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1.. SUMMARY

This is the first Annual Report under ONR Contract N00014-84-0468, work unit number

NR064-725 conducted by Drs. H. Murakami and G. A. Hegemier at the University of Califor-

nia. San Diego. during the period from July 1, 1984 to June 30. 1985. The cognizant ONR pro-

gram manager is Dr. A. S. Kushner.

The research is conducted in response to the need for microstructural-based theories which

furnish increased simulation capabilities of metal-matrix composite structures in both static and

dynamic regimes with a minimum of model parameters to be experimentally determined. The

objective of the research is to develop a nonlinear model of binary metal-matrix composites that

will provide greater accuracy than existing models in linear and nonlinear regimes for static and

dynamic loading. Furthermore, in an effort to accommodate practical structural configurations

a plate theory is developed for fiber-reinforced composite plates.

The progress made during the first year's effort toward achieving the above objectives

includes: fl) the development and validation of a linear mixture model which accounts for effec-

tive moduli and harmonic wave dispersion, 12) testing of methodologies for including nonlinear

material responses, and f3) a significant improvement of existing laminated composite theories

to account for inelastic responses driven by in-plane strains.

2. RESEARCH OBJECTIVE

The ultimate objective of the research described here is to construct an advanced, non-

linear nonphenomenological model of binary metal-matrix composites that will provide greater

accuracy than existing models in linear and nonlinear response regimes for static and dynamic

loading. The term 'nonphenomenological' implies a model that is capable of synthesizing the

global properties of composites from a knowledge of the matrix and fiber properties, the fiber-

matrix interface properties, and the geometry of the fiber reinforcement. In addition to the

development of a continuum model, a plate theory is developed for laminated composites in

rq i -. r- %
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which each layer consists of a unidirectionally fiber-reinforced metal-matrix composite laminae.

This effort is to improve the simulation capabilities of metal-matrix composite structures by

introducing the advanced constitutive model to laminated composite plates.

The specific research objectives of the work performed during the present reporting period

were as follows:

1. Construction of a linear mixture model - Develop a dispersive linear mixture model

for arbitrary wave motion, and perform a validation study of the model.

2. Development of a nonlinear mixture model - Explore an efficient methodology for

including inelastic responses of the composite, such as plastic deformation of the

matrix, debonding and slip at the fiber-matrix interface, and fiber breakage.

3. Improvement of existing laminated composite plate theories - Develop an improved

laminated composite plate theory which can accommodate the above inelastic consti-

tutive model for metal-matrix composite laminae.

3. CURRENT STATUS OF RESEARCH

The progress made during the report period toward achieving the research objectives

described earlier is summarized in this section. First, the basic technical approach being fol-

lowed to meet the objectives is outlined. Then, the progress made toward developing and vali-

dating an advanced mixture theory with microstructure for metal-matrix composites is

described. Next, the effort to develop a laminated composite plate theory with improved in-

plane responses for use in connection with the above constitutive model is summarized.

9.1 Approach

The nonlinear response of metal-matrix composites is largely dominated by complex

interaction between the fiber and the metal-matrix. Consequently, an accurate model of metal-

matrix composites must be capable of accounting for such interactions. Further, in an effort to

s S
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minimize the number and types of tests necessary to define the parameters of a given model, it

is highly desirable that it be nonphenomenological, i.e., that the global properties of the compo-

site be synthesized from the constitutive properties of the fiber and matrix, the fiber-matrix

interface conditions, and the geometry of fiber reinforcement. A candidate modeling approach

that satisfies the above objective is the " mixture theory with microstructure". According to the

mixture concept, the fiber and matrix are modeled at each instant of time as superposed con-

tinua in space. Each continuum is allowed to undergo individual deformations. The micros-

tructure of an actual composite is then simulated by specifying the nature of the interaction

between the continua. The key element for the development of a mixture model for composites

with periodic microstructure is an asymptotic procedure called "multivariable asymptotic expan-

sions". This mathematical technique with a "smoothing" operation, leads to the desired mixture

forms.

An improved laminated composite plate theory that can simulate in-plane responses accu-

rately is developed by introducing a new displacement microstructure over the thickness of

plates and by using Reissner's new mixed variational principle (Reissner, 1984) which automati-

cally yields the shear correction factors of shear deformable plate theories (Reissner, 1946, Mind-

lin, 1951).

3.2 Development of Linear and Nonlinear Mixture Models for Metal-Matrix Composites

For fibrous composites, wave dispersion has been amply demonstrated via ultrasonic tech-

niques by such investigators as Tauchert and Guzelse (1972), and Sutherland and Lingle (1972).

Simulation of response phenomena associated with the material microstructure, such as

wave dispersion, requires a higher-order continuum description. Several such models have been

proposed, some phenomenological, some nonphenomenological.

A higher-order continuum model which simulates wave dispersion was first proposed by

Achenback and Herrmann (1968) for unidirectionally fiber-reinforced composites. This theory,

called the "effective stiffness theory", has been further studied and applied to fibrous composites
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by Bartholomew and Torvick (1972), Hlavacek (1975), Achenback (1976), and Aboudi (1981).

The aforementioned work concerned linear materials. By modifying the original methodology,

Aboudi (1982, 1985) extended the linear model to account for inelastic responses of the compo-

Asite constituents.

In addition to the effective stiffness modeling concept, a mixture approach has been fol-

lowed by a number of investigators. A phenomenological version of this model type was

adopted by Martin, Bedford and Stern (1971). Deterministic, nonphenomenological mixture

theories were introduced by Hegemier, Gurtman and Nayfeh (1973), Hegemier and Gurtman

(1974), and Murakami, Maewal and Hegemier (1979). Although capable of simulating nonlinear

component responses and interfacial slip, this work was limited to waveguide-type problems.

This limitation was removed in the mixture theory developed for laminated composites by

Hegemier, Murakami and Maewal (1979), and Murakami, Maewal and Hegemier (1982). In

their papers, it was demonstrated that the mixture-type model was capable of simulating har-

monic wave dispersion in laminated composites more accurately than the effective stiffness

theories. Further, the mixture-type model requires fewer governing equations. The accuracy

and efficiency of the mixture theory is due to the use of appropriate displacement and stress

microstructural fields, and a judicious smoothing technique. These are obtained by an asymp-

totic procedure with multiple scales. This procedure yields a series of microboundary value

problems (MBVP's) defined over a unit cell, which in term represents the (periodic) microstruc-

ture of a composite. The lowest order version of the MBVP method is equivalent to the '10(1)

homogenization theory" summarized by Bensoussan, Lions, and Papanicolaou (1978), and

Sanchez-Palencia (1980). The latter, while it generates appropriate static moduli, is nondisper-

sive. Simulation of wave dispersion requires at least a theory which is classified as an O(e)

homogenization theory in which e denotes the representative ratio of micro-to-microdimensions

of a composite.

To date an O(e) mixture theory has not been constructed for fibrous composites subject to

arbitrary wave motion. Construction and validation of such a 3D model for unidirectional

I k. . A-
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binary composites with periodic microstructure is the objective of the research. To facilitate

this task, the asymptotic procedure with multiple scales noted previously is combined with a

variational technique (Murakami, 1985). Following development of the basic equations, the

dispersion of time-harmonic waves is studied and the results are compared with experimental

data for boron/epoxy (Tauchert and Guzelse, 1972) and tungusten/aluminum (Sutherland and

Lingle, 1972) composites. The good correlation obtained with experimental data indicates that

the proposed mixture model furnishes a basic tool by which dynamic responses of elastic compo-

sites can be investigated.

Following the development of a linear mixture model for metal-matrix composites, an

extension of the model to include material nonlinearities has been attempted. Future work will

include completion of development of a nonlinear mixture model with validation studies. As

4part of this effort, the constraint hardening and fiber breakage will be incorporated.

93. Development of An Improved Laminated Compo8ite Plate Theory

The application of metal-matrix composites in the form of laminated plates has created a

demand for the development of a laminated composite plate theory in which each layer may

experience plastic deformation with constraint hardening (Dvorak and coworkers, 1976, 1984),

and transverse cracking. In order to simulate the inelastic response of each layer, plate theories

should be capable of predicting accurately in-plane strains which yield inelastic responses.

In a series of papers, Pagano (1970a,b) derived exact elasticity solutions for bidirectional

composites for the problems of cylindrical bending and simply supported rectangular plates.

Pagano showed the importance of the transverse shear effect for the predictions of accurate

plate deflections and the necessity of improving assumptions for in-plane displacements, which

are assumed to be linear across the thickness of the plate in the Kirchhoff as well as the

Reissner-Mindlin shear deformable plate theories. Since the development of laminated plate

theories, including the effect of the transverse shear by Yang, Norris and Stavsky (1966) and

Whitney and Pagano (1970), many higher order laminated plate theories have been proposed.

I A
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Historical accounts of such efforts may be found in the articles by Seide (1980), Bert (1984), and

Reddy (1984). However, only a few attempts have been made to improve the in-plane strain

responses.

New high-order plate theories have been developed with the help of a new variational prin-

ciple (Reissner, 1984). The improvement of the in-plane responses is achieved by including a

zigzag shaped C' function to approximate the thickness variation of the in-plane displacements.

In any approximate plate theory, kinematic assumptions require corresponding constitutive

assumptions for transverse stresses. As an example, both the Kirchhoff and the Reissner-

Mindlin plate theories adopt a displacement field which satisfies a state of plane strain in the

thickness direction. In the Kirchhoff theory the stress field is assumed to be in a state of plane

stress which means that all transverse stresses are zero. In the Reissner-Mindlin plate theory

only the transverse normal stress is set to be zero in the stress-strain relations. This, in turn,

implies that Hook's law, as it is, cannot be used. As a result, a more complicated displacement

* assumption over the thickness of the plate must be introduced with suitable stress assumptions

which are not trivial. Reissner's aiew mixed variational principle (1984) provides a solution to

the above shortcoming; it is a variational principle for arbitrary displacement and transverse

stresses, in which the original three dimensional stress-strain relations can be used.

By using the two key elements: a zigzag shaped C' interpolation function for the displace-

ment variation over the thickness of the plate and the application of Reissner's new mixed vari-

ational principle, new shear deformable laminated plate theories with improved in-plane

responses were developed (Murakami, 1985, Toledano and Murakami, 1985). Copies of these

references are included in Appendix B, together with the paper which compared the difference of

the two plate theories of different order (Murakami and Toledano, 1985).

.b.
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The overall thrust and implication of the above work is that by the new laminated compo-

site plate theories it is now possible to carry out nonlinear plate analyses in which some layers

experience plastic deformations. For the composite plates made of metal-matrix composite lam-

inae the new plate theories can accommodate the new constitutive model developed by the non-

phenomenological mixture theory.

4. PUBLICATIONS

The following papers were prepared, and submitted for publication, during the reporting

period covered by this report:

I. Murakami, H. and G. A. Hegemier, "A Mixture Mod 4 for Unidirectionally Fiber-

Reinforced Composites," submitted for publication.

2. Murakami, H., "Laminated Composite Plate Theory with Improved In-Plane

Responses," Proceedings of the 1985 PVP Conference, ASME, PVP Vol. 98-2, 1985,

pp. 257-263, also submitted to ASME Journal of Applied Mechanics.

3. Toledano, A. and H. Murakami, "A High-Order Laminated Plate Theory with

Improved In-Plane Responses," submitted for publication.

The following paper was prepared for a cancelled symposium during the reporting

period and will be submitted to an appropriate symposium.

4. Murakami, H. and Toledano. A., "An Improved Laminated Composite Plate Theory,"

will be submitted.
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5. INTERACTIONS

The following is a list of the presentations at meetings and conferences by the principal

investigators which occurred during the reporting period on issues related to the research done

under the present contract:

1. Murakami, H., "A Mixture Model for Metal-Matrix Composites," oral presentation at

the Tenth Annual Mechanics of Composite Review, Dayton, Ohio, October 15-17,

1984.

2. Murakami, H., 'Some Basic Inelastic Response Features of the New Endochronic

Theory," oral presentation at the 21st Annual Meeting of the Society of Engineering

Science, VPI, Blacksburg, Virginia, October 15, 1984.

3. Murakami, H., "Laminated Composite Plate Theory with Improved In-Plane

Responses," oral presentation at the 1985 PVP conference, ASME, New Orleans,

Louisiana, June 24-26, 1985.

6. LIST OF PROFESSIONAL PERSONNEL

Scientific personnel supported by the contract during the reporting period are

1. - .incipal Investigators: Dr. H. Murakami, Assistant Professor of Applied Mechanics,

. and Dr. G. A. Hegemier, Professor of Applied Mechanics.

2. Research Assistants: Mr. Akira Akiyama, Mr. Albert Toledano, and Mr. Thomas

Impelso, PhD students in Engineering Sciences (Applied Mechanics).
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ABSTRACT

A binary mixture theory with microstructure is constructed for unidirectionally fiber-reinforced

elastic composites. Model construction is based on an asymptotic scheme with multiple scales and the

application of Reissner's new mixed variational principle (1984). In order to assess the accuracy of the

model, comparison of the mixture model predictions with available experimental data on dispersion of

harmonic waves is made for boron/epoxy and tungusten/aluminum composites. Formulas for the

effective moduli are also presented, and the results are compared with test data and other available

predictions.
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1. Introduction

With the advent of high strength and stiffness fibers such as boron and carbon, and the develop-

* ment of techniques for binding such materials to plastic or metal, fibrous composites have become

important elements of modern structures. Such composites, due to their microstructural heterogeneity,

may exhibit response phenomena for some environments that are not observed for homogeneous

materials. An example of these phenomena for dynamic environments is wave dispersion, and under-

standing of which is important both from the standpoints of direct response prediction and indirect ana-

lyses associated with such topics as nondestructive testing. For fibrous composites, wave dispersion has

been amply demonstrated via ultrasonic techniques by such investigators as Tauchert and Guzelse

(1972), and Sutherland and Lingle (1972).

Simulation of response phenomena associated with the material microstructure, such as wave

* dispersion, requires a higher-order continuum description. Several such models have been proposed,

some phenomenological, some nonphenomenological.

A higher-order continuum model which simulates wave dispersion was first proposed by Achen-

back and Herrmann (1968) for unidirectionally fiber-reinforced composites. This theory, called the

"effective stiffness theory", has been further studied and applied to fibrous composites by Bartholomew

and Torvick (1972), Hlavacek (1975), Achenback (1976), and Aboudi (1981). The aforementioned

work concerned linear materials. By modifying the original methodology, Aboudi (1982, 1983)

extended the linear model to account for inelastic responses of the composite constituents.

In addition to the effective stiffness modeling concept, a mixture approach has been followed by a

number of investigators. A phenomenological version of this model type was adopted by Martin, Bed-

ford and Stern (1971). Deterministic, nonphenomenological mixture theories were introduced by

Hegemier, Gurtman and Nayfeh (1973), Hegemier and Gurtman (1974), ar. Murakami, Maewal and

Hegemier (1979). Although capable of simulating nonlinear component responses and interfacial slip,

this work was limited to waveguide-type problems. This limitation was removed in the mixture theory

developed for laminated composites by Hegemier, Murakami and Maewal (1979), and Murakami,

Maewal and Hegemier (1982). In their papers, it was demonstrated that the mixture-type model was

N .. .6A-- ' ,, , -,. % % ', . ... - . .. -, % " . . .- ,, ,. •..o,. . .,, , - ,-, -, . -,.., -, -,
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capable of simulating harmonic wave dispersion in laminated composites more accurately than the

effective stiffness theories. Further, the mixture-type model requires fewer governing equations. The

accuracy and efficiency of the mixture theory is due to the use of appropriate displacement and stress

microstructural fields, and a judicious smoothing technique. These are obtained by an asymptotic pro-

cedure with multiple scales. This procedure yields a series of microboundary value problems (MBVP's)

defined over a unit cell, which in turn represents the (periodic) microstructure of a composite. The

lowest order version of the MBVP method is equivalent to the "0(1) homogenization theoryr summar-

ized by Bensoussan, Lions, and Papanicolaou (1978), and Sanchez-Palencia (1980). The latter, while it

generates appropriate static moduli, is nondispersive. Simulation of wave dispersion requires at least a

theory which is classified as an 0(E) homogenization theory in which e denotes the representative ratio

*. of micro-to-macrodimensions of a composite.

To date an O(E) mixture theory has not been constructed for fibrous composites subject to arbi-

trary wave motion. Construction and validation of such a 3D model for unidirectional binary compo-

sites with periodic microstructure are the objective of this paper. To facilitate this task, the asymptotic

procedure with multiple scales noted previously is combined, with a variational technique (Murakami,

1985). Following development of the basic equations, the dispersion of time-harmonic waves is studied

and the results are compared with experimental data for boron/epoxy (Tauchert and Guzelse, 1972)

and tungusten/aluminum (Sutherland and Lingle, 1972) composites. The good correlation obtained

with experimental data indicates that the proposed mixture model furnishes a basic tool by which

dynamic responses of elastic composites can be investigated. While the model construction procedure

is applicable to inelastic component response and interface slip, extension and investigation of the non-

linear problem is deferred to later publications.

2. Formulation

Consider a domain V which contains a uniaxial periodic array of fibers embedded in the matrix, as

shown in Fig. 1. Let a rectangular reference system t 7, 3 be selected with R, in the axial direction

of the fibers. In the 72, R3-plane, a typical cell that represents the geometrical microstructure of the

a,
'.Ii

J',,
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composite is shown in Fig. 2 for a hexogonal array.

For notational convenience forms ( ) a, 1,2 denote quantities associated with material a

with a - 1 representing fiber and a - 2 matrix. Cartesian indicial notation will be employed in which

Latin indices range from 1 to 3 and repeated indices imply the summation convention unless otherwise

stated. In addition, the notations (-)j = 6(-)/8R and (-),, M (")/8' will be employed in which t

* ' represents time. Quantities of the form (-) and ( ) denote dimensional and nondimensional variables,

respectively.

The governing relations for the displacement vector A(") and the stress tensor ) in the two

constituents are:

(a) Equations of motion

p (a) , Gz) ia) (1)

where (") is the mass density;

(b) Constitutive relations

& - e ) + 2() e() (2)

whet.; t(* ) are Lame's constants, e, ) is the infinitesimal Cauchy strain, and 8., is the Kronecker

delta;

(c) Strain-displacement relations

a) . 1 qj_4 ) (a(3,.., e,'j( 2 ( + " )(3)

(d) Interface continuity relations

, (I) z(2) , &J(I,.,). &J(2),,l) on j (4)

where P'I) - 0 on the fiber-matrix interface ,

(e) Initial conditions at i - 0 and appropriate boundary data along the boundary 8 V.

Conditions (a) - (e) define a well posed initial boundary value problem. However, due to the

large number of fiber-matrix interfaces the direct solution to this problem is extremely difficult. The

. ," .- , ', < - . -.. ...
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*objective of the subsequent analysis is to alleviate such difficulties by deriving a set of partial differential

equations with constant coefficients whose solution can be utilized to approximate the solution of the

problem. To this end, it will be convenient to nondimensionalize the basic equations by using the fol-

lowing quantities:

Atypical macrosignal wavelength

typical fiber spacing or cell dimension

C(",) reference wave velocity and macrodensity

E(,) = Pb",) Cmm) reference modulus

,() -- A/C.) typical macrosignal travel time

E = A/A ratio of micro-to-macrodimensions.

With the aid of the above notation, nondimensional variables are now introduced according to
4".

(xI x 2 , x 3)- I , x 2 ,Y3)/A , M 7/,,

With the variables defined according to (5), the material properties are seen to be periodic in the

x 2, x 3-plane in which the periodicity of the fiber lattice structure may be defined by the cell. It is

*expected that stress and deformation fields will vary significantly with respect to two basic length scales:

(1) a "globar or "macro length typical of the body size or loading condition, and (2) a "micro" length

typical of "ceir planar dimensions. Further, it is expected that these scales will differ by at least one

order of magnitude in most cases. This suggests the use of multivariable asymptotic techniques (Ben-

soussan, Lion and Papanicolaou, 1978, Hegemier, Murakami and Maewal, 1979, Sanchez-Palencia,

1980). This approach commences by introducing new independent microvariables according to

X 1 -- . (6)

Therefore, all field variables are considered to be functions of the microvariables x; and x;, as well as

the macrovariables .A, i - 1-3:

f (xI, X 2, X3, 1) - f (xI, x 2, x 3, x;, x;, t ) (7a)
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Spacial derivatives of a function f then takes the form

Eoxj
e a~j

where ( )/ax*, 0. By introducing the notation ( ), . 0 ( )/8xi equation (7b) can be rewritten

as:

f,- ,+-f. (7c)

In the sequel f" will be written as f for notational simplicity.

The operations (7), when applied to all field variables, lead to the following "synthesized' govem-

ing field relations:

(a) Equations of motion

7 (0) + a( ,).- (a) i ,9m) , - (,j53 . (8)

(b) Constitutive relations

Sj- ) - A " ) 8j ekt ) + 2A) e) ( , (9)

(c) Strain-displacement relations

e( I (a 1 (10)
2,' - ,1 -J +) + - +

(d) Interface continuity conditions

14. ( 1) -- *4(2) , O'aj (,D -- O((2)lv ( l )  on 0Jr 1I)

At this point, the variation of field variables which satisfy the periodicity with respect to x7" is assumed.

According to this condition field variables take equal values on opposite sides of the cell boundary. The

premise allows one to analyze a single cell in an effort to determine the distribution of any field variable

with respect to the microcoordinates x. The x" -periodicity condition is motivated by the Floquet and

)i
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Block theorems (Brillouin, 1946) for harmonic wave in periodic structures. Certainly, it eliminates

boundary layer effects. However, it is expected to provide a good model for the global wave

phenomena in fibrous composites with periodic microstructure.

For the construction of a mixture model it is convenient to cast the field equations in a variational

form by using the Reissner new mixed variational principle (Reissner, 1984). In the Reissner varia-

tional principle the variations of displacement, strain with (10) as definition and transverse stresses, i.e.,

all stress-components except orj ), are considered. Thus, it is convenient to rewrite the constitutive

relation (9) in terms of the axial strain elf ) and the transverse stresses:

i -r, = (A + 2O)O)eh ) + X(O) Ieh).. )+ ej ).-) ,

e )  1 ( [ ) liia

[2e+) (.) , 2e3a ( ) , 2e )) ... )A

1 1 a) irt) , c)] (12)

Using the equations of motion (8), Gauss' theorem, and the x*-periodicity condition, it can be

demonstrated that the Reissner mixed variational principle, applied to the synthesized fields by the mul-

tivariable representation, takes the form:

fff (I, el ) alf) + 8eW) &JQ + 8el ) &(V + 28eW ) &(a

+ 28 ev & 101) + 28 e~ 12~

+ 8 )(ul.' + uj . - eh ) ) + 8&34) (u. + I u.. - e2e (...

Et £
~~~~~~+ lu)(jj) + ull +t,, 2e)..)

+ 8&36V(Ui('Y + 4:.n) + . ul- e (- *))
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++ u 'u + 1 u,.- 2e[ (. dx

+f (5U(2) - 8u,')i + (U,(2 ) - U())jds dX1 dX2 dX3

fff f 8U1 dX dXc dX3V a- A

) r I' ff u, j(-)dx;dx; dA(13)

where A ' denotes the x;, x;-domain of the cell occupied by material a (Fig. 2), (.a> is used for the

approximate transverse stresses, ,7. ) denotes the traction vector on the surface a V. where the traction

is specified, ds" is an infinitesimal line element on J9, and dA is an infinitesimal surface element on

Sthe boundary of V :8 V. In (13) basic variables are the displacement ui(*>, the transverse stresses &()
I,

and the interface traction vector 7 . The Euler-Lagrange equations of (13) include (8a), (1la), (12),

and

- on J. (14)

The above variational equation (13) furnishes a tool with which a mixture model can be obtained

with appropriate trial displacement and transverse stress fields. The basic requirement for the variables

is the x -periodicity condition on the cell boundary &A. The microstructural variation of the trial func-

tions can be obtained by the asymptotic procedure (Murakami, Maewal and Hegemier, 1981).

3. Asymptotic Analysis

The premise that the composite macrodimension is much larger than the microdimension,

e << 1, and the form of scaled equations (8) and (10), suggest the expansion of the dependent vari-

ables in the asymptotic series:

(Ui, ' < ,4, t) -X1 U,,u,W Oi,,W)"4 Qk.,) (15)

% % 
_- 'I- - - 17

'C'

+.low,



.10-

If (15) is substituted into (8).11) and the coefficients of different powers of e are equated to zero, a

sequence of problems defined on the cell is obtained. The first of the equations in this sequence fur-

nishes

l,,oj. 0 , - 0 (16)

Equation (16a) implies that u/jt is independent of x; and yields with the zero-th order expansion of

(lla):

Ui o .) (Xk I) (17)

The remaining systems of equations obtained from (8)-(10) are, for n > 0:

Q' jh.+ ,,- P(au, ,,, - ,.'1j.) ,Osjf ) - tT.4 s) (18)

.cr~) X (a)y eJn,) + 24L )e ) , (19)

e4j) -( " + u1)' + ,)+l + I&,.+),,.) (20)

To be added to the foregoing are the interface conditions and the x'-periodicity conditions for n > 0:

54 1) 5 (T0  ' ) on J , (21)

ui" and (7j~jl)Vj(2) are x'-periodic on OA (22)

The first set of microboundary value problems (MBVP's) for oj. and ujSi, called the 0(1)

MBVP's, is defined by (16b), (18b), (19)-(20), (21b), (22b) with n - 0, and (21a), (22a) with n - 1.

The 0(1) MBVP's are excited by UL()j . Similarly, a sequency of MBVP's is defined for each n from

(18)-(22). With appropriate integrability and normalization conditions, higher order terms may be

computed by solving the MBVP's. In particular, the 0(1) MBVP's are the ones solved for the 0(1)

homogenization theory proposed by Bensoussan, Lion and Pap,'nicolaou (1978) and Sanchez-Palencia

(1980), and, also, form the basis of the mixture theory which may be classified as an O(e) homogeniza-

tion theory. The asymptotic approach yields the microstructures of displacement and stress fields after

solving a multitude of MBVP's which are complicated.

ELNV
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In order to use the approximate solutions of the MBVP's in the course of developing a mixture

model, and to ease the burden of solving the MBVP's exactly, a variational procedure was adopted by

Murakami (1985) for laminated composites with the help of the Reissner new mixed variational princi-

ple (Reissner, 1984). A similar approach is adopted here for fibrous composites. To obtain the lowest

order mixture theory by using (13), it is necessary to obtain trial displacement and transverse stresses

to O(e). In the sequel, the trial functions are obtained for a hexagonal cell with a concentric cylinders

approximation as shown in Fig. 2. In Fig. 2, (r,O) are micropolar coordinates:

r- -rx; 2 + x ; 2  , tan0-=x /x , (23)

by which r = 1 constitutes the cell boundary and r = /" T3, denotes the interface ,0. The quantities

n(a) indicate the volume fraction of material a and satisfy

n (l) + n (2) - 1 (24)

In terms of the polar coordinates the x*-periodicity conditions for a hexagonal cell with the concentric

cylinders approximation reduce to the form:

f(xr,O,t) =f(k ,r,7r + O,) at r - 1 (25)

4. Trial Displacements and Transverse Stresses

The 0(1) stress and O(e) displacement fields are obtained by solving the 0(1) MBVP's which are

defined by (16b), (18b), (19)-(22) and (24). These MBVP's are excited by Ui(,)j. The exact solution

of u, 'i is furnished in the Appendix. For the mixture formulation it is convenient to introduce an

O(e) displacement variable which represents Uj(o)j + Uj(o), according to:

SI j u 1(z4"ds l -f uQk!.j f 4tds.  (26)

where A (-7r) is the area of the cell. Due to the fact that u, 1 is excited by Ui(o)j + Uj(o). one

obtains

3 2

S-S (27)

......... -,..-. . .
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Equation (27) can also be obtained if one substitutes the exact % j in the Appendix into (26) and

eliminates U(,)j. To render the analysis tractable, it is preferable to utilize an approximate form of

the exact solution for u4I . The exact solution indicates that the following form of the 0(4) displace-

ment yields a good approximation:

2 3
LIuAi1 (xk ,x. t) - O (4,t)g(l) (r) cos 0 + S (k t)g(O) (r) sin 0 (28a)

where

g(1) (r) s-- , g(2) (r) r (- ( + _.)(28b)
-)l n (28b)

Anticipating the O(e 2) difference of the average of u/(a) on A (0), equations (17) and (27) yield the fol-

lowing trial displacement field:

U () xrj't) Ui-) ,t) + f Ui 0X ,Xj 1 (29)

where uj is defined by (28). Equations (29) and (28) indicate that the mixture displacement vari-

2 3
ables are U,(', U- ) , Sj and S, with the constraint (27).

By using (29) in (19) with n - 0 and considering the O(e 2) differences of the average transverse

stresses, the 0(1) trial stress field may be expressed as:

&~22(o) () 722(Xk It) 8a 2 cos 20 cos 20 Isin 2011
(a- () [c1 11

& ~ 33(o) 7T33(Xk,t) + 2 61)~ (Xk,,t) 1o 2 + 6?) (Xkjt) 1-cos 201 + t j) (X0~) sin 20I
&23(o) T23(Xk,t) r 0 sin 20 J1 0 j

(30a)

&31() 3 (Xkt)] 8 f sino 2 cos28.a.I'712(o)i " IrI2(,t)J + 'r t ] (,,t O [cs201+ t-0 (C ossin 28+ k (30b)

In order to define the 0() trial stress field it is convenient to define the 0(e) stress variable

according to

, ,,- f 1. .;., ±f ..j )V t~dS"(

A (k4r) i WtPd~) ds' f ~ (31)eA. A

If one integrates (8a) over A(a) and utilizes the x ° -periodicity condition, one obtains the mixture

momentum equations:

a,.4S.,
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n (a) (a;) + (-1)P f(a) (~a) a)~(2

where the average operation is defined by

frX ')f(0) k x;,) dc&d; (33)
fl(a)A A

From (32) it can be seen that Pi represents an interaction body force between the two constituents

across the interface. Also, the formi of (32) with P1 defined by (31) satisfies the integrability condition

adopted by the 0(1) MBVP's for a,(l which are defined by (1g)-(20) with appropriate n's and (31).

As an 0(e) trial stress field which satisfies (31b) one may use the following approximate fields:

&220I)3

&330)] - P2(xk~t):(a)(r) cos9 I + P3(x~rt)g~o) (r) sin 0 (34a)

CJ'23j)

M, II3(~ P)(Xkt)g a(r) csin4b)
02( )1 2 cos9 3b

As a result, the trial transverse stresses are expressed as:

where &(I)) and &()) are defined by (30) and (34), respectively.

5. Mxture Equations

By substituting the displacement and transverse stress trial functions defined by (29) and (35),

respectively, into the Reissner variational equation (13), one obtains the following relations as the

Euler-Lagrange equations:

(a) Equations of motion

n'~ao,,7) + (-)P+ I' -, n(a) () i- 1-3 (36)

2 1oI) 2 -12

M~4 + 1 2 (o4120a- ') R1 2 )- ISix 1, (37a,b)

,w r- ~ - w- ~ '4. % 4. \ *). ii.
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3 1 ( oP) + C r ?) _ + R., 1 - 1,3 (37c,d)... j + - , i ,

3 2 aj(tp _ , t,+ R Y) . ! 2,(37e)
M22.2 + M 33.3 + - IS 2.(7

where

- n)A A

2 3 1 2 i
E(Mj ,M ) .) ---- Jsi)dr dr(38

and
2 h()() p _L h(2) , -1 (2 n( IL n n(l))  (39)

p h 4-- (2 n ( 2 )

(b) Constitutive relations

20 ) a 2 n

22 2, / [22 + -u UN + V .I)1+(s/.) + U
3 2'33(31 X 2 +j I + (S) .I S a)

3

( P2 3 "/ U3  (a ) )2 + 3 S ,+ 2 3 S

131 - U 3.1 + Uh +- h(a)  S, (40)

4

2 2 3 3
pi - j (UVJ - Uf'D/e 2 + 01i2)S 1,2 +~ ) + (S3, I +sj)J

P2 032[(U Y UII)E 2 VSi+ h (S2.2 + S2.3)]

3 3 3

P3 - 3 [(U12 - I) )/E 2 + Y S1,I + h (S2,2 + S3.3)] (41)

W where

2 2
I- h (, ,6/( +A a h- z h' (a (42)
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2 2 h 2 h 3 h
M22 - hP2 M3 - -2jP 2 M2 - A M2 - - P3

3 3 h 2 2 2 3 3

M 33 - hP 3 , M 31 2 "PI , M 23" M 23 M3 1 -M23" M12- 0 (43)

where it is understood that

2 2 3 3MU -M j .- ; (44)

R j? t -I?/ n (2) .R 11) = U Y)/2 + t i))/,n (2) ,Rj -- alP/ (I

RJ) - (- tJ)/2 + t3(j) )in() (45)

and

,jj) _ _M(2) 2 ,.(2), t ; . (2) / (2)

2 3( 2 3

fjj)_-- (A+ )(2)(s2- ))1n() tjj) . _)(2)(S2+ Sjln(2),

J) +- ( U +) 2)(2 2 )/n 2 )  (46)

The remaining constitutive relations associated with a If) are obtained from (12a); the results are

c-' (x + 7A U ) UN + UN + (-i)'+'(S2 +s3)/' (47)

2 . 2

Mi 2 ') + 2A )( a)  (a) + (48)

The associated boundary conditions are on 8 V

u(a),0 (aa)j, PaP) or 8 W) -0 , i- 1,2,3 (49)

2 1 2

M,,vjs - T or 8S,-O , i-1,2 (50a)

3 303
- T or 8S, -0 , i-1,3 (5Ob)

ta
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where

(..p) ,X &r
E(2v, T, - 1 -2 T)g)(coso sine) dx dx; (51)

T, Ti A a-1 i

Equations (36)-(50) and the initial condition

j jU(M) i U(a)
i, ,S ,Sj at t-O on V (52)

define a well posed initial boundary value problem with respect time I and the macrocoordinates xk.

- 6. Harmonic Wave Dispersion Spectra

In an attempt to test the accuracy of the mixture model, the phase velocity and group velocity

- spectra of the mixture theory have been compared with available experimental data for time harmonic

waves. For the comparison harmonic waves which are propagating at an arbitrary angle of incidence in

a full space of the following form are considered:

2 2 3 3[up)  up), up, U12), ujD . uJ2) , s,/ik , Vik, /k, r

- exp{ik(xl cos4, + x 2 sin q6 cos9 + x 3 sin 0 sin )- iw "  (53)

where

2s , s 33, 2S2, A ,sA (54)

a) j
and [ ]T denotes the transpose of [ 1. In (53) L4( and si are constant amplitudes, k denotes the

wave number, w represents angular frequency, 4, is the azimuth measured from the x, axis, and 9 is

the longitude; the direction of the wave propagation may be best represented by the wave vector k:

k - k [cos 46 , sin4 6 cos 9, sin 4 sin OJT (55)

W %
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Substitution of (53) into (36) and (37), which are expressed by the displacement variables with

(40)-(46), yields an eigenvalue problem for ew of the form:

1KW - (*EW)2 IMJU (56)

where [KI and [M] and are 11 x 11 real symmetric matrices, the elements of which are functions of

the mixture constants and the wave vector. Furthermore, [M] is a diagonal matrix. Upon calculation
4.

of the eigenvalue ew for a given ek, one obtains the phase velocity C. as

Cp - (ew)/(ek) (57)

For each computed eigen pairs (ew , .)k, k - 1,2,'• 11 the group velocity

" dw (58)

can be obtained by taking the derivative of (56) with respect to ek:

[K I k - 12(.w) [M] + () [M1 k (59)

For the kth eigenpair equation (59) yields

UT I(K I - 402 [M'1) U
(C,)/c- .(60)

In the subsequent simulation a typical cell dimension 1 was chosen to be a cell radius by introducing

the concentric cylinders approximation of the equal area. The reference elastic modulus and density

used for the scaling are

2 2

n-((mn) (61)
a- I a- I

where E( is Young's modulus. The dimensional frequency P'(H,) can be computed from aw by

v- (Ew))vr '( /(2rA) .(62)

Ui

1W

.~%,: ~.A ~ 14. ~ ~ . - *'. -
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Numerical results are presented for a boron-epoxy composite, for which experimental results were

presented by Tauchert and Guzelse (1972) for a waveguide case - 0* and a waveflect case 46 - 900.

The material properties are summarized in Table I in which the values for Poisson's ratio are

estimated. In the simulation A was computed from the fiber diameter (- 2,J=TW) which was

1.016 x 10-1 m. The group velocity spectra for a waveguide case 4, - 00 are shown in Fig. 3 for

two acoustic modes: a "gross" longitudinal mode and a "gross" shear mode. In the figure the same sym-

bols as the reference of Tauchert and Guzelse are used for the experimental data points. It is noted

that reasonable agreement is achieved for the waveguide case in which pronounced dispersion is

observed. The group velocity spectra for a wavereflect case 0 - 900, 0 - 0* in which the wave vector is

normal to the fiber axis are shown in Fig. 4 with the experimental data. The figure includes three

acoustic modes: a "gross" longitudinal wave (P-mode), a "gross" vertically polarized shear wave (SV-

*. mode), and a "gross" horizontally polarized shear wave (SH-mode). The sets of experimental data

correspond to the "gross" P-mode and the "gross" SH-mode. It is noted that there are significant devia-

tions from the "gross" SH-mode, but the overall agreement is not unsatisfactory if one admits the scar-

city of the experimental data and the difficulties associated with the measurement of shear wave veloci-

ties. It was reported by Tauchert and Guzelse (1972) that a shear wave exhibited extremely high

damping of the pulse. A similar observation and the scatter of shear wave data were reported by Sachse

(1974) who conducted modulus measurements of boron/epoxy composites by using pulse-echo tech-

niques. He concluded that "the measurements of the present investigation indicate that shear waves

propagating along and across fibers in the composite materials tested do not always propagate at the

same speed."

Sutherland and Lingle (1972) reported phase velocity measurements for tungusten/aluminum

composites whose material properties are shown in Table 2. The equivalent cell radius Z was computed

from the given fiber spacings which yield the area of a typical cell j (- V 12) 0.579 x 10-6 rn2. Fig-

ure 5 shows the phase velocity vs. frequency relation for the "gross" longitudinal mode. A reasonable

agreement is observed between the experimental data and the theoretical prediction.

.... ..
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7. Effective Moduli

The 0(1) homogenization theory which yields the effective moduli of composites can be obtained

by taking the limit of e - 0 and equating the constituents' displacements

i ,(I) i LI (63)

By introducing the above constraints, equations (36) yield

'WU _ p(m) U (64)

where

-.(.) n( oa), (in) -E n(a) ) (65)

Equations (37) yield

- (1a) + R2(?) - 0 , i-1,2,3 (66a)

12a)- o .a) + R 2) - 0 , 1-1,3 (66b)

By eliminating Si by (66), equations (65a), (40) and (47) with (63) furnish

Sm) [E(m)]e(m) (67)

where

e( m ) " lU,,i , U2,2 U3,3, UI2,3 + L3,2 , U3, 1 + 1,3, UI, 2 + U2,T , (68)

and [E(m)] is the effective modulus matrix with transverse isotropy due to the concentric cylinders

approximation and is defined in the Appendix.

The formulas for the effective moduli (B2) are assessed by comparing the results with the experi-

mental data reported by Datta and Ledbetter (1983) for boron/aluminum composites. The results are

shown in Table 3 in which the moduli computed from the effective stiffness theories for the square cell

by Achenback (1976) and for the hexagonal cell by Hlavacek (1976) are included by using the formulas

.b
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reported by Datta and Ledbetter (1983). The comparison has revealed that all high-order theories yield

almost similar results. It can be easily shown that the formulas for the effective moduli yield values

which fall between the upper and the lower bounds obtained by Hashin and Rosen (1964) for fiber-

reinforced composites.

8. Concluding Remarks

An asymptotic mixture theory with multiple scales was applied to unidirectionally fiber-reinforced

elastic composites with periodic microstructure. In the model construction, Reissner's new mixed vari-

ational principle was applied to the synthesized fields with multivariable field representations. In order

to assess the accuracy of the model the mixture dispersion spectra were compared with the experimen-

tal data obtained for the boron/epoxy composite by Tauchert and Guzelse (1972) and for the

tungusten/aluminum composite by Sutherland and Lingle (1972).

A satisfactory correlation with the experimental data indicates that the proposed mixture model

furnishes a basic tool by which dynamic responses of the composite structures can be investigated.
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Appendix

A. Exact %t of the 0(l) MBVP's:

u G g (a)(r) I (U (). 2 + U2 00)j COS 0 + (U3(0).j + U1(O),3)sin 0)

Uy 2% b- (U2(0),2 + U/3(0).3 + j U,(0),,1)ga)(r)COS 0

2+ a g()()CS0+ k" j ()cos 30) (U 2 ().2- U3 (0).3)

+ (g(a) (r)sin 0 + k(-) gju) (rOsin 30) (U2(0).3 +U302)

+D21t.[ 3 ( - k (a))g/(') (r)COS90 + (I + k 6))gl~y) (r)COS 39) (U2(0).2 - U3(). 3)

+ (3(1 - K(a))g( I) (rsin 9 + (1 + kja)g 1h) (rsin 39) (U2(o),3 + U3(0)2)j

uf - b. (U2(0),2 + U3(0).3 + A U j(o)j1)g (a)(r)sin 9

+ am)llg~1() sin 0 k('-g ) sin 30) (- U2(0),2 + U3(0),3)

+ (g"')(r)cos 0 - k~)gjG)(rcos 39) (U2 (0),3 + U3(0),2)]

5~'+ (g6)(Wcos90 - Oag )W O 391 (U.2(0).3 + U3(0),2)]

+ bla)(3(1 - K ())g/~a)(r)sin 9 - (1 + K ('1)gWq)(r)sin 30)( U2(0 ,2 + U3(0).3)

+ 13 (1 -K' ))g~a)(rWcos9 -(1 + K('l))gjfl1,) COS 39) (U2(0),3 + U313() (Al)

where

2
b =(A+ jA)(2) -(k + AujM~)/(2d) , I AX+,s)(.)/n(0 + p(2)f(n(IDn( 2))
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g/lI(r) - gA )P(r) - 3 , g,)(r) - 0

g2)(r)- - r3 + r I  gl 2) (r - r- + r- 3)/n (2)

g,} )(r) - r 3 - (1+K (2))-2 14(1-K (2)+K (2)2)r-3- 3(I-K (2))2r-) , (A3)

In Eqs. (AI) alf( ) and b;a) are obtained by solving the linear equations for x- [all), bl' ) , aj 2),

bl2) IT:

[A) x , B (A4)
4x4 - -

4x 1 4xI

where

Al l  1 , A21 - 0, A3 " ,(1)/ s A41 = 0

A 12 " 3(1-K(1))n1
)2  , A 22 - (l+K(1))

n ( 1)2

A 32 -- A 42 - 3n (1#()(l-K(1)) , A 13- 1 , A23- -k6)/nl),

A 3 3 .#
2

)/n(
2

)11 - n A4)/n)} , A(43 - 3K( 2)#(2)/n(I) 2

A14 - - 3n(2)(1 + nri)(I - K(2)

A 24 - (1 + K(2))n(1)2 - (4- 3nm")(l - K(2) + K(2)2)/(n()(I + K(2))}

A 34 " 3, (2)(1 - K (2))(n (1) _ k (2)/n (1))

A 44 - - 3# (2)(1 - Kc(2))(f (1) + 3k(2)/n (D) + 12A (2 )(1 - K(2) + K(2)2)/In (1)2 + (2)) , (A5)

and

B, - B2"- B4 - 0 ,B 3 --- (#(M) AM2))2 (A6)

It is interesting to note that for most of practical composites bla), a - 1,2 are small compared with

a?

* .4 - c
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B. The Definition of [E (m)] in (67)
(iOn) (an)

O'll Ell E12 E12 0 0 0 UlI

0'22 E12 E 2 2 E 2 3 0 0 0 U 2.2

("33 E2 E23 E22 0 0 0 U 3,3

(.23 0 0 0 E44 0 0 U2,3
"+ U3 2  (BI)

031 0 0 0 0 Ess 0 U3.+ U1,3
(T12 0 0 0 0 0 Es5 Ul,2+ U2,1

where

2
I n H(aI(X + 2Mt) (a ) - (k(I) \- (2))2/d,a-I

2E T) -  17 ,(.a)-- _ (10)_(2))1,+ )) (k + )W)/ad,

a- I

2
E2(7)= x n(-) (X + 1jja) - 1(X + ;4) - (h + )(2))2/d, (- (1) - 2) ld,

a-I

2
Ek.) - 1 n (- )A I (h + At)(

1
)
1  + U.()ldl + WO(l-, (2l))2d2,

E4m - (Ejm" - E2T))12

2

- a (a )fL -(a) ( - (2)) 2/d3 (B2)
a-I

and where

2
d2 - I tz(a)/ (cl) + (X + )(2)(2n(l)n (2))  (B3)

a- I

I!
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Table 1. Material Properties of the Boron/Epoxy Composite Tested by Tauchert and Guzelse (1972)

Volume Young's Modulus Poisson's Ratio Mass Density

Fraction na E0 )  ()

379.2 GPa 2682 kg/m 3

, (l)Boron 0.54 (55 x 106 psi) 0.18 (251 x 10-6 lb sec2/in4)

5.033 GPa 1261 kg/m 3

* (2)Epoxy 0.46 (0.73 x 101 psi) 0.40 (118 x 10-6 Lb sec2/in4)

s,= .

Table 2. Material Properties of the Tungsten/Aluminum Composite Tested by Sutherland and Lingle

(1972)

Volume Young's Modulus Poisson's Ratio Mass Density

Fraction na)

(l)Tungsten 0.022 398 GPa 0.28 19194 kg/m 3

(2)Aluminum 0.978 71.0 GPa 0.34 2700 kg/m 3

+ ___________ __________ ____________

; + + . . . , . + + + . . + . + . . + .. ., . + . . + . . . . . . . .



Table 3. Comparison of Effective Moduli of a Boron/Aluminum Unidirectionally Fiber-Reinforced

Composite in Units of 1011 N/M2

Dataa Mixture Square Celia Hexagonal Celia

Model Model Model

Elm) 2.450 2.551 2.480 2.551

E') 1.825 1.868 1.856 1.872

E~T )  0.779 0.661 ..... 0.661

E!Tf) 0.604 0.578 ..... 0.578

EI2') 0.526 0.604 ----- 0.606

E f 0.566 0.559 0.451 0.561

a After Datta and Ledbetter (1983)

2.,.
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LAMINATED COMPOSITE PLATE THEORY WITH IMPROVED IN-PLANE RESPONSES

L Mu.amI
Deparutment of Applied Mechanics and Enginmring Sciences

University of California at San Diego
La Jolla. California

'.

:
ABSTRACT Arst-order shear deformation theory. (Whitney and Pagano, 1970), to

In order to improve the accuracy of the in-plane response of the obtain in-plane displacements by integration. This estimate yields an
shear deformable laminated composite plate theory, a new laminated accurate prediction of the in-plane strains. However, the drawback of the
plate theory has been developed based upon a new variational principle approwh is that the tress ilds do not satisfy plate equilibrium eqtm-
proposed by Reissner (1984). The improvement is achieved by including tions.
a zigzag shaped C' function to approximate the thickness variation of In order to facilitate a theory which accurately predicts in-plane
in-plane displacements. The accuracy of this theory is examined by response, a new laminated plate theory has been developed with the help
applying it to a problem of cylindrical bending of laminated plates which of a new variational principle, (Reisaner, 1984). The improvement is
has been solved exactly by Pagano (1970). The comparison of the in- achieved by including a zigzag-shaped Cv function to approximate the
plane response with the exact solutions for symmetric 3-ply and S-ply thickness variation of the in-plane tisplacemts. The advantage of
layers has demonstrated that the new theory predicts the in-plane u sing the new Relser variational principle is that it automatically yields
response very accurately even for small span-to-depth ratios. the transverse shear coastitutive relations with appropriate shear coffec-

tion factors. A comparison of the in-plane displacements and
INTRODUCTION predicted by the proposed theory, with Pagano's exact solution of

The advent of metal matrix composites and their application in the laminated plates in cylindricl beding indicates that inclusion of the zig-

" -. form of laminated plates has created a demand for the development of a zag function predicts the in-plane responses more efftiently than the

laminated composite plate theory in which each layer may experience inclumon of smooth nonlinear functions.

plastic deformation with constraint hardening, (Dvorak and coworkers,
1976, 1984), and transverse cracking. In order to simulate the inelastic FORMULATION
responses of each layer, it can be assumed that in-plane strains are pri- Consider a laminated composite plate composed of N orthotroplc
mary quantities, while transverse strains are secondary quantities. layers whose principal axes coincide with rectangular Cartesian coordi-

In his series of papers Pagano (1970, 1972) obtained elasticity solu- nates xt, x 2 and x3. The coordinate system is selected with x 3 normal to
tions for bidirctional composites for the problem of cylindrical bending
and for the problem of the simply supported rectngular plate. Pagano
showed the importance of the transverse shear effect for the prediction of
accurate plate deflections and the necessity of improving assumptions for
in-plane displacements, which are asumed to be linear across the thick- 1i
ness of the plate in the Kirchhoff a well as the Reissner-Mindlin plate 13

theories. Since the development of laminated plate theories including 101h -() ---

the effect of the transverse shear by Yang, Norris and Stavsky (1966),
and Whitney and Pagano (1970) many higher order laminated plate .h (2)-
theories have been proposed. Historical accounts of such efforts may be
found in the articles by Seide (1980), Bert (1984) and Reddy (194). h (3) - ,,-
However. only I Lew attempts have been made to improv the in-plane V
strain response IN

It has been stated by Whitney (1972) that the em f cel " 3
laminated plate theories for determinin in-plane is M impro

.k he iclusio of sha deformation. Among continuum plate theories a11h J (N) --
in which the number of equilibrium equations does not increa with the
number of layers, an improvement of the in-plane response was -h/ Si
attempted by including the cubic vartation of the in-plane displacements
across the thickness of the plate (Hilderbrand, Reissner and Thomas,
1949, and Lo, Christensen and Wu, 1977). An a powe estimate pro- Fig. 1 Coordinate system and the approximation of in-plane displace-
posed by Whitney (1972) uses the transverse shear strain obtained by the mants

U 257
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the Plane defined by x, and xz2  For notational convenience, ( Y), + 2 ~ - elf.)j + &8vII'(ub5 + 19- 2,H()
k- 12,- • N will denote quantities associated with the k-th layer. For +
a plate of loud thickness h, the thickness of the k-th layer is denoted by
nt)h a shown in Fig. 1, in which the volume fraction n ) satisfies+ -} ,1

N+ 8,#) {u) +u5 ) - 2el &. (.)Z n(* ) - I . (1)

Unless otherwise stated, the usual Cartesian indicial notation will be Nemployed where Latin indices rnge from I to 3 and repeated indices Z A'I SUM ,() dr3 bt+ &lu,(XJ.X.)
imply the summation convention. In addition, the notation ,-i A& )  2

(), = E ( )/Ox; will be employed.

With the aid of the foregoing notation the governing equations for - 1
the displacement vector u,(* ) and the stress tensor ar ) in the k-th layer - &u(xx2-")7J &xldr2

become:

(a) Equilibrium equations
O~j'+Jg'~Z f~)~k * TA 8 &idS (7)(2) + k FA)

where f, is body force; where &DT denotes the boundary of D with the outward normal s,,, on
(b) Constitutive equations for orthotropc layers which tractions 7 are specified, and At" is the x-domain occupied by

1 ,( e1  ~the k-th layer. In (7) e, .) implies the appropriate right hand side of
k~I Ii ~ I(3b). For an arbitrary variation of u, and -rU which is the approximationta 32 20 I Iof a3,, which satisfy (5) and (6), it can easily be shown that equations

I0 1,,] 0 012J (2a) and (3b) m obtained as the Euler-LArm e equations or (7). In
the process, equations (3a) and (4) are considered to be the definitions

+IF i"*0,3 (3a) TRIAL DISPLACEMENTS AND TRANSVERSE STRESSES
0 e3_A new laminated plate theory which includes the effect of

transverse shear and the improved in-plane normal strain approximation

IC 3 C3 I is faclitatld %,;, introducing appropriate trial displacement and transverse
12e23 1 1 0 0 22placement, a zigzag in-plan displacement variation across the thickness

-- u OI2el stress flihk tnt the Reissner variational equation (7). /As a trral dis-

12e311 0  0 2(k of the plate, whose amplitude is expressed by S,(X,,x,), has been
included in addition to the linear variation of the Reissner-Mindlin plate

M-) theory, as depicted in Fig. 1:

.. Y3 (3b) ) xP ) i - 1,2 (8a)

0 0 C55 UP) (ir,, 2,xjI - U3(x1,x2) (8b)

where t' ) and Cuk ) are elastic moduli in which i'n, t12 and t22 are where
the reduced stiffness of Whitney and Pagano (1970); xP

)  
- x W (9)

(c) Strain-Displacement Relations
)eu l ain - (u, (k)is a local x3-coordinate system with its origin at the center of the k -th
-j - (u, + uj?)/2 ; (4) layer x# ) . The inclusion of the zigzag function was motivated by the

1/_ (d) Interface Continuity Conditions: displacement microstructure of laminated composites (Murakami,
) (k+1) -Maewal and Hegemier, 1981). In order to test the effect of in-plane

U, +  , ) - at'" k - 1,2,..,N- I ; (5) zigzag displacement without additional complications, the trial functions
(e) Upper and Lower Surface Stress Conditions (8) are chosen to yield the lowest order theory. As a possible higher

order theory one may add the zigzag functions to the displacement trial
l 7On X- h12 (6a) functions of Lo, Christensen and Wu (1977).

Transverse shear stresses are approximated by
='" i- 00 X3 h12 . (6b) ,J,). Q()Cxixi)q()(xk) + T-kI)(x 1D 2 )p(,)(. 3)

The objective of the subsequent analysis is to derive a laminated
plate theory which would have improved in-plane normal strain + T/k)(xix 2)p,()(x) ,i- 1,2 (10a)
approximation across the thickness and-also the effect of transverse shear
deformation.

The basis of a new laminated plate theory is facilitated by a new - 0 (10b)
[p.- mixed variational principle, (Reissner, 1984), applied to the N-layered where

composite Plate whose middle plane occupies a domain Din the x, x2  2
plane. q()- I1 It' :';'~ ~ q ()11 -I 'LLII

-i I i eff) a'i + be:9) a#) + Zell) all) 1 +

+ b ejp 41 + Melf rI1 + Zel,) ,nfh

25e
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teappropate shear coreio futors by virtue of the Re i ra,..'.':, ,"' .J" - j 1,+ ,() t =,
Pi..' ntih MA (1 tionalprinciple.

17') The appropriate boundry conditions to the equilibrium equations
In (10) T,(A-I and Tt* are the vlues of v at the upper and lower faces (14-16) m:

of the k -th layer, respectively, and
Q fq. "(2Uor NU r + N2,P2 1- 1.2.3 (21a)
Q(k)-. f" d (12)

A9) V, or Murl +MW P2 , 1-1,2 (21b)
From the definitions of T,(k) and (6) one obtains

TW - V , T -' .7 (13) S or Llll+ L 1 2 . 1-1,2 . (21c)

Due to the approximation for ulk) which yields e& -0, v 33 becomes a The remaining constitutive relations for X M, and L, IJ - 1,2
reactive stress. AS 8 esult, o 33 is obtained by integrating the X3- m resultaeq-lbrum eqaton are obtained from (17a), (3a), (4), (3) and (10b; et sae :equilibrium equation. Ni ,M C t)W

LAMINATED PLATE EQUATIONS IN,]-I t- i

By substituting (8) and (10) into (7) with (3a) and (4), and
integrating by parts, one obtains: I,

(a) Equilibrium equations x U1I + XA
) !'1

!; _ N ,.] + N2,,2 + (7j' - 7;-) + , - 0O, 1- 1,2,3 (14) I U1* . 1

M,, + M, - N3, + h (T,++ -)/2+ Ff-o ,11,2 (15) N,2 - I n"hCJ' tu,.+ U,1)

L' + L2.1 - K31 - (7 -(-(- I)NTi-)+p"- 0,1-1,2 (16)

where + xV (*.2 + *L'.t) , (22)N!

jih)~ ~ I Mi 1 h ,X V"~ f I2
1)k 2,jk)),(k) (13,i-1,I 221 , 2 I 1 1, '

,3f 1)" 2 , (17b) + 2 I*

'", - k I 1 , (-+ 61)*k
S , -1,2,3 (17c) N

ntk) I j 2 - a IaO cu) CW (U 2 + U2,,)

(b) Constitutive relations__~ • k-1) 2 ..

Q0(k)- ith (T;(-') + T W)) + (X#)2 + (,- + *2',)

1- 1k) n~t h) (U3, + ie,) + (- )- S 1 - 2 k -1,2..N 8) +1-)kT (I,+s,)) , (23)

2 h4i Tk" + n(k) + e(,k+,+,) Lit N 1 ,.

I Ln -j 3 t~

4I( Itk+I X (~h 1*1.11 + 1.1

*j f(k)1(k) + tk(+l)L(k.1)lI t)

10- L 12 L- IV L,) CJ 1) k)h 1.~2 + *2j
h-l 3 2

i- 12,k -I, - - 1(19)
where, in (18) and (19), no sum is implied on 1, and

+ (-l +  (24)

It* a- l CHI (- 31241) (20,)+ ,

Q,(k) and T *) can be obtained in terms of U3 , + ', and , by
(18), (19) and (13). As a result, N3, and K,, are expressed by

+ ', and S; through (17b); such expressions automatically include

2S0

xq:-. -- . Il
k .: .. , _,. .- , - . . . . . . . - -* . . , . . . . , ,. . - . . .. . .. . - , - + . -



CYLINDRICAL BENDING OF LAMINATED PLATES For the cylindrical bending proble equations (M4).06) redtuce to
In order to examine the accuracy or the new laminated plate theory Nil., - 0 (38a)

cylidrical bedn of biietoa plte iscniee h plateisim
ply suppoted onthe ends Y4- 0and1. and isinfinitely long in the x2.
direction. The prescribed boundary conditions on the upper and lower N13.+ 4 Sn -rX1 -0 (38b)
faces are given byI

T3t si~n 2-x, ,Tt - 71- 7T3 -o0 (25) Mit,L- N, -0 (380
The boundary conditions for the simply supported-ends are from (21): L11- K,- 0 (3k)

Nil-V3-fli-Lll 0 a x,- 0, . 26) From the boundary condition (26) for Nl one concludes that
For the clarity of presentation the constitutive relations (22-24) are N11 -0 for O( ~x (I (39)

cast in a nondimensionall form, in which h and reference moduli ET are
used: By using (39) one cun rewrite (27).a follows:

jN,,/IET) A, 12 Ut.1  IM,,/QIET) Cil-5?2 1A,, C31fl hi, 14 (40)MIVl(hET) B 2, C , hi', 2)Iz'(r C12  CAji S,.,,2 1 27
L, V(hET) I0 C12 C S1.1 The constitutive relations (40), (35) and the form of forcing terms in

wee II- I C(38) suggest the following form of the displacements:

A,,l- I n')(tj~/ET) , B12 1: Ru )(,XW4 h)(t14t'/Er) Uhf~i~/~,.i,~ n wlk I k
S,/h - 1 cs(s/I)x, (41)

n~k)l~x~lh)+ 0 112)(t~~r)It can be easily shown that equations (41) satisfy boundary conditionsC11 - 1 1 (,x/)+n' 2 1)(t/ 7  (26). The equations for the unknown constants 0,s, *1 and sl are
obtained by substituting (41), (40), (3S) into (38b-d). The result is

C12 - 1: (- W) W"11)6) ft,"I~)ET) ,C 22 - 1: W"1'3) (Clf/ET) (28) I2DD 1  t2  i&1 I/El
It k ***~lpD24.

Equations (18) and (19) may be expressed in a matrix form, respec- ill, Dl+p(C,,5?/1A,,)D,,+p'C, 0 (42)
tively: I, D,+ C, Ia+2zJh

q - W T - #1(U, + *,) + d(SVh) (29) where

(Bir- IF q (30) P ihl(2b

where NVMENJCAL RESULTS
Q-011)~.Q11), - 01MI T1/QhET) The accuracy of the proposed theory is assessed by considering the

cylindrical bending of a symmetric three-ply laminate for which an exact
1Tj(),T(2) -- TW-3 JrEr 31) solution has been obtained by Pagano (1970). The material properties

T ~ ~ ~ ~ ~ ~ ~ a IT"T' T''IIr(1 rfor 0degree layers

and EA 1, 15)1 and [F) are matrices of N x (N-i1), (N-I1) x (N-1). and th!W/4T- t~j'IEr - 2S.0627
(N-i) xN, respectively. In (31) 1 T implies the transpose of 1 1.
Solving (29) and (30) for Q' one obtains CR'I/Er - COV~Er - 0.5 (43a)

T_ [B1'lIF]Q (32) and for 90degree layers

q01173(.1 + ' ) + d',(sl/h) (33) tCWI/ET - 1.0025 , CiI - 0.2 .(43b)

In the following figures the results are presented in terms of the nonldi-
where mensional quantities adopted by Pagano (1970):

(d, e2) (11)l- [A115-'LFI)-l (0, 2 (34) -Er u I(0,x3) IO0Er h'

anid IV] is an N x N identity matrix. Finally substituting (33) into N- he* uj -2 q.1 J(0)1
(17b). one obtains

IN,/(hE)1 FD,,D,1IU3., + ' Fi a0 ,L.~ it 4-0 ~ - F t)(Ox,)

whee I3/ET D - D2 2I 15,h I (3) fs 2 is - xh . (44)

In the various curves, the solid line indicates the elaticity solution
Dil l . 12 -!f -t12(Exact), while the results by the proposed theory and the first order

shear deformation theory (FSD) am shown by a broken line and a
dashed-dlotted line, respectively.

(3)For asymmetricthrsfe-ply lamiate (0/90/0) with layers of equal

*and thickness, the plate deflection - the spn-todepth ratio relations have
been plotted in Fig. 2. The: results of the Amrs order shear deformation

[I, I-, Or ~ theory have baencomputed by setting s,.-.0in (42). Sincethepresent
theory is a higher order theory than the kmrs order shear deformaltion
theory, the present theory predicts 113 more accuey tha the FSD.

.2 21- 1/W, i/n(2),.. WI )N,()R (37) The variation of the in-planle displacement it acros the thickness of the

are N x I matrices.
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* CONCLUSIONS
A laminsatd composite plaw theory which accurately predicts in-

* ~Plane response has been developed based upon the Reissner new van&-
tioal Principle (1984). A unique aspect of the theom is dhat it includes
a zipag-shaped CO function to approximate the variation of the uplatie
displacement over the thickness. The accuracy of the theory has been
exaindW by considering the cylindrical bending of lninatd plae
which has been solved exactly by Pagano (197). The conaen=o of the
Plate dellection end the an-plan dieplacenents ad normal streses for

* sYmmetfic three-ply and five-ply lamninales has demonstrate that the
nW theory Predicts the in-plute resons very accuraely even for small
sputoeptit ratios.
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ABSTRACT

In order to improve the accuracy of the in-plane responses of the shear deformable laminated

composite plate theories, a new high-order laminated plate theory was developed based upon Reissner's

new mixed Variational Principle [91. To this end, a zig-zag shaped CO function and Legendre polyno-

mials were introduced into the approximate in-plane displacement distributions across the plate thick-

ness. The accuracy of the present theory was examined by applying it to the cylindrical bending prob-

lem of laminated plates which had been solved exactly by Pagano [11. A comparison with the exact

solutions obtained for several symmetric and asymmetric cross-ply laminates indicates that the present

theory accurately estimates in-plane responses, even for small span-to-thickness ratios.
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1. INTRODUCTION

The increasing use of composite materials as thick laminates, in aerospace engineering and in

automotive engineering, has clearly demonstrated the need for the development of new theories to

efficiently and accurately predict the behavior of such structural components. The intrinsic hetero-

geneity and anisotropy of these composite structures as evidenced in the stacking of several fibrous

layers and in the high discontinuity in material properties across the interfaces, make the classical

theories of plates and shells inadequate.

The inspiration and guidelines for the subsequent attempts have stemmed from Pagano's works

[1,2,31 where the exact elasticity solutions for the problems of cylindrical bending and simply supported

rectangular plates were given. Pagano showed the importance of incorporating the effect of transverse

shear deformations in order to accurately estimate the plate lateral deflection and the need to improve

upon the thickness variation of the in-plane displacements, which are assumed to be C1 linear functions

in both classical plate theory (CPT) and Reissner-Mindlin plate theory (FSD).

The first attempt to develop a general linear laminated plate theory is credited to Yang, Norris and

Stavsky [4]. Their theory is an extension of the Reissner-Mindlin homogeneous plate theory as applied

to an arbitrary number of bonded anisotropic layers. Whitney and Pagano [5] extended Yang, Norris

and Stavsky's work. An important conclusion drawn from their analysis, which was also emphasized

later by Whitney [61, is that the inaccuracies of the classical plate theory at low span-to-thickness ratios

*for determining in-plane stresses are not alleviated by the introduction of shear deformations. Whitney

161 obtained in-plane displacements by integrating the transverse shear strains deduced in [5]. This

resulted in a higher order approximation which accurately predicted in-plane strains, but the resulting
modified stresses did not necessarily satisfy the original plate equilibrium equations.

Since then, other high-order laminated plate theories have been proposed that account for

transverse shear strains. Of these, the Lo, Christensen and Wu [7] and the Reddy [81 high-order

models have served as the foundation for the present theory. In their paper [7), Lo, Christensen and

Wu used appropriate higher order terms in the power series expansions of the assumed displacement

*1
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field which was proposed by Hildebrand, Reissner and Thomas [81. On the other hand, Reddy [91

imposed the condition of vanishing transverse shear strains on the top and bottom surfaces of the plate.

However, this theory does not satisfy the continuity condition of transverse shear stresses at the inter-

faces.

The objective of the present paper is to improve the approximation of in-plane variables in lam-

Sinated plate theories. In-plane displacements and bending and stretching stresses are considered pri-

mary quantities in any approximate laminated plate analysis; transverse stresses are only of secondary

importance since they are an order of magnitude smaller than the primary bending and stretching

stresses. By using a new mixed variational principle proposed by Reissner [101, the present theory is a

high-order model which improves upon existing theories by including in the assumed in-plane displace-

ment variations across the plate thickness: 1) a zig-zag shaped CO function as detailed by Murakami

[111]; and, 2) Legendre polynomials. The advantage of using Reissner's new mixed variational principle

is that it automatically yields the appropriate shear correction factors for the transverse shear constitu-

tive equations. Another attractive feature of the proposed theory is that the number of equations to be

solved is not increased as the number of layers becomes larger and larger. A comparison of the pro-

posed theory with Pagano's exact elasticity solution for symmetric and asymmetric laminated plates in

cylindrical bending, shows that in-plane displacements and stresses are accurately predicted by the inclu-

sion of the zig-zag shaped function and the Legendre Polynomials.

t.4-
• 4 4
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'S.' 2. FORMUJLATION

Consider an N-layer laminated composite plate, shown in Fig. 1, with principal axes coinciding

with a Cartesian coordinate system (x1 ,x 2,x 3), such that the x3-axis is perpendicular to the plane

defined by xI and x2. The following notation: ()(, k - 1,2,..,N will designate quantities associated

with the kth-layer. The thickness of each layer is n(k)h, where h is the total thickness of the plate.

S.'- The volume fractions n(k) satisfy the relation

N
£ n(k) - 1 (1)

k-l

Unless otherwise specified, the usual cartesian indicial notation is employed where latin and greek

indices range from I to 3 and 1 to 2, respectively. Repeated indices imply the summation convention

,. and ( ). is used to denote partial differentiation with respect to x .

* With the help of the foregoing notation, the governing equations for the displacement vector u,(k)

and stress tensor o-i}k) associated with the kth-layer are:

a) Equilibrium Equations

:: vii-j(k) + f,(k) -- 0 r 0.k) --or/) 2

where f, are the body forces;

b) Constitutive Equations For Orthotropic Layersa,.,
(r (k) e- '12 01(k) ell* (k) + 1I3 J(k) (a

(C2e2 2 e2 2 +C23/C33j 0- 3a(12 0 0 C66 12, 0

33 (e33  C13 C3 3 C 23/C 33 0 (k) ell (k)  1/C 33  0 0 1) 03 3k)

2e23  -- 0 0 0 e22  + 0 1/C44 01 (23 (3b)
2e31  0 0 0 2e 12  1 0 0 1/C551 (r31

where Cj are the elastic constants and Cu (i - 1,2,6) represent the reduced stiffnesses introduced by

Whitney and Pagano [5);

--
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c) Strain-Displacement Relations

,Jk .(4) +uj(p)2k k J (4)

d) Interface Continuity Conditions

(k) . (k+l) , -(k) - o.(k
- i) k , N1 ; (5)

e) Upper and Lower Surface Stress Conditions

i onm+h (6a)

2
ITh)-T nX (6b)

The objective in developing a new laminated plate theory is twofold: first, to improve the assumed

variation of in-plane displacements through the thickness of the plate and second, to include the effect

of transverse shear deformation. In order to carry out this task, Reissner's new mixed variational prin-

ciple [101 was applied to the N-layer composite plate whose middle surface occupies a domain D in the

xI, x2-plane:

fI I ) £I8eikioa5k) + [u2'! + u(k - 2e3(k (-..)1873(.) + () - e#)~ ( ... )18T34t1 dX dX X

f 1 1:1 8U(k) f(k) dX3J &I &C2 + af 8k L &~ 3 ds (7)

+ ff 18Ui(') (Xi,x 24A)T+ - 8 Ui(N)(X 1 ,X2... A) TT- dx1 2
2

where DT denotes the boundary of D with outward normal P. on which tractions T are specified and

A represents the x3-domain occupied by the kth-layer. Also e3 . (...) implies the appropriate right-

hand side of (3b). Due to the nature of Reissner's mixed variational principle, Eqs. (3a) are taken to

be the definitions of 0, used in connection with (7).

-........
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3. TRIAL DISPLACEMENT FIELD, TRANSVERSE AND NORMAL STRESSES

The high-order laminated plate theory which takes into account the effect of transverse shear

strains, is obtained by including the Legendre polynomials of order n - 1,2,3 with respect to the x 3-

coordinate to a zig-zag in-plane displacement variation of amplitude S 111,x 2) across the plate thickness.

The appropriate trial functions used in connection with Reissner's mixed variational principle

Eq. (7) are taken to be:

a) Trial Displacement Field

i (XIX2,X3 )  Ui (xx 2) + (iL)qTi .(X 2 )P 1 ( ) + Si (XlX 2 )(- 1 ) 2(k)-'

*1(8)

+ (.A)2e1 i x1,x2 P2(0 + (A30 (qx1 2)P3(0)

2x3

where C --- and P,, (C) are the Legendre Polynomials of order n. It is also understood that 43 0.

xjk) is a local x 3-coordinate system with its origin at the center x.4 ) of the kth-layer, i.e.

xJk)= - x - (9)

Eq. (8) may be regarded as a superposition of a zig-zag function and the cubic variation as proposed by

Lo, Christensen and Wu 171, with the exception that here Legendre polynomials are used instead of

single powers in x 3;

b) Trial Transverse and Normal Stresses

72 (x,.x2,x 3) - Q(k) (x 1,X2)F1 (z) + R(k) (XX 2)F 2(z) + j.k) (XX 2)F 3 (Z)
(10a)

+ [T.k - ) (X,x 2) + TWk) (x 1,x 2)1F4 (z) + [T.kI- ) (XIX 2) - T.k) (X1,X2)F(z) ;

'rl1 (QX2,X3) - (x1,x 2)Fl(z) + R (xX 2)F6(z) + J3 k) (,x 2)F 3 (z) + Ik) (x 1 2)F 7 (z)

(1Ob)
+ [TIk - ) (XiX 2) + T(k ) (x 1,x 2)1F4(z) + [Tlk- I) (x1 ,x 2) - Tk) (X1,X 2)]F(z)

where

, z - 291 30
F()- -nh z+() ( (4z 3 -z)

5 -*- * * 30
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F3(Z)- 10 (20Z4 - 6z2+ -) , F4 (z) -35Z4 - 5Z2 +-(n (k)h )3  4 2 16

F5 (z) 0Z3 - Iz ,F 6 (Z) - 105 (36z- -14Z 3 + -Z)

F70 315(112Z5 -4Z 3 + 3Z) ,S F8 z- 126z5 -35Z 3 +-5Z

X k) _

and z- 3lk~ 1 1-z

n A( )hz

1 k) = f X3"k) 3 T3(f dtc3  (I12b)
A(k )

In(1) k- (k)ar the values OfT3i at tetop and bottom sufcsof the k thlae spc

tively. From (6)

(0 . and (IV) -F .(3

.9

4 The degree of the polynomials Fj Wz, i- 1- 8, appearing in (IlOa,b) is consistent with the order of trun-

cation in the assumed expansions (8) for the displacement u,(k).

W4 ' _k



4. LAMINATED PLATE EQUATIONS

Substituting (8) and (10) into (7), using Gauss' Theorem and the orthogonality property of the

Legendre polynomials one obtains:

*a) Equilibrium Equations:

N, + T+ -T -+v F -0 (14a)

M , a - N 3, + -k (T + T-) + FM- 0 (14b)
2'

Z.,a - K 3, - (7,+ - (-l)N T-) + Fz - 0 (14c)

% L.ja - 3M 3 + -- (T + - T-) + FL- 0 (14d)

Pf -(5L3 + V.) + 2 (T + + T) + FP- 0 (14e)

where

: : [ ., M. , Z . , L .,9 V. ,
,,[N, F, FZ, F. FfP-  .k I

[1, A Pl(C,(- ])k k)..(. 2  A

(N3 2 ,M 3 ,K 3 , , L3 ) -2 P 2 P3(0 f)'k) d 3  (15a,b)

b) Constitutive Equations:

0 For Transverse Stresses

8j )(k) .()h
(n(k))- + n (T.(k-1 + T 1-k) h " (k) (k) [U 3 +..Ia+s(- I)k
(n(k)/,)2 3

(16a)

-- + h n,(k) (W 3. + 4a + - (3 fl(k) 2  + + (5 --k)2

n4
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k n(0 h k-1) .W 7h2 n(W) e.(k)1k2
R~k) - n(k)2h (T~k 1 ) - T~k) ) 7h (k a 3, +r +S, -1k (

40 a )3(k - (Ta 3. k+ 3. + S3  W
h a 40 10n

(16b)

+ 3h ,I(k) ( + 3. )+

1 4J W (Q~) W 14wk)+ n )h  (T(k-) + T(k) h2- n- C (k)3 C(k
(k (k)h)2 a a 40 a -3,a+ -4.) 60

t (Qk) 5J(k) 3R+_ 1 1R Q(k+1)
a.(k  3(n(k)h) 2 + 7 n(k)h C(k+1) 12

5 j(k+1) 3 R (k+

3 (n+l)h)2  7 n(k+D)h (16d)

h (k T(k- 1) + 8 + (+IJ Tk (k+I Tak+ 1)]" 126 e.(') + e -- (k+ 1==--= e.(k+,1)

* For Normal Stresses

Q 3k) )  n Wh (T3(k 1) 2T(k)  2h n W C(j) T 2 n(k) f

(n(k)h) 2  30 + ) ) " + $ --1kn(k)--"'-" + 3h /

017a)
+2hnk i + h n(k) + -2 (3")2- + ±-3

1 R(k) - 32Il) n() 2h (T(k-) - T3(k) ) = 3L0 h2 f(k)3 
)  

3

R3 (2 -I'hnk) 3h (Sjf )2h 5n kh 3  140 350

+ 105 h2n
(k )3 l+ + (- 1)

k (k)h 
-2 41

- 14 k) + n(kh (T(k-) + Tjk) - n (k)3 r + 5h n(k) ] (17c)

(n(k)h)2  1 3 40

R R (k) 215l13k )  n(k)2h (T4kI) T ~k) ) - - l1h4  (17d)

2n W2h 3 96 2688

.
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k) C4 Cjji+2h n k nC31V n(k+I)Cf(1+1) 3h n I n) 2C3j n(k+1)2C k+IT

(17e)
- 7 (k) iJk4-i) 1 , I(k) T, (k) + (k+ 1) ~ (k+i 1~) 170J 3 Tk-0 + 101- + I T) +nk+1
I13 nk 3 J lkI 3 C~' 8 Ck I CIV C3~ I Of + 1)

where in (16a,b,c) and (17a,b,c,d) k ranges from I to N while in (16d) and (17e) k ranges from 1 to

(N-i). Also, no summation on a is implied in (16) and

,k , 0- o + 8.2 C, n(k) - x3)/h (18)

"0 U1.1  U2,2
TIJl, Ts2, 2 I 11(k)

S - S1. S 2.2  C23 (19)

- 1.1 - 2.2

By solving (16) and (17), Q,(k), R(k), j,(k), 3k) and T(kk) are obtained in terms of U, Is, Si, j and

and their derivatives. As a result, the quantities N3,, M 31 , K 3,, L3, of Eq. (15c) can be determined

as functions of these displacement variables. Such expressions will automatically include the appropri-

ate shear correction factors by virtue of the Reissner mixed variational principle.

The equilibrium equations (14) are supplemented with the following suitable boundary conditions:

specify U or N, v. , (20a)

specify '1' or M V, , (20b)

specify S or Z. V, , (20c)

specify f, or La V, , (20d)

specify 4 or Pp. Pp (20e)
7.

The remaining constitutive equations for N0 #, Mp, Z0 ,, La, and Pp# are obtained by substituting

,U.

U'.

)
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*(3a), (4), (8) and (10b) into (15a) to yield:

N

1. [N. I LV' 0 [N I NI U V 0 (k)
-M 

QM3
1 [M] IM, M hY' .  1

h2 Ih N h s hR3
I z - u [,VIlZ I [zO s + 1: [c]( ) 1 h (21)

I L symmetric [Le] [L,6 h2  hL 13

I3  -PI h3 f T31

h'4P

where N- [NI, N 22 N12 IT, U= [U1, U2,2UI, 2 + U2, ]T with analogous expressions for M, , .. ,

,]..... [P,1 are 3 x 3 matrices, [CI(k) is a 15 x 5 matrix an VV, are I x 4 vectors, which

are given in the Appendix.
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-~ 5. CYLINDRICAL BENDING OF LAMINATED PLATES

In order to test the accuracy of the present theory, cylindrical bending of composite plates under

sinusoidal loading is considered. The plate is simply supported at the ends x, - 0 and I and is infinitely

long in the X2-direction. The prescribed boundary conditions on the top and bottom surfaces of the

plate are:

T' 0,T3 snrX 1  o h (22a)

T1 T - 0 on h,- (22b)

The boundary conditions for the simply supported ends are, from (20):

U-*-S-f-0at x 1-0,I (23a)

Njj-Mj 1 -Z 1 1 -L 1 1 -Pjj-O at x 1 -0,I (23b)

Using surface boundary conditions (22), the equilibrium equations (14) for cylindrical bending reduce

to:

N1, 1 - 0 (24a)

N13,1 + q sin -0 (24b)

Mlj- N31 0 (240)

*M1 3 1 -N 3 3 + -1q sin~-- 0 (24d)

Z11- K 3 1 - 0 (24e)

Z31- K 33 - q sin -0 (24f')

LIj- 3M 31 - 0 (24g)
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L 13,1 - 3M33 + A2 q sin -7- -0 (24h)

PIj,- 5L31 - h N31- O (24i)

From the boundary condition N, - 0 at xI - 0,1, Eq. (24a) implies that

N1 -0 . (25)

Next Eqs. (15a,c) are expressed in terms of the displacement variables U1, 3.. . To this end, the

constitutive equations (16) and. (17), for the cylindrical bending analysis, can be rewritten in the fol-

lowing vector form:

1-

91 - 1,2 l + h[Ail" - i (26a)

I Ri + h[Bi1 Ti- ,2  (26b)

0! -4 2 -12"h [A I -T, - 3  (26c)

[TQ,1+4-1 [TRIIR,- .- 1 -[TQ1i - h[C, T (26d)[ _, _ nh 2 h2 -(2 d

and

1-

93-- j-J3-h[A]T3 "w, (27a)

Q3-- -J 3  h[BLIT 3 - -K2 (27b)

1 R 75 1 5
I R3 -15L .3 - h [B, IT - K (27d)

[TQ3]93+-hL[ TR 3 ] R -  2 -L [TQII3]-J3 5 [TR,]13-h[C3]T3 (27e)

h- h 24 h 3  -

- 8../ - 32
where -;-k)2 i,- 1,3 and !3 5 3(k)2 13 (28)

.%
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The matrices [A ], ..., [C3] and vectors )L, .... K4 are given in the Appendix. The vector equations

(26a,b,c) and (27a,b,c,d) have N-components, while the vector equations (26d) and (27e) have

(N- 1) components. Matrices [A 1], ..., [C3 ] depend on the volume fractions n o() and elastic con-

stants 5 C4V. ) and C3() , while the vectors X 1, .. , 4 contain the displacement variables UI, " 3".

Eqs. (26) are easily solved by substituting 91, -1 , .J! in terms of T, from (26a,b,c) into

h I an

(26d). This yields a new equation involving Tl only, which can thus be solved for T. Then by back
:11

substitution expressions for QI, , R , and . in terms of k1, 2 and X_3 are obtained. Proceeding in

a similar manner with (27a,b,c,d) Q3, - 3, 7-. J3 and T3 !3 in terms of K 1, .K2, .K3 and K4 are deter-

mined. These expressions are:

Qi ~ [1 - [A4Q,1) [ ~ 1'1- 2 [A Q,J1) [(I1
(3[1 - 2[AQ ,) - 4L4 ,1)D - + - t[Jj l (29a)

3 31

.RI_ [BQI ] (,l- 2X3)+ ([I]- [BRI])\k2 (29b)

and

" 3 - [1 - 2[AQ 3 1) - 4 [ 1) 2 (AQ31) +  "  [cAR ] 1

" 1 -1 j (2 3- ) (30a)

11( [ I-1 2 [A Q31) - (-±([1)- 4 AQ3J) C3 25AR) (3a

R3  (-[I1-+ IBR3]) - 4± 1I +-L 111 63 11 63 31 21 _j 101BQ311
(-[Il~~~C +2B3 ) ([l [ R3) 1 l1BQ3J (K3- Cd (30b)

13 64 so+ 0 B 3 - 4i 1 +_2 8 3)3  .1 63 11 63

where [I] is the N x N identity matrix and

[AQ ,J AR i] " 11 [ TV II 1,3 (3a)I[BQ, I [BR,j [B11 7Jill'(R1 i , 3a

with

-:.* ..:
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with

[TVI - (4[TQI][A 11 + [TR11[B1] + [CI)-' (31b)

[TV3 - (4[TQ3 [A 1 - "!3 [TR3] B] + [C3 )-' (31c)

[AQ 1 i ... I [ER, ] are N x N matrices, while [TV I are (N- 1) x (N- 1) matrices. By inserting (29)

and (30) into (15c) and (21) the appropriate constitutive relations for the cylindrical bending problem

in terms of the displacement variables U, .... , f3 and their derivatives with respect to x, are obtained.

The form of the dependence on the displacement variables Ul, ... , 3 of the constitutive equations

thus obtained and the nature of the applied load suggest the following expressions for the displace-

ments:

[U1  hU U3  hU3

S, - h§ cosr - and sinr--(32)

hS1 S3 -h9 3 sni
f e vh Y/3 ,hi

where the "^" quantities are nondimensional by definition. It is easily proven that the boundary condi-

tions (23) are satisfied when (32) are substituted therein.

Finally, inserting (32) into the constitutive equations obtained in the manner described above and

these in turn into the equilibrium equations (24) and (25) yields a system of nine algebraic equations

with the nine nondimensional quantities I, .... , i3 as unknowns. This system is conveniently written

in matrix form as

[B U- F (33)

where U- [Ul 1S ,i 1  1 &3 '3 $3 i31T (34a)

F- 10,q,0,1q, 0,-q,olq,o1r  (34b)

and 1B is a 9 x 9 matrix.

• ., - .. - . , ,- -, , .-ll
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6. NUMERICAL RESULTS

In order to assess the accuracy of the present theory the problem of the cylindrical bending of an

infinitely long strip under sinusoidal loading is examined. The exact elasticity solution has been given

by Pagano [11, where a three layer cross-ply laminate was considered, the 0° layers being at the outer

surfaces of the laminate. The elastic properties are:

for the 0* layers - 25.062657 , ' .33 5 7

Er ET

(35a)

-C33 1.071141 0.5;
ET ET

and for the 90° layers "11- -1.002506 0.271141

-, C33 Cs
S-- 1.071141 0.2

ET ET

where ET is a reference modulus.

We follow Pagano's [11 nondimensionalization and write the displacements and stresses in the

form

SUk) u(k) (O,x 3 ) -(k) -O u3(k) ( )

() _ ____ 10 ii 0)) (36)

(k) 1 .k)
1 - 1 x 3)

Also x 3  - h (37)

In the various curves the solid line represents the exact solution while the results of the present theory

are shown by a broken line. Also shown, for comparison purposes, are the results given by the first

order zig-zag model (111 and Lo, Christensen and Wu's high-order theory (LCW) [71, which are

V ta '' ' " " ," r ' ' '  " . . . ". % ". % , . • , ". ". " , -, - - ,, ". - •

; ,,...c ..,. .,' . -,.- , , ., -., ,. ,., :..,..... .. :.-.



represented by a dashed-dotted line and dotted solid line, respectively. Symmetric 3, 5 and 9-ply lam-

inates and asymmetric 4 and 8-ply laminates were examined, to test the present theory.

For a symmetric 3-ply laminate (0/90/0) with layers of equal thickness, Table I shows the values

of the central deflection i3 obtained from the different theories for a span-to-thickness ratio S of 4 and

6. As observed the present high-order theory correctly predicts the central deflection u3 to the first two

decimal digits, while the first order zig-zag model gives a better result than LCW. The variation of the

in-plane displacement 51 across the plate thickness is compared in Fig. 2a for S - 4, where it is seen

that the curves for the present theory and the exact solution are almost identical. This improvement is

also reflected in the variation of the in-plane stress 5t1 across the plate thickness, as shown in Fig. 2b.

Very close agreement is found between Pagano's exact solution and the present theory, which has

improved upon Lo, Christensen and Wu's high-order theory, especially at and in the neighborhood of

the interfaces.

The present theory was next tested for a symmetric 5-ply laminate (0/90/0/90/0) with layers of

equal thickness. The central deflection 53 for span-to-thickness ratio S of 4 and 6, is shown in

Table 1 where close agreement with the exact solution is observed. The variations across the plate

thickness of in-plane variables 5 (k) and :1f ) are compared in Figs. 3 and 4. The curves for the present

high-order theory and the exact solution are again almost identical. In particular, it is seen that the

present theory has considerably improved upon Lo, Christensen and Wu's model in the interior layers

of the plate.

To further assess the accuracy of the present high-order theory the more difficult case of a sym-

metric 9-layer cross-ply laminate (0/90/0/90/0/90/0/90/0) was considered. The 00 layers have equal

*'. thickness h110 while the 900 layers have equal thickness h/8. The results for the central deflection U3

are given in Table I for S - 4 and 6 where again close agreement with the exact solution is observed.

The variations across the plate thickness of the in-plane displacement ii, and normal stress all are

shown in Figs. 5 and 6, for S - 4 and 6 respectively. There the discrepancies between the first order

zig-zag theory and the exact solution are more pronounced than in the 3- and 5-layer cases, as

i71%
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expected. However, the results of the present theory are still very good when compared to the exact

solution.

Finally, asymmetric 4 and 8 cross-ply laminates, with layers of equal thickness, were examined.

The present theory predicts accurately the central deflection ii3. These results are given in Table 2 for

span-to-thickness ratio S of 4 and 6. The variation across the plate thickness of the in-plane displace-

ment 5 k) and normal stress fI') are shown in Figs. 7, 8 and 9 for S - 4 and 6. From the curves for

i1
(k), it is seen that the first-order zig-zag theory deviates significantly from the exact solution at the

bottom layer of the plate. On the other hand, the discrepancies between LCW and the exact solution,

for both Tfk) and 5:'
)

I are more pronounced in the interior layers of the plate, while the present high-

order theory is still in very good agreement with the exact solution.

U,

Uo
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7. CONCLUSION

A high-order laminated plate theory, which accurately predicts in-plane responses of symmetric

and asymmetric laminates, was developed with the help of Reissner's new mixed variational principle

[101. The improvement was achieved by including a zig-zag shaped C* function in the in-plane dis-

placement variations across the plate thickness, as proposed by Murakami [111, while the non-linear

variation is accounted for by using Legendre Polynomials. The accuracy of the theory was examined

for the case of cylindrical bending of an infinitely long strip and compared with the exact elasticity solu-

tion given by Pagano [1]. The results for the central deflection and in-plane displacements and normal

stresses for several symmetric and asymmetric cross-ply laminates indicate that the theory very accu-

rarely predicts these in-plane responses even for small span-to-thickness ratios. In all the cases con-

sidered, the proposed theory gave better in-plane responses than thr Lo, Christensen and Wu high-

order theory, especially in the interior layers of the plate. It was also observed that for symmetric lam-

inates, the first order zig-zag model [111 predicts more accurately the central deflection than the Lo,

Christensen and Wu high-order theory.
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APPENDIX

o Matrices [N5,1, ..., [P4l in Eq. (21):

-D2 D2' 0 C ' c 0

[MN,] - D2' D2" , [M] - C'C" 0

0 0 " 0 cli#

Ca CS 0 C9 C9' 0

o I Oo

]" [- C' C8 " 0, [ C9' C" 0

'0 0 C8 " 0 0 C9"'

C2 C2' 01 C3 C3' 0
[MWI1 C2' C2" 0 [,M1 C3' C3 " 0 ,(l

0 0 C2"ip 0 0 C3"'#

Cl C7' 0 C6 C6' 01
LM]- C7' C7" 0 [ML- C6' C6" 0

0 0 C"' 0 0F'

D3 D3' 0 D, Dl' 0

o4 F4' 0

where

1 ~ W11 ok2()Ck

C k 1 ) ( ) 2/ 6 ] D 3 - ) k . ( ) n 2/ 2

and
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C6- C C C- ," C,-/ C4- CI , CS - C2- D2, C9=- C4-- CI

D - D4 - - C3, D5 - C5 - -C2 + -D2 W(A3)

where

C4~ ~~ ~ (03( + no) .W, k Cl)( )k ["' ~
4 n0  

3 n() 3)k

[C5k" (k5 () () k5 5,k
...8kO(0 + -1n. ()2n~(k)3 + n.(k)4 n k) k 16 40 ' J

(A4)[ n(k) n(k)S

|,(k n"0 5 + -+ nA(k)3 n(k)3 + n (k)5 n(k)
F , 16 0

I+ .k. 3. n(k)2.(05S + 5 n(k)4 ,(k) 3 + f.(k) 6 n(W
,448 16 , 4

The ( )', ( )" and ( ).' quantities can be obtained from (A1,2,3,4) by replacing therein C(k* by CW

2(k) and U ) respectively, where k ranges from 1 to N.

e Matrix [CJ(k) and Vectors .W, ... , f in Eq. (21):

(k)
CW

C 0

ICI~ W c where c(k) [C13/C 33 C23C 33 OJT  (AS)

0 C

VV - (1,0,0,01 M - [n ) ,,O • VZ - [,(- )k O, O

(A6)
[I Onok) 2_ 1 3 n0k) 3 (5,k)210) - On k 5

22' 0 -4t 2 4 2'- 4 2 ,2

* Matrices (A , ..., [C3A in Eqs. (26) and (27):

[o 0 0

(A11 - n(k) f(k) [B11 - -I - (k)2 n(k)2
(NxV- 1 (NVX N- 1)

N ".° - - o-. .- -,- . , , . .
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0
] - n k ) [ (k )  n (k + 1 ) -n (k + l )

Lcj 8 C~l) C~k" 1) CW
(N- I x N- 1)

I~-. 0

0 0

[TQ] 1 1 [TR1] 3 -1 1
(N-1) N 12 CV C4' (-Ix) n(k)C~l) T-(k+1) C# I

0 0

.9_, 0

ITQ3I 11 1 1__
(N- )X.v 12 ," cfl "+'

0
o 0

[TR3]J. -15 1 1 [C3  ~ k )  oh n l( k+ l) 1nf(k+1)
*(N-Ix.V) 2 n(k)Cj4) n(k+,)C1 +U) [cI] - 18- V jJ) C~'

0 0

.1 * Vectors .X-, ... , .c4 in Eqs. (26) and (27):

- h(U 3 .1l) a1 + S1 Ib + h2 ( 3 1 +3 )c1 + h3 
31 d1 + h3 k 1 1 ki

. - h2(*r3 ,1+ 3 l)fj +I h ~3.I 5' +t h3 ({ 3,1 +1 5 i)p,1

3. ( + 5t)fl (A8)

IT3 ICA

I - hU,,1+*h) a2 + h' 3 a3 + S 3 b3 + h2 
3c2 + h2*, c3 + h3

1 * d3 + 46, e3

K2 h 2f-f2 + h2
T'.1 f3 + hS,l g3 + h3 

1', p2 + h4
0 1 .1 p3

. - 315 h _3f .If - 525 h446 j v

.44 h ,1. 4

The kth component of the vectors a1, ... , s3 appearing in (A8) are given by

.. . .. .
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a .) n(k) .I) bI (_4 )k C I Cl(k) 2 ,(k),(k)Cf) , n(3n(k) i)n(k)C&

k) 3 (k)2 - ),(k) C () fk) (- (k)3 C& (k 1)kn(k)ZC I ) , p () ,() 3 (k (

( 4 120 0) - 0 "(J"-l 5

dk) (k) C ) 3 ! , C _ (  (k) (k) c.k) 1 ( )

2n n I bfk) - .A,...n (9) c k)

0 ' 525 5 350 13

;.. On(k2 In(k) jk ( k)2 W(k)3 i (k) (k) C- 11 n C )

e3 ~ f-Jf On1 )) S()W3C

0 4 2688

,,,,'.'-

%° %

, q



- 26 -

Table 1 Central Deflection i3 for Symmetric Cross-Ply Laminates in Cylindrical Bending Under

Sinusoidal Loading

S.

S-4 S-6

Number of LayersN 3 5 9 3 5 9

" Exact Solution [11 2.887 3.044 3.324 1.635 1.721 1.929

Present Theory 2.881 3.032 3.313 1.634 1.716 1.921

• First-Order Zig-Zag [101 2.907 3.018 3.231 1.636 1.702 1.875

LCW [71 2.687 2.597 2.835 1.514 1.507 1.708

*1 / / '" ".? ""r ." ' €.. a ,,,....,.,z ; .-. , . , . .,-. . , ,,, . ,,\,. , ,=
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Table 2 Central Deflection !i3 for Asymmetric Cross-Ply Laminates in Cylindrical

Bending Under Sinusoidal Loading

S=4 S=6

Number of Layers N 4 8 4 8

Exact Solution [11 4.181 3.724 2.562 2.224

Present Theory 4.105 3.625 2.519 2.181

First-Order Zig-Zag [101 3.316 3.225 2.107 1.934

LCW [71 3.587 3.189 2.242 1.979

-,

p

.. . . . . . .. _
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An Improved Laminated Composite Plate Theory

by

Hidenori Murakami 1, A.M. ASCE and Alberto Toledano2

Abstract

Based upon Reissner's new mixed variational principle (5) for displacements and some
stresses, a new high-order laminated plate theory was developed in order to improve the
approximation of in-plane variables of the shear deformable laminated composite plate theories.
To this end, a zig-zag shaped CO function and Legendre polynomials were introduced into the
assumed in-plane displacement distributions across the plate thickness. A comparison with the
exact solution obtained for symmetric 3- and 5-layer and asymmetric 4-layer cross-ply laminates
indicates that the present theory provides a tool with which one may efficiently study the
extraordinary skin action in laminated composite plates.

Introduction
Sandwich constructions and multilayered thick laminates exhibit under combined loads, a

very different mechanical response from homogeneous isotropic plates. One such effect is the
stressed skin action which may be caused by either the drastic change in material properties of
the laminae or by the slip at the interface of adjacent laminae. In order to facilitate a tool with
which one may study the former type of skin action laminated composite plate theories were
closely examined. In a series of papers, Pagano (3,4) derived exact elasticity solutions for
bidirectional composites for the problems of cylindrical bending and simply supported rectangu-
lar plates. Pagano showed the importance of incorporating transverse shear deformation effects
for the accurate estimation of plate lateral deflection. Further, he showed that the linear varia-
tion of in-plane displacements across the plate thickness adopted in the classical Kirchhoff
(CPT) and Reissner-Mindlin shear deformable (FSD) plate theories may not be appropriate to
simulate stressed skin action in composite laminates. In addition, Whitney and Pagano (7) and
Whitney (8) pointed out that the inaccuracies of CPT at low span-to-thickness ratios for deter-
mining in-plane stresses are not alleviated by the introduction of shear deformations.

The purpose of the present paper is to point out the differences in bending responses of
laminated composite plates when several displacement approximations are introduced, with
emphasis on the stressed skin action. A new high-order laminated plate theory, with a first-
order theory as limiting case is derived using Reissner's (5) new mixed variational principle. It
is a variational principle for arbitrary displacements and transverse stresses only, in which the
original 3-dimensional stress-strain relations can be used. The unique features of the present
theory are the inclusion in the assumed in-plane displacement variations across the plate thick-
ness of: 1) a zig-zag shaped C°-function; and, 2) Legendre polynomials. A comparison of the
present theory with Pagano's (3) exact elasticity solution for symmetric 3- and 5-layer and
asymmetric 4-layer cross-ply laminates, indicates that the in-plane responses are more accu-
rately estimated by the inclusion of the zig-zag shaped function and the Legendre polynomials
than by using smooth, Cl-interpolation functions (CPT, FSD,I).

I Assistant Professor, 2Research Assistant, University of California. San Diego. Department of Applied Mechanics and
Engineering Sciences, La Jolla, California 92093.
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Problem Statement
Consider an N-layer laminated composite plate of uniform thickness h, as shown in

X13

____ __ f t1 ' S
- -- -- -

(2) 3sib.-(31 ----- 0

tl'ai) 
:t3"--hh 11

1(k) Slos *i- .F.

j -
-

1+1 

x.M

-h/2

Fig. 1. Plate Geomeetry and In-Plane Trial Displacement Field
Fig. 1. A Cartesian coordinate system is selected such that the middle surface of the plate
occupies a domain D in the xl, x 2-plane, the x 3-axis being perpendicular to this plane. The
notation ( )(k), k - 1,2, - • ,N is used to designate quantities associated with the k th-layer.
The thickness of each layer is n(k)h, such that the volume fractions n(k) satisfy the relation

N
Af f(k)~* 1

Unless otherwise specified, the usual Cartesian indicial notation is employed where latin and
greek indices range from 1 to 3 and 1 to 2, respectively. Repeated indices imply the summa-
tion convention and ( ), is used to denote partial differentiation with respect to xi.

With the help of the foregoing notation, the governing equations for the displacement
vector u,(k) and stress tensor Cr,( k) associated with the k th-layer are:

a) Equilibrium Equations
o., ) + f(k) - 0 ; o,.(k) --_o'.() (2)

where f, are the body forces;
b) Constitutive Equations For Orthotropic Layers

(T ii () C1e20k)ell () Cl C3] (k )

aII 121'1l 0 e66 12e12 0()(k) (k) (k) (k)C3C3 C2 3 0 e1  CC33 0 0 03

2-e2 0 0  0 e22  + 0 C lC, /al2 (3b)

2e3,l 0 0 0 2e 12  + 01 0 1 c 03b1

where Cq are the elastic constants and 4'j (i J- 1,2,6) represent the reduced stiffnesses intro-
duced by Whitney and Pagano (7);

2 Murakami et al.
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c) Strain-Displacement Relations
e+k .a' I <4'+

d) Interface Continuity Conditions

ui W - ulj + 1) , a-I) - -Ik+1) ; k 1,2,..,N-1 ; (5)

e) Upper and Lower Surface Stress Conditions

,- on h (6a)

,3j(N) T- on h (6b)

The purpose of the following analysis is to develop a laminated plate theory that will
improve the assumed variation of in-plane displacements through the plate thickness and that
will also account for transverse shear strains. To this end, Reissner's mixed variational princi-
ple (5) for displacements and some stresses was applied to the N-layer composite plate:

. ~~~k)(jk + [U..!j +,, - 3,k - 2e j' ) 7jk)+ [u .' e 3 (j ) l 't d ,
kA. 

(

; k I 0(k) Ak) C3 1 & f,2 + k 8uW(k d & 'ds (7)

+ ,841",,) (X1, 2,h)T1+ -u 1()(i,x 2- ) T, )
22

where ODT denotes the boundary of D with outward normal P,. on which tractions T are
specified and A W represents the x3-domain occupied by the k th-layer. Also e3i implies:
the appropriate right-hand side of Eq. 3b. Due to the nature of Reissner's mixed variational'

*: principle, Eqs. 3a are taken to be the definitions of c.k used in connection with Eq. 7.

Trial Displacement Field, Transverse and Normal Stresses
The present laminated plate theory which accounts for transverse shear strains, is a high-

order theory obtained by superposing a zig-zag in-plane displacement variation of amplitude
S1 (x11x2) across the plate thickness to the Legendre polynomials of order n - 1, 2, 3 in the

, variable x3 (see Fig. 1). A first-order theory (2) can be recovered from the following equations
by disregarding the underlined terms and numbered equations.

The suitable trial functions to be used in Reissner's mixed variational principle Eq. 7 are
chosen as:

a) Trial Displacement Field:

1
i . W (-)P,(

U2(X1,X2 "n. X U2 *2 S2  2 ( X(8)

(2 P ()
(A) 3 P3(C)

3 Murakami et at.



where C a . and P. (C) are the Legendre Polynomials of order n. It is also understood that

U1, l'i, Sj, f and #a are functions of x, and x2 only. xlk) is a local X3-coordinate system with
its origin at the center x.# of the k th-layer, i.e.

b) Trial Transverse and Normal Stresses:

TIPr (X1,xV2,X3)- Q(k) (XI PX2)F (W)+ R 1(k) CX ,X2) I(8i + S1 d 2 (Z)+,F) + j1 ()X 1 , 2 )F3(Z)

+ 1k) 1 , 2)83 7(Z) + [ ()X 1 ,X 2 ) + ,1'x,X 2)1F4(Z)
+ [Ti(k-1)(Xi,X2) - T(k)(x~ 2 J[8~+8 2 F()+83F() (10)

where 8ij is the Kronecker delta and

fl(k)h Fi(Z) ~ 0 105 0 -75/2 0 45/2'
10 0 0 -6 0 3/2

(n(k)h) 2 F2(z)/30 0 0 -4 0 1 0 Z5

(fl(k)h )1F2 ZW/ 105 0 -20 0 6 0 -1/4 z4

F4(Z) 10 35 0 -15/2 0 3/16 P3

(n(k)h) 2 F6(W1/105 0~ 0 10 0 -3/2 0
10 00 0 1 0

(n(kh)F 7(z)/315 36 0 -14 0 5/4 0 1
Fs(z) -112 0 40 0 -3 0

L126 0 -35 0 1518 0

- 4 k)h

Also, (Q1 ,(k) , j,(k) =f (1, X4k) ,Xjk)
2 71.Ik) &tC3  (12a)

A (k)

Ilk)= jX3 3 71) dic3  (12b)
Ak )

In Eq. 10 i'/k1) and 7'1(k) are the values o. 7 3, at the top and !,ottomn surfaces of the k th-layer
respectively. From Eqs. 6

TO). T+ and T N) . T (13)

In Eq. 11, for the functions F Wz, 1 - 1, 4, 5 two rows of coefficients appear: the upper
one corresponds to the high-order theory while the lower one corresponds to the first-order

-theory which, in addition to disregarding the underlined terms in Eq. 8, is obtained by setting
1)=0.

For each of the theories considered, the degree of the polynomials F Wz, i - 1, ... , 8
appearing in Eq. 11 is consistent with the order of approximation used for the displacements
ujkW in Eq. 8.

Laminated Plate Equations
Substituting Eqs. 8 and 10 into Eq. 7, using Gauss' Theorem and the orthogonality pro-

pe rty of the Legendre polynomials one obtains:

a) Equilibrium Equations

N. I, + T,+ - Tj- + FP""'0 (14a)

4 Murakami et al.



2
Z6j 1 - (7+- (- )NV 7-)+ Ff -0 (140)

L.,,. 3M3, + A- (T7+ - -) + FL-O0 (14d)

p-A (SL .+ A-N 3r)+ -L (7: + T; + F-O (140)

where IN.0, M~p Za, L.0, Pp N
Fr FWAF FL -I -

k)

2 n (h ' 2 2 P (k~ dx3 ~ b

b) Constitutive Equations

0 For Transverse Stresses

(n~k)2+a (T.( b, h n~ ? U3,+Wa'+S.(-1)

201 OFn.k 3a + 3f,)+ L2(3 n k)2 - f3,+3h-(5 (k)2), (16a)

(kRMW k 2 (T(k-.) - T(k) , h (k)3,t(k) + ~+~2
h40 120 7~

+ 3h 4lk) (6.+ 5't.) (16b)

lif)- 14k) 5,(k) 3k

j~a2 Q +( 1 J.(k+3RaI)3(k)h) 2  -(~ + i1)a2 Q,(k+1)

+ 5 ,(k+ 1) 3 R,,(k I (16d)3(n(k+I)h)2 + 7 n(k+I)h I

b2 bn~k .I- ) (kW+ (k+ 1) T(+ +1
hit0 T2 T~I+b3I.~ 1 k) +b2 n(~)TkI

tl) c 2 L )(k+D

0For Normal Stresses (High-Order Theory Only)

Qjk)~~ ~ ~ 'I*k+n)h T.-0+ IO)

Qk - f(k)h)2+1L0 (k)t+Tk Cjj * 3  S3 2 +kA),q
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(17a)
+ -. n (k)  

-+hn 
+ -L2' (3  4 -L

I R3 ) 32 1 (k)  n) 2h (T3-1) T )  h2 n() 35 n ")2hj 3  140 35
+[*3 h 1) 3hj~~3 n 2 (5n.~t 1)$ !  -1b

11 h2n (03 + (_ |)k 2 9 + 3h (T)k + - (17b)

jk) - 14 Jk) +nh (Tjk - 
1

) k+ ) -- 3 n() 3 q + Sh n(k) ] (17c)(n(k)h)2 12 40 ,_-

R 1kt)- n()2h (T k- ) T) - (11h
4  (17d)h 2n(k) 2h3  96 2688

-i1 Q3 k) + Qk+) + , 5 Rjk" Rjk+)

12 1c4P+ C4j'f 2h I n (k) CjI n(k+I)C 31+0)

+ [ L jk) + J k+1)

+3h2~ I n~k)CII n ~(k+ 02 c 31+1)j

-70 13(k) Ilk+1) _ [_(k) -1) +1 n (k)
-70 Tl k +k ° t)

-1h n(0)3C31) fl(k+1)3 C#+i)1  18 + LU j

+ n(k+i) n(k+') T__+D) 1

where in Eqs. 16ab,c and 17a,b,c,d k ranges from 1 to N while in Eqs. 16d and 17e, k ranges
from I to (N-i). Also, no summation on a is implied in Eq. 16 and

8(. 1 C# ) + 8.2 Ck) ; ;ok )  -)lh

Also, (- CIfP U1.1 + CH ) U2 2, with analogous expressions for 1, , ] and 4. The
coefficients a,, bi, a2 b2 and b3 appearing in Eq. 16 are given in Table 1.

Table 1 Coefficients aI, bI , a2, b2 and b3 Appearing in Eqs. 16

a, b, a2  b2 b3

High-Order Theory 1 2 1 1 4
30 5 12 126 63

First-Order Theory 1 1 1 2
12 6 10 30 15

c) Boundary Conditions

specify , or N.1 v. , (19a)

specify '&T or M. ,. , (19b);

specify S, or Z,1 ao , (190!

specify , or L. a. , (19d)

specify 4,, or Pp, ,. (19e)

6 Murakami et al.
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It should be pointed out that for the first-order theory the subscript i in Eqs. 14b,c and'
19b,c will assume the values I and 2 only.

The quantities N3j, M 31, K31 , Z3, and L3j, obtained by inserting Q (k), R1(k), j(k), jk)

and 7 (k) from Eqs. 16 and 17 into Eqs. 10 and 15c will automatically include the appropriate
shear correction factors by virtue of Reissner's mixed variational principle (5). The remaining
constitutive equations for Nan, M, Zo, Lp and Pp are obtained by substituting Eqs. 3a, 4,:
8 and 10b into Eq. 15a.

Cylindrical Bending of Laminated Plates
As an illustration of the present theory, cylindrical bending under sinusoidal loading of an

infinitely long strip in the x2-direction is considered. The plate is simply supported at the ends
x, - 0 and I. The prescribed boundary conditions on the top and bottom surfaces of the plate
are

1Tx 1  h (20a)
T+1 - 0, T - q sin -- on x3 - -(-

T- Ti - 0 on x3 - h (20b)2

The boundary conditions for the simply supported ends are, from Eqs. 19:

U3- * 3 -S 3 -6 3 -0 at xj-0,1 (21a)

N11- M 11- Z 11 - L 11- P11 - 0 at x- 0,1 . (21b)

Numerical Results
In order to assess the accuracy of the present theory, the cylindrical bending problem

under sinusoidal loading of an infinitely long strip is considered. The exact elasticity solution
was given by Pagano (3) where a 3-layer cross-ply laminate with the outer layers oriented at 00
was examined. The material properties are for the 0* layers

ll 25.062657 -- 0.335570, -33 - 1.071141 C 55  0.5 • (22a)ET 250257 E-T E'r E-Tr

and for 90* layers

- 1.002506 9 - 0.271141 , - 1.071141 ,El - 0.2 (22b)
ET 'E E Er

where ET is a reference modulus. Adopting Pagano's (3) nondimensionalization, the displace-
ments and stresses are calculated in the form:

I- h 3 " (qu) , 0) (23)

q 2
X3  I

Also x3 - ,Sm- (24)

The present high-order theory and the corresponding first-order theory are compared with
Pagano's exact solution (3), Lo, Christensen and Wu's high-order model (LCW) (1) and
Reissner-Mindlin first-order shear deformable theory (FSD). For each of these theories
thickness variations of in-plane displacement il e) and normal stress Ilk) of various symmetric
and asymmetric laminates with span-to-thickness ratio S of 4 are shown in Figs. 2, 3 and 4.

For symmetric 3- and 5-layer cross-ply laminates, with layers of equal thickness, the
results of the present high-order theory are in excellent agreement with Pagano's exact solu-
tion, as can be observed from Figs. 2 and 3. In particular, it has considerably improved upon

7 Murakami et al.



Lo, Christensen and Wu's high-order model at the interfaces and in the interior layers of theplate. Also the present first-order zig-zag theory gives reasonably good results even for themore difficult case of the symmetric S-layer cross-ply laminate.
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For an asymmetric 4-layer cross-ply laminate, with layers of equal thickness, the present
first-order theory deviates considerably from the exact solution at the bottom layer of the plate,
while the present high-order model still gives very good results as shown in Fig. 4. On the
other hand, the discrepancies between LCW and the exact solution for both Ilk) and 5% are
more pronounced in the interior layers of the plate.

In all the cases considered FSD gave poor results when compared with the exact solution.

Finally, the improvement of the present theory can also be seen in the results for the cen-
tral deflection W3 of the plate as shown in Table 2. It is worth noting that the present first-
order, zig-zag theory gives closer values to the exact solution than LCW for symmetric lam-
inates.

Table 2 Central Deflection 53 of Symmetric and Asymmetric Cross-Ply Laminates for

S-4

Number of Layers N 3 4 5

Exact Solution (3) 2.887 4.181 3.044

Present (High-Order) 2.881 4.105 3.032

Present (First-Order) 2.907 3.316 3.018

LCW (1) 2.687 3.587 2.597

FSD 2.262 3.088 2.412

Conclusion
A new high-order laminated plate theory, which accurately predicts in-plane responses of

symmetric and asymmetric laminates, has been developed using Reissner's mixed variational
principle (5). The improvement was accomplished by introducing into the in-plane displace-
ment variations across the plate thickness, a zig-zag shaped CO function and the Legendre poly-
nomials of order n - 1, 2, 3, as detailed in (6). The theory was tested by examining the prob-
lem of cylindrical bending of an infinitely long strip, whose exact solution had been given by
Pagano (3). The comparison of the central deflection and in-plane displacements and normal
stresses for symmetric 3- and 5-layer and asymmetric 4-layer cross-ply laminates with available
first-order (FSD) and high-order (LCW) theories has shown that the present theory very accu-
rately predicts the in-plane response even for small span-to-thickness ratios. Thus, the theory
provides a tool with which one may efficiently study the extraordinary skin action in laminated
composite plates.
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