resources. The use of a database management system can -7l

significantly increase his access to information regarding resourcd

availability, location, state of operational readiness, and also
increase end-user productivity, and decrease staff effort. The
{(Continyed)

FORM
DD ,[an7s 1473 eoimion oF 1t nov 68 15 ossoLETE
S N 0102-LF-014-6601 1

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bntered)

vala i)

RNttt At s S St C i Sl A A e

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

........

ABSTRACT (Continued)

Semantic Data Model (SDM) was chosen as the method for designing
the database. SDM provides an effective base for accommodating
the evolution of the content structure and use of the database. - -
After logical design of the inventory database, records are
rearranged in order to satisfy relational database management
system requirements. The inventory database is implemented by
using the ORACLE relational DBMS.

.

S N 0102- LF- 014- 6601

2ICURITV CLASSIFICATION OF THIS PAGE(When Data Entered)

PRIV N AL T AT Tt et ST SRS ST N T i A It "e Tt W T e te e P e %t
I N A A S e I I T T e I R A A R

T T S T LT % e e et
-'J-. EREAGH -"‘.'.“.-'\f '.-'-\-4'.‘\ - “‘ o
a

L 5 W S AN PN AL P S A e N A P AT RN DA

Approved for public release; distribution is unlimited.

Design and Implementation
o
Inventory Database

by

——— e ——————— e ————

Osman_ SARI | At‘f‘of"‘ion For

Lieutenant Turkish Air Force Taemey -
B.S., Turkish AIR War Acadeay, 1978 ;j;fT?}MI
U:z:‘az*;nc.;zx‘)-nd
Ju.tiric ticn

Subaitted in partial fulfillaent of the

NN RV g L N S i N e e P S Y e

requirements for the degree of
By

MASTER OF SCIENCE IN COMPUTER SCIENCE | Distribution/

from the
Dist

|
J
NAVAL POSTGRALUATE SCHOOL ’

June 1985 !

Special

Avail tbility Codes
‘Avall and/or

Author: 0,%?1
sman
Approved by: . ZE% z: EE 3?;;5m_mvmr_...___-

Jﬂtbb;(/k C;%Zyltr
f“'-""‘

‘DEVT&_K’ Hsiao ngaﬁa—

A g
o ac o;:na;n;ai Efaai rE 2m an,

Department of Computer Science

(0T M b

Kneale I'. ¥a
Dean of Information and Po 1cy Sciences

~

.....................................

\ ABSTRACT
N

_,) This thesis presents the design and implementation of
the inventory database systea. In order to effectively
connand and control the inventory of an Air Force, the
coamander maust know the status of his resources. The use of
a datakase management system camn significantly increase his
access to information regarding resource availability,
location, state of orerational readiness, and also increase
end-user productivity, and decrease staff effort. The
Semantic Data Hodel (SDM) was chosen as the method for
designing the database. SDM provides an effective base for
accommodating the evclution of the content structure ané. use
of the database. After logical design of the inventory
database, records are rearranged in order to satisfy
relational dJdatabase management system requirements. The
iﬁventory database is implemented by using the ORACLE

relational DBAMS. <:
"~““\~\\\&_”

d ."".' ! - , .-; - bt i D 2l et S S e f=n pen Bu Doy o)

TABLE OF CONTENTS ' -

I. IRTBCDUCTION - - - L J L] - L J - . L] L] L] L 4 L J L] L4 L4 L J - 1 0

1I. BASIC CONCEPT CP DATABASE . ¢ « ¢ = o « o o o« « o« 12

A. WHAT IS A DATABASE? 12
1 L Data - L] - - L J L] - L J L - - L J L L J L J - L J - L] 1 3

2. HAardvare « . « ¢ o « ¢ o o o o« o o « « « « 13
3. SOfLtWALe o « « o ¢ o o o o o ¢ o o = o o o« 13
U. USEBLS =« o o« o« © o =« ¢ o o o« o « o o« o o » 14
B. OPERATIONAL DATA 2 ¢ « o o « o o o o o = = o » 14
Co WHY DATABASE 2 v 2 o ¢ ¢ o o o o« o o « =« o o« o 14
1. Advantages of Database Systems . . « . . . 15

2. Disadvantages of Database Systems 16
D. DATA INDEEENDENCE . 2 ¢ ¢ ¢ ¢ = ¢ o o o o « o« 17
E. DATA DICTIONARY . o o ¢ o o o « o« o « « o« « o 18

. I1I. CATABASE DESIGN ¢ ¢« o o o o o o o o o« o« o« s o « « 19
A. LOGICAL DATABASE DESIGN ¢ ¢ ¢ e o ¢ o ¢ o « « 19
1. Inputs to logical Database Design 21

2. Outputs of the logical Database Design . . 21

3. Stages of Logical Database Design 22

B. PHYSICAL IATABASE DESIGN . ¢« ¢ « ¢ « o o o o « 24
1. Physical Design Steps . ¢ o o« ¢ ¢ & « « « 25

2. Stored Record Clustering « « « « « « o « « 26

3. Access Method Desigh « « ¢ « ¢ ¢ o « o « « 26

4. Physical Design Eavironment « . . 27

5. Performance Measures . « « o« « ¢ o o o = o 28

C. DATABASE MODELS =+ o « ¢ « o « o o « = » o « « 30

Iv. SEMANTIC DATA FODEL (SDM) « « « o« « ¢ o o o o o 33
A‘ INTRODUCTICN o * - L) L] L J L] - - L] L] L] L J L J Ll - - 33

o a e - e -

B THE DESIGN OF SDM . o ¢ e ¢ o « o « o « « « « 34

Ce A SPECIFICATION OF SDH o o ¢ o o o e e o o o 36
Te ClAaSSES « o e o o o o o o o o o o o o « « 36 -
2. Attrikutes .« o o« ¢ « ¢ ¢ o o e o o s o o o U0

D. ADVANTAGES OF SDM &« « o © o o ¢ o « o o « o« « 42

v. SEMANTIC DESIGN OF INVENTORY DATABASE . . - . . . G4

vI. RELATIONAL MODEL ¢ « « o © o o o o « « o o « = « o 56
A. BASIC STRUCTURE OF THE RELATIONAL MODEL . . . 56
e Terminclogy e« « ¢« o o = e o o o« o o o o o 57
2. CONSAiStENCY <« « ¢ o o o o« o « « o« o o« « o« 59
3. Functicnal Dependency . « ¢ « « ¢« « « « « 60
U. Normal FOTMS « « « ¢« o o o o« o o o o« o o« « 62
B. ADVANTAGES AND DISADVANTAGES OF RELATIONAL
MODELS ¢ « o o © « o ¢ © o o « « « = o o o o « 65
1. Advantages . « <« « ¢ « « o« o o ¢« « « « « o« 05
2. Disadvantages =« ¢ « ¢ ¢ o o ¢ o o » o o o 66

VIiI. RELATIONAL DATABASE DESIGN « ¢ ¢ o o « o o « o« o« o 67
A, RELATIONAL DESIGN CRITERIA =« . « « « « o « o o« 57

1. Representation Criteria . « ¢« « « « « « o 68

2. Lossless Decoaposition « « « o« « « « « o . 69

3. Redundancy Criteria .« « ¢« « ¢« ¢ ¢ o o « o 72

B. RELATIONAL DESIGN PROCEDURE . « « o« « « « « « 713

C. PHYSICAL LESIGN OF INVENTORY DATABASE . « « . 73

1. Mapping from SDM into Relational Model . . 74

VIII. SYSTEM R: RELATICNAL APPROACH TO DATABASE
MANAGZEMENT v o o o « o o o o s o o o = o « » = o « 17
A. ARCHITECTURE AND SYSTEM STRUCTURE . . « « « . 1717
B. THE RELATIONAL DATA STISTEM ¢« « « ¢ « « » @« « « 18
1. Data Definition Facilities 80
2. Data Ccntrol Facilities . . . « ¢« o ¢« « « 82

3. Data Panipulation Statements 85

A W T TLE Tt A e T] . - a®u - - R M achiht a4 Lw e e e " . e .'.Y'\.W‘v‘;('r‘-‘.".v‘.1“—‘v’

U. OptimiZer . ¢« « e c o ¢ ¢ ¢« « e o o« o « o 86
C. THE RELATICRAL STORAGE SYSTEM . . « « « « « « 87
1. SEJEeDtS « « o « o « o o o o o« « o« « « « « 88 ~ |
2. PFiles and Records . « « e « « « =« « « « o« 88
3. Images and Links « o« . ¢« ¢« ¢ ¢« « ¢« o « o « 89
4. Tramnsaction Management . . « ¢ « « « « o « 90
5. Concurrency Control . . « « ¢« ¢ « « « « o 90

6. Locking - L] * * * * L J L J L] L J . - L] - L 4 ® L] * 91
7. Deadlock - - L J L J -* L] L - L] L] - L J *® Ll - - - 93

IX. IFPLEMENTATION BY USING ORACLE « « ¢ o « « « « « « 94
A. INTRODUCTION « « « o « o o« © ¢« « o « o « « « « 94
Be SAMPLE QUEBIES « « ¢ o « « o « o« o « o« « o « o 99

X. CONCLUSIONS ANLC RECOMMENDATIONS . ¢« ¢« ¢ « « o « 105

M auh e

Ll g

INITIAL TCISTRIBUTION IIST 2 o o o ¢ o © « o« « o« o o o o« 107

D 3

OO TR RSN

TLvw
s @t e

vy .
AR e

3.1
3.2
3.3
3.4
3.5
4.1
5. 1
5.2
5.3
c.4
5.5
5.6
5.7
5.8
5.9
6.1
6.2
6.3
T 1
7.2
7.3
7.4
8.1
8.2
8.3

LIST OF FIGURES

Datatase and Program Design Flow
Physical Design Process . « « =«
Physical Design Environment . .
Query Response Time Compcneants

Relationships of Six Important Data

Interclass Relationships of SDHM
Identification Entity Class . .
(coent¥™@e) ¢ o ¢ ¢« ¢ o ¢ @ o o o
Unit Entity Class © « « =« =« « &
Order Entity Class « o o o o« «
Order Entit7 Class .« o « o o o«
Supplier Entity Class . « « « .
Domain of Attrikutes
(cont*'d) « o o e ® o o o o o =
A Sample Relaticn Form
Functional Dependency Diagram .
Ncrmal FOrmS . . « o e o o o o
Decomposition . . . « ¢ o o «
Decomposition .« . ¢« « ¢ ¢ « o .
BRecords of Relational Schema .
Attritutes and Lomains
Architecture of Systema R . . .
Precompilation Frocess

System R as Seen by an User . .

Design

Model
Format of SDM Entity Class Description

29
25
29
30
32
39
47
48
49
S0
51
52
53
54
55
53
61
63
79
71
75
76
78
392
83

ACKNOWLEDGEMENTS

My Ccuntry, Republic of Turkey, gave me a chance to
study the graduate course of computer science in the Naval
Postgraduate School. I am very grateful to many fpeople for
their help.

I would 1like to express my gratitude to my thesis
adviscer, Professor Samuel Parry and to my second adviscr Dr.
David K. HSIAO, for their enthusiastic guidance and suprort.

I am very thankful to my wife SENGUL, daughter ISIL, ani
son AKIN, for their understanding and enccuragement during
studyirg in the Naval Postgradvate School. It is time for me p |
to work harder than before for my country.

LI

..
...................
s e .Y o« %o e ..\‘ - o . P I P R e S e L T R

LA - LSRR - .. BN .
NEAEAL A I N I S A I P I I S I A A g I T St S S N S Se T

.......

I. INTRODUCTION

Databases are essential to an organization's information
systena. The information systeam supports the organizatioa's
functions, maintaining the data for these functions and
assisting users to interpret the data for decision making.
The database has a central role in this process. Database
structures nust be flexible to meet changing organizational
needs. As pnew functions arise in an organization, newv
decisions follow in their wake. It should include facilities
to allow the changes to be easily made. Characteristics of
the datakase system will be discussed in the Chapter 2.

Meanwhile, it is not easy to develop database systems
which perform in an cptimal fashion. Different users will
have different regquest about structuring data in the
database. It is hard to satisfy all of the users with cne
type of structuring. There are differeat ‘ways in which data

can ke structured. For that reason, in the database
develofpaent phase all requests which come from |
userssorganizations should be evaluated carefully by the

' designer (s).

Fecr 1logical design of the inventory datalkase the

: Semantic Data Model will be used. After <that, the normal

; form ccncept of the Relational Database will be used to
E develop an inventory database.

E Chapter 3 describes the basic concepts of dJdatabase

design which includes the 1lcgical and physicali database

design, and database mcdels. Chapter 4 addresses the design

of SDM and specifications of SDM. Chapter 5 descriltes how
the inventory database is design by using the SDA. Caapter
6 addresses the basis structure of the relational model
whkich includes functional dependency and normal form

10

fdiio S Sith iasnchit dhats Shedt Jheie e S St dh e Gire der e o e S 4

concepts of the relational model. Chapter 7 describes the
4 relational design criteria and relational design procedure.
Also, in this chapter SDM for the inventory database will be
transformed into a relational model. In Chapter 8, as a
! relational approach to datatase systen, System R is
described which contains architecture and system structure,
the relational data systenm, and the relational storage
system of System R. Chapter 9 describes the implementation
of the inventory datalase by using ORACLE. Finally, €hapter
10 addresses the ccunclusions and recomaendations of this
thesis.

11

...........

.t P e -
13\. et e T e
LFS NS N I Y Y N A TN A S W I

II. BASIC CONCEPT OF DATABASE

A. WBAT IS A DATABASE?

Database technology has been described as "one cf the
most rapidly growing areas of computer and information
science." As a field, it 1is still comparatively ycung.
Despite its youth, however, the field has guickly become one
of considerable importance, both practical and theoretical.
Today, many organizations have become critically dependent
on the continued and successful operation of a database

systen.
Basically, a database is nothing more than a
computer-based record keeping system: that is, a systen

whose overall purpose is to record and maiantain inforaation
that may be necessary to the decision-making rrocesses
involved in management of that organization. 1In a database
the data definitions and the relations between the data are
separated from the prccedural statements of a program. The
questicn to be asked here is,"What is the major distinction
between a database and a data file?" A database &ray have
more than one use, and the multiple uses may satisfy
multirle "views" of the data stored. A data file may have
more tham one use, Lut only cne "view" of the stored data
can be =satisfied. Multiple views of a data file can be
satisfied only after the data have been sorted. In a
database environment, mnultiple uses may be the result of
aultifple users; for example, in a banking environment the
information about customers may have several users, such as
checking, savings, and installment loan. Thus data sharing
is a major objective of an enterprise database system. A
datatase systenm involves four major components:
data, hardware, software, and users.

12

1. [Lata

A database is a repository for shared data. 1In
general, it is both integrated and shared. " Integrated "
means that the datatase may be thought of as a unification
of several othervise distinct data files, with any
redundancy among those files partially or wholly eliminated.
nShared " means that individual pieces of data in the
datatase may be shared among several users, in the sense
that each of those users may have access to the same piece
of data. Such sharing is really a consegquence of the fact
that the database 1is integrated. The term "shared" is
frequently extended tc cover not only sharing as descrited
above, but also concurrent sharing: that is, the ability of
several different <tsers to be actually accessing the
database at the same time.

2. Hardware

The hardware consists of the secondary storage
volumes - disks,drums,etc -on which the database resides,
together with the associated devices, control units,
channels, and so forth.

3. Software

Between the physical database itself (i.e, tne data
as actually stored) and the users of the system is a layer
cf software,usually called the database management system or
DBMS. A database management systea makes it possilkle to
access integrated data that crosses operational, functional,
or organizational boundaries within an enterprise. As an
example of a Relaticnal DBMS System R will be evaluated in
Chapter 8.

13

PN
.'-A\

\ DN

LA AS Al

a0,

TS T T Yy]

4. Users

Three classes of users can be. considered. First,
there is the application programmer, responsible for writing
application programs that use the database, typically in a
language such as COBCI or PL/I. The second class of user is
the end-user, accessing the database from a terminal. An
end-user can use a qguery languadge which as an integral pért
of the system. The third class of user is the database
administrator, or T[BA who is the person (or a group of
persons) responsible for overall control of the database
systea.

B. OPERATIONAL DATA

Any enterprise such as a bank, hospital, university, or
company must necessarily maintain large amounts of data
about its operation, termed "operational data". The
operaticnal data for the enterprises would probably include
account data, patient data, student data, product data, and
planning data. Operational data does not include input or
output data, work gueues, or indeed any purely trapsient
information. Input data refers to the information entering
the system from the outside world; such information wmay
cause a change to be pade to the operatiomal data but is not
itself part of the database. Output data refers to messages
and rerorts emanating from the systea; such a report
contains information derived from the operational data, Lut
is not itself part of the database.

C. WHY CATABASE ?

The troad answer to this guestion is that a database
systenr rrovides the enterprise with centralized control of
its operational data. This is in sharp contrast to the

14

-‘..".-.._-_'.".‘;u'_-.(.‘.'_'-._'._.:-!_‘-":.J". «® _:.'_-...-_ A AL f.‘,. &\.:.-.,' R A g LS

'

»

............................

MM (AR, Wi B I i e I e N LR A D O) EaNP AN 2 DAL Y

situation that prevails in many enterprises today vwhere
typically each application has its own files so that tke
operational data is widely dispersed, and therefore proktably
difficult to control. 1In the database system, the DBA has
this central responsibility for the operational data. Some
of the advantages that accrue froa having centralized
control cf the data are described below.

1. Advantages of Database Systesms

An important advantage of database processing is the
elimipation or reduction of data duplication. In nondatabase
system each applicaticn has its own private files. This can
often lead to considerable redundancy in stored data, with
resultant waste in stcrage space. In the database, it need
cnly ke recorded once. Elimination of duplication saves file
space and to some extent can reduce processing requirements.
In some cases there may be some business reascns for
maintaining multiple copies of the same data. In the
database, however, redundancy should be controlled. The most
serious froblem of data duplication is that it can lead to a
lack of data integrity. A common result of a lack of
integrity is conflicting reports.

Data integration cffers several important
advantages. First and fbremost, database processing enables
more information to be produced from a given amount of data.
Data are recorded facts or figures; information is knowledge
gained ty ;rocessing data.

Creation of program/data independence is anctter
advantage of a database systean. For the database
application, application programs will oLktain data from an
intermediary, the DBES. The application programs need not
contain data structure, only the DBMS will need this
structure. Another advantage of database processing is
retter dJdata management. When data is centralized in a

.............

..................

datatase, one departzent can specialize in the maintenance

of the data. That department can specify data standards and

ensure that all data adhere to the standards.

Database processing creates another type of eccncmy
of scale. Since there is only one DB#S processing a shared
database, improvements made to the database or to the DBHS
will Lenefit many users.

2. Disadvaptages of Database Systeas

A major disadvantage of dJatabase processing is that
it can be expensive. The DBMS may cost as much as $100,000
to buy. The database management system may occupy so much
main memory that additional memory must be purchased. Even
with more memory, it may monopolize the CPU, thus forcing
the user to upgrade to a more powerful computer. Conversion
from existing systems can be costly, especially if new data
sust le acquired.

Another major disadvantage is that the database
processing tends to ke complex. Large amounts of data in
many different formats can be interrelated in the datatase.
Both the dJatabase system and application prograas must be
able tc process these structures, requiring more
sophisticated prograsming. Backup and recovery are difficult
in the database envircnment because of increased corplexity
and because databases are often processed by several users
concurrently. Determining the exact state of the database
at the time of the failure wmay be a problem. A final
disadvantage is that integratior, and hence centralization,
increases vulnerability. A £failure in one component c¢f an
integrated system can affect the entire systen.

LR RN I I R et U A " P T A N A MR A = R MRt R e e A S TYTTTIT

D. DATA INDEPENDENCE

In the conventional data set environnment, _the
application programmer has to knov answers to the followving
questions before manipulating the data :

1. What is its format?

2. Where is it located?
3. How is it accessed? .

Changes in any of these three items may affect the
application program and result in other changes, since the
details of these three points may reside in the application
code. The users of the dataltase system should be oriented
toward the informaticn content of the data and should act be
s concerned with details of the representation and location.
ﬁ The ability to wuse the database without knowing the

representation details is called DATA INDEPENDENCE. Data
independence provides that the individual application

f programmer no longer must change the application programzs to
- accommodate changes in access method or location or format
of the data. The reasons for data independence are as
; follows:

. 1. To allow the DBA to pmake changes in the cortent,
' lccation, rerresentation and organization of a

database without causing reprograaming of application
programs which use the database.

2. To allow the supplier of data processing equifpaent
and softwvare to introduce new technologies without
causing reprogramming of the customer's application.

3. To facilitate data sharing by 4ailowiag the same data
to appear to te organized differently for difierent
application prcgranms.

! 4. To simplify arplication prograam development and,in
A particular, to facilitate the development cf programs
for interactive database processing.

17

R ° .
- I~ Y

i . " N N -
A A S N 2aih A iy Ny S D e tatat e LUy oW g WL AT ST et e b Jie” ST I S g g e SN A A Rl Sl A R A 8 A
.

"

".

. 5. To provide the centralization of control needed by
g the DBA to insure the security and integrity of the
. datatkase. '

E. DATA DICTIONARY

SIS

A data dictiomary is a central repository of information
about the entities, the data elements representing the
entities, the relationships between the entities, their
origins, meanings, uses, and representation formats. A
facility that provides uniform and central information about
all the data resources is called a DATA DICTIONARY (DD). The
benefits of using a data dictionary are related tc the
- effective collection, specification, and management of the
. total data resources of an enterprise. A data dicticnary
3 should help a database user in:

Tty

. 1. Communicating with other users.

% 2. Controlling tlhe data elenments in a sinmple and

o effective manner; that is, introducing new e€lements

' into the system, or changing the descriptions of the

€lements.

- 3. Reducing the data fedundancy and inconsistency.

4. Determining the impact of the changes to the data
€lements on the total database.

5. Centralizing the control of the data elements as an
aid in database design and in expanding the design.

18

Al bl bl endl ol el A oy

II1XI. DATIABASE DESIGN |)

A datatase is the interface between people and machines.
The nature of these components is very different. The
difficulty is to develop a database design which meets the
needs of the people who will use it and which is practical
in tera of technology and hardware. Since the database is
the bridge between humans on one side and hardware on the
other, it must match the characteristics of each.

There is no algcrithm for database design. Database
design is both art and science. Dealing with people,
understanding wvhat they want today, predicting what they
will want tomorrow, differentiating between individual needs
and community needs, and making appropriate design tradeoffs
are artistic tasks. There are principles and tools, bLut
these must be used in conjunction with intuition and guided
ky exfperience.

Database design is a two-phased process. The first fhase
of the database design is wusually called the Logical
Datacase Phase 1in which the designer examines the users!
reguirements and builds a conceptual database structure that
is a model of the organization. Once the logical design of
the datatase is completed, this design is formulated in
terus cf a particular DBYS. Usually compromises must be
made. The process of formulating the logical design in terms
of a LCBMS facility is called Physical Database Design. This
chapter considers both phases of the 3database design.

A. LOGICAL DATABASE LESIGN

Typically, datakase design is an iterative [frocess;
during €ach iteraticn, the goal is to get closer to an

19

acceptable design.

reviewed.

design will be revised.

does not mean the design will

.

work;

...........

find no major defects.

Thus a design will be developed and then
Defects in the design will be identified, and the
This process is repeated until the .
development team and users can

This

it simply means no one

can think of any reason why it will not work. Figure 3.1
illustrates the steps in a typical database design
Froject[Ref.4].
DESIGN
Lggical DB|-—->| Physical DB }
------- > Désign \ Design L e
\
/
Requairements 1} 4 \/ [1 jInplement
I i /N k20
l Preliminaryl,’ Detail
——————> Progranm —==> Program {mmmmm——
Cesign Jdesign
Figure 3.1 Database and Program Design Flow.

User requirements are studied and

is developed. Co

database processing rrograms is produced.

ncurrently,

a logical database design

the preliminary design of the

Next,

database and the preliminary program designs

develop the physical database design

design srecificat

ions.

Finally,

the logical

are used ¢o

and the detail progran

the isplementation phase of the project.

20

both of these are input to

1. Inputs to Logical Datatase Design

The inputs tc the logical database design are the
systen requirements and the project plan. Requirements are
determined by interviews with users, and then they are
approved ky both users and management. The project plan
describes the system environment, the development plan, and
constraints and 1limitations on the system design. Policy
statements can be used to develop the descriptions of the
logical database design.

2. OQutputs of the lLogical Database Design

A logical database design specifies the 1logical
format of the database. The records to be maintained, their
contents, and relationships among- these records are

specified.

To specify 1logical records, the designer must
specify the levels of the detail of the database model. If
the model is highly agqgregated and generalized, there will
te few records. If the model is detailed, there will be many
records. The designer must examine the requirements to
deterzine how coarse or how fine the database model should
be. The contents of these are specified during logical
design. Names of fields and their formats must be
deterzined. As the requirements are evaluated and the desig:n
progresses, constraints on data items will be identified.
These are limitations on the values that data can have.
These tyres of constraints are coamon. Field constraiats
limit the values that a given data item <can have.
Intrarecord constraints limit values between fields within a
given record. Also, record relationships are specified
during lcgical design. The designer studies the application
envircnment, examines the requirements, and identifies
necessary relationshigs. Finally, output of the 1logical

21

X

. .
...............................

=T

database design is the specification of the database
records, their contents, coanstraints, and relationships.

3. Stages 9f Logical Datakase Design

Many techniques have been developed for logical
database design. Scme technigues are completely intuitive
and others involve sgecific procedures for processing a data
dictionary. Others are between these extrenmes. The rajor
steps in the logical database design are as follows.

a. ITdentify Lata to be Stored

FPirst, the data dictionary is processed and data
that is to be stored is identified and segregated. This step
is necessary because the data Jictionary will contain the
description of the reports, screens, and input documents
that will not be part of the database.

t. Comsolidate and Clarify Data Names

The next step is to clarify the terms used for
the data. One task is to identify synonynms, to decide on
standaré names for synonyms, and the record aliases.
Synonyms are two or mcre names for the same data item. They
arise lLecause of tte terminology differences within the
organization. In this case the designer will need to select
a single , standard name for the data item in the logical
schema of the database. In some cases synonyms can not be
eliminated because the users want to @maintain their own
terminology.

Another task related to terminology is to ensure
that data items having the same name are truly the same. If
not, unique data item names must be developed. Consider the
data item DATE. This can be the date of shipment, the date
of emrloyee terminaticn, or the date of order. The designer
must determine if all of the uses of the DATE item are the
same. If not, new and unigue names must be determined.

22

R A e D e enan B At b Aui Mt ' Sastine Titad Weie “Siienrnl b M S dotis S0 aiete. e B eeoa s B gk gmoan ae
{\.._,_,'4__ . SIS N A I It A T S A i A S A S F Ao Sadi Bl il Al e~ S-Sl O I an EAMEIEA LS A ST g gt et -0 SUL e SRR e L

c. Develop the Logical Schema

The third step im the design process is to
develcp the logical schema by - defining records and
relationships. Records are defined by determining the data
items they will contain. The designers examine the data flow
diagrams and data dictiomary, apply intuition to the
business setting of the new systen, and determine that
certain records will need to exist. Af ter this
determination, some of the files may need to be combined and
some of them may not.

The second step in developing the logical schema
is to determine the relationships among database records. At
that [point, representation of the relationships by the
datatase system is nct important. 1Instead, the design tean
wants to model how the users see the relationships. We do
not need to comsider physical limitationms at this poiant.
Doing <=o makes the 1logical schema too complex and may
constrain our thinking so that we miss good design
aiterpatives. At that point, the design team must
discriminate between theoretical and useful relaticnshifps. A
theoretical relationship can exist 1logically, but never be
needed in practice. In general, if there is any question
regarding whether a relationship is useful or not, then the
relationship should be included in the logical schema. The
relationship always can te omitted later in the r[fhysical
design, whereas if the relationship were omitted during
logical design, it wculd be difficult to add later.

d. Define Processing

The next step is to define the processing cf the
database. The requirements are examined to determine how the
database should be manipulated to produce required results.
The processing definitions can be developed in several ways.

Cne pethod is to describe transactions and data to be

.....

modified. Another method is to develop structure charts of

the programs that will access the database. This process is
important because ccancurrent design of the programs and
database will improve the database design. It is also clear
that concurrent design improves the quality of progranms.

€. Design Review

The final stage of the logical database design
is a review. The 1logical schema and users' views are
examined in the 1light of the reguirements and prcgranm
descriptions. Every attempt is made to identify omissicns
and unworkable aspects of the design. Typically, a panel of
independent data prccessing people 1is convened for this
review. Documentation of the logical schema, users' views,
and program descripticns are examined by the panel, and oral
Fresentations are evaluated.

At the conclusion of the design review, the
panel rroduces a list of problems discovered and a
reconmendation regarding the next step to be taken.

B. PHYSICAL DATABASE DESIGN

The second stage of the database design is F[fphysical
design which is a stage of the transformation. The logical
schema is transformed into the particular data constructs
that are available with the DBMS to be used. As mentioned
refore, the inputs tc the physical database design are the
cutputs of the 1logical database design, the systen
requirenments, and the preliminary design of progranms.
khereas the logical desigr is DBMS independent, the physical
design is very much IEMS dependent. Detail specificaticn of
the datakase structure is prcduced. These specificaticns
will be used during database implementation to write scurce

24

- i A S ™ ‘9’_'7*.“"-

statemernts that define the database structure to the DEMS.
These statements will be compiled by the DBMS and the oltject
form cf the database structure will be stored withir the
database as shown in Figure 3.2 [Ref.4].

Logical Physical Physical

Datatase -—=> Database —-——=> Design
Design Design Specificaticns
1

Source -——>
=N

Figure 3.2 Physical Design Process.

DBMS -——> Obgect
Compiler DL

1. Physical Design Steps

Fractical experience has shown that neither the
starting point nor the order of steps can be definitely
stated for a given design problien. On the other hand, the
phkysical design phase can ke regarded as an iterative
process of initial design and requirement. Each step needs
to te performed several times, but succeeding analysis
should be done more guickly because the procedure is known
and the number of unchanging performance variables should
increase tetween iterations. Steps of physical design are as
follous.

25

..

.. \-‘\-
.

3 »
. R et e T T T s LS R A A A AN LSLSEN LA SN LN
PP I S SIS PO D A BRI PRSI IO IERE I AERE NN IR RERE A oy ot ._L'l\".gf . \'lf }u-“..}'.. AR R N

. a. Stored Record Format Design

Assuming that the logical record structure-has .
teen defined, this process addresses the problem of
formatting stored data by analysis of the characteristics of
data item types, distribution of their values, and their

.
§ Pt
2"
.I ‘l ‘l s 8

usage by various applications. Certain data items are cften
accessed nmore frequently than others, but each time a
rarticular piece of data is needed, the entire stored
record, and all stored records in a physical block as well,
must Lte accessed. ERecord partitioning defines an allocation
of individual data items to serarate physical devices of the
same or different tyres, or separate extents on the sanme
device, so that the tctal cost of accessing data for a given
set of user applications is minimized. Logically, data iteas
related to a single entity are still considered to be
- connected, and physically they can still be retrieved
;_ together when necessary.

2.

tn

ored Record Clustering

. Record clustering refers to the allocation of the
- records of different types into physical clusters to take
advantage of physical sequentiality whenever possible.
Associated with bcth record clustering and record
partitioning is the selection of physical block size. Blocks
in a given clustered extent are influenced somewhat by
stored record size, tut also by storage characteristics of
Ehysical devices. Choice of Frlock size may be sukject to

considerable revisiecn during an iterative design process.

(YY)

« Access Method Design

An access method provides storage and retrieval
capabilities for data stored on physical devices, usually
secondary storage. The two critical components of an access

vy

2€

method are storage structure and search mechanisa. Storage
structure defines the 1limits of possible access faths
through indexes and stored records, and search mechanisas
define which paths are to be taken for given applications.
Access method design is often defined in terms of primary
and secondary access path structure. The primary access
paths are associated with initial record 1loading, or
placement, and usually involve retrieval via the primary
key. Secondary access paths include interfile linkages and
alternate entry-point access to stored records via indexes
and secondary keys. The trade-off is that access time cam be
greatly reduced thrcugh secondary indexes, but at the
expense of increased storage space overhead and index
maintepnance.

A fourth stepr of physical design trade-offs among
integrity, security, and efficiency regquirements alsc should
be considered.

a. Program TCesign

The goal c¢f the physical data independence, if
met, produces application program modification due to
physical structure design decisions. Standard DBMS routines
should te used for all accessing, and query or urpdate
transaction optimization should be performed at the systen
software level. Then, application program design should te
completed wvhen the locgical database structure is known. When
rhysicai data 1independence is not guaranteed, program
modification is likely.

4. Physical Design Enviropment

The design ernvironment is basically tke saae for
both file design and physical database design. Major
categories of inputs and outputs for the physical design
phase are illustrated in Figure 3.3. The 1logical database

27

................. LA LR IR O I A PRIV S N UL R S S e S T L
e T T e At e e, A AT e e RN RN B RS S e g S .--_b O JhEL I TR IR)) U AR)
ata st N 2 v " S > '-R“).‘.r\..p\.a\.l.'.‘ PR LI A‘~_A-‘J_A\;\‘:I\‘~' A PRV VG PO

A
o
ol
)
-

X

O
-'.'-‘-.-'t

a"as

-

-
.

-

o
o
Gl

-
-

8

-

structure resulting from the inmplementation design phase

defines the framework froa which the physical designer N

vorks. If no catastrophic inefficiency is detected, it will
remain unchanged during physical design. In general, new
parameters will be considered, but previous tentative
decisions on access paths and record allocaticn are
finalized in this phase. New parameters are those specific
to DBMS and operating system access methods, those specitfic
to describe physical device capacity limitations and timing
characteristics, and all operational requirements which are
constraints imposed c¢n integrity, security, and response
time under static conditions and for dynamic growth
projecticns. During the design process, consideration of
efficiency issues can take place only the after varicus
constraints are satisfied and a feasible solution has been
cbtained.

S. Performance Measures

The determihation of performance measures for
rhysical design is most critical to the design process. They
affect not only the design choices, but also the techniques
employed to determine those choices.

Multiple performance pmeasures provide the designer
with flexibility <£for decision making for both the initial
design procedure and for fouture modifications. If we
describe the database systea performance in terms of cost we
should ccansider life cycle cost in terms of following itenms:

1. Planning cost

2. Design cost: rrograms, databases

3. Inplementation and testing cost:programs, databases
4. Operational cost:users, computer resources

5. Maintenance ccst:program errors, data integrity loss.

The major problem that the physical database
designer must address is how to minimize present and future

28

-
.

RS R e bk e S i T e

] IMPLEMENTATION DESIGN I
Logical database Advice on prograsm
Structure access rath construction
Aprlication
frequency
and | -—->
operational
sequence
Data -—>
volumes
DBES and 0.S ->Physical
constraints--> database
structure:
Hardware _ =-=> * Stored record
characteristic format
* Stored record
. lacesent
Operational--> * Access methods
requirements

Figure 3.3 Physical Design Environment.

operational costs in terms of user needs and comfuter
resources. The remainder of the life cycle phases' costs are
well defined for general software systems. Operaticnal costs
are unigue to physical design and can be categorized as
follovws:

1. (Cuery resronse tinme

2. Update transaction cost

3. Report generation cost

4. Reorganization frequency and cost
5. Main storage ccst

6. Secondary storage cost

29

Cla ™ i S S 3 B

‘s At e e

ud d o 3
Rt O N T P R SR NN A

..............

o o ¥ .v(. | A

Bach of these components is important to the

designer; typical considerations are shown in Figure 3.4.

CcPUy Communication
service delay
]] CPU queue , . ,
o i e A
lser Com@inica. T:T‘ - T - User
ipput delay output
€ntry . dlsplav
/0 serv1§$o gueue
5 <-‘ —rm<—
d.': —_]- Y D
.

Locking delay

i Figure 3.4 Cuery Response Time Components.

C. TCATAEASE HODELS

A database model 1is vocabulary for descriking the

structure and processing of

the database. There are two
reasons for studying database mwmodels. First, they are

% important database design tools. Database models can be used
for loth logical and physical database design - auch as

flowcharts or pseudccode are used for programs design.
Second, database mcdels are used to <categorize DEMS

products. Database models have two major components.

First,
a the data definition

language (DDL)is a vocabulary for

30

Fi'-‘..".\if-.‘~.'\'u‘5.‘:‘.‘1‘.'\.‘ﬁ.‘k-’»"‘t.‘."‘"ﬂ"-.c_‘---." ------- e T T T o S Par e s Wl o S

LIRS .
AL AR N R A S PO A SR M S
.....

defining the structure of a database. The DDL must include
termns for defining records, fields, keys, and relationshigs.
Also it should provide a facility for ‘expressing a variety
of user views. As a second component, data manigulation
language (DML) is a vccabulary for describing the fprocessing
of the database. Two types of DML exist: procedural and
nonprccedural DML. Facilities are needed to retrieve and
change data for both. Procedural DML is language for
describing actions to be performed on the database. It
obtains a desired result by specifying the operations to be
performed. Nonprocedural DML is language for descritking the
data that is wvanted without describing how to obtain it.

Figure 3.5 1illustrates six common and useful database
models. The models are arranged on a continuum. M¥odels on
the left-hand side cf this figure tend to be oriented to
humans and human meaning, whereas those on the right-hand
side are aore oriented toward machines and machine
specifications[Ref.4: . 215].

The primary purrcse of this thesis is to design and
implement an inventory database. For the logical design of
this database, the Semantic Data Model (SDM) will ke used
and fcr rhysical design a Relational Model will ke employed.
For this reason, SCM and the Relational model will be
discussed in detail in the following chapters.

31

............................
............

.o
;;;;;

....................................

- HUMAN (logical) <-- - - > MACHINE (physical)
R Semantic _ Entity . Relational CODASYL DBMS .
data model relationship data model DBTG Specific
{ S model (E-R) model model
L:_:
- ANSI/X3/SPARC

Pigure 3.5 Relaticnships of Six Imnportant Data Model.

N T T T T T Py A
a ' w P - 4 St e N e ey TR TE S bl Sad Sull Sk Ak S ‘Gl - Al Aol G etk MO aneh ol AANE A ai- e AT AT e ey ot |

4 ' IV. SEBANTIC DATA MODEL (SDM)

A. INTIRODUCTION

The Semantic Data Model was developed by M. HAMMER ani
D. MCILOED in 1981[Ref. 13 1. sDM is a high-level
semantics-tased database description and structuring
formalise for databases. This database model is designed to

capture more of the meaning of an application envircnment
than is rossible with contemporary database models. An SDM

\E e 2E amar s o aamamaae o

specification describes a datalkase in terms of the kinds of

entities that exist in the application environment, the
classifications and groupings of those entities, and the
structural interconnections among thenm. SDM provides a
collection of high-level modeling primitives to capture the
semantics of an application environment. SDM is designed to
enhance tie effectiveness and usability of database systeas.
An SDM database description can serve as a fcrmal
specification and documentation tool for a database.

Every database is a model of some real world system. The
contents of a database are intended to represent a snagshot
of the state of an arplication environment and each change
to the dJdatabase should reflect an event occuring in that
~ environment. It is appropriite that the structure of the
i database mirror the structure of the system that is teing
- modelled[Ref.13). A database whose organization is Lasel on
2 naturally occuring structures will be easier for a database

designer to coanstruct and modify than one that forces him to
translate the primitives of bhis problea domain intoc an
artificial specification construct. Similarly, a database
user shculd find it easier to understand and emplcy a
datatase if it can Le described to hia using concepts with
which he is already familiar.

33

.......................

Ccntemporary dataltase models provide the data structures
which dc not adequately support the design, evolution, and
use of complex databases. These models have significantly .
limited capabilities for exrressing the meaning of a
database. The semantics of a dJdatabase defined ir terms of
these mechanisms are not readily apparent from the schema
which is the global ctser view of a database; instead, the
semantics must be separately specified by the database
designer and comnsciously applied by the user.

B. THE LCESIGN OP SD2

SCM has been defined with a number of specifiic kinds of
uses in mind. First, SDM is meant to serve as a formal
specification mechanism for describing the meaning cf a
datalase; an SDM schema provides a precise documentation and
communication medium for database users. For a new user of a
complex database, it is easy to find out what icformation is
contained in the datatase. Second, SDM provides the basis
for a variety of high-level semantics-based user interfaces
to a database; these information facilities can be
constructed as front-ends to existing database @maragement
systems, or as the query language of a new DBMS. Such
interfaces improve the process of identifying and retrieving
relevant information from the database. Firally, SDM
provides a foundaticn for supporting the effective and
structured design of databases and database intensive
application systenms.

SCM has been designed to satisfy a number of criteria
that are not met by contemporary database models, but are
essential in an effective database descripticn and
structuring formalisa. They are as follows[Ref.13]:

"The constructs of Jatabase podel should provide for the
explicit specification of a large portion of the meanlng
of a database. Many contemporary database models (suc

34

as_the CODASYL DBTG network model and _the hierarchical
model) exhibit coapromises between the desire to provide
a user-oriented database organization and the_ need to
support efficient database storage_ and_ maripulation
facilities. By contrast, the relational datakase model
stresses _the seraration of user-level database
specifications and underlying implementation detail(data
independence). However, thée semantic expressiveness of
the hierarchical ncdel, network and relational models
are limited; they do not provide sufficient mechanisss.
to allcw a databaSe schema tc describe the meaning of a
database. They employ overly simple data structurfes to
nodel an afpllcgtlcn environpent. In so doing, _they
inevitably lose information about the database. his is
a conseguence of the fact that _their structures are
essentially all record-oriented constructs; the
appropriateness and adegquacy of the record construct for
exrressing database semanticCs is_ highly limited. It is
essential that the database model _provide a rich set of
features to allow_ the direct modelinj of application
environment semantics. A database modél must sugport a
relativest view of the meanlng of a datakase , and allow
the structure of a database, to support alternative ways
of locking at the same_ informatlon. K Flexibility 1s
essential in order to allow for multiple and _coegual
views of the data. In a loglcally redundant datalase
schema the_values, of some database components can be
alggrlihm;cally derived from others. Incorporating such
defived informaticr into a schema can simplify the
user's_ wmanipulation of a database by _ statically
embedding in the schema data values that would otherwise
have to be d¥nam1cally and repeagedl{ comguted, Finally,
an integrated schema _ explicitly escribes the
relationships and similarities betweeh multiple_ways of
viewing_ the same information. Conteaporary database
models dc, not adequately support relativism. Ir these
models, it 1is geperally necessary to impose a single
structural organization of the data, oane which
inevitably . carrcies along with it a particular
interpretation of the data‘'s meaning."

A database model must support the definition of schemata
that are based on alstract entities. Specifically, this
means that a database model nust facilitate the descrirtion
0of relevant entities in the application environment,
collections of such entities, relationships among entities,
and structural interconnecticns among tlke <collections.
Moreover, the entities themselves must be distinguished from
their syntactic identifiers; the user-level view of database
should be based on actual entities rather than on artificial
entity names. Allowing entities to represent themselves
makes it possible to directly reference an entity from a
related omne. In record-oriented database wmodels, it is

35

e o 4 0B 1,

. -,
SaT ey N

S W Bl il Jagl el Bk Sed Sl "had S A S Yt Srol JRNG auth e SN Sl auie M adin ~aliur- - M e e i e St Siake Santc dastis Jimi St St Sfic
[ERE N e M N N SO X . . .

necessary to cross reference between related entities by
means of their identifiers[Ref.11].

C. AS

PECIFICATION OF SDH

The following general principles are specified by Mcloed

and Hammer in 1981:

1.

1.

of enti
shows a

A database is to be viewed as collections of entities
that correspcnd to the actual objects in the
application environment.

The entities in a database are organized into classes
that are meaningful collections of entities.

The classes of a database are 1not generally
independent, but rather are 1logically related by
neans of interclass connections.

Database entities and classes have attributes that
describe their characteristics and relate them to
other database entities. An attribute value =may be
derived from cther values in the database.

There are several primitives for defining interclass
ccanections and derived attributes, corresponding to
the most common types of information redundancy
appearing in database applications. These facilities
integrate @wultiple ways of viewing the same ltasic
information, and provide building bhlocks for
describing ccmplex attributes and inrterclass
relationships.

Classes

As mentioned above, an SDM database is a collection
ties that are organized into classes. Figure 4.1
tfasic format c¢f an SDM entity class description. The

structure and organization of an SDM database is specified

36

by an SDM schena, which identifies the classes in the

database. Each class in an SDM schema has the following
features. ' |)

1. 1 class nampe identifies the class. Multigle
synonymous names are also permitted. ZEach class name
must be unique with respect to all class names used
in the schena.

2. 1The class has a collection of members: the entities
that constitute it. Each class in an SDM schema is a
hcmogeneous ccllection of one type of entity at an
arpropriate level of abstraction. The entities in a
class may correspond to various kinds of objects in
the applicaticn environment.

3 ‘f**.*'Trvv".-“lnclr-

3. An optionmal textual class description descrilkes the
meaning and ccntent of the class. A class description
should be used to describe the specific nature of
entities that constitute a <class and to indicate
their significance and role in the application
environment.

4. The class has a collection of attributes that
describes the members of that class or the class as a
whole. There are two types of attributes, classified
according to arplicability.

5. A member attrikute describes an aspect of each memker
of a class by logically connecting the member to one
or more related entities in the same «c¢r ctter
classes. A class attribute describes a property of a
class taken as whole.

6. The class is either a base <class or a nonbase class.
A base class is one that is defined independently of
all other classes in the database; it car be thought
of as modeling a primitive entity in the application
environment. Pase classes are mutually disjoint in
that every entity is a member of exactly cne base

..........
..........

class. A nonltase class is one that does not have
independent existence; rather, it is defined in terms
of one or more other classes. In SDH, classes are -
structurally related by means of interclass
connections. £Fach nonbase class has associated with
it an interclass connection. If class is base class,
it has an associated 1list of groups c¢f nmenmter
attributes; each of these groups serves as a logical
key to uniquely identify the members of a class. 1If
the class is Lase class, it is specified as either
containing duplicates or not containing duplicates.

a. Interclass Connections

There are two main types of interclass
connections in SDM: the first allows subclasses tc¢ be
defined and the second suppcrts grouping classes. The
subclass connection specifies that the meambers of nonbase
class (S) are of the same basic entity tyre as those in the
class to which it is related via interclass comnnection. This

type of interclass connection is used to define a subclass

of a given class. A subclass S of class C is a class that
d contains some, but not necessarily all, of the members cf C.
!i In SDM, a subclass S is defined by specifying a class C and

a predicate P on the member of C; S consists of just those
members of C that satisfy P. Several types of predicates are

permissiktle. A predicate on the member attributes of C can
be used to indicate which memkters of C are also members of
S. The predicate "wlkere specified"™ can be used to define S.
This means that S ccntains at all times only entities that

are members of C. It is also possible to define sukclass S

as an intersection of database classes (C1,C2).

The other type of interclass connection allows
for the definition of nonbase class, called a grouping class
(G), whose members are of a higher-order entity type than

38

ENTITY_CLASS_NAME
[descripticrh: ccecceccces]
[interclass connection: .ececceces]

T T

member attributes:
Attritute_nanme

value ClasSS: ccececceccan
[Mandatory]
[multivalued][no overlap in values]
[exhaust value class]
[not changeable]
[inverse: Attribute_name]
[match: Attribute_name of ENTITY_CLASS
on Attribute_name2]
[derivation: ceeeccecccceces]
[class attributes:
Attribute_name
[Description: .eec..]
value class: cecee
[derivation: ececeee.]]
[identifiers:
Attribute_namel+[Attribute_name2+[..]]]

Figure 4.1 Format of SDM Entity Class Description.

those in the nunderlying class (U). A grouping class is
second order, in the the sense that its members can
themselves be viewed as classes; in particular, they are
classes whose members are taken from U.

39

..........
......
P

2.

Attributes

Each class has an associated collection - of ..

attributes. Each attribute has the following features.

1.

An attribute name identifies the attribute. An
attribute name must be unique with respect to the set
of all attrikute names used in class, the class's
underlying base class, and all eventual subclasses of
that base class.

The attribute bas a value which is either an entity
in the database or a collection of such entities. The
value of an attribute is selected from its underlying
value class, which contains the permissible values of
the attribute.

The attribute is either a member attribute which
aprlies to each member of the class, and so has a
value for each member, or a class attribute which
applies to a classes a whole, and has only one value
for the class.

The attribute is specified as either single valued or
multivalued. The value of a single-valued attribate
is a member of the value class of the attribute. The
value of a multivalued attribute is a subclass of the
value class. Thus, a multivalued attribute itself
defines a class, that is, a collection of entities. A
multivalued member attribute can be specified as
nonoverlaping which means that the values of the
attribute for two different entities have no entities
in common; that is, each member of the value class of
the attribute is used at most once.

An attribute can be specified as wmandatory, which

means that a null value is not allowved for it.
An attribute can be specified as not changeable which
means that once set to a nonnull value, this value

cannot be altered except to correct an error.
pcintend

a. Member Attribute Interrelationships

(1) Inverse. The first way in which a pair
of member attributes can be related is by means of
inversion. Member attribute X1 of <class Y1 can be
specified as the inverse of member X2 of Y2 which means
that the value of X1 for a member M1 of Y1 consists of
those nembers of Y2 whose value of X2 is M1, The
inversion interattribute relationship is srecified
symmetrically in that both an attribute and its inverse
contain a descrigption of the inversion relationship. A
pair of inverse attributes establish a binary association
between the nmembers of the classes that the attrilutes
modify.

(2) Matching. The second way in which a
memrber attribute can be related to other informaticn in
the database is by matching the value of the attribute
with some member(s) of a specified class. The value of
match attribute A1 for the umember M1 of class C1 is
determined as follows.

1. A member 42 of some class C2 is found that has M1 as
its value of member attribute A2.

2. The value of member attribute A3 for M2 is used as
the value of A1 for M1.

If A1 is a multivalued attribute, then it
is permissible for each member of C1 to match the members of
C2; in this case, the collection of A3 values is the value
of attribute A1,

Matching permits the specificaticn of
tinary and higher degree associations, while inversion
rermits the binary associations. The combined use of

TrrTry
v e

DR RN

............

B R N T T T T e ————— DR et

inversion and matching allows an SDM schema to acccmmodate
relative viewpoints of an association.)

(3) Derivation. SDM provides the ability to ‘
define an attribute whose value is calculated frcm cther
information in the database. Such an attribute is called
derived, and the specification of its computation is its
associated derivation. The following rules are formulated by
HAMMER and McLOED, in order to allow the use of derivaticms
wvhile avoiding the danger of inconsistent attribute
specifications.

1. Every attribute may or may not have an inverse; if it
does, the inverse must be defined consistently with
tlke attribute.

2. Every nmember attribute A1 satisfies one of the
fcllowing cases:

1. A1 has exactly one derivation. In this case, the
value A1 is ccmpletely specified by the derivation.
The inverse of a1, if it exists, may not have a
derivation or matching specification.

2. A1 has exactly one matching specification. In this
case, the value of A1 is completely specified by its
relationships with an entity to which it is matched.
The inverse of A1, if it exists, may not have a
derivation.

3. A1 has eitker a matching specification or a
derivation. 1In this case, it may be that the inverse
of A1 has a matching specification or a derivation;
if so, then one of the above two rules applies.

D. ALVANTAGES OF SDA

1. SDM provides an effective Dbase for accommodating the
evclution of the content structure and use of a
database. Relativism, logical redundancy, and derived

A s Dot B age iaon inui b pun gue sy |

information support this natural evolution of
schenata.

2. SDM supports a basic methodology tlLat can guide the
Database Administrator (DBA) in the design process by
providing him with a set of natural design templates.
The DBA can approach the application in question with
the intent of identifying its classes, subclasses,
and so on. Then he can select representations for
these constructs.

3. It provides a facility for expressing meaning abcut
' the data in the database. During 1logical database
design, the designer needs such a facility to avoid
confusion and to document learning, design decisiomns,
{ and constraints, SDM provides better facilities for
b such documentation than other data models.

4. It allows data to be described inm context. Users see

data from different perspectives.

5. In SDhHN, constraints on operational data can be
defined. For exaaple, if a given item is not
changeable, SL® allows this fact to be stated.

6. An SDM schema for a database can serve as a readatkile
description of its contents, organized in terms that
a user 1is 1likely to be able to comprehend and
identify.

...................................

V. SEMANTIC DESIGN OF INVENTORY DATABASE

Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 describe the
logical schema of the'inventory database. There are five
records in the logical schenma. IDENTIFICATION record gives
all the information about a given item in the Air Fforce
inventory such as national stock number, Jocunment whick
provides technical information about the iten, total
quantity in the inventory, total amount used in the fast,
paxisum authorized quantity to keep in the inventory, who is
authorized to use, depot in which item is stocked, total
nunber of the item used by units, supplier name who sufgrlies
item, and amount purchased in the past. The second record is
UONIT which provides information about units in which an item
is used. It has several fields such as unit code, superior
command, national stcck number of itea which is used in the
anit, quantity on hand, used aaount, required amount,
location of unit and subordinate command. The third record
is the ORDER. This record describes the ordering process of
the iten. Supplier name, Nsn_no, date, amount and shirment
type are the member attributes of the ORDER. The fourth
record is DEPOT_STOCK_LEVEL which provides data about stock
status of the iten. Its fields are depo_id,
Nsn_no_registered, stock_amount, and supplier npame. The
SUPPLIER record provides data about suppliers vho supply the
items toc the Air Force. Supplier name, country, city and
address are the member attributes of the SUPPLIER.

In the logical schema of the inventory dataktase all
classes and their member attributes are informally defined
and special remarks are written. The purpose of this process
is tc present the semantic of the database which will let
the user easily understand the database. Figure 5.1 shows

4n

EERAA i A R AR A e G St i A aaarte B .-','_Y*-'-,-:*

the general structure of the records and the meamter
attrikute interrelaticnships. As mentioned in the previcus
chapter SDM provides three facilities for defining
relationships. All three facilities use the SDM
characteristic that entities can be contained within
entities. Derivaticn, inverse, and matchn facilities are
discussed in Chapter €.

In the IDENTIFICATION record there is a derivation
tetween Tot_used_in_rast and and Sum_of_used_Units. This
means that Tot_used_in_past is derived from
Sum_of-used_Units by summation as specified. Also there is
match between past_amcunt_purchased of IDENTIFICATION class
and amount of ORDER class. This means that when the crder
occured, the value of this nmember will nmove the
past_amount_purchased of IDENTIFICATION. or the class
level, a member of IDENTIFICATION is to be matched with a
member of ORDER. This is physically meaningful as well as
logically. When the logistic department ordered an item and
receives this order, this value should be moved tc the
past_amount_purchased in order to keep the correct data. For
this reason, the member in the IDENTIFICATION class must
match the value in the amount of the ORDEE. Otherwise there
can be an inconsistercy in the database.

There are taree inverse relationships in the 1logical
schena. First, between aut_to_use of IDENTIFICATICN class
and Nsn_no_use of UNIT class, secondly between
depot_of-registry of IDENTIFICATION class and
Nsn_no_registered of DEPOT_STOCK_LEVEL class, and third
Ietween superior_comm of UNIT class and subordinate_ccmm of
UNIT class. The logic is the same for all. The inverse
facility causes two entities to be contained with eaca
other. As [Ref.4] srecified, this is physically impossible,
so this idea may seem a bit strange. Consider the first
inverse. The attributes of IDENTIFICATION and UNIT are

v

v —— -
DOADE SUASFIASS \ DSOS) b

N AL S g
PR '}

45

‘‘‘‘‘‘‘‘‘‘‘

inverses of each other. In IDENTIFICATION, the attribute
aut_to_use has the value class UNIT and the inverse

attrikute Nsn_no_use. In the UNIT, the attribute Nsn_no_use .

has the value <class IDENTIFICATION and inverse attribute
aut_to_use. As menticned in the previous chapter, inverses
are always specified by such pairs. In the second inverse,
depot_of _registry c¢f IDENTIFICATIOR has the value class
DEPOT_STCCK_LEVEL and inverse attribute Nsn_no_registry;
Nsn_nc_registry of DEPOT_STOCK_LEVEL has the value class
IDENTIFICATION and inverse attribute depot_of_registry.

It is also possikle 1in the SDM to define ar inverse
relationship between two attributes which are in the same
class. This case occurrs in UNIT class. Superior_comm and
subordinate-comm are the inverse of each other. Both of them
have the same value class, UNIT. Here, the inverse
interattribute relationship is specified symmetrically.
Supericr_command ccegmands the subordinate_command and
subordinate_command is commanded by the superior_command.
Users can describe the data in a manner which fits their
logical vievw.

46

Ea Y -

“

-
-, .
L)

~

~

.

..~
At e

o e e e e
- . - - . - . - ‘T et . - - - e at et T a4t e - - - -«
A - B o CIL IO . o

" ; L e T e et e e e e e e T

\.\._-_-'_;’\-'_J'; Ladi i i i - o ooul -

ICENTIFICATION

'iSt-ESS&'Eun of . ,auth;to Depgt—of,past-anonnt coece
in_past] used_ulits use registry| purchased |....

1<-DERIVATION—--I l . I.___.__.."
INVIRSE
UONIT T '
Nsn_no_'Snperior subordigate_‘.........
, useé command™| coaman others
T__INVERSE___T t
INVERSE _
DEPOT_STOCK_LEVEL
dero-ID | Stock supp_ len.no_
amount nameé |registry
MATCH

CEFDEE

lSup;_namelﬂsn_nolDatelShip_typellmount,

SUPPIIER

' Supp-name | Country | Address | City |

Figure 5.1 Interclass Relationships of SDM Design.

ICENTIFICATION

Description : Overall informatiopn about_a given
item which is in the Air ForcCe
inventory

Meaber attributes:

Nsn_no] .
d€scription:National stock number of a given

itenm.
value class:NATIONAL_STOCK_NUMBER
mandatory
not chamnceable

Document

descripticn:Technical Order[TO] for a given
item. It specifies technical
information about item(s).

value class:DOCUMENTATION

mandatory

Tot_Qty_on_Band

description:It specifies quantit¥ which is
currently available Tor a given

item in the Air Force (AF) "logistics

sgstem.
value class:QUANTITY_ON_HAND
mandatory

Tot_Used_In_Past

descripticn:Total amount which is used in the

ast.
value c;ass:gOTAL USED_IN_PAST
derivation :Sum of used_UWITS

Max_Auth_Qty_On_Hand
Description:Maximum number of items that AF

loiistlcs department authorized to
hold

not more than this capacitye.
value class:MAX_SUTH_CAPACITY
mandatory

Auth_to_use

Descripticn:It specifies the unit that are
authorized to use given iten.

value class:UNIT .

mandatory

multivalued

inverse :Nsn_No_Use

Figure 5.2 Identification Entity Class.

48

Depot_of_Registry . .
Descripticn:Specifies the depot in which item

is registered.
valye class:DEPOT_STOCK_LEVEL
mandatory
multivaliued .
inverse :Nsn_No_Registered
Supplier_Nanme
Descripticn:Supplier name that supplies the
1ten(s£.
value class:SUPPLIER_NAMES
sandatory
multivalued

Fast_Amount_Purchased
Description:It sgecifigs an amount that is
Burc ased in the past.
value class:PAST_AMOUNT_ PURCHASED
match :Amoulit of ORDER
Sum_of_Used_UNITS

value class:TOTAL_USED_IN_PAST
mandatory -

identifier:
Nsn_No + Locument + Depot_of_registry

Pigure 5.3 (cont'd.).

49

......................
.................................

...............

o

...................

'

Ll i

......

....................

UNIT ‘ . _
Description: A1l units in the Air Force that are use
the item which are in the AF inventory.

member attributes:
Unit_Code

valuge class: UNIT
mandatory
not changeable

Superior_Cosnsx

descripticn:The unit which has command and
control of this unit.

value class:UNIT

mandatory .

inverse sSubordinate_Conn

Nsn_NO_Use
description:National stock number that are used

in the unitfsh.
value class:IDENTIFICATIO

inverse sAuth_to_Use
Qty_On_Hand

value class:QUANTITY_ON_HAND
Used_Anount

descripticn:Number of items that are previously
used in the_ unit.
value class:TOTAL_USED_IN_PAST
Reg_Amount }
descripticn:Specified number of items are
required in the unit for operational
readiness.
value class:REQUIRED_AMOUNT_IN_GUNIT
Location
descripticn:Location of unit in geographical
coordinate system.
value class:LOCATIONS
Sukordinate_Coma

value class:UNIT
inverse :Superior_Conan

identifier:
Unit_Code + Nsn-No_Use

Pigure S.4 Unit Entity Class.

50

.......

w, LW

...

Bl dre B A RSt " T T T —r— Y

OFDEE _]
Description:Dependent up on the requests from the
upit and depot, all ordered items by
Derartment of Loglstlcs of AT.
memker attributes

Supp_Name

description:Supplier name(s) that supplies the
1tem(s£.

value class: SOPPLIER_NAMES
mandatory
not changeable

¥sn_No
descripticn: National stock number of item that

is ordered to suggller(s).

value class:NATIONAL_STOCK_NUMBER
nandatory

Date
descripticn:Date of orde
value Class:DATES :
mandatory

Amount

descripticn:ordered amount
value class:ORDERED_AMOUNT

Shipment_tyre

value class:SHIPMENT
multivalued

for a given item.

identifier:
Nsn_No

Figure 5.5 Order Entity Class.

51

______________ e e e e g e I TS B T T N TN G
IO N I AN AN 5 e larlals ettt VL) WCMION : o

DEPOT_STOCK_LEVEL

description:Picvides information about stock level
of a given item in the depot.

menber attributes
Depo_ID

value class:DEPOT_ID
mandatory
not changeable

Nsn_No_Register

descripticn:Different groups of items are
registered into different defots
suCch as_coamunication items and
wveapon items are stored into
different depots. This attribute
specifies registered iter into

degot.
value class: IDENTIFICATION
mandatory .
inverse :Depot_cf_Registry
Stock_Amount '
descripticn:Number of items that are currently
available as stock in the derpot.
value class:;STOCK_STATUS

Supplier_name
value Class:SUPPLIER_NAME

identifier:

- Ns_No_Register + TCepo_ID

Figure 5.6 order Entity Class.

B RS A S N e Panlnan s S el Sl Se (e 4

SUPFIIER

Supp_Nane

Ccuntry

mandatory
multivalued

City
description:
value class:
multivalvued

Address

identifier
Supp_Name

description:All su%pliérs that are currently suprly
items to th

memker attributes:
value class:

descripticn:
value class:

C

descripticn:Addgess of supplier that supplies
art.
value class:RDDRESSES

e AF

SUPPLIER_NAME

Countr¥ of supflier(s)_that is/are
currently supply (ies) iten (s).
COUNTRY

Supplier location as city.
IP5ES ¥

Pigure 5.7

Supplier Entity Class.

NATIONAL STOCK NUMEER
interclass Tonnection:sukclass of STRING vhere it has

13 _numbers which are divided into four(4) grours:
3020-00-001-0072

Y

~ DOCUMENTIATION)
“ interclass connection:subclass of STRING where speci-
> fied formate.

QUANTITY_ON_HAND
interclasSs connection:subclass of STRING where format
is positive 1ntegers.

TOTAL _USED_IN_PAST
. interclassTconnection:subclass of STRING where format
is positive integers.

MAX_AUTHORIZED_CAPACITY
Interclass Connection:subclass of STRING where format
positive integers.

AUTHORIZED TO USE
interclass connection:subclass of STRING where format
is five (5) characters

DEFQ OF REGISTRY
. inteTclass connection:subclass of STRING where format
- is five (5) characters

SUEPLIER NAMNE
interclass connection:subclass of STRING where format
is two(2) characters

PAST_AMCUNT_PURCHASED
ifiterclaSs connection:subclass of STRING where format
is positive integers.

N UNIT
- int%;céass connection:subclass of STRING where speci-
- ied.

USED_AMOUNT_IN_UNIT
iNiterclaSs Connection:subclass of STRING where format
is positive integers.

RECUEST_AMOUNT_IN_UNIT
inteTIclass Conliection:subclass of STRING where format
is positive 1ntegers.

LCCATICN OF UNIT .
1nt%rcéass connection: subclass of STRING where speci-
ied.

Pigure 5.8 Domain of Attributes.

........................

e i TS N T L Ty e

Dltfgtgrc%ass connection:subclass of STRING where format
ﬁgnih : number where =>1 and <=12
“:x ¢ numkter vhere integer and =>1 and <=31
year numker where 1nteger and -;1292 ?ngh§;2000

where éolf (month=4

and if (month=2 then day<=29)

gerlng y year,month,day.

ORLER_AMOUNT
interclass connection:subclass
is positive 1ntegers.

SHIENENT
lntgtc%ass connection:subclass
ied.

DEEQT_ID .
1nf%;céass connection: subclass
ied.

STCCK_STATUS

of

of

of

STRING where

STRING where

STRING where

format

speci-

speci-

1nt%;cﬁass connection:subclass of STRING where speci-
ied.
COUNTRY . .
1nt%rcéass connection:subclass of STRING where speci-
ied.
ADLRESSES .
1ntgrc%ass connection:subclass of STRING where speci-
jied.
CITY .
1nt%;c%ass connection:subclass of STRING where speci-
ied.
Figure 5.9 (cont*d).
5%

Ol Sl ol et adh 3 4 Gd 9

.....................

V. BELATIOBAL HODEL

The relational mcdel was introduced to the database
compunity by E.F. Codd (1970). This innovation stressed the
independence of the relational representation from physical
computer implementation such as ordering on rhysical
devices, indexing, and using physical access paths. The
model thus formalized the separation of the user view of
data frcm its eventual implementation; it was the first
model to do so. In addition, Codd proposed «criteria for
logically structuring relational databases and
implementation-independent 1languages to operate on those
databases. There have been many further developments in its
theory and application. Relational design procedures have
also received considerable attention in the last few years.
P.A. Bernstein (1976) had proposed synthesizing relatioas
from functional dependencies, and Fagin's work in 1977 then
drev attention to the decomposition approach to design.

A. BASIC STRUCTURE OF THE RELATIONAL MODEL

Usefulness of the relational model in data analysis can
te measured by considering several objectives. To meet the
first okjective-identify user requirements- the model must
serve as a communication medium between the users and the
computer rersonnel, giving them an interface that can be
clearly and unambigucusly understood. The independence of
this interface from computer implementation is of the utmost
importance. The relational model uses tables to provide this
interface. The tabular representation of relations satisfies
the first objective of data analysis. The second objective,
the conversion to physical implementation, is also satisfied

by the relational model. One obvious approach is to directly

isplement the relaticnal model on a machine. To do this a
DBMS that supports the relational model must be availablé on
the ccmputer system. A particular set of relations can then
be directly declared by wusing the defimnitional 1language
provided by the system. Direct conversion was not feasible
when the relational model was first proposed by Codd in
1971, but today direct conversion from a relational
specification to rhysical implementation is becoming
increasingly possible. The third objective deals with the
following criteria fcr logical data structures:

1. Each fact should be stored once in the database

2. 7The database should be consistent following database

ofperation
3. The database should be resilient to change.

The first critericn not only removes storage redundancy
but also improves database consistency. If the same fact is
stored twice, it is possible that during execution of a
complex operation, cnly one of the copy will be updated.
The datatase then becomes inconsistent. In an inconsistent
datakase, it is possible to get different database outputs
for the same fact, thus creating a reliability problem. The
second criterion requires that the database be consistent at
all times. The third criterion deals with a different
aspect. It is a consequence of the environment in which the
datatase exists. This environment is usually in a state of
constant change; ccnsequently, the database wmust be
continually redesigned to meet continually changing user
requirements.

1. Jerminology

Informally, a database is made up of any number of

relations. A relation is simply a two-dimensional talkle that

WAENICAC AL I S PR SIS N M P A S Al s b A MMSSI RS ANCE A AR GCR Db AL Al bt el Al fad fadh fad A AdE AV KN Y

has several properties. First, the entries in the talles are
single-valued; neither repeating groups nor arrays are
alloved. Relations are flat files. Second, the entries in N
any ccluan are all of the same kind. Columns of a relation
are referred to as attributes. Finally, no two rows in the
table are identical in all attribute values and the order of
the rows is insignificant. Figure 6.1 shows an example of a

relation.
IDENTIFICATION
NIIN FICHE-NO| FRAME-NO|ITEN-NO{-->Attribute
3 2335-00-679-0033 001 L10 05 -=->Tuple
? 2835-00-682-5360 001 A10 05 -->Tuple
F 2345-00-680-9876 002 l B77 08 -->Tugle
-

Figure 6.1 A Sample Relation Fora.

Each row of the relation is known as a tuple. If the
relation has n columns, then each row is referred to as an
n-tuple. Also, a relation that has n columns or 1
attributes is said to be of degree n. Each attribute has a
domain, which is a set of values that the attribute can
have. Fcr example, in figure 6.1 the domain of the item-no
is all fositive integers 1less than 100. Sometimes it is
possible that the domains of two attributes can be the sanme.
‘ To differentiate between attributes that have the same
N domain, each is a given a wunique attribute name. The
generalized format:

--------------------- - . . B "'-‘:'d'-‘iviw

RELATICN NAME (attribute name, attribute name,....)

IDENIIFICATION (NIIN, FICHE-NO, FRAME-NO, ITEM-NO),
is called the relation structure. If we add constraints
on allovable data values to the relation structure, ve
then have a relational schema [ref. 6].

a. FKeys of Relatioms

. The key is the attribute or set of attritutes
that uniquely identify tuples in a relation. A relation key
is formally defined as a set of one or more relation
attritutes concatenated so that the following three
properties hold for all time and for any instance of the
relation:

1. Unigueness: The set of attributes takes on a unigjue
value in the relation for each tuple.

2. Nonredundancy: If an attribute is removed frcm the
set of attrikutes,the remaining attributes do not
fossess the unique property.

3. Vvalidity: No attribute in the key may be null.

It is possible for relations to have more than
¥ one relation key; each key is made up of a different set of
' attributes. The relation key is often called the candidate
| key. If a candidate key is the only key of the relation, it
is generally referred to as primary key. When an attribute

in one relation is a key of another relation, the attribute

is called a foreign key. Foreign keys are important when
defining constraints across relations. A prime attribute is
an attribute that is part of at least one candidate key. A
nonprime attribute is not part of any candidate key.

2. Consistency

The goal of relational design is to choose the
relations that preserve consistency following database

59

S St g At S (e G A N M e S A A A Al S AN A A AR T AN AL AN AR ACSL R AR RO P N A

operaticns and that store each fact at most once in the
datalase. Relations that do this are said to be in nornmal
forms. In nonnormal relationms, anomalies can arise after .
datakase tuple operation. The three tuple database
cperaticns are as follows:

" 1. ADD TUPLE (relation name, <attribute name>).
! This operation adds a new tuple to a relation. The attribute
; values of the tuple are given as part of the operation. PFor
i example:

‘ add tugle (identification,<2835-00-678-4520,001,B801,05>)
f wvould add a new row to the relation in Figure 6.1. An

: add-tuple operation will not be allowed if it duplicates a
g relation key.
E 2. DELETE TUFLE (relation name,<attritute valued).
f This operation deletes a tuple from a relation. For example:
E delete tuple (IDENTIFICATION,<2335-00-679-0033,001,L10,05>)
' would delete the first row from the IDENTIFICATION relation.
3. UPDATE TUPLE (relation name,<old attribute
values>, <new attribute values>). This operation changes the

tuple in the relation. For example:

update tuple (IDENTIFICATION,<2835-00-682-5360,001,A01,05> ,
<2835-00-682-5360,002,L11,06>) This would change FICHE-NO,
FRAME-NO, and ITEM-NO for NIIN value egual 2835-00-682-5360.
X Any update will not te allowed if it duplicates a relation
key.
In a normal relational structure no anomalies arise
after tle applicaticn of any one of the three preceding
operations with any set of attributes values.

Functional dependency [FD] is term derived from

mathematical theory; it concerns the dependency of values of

60

one attribute or set of attributes on those of ancther
attribute or set c¢f attributes. Formally, a set of
attributes X is functionally dependent on a set of
attritutes Y if a given set of values for each attribute in
Y deternmines a unique value for the set of attributes in X.
The notation Y-->X is often used to denote that X is
functionally dependent on Y. Sometimes Y 1is called a
determinant of the FD Y-->X. 1In the simplest case, bcth X
and Y are made up of cne attribute as shown in Figure 6.2.

NIIN —————————)> FICHE-NO

FPigure 6.2 Functional Dependency Diagraa.

It is also possible to have two attributes that are
functionally dependent on each other. It is important to
realize that functicnal dependency is a property of the
information that is represented by relations. That is,
functional dependency is not determined by the use of
attritutes in the relations or by the current contents of a
relation.

Given a functional dependency Y-=->X (wvhere X and Y
are Loth sets of attributes), a unique value for each
attritute in X is determined only when the values fcr Y
attrikutes are known. However, it is possible that values of
X can Le uniguely determined by only a subset of the
attritutes of Y. The term full functional dependency is used
to indicate the minimum set of attributes in a determinant

61

of an FD. Formally a set of attributes X are fully
functionally dependent on a set of attributes Y if

1. X is functionally dependent on Y.

2. X is not functionally dependent on any subset of Y.
. like functional dependency, full furnctioral
dependency is a prcperty of the information that is
represented by the relation.

4. Normal Foras

When determining whether a particular relation is in
normal form, we should examine the FDs lLetween the
attritutes in the relation. In the notation first proposed
by C. Beeri and co-wcrkers (1978), the relation is defined
as made up of two ccmponents: the attributes and the FDs
between them. K1 ((X,Y,2}, { X-->Y., X-->Z }) The first
component of the relations is the attributes, and seccnd

component is the FDs. For exanmgle,

IDENTIFICATION = | {NIIN, FICHE~-NO,FRAME-NO, ITEM-NO} ¢
{NIIN-->FICHE-NO , NIIN-->FRAME-NO , NIIN-~->ITEM-NO})

The functional dependencies between attributes in a relation
are obviocusly important when determining the relation's key.

There are a number of normal forams as shown 1in
Figure 6.3. Relations are in first normal form (INF) if all
domains are simple. 1In other words all legitimate relations
are in 1NF.

A relation is normalized by replacing the nonsinmgle
domains with simple domains. A relation R is in second
normal form (2NF) 1if every nonprime attribute of R is fully
functionally dependent on each relation key.

A relation R is in third normal form if it has the
follcwing properties:

1. The relation R is in second normal form, and

62

...........................

Universe of relations (normalized and unnoreralized)

IN? relation (normalized relation)

2NF relation

3NF relation

BCNF relation

UNF relation

""'SNP-'fﬁIEfIEE"""’I
] * LK/NF] i

...................
.........

Figure 6.3 Normal Foras.

2. The nonprime attributes are mutually independent;

that is, it has no tramsitive dependency.

In other words, a relation R is in third ncrmal form
(3NF) if and only if it is in 2NF and every ronrrinme
attritute is nontransitively dependent on the primary key.
For example, suppose

63

.........

............

ey yogwpy -
RAREAFARMOSE O

a4 ’
LAAPY()Rehritora R

o

LEnE e 4
RN

CIL N et T o

AR A N IR B

R= ({A,B,C,D}, {AB—D>C, C-=>D}) AB is primary key.
AB~->C C-=>D by tramsitivity AB~->D hence relation R is
not in 3NF, because, there is a transitivity tetween .
nonprime attributes.

In the definition of the third normal form vwe
assumed that the 1relation had only one relation key.
Problens arise with the definition when applied to relaticnms
that have more thanm omne relation key. The original
definiticn of 3NF wvas modified by a stronger defirnition
which was proposed by Boyce and Codd. It is known as BC¥NF. A
relation R is in BCNF (Boyce/Codd Normal Form) if and ornly
if every determinant is candidate key. For example, suffose

R= ({A,B,D,E} , {(A-—>BED , D-->A}) Here relation R will
be in BCNF if both A and D are keys of R. Fcrmaily,
multivalued dependency is defined as follows; in relation
R(X,Y,2), X === > Y if each X value is associated with a set
of Y values in a way that does not dependent on Z values.

A relation is in 4NF if it is in BCNF and has no
multivalued dependencies. This definition mears that if a
relation has multivalued dependency and is in 4NF, then the
pultivalued dependencies have a single value. In others
words, all independent attributes have single value.

A relation is in SNF if and only if every Jjoin
dependency in a relation R is implied by the candidate keys
of relation R.

A relation is in Domain-Key normal form (DK/NF) if
every constraint on the relation is a logical consequence of
the definitiorn of the keys and domains. A constraint is any
rule on the static value of the attributes that is precise
enough that we can evaluate whether or not it is true.
Examples of the constraints are inter-relation constraints,
functional dependencies, multivalued dependencies, and join
dependencies. DK/NF means that if we can define keys arnd

N S T AR Rt St Sl audh S Shadh T Sad Jani bl e ol A il aee v aed avil ot on

AP IS L ay s g Sa s e

domains in such a way that all constraints will be

satisfied, then acdification anomalies are impossible.
Unfortunately, there is no known way to convert a relation
to DK/NF automatically, nor it is even known which relations
can be converted to CR/NF. In spite of this, DK/NF can be
exceedingly useful for practical database design.

B. ADVARTAGES AND DISADVANTAGES OF RELATIONAL NMODELS

1. dvantages
a. Simplicity

The end wuser is presented with a simple data
model. User requests are formulated in terms of the
information content and do not reflect any complexities due
to system-oriented aspects. A relational data model is what
the ©user sees, it is not necessarily what will be
inmplemented physically]Ref.11].

b. Nonprocedural Request

Because there is no positional degendency
tetween the relations, regquests do not have to reflect any
preferred structure and therefore can be nonprocedural.

c. Data Inderendence

This should be one of the major objectives of
any datakase management system. The relational data model
removes the details of the storage structure and access
strategy firom the wuser interface. The relational model
provides a relatively higher degree of data independence
than do network and hierarchical models. However, the design
of the relations must be complete and accurate for making
use of this property of the relational model.

65

d. Theoretical Foundation

The relational data wmodel is based on -the .
well-developed mathematical theory of relations. The
rigorous method of designing a database using normalization
gives this model a so0lid foundation. This kind of foundation
does not exist for the other two models.

2. Disadvantages

A disadvantage sometimes cited for a relatiomnal
model is machine performance. With present-day hardware the
JOIN operation is 1likely to take substantial machine time.
It is feasible with small relations, but some commercial
files are hundreds of wmillioms of bytes long. In
understanding the performance issue, it is very important to
remenber that the relations and the operations on ther such
as the JOIN will never occur physically. Instead, equivalent
results will be produced by means of fpointer structures or
indices. It appears tcday that technological improvements in
rroviding faster and wmore reliabie hardware may solve this
Froblen.

66

......................................
............................
..

...............

o v AR ol RS aadr a el o R e
EECAMACR AN N R N Al ated A i Y IS A At e g N N T N T S T R T T T TR ST T ey

VII. REIATIONAL DATABASE DESIGN

The relational model is attractive in the database
design because it rrovides formal criteria for 1logical
structure, namely, normal form relations. The probles, then,
is to choose a design procedure to produce normal form
relations. Two different approaches have been proposed:

1. Decomposition rrocedures: These commence with a set
cf one or more relations and decompose ncnncrrmal
relations in this set into normal foras.

2. Synthesis procedures: These commence with a set of
functional dJderendencies and use them to construct
ncrmal form relatioms.

Most designs <ccemence with an information gathering

A phase in which a set of data elements and FDs between thenm
are identified. The information is then wused to [produce
t normal relatioas. On the other hand, one could conceive of a

procedure where all the data attributes are considered to
form cne relation, which is then decomposed in suktsequent
design steps.

A. RELATIONAL DESIGN CRITERIA

Beeri and co-workers (1978) have identified three

relational design criteria:
1. SEPARATION: Tle origimnal specifications are separated
' into relations that satisfy certain condi’ iors.
2. REPRESENTATION: The final structure must correctly
represent the original specifications.
3. REDUNDANCY: The final structure must not contain any
redundant information.

The separation «criteria is that the database must be
separated into a number of normal relations. The other two
criteria are relatively gemeral. 1In spécific teras each-can
be applied to attributes, PDs, or data. Here, criteria will
be defined more sgecifically. For exaaple, given the
relation R = ({A,B,C} , {A--> B, A --> (C}).

Here R conmprises three attributes,A,B, and C. The
functional dependency between these attributes are A-->B and
A-->C. The notation used to describe the input and output of
the design process is Sin and Sout. Sin and Sout are sets of
relaticns. Here Sin is the input to the design process and
Sout is the output of the desigmn process.

1. Representaticp Criteria

One goal of any design process is to produce an

. output design, Sout, to accurately represent Sin. All the
- relations in Sout must satisfy the conditions for normal
S form. Beeri and coc-workers (1978) have defined three

E representation criteria for the representation of Sin by
8 Sout:

i 1. REP1: The relations Sout contain the same attritutes
Eﬁ as Sin.

2. REP2: The relations Sout contain the saae attrikutes
and the same FDs as Sin.

3. REP3: The relations in Soat contain the same
attributes and the same data as Sin.

REP1 requires all the attributes in Sin tc also
appear in the relaticns in Sout. But it does not consider
any dependencies between the attributes. According to REP2
Sin will contain a set of attributes and a set of functional
" dependencies. Sout will also contain a set of attributes and
:_ a set of FDs. Representation REP2 requires that each FD in
5 Sin be e€ither:

1. Ccntained as an FD in one of the relations in Sout or

6€&

A an o 4

2. Derived from the FDs in the relations in Sout, using

the FD inference rules. For example in Figure 7.1,
sin = ({A,8,C} , {4 —>B , C =-=-> B }) and ' -
Sout (R2,R3) vhere R2=({A,B}, {A-->B}) and

R3=({B,C}, {C-->B}).
Thus R2 and R3 constitute the decomposition by

projection of Sin. Each of the functiocnal dependencies in
Sin is ccntained in Sout; hence we can say that Sout is a
REP2 representation of Sin. It is interesting that Figure
7.2 shows a decomposition that is not a REP2 representation
cf Sin[Ref.10].

Figure 7.1 includes a relation R1 that is decomfosed

Ty

ty projection into twc relatioms, R2 and R3, in Sout. Note
that R2 and R3 do not contain the same information as Sin
since different respcnses are obtained to the same guestion
applied to Sin and Sout. Bence Sout is not an REP3
representation of Sin. Because if we ask: To what c is a1l
related? 1In Sin the answer is {c1}; in Sout the anmnsver is
{c1,c2}. This join in Figure 7.1, contaims additional tuples
to those of Sin and is sometimes known as a CROSS JCIN. Note
that in Figure 7.2 the two relations Y1 and Y2 in Sin are an
REP3 representation of Sin because their join contains
exactly the same tuple as in the original relation, R.

2. lossless Deccmposition

Formally, a lossless decomposition can be descrited
as follows. The deccrposition of a relation R(X,Y,2Z) into
relations R1 and R2 is defined by two projections: R1 =
projection of R over X,Y and R2 = projection of R over X,Z
where X is the set of ccmmorn attribures in R1 and R2. The
decomfposition is lossless if PR = join of K1 and R2 over X.
The decomposition is lossly if R is a subset of the Join of
R1 and R2 over X.

- * il ™4
B PN R Wy e

Sout <

A-->B
C-->8B

“a1| b1 c1
a3{ b1| c2

- e e m——
SRSE===

“at] b1 c2

a2| b2| c3
a2} b2] cu
ald}j b2| c3

Pi

gure 7.1

Decomposition.

70

CRa Y

T T

Sin <

Sout

Y2 --> X
X -->X
X=-=>2

1

X-->Y
X-=>2

1__ 3} B
x1 y1

- — o c— ——
_—=—====

%;-."‘ OSSN
oy -

. - .
........

--~==> JOIN <--—-'

IEEENER]

x1} yt} z1

x2) y2| z2
x3| y2| =

XF|TY117Z2

Figure 7.2 Decomposition.

71
T L T e T e e T e T T D L e e

.......

P ANl

CCNDITIONS: The decomposition of R(X,Y,2) in R1(X,Y)
and R2(X,2) is lossless if for attribute X, common to both
R1 and R2, either X-->Y or X-->2Z. Thus in figure 7.1 the
commpon attribute of E2 and R3 is B, but either B-->A or
B-->C is true, hence decomposition is lossly. In Figure 7.2
the ccmmon attribute of Y! and Y2 is X, both X-->Y and X-->2
is true, hence decomposition is lossless.

3. BRedundapcy Crjteria

Redundancy can be defined in various ways. One set
of redundancy criteria is as follows [Ref.7]:

1. RED1 : A relation im Sout is redundant if its
attributes are contained in the other relations in
Scut.

2. RED2 : A relation in Sout is redundant if its FDs are
the same or can be derived from the FDs in the cther
relations in Scut.

3. RED3 : A relation in Sout is redundant if its content
can be derived from the contents of other relaticnms
in Sout.

RED1 is not a powerful criterion, because during
separaticn it is cften necessary to create separate
relations that represent FDs tLetween attributes, which may
appear in other relations. RED2 and RED3 can be quite useful
criteria. Any design algorithms should in particular avoid
RED3 because it would keep the same data in more thanp omne
relation. Such relations could all be in noramal form and no
anomalies would occur in relations. But, interrelation
anomalies would arise if the same fact were updated in one
relation but not the other. RED2 would cause the same
Frotlen.

72

Wy e R R R R Y I ———5 o i B e N

..............

B. RELATICNAL DESIGE PROCEDURER

It is interesting to note that in Pigure 7.1 the design
Sout is on REP2 but not on REP3 répresentation of Sin
whereas in Figure 7.2 the design Sout is on REP3 but not on
REP2 representation of Sin. This situation creates prctlems
of relational research; namely, to find a design procedure
that yields am Sout that is both on REP2 and REP3
representation of Sin. Similarly, design procedures should
aim to reduce redundancy, but here again different design
rrocedures can result in either RED2 or RED3 representations
of Sin [Eef.8)].

There are two classes of algorithms: decompositicn and
synthesis. Decomposition algorithmas ccmmence with one
relation and successively dJdecompose it into normal form
relations. The concepts of 3NF and BCNF are not sufficient
for deccmposition algorithms, so the ideas of multivalued
dependency and a 4NF have to be introduced.

Synthesis algorithms use FDs to produce normal form
relations. For these algorithms to be successful it is
necessary to ensure that: '

1. FDs in Sin correctly rerresent user semantics,

2. Algorithms can be devised to produce relations in
Sout that correctly and nonredundantly represent Sin.

if synthesis algorithms are to be effective, their ingut
must descrilte thcse ncnfunctional relationships that cannot
e expressed as FDs between attributes. Perhaps the
best-known synthesis algorithm is the one devised by
Bernstein. It is premised on grouping all FDs with the same
determinant and constructing a relation for each such group.

L R e e e R L AL L T N T LR TR i s I AU i Ry TR S et S A O A i g

C. PHYSICAL DESIGE OF INVENTORY DATABASE

1. Mappinj from SDM into Belational Model

The logical design of the inventory database cannot
be used as the physical design of a relational database. For
example, in the IDENTIFICATION and ONIT records, there are
some nultivalued attributes which are not allowed in a
relation. The relations must be transformed so that each
attribute has only one value [fer tuple. Also, the logical
design in Chapter 5 allows tuples to be contained in cther
tuples which cannot Le done physically. Relations 1in the
logical design have to be redefined to eliminate this
Froblen.

Consider the relations UNIT and IDENTIFICATICN.
Actually, Auth_to_use of IDENTIFICATION is a collection of
tuples representing UNIT which are using a specified item.
We can eliminate Auth_to_use of IDENTIFICATION, Lecause,
whenever we need this information we can get it by use of
the Data Manipulation lLanguage (DML). It is possible to

construct contained tuples by DML joins. In this case,
Auth_to_use will be constructed and not stored.

The process just described can be used to transform
the logical schema into a relational schema. All contained
tuples have been reglaced using the same logic. Auth_tc_use
of IDENTIFICATION is deleted and interrelation constraiats
are added. Similarly, Depot_of_registry of IDENTIFICATION
and Sukordinate_comm of UNIT and Past_amount_purchased of
IDENTIFICATION are deleted and interrelation constraints are
added.

The resulting design is shown in Figure 7.3 and 7.4.
Figure 7.3 shows relation, attributes, and interrelatiorn
constraints, and Figure 7.4 shows the domains anad
attribute-domain correspondences.

L

...

. et .
o e

.....................................

LT LY Ve YT

RSt Nt iy By, S Ayt S Sai SR Saie S St A M Dt bt Mt ARt B et Y Yy Y T IV W e e v ~'.'-"‘-"",

PART-IDENTIFICLTICN(Nsn No,Tot_Qty-On_Hang,
um_ f used_unit, Hax Alth _Qty_Hand)
KE! Nsn_no

DOCUMENT IDENIIFICATION{Nsn No,gocument ¢+ Supp_naune)
Nsn_No

UNIT_INVENTORY (Unit_Code, Nsn No Use,%ty On_Hand,
Used amount g_amoun
KEY 7 Unit éode + Nsn no _Use

UNIT_IDéUnlt Code, Sugerior.Comm,Location)
EY :7UOrit_Co

ORLER Nsn ng Supp_name,Date,amount,Ship_Type)
_1no

DEFOT_STOCK LEVEL(Bepo Id,Stock_amount, Supp_name,
Esn_ No ﬁeglstry
KEY T D€po_I

SUPPLIEBéSupp name€,Ccuntry, Address,City)
Supp name

FPigure 7.3 Records of Relational Schena.

75

................
..................

- .
.......
.................

P A M Nalb el Sl Rud b 8 S il Rairiid

W w G TN e

..o Attribute
Dccument
Tot_gqty_on_hand
Max_auth_qty_band
Sum_of_used_units
Supp_nane
Unit_code
Superior_conm
Nsn_no_use
Qty_on_hand
Used_amount
Req_amount
Location
Date
Amount
Ship_type
Depo_id .
Nsn_no_registry
Stock_amount
Ccuntry
Address
City

______ Domain____
NATIONAL STOCK NUMBER
DOCUMENTATION

TOTAL QUANTITY
MAXIMOUM QUANTITY

SUM OF USED

S_NAME

UNIT_NAME

UNIT_NAME

NATIONAL STOCK NUMEER
TOTAL QUANTITY

SUM OF USED

REQUIRED AHOUNT
LOCATIONS

DATES

ORDER_AMOUNT
SHIPMENT_TYPE

D_NAME

NATIONAL STOCK NUMEBER
TOTAL AMOUNT

C_NAME

ADDRESSES

CITIES

Figure 7.4 Attritutes and Domains.

76

E_ PRI L e T T T e e e e L N W N T N Y T Y Y Y T T I Xy Y v ¥y W v T

VIII. SYSTEM R: RELATIONAL APPROACH TO DATABASE NANAGEMENT

System R is a database management system which provides

a high level relational data interface. The system provides
a high level of data independence by isolating the end-user
The

system permits definition of a varity of relational views on

as much as possible from underlying storage structures.

common underlying data.

Data control features are provided,

shared-urdate environment.

System R supports

including authorization, integrity assertions, triggered
transactions, a lcgging and recovery subsysten, and
facilities for maintaining data consistency in a

a relational

database,i.e.,

a datatase in which all data is perceived by

users in the form of tables. Al1ll access to this database is

via a data sublanquage called SEQUEL.

-

k.

E A. ARCRITECTURE AND SYSTEM STEUCTURE

g

;. Figure 8.1 gives a functional view of the systen !
4 including its major components and interfaces. The

2

. Relational Storage 1Interface (RSI) is an interface which

2 handles access to single tuples of base relations.

This interface and its supporting system, the Relational
Storage System (RSS),
that it
tuffer,
detection,

is actually a complete storage systenm

in manages devices, space allocation, stcrage

deadlock
systenm

transaction consistency and locking,

backout, transaction recovery, and

recovery. Also it maintains indices on selected fields of

rase relations and pcinter chains across relations.
The Interface (RDI) is the
interface which can be called directly from

Relational rata external

a4 programming

language, or used tc support various emulators and other
77
e e e AT T TN T T (T L T S g e T e e

) - === Programs_ to support-

1 [various interface:
Stand-alone SEQUEL
Query By Exanmple,ectc.

<{--~ Relational Data
Interface (RDI)

Relational Data
System (RDS)

{--- Relational Storage
Interface (RSS

Relational Stcrage
System (RSS)

Pigure 8.1 Architecture of System R.

interfaces. The Relational Data System (RDS), which suprorts
the RDI, provides authorization, integrity enforcement, anid
support for alternative views of data. The high level SEQUEL
language is embedded within the RDI and is used as the ltasis
for all data definition and manipulation. 1In addition, the
RDS maintains the catalogs of external names, since the BSS
uses only system generated internal names. The RDS contains
an optimizer which chooses an appropriate access path for
any given request frcz among the paths supported by the RSS.
kSS and FEDS will be evaluated in detail the following next
two sections.

B. THE RELATIONAL DATIA SYSTEM

The Relational Data Interface (RDI) is the principal
external interface of Systen R. The data definition
facilities of +the BEDI allow a variety of alterrative

relational views to te defined on common underlying data.
The RDS is the subsystem which implements the RDI. The RDI

e Saadiiomed A e Sl el 2k S Sedih S e ot wad und s sunds

consists of a set of operators which may be called from PL/I
or other hest programming languages. All facilities of the
SEQUEL data sublanguage are available at the RDI by means of
the RDI-called SEQUEL. SEQUEL is designed to be used both as
a stand-alone language for interactive users and as a data
sublanguage embedded in a host programming language such as
PL/X. In the 1latter case the SEQUEL . statements in the
program are identified by a precompiler which replaces then
with valid PL/I calls to a run-time module which frovides
the environment for executing an application program that
has been through the precompilation process. The
precompilation process is described below[Ref.6].

1. The precompiler scans the source program aad locates
the embedded SEQUEL statements.

2. For each statement it finds, the precompiler decides
on a strategy for implementing that statement in
terms of RSI crerations. Having made its decisioans,
the precompiler generates machine 1language routines
(including calls to the RSS) that will implement thae
chosen strategy. The set of all such routines
together constitutes the access module for the given
scurce progra®. The access module is itself stored in
the database.

3. The precompiler replaces each of the origiral
embedded SEQUEL statements by an ordinary PL/I
statement to the run-time module of the RDS.

The modified source program can now be compiled by the
PL/I compiler in the pormal way. This process is dericted in
Figure 8.2.

In terms of query facilities, SEQUEL provides extensive
query facilities based omn English key words. As a
relational DBMS we have ORACLE in our school. In terms of
Query facilities there is no big difference between Syster R
and ORACLE. Query, data manipulation, and data definition

79

A RaZRawcws

- - .
TN T T R T

Linm o 4
o

PL/1 source t

progran
‘ Modified EL/I I { Access module fcr
progranm . source prograna
“~Machiie laigua

including Rgs cails

) PL/I Coampiler

PI7T object
Frogran

] EXECUTICN]

Figure 8.2 Precoapilation Process.

facilities of ORACLE will be illustrated over the Inventory
Catatase Lty a series cf examples in Chapter 9.

1. Lata Definiticn Facilities

The primary data structure in System R is the Base
Relation (Base Table). The kase relation is a tarle that
has its cwn independent existence and is represented in the
physical database by a stored file. Base table can be
created at any time ty executing the SEQUEL DDL statement
CREATE TABLE, which takes the general form:

CREATE TABLE base-table-name
(field-definition , ececaaes)
{ IN SEGMENT segment-name }
where a field-definition, in turn, takes the fora
field-name (data-type {, NONULL })
Successful execution cf the CREATE TABLE statement causes a

new, empty base table to be created in the specific segment

S

with the specific base-table-name and specific field

definiticn. The user may now proceed to enter data into that
table using the SEQUEL INSERT statement. A System R database
is partitioned into a set of disjoint SEGMENTS which
provides a mechanisx for controlling the allocaticn of
storage and the sharing of the data among users. Any given
rase table is wholly contained within a single segment and
indices on that base table are also contained in that same
segment. However, a given segment may contain several base
tables and their indices. A public segment contains shared
data that can be simultaneously accessed by multiple users.
A private segment contains data that can be used by only one
user at a time. If the CREATE TABLE statement does rot
specify the segment, then the base table will go in a
Frivate segment belonging to the user that issued the CREATE
TABLE. This specification is an option in the CREATE TABLE
statement. Fach field definition in CREATE TABLE includes
three items: A field-name, a data-type for the field, and
optionally a NONULL specification. The field nmame has to be
unique within the base table. The System R suppoerts the
concept ¢f nonull field values. Null is a special value that
is used to represent "value unknown" or "value
inapplicable".

By using the EXPAND TABLE statement, an existing
base taltle can be expanded at any time by adding a new
column at the right :

EXPAND TABLE lase-table-nane

ADD FIELD filed-name (data-type)

The important point is that the specificaticn NONULL is not
rermitted in EXPAND 7TABLE. It 1is also possible to destroy
an existing base table at any time:

DROP TABLE base-table-name
All records in the specific Lase table are deleted, all
indexes and views on that table are destroyed, and the table

81

: - B - (il M l

that is,

resoved from the dictionary and its storage space |is

released[Ref. 7]. ' '
The query power of SEQUEL may be used to define a

itself is then also destroyed; its description is

/ view as a relation derived from ore or more other base
- tables. This view may then be used in the same ways as a
' base table: gqueries may be written against it, other views
may re defined on it, and in certain circumstances descrited
below, it may be updated. Any SEQUEL query may be used as a
view definition by means of a DEFINE VIEW statement:
DEFINE VIEW view-name

{ (field~name , ccceeecs) }

AS SEIECT - statement
Views are dynamic windcws on the database as shown in Figure
8.3. In System R, a view that is to accept updates must be
derived from a single base table. Moreover, it must satisfy
the fcllcwing constraints:

1. Each distinct row of the view must correspond to a
distinct and wuniquely identifiable row of the base
table.

2. Each distinct column of the view must correspond to a
distinct and uniguely identifiable column of the base
table. If a view does satisfy constraints 1 and 2,
then any update against it <can easily be mapped into
an update on the corresponding base table.

There is another SEQUEL command for data definition
facility: KEEP TABLE. It causes a temporary table to beccne
permanent. Normally, temporary tables are destroyed when the
user who created them logs off.

2. Data Control Facilities

Systerm R has extensive data control facilities that

enable users to control access to their data by other users,

.......................................

...................................

-EXTERNAL LEVEL

|

I VIEW V1 } T} VIEW V2 }

[

]Base Table1 ‘ lBase Table2] IBase Table3 {

CONCEPTUAL 1EVEL

INTERNAL LEVEL

]Stored File1l {Stored Filez{

Stored FileBI

Figure 8.3

save points within

the wuser wishes to te

System R as Seen by an User.

A transaction is a series

processed
meanin¢ of the "atomic" depends

on

and to exercise control over the integrity of data values.
The data control facilities have four aspects: transactions,
authorization, integrity assertions, and triggers.

of the statements which
as an atomic act. The
the level of ccnsistency

specified by the user. The user controls transactions by the
operator BEGIN-TRANS and END-TRANS. The user may sfpecify

a transaction by the operator SAVE. As

83

long as a tramsaction is active,

the user may block up to

the begining of the tramnsaction or to any internal space
point by the operator RESTORE. _

System R allows for an extremely simple method of
authorization checking. System R maintains two takles for
the use of the authorization subsysten: SYSAUTH aad
SYSCCOIAUTH. The SYSAUTH table has up to two rows for each
. compbination of relaticn (base or view) and user. The coclumns

in the SYSAUTH table éorrespond to user ID, base relation or
viev name, type (base or view), a column for each cf the
privileges on the relation (Y CR N) and a column for grant
cpticn (Y or N). TFor each relation on which a user is
authorized to perform some action, there are ur to two
tuples in SYSAUTH: one for grantable and the other for
non-grantable privileges. In case the user has update rights
on a relation, the table SYSCOLAUTH indicates precisely
those columns of the relation on which the user has the
update privilege. Tlkese two tables, SYSAUTH and SYSCCLAUHT,
are updated whenever a new base relation or view is created
or an authorized user executes a GRANT statement, thereby
- granting a set of privileges to one or more other users. The
two tables are referenced immediately before the execution
of any SEQUEL statement[Ref. 5]

The third impcrtant aspect of data control is that
of integrity assertions. Any SEQUEL logical expression
.E associated with a base table or view nay be stated as an
' integrity assertion. At the time an assertion is made Lty an
ASSERT statement, its ¢truth is checked; if true, the
assertion is enforced until it is explicitly dropped by a
DROP ASSERTION statement. Any data modification by any user
which viclates an active integrity assertion is rejected.
Assertions may apply to individual tuples or to sets of
tuples.

The fourth asrect of data control, triggers, is a
generalization of the concept of assertion. A trigger causes

..
............................

TV YTV VT

T YV Y YTV

a prespecified sequence of SEQUEL statements to be executed
whenever some triggering eveats occurs. The triggering event

may be retrieval, insertion, deletion, or wupdate of a

particular base table or view. RDI can monitor such svents
by simply scanning a transacticn for a SEQUEL statement that
corresronds to a particular triggering event. After each of
these statements, immediately a call statement is included
to invoke the appropriate trigger routine.

3. Data Manipulation Statements

The RDI facilities for insertion, deletion, and
update tuples are also provided via the SEQUEL data
sublanguage. SEQUEL operates on both base tables and viewus.
It can be used to manipulate either one tuple at time or a
set of tuples with a single conmmand. By using these
facilities, it is possible to assign the result cf a guery
to newly created relation.

An insertion statement in SBEQUEL may provide only
some of the values for the new tuple, specifying the names
of the field which are provided. Fields which are not
provided are set to the null value. The physical positica of
the new tuple in storage is influenced by the "clustering"
specification made on associated RSS access paths.

Leletion is done by means of a DELETE statement
acconranied by a WHERE clause. The WHERE clause specifies
the conditions that gpust be satisfied by the records to be
deleted. The RDI can translate the UPDATE statements in cne
of twc ways:

1. By using the RETRIEVE command to dJetermine the
addresses of the selected records, and then using the
REPLACE conmand to modify these records one at a
time.

2. By wusing the REPLACE command to modify all the
selected records simultaneously.

85

TR ——— .

Which of these two methods is to be used depends on
the actual SEQUEL statement. If the SET clause makes

identical changes to all the selected tuples, then only the

second method should be used. The SEQUEL assigpment
statement allows the result of a gquery to be copied into a
nev permanent or temporary relation in the database. This
has the same effect as a query followed by the RDI cperator
KEEP. The execution of an assignment statement by the RILI is
done in two parts:
1. The records satisfying the query are retrieved,
2. A nev relation is created with the records retrieved
in (M. These records are them stored in the
datalkase.

A series of examples will be given for inventcry
datatase by using ORACLE relational DBMS in Chapter 9.

4. Cptimizer

The objective of the optimizer is to find a low cost
means of executing a SEQUEL statement, given the AJdata
structures and access paths available. The oftimizer
attempts to minimize the expected number of pages to be
fetched from the secondary storage into the RSS ‘tuffers
during execution of the statement. Only page fetches made
under the explicit ccntrol of the RSS are considered. 1If
necessary, the RSS Luffers will be pinned in real memory to
avoid additional paging activity caused by the operating
system such as the VM/370 operating system. The cost of the
CPU instructions is also taken into account by means of an
adjustable coefficient which is multiplied by the number of
tuple ccmparison ofperations tc convert to eguivalent page
accesses., The adjustable coefficient can be adjusted
according to whether the system is computation-bound or 1/0
bound[Ref. 6].

86

S e e L e T T PP Mt WMk, i, R PP A e ek Al el Al Ant A Ral . ne b el e e e b e B e et ARl e oy |

After analyzing any SEQUEL statement, the optimizer
produces an Optimized Package (OP) containing the parse tree
and a plan for executing the Statement. If the statement is
a query, OP is used to materialize tuples as they are called
for by the fetch ccmmand. If the statement is a view
definition, the OP is stored in the form of a Pre-Optimized
Package (POP) which can be fetched and utilized whenever an

access is made via the specified view. If any change is made
to the =structure of the base table or to the access paths
maintained on it, the POPs of all views defined on that base
table are invalidated, and each view must be reortimized
from its defining SECUEL code to form a new POP.

C. THE RELATIONAL STCRAGE SYISIEN

The RSS is essentially a powerful access method. 1Its
primary function is to handle all details of the physical
level and to present its user with an interface called the
RSI. TlLke user of the RSS is ncrmally not a direct user, but
is code generated bty the RDS in compiling some SEQUEL
statement. The RSI was specifically designed to be a good
target for the SEQUEI compiler.

As shown in Figure 8.3, the basic data object at the RSI
is the stored file which is the internal representation of a
base table. Rows of the table are represented by records of
the file; the stored records within one stored file need not
be physically adjacent in storage. An arbitrary number of
indexes over amny given stored file is supported by the RSS,
thus rroviding the additional access paths to that file. The
RSS objects (stored files,indexes,etc.) and the associated
operators together constitute the Research Storage
Interface (RSI). As rentioned above it is the interface used
as the target by the BRDS in precompiling SEQUEL requests.
The user of the RSI needs to know what stored files and

87

[R A W N SN

4

‘\v . ‘-
" f-fn.. _{,J"_d',_(

........................

indexes exist, and must specify the access path(index or
system sequence) to be used in any given RSI access request.

1. Segments

In the RSS, all data is stored in a collection cf
the 1logical address space called SEGMENTS, wvhich are
employed to control physical clustering. Segments are used
for storing user data, access path structures, internal
catalog information, and intermediate results generated by
the RDS. All the tuples of any relation must reside within a
single segment chosen by the RDS, but a given segment may
contain several relations. Three types of segment are
supported, each with its own combination of functicns and
overhead: shared (or public) , private, and temporary data
segments. Basically data in shared segments are recoveratle
and sharable; data ip private segments are recoverable but
not sharable; and data in temporary segments is neither
recoverable nor sharakle. Segment type is fixed at the time
of the system installation and cannot be changed. Each
segment consists of a sejuence of equal-sized pages which
are referenced and fcrmatted by various components of the
RSS. The RSS maintains a page map for each segment which is
used to map each segment page to its location on disk. At
RSI, segments are identified by a numeric segment
identifier. Pages are identified by page number within
segment. Pages are never directly referenced in SEQUEL.

2. Files and Records

Each base talle is represented as a stored file. A
stored file is identified at the RSI by a numeric identifier
called as RID. In cther wvords, a RID identifies a stored
file. The RDS is resronsible for mapping SEQUEL table-names
to RDIs. Records in the stored file represent rows cf the
table. Each record is stored as byte string. The byte string

88

Pt I N L A A A B~k i Y

consists of a prefix, (containing control information, such
as the RID of the containing file), followed by the stored
representation of each field in the recorad. Like segménts .
and files , individual tuples have their own numeric
identifier, called a TID. The TID for a tuple consists of
twvo parts: page number of the page containing tuple, and a
byte offset from the bottom of the page identifying a slot
that contains, in turn, the byte offset of the tuple from
top of the page. Orerators are available to INSERT and
CELETE single tuples, and to FETCH and UPDATE any
combination of fields in a tuple.

3. Images and Links

An image in the RSS is a logical reordering cf an
n-ary relation with respect to values in one or more sort
fields. 1Images combined with scans provide the ability to
scan relations along a value ordering for low level support
of simple views. An image provides associative access
capability. The RDS can rapidly fetch a tuple from an image
Yy keying on the sort field values. A new image can be
defined at any time on any combination of fields in a
relation. Each of tle fields may be specified as ascending
or descending. An image can also be dropped at any tinme.
The RSS maintains each image through the use of multipages
index structure. A new page can be added to an index when
needed as 1long as one of the pages witiain the segment is
marked as available. The pages for a given index are
organized into a balanced hierarchic structure. Each page
is a node within the hierarchy and contains an ordered
sequence of index entries.

A link in the RSS is an access path which is used to
connect tuples in one or more relations. The RDS determines
which turles will te on the 1link and determines ‘their
relative [fosition by using explicitly the CONNECT and

89

oA

AR .".l e
S R]

e w N B
'-'-'-'T + 'J'A'r.' R

..................

DISCONNECT operations. The RSS maintains intermal fpointers
so that newly connected tuples are linked to previous and

next twins, and previous and next twins are linked to each

other when a tuple is disconnected.

4. Transaction Management

A transaction at the RSS is a sequence of RSI calls
in bebalf of one user. In gemeral, an RSS transaction
consists of those calls generated by the RDS to execute all
RDI orerators in a single System R tramnsaction, including
the calls required tc perform such RDS internal functicns as
authorization, catalcg access, and integrity checking. An
BRSS transaction is marked by the START-TRANS and END-TRANS
operators. A transaction save point is marked as the
SAVE-TRANS operator, which returns a save point number of
subsequent reference. 1In dgeneral, a save point may oe
generated by any of the layers above the RSS. An RDI user
may mark a save r[foint at a convenient place in this
transacticn in order to handle backout and retry. The RDS
may mark a save point for each new set oriented SEQUEL
€xpression. Transaction recovery occurs when the RDS or
Monitor issues the RESTORE-TRANS operator, which has a save
Foint number as its input parameter, or when the RSS
initiates the procedure to handle deadlock. The transaction
recovery function is supported through the maintenance of
the time ordered 1lists of 1log entries, which record
information about each change to recoverable data. Those
changes include all the tuple and image modifications caused
by INSERT,DELETE, and UPDATE operations and all the link
modifications caused ty CONNECT and DISCONNECT operations.

£. Concurrency Ccntrol

42— %

Since System K is a concurrent user system, locking

techniques must be employed to solve various synchronization

T o oy

Ciaan)

:
;

—— s
Tl

e

NS

s..
‘
.
5

problems, both at ¢the 1logical 1level of objects like
relations and tuples and at the physical level of pages. At
the logical 1level, such classic situétions as the f"lost
update" problem must be handled to insure that two
concurrent transactions do not read the same value and then
try to write back an incremented value. If these
transactions are not synchronized, the second update will
overwrite the first, and the effect of the increment will be
lost. At the physical level of pages, locking technigues are
required to insure tlkat intermal components of the RSS give
correct results.

6. locking

Cne basic decision 1in establishing System R was to
handle both logical and physical locking requirements within
the RSS, rather than splitting the functions across the RDS
and RSS subsysten. Physical locking is handled by setting
and heolding locks on one or more pages during the execution
of a single RSI operation. Iogical locking is handled by
setting locks om such objects as sequence, relatioms, tuple
identifiers (TIDs), and key value intervals and holding then
until they are explicitly released or to the end of the
transaction. Another basic decision in formulating System K
was to automate all of the locking functioms, both logical
and physical, so that a user can access shared data and
delegate some or all lock protocols to the system.

In order to provide reasomable performance for a
vide spectrum of user requirements, the RSS =suprports
multilevels of consistency which control the isolaticn of a
user froam the actions of the other concurrent users [Ref.2].
When a transaction is started at the RSI, one of three
consistency levels must be specified. Different consistency
levels may be chosen by different concurrent transactions.
For all of these levels, the RSS guarantees that any data

91

Nt e e et arae s v e
RO IAT AR S R N A 3 . e e S et e T e e e e e

- «

. e T et ¢ e e
e e ®, o, LR T A W, PR

1 S L P e o5 - o v

.......

RSN G I i A I At B dr (i - AN Gt S Aret S S st o

.....................

modified by the transaction is not aodified by any cther
until the givem tramsaction ends. The differences in
consistency levels cccur during read 6perationé. Level-1
consistency offers the least isolation from the other users,
tut causes the lowest overhead and lock attention. With this
level, dirty data may be accessed, and one may read
different values for the same data item during the same
transaction. In level-2, the user is assured that every iten
read is clean. However, no guarantee is made that suksequent
access to the same item will yield the same values or that
associative access will yield the same item. For the highest
consistency 1level (which is level-3) the user sees the
logical equivalent of a single user system. Every item read
is <c¢lean, and subsequent reads yield the same values,
subject to updates by the given user. Level-3 cornsisterncy

eliminates the probler of lost updates and also guarantees
that omne can read a 1logically consistent version cf any
collection of tuples, since other tramsactions are logically
serialized with the given one.

TN ...

The RSS compcnents set locks automatically in order
to guarantee the 1logical functions of these various

LALLM ARA

consistency levels. The KSS emfploys a single lock mecharisnm

to synchronize access to all objects. This synchronizatiorn
is handled by a set cf procedures in every activation of the
RSS, whick maintains a collection of queue structures called
GATES in shared, read write memory. An internal reguest to
lock on an object has several parameters: object name, lcck
mode, and indication of lock duration. There are several
factors which will effect the choice of 1lock duration such
as the type of action requested by the user and consistency
level of the transaction. Data items «can Le locked at
various granularities to insure thkat various applications
run efficiently. LlLock on a sirgle tuple will Le effective
for transactions which access small amounts of data. locks

...................

- A A AN s oS -} T - o 3 - » v b 14 v
e e et B S T e T T RN T L S AL RLIS A B e 4 B A Tae IO Gt Sed M i el Wl i g v,‘f

on entire relations ¢r even entire segments will be more
reasonable for transactions which cause the RDS to access
large amcunts of data. For acComplishing these situationé, a
dynamic lock hierarchy protocol has been developed so that a
small number of locks can be used to lock both few and many
objects.

7. Deadlock

Since 1locks are regquested dynamically, it is
possiktle fcr two or more concurrent activations of the RSS
to deadlock. The RSS has been designed to check for deadlock
situations when reguests are blocked and to select cne or
more victims for bDbackout if deadlock is detected. The
detection is done by the Monitor on a periodic basis by
looking for cycles in a user-user matrix. The selection of
victinm is based on the relative ages of tramsactions in each
deadlock cycle as well as on the duration of the locks. 1In
general the RSS selects the youngest transaction whose lock
is of short duration, since the partially completed call can
easily ke undone. If none of the locks in the cycle are of
short duration, the youngest transaction is chosen. This
transaction is then backout to the save point preceding
offending lock regquest, using the tramnsaction recovery
schene.

93

A. INTRODUCTION

The CEACLE Relational Database Management System is a
computer program that manages pieces of data stored in a
computer. ORACLE allows access to this data by providing
sets cf commands that tell the computer what to do. These
commands are in a language that is called SQL. SQL ILas
several facilities fcr data manipulation. Some of them will
e used for the Inventory Datatase.

All data in ORACLE are stored as tables. Tables are made
up of columns and rows. The SUPPLIER table saown below has
four cclumns (SUPP-NAEE, COUNTRY, ADDRESS, and SEIP_TYPE)
and four rows. A Icw is made up of fields. Each field
contains a data value stored where a column and row neet.
For exangle, the first row in the SUPPLIER table has the
data value ITT stored in its SUPP_NANE field, the data value
USA stored in its CCUNTRY field, PJU.BOX.9 stored in its
ADDRESS field, and the data value S.F storel in its CITY
field. A database canm coutains many tables. ORACLE allows {

the creation of as many tables as needed. All the tables
stored in ORACLE make up the database.

We can create a table wusing the CREATE TABLE coamand.
The ccmmand that creates the PART_IDENTIFTICATION takle is as

G4 L0 un e pu g an Pasa gl e g by

followus:
UFl> r
1 create table parterdentitication
2 (nsnens char(ldy,
3 toteatyeonehand nymner(s),
4 maxetautheatvehand numner(b),
Sa sumrofeyusedeunit numoer(e))

lTeble created,

94

...

In the CREATE TABLE compand ve name the table
PART_IDENTIFICATION and the columns of tae table (NSN_-NO,
TOT_QTY_CN_HAND, MAX_AUTH_QTY_HAND, SUJ_OF_USED_UNIT). We
specify if the colusn is to contain only numeric values
(NUMBEE) or character (both numbers and 1letters) values
(CHAR). We also specify the maximum length of the value
that can be stored in the column. For exawnple, no NSN_NO can
te longer than 14 characters- nsn_no char(14).

After a table is created, rows can he entered into the
table using the INSEERT command . The following ccmmand is
used to enter the first row into the PART_IDENTIFICATION
table.

UFI> ingert into parteidentification
2 values ('1302-24\-0111'.15000,20000.30000):

1 record created,

In the INSERT comma nd we name the takle
PART_IDENTIFICATION into which the row is to be inserted and
list the data values that go into each coluan.

In a similar manner using the CREATE TABLE coamand, all
tables in the inventcry Jdatabase are created and using the
INSERT command all data are inserted into tables. The final
versicn cf the tables are shown below.

PART_IDENTIFICATICN

UFI> gelect =
2 from pareeidentification;

NSNeND TOTeJTYEONEHAND VAY AUTHeQTYeHAND SUMEDFeUSEDCUNTT
1342=241~-411} 15000 20000 30000
2421-31t=u111t 10000 15000 20000
24S1-312=«4115 5000 10000 qu0Q0
S11l=t11=1S1 1 25000 10000 15000
2511=S11=4511 10000 15000 2uong
1015=512<5112 2000 4000 1500
7511=632-8332 15000 25000 125000

T records selected,

95

AD-R159 738 DESI.N AND - INPLEHENTRTION OF INVENTORY DﬂTﬁBﬂSE(U) e
NAVAL POSTGRADUATE SCHOOL MONTEREY CR 0 SARI JUN 85

UNCLASSIFIED F/G 9/2

N
©
nd
]

o

Il

ceeEEEE
N
N

EE
g

on—

.

——

({3

'3

re
MM

% 1.4 mlﬁ

MléROCOPV RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A

had WL VT TV E SR T E R T TH T RO TR AT S
P G kit g~ J0a b il R) et P = b e

.
]
!
)
[]
’

'

CCCUMENT_IDENTIFICATICH

m
r.
£
-
".

UF]l> gelect ¢ . .
2 ¢rom documenteidentiticatidng

NSN&N) DOCi) SUPP
1342=241=4111 toml] ittt
2421=311=4115 tom] ittt
2451=312=4115 tom2 ass)
S111=111=1511 toml asal
2551=511=541t tom! Jec
1S11=215=5111 tomS ih»
1015=612-5112 tom2 3dec
7511«632=8332 tom3 asal

8 records selected,

UNIT_INVENTORY

UFI> select »
2 from uriteijnventary;

UNETeC NSNeNOsUSE ITYeNNeHAND USEDEAVOUNT WE e AMOUNT
1oase 1342-21t1-4111 7500 30000 2500
1ssse 2021=311-4115 2000 10000 3000
2sase 2412-311-41195 3000 10000 2000
2sase 2451-3)12-4115 1250 4000 7150
3oase 2431=312-4117 1250 4000 750
31sese 2511-S511-4dS11 SJ00 20000 2000
3sase 1511-215-S111 6250 7500 3200
Ssase 1S11-21S5-S111 $000 20000 2000
boase 7511-632-8332 500 1000 400
Toase 1015=512-5112 400 500 200
8rase 1015-512-5112 1299 S000 3250
Irase Sli1=111=-S111 1500 25000 10000

96

ChaciFad S Are Il Rt v RIS A RENE M il - g

UNIT_ID

UFIl> gelect *
2 from uniteig;

UNITel. SUPERT LOCATION

losse 2taf 13IN20E
2oase 2tat 2SN30E
3nase 3ltaf 21IN32E
doase Gtet 36N21E
Soase utaf a0N22E
6oase Itaf 3IN2SE
7oase 1taf 37N2SE
8case 2taf 38N2SE
92a8e¢ 3taf 41N21E

9 records selected.

PAFT_ORDER

UFl> select ¢
2 from Lerteorder;

NSNeND SYPPeN DATES AMOUNT SHIP
1342-241=4111 icte 03te8sS 2500 sir
24S12312=4115 asal 012545 5000 sea
S111=111=1511 ite 0316RS 32S0 air
1511=215=5111 dec 011685 5250 ses
2511=512=S111 asal 031788 S00n ses
2015512=-5112 ittt Ny25ARS 600 air
2015-632=-8332 iom 052785 10000 air

7 records selected.

97

T e e e e e P U T

g ™ Nl Nt o
VAR oL A O AN IR AAC AR O C R RS SN 4

DEPOI_STOCK_LEVEL

JF1> gelect ¢
2 trom depatestockerlievel:

DEPOe STOTKEAMOUNT SUPP NSNeNJSREGIST

dep0! 7500 ittt 1342=24)=ull

deono?l 5000 asal 2421=311-411S
depol 2500 fba 24S1e3}2«4118S
deood 5000 dec 2511-312=4d11S
deooS 1000 jbe 1015=512~-5112
deoobd 7500 ez 7511-682-8332
deoo? 11250 ibm 1511-215=5111
deoo8 1250 esal St11i=111=5111

8 recorids selected,

aahainaae %

LA S B SN s o

SUPPIIER

UFI> gelect »
2 trom supdlier:

SJPP COUNTR ADDRESS Cliry

ittt use Pr.b0x,9 S.F
iom usoé Pr.bDox,12 L.2
Jec us» D3.,00x,.11 N.Y
asal tur D3.00x,7 izmiep
98

\. ;’\“\-{\'.\f'nf'if'.-u:.\.. '..v..‘-. Y .

M A iy . Pl OIS SO AL S i RS ik e DA iy S e e e Y it Clie™ . e o N e T T

B. SANPLE QUERIES

1« List national stock nualter of the iteas for which the
guantity on hard egual 10000.

UFI> gelect nsneneg
¢ 2 trom oarceidentification
; 3 ushere toteatyeonthang = 10000;

NSNeN)
2421=311=411]
2511=511=451}

2. Display nsn_no which is in the 1base and rejuireld
axourt greater than 25040.

UFI> gelect ngnenoruse

3 2 feram yniteinventory

3 «here unijtecode 2 ‘loase’
& gana reaeamount > 2500

1 NSNeNDe USE

2421=311=4115

99

o4t

A hialb e et N s SARIDI: P ACH N it ae RO AL S0 T AN AN ol L R (SR T Pt ot B B SO, St

3. List all bases which are under coamamand of 2taf.

UFl> select uaitecode
2 from yniteid
3 uhere suderiorecomr 3 ‘2taf' ;

UNETeC

1oase
2s89%e¢
8sase

4. List all locations of ltases which are under ccsmani
of 1taEk.

UFl> gelect uwittco1e.|ocation
; from unjteig

where suseriorrcomm = ‘Ttart ;

UNITer LOCATION

6oase 31v25¢
Toase 37v25E

100

G N N R I SN A AL TAR R

RIS YN
Y . KA *
P PRI I 1O I SO I AN

= b I Y . Q"
\.b_n AU _-".u~ N

e S W, "Y1 o™ S " Py S S S R~ i St S R CAAa AT e B R A

5. 1list all suppliers names and taeir addresses in the
USsA. _

. UFI> gelezt sooenane.address,city
2 from suoalier
3 «here country = 'uss’ ;

s SJPP ADDRESS cIty
itt 20.box.9 S.F TTe
iom so0.box.l2 Lok
dec¢ s0.box.l1 N,Y

6. Find total guantity on band, document, and supplier
nape for items for which the sua of used amount is

greater than 1000.

UFI> gselect tateaty*onehand,daciment,sudo®nane
2 from oarreidentification,dacumenteidencification
3 <here suntatfeuysettunit > 1300
4 ant1 sarteitentification,qsneno 3 dacumenteidentification.nsneno’

TITe@TYeUNe4AND DUCY SUPP

15000 toml ite
3000 com2 asa)
2000 tom2 tec
15020 tom3 asal

101

" oA e

PSP

NN MM 2o

Find total used amount for 1base.

\

UFI> gelect sum(usedesmnunt)
2 from uniteinventory
3 «here unjtecode t 'Inase’ ;

SUM(JSEDeAMOUNT)
: i 40000
-
F 8. Find nsn_no and total guantity on hand in descending
' order by tot_gty_on_hand for iteas for which the
ﬂ maximum authorized gquantity on hand is greater than
’ 1500.

UFI> gelect nsneno,toteatveonethany
2 f¢rom perteidentification
3 wuhere maxtsutheagtyenand > 1500
4 orter >y toteqtytonehand qesc ;

NSNeND TOTeQTYeONeHAND
S111=111-15111 25000
1342=241-4111 15000
" 75112632-A332 15000
- 2421=311=4111 10000
: 2511=511-4511 10000
N 24S1=312-4115 5000
- 1015=512-5112 2000

7 record4s selected,

"z - S e E IR LA A
OIS P stetwl s Sk S S A AR R EA AL

Disglay total guantity on hand and sum of used agount
for iteams supplied by ASAl.

Url>» setect tat*:vvvonohond.lunvof'uscdtunit
trom barteidentitication

3 where Y8aeno in

4 (select nsneno

5 from documenteidentitication

6 «here suooetname = ‘'asal’)}

~

T3Te@TYeONeH1AND SUMeOF e USEDCUNTT
.-.-‘-.-----‘-. --.-..-.---...-‘
5000 90000
15000 125000

10. Find order amount, dates, and shipment type for

iteas which are in the 1BASE iaventory.

UFI> gselect anount,3ates.shipetyoe
from parcteorter
ahere 18aeng in
(select nsnenoeyse
from uniteinventory
shere unitecode = ‘lbase’);

FNEBwWN

AMUJNT DATES S$SHI®

2500 031685 air

103

“ N 3 - - L) - . . - .-
-.,u.‘h4-‘r. >~ » J.. . -.'-‘l'.:¢.) n‘-"l. .

. .
PRI X ..

A S S i T e

N

. et "
-'-- <

)

T R T T T I TR T

E 11. Find required amount and order amount for iteass in
i the 2BASE inventory.

UFI> gelect rsaeamount,snsunt
2 from ulitteinventory,sarteorder
3 ahere uniteinventory.unitecone = ‘2base’

@ on4 unitrinvoﬂtorv.nsntnovase 2 oarteorder,ngneno
REQeAMOUNT AVMOUNT
cToeoeegaanee Seogescoawe

150 5000

12. Find total gquantity oo hand and amaximum authorize
amount on hand for items for which nsn_nc is
1015-512-5112.

UFI> gelect toteqtyeonenan

3

doma:vauthﬁatvvhond
fraom partetidentiticatian

ahere ngrheng = *1015«512-5112 H

TITeQrYrOve4ayD MAX®AUTHe

farte ATYeHAND
2000 4000
104

Ry ",
.

Tt N LS T T e e e e e A e e e e e
P SN U S S Sl R ST R I S B ol

e o R R A R T s T e T e e sy . T T T e L, T T T Bl ey

u X. CONCIUSIONS AND RECOMMENDATIOES '

An inventory database system is complex and important.
In order to effectively command and control the inventory of
an Air PForce, the coammander must know the status of his
resources which will present the state of operational
readiness of the Air Force. It is difficult to ottain
accurate information from the inventory system by using the
manual systems. The database management system must be used
in the inventory systemas in order to increase end-user
productivity, decrease staff,and enable work to be done more
efficiently.

The conplex task of a logical database design for a
relational database management system can be greatly
simplied Dby use of the Semantic Data Model. SDM is a
high-level seman tics~-based database description and
structuring formalisa for the database and enhances
usability of the datatase system. Using the output of SCM in
the Inventory Database, the records are rearranged in crder
to fit a relational model. ORACLE DBMS was used for
implementation. Functionality of ORACLE LBMS is very high
and provides User Friendly Interface (UFI). It is easy to
use fcr all potential users.

Finally, database machines are being developed in
universities and research laboratories. It is obvious that a
great deal of effcrt is being devoted to developing,
studyirg and analyzing database coaputers. These efforts
will result in gquality hardware and software for all
potential users of relational database management systeas.

105

TV W

ST T L TT—T——

1.

2.

5.

6.

8.

9.

10.

1.

12.

13.

LIST OF REPERENCES

C. J. DateiQAn Introduction to Database System, IBM

Corporation, 1982 | pages 203-23%.

Atre, S. , Database: St tured Technigues for Design
erformance and Management with case Studies, Business

Ss§§'ff%%§§s§ﬁ§:!;:ggray‘gefiag,‘§9ao, 3a5 58725122388

Ronald G.Ross, Latabase Systems: Design Implementation
apd Management, : T 48 =3B

David Kronke, Database Processing: Fun ental
Design Implementation , Sclence Rdesearch Associates,
Inc., T983?" I

Jayanta Banarjee¢ and David K. Hsiao, DBC Softwar
Reguirement _~“for Supporting Relational ~Datalase,
Rovember 1977,

P. M. Astrahan et al, "sttem R: Relational Apgroach
to Database Management ACM Transactions on Datab
Systems, KNo.2, Jane 1976,

M. Astrahan et el, "System R, A Relational Database

anagenent System", IEEE Computer Society: Computer,
2 NOo.5, May 1979,

Boyce and D. D.Chamberlain, "Using a Structured
sh Query Language as a Data Definitlon Facility",
esearch Rerort RJ1318, December 1973

i ’

E.F.Codd,"Recent Investigations. Into Relational
Database Systea" ACH Pasific cConfereace, San
Francisco, April 1§75,

Toty. J. Teorey and James P. Fry, Design of Latapase
Structure, 19

Hawryszkiewycz, I.T, Databa
Science Research Associate, In

Atre Se Database: Structure Technigues for Design
gerfarnanée and management, 1980, -

M.Hammer and DP. Mcloed, "Database description with
SDM: A Semantic Database Model" ACM Transacticn on
%g%gbase systes, Vol.6 No.3, §ept§iber T98T, tages

106

AL N I R, R e i D S N A

. .'P"nnvl

v
I"

INITIAL DISTRIBUTION LIST

No. Copies

1. Lihrar;, Code 0142 2
Naval ostgraduate_Schcol
Monterey, California 93943-5100

2. Departament Chairzan, Code 52 1
Department of Computer Science
Naval Postqraduateé Schoo
Mcnterey, Califorria 93943-51Q00

3. Professor S. H. Farry, Code 55? 2
Department of Operation Researc
Naval Postgra@uate_School
Monterey, Califorria 93943-5100

4. Department of Logistics 2
Turkish Air Porce Headquarters
Bakanliklar, Ankara, TOURKEY

%. Osman SARI)) 3
Zafer Mahallesi KaEmakCL
Odemis, Izmir, TURKEY

6. Division of Education 2
Department of Personal
Turkish Air Force Headquarters
Bakanliklar, Ankara, TURKEY

7. Ugur OZKAN . 1
Hukupmet caddesi
Sunullah Be Agt. No: 7/4
Kayseri, TURKE

8. Hava Harg Okulu EKcmutanligi 1
Rutughan
Yesilyurt,Istanbul, TURKEY

S. Hava Harp Academisi Komutanligi 1
Kutuphane
Ayazaga,Istanbul, TURKEY

10. EIBM Komutanligi 1
CEIM Mudurlugu
Eskisehir, TORKEY

11. AIBM Komutanligi 1
CBIM Mudurlugu
Etimesgut, Ankara, TURKEY

107

.
LA Y
- . s e e - o % % D n*qa"eq"

12.

13.

14.

15.

16.

Dekanlig

ODTU Bilgisayar Muhendisligi
i
Apkara, TURKEY '

I10 Bilgisayar Muhendisligi
Dekanligi
Gumussuyu, Istanbul, TURKEY

Bogazici Universitesi
Bilgisayar Mubhendisligi
Dekanligi .
Rumelikavagi,Istanbul, TURKEY

Hava Egitim Komutanligi
Egitim Sh. .
Guzelyali,Izamir, TURKEY

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

108

T —

.
.
.

.
LWL TRy

<

SV A,

[ON

-

L
e Y

il ST

s

