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B 1. SUMMARY

a This is the first Annual Report under ONR Contract N00014-84-0468, work unit number
b,

i NR064-725 conducted by Drs. H. Murakami and G. A. Hegemier at the University of Califor-
nia. San Diego. during the period from July 1, 1984 to June 30, 1985. The cognizant ONR pro-
Q manager is Dr. A. S. Kushner.

@

"' he research is conducted in response to the need for microstructural-based theories which
>

%]

furnish increased simulation capabilities of metal-matrix composite structures in both static and
dynamic regimes with a minimum of model parameters to be experimentally determined. The

objective of the research is to develop a nonlinear model of binary metal-matrix composites that

-

B

-

will provide greater accuracy than existing models in linear and nonlinear regimes for static and

dynamic loading. Furthermore, in an effort to accommodate practical structural configurations

o
A

a plate theory is developed for fiber-reinforced composite plates.

T

The progress made during the first year’s effort toward achieving the above objectives

includes: 1) the development and validation of a linear mixture model which accounts for effec-

1

‘s

tive moduli and harmonic wave dispersion, ;2) testing of methodologies for including nonlinear

it
TN 2

T

material responses, and {3) a significant improvement of existing laminated composite theories

to account for inelastic responses driven by in-plane strains,

2. RESEARCH OBJECTIVE

The ultimate objective of the research described here is to construct an advanced, non-
L linear nonphenomenological model of binary metal-matrix composites that will provide greater
¥ accuracy than existing models in linear and nonlinear response regimes for static and dynamic

loading. The term ‘nonphenomenological’ implies a model that is capable of synthesizing the

global properties of composites from a knowledge of the matrix and fiber properties, the fiber-
matrix interface properties, and the geometry of the fiber reinforcement. In addition to the

; development of a continuum model, a plate theory is developed for laminated composites in ‘
’
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which each layer consists of a unidirectionally fiber-reinforced metal-matrix composite laminae.
This effort is to improve the simulation capabilities of metal-matrix composite structures by

introducing the advanced constitutive model to laminated composite plates.

The specific research objectives of the work performed during the present reporting period

were as follows:

1. Construction of a linear mixture model - Develop a dispersive linear mixture model

for arbitrary wave motion, and perform a validation study of the model.

2. Development of a nonlinear mixture model - Explore an efficient methodology for
including inelastic responses of the composite, such as plastic deformation of the

matrix, debonding and slip at the fiber-matrix interface, and fiber breakage.

3. Improvement of existing laminated composite plate theories - Develop an improved
laminated composite plate theory which can accommodate the above inelastic consti-

tutive model for metal-matrix composite laminae.

3. CURRENT STATUS OF RESEARCH

The progress made during the report period toward achieving the research objectives
described earlier is summarized in this section. First, the basic technical approach being fol-
lowed to meet the objectives is outlined. Then, the progress made toward developing and vali-
dating an advanced mixture theory with microstructure for metal-matrix composites is
described. Next, the effort to develop a laminated composite plate theory with improved in-

plane responses for use in connection with the above constitutive model is summarized.

3.1 Approach

The nonlinear response of metal-matrix composites is largely dominated by complex
interaction between the fiber and the metal-matrix. Consequently, an accurate model of metal-

matrix composites must be capable of accounting for such interactions. Further, in an effort to
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minimize the number and types of tests necessary to define the parameters of a given model. it
is highly desirable that it be nonphenomenological, i.e., that the global properties of the compo-
site be synthesized from the constitutive properties of the fiber and matrix, the fiber-matrix
interface conditions, and the geometry of fiber reinforcement. A candidate modeling approach
that satisfies the above objective is the "mixture theory with microstructure”. According to the
mixture concept, the fiber and matrix are modeled at each instant. of time as superposed con-
tinua in space. Each continuum is allowed to undergo individual deformations. The micros-
tructure of an actual composite is then simulated by specifying the nature of the interaction
between the continua. The key element for the development of a mixture model for composites
with periodic microstructure is an asymptotic procedure called "multivariable a.symptotic expan-
sions". This mathematical technique with a "smoothing" operation, leads to the desired mixture

forms.

An improved laminated composite plate theory that can simulate in-plane responses accu-
rately is developed by introducing a new displacement microstructure over the thickness of
plates and by using Reissner’s new mixed variational principle {Reissner, 1984) which automati-

cally yields the shear correction factors of shear deformable plate theories (Reissner, 1946, Mind-

lin, 1951).

3.2 Development of Linear and Nonlinear Mizture Models for Metal- Matriz Composites

For fibrous composites, wave dispersion has been amply demonstrated via ultrasonic tech-

niques by such investigators as Tauchert and Guzelse (1972), and Sutherland and Lingle (1972).

Simulation of response phenomena associated with the material microstructure, such as
wave dispersion, requires a higher-order continuum description. Several such models have been

proposed, some phenomenological, some nonphenomenological.

A higher-order continuum model which simulates wave dispersion was first proposed by
Achenback and Herrmann (1968) for unidirectionally fiber-reinforced composites. This theory,

called the "effective stiffness theory", has been further studied and applied to fibrous composites




WA TS T TR A7 T T

-6 -

by Bartholomew and Torvick (1972), Hlavacek (1975), Achenback (1976), and Aboudi (1981).
The aforementioned work concerned linear materials. By modifying the original methodology,

Aboudi (1982, 1985) extended the linear model to account for inelastic responses of the compo-

" site constituents.

B, In addition to the effective stiffness modeling concept, a mixture approach has been fol-
': lowed by a number of investigators. A phenomenological version of this model type was
;: adopted by Martin, Bedford and Stern (1971). Deterministic, nonphenomenological mixture

theories were introduced by Hegemier, Gurtman and Nayfeh (1973), Hegemier and Gurtman

(1974), and Murakami, Maewal and Hegemier (1979). Although capable of simulating nonlinear

n component responses and interfacial slip, this work was limited to waveguide-type problems.
& This limitation was removed in the mixture theory developed for laminated composites by
o

‘) Hegemier, Murakami and Maewal (1979), and Murakami, Maewal and Hegemier (1982).

their papers, it was demonstrated that the mixture-type model was capable of simulating har-

_* monic wave dispersion in laminated composites more accurately than the effective stiffness
% theories. Further, the mixture-type model requires fewer governing equations. The accuracy
, and efficiency of the mixture theory is due to the use of appropriate displacement and stress
:; microstructural fields, and a judicious smoothing technique. These are obtained by an asymp-
;::: totic procedure with multiple scales. This procedure yields a series of microboundary value
:{b problems (MBVP’s) defined over a unit cell, which in term represents the (periodic) microstruc-
K ture of a composite. The lowest order version of the MBVP method is equivalent to the "O(1)
";j homogenization theory" summarized by Bensoussan, Lions, and Papanicolaou (1978), and
;' Sanchez-Palencia (1980). The latter, while it generates appropriate static moduli, is nondisper-
“‘ sive. Simulation of wave dispersion requires at least a theory which is classified as an O(e)
i: % homogenization theory in which ¢ denotes the representative ratio of micro-to-microdimensions
L3 of a composite.

'.j To date an O(¢) mixture theory has not been constructed for fibrous composites subject to
jul ; arbitrary wave motion. Construction and validation of such a 3D model for unidirectional
¥

RN
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binary composites with periodic microstructure is the objective of the research. To facilitate
this task, the asymptotic procedure with multiple scales noted previously is combined ‘with a
variational technique (Murakami, 1985). Following development of the basic equations, the
dispersion of time-harmonic waves is studied and the results are compared with experimental
data for boron/epoxy (Tauchert and Guzelse, 1972) and tungusten/aluminum (Sutherland and
Lingle, 1972) composites. The good correlation obtained with experimental data indicates that
the proposed mixture model furnishes a basic tool by which dynamic responses of elastic compo-

sites can be investigated.

Following the development'of a linear mixture model for metal-matrix composites, an
extension of the model to include material nonlinearities has been attempted. Future work will
include completion of development of a nonlinear mixture model with validation studies. As

part of this effort, the constraint hardening and fiber breakage will be incorporated.

8.8 Development of An Improved Laminated Composite Plate Theory

The application of metal-matrix composites in the form of laminated plates has created a
demand for the development of a laminated composite plate theory in which each layer may
experience plastic deformation with constraint hardening (Dvorak and coworkers, 1976, 1984),
and transverse cracking. In order to simulate the inelastic response of each layer, plate theories

should be capable of predicting accurately in-plane strains which yield inelastic responses.

In a series of papers, Pagano (1970a,b) derived exact elasticity solutions for bidirectional
: composites for the problems of cylindrical bending and simply supported rectangular plates.
' Pagano showed the importance of the transverse shear effect for the predictions of accurate
t_'J' plate deflections and the necessity of improving assumptions for in-plane displacements, which
:{ , are assumed to be linear across the thickness of the plate in the Kirchhoff as well as the
“; Reissner-Mindlin shear deformable plate theories. Since the development of laminated plate
.:?' theories, including the effect of the transverse shear by Yang, Norris and Stavsky (1966) and
(e

Whitney and Pagano (1970), many higher order laminated plate theories have been proposed.
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Historical accounts of such efforts may be found in the articles by Seide (1980), Bert (1984), and
Reddy (1984). However, only a few attempts have been made to improve the in-plane strain

responses.

New high-order plate theories have been developed with the help of a new variational prin-
ciple (Reissner, 1984). The improvement of the in-plane responses is achieved by including a

zigzag shaped C° function to approximate the thickness variation of the in-plane displacements.

In any approximate plate theory, kinematic assumptions require corresponding constitutive
assumptions for transverse stresses. As an example, both the Kirchhoff and the Reissner-
Mindlin plate theories adopt a displacement field which satisfies a state of plane strain in the
thickness direction. In the Kirchhoff theory the stress field is assumed to be in a state of plane
stress which means that all transverse stresses are zero. In the Reissner-Mindlin plate theory
only the transverse normal stress is set to be zero in the stress-strain relations. This, in turn,
implies that Hook’s law, as it is, cannot be used. As a result, a more complicated displacement
assumption over the thickness of the plate must be introduced with suitable stress assumptions
which are not trivial. Reissner’s aew mixed variational principle (1984) provides a solution to
the above shortcoming; it is a variational principle for arbitrary displacement and transverse

stresses, in which the original three dimensional stress-strain relations can be used.

By using the two key elements: a zigzag shaped C° interpolation function for the displace-
ment variation over the thickness of the plate and the application of Reissner’s new mixed vari-
ational principle, new shear deformable laminated plate theories with improved in-plane
responses were developed (Murakami, 1985, Toledano and Murakami, 1985). Copies of these
references are included in Appendix B, together with the paper which compared the difference of

e the two plate theories of different order (Murakami and Toledano, 1985).
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The overall thrust and implication of the above work is that by the new laminated compo-
site plate theories it is now possible to carry out nonlinear plate analyses in which some layers
experience plastic deformations. For the composite plates made of metal-matrix composite lam-
inae the new plate theories can accommodate the new constitutive model developed by the non-

phenomenological mixture theory.

4. PUBLICATIONS

The following papers were prepared, and submitted for publication, during the reporting

period covered by this report:

1. Murakami, H. and G. A. Hegemier, "A Mixture Mod2l for Unidirectionally Fiber-

Reinforced Composites," submitted for publication.

2. Murakami, H., "Laminated Composite Plate Theory with Improved In-Plane
Responses," Proceedings of the 1985 PVP Conference, ASME, PVP Vol. 98-2, 1985,

pp. 257-263, also submitted to ASME Journal of Applied Mechanics.

3. Toledano, A. and H. Murakami, "A High-Order Laminated Plate Theory with

Improved In-Plane Responses," submitted for publication.

The following paper was prepared for a cancelled symposium during the reporting

period and will be submitted to an appropriate symposium.

4.  Murakami, H. and Toledano. A., "An Improved Laminated Composite Plate Theory,"

will be submitted.
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o 5. INTERACTIONS
- The following is a list of the presentations at meetings and conferences by the principal
ERY
5,3"‘: investigators which occurred during the reporting period on issues related to the research done
Y
o
ﬁ,' W under the present contract:
;} 'l 1. Murakami, H., "A Mixture Model for Metal-Matrix Composites,"” oral presentation at
bl
’ ! the Tenth Annual Mechanics of Composite Review, Dayton, Ohio, October 15-17,
il
o
o 1984.
43 . . .
N 2.  Murakami, H., "Some Basic Inelastic Response Features of the New Endochronic
I
Theory," oral presentation at the 21st Annual Meeting of the Society of Engineering
o Science, VPI, Blacksburg, Virginia, October 15, 1984.
5%
K ::.l
::'. 3. Murakami, H., "Laminated Composite Plate Theory with Improved In-Plane
> Responses," oral presentation at the 1985 PVP conference, ASME, New Orleans,
-;; Louisiana, June 24-26, 1985.
33
2 6. LIST OF PROFESSIONAL PERSONNEL
Ly
:“:; Scientific personnel supported by the contract during the reporting period are
1
~ 1. . .incipal Investigators: Dr. H. Murakami, Assistant Professor of Applied Mechanics,
3‘_: and Dr. G. A. Hegemier, Professor of Applied Mechanics.
~ L ]
j:ﬁ
:'{_. 2.  Research Assistants: Mr. Akira Akiyama, Mr. Albert Toledano, and Mr. Thomas
i Impelso, PhD students in Engineering Sciences (Applied Mechanics).
)
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ABSTRACT

A binary mixture theory with microstructure is constructed for unidirectionally fiber-reinforced
elastic composites. Model construction is based on an asymptotic scheme with multiple scales and the
application of Reissner’s new mixed variational principle (1984). In order to assess the accuracy of the
model, comparison of the mixture model predictions with available experimental data on dispersion of
harmonic waves is made for boron/epoxy and tungusten/aluminum composites. Formulas for the
effective moduli are also presented, and the results are compared with test data and other available

predictions.




1. Introduction

With the advent of high strength and stiffness fibers such as boron and carbon, and the develop-
ment of techniques for binding such materials to plastic or metal, fibrous composites have become
important elements of modern structures. Such composites, due to their microstructural heterogeneity,
may exhibit response phenomena for some environments that are not observed for homogeneous
materials. An example of these phenomena for dynamic environments is wave dispersion, and under-
standing of which is important both from the standpoints of direct response prediction and indirect ana-
lyses associated with such topics as nondestructive testing. For fibrous composites, wave dispersion has
been amply demonstrated via ultrasonic techniques by such investigators as Tauchert and Guzelse

(1972), and Sutherland and Lingle (1972).

Simulation of response phenomena associated with the material microstructure, such as wave
dispersion, requires a higher-order continuum description. Several such models have been proposed,

some phenomenological, some nonphenomenological.

A higher-order continuum model which simulates wave dispersion was first proposed by Achen-
back and Herrmann (1968) for unidirectionally fiber-reinforced composites. This theory, called the
"effective stiffness theory”, has been further studied and applied to fibrous composites by Bartholomew
and Torvick (1972), Hlavacek (1975), Achenback (1976), and Aboudi (1981). The aforementioned
work concerned linear materials. By modifying the original methodology, Aboudi (1982, 1983)

extended the linear model to account for inelastic responses of the composite constituents.

In addition to the effective stiffness modeling concept, a mixture approach has been followed by a

number of investigators. A phenomenological version of this model type was adopted by Martin, Bed-

ford and Stern (1971). Deterministic, nonphenomenological mixture theories were introduced by
A Hegemier, Gurtman and Nayfeh (1973), Hegemier and Gurtman (1974), ar Murakami, Maewal and
Hegemier (1979). Although capable of simulating nonlinear component responses and interfacial slip,

this work was limited to waveguide-type problems. This limitation was removed in the mixture theory

developed for laminated composites by Hegemier, Murakami and Maewal (1979), and Murakami,

b Maewal and Hegemier (1982). In their papers, it was demonstrated that the mixture-type model was
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capable of simulating harmonic wave dispersion in laminated composites more accurately than the

L

« -

¢ effective stiffness theories. Further, the mixture-type model requires fewer governing equations. The

A

accuracy and efficiency of the mixture theory is due to the use of appropriate displacement and stress ]

microstructural fields, and a judicious smoothing technique. These are obtained by an asymptotic pro-

P R Rl Il 'y

cedure with multiple scales. This procedure yields a series of microboundary value problems (MBVP’s)

defined over a unit cell, which in turn represents the (periodic) microstructure of a composite. The

aATa aaa a

lowest order version of the MBVP method is equivalent to the "O(1) homogenization theory" summar-

R aa A a8

ized by Bensoussan, Lions, and Papanicolaou (1978), and Sanchez-Palencia (1980). The latter, while it

A

; generates appropriate static moduli, is nondispersive. Simulation of wave dispersion requires at least a
:‘{ theory which is classified as an O(e) homogenization theory in which € denotes the representative ratio
, of micro-to-macrodimensions of a composite.

‘ To date an O(e) mixture theory has not been constructed for fibrous composites subject to arbi-
v

) trary wave motion. Construction and validation of such a 3D model for unidirectional binary compo-
::; sites with periodic microstructure are the objective of this paper. To facilitate this task, the asymptotic
- procedure with multiple scales noted previously is combined with a variational technique (Murakami,
’: 1985). Following development of the basic equations, the dispersion of time-harmonic waves is studied
N and the results are compared with experimental data for boron/epoxy (Tauchert and Guzelse, 1972)
:': and tungusten/aluminum (Sutherland and Lingle, 1972) composites. The good correlation obtained
‘ with experimental data indicates that the proposed mixture model furnishes a basic tool by which
N dynamic responses of elastic composites can be investigated. While the model construction procedure
; is applicable to inelastic component response and interface slip, extension and investigation of the non-
{4 linear problem is deferred to later publications.

)

:3 2. Formulation

‘ Consider a domain ¥ which contains a uniaxial periodic array of fibers embedded in the matrix, as
W

,.'é shown in Fig. 1. Let a rectangular reference system X,, X,, X3 be selected with X, in the axial direction
: of the fibers. In the X,, X;-plane, a typical cell that represents the geometrical microstructure of the
B e
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composite is shown in Fig. 2 for a hexogonal array.

For notational convenience forms ( )@, a = 1,2 denote quantities associated with material a
with « = 1 representing fiber and @ = 2 matrix. Cartesian indicial notation will be employed in which
Latin indices range from 1 to 3 and repeated indices imply the summation convention unless otherwise
stated. In addition, the notations ("), = §(7)/8X; and ("), = d(")/d1 will be employed in which ¢
represents time. Quantities of the form (T) and ( ) denote dimensional and nondimensional variables,

respectively.

The governing relations for the displacement vector '17,-“" and the stress tensor 7 in the two
y

constituents are:

(a) Equations of motion

G g | G =g M

where 5’ is the mass density;
(b) Constitutive relations

@ o X@g, gf + @ Q)
wher: 1@), 2©) are Lame’s constants, e is the infinitesimal Cauchy strain, and 8, is the Kronecker
delta;

(c) Strain-displacement relations
e =1 @ +TS) 3)

(d) Interface continuity relations

TV =g®  FM =g on g (@)
where »{!) = 0 on the fiber-matrix interface & :
(e) Initial conditions at 7 = 0 and appropriate boundary data along the boundary av.

Conditions (a) - (e) define a well posed initial boundary value problem. However, due to the

large number of fiber-matrix interfaces the direct solution to this problem is extremely difficult. The
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XD
ke I
{ _: objective of the subsequent analysis is to alleviate such difficulties by deriving a set of partial differential
i
) equations with constant coefficients whose solution can be utilized to approximate the solution of the
il . . . . .
s problem. To this end, it will be convenient to nondimensionalize the basic equations by using the fol-
e
:s&x . ..
;f;,’ , lowing quantities:
":‘ﬁé
A typical macrosignal wavelength

%
T A typical fiber spacing or cell dimension
N _

N Cim) »Pim) reference wave velocity and macrodensity

E(m)=P(m) Clsy  reference modulus

g
.:_; 1ty = AN Cm) typical macrosignal travel time
)
1) -
i e = A/A ratio of micro-to-macrodimensions.
:i:. With the aid of the above notation, nondimensional variables are now introduced according to
ke _ _ -
2| G axy X)) =G X%, XA, t=t/l,
" (A#)h)- (Xﬁ)(n)/z.(m) ) Ph)'ﬁ(a)/l-’(m) . (5)
[
i .q .
! With the variables defined according to (5), the material properties are seen to be periodic in the
2 L]
Y x,, xy-plane in which the periodicity of the fiber lattice structure may be defined by the cell. It is
: expected that stress and deformation fields will vary significantly with respect to two basic length scales:
3 (1) a"global' or "macrd” length typical of the body size or loading condition, and (2) a "micro" length
l’ typical of "cell" planar dimensions. Further, it is expected that these scales will differ by at least one
order of magnitude in most cases. This suggests the use of multivariable asymptotic techniques (Ben-
H
1
o soussan, Lion and Papanicolaou, 1978, Hegemier, Murakami and Maewal, 1979, Sanchez-Palencia,
18 1980). This approach commences by introducing new independent microvariables according to
‘:‘. ; .
o x =xle . 6)

Therefore, all field variables are considered to be functions of the microvariables x; and x3, as well as

the macrovariables x;, i = 1-3:

SO xa x5 1) = f70c), X5 X3, X3, X3, 1 1 €) (Ta)

A R A .
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Spacial derivatives of a function f then takes the form

9 -0 . L.

ax S g, 1) ax S O xi, e
1 3 '
:-a—f (Xk,x,,l €) (7b)

where 8( )/ax) = 0. By introducing the notation ( ), = §( )/dx; equation (7b) can be rewritten

as.
f,-f,+;‘/‘,- . 70

In the sequel /* will be written as / for notational simplicity.

The operations (7), when applied to all field variables, lead 1o the following "synthesized” govern-

ing field relations:

(a) Equations of motion

"1:)+—0°'] -p" ye) o =of . ®

(b) Constitutive relations

T =AW B, o + W@ ) ©)

(c) Strain-displacement relations

e,}"’-—;- %9 + u@ +—(u,“')+u,)) : (10)

(d) Interface continuity conditions

uM =y @ Py - gDy on & . an

~ At this point, the variation of field variables which satisfy the periodicity with respect to x; is assumed.

According to this condition field variables take equal values on opposite sides of the cell boundary. The
premise allows one to analyze a single cell in an effort to determine the distribution of any field variable

with respect to the microcoordinates x;. The x’ -periodicity condition is motivated by the Floquet and




Block theorems (Brillouin, 1946) for harmonic wave in periodic structures. Certainly, it eliminates

boundary layer effects. However, it is expected to provide a good model for the global wave

phenomena in fibrous composites with periodic microstructure.

For the construction of a mixture model it is convenient to cast the field equations in a variational

form by using the Reissner new mixed variational principle (Reissner, 1984). In the Reissner varia-
tional principle the variations of displacement, strain with (10) as definition and transverse stresses, i.e.,
all stress-components except aﬁ’, are considered. Thus, it is convenient to rewrite the constitutive

relation (9) in terms of the axial strain e{f’ and the transverse stresses:

ol = ()‘+2u)“"e,‘,"+x‘°’{e§’ ~)+e,‘§’(---)],

e () o d® 1
le'{g)( . )l = Ujj - A(ﬂ)e{f) l

(2¢88 (---) , 28 (---) , 28 (

O+ 2)@  p@ ]
A+ 2u)e)

X)
\ = L) ) , ol , of) 12)
o m v
1
£ty Using the equations of motion (8), Gauss’ theorem, and the x °-periodicity condition, it can be
n;!;.g demonstrated that the Reissner mixed variational principle, applied to the synthesized fields by the mul-
;’. tivariable representation, takes the form:
Ehl
X
fff [ L ff[&eh" o+ 8efd 63 + sefp) 659 + Bel ¢
O [OEN Liaa T4
™
+ el 65 + ey &
1i_:f; + 518 iy + 4w e () + 85 Y + L ufyh - e ()
oAl
.

i

+ 8633 iy + ufy + :‘ ufy + :' ufyh =29’ (--+))

SR XN
Pl T

X

+ 864 (W + ufy +—u§ ~ 28 (- )

e
‘.—Ia .
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+ 85 (8l + ufy + T ufh~ 2efp) (- D) dxi

+ f [(814,-‘2’ 5y + 8T, (4@ — u,-“’)]ds' dx; dx; dx;
S

-Sfs|
+~£9{(

where 4 @) denotes the x3, x3-domain of the cell occupied by material a (Fig. 2), &) is used for the

L [ [ ou@c p@u@dc; axif ax, dx, dx,
h)

a=]

ff su@ T dx} dx})dd (13)

a=1

v .
approximate transverse stresses, 7%’ denotes the traction vector on the surface § Vr where the traction
is specified, ds® is an infinitesimal line element on &, and d4 is an infinitesimal surface element on

the boundary of ¥:3V. In (13) basic variables are the displacement u;“’, the transverse stresses G ‘a)

and the interface traction vector llT,‘ The Euler-Lagrange equations of (13) include (8a), (11a), (12),

and
3'-' =" on &. (14)

The above variational equation (13) furnishes a tool with which a mixture model can be obtained
with appropriate trial displacement and transverse stress fields. The basic requirement for the variables
is the x" -periodicity condition on the cell boundary 4. The microstructural variation of the trial func-

tions can be obtained by the asymptotic procedure (Murakami, Maewal and Hegemier, 1981).

3. Asymptotic Analysis

The premise that the composite macrodimension is much larger than the microdimension,
€ << 1, and the form of scaled equations (8) and (10), suggest the expansion of the dependent vari-

ables in the asymptotic series:
{“ip'ij](a)(xk*xl.";e)- L ‘”{”i(n)'o'ij(n)lh)(xkvxl.") . (15)
n=q

\'_'-j. J..-.\u:; :

'ﬁ'-PL'i
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If (15) is substituted into (8)-(11) and the coefficients of different powers of € are equated to zero, a
sequence of problems defined on the cell is obtained. The first of the equations in this sequence fur-

nishes
uBye=0 , ol =0 . (16)

Equation (16a) implies that 4} is independent of x; and yields with the zero-th order expansion of

(11a):
ll,%& - (/i(o) (Xk W) . an

The remaining systems of equations obtained from (8)-(10) are, forn 2> 0:

o'j(ﬂr)wl)J‘ - Ph)“i(&)),n - o'j(ﬂ):).j ’ ‘7}8’) - 0'15“8:) » (18)
ﬂn) - AG’)su Ky + &‘h)eu( n) s (19)

1 \
et = 3 e+ uweh, + ulhn,s + uGhne) . (20)

To be added to the foregoing are the interface conditions and the x° -periodicity conditions for n > 0:
ufh =uf) oV =ocFp/) on &, Q1)

uly and offw® are x'—periodic ondA4 . (22)

The first set of microboundary value problems (MBVP’s) for o {4}, and u;{], called the O(1)
MBVP’s, is defined by (16b), (18b), (19)-(20), (21b), (22b) with n = 0, and (21a), (22a) with n = 1.
The O(1) MBVP’s are excited by U, . Similarly, a sequency of MBVP’s is defined for each n from
(18)-(22). With appropriate integrability and normalization conditions, higher order terms may be
computed by solving the MBVP’s. In particular, the O(1) MBVP’s are the ones solved for the O(1)
homogenization theory proposed by Bensoussan, Lion and Pap~nicolaou (1978) and Sanchez-Palencia
(1980), and, also, form the basis of the mixture theory which may be classified as an O(e) homogeniza-
tion theory. The asymptotic approach yields the microstructures of displacement and stress fields after

solving a multitude of MBVP’s which are complicated.

S T mm:z-%ﬁm AN GRS R NEORGLE 08 CEEROGS |
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In order to use the approximate solutions of the MBVP’s in the course of developing a mixture
model, and 1o ease the burden of solving the MBVP’s exactly, a variational procedure was adopted by
Murakami (1985) for laminated composites with the help of the Reissner new mixed variational princi-
ple (Reissner, 1984). A similar approach is adopted here for fibrous composites. To obtain the lowest
order mixture theory by using (13), it is necessary to obtain trial displacement and transverse stresses
to O(e). In the sequel, the trial functions are obtained for a hexagonal cell with a concentric cylinders

approximation as shown in Fig. 2. In Fig. 2, (r.8) are micropolar coordinates:

r=+/x;2+x3% , tan@=x3/x; , (23)

by which r = 1 constitutes the cell boundary and r = v/ n“T, denotes the interface & . The quantities

n‘@) indicate the volume fraction of material & and satisfy
nW 4 p@=1 | (24)

In terms of the polar coordinates the x °-periodicity conditions for a hexagonal cell with the concentric

cylinders approximation reduce to the form:

SOrgt)=flram+0y0) at r=1 . (25)

4. Trial Displacements and Transverse Stresses

The O(1) stress and Ofe) displacement fields are obtained by solving the O(1) MBVP’s which are
defined by (16b), (18b), (19)-(22) and (24). These MBVP’s are excited by U;(,);. The exact solution
of 4%} is furnished in the Appendix. For the mixture formulation it is convenient to introduce an

O(e) displacement variable which represents U;(,); + U, (,),; according to:

S =1 [ @04 =L .
s, (Xk 1') = GA.?’I' u; Vj(”ds A.?r ui((” Vj(”ds (26)

where A (=) is the area of the cell. Due to the fact that u$] is excited by Ui, + Uy, One

obtains
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Equation (27) can also be obtained if one substitutes the exact 4$} in the Appendix into (26) and

|
eliminates U;,);. To render the analysis tractable, it is preferable to utilize an approximate form of |
the exact solution for 4 %]. The exact solution indicates that the following form of the O(e) displace- 1

ment yields a good approximation: 1

2 3
Ul Og xp ) = S O 1)@ (r) cos 8 + § O, ,1)g® (r) sin @ (28a)
where
0= L 20—y Crt) (280)

Anticipating the O(e?) difference of the average of u,) on 4%, equations (17) and (27) yield the fol-

lowing trial displacement field:
where 48] is defined by (28). Equations (29) and (28) indicate that the mixture displacement vari-

2 3
ables are U,1), U®, §; and S; with the constraint (27).

By using (29) in (19) with # = 0 and considering the O(e?) differences of the average transverse

stresses, the O(1) trial stress field may be expressed as:

n {a} @)
T2200) 722(xy 1) 5 cos 20 cos 20 sin 29
6’33(0) - 1'33()&’;“’) + -;'—22' fi}) (xi o) | cos 26] + f;}) ‘Xk.') —cos 20| + 18) (Xk,f) sin 20
&23(0) 723(xk ’[) 0 sin 20 0
(30a)

0 “ ED) A 2% %

9 31(0) 31 W 8a2 | sin - cos

&u(o) - l—;u (xk ) + —’.1_ [113 (Ik Jg) lCOS 2 + I;f (&k 1) —sin % (30b)

In order to define the Ofe) trial stress field it is convenient to define the O(e) stress variable

according to
= _l_ (a) o 1 ) dc®
Plgg)= Yy f o/ vVds* = y f o qlwiVds” . 31

If one integrates (8a) over A and utilizes the x"-periodicity condition, one obtains the mixture

momentum equations:

b . 4® "2 B " ‘)Jv_‘n!--n.’.‘u'_a,"\!-._-‘-. .‘-......._-..--_.'v et Tt Mt AT, T et et Mt T M TR, e, e, PR T R P P IE TP S P a
» {‘{:":\"’ Yo - Vel " Lt e e e . % RN DASRT WA .‘('l' '-u - "‘."‘ s it .‘J.‘\..“ ‘!.‘:\.‘",4 %) -‘l‘\-.‘,“:-‘ '.\ ". .
. dadiels il - sl M N . . LY ‘ ) e 2
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n® aj('pj) + (—l)"“ P, - n(a) p(a) u,_?'x’a)

32
where the average operation is defined by

ad — l . . .
1o ) = — _[Lf) S G 30 dxzdxs

" (33)
From (32) it can be seen that P, represents an interaction body force between the two constituents

across the interface. Also, the form of (32) with P; defined by (31) satisfies the integrability condition
adopted by the O(1) MBVP's for (3], which are defined by (18)-(20) with appropriate n’s and (31).

As an O(e) trial stress field which satisfies (31b) one may use the following approximate fields:

- @)
a2(1) 3 1
Faml = % Py (x, 1)€< (r) cosd |1] + P (x ,t)g®) (r) sin @ [3|} (34a)
T2(1) 1 !
A @)
a31(1) 1 @ sin @
l&lzu)] "2 i 0= Icos o] - (340)
As a result, the trial transverse stresses are expressed as:
o E&U(,)(Xk X))+ e &,,“i{)(xk,x,',t) (35)
where &%) and &4}, are defined by (30) and (34), respectively.

5. Mixture Equations

By substituting the displacement and transverse stress trial functions defined by (29) and (35),

respectively, into the Reissner variational equation (13), one obtains the following relations as the
Euler-Lagrange equations:

(a) Equations of motion

n(a)akf) + (_l)n+lP’ - ,,(a)p(u)ulf«lx') ,im1=3

(36)
2 1 g 1a) 2) 2 ;
M,,,+tz @i ~ofl+ R{P=1S,, .i=12 ,

(37a,b)

. . . LR TN - . 0 AT T N R Y a
hinhls ‘*"Ea“ s - Aghe 9}5.\“"1\‘5‘. A q‘“d‘t‘!*ji" c" \ “’;. 3
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My + 5 el = ol + R =15 =13 37

3 2 3
Mya+ M5+ ;13 @3- afl+REP)=18, . (37e)

where

— 1 . e
ot =~ {J; oy dxy
o Vg (cosh , sind) dx3 dx3 (38)

and

)
= @) ) Wl oo =1 @D a2 10ay -
1= £ H@p | KO = KO = Qb + G ) (39)

(b) Constitutive relations

aa)
o
733

2
la) () Uz‘f'f + (—I)"“S;/n‘“’

US + (1P Syn®

T22 AN+ 28 A

A A+

-
733

3
taa) @) (@) 2S
o33 T2 Uys+ U, crpt | 2

oyl =|ra| =s@|Uni+ Uy t— e Si{ (40)
o T Uia+ Usy 2

Py = BIWUR ~ UD e + (/D52 + 5.0+ Gy + SN

_ 2 2 3
(- Py=B,l(USY — US")e*+ v Sii+ h(S12+ S33)]

3 3 k]
Py =B (U = UP ) +y S+ h(Sa + 53)] 40
where

B = 1/(a§' he/(u@)) B, = B3 = l/[a§l he)/ O + u)e}

«
-,

I

2 2
y=ZI hA/0+p)@ , h= T he 42)
a-

WSS

P

&/

e AT TN “ﬁ
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2 2 h 2 h 3 h
MZZ""’ZaMJ-iPI'MZ"Z'PI .Mzz"z"’s ,
3 3 h 2 2 2 3 3
MJJ-"PLMJI"EPIoMZJ‘MZJ"MJl-MZJ"MIZ-O (43)
where it is understood that
2 2 3 3
My=M . M;=M; ; (44)

RP = tf/n® R = (/24 (PYn® R = = 1P/
RP = 1f8/24 1§ )n® (45)

and
2 3
1D == u@ /0D (P =@ 5/
2 3 2 3
1D == O+ @)Dy SYnD 1P = — w DS+ §)/n @
gD == O+ @)D QS . 46)

The remaining constitutive relations associated with o {§’ are obtained from (12a); the results are

-\ + 2u)® U fa) 4 \@) [Uz("‘z) + U;“';’ + (1 )"”(Sz + S;)/n(")l , 47
My, @ |Su P

- z RN + 2u)@ - A I+ [ :] ) (48)
AJ!" a=1 2“ Q + “)(a) g‘“ 4 P

The associated boundary conditions are on 9 V

X n@gad)y, = 7“'” or sU =0 ,  i=123 | (49)
;

-

e 2 > 2

- Myv; =T, or 85, =0 ,  i=12 (50a)
el 3 » 3

Y My,= T, or 8S;=0 . i=13 . (50b)
1.‘ ’
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where

Ten= [ T0asag
A )
p 1% » 1 v . . .
elT,, T -~ }:IT,-“"g“"(coss , Sing) dxy dx; . (51)

Equations (36)-(50) and the initial condition

i
U« , y@ | s ,fs;., at +=0 on V (52)

define a well posed initial boundary value problem with respect time ¢ and the macrocoordinates x; .

6. Harmonic Wave Dispersion Spectra

In an attempt to test the accuracy of the mixture model, the phase velocity and group velocity
spectra of the mixture theory have been compared with available experimental data for time harmonic
waves. For the comparison harmonic waves which are propagating at an arbitrary angle of incidence in

a full space of the following form are considered:

2 2 3 3
up ,ul ,ufp ,uP U U Sk, Sk | 25/ik | S/ik]T

= exp [ik (x,cosd + x,sin ¢ cos @ + x;sin ¢ sin §) - iaul 1/ (53)
where
L] . L] . L] L[] 2 2 3 J 3
y‘_ [U{') , UP). Ui" , U{Z) , U;l) , U;z) VS .S ’252 , S ,S3]T (54)

. J
and [ 17 denotes the transpose of [ ]. In (53) U/® and s; are constant amplitudes, k denotes the
wave number, w represents angular frequency, ¢ is the azimuth measured from the x, axis, and @ is

the longitude; the direction of the wave propagation may be best represented by the wave vector k:

k= klcose ,sin¢ cos@ ,sin ¢ sinf)7 . (55)
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Substitution of (53) into (36) and (37), which are expressed by the displacement variables with (

(40)-(46), yields an eigenvalue problem for ew of the form:

KIU= R IMIU (56)

where [K] and [M] and are 11 x 11 real symmetric matrices, the elements of which are functions of

the mixture constants and the wave vector. Furthermore, [M] is a diagonal matrix. Upon calculation

of the eigenvalue ew for a given ek, one obtains the phase velocity G, as

C, = (ew)/(ek) . (57)

For each computed eigen pairs (ew , )4, k = 1,2, - - - 11 the group velocity

c,=de (58)

can be obtained by taking the derivative of (56) with respect to ek:

K Ui ={2(0)G IM] + €0l IM} U . (59)
k

For the kth eigenpair equation (59) yields

UTUK ) - R IMNY
€)= — (60)
2ew)s (U IMID),

In the subsequent simulation a typical cell dimension A was chosen to be a cell radius by introducing
the concentric cylinders approximation of the equal area. The reference elastic modulus and density

used for the scaling are

- 2 - 2
E, -I n® E@ | B - nl g@ (61) \

where E@ is Young's modulus. The dimensional frequency »(H,) can be computed from ew by '

b v = (€N Emypoy/ 2md) . (62) |
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’ Numerical results are presented for a boron-epoxy composite, for which experimental results were {
.‘. presented by Tauchert and Guzelse (1972) for a waveguide case ¢ = 0° and a waveflect case ¢ = 90°.
E: The material properties are summarized in Table 1 in which the values for Poisson’s ratio are
;g estimated. In the simulation K‘ was computed from the fiber diameter (= 2n™3) which was
o 1.016 x 10-* m. The group velocity spectra for a waveguide case ¢ = @ = 0° are shown in Fig. 3 for
1S two acoustic modes: a "gross' longitudinal mode and a "gross’ shear mode. In the figure the same sym-
; bols as the reference of Tauchert and Guzelse are used for the experimental data points. It is noted
that reasonable agreement is achieved for the waveguide case in which pronounced dispersion is
g observed. The group velocity spectra for a wavereflect case ¢ = 90°, @ = 0° in which the wave vector is
normal to the fiber axis are shown in Fig. 4 with the experimental data. The figure includes three
acoustic modes: a "gross” longitudinal wave (P-mode), a "gross" vertically polarized shear wave (SV-
mode), and a "gross” horizontally polarized shear wave (SH-mode). The sets of experimental data
'_l correspond to the "gross' P-mode and the "gross” SH-mode. It is noted that there are significant devia-
ol tions from the "gross” SH-mode, but the overall agreement is not unsatisfactory if one admits the scar-
5 city of the experimental data and the difficulties associated with the measurement of shear wave veloci-
: ties. It was reported by Tauchert and Guzelse (1972) that a shear wave exhibited extremely high
o damping of the pulse. A similar observation and the scatter of shear wave data were reported by Sachse
(1974) who conducted modulus measurements of boron/epoxy composites by using pulse-echo tech-
‘j niques. He concluded that "the measurements of the present investigation indicate that shear waves
’ propagating along and across fibers in the composite materials tested do not always propagate at the
' same speed.”
‘ Sutherland and Lingle (1972) reported phase velocity measurements for tungusten/aluminum
,i composites whose material properties are shown in Table 2. The equivalent cell radius A was computed
from the given fiber spacings which yield the area of a typical cell 4 (= 7 42) 0.579 x 10¢ m?. Fig-
. ure 5 shows the phase velocity vs. frequency relation for the "gross" longitudinal mode. A reasonable
’ agreement is observed between the experimental data and the theoretical prediction.
]
.
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Ry 7. Effective Moduli

The O(1) homogenization theory which yields the effective moduli of composites can be obtained

by taking the limit of e — 0 and equating the constituents’ displacements

2 UW = g = U (63)

\' By introducing the above constraints, equations (36) yield

:

™ ofm)=p™U, (64)

where

X 2 2

v (T,-_(,-"') - 21 nh)a.l_}ga) , p(m) - 21 n(a)p(a) . 65)
. Equations (37) yield

15

k:

’ o — o+ RP =0 , =123 (66a)
1

h o — ol + RP =0 , =13 . (66b)
" J

By eliminating S; by (66), equations (65a), (40) and (47) with (63) furnish

s-‘.\

vy

] g™ = [Em)]etm) (67
N\

) where

i

S8

e™ = ol o) o) off) o o)

W

2 e = [Uyy, Upy, Usyy Upst Uy Ugy+ Upys Upp+ Undl™ (68)
g

j and [E“] is the effective modulus matrix with transverse isotropy due to the concentric cylinders
) '!
] approximation and is defined in the Appendix.
o
e

e The formulas for the effective moduli (B2) are assessed by comparing the results with the experi-
‘:.: " mental data reported by Datta and Ledbetter (1983) for boron/aluminum composites. The results are
shown in Table 3 in which the moduli computed from the effective stiffness theories for the square cell
-

“. by Achenback (1976) and for the hexagonal cell by Hlavacek (1976) are included by using the formulas
]
£l
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reported by Datta and Ledbetter (1983). The comparison has revealed that ail high-order theories yield
almost similar results. It can be easily shown that the formulas for the effective moduli yield values
which fall between the upper and the lower bounds obtained by Hashin and Rosen (1964) for fiber-

reinforced composites.

8. Concluding Remarks

An asymptotic mixture theory with multiple scales was applied to unidirectionally fiber-reinforced
elastic composites with periodic microstructure. In the model construction, Reissner’s new mixed vari-
ational principle was applied to the synthesized fields with multivariable field representations. In order
to assess the accuracy of the model the mixture dispersion spectra were compared with the experimen-
tal data obtained for the boron/epoxy composite by Tauchert and Guzelse (1972) and for the
tungusten/aluminum composite by Sutherland and Lingle (1972).

A satisfactory correlation with the experimental data indicates that the proposed mixture model

furnishes a basic tool by which dynamic responses of the composite structures can be investigated.
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Appendix

A. Exact yfi} of the O(1) MBVP's:
ulth = G () {(U 2+ Usgyy) 058 + (Usg) s + Uy )sin6)

ufth = b Wy 2 + Uz + AU )8 (r)cos 8

+ a{"’[{g"”(r)cose + k@ g,2(r) cos 30} (Uzgy 2~ Us)3)
+ {g° (r)sin 6 + k) g (r)sin 30} (U 5 + Uuo)z)]
+ bz‘"’[{B(l ~ &@)g[@(r)cos 0 + (1 + kg (r)cos 30} (U g2~ Usio.3)
+ (30— k@) ()sin g + (1+ ¥)gfp) ¢)sin 3} W03 + Uso)|

ufth = b, (s 2+ Usys+ A Uy )8 @ (r)sin 6

+ a{")[{g‘“’(r)sin 0 — k@ gf)sin 30) (= Uy 2 + Us )
+{g“(r)cos 0 — k @g ) (r)cos 30} (U o3 + Us(m,z)l
+ (8% ()05 6 — K@i (r)cos 3} (Vs + Uy a)]

+ bz(“)[l3(l ~ kg @ (r)sin @ — (1 + x“)g ' (r)sin 39} (- Vo2t Usos)

+ {3(1 - x“")g,“') (r)cosg - (1+ x“")g,m,) cos 36} (U;(o)‘g + UJ(O).2)] (A1)

b ={+p)? =0 +px)V/Q) , 4= éi A+p)@/n@ 4+ @/ (n) n D)

2
G=- V= pnDY4, | dy= zl#(a)/nh)+#(2)/(’1(”"(2))

A= Q0 - A2V {O+p) D — (+p)?)

K(CI)E (A+2ﬂ.)(")/#("’ . "“GI)E (I_K(«t))/(|+x‘fl))
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8/“)(') = 815})(') =r, 8/5”(’) =0
g2)==rP+r' | gP@)=(r'+r/3)n?
g (F) = r3— (e ) 2{4(1—k Pk D=2 = 3(1-x D)%Y, - (A3)
In Egs. (A1) af® and b§* are obtained by solving the linear equations for x= [a§", 6§V, a{?,
bPIT:

(Al x = B (A4)
4x4 N

where
Ap=1,A43=0,A43=uM/nM [ 44=0
A= 30=kMn? | 4, = (14x)nW?
An==Ag=3VuV(1—D) , Ay=—1, Ag=—i“/n®
A= p Qa1 = g9 n M) | f45= kD @/p®?

AM - — 3n(2)(l + n(”)(l - K(z))

A= 14+ kD) — (4= 3nM)(A = kD 4 @) (nD (1 + D))

Ay= 3“ (2)(] - K(Z))(n(l)_ ;((2)/” (l))

Au==320 =W+ 3%Dn® + 12,20 - kP + P[0 V1 + D)}, (A5)
and

Bi=By=B;=0 , By=— (" —p@y2 . (A6)

It is interesting 1o note that for most of practical composites b{*’, a = 1,2 are small compared with

af.
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b
¥ B. The Definition of [E ™) in (67)
~ (m) (m)
,.'- 4% EwEyEy 0 0 of" |uy,
" o, EyzEpn iy 0 0 0 UVa
y o3 EwyEpEpn 0 0 O Uss
\ o, = 0 0 0 E“ 0 0 U2_3+ U3.2 (Bl)
5 T3 0 0 0 0 ESS 0 U3.l+ U|'3|
:‘ L 8] 0 0 0 0 0 Ess U|‘2+ Uz'l
?_ where

g El('l") - % n(")()\ + 2“)(41) - Q(I) - A()))Z/dl

i a=1

P, 2

N El(in) == El "(n))‘h)_ (/\(”— )«(2))[()\ + “)(l)_ (Y +I-")(2)}/dl

: .

F. 2

i Ez(rzn) - zl n(a)()‘ + 2#)(a) - {()\ + “)(I) -0+ #)(2)}2/dl - 0"(” — #(2))2/d2 ,
M

Ef = ‘{:1 AER@ (A +p) V= O+ @) Yd + @D — w D)4,

EZ = (EfP - EFN/2

2
EJ?’) - zl ”h)”'(a)_, (“(l)_ Mm)z/ds . (B2)
:. and where
N )
.t =T p@/n@ + \ + w)?/2nVn?@) . (B3)
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Table 1. Material Properties of the Boron/Epoxy Composite Tested by Tauchert and Guzelse (1972)

Volume Young's Modulus Poisson’s Ratio Mass Density

Fraction n’ E@ pa) 5@

SN 379.2 GPa 2682 kg/m>
- (DBoron 0.54 (55 x 10 psi) 0.8 (251 x 10°¢ Ib sec?/in*)

o
AT 5.033 GPa 1261 kg/m3
(DEpoxy 0.46 (0.73 x 10° psi) 0.40 (118 x 107 B sec?/in*)

Table 2. Material Properties of the Tungsten/Aluminum Composite Tested by Sutherland and Lingle

S (1972)

) Volume Young’s Modulus Poisson’s Ratio Mass Density

rs Fraction n@’ E@ ve) pe

Sl (M Tungsten 0.022 398 GPa 0.28 19194 kg/m>

X @ Ajuminum 0978 710 GPa 034 2700 kg/m’
Yo




Table 3. Comparison of Effective Moduli of a Boron/Aluminum Unidirectionally Fiber-Reinforced

Composite in Units of 10!! N/m?

o
M

Data? Mixture Square Cell® Hexagonal Celi?

-

Model Model Model

:.‘s'; X

E{ 2.450 2.551 2.480 2.551
E{p 1.825 1.868 1.856 1872
* EY 0.799 0661 e 0.661
Jf E{p 0.604 05718 e 0.578

{ E{p 0.526 0604 0 e 0.606
Rty
o’ E{M 0.566 0.559 0.451 0.561

o 8 After Datta and Ledbetter (1983)
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LAMINATED COMPOSITE PLATE THEORY WITH IMPROVED IN-PLANE RESPONSES

H. Murskami
Department of Applied Mechanics snd Engineering Sciences
University of California st San Diego
La Jolla, California

ABSTRACT first-order shear deformation theory, (Whitney and Pagano, 1970), to
In order to improve the accuracy of the in-plane response of the obuain in-plane displacements by integration. This estimate yields an
shear deformable laminated composite piate theory, a new laminated accurate prediction of the in-plane strains. However, the drawback of the
plate theory has been developed based upon a new variational principle spprosch is that the stress fleids do not satisfy plate equilibrium equa-
proposed by Reissnerr(l984). The improvement is achieved by including tions.
a zigzag shaped C° function to spproximate the thickness variation of In order to facilitate a theory which accuratel icts in-
in-plane displacements. The accuracy of this theory is examined by response, a new laminated plate theory has been develyomth me’lr::;
applying it to a problem of cylindrical bending of laminated plates which of a new varistional principle, (Reissner, 1984). The improvement is
has been solved exactly by Pagano (1970). The comparison of the in- schieved by including a zigzag-shaped C* function (o approximate the
plane response with the exact solutions for symmetric 3-ply and S-ply thickness variation of the in-plane dispiascements. The advantage of
layers has demonstrated that the new theory predicts the in-plane using the new Reissner variational principle is that it automatically yields

response very accurately even for small span-to-depth ratios. the transverse shear constitutive reistions with appropriate shear correc-
tion factors. A comparison of the in-plane displacements and stresses
INTRODUCTION predicted by the proposed theory, with Pagano’s exact solution of

The advent of metal matrix composites and their application in the ~ \aminated piates in cylindrical bending indicates that inclusion of the 2ig-
form of laminated plates has created a demand for the development of a zag function predicis the in-plane responses more efficiently than the
laminated composite plate theory in which each layer may experience inclusion of smooth nonlinear functions.
plastic deformation with constraint hardening, (Dvorak and coworkers,

1976, 1984), and transverse cracking. In order to simulate the inelastic FORMULATION
responses of each layer, it can be assumed that in-plane strains are pri- Consider & laminated composite plate composed of N ic
mary quantities, while transverse strains are secondary quantities. layers whose principal axes coincide ::‘h rectangular mﬁm

In his series of papers Pagano (1970, 1972) obined elasticity solu- nates x), x; and x;. The coordinate system is selected with x; normal to
tions for bidiractional composites for the problem of cylindrical bending
and for the probiem of the simply supported rectangular plate. Pagano I3
showed the importance of the transverse shear effect for the prediction of }
accurate piate deflections and the necessity of improving assumptions for ()
in-piane displacements, which are assumed to be linear across the thick- . b3y S;
ness of the plate in the Kirchhoff as well as the Reissner-Mindlin plate (3 "
theories. Since the development of laminated plate theories including T AT - At -)
the effect of the transverse shear by Yang, Norris and Stavsky (1966), FAY
and Whitney and Pagano (1970) many higher order laminated plate ®h )-(2)- - i
theories have been proposed. Historical accounts of such efforts may be 7

Lo —

found in the articles by Seide (1980), Bert (1984) and Reddy (1984). a®ln
However, only a few attempts have been made to improve the in-plane — L 1% 3
strain response. . X L

-
-

It has been susted by Whitney (1972) that the sccuracy of classical
laminated plate theories for determining in-plane stresses is not improved
By the inclusion of shear deformation. Among continuum piate theories o¥n I) N .
in which the number of equilibrium equations does not increase with the vy
number of layers, an improvement of the in-plane response was -I\Iz Si
sttempted by including the cubic variation of the in-plane displacemnents
scross the thickness of the piste (Hilderbrand, Reissner and Thomas,
1949, and Lo, Christensen and Wu, 1977). An a posterior estimate pro- Fig. 1 Coordinate system and the approximation of in-plane displace-
posed by Whitney (1972) uses the transverse shear strain obtained by the ments
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the plane defined by x, and x;. For notational convenience, ( )%,
k=12, --- N will denote quantities associated with the k -th layer. For
a plate of total thickness A, the thickness of the k-th layer is denoted by
n®h as shown in Fig. 1, in which the volume fraction a'*? satisfies

N
t§| A=, (4))

Unless otherwise stated, the usua! Cartesian indical notation will be
employed where Latin indices range from 1 to 3 and repeated indices
imply the summation convention. In addition, the notation
( ), = 8( )/ax, will be empioyed.

With the aid of the foregoing notation the governing equations for
the displacernent vector 1%’ and the stress tensor o ) in the k-th layer
become:

(a) Equilibrium equations
o)+ /@ =0, o ma® (2)

where f, is body force;

(b) Constitutive equations for orthotropic layers

)
o ]®  |Cu Cun 0O en]®
1

O 2] - Cn Cn 0 en
T) 0 0 Cql (2,

w)
Chy) on 1@
+|Cy -CL; (a)
0
es]” . Cy Cp am en]®
202_‘ __) 0 0 en
2e,, c4 0 0 2y,
)
?:!,_,' L «)
1 7 3]
+] 0 C—“ 0 o ) (3p)
1 L4}
0 0

Css

where C,/*) and C* are elastic moduli in which &;;, &;; and &y, sre
the reduced stiffness of Whitney and Pagano (1970);

(c) Strain-Displacement Relations

e = W+ 42 )
(d) Interface Continuity Conditions:
UW a0tV o mgftD g a2 N-1 (5
(e) Upper and Lower Surface Stress Conditions
2 nd on x3= h/2 (62)
oiM= T on x;=-h/2 . (6b)

The objective of the subsequent analysis is 1o derive a laminated
piate theory which would have improved in-plane normal strain
spproximation across the thickness and-also the effect of transverse shear
deformation.

The basis of 2 new laminated plate theory is facilitated by a new
mixed variational principie, (Reissner, 1984), applied to the N-layered
composite plate whose middle plane occupies a domain D in the x,, x;-
plane.

fpfl i:,l ‘fm sefl) oif’ + efl ol + Bell of

+8eft) o f) + el + '+ Befl £

+or [uff — eff )] + B (uft) + uff - 248 ()

+ ‘,“) l"ﬁ, + “]‘5’ - 23“) ("')]] a) &]#z
4 ® 0 gy 4 By (x l)T‘
-f"r .El‘f“,all, .,l ’+ & ,,x,,z f
= 8y () xy, - %"Tldxnﬂz

N v
+ I [ u®T alas o)
k=1 )

where Dy denotes the boundary of D with the outward normal »,, on
which tractions T, are specified, and A% is the x,-domain occupied by
the k-th layer. In (7) ey, () implies the appropriate right hand side of
(3b). For an arbitrary variation of 4, and vy, which is the approximation
of oy, which satisfy (5) and (6), it can easily be shown that equations
(2a) and (3b) are obtained as the Euler-Lagrange equations of (7). In
the process, equations (3a) and (4) are considered to be the definitions
ofe . off',off’, anda ¥

TRIAL DISPLACEMENTS AND TRANSVERSE STRESSES

A new laminated piste theory which includes the effect of
transverse shear and the improved in-plane normal strain approximation
is facilitated v introducing appropriate trial displacement and transverse
stress fields int> the Reissner varistional equation (7). As a trial dis-
piacement, a nigzag in-plane displacement variation across the thickness
of the piste, whose amplitude is expressed by S, (x;.x;), has been
included in addition to the linear varistion of the Reissner-Mindlin plate
theory, as depicted in Fig. 1:

4 * xy,x2.x3) = U (x).x;3) + ¥, (x;.x3)x3

2

+ 85, 0px) - DX i, x$ =12 (8a2)
ud®) (e x3.x5) = Uzl x3) (8b)

where
xf = x; - xff’ 10}

is a local xy-coordinate system with its origin at the center of the k-th
layer: x§§’. The inclusion of the zigzag function was motivated by the
displacement microstructure of laminated composites (Murakami,
Maewal and Hegemier, 1981). In order to test the effect of in-plane
zigzag displacement without additional complications, the trial functions
(8) are chosen to yield the lowest order theory. As a possible higher
order theory one may add the zigzag functions to the displacement trial
functions of Lo, Christensen and Wu (1977).

Transverse shear stresses are approximated by
,i‘l) - Q.“’(xlxz)q‘”(x;) + ﬂ““’(x..x;)p.‘“(x,)

+ n(n‘Xp‘))Pl“)(X)) Li=12 (10a)

=0 (10b)

]

-1
r

where

z‘}k)
n%ip

o=z -

x§®

n®h

H x}n

Pt =3 + Sy
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In (10) T,*~1 and T,% gre the values of 5, at the upper and lower faces
of the k -th layer, respectively, and

Q‘(k)_ f ,i‘k) &J . 12)
P
From the definitions of 7;*’ and (6) one obtains
Tt , TWe=T . 13

Due to the approximation for uf*) which yields ef}’ = 0, or3; becomes a
reactive stress. As g result, o3, is obtained by integraling the x;-
equilibrium equation.

LAMINATED PLATE EQUATIONS

By substituting (8) and (10) into (7) with (3a) and (4), and
integrating by parts, one obtains:

() Equilibrium equations
N+ N+ (T =-T)+ FF=0,i=123 (14)

M1+ Mys=Nyu+h(TF+T7)/24+ Fl=0,i=12 (15)

Lys+Lly,=Ky—= ("= DT+ FPm0,i=12 (16)

where
N

(N,,.MU.LU)E‘EIA_L (xy ,

2

-1 =

x§)o & dxy, i j=1,2 ()

x

(N;,-.K,,-)E.El‘fm a, ﬁ»;f'a, . am)

N
(""H'E”)- El;{,[l'x’ *
(- 1* ;(,,hz_x}“lf:u‘)dx;‘i-l.Z.J o 17%)

(b) Constitutive relations

w
o - L'.u_" (T*=Y 4 T

- l% a®h (Uy, +¥)+ 1) % S,} Jim12, k=12 . ,N8)

-

2 1 A% e ‘,,m pU+D l
=h{~-=5=T, Do + T W
1% { 4 &W C,‘“ a(nn !

plkel
é(ﬁol)
(]

- % Tl(tol)l

- -l% lg(k)/é(n) + Q’mn/cmn] .

i=12, k-1,--- N=-1 (19)
where, in (18) and (19), no sum is implied on /, and
CW= @, Clp +8,C8) . (20)

O™ and T®) can be obuined in terms of U, + ¥, and S, by
(18), (19) and (13). As a result, Ny and K, are expressed by
Uy, + ¥, and S, through (17b); such expressions sutomatically include

the sppropriate shear correction factors by virtue of the Reissner varia-
tional principle.

The appropriste boundary conditions to the equilibrium equations
(14-16) are:

U or Nywy+ Ny»; , i=123 Qla)
v o M,,-,+‘l,y, , i=12 21t)
S o Lywny+Lyvy , ‘-1.2 . Qtc)

The remaining constitutive relations for Ny, M, and L, /j = 1,2
are obtained from (17a), (3a), (4), (8) and (10b}; the results are:

)
Ny «~ ¢uly
- £, C.,C.j

"“zl.l +xff ::” '

N
Nig= El an C&’ U2+ Uyyp)

+xff (ra+ ¥}, @

. @
Myl » Culii Uni
anl = t’-:n n® [C.,C.,I x4 [Uz.:

1’1.1]

(l)', )2
Y22

(n
+ lxﬁ” += 1

,,u),, S|_|

N
M= ._t_l a®n Y [X“’ W2+ Uy

&) py2
+ (x“)l + "(!'lTh)— )("u + '1‘1)

+ =1

"(:h S12+ 31_1)] . (23)

®)
‘l—nl N a0 |Culy
l-n = tEI 3 Cuc
wry (Y] S0
xl(-". n2 ‘sz]+ su” )

N (k) )
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CYLINDRICAL BENDING OF LAMINATED PLATES

In order 10 examine the accuracy of the new laminated plate theory
cylindrical bending of bidirectional plates is considered. The plate is sim-
ply supported on the ends x, = 0 and /, and is infinitely long in the x,-
direction. The prescribed boundary conditions on the upper and lower
faces are given by

T3 =g, sin X x..T,’ TT =Ty =0. 25)
The boundary conditions for lhe simply supported.ends are from (21):
N"-U,-M"-L"-O at x,-O,I . (26)

For the clarity of presentation the constitutive relstions (22-24) are
cast in a nondimensional form, in which » and reference moduli E; are
used:

N/ (hEr) Ay B 0|,
Mu/(’l’fr) = B2 Cn Cyy| |V, 7
L/ (hEy) 0 Ci Cy||S1a

where
Ay=- z ,,u)(cu)/sr) Bu-tn""(xﬁ’/h)((’:“"/l:‘r) .

Cu= T n® (Gf/h) + i1 CRIED |
~LE Y6 (N 1Ep) . Cpp= z (%3 (CH/Er) (28)

Equations (18) and (19) may be expressed in s matrix form, respec-
tively:

Q- U)T=d Wy, +¥) + dyisS/h) 29
BIT = IF1 @ (30)
where
a - [Ql(l) QQI(Z) [ nglon ]T/(hET)

T= lT:‘" '1"(2) Ly .ﬂ”‘"l’/Er G1)

and (4], {B)] and [F) are matrices of N x (N-1), (N-1) x (N-1) and
(N-1) xN, respectively. In (31) [ )7 implies the transpose of [ }.
Solving (29) and (30) for Q' one obtains

T=1BI'IF1Q (32)
Q= dU + ¥) + 2,(5/h) (33)

where
(), ) = (U}~ UIBFIFI (), &) (4

and (7] is an N x N identity matrix. Finally substituting (33) into
(17b), one obtains

Ny (hEr)l  [DuDya| |Uss + W)
KywEr |~ |Dubz [syn 33)
where
Dy=el ¢y, Dp=¢f - &,
Dy=ef - d), Dnu=¢ & (36)
and
a=01,.17
&= 2 Un™, Yn®, .., (= D¥/aW)T 61

are N x 1 matrices.

" v.J“r v
, \1.\? B AA

TETR TR R ETCR

For the cylindrical bending problem equations (14)-(16) reduce to

Niuy=0 0Ota)
N+ e -.l!l’x|-o . (38v)
Mll.l - Nn - 0 (3‘6)
Lui-Ky=0 (384)
From the boundary condition (26) for Ny, one concludes that
N“-O for 0<x< /. 39)

By using (39) one can rewrite (27) as follows:
My (BE)}  |Cu-Bh/An Cy| [h¥,,
L/ (hEy) Cxl | St

The constitutive relations (40), (35) and the form of forcing terms in
(38) suggest the following form of the displacements:

Uyh = Gysin (/Dx; , ¥,= &, cos (x/Dx,

(40)

Syk = 5).co8 (w/Dx, (41)
It can be easily shown that equations (4]1) satisfy boundary conditions
(26). The equations for the unknown constants &, ¢, and s, are
obtained by substituting (41), (40), (35) into (38b-d). The result is

p*Dy, p Dy pDy by |e./Er
P Dy Dy+pHCuy=~Bh/Ay) Dyu+p*Cyf 61| =] 0 | 2
Dy Dy + pCia D+ pCa| |91 0
where
PEwh/l . (42b)
NUMERICAL RESULTS

The accuracy of the proposed theory is assessed by considering the
cylindrical bending of a symmetric three-ply laminate for which an exact
solution has been obtained by Pagano (1970). The material properties
are for 0 degree layers

CP/Er = EQ 1 Er = 25.0627

Ci/Er = CiEr= 05 (432)
and for 90 degree layers
CP/Er = 10025 , CH/Er =02 . (43b)

In the following figures the results are presented in terms of the nondi-
mensional quantities adopted by Pagano (1970):
Er u.(O.x;) 1001-.‘7 K

= hg, Q."

, Ty u (%.o)

- 1 { -
Tn=- ;‘011(3&) o= %013(0—\'1) .

Xy= xy/h (44)

In the various curves, the solid line indicates the elasticity solution
(Exact), while the results by the proposed theory and the first order
shear deformation theory (FSD) are shown by a broken line and a
dashed-dotted line, respectively.

For a symmetric three-ply lamirate (0/90/0) vith layers of equal
thickness, the plate deflection - the span-to-depth ratio relations have
been piotted in Fig. 2. The results of the first order shear deformation
theoryhlvebeenoomputedbyumn.: = 0 in (42). Since the present
theory is a higher order theory than the first order shear deformation
theory, the present theory predicts &, more accurately than the FSD.
The variation of the in-plane displacemnent &, across the thickness of the
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tively. The results show that the poor approximation of FSD
beeniuﬁﬁanﬂyhnwwdbythemﬂnorywhichindm
zigrag-shaped function for the varistion of &, across the thickness. This
mmyhnﬂmeddinalyinthemﬁmdlhein-plmewmdm
o1 85 shown in Figs. 4s and b. The variation of the transverse shear
siress 'y for //h = 4 has been shown in Fig. 5, in which the curves for
the present theory and the exact solution are almost identical.
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~ ) CONCLUSIONS
133 A laminated composite plate theory which accurately predicts in-
x4 plane response has been developed based upon the Reissner new varia-
A tional principle (1984). A unique aspect of the theory is that it includes
Ly a zigzag-shaped C* (unction to approximate the variation of the in-plane
displacement over the thickness. The accuracy of the theory has been
examined by considering the cylindrical bending of laminated plates
) which has been solved exactly by Pagano (1970) 'Iheeununmoflhe
% piste deflection and the in-plane displecements and normal stresses for
\ symmetric three-ply and five-ply laminates has demonstrated that the
X new theory predicts the in-plane response very accursiely even for small
;‘. span-io-depth ratios.
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“ ABSTRACT
_' In order to improve the accuracy of the in-plane responses of the shear deformable laminated
d
L
::',. composite plate theories, a new high-order laminated plate theory was developed based upon Reissner’s
new mixed Variational Principle [9]. To this end, a zig-zag shaped C? function and Legendre polyno-
- : mials were introduced into the approximate in-plane displacement distributions across the plate thick-
< ness. The accuracy of the present theory was examined by applying it to the cylindrical bending prob-
- . . .
lem of laminated plates which tgad been solved exactly by Pagano [1]. A comparison with the exact
2N solutions obtained for several symmetric and asymmetric cross-ply laminates indicates that the present
‘::: theory accurately estimates in-plane responses, even for small span-to-thickness ratios.
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1. INTRODUCTION

The increasing use of composite materials as thick laminates, in aerospace engineering and in
automotive engineering, has clearly demonstrated the need for the development of new theories to
efficiently and accurately predict the behavior of | such structural components. The intrinsic hetero-
geneity and anisotropy of these composite structures as evidenced in the stacking of several fibrous
layers and in the high discontinuity in material properties across the interfaces, make the classical

theories of plates and shells inadequate.

The inspiration and guidelines for the subsequent attempts have stemmed from Pagano’s works
[1,2,3] where the exact elasticity solutions for the problems of cylindrical bending and simply supported
rectangular plates were given. Pagano showed the importance of incorporating the effect of transverse
shear deformations in order to accurately estimate the plate lateral deflection and the need to improve
upon the thickness variation of the in-plane displacements, which are assumed to be C! linear functions

in both classical plate theory (CPT) and Reissner-Mindlin plate theory (FSD).

The first attempt to develop a general linear laminated plate theory is credited to Yang, Norris and

Stavsky [4]. Their theory is an extension of the Reissner-Mindlin homogeneous plate theory as applied

. to an arbitrary number of bonded anisotropic layers. Whitney and Pagano [5] extended Yang, Norris
and Stavsky’s work. An important conclusion drawn from their analysis, which was also emphasized

later by Whitney [6], is that the inaccuracies of the classical plate theory at low span-to-thickness ratios

for determining in-ﬁlane stresses are not alleviated by the introduction of shear deformations. Whitney

[6] obtained in-plane displacements by integrating the transverse shear strains deduced in [5]. This

resulted in a higher order approximation which accurately predicted in-plane strains, but the resulting

modified stresses did not necessarily satisfy the original plate equilibrium equations.

Since then, other high-order laminated plate theories have been proposed that account for
L7 transverse shear strains. Of these, the Lo, Christensen and Wu [7] and the Reddy [8] high-order
models have served as the foundation for the present theory. In their paper [7], Lo, Christensen and

Wu used appropriate higher order terms in the power series expansions of the assumed displacement
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field which was proposed by Hildebrand, Reissner and Thomas {8]. On the other hand, Reddy [9]
imposed the condition of vanishing transverse shear strains on the top and bottom surfaces of the plate.
However, this theory does not satisfy the continuity condition of transverse shear stresses at the inter-

faces.

The objective of the present paper is to improve the approximation of in-plane variables in lam-
inated plate theories. In-plane displacements and bending and stretching stresses are considered pri-
mary quantities in any approximate laminated plate analysis; transverse stresses are only of secondary
importance since they are an order of magnitude smaller than the primary bending and stretching
stresses. By using a new mixed variational principle proposed by Reissner [10], the present theory is a
high-order model which improves upon existing theories by including in the assumed in-plane displace-
ment variations across the plate thickness: 1) a zig-zag shaped C° function as detailed by Murakami
[11]; and, 2) Legendre polynomials. The advantage of using Reissner’s new mixed variational principle
is that it automatically yields the appropriate shear correction factors for the transverse shear constitu-
tive equations. Another attractive feature of the proposed theory is that the number of equations to be
solved is not increased as the number of layers becomes larger and larger. A comparison of the pro-
posed theory with Pagano’s exact elasticity solution for symmetric and asymmetric laminated plates in
cylindrical bending, shows that in-plane displacements and stresses are accurately predicted by the inclu-

sion of the zig-zag shaped function and the Legendre Polynomials.
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2. FORMULATION

Consider an N-layer laminated composite plate, shown in Fig. 1, with principal axes coinciding
with a Cartesian coordinate system (x,,x,,x3), such that the x;-axis is perpendicular to the plane
defined by x, and x,. The following notation: ( )%, k=1,2,.. N will designate quantities associated
with the kth-layer. The thickness of each layer is n*’h, where h is the total thickness of the plate.

The volume fractions n¥) satisfy the relation

N
3 n(l«').,= 1 (1)
k=1

Unless otherwise specified, the usual cartesian indicial notation is employed where latin and greek
indices range from 1 to 3 and 1 to 2, respectively. Repeated indices imply the summation convention

and ( ), is used to denote partial differentiation with respect to x; .

With the help of the foregoing notation, the governing equations for the displacement vector u;*’

and stress tensor o} k) associated with the kth layer are:
a) Equilibrium Equations
O’ﬁlf;) + fi(k) =0 ; a’é") - o./sk) )
where f; are the body forces;

b) Constitutive Equations For Orthotropic Layers

) el [Cn € O « enl” lcwes «
on - Cu C;; 0 €n + Cz;/C;; 03‘5" (3a)
o 0 0 Cg 2e; 0
s/Css Co/Cy | [en]® VCy 0 o |“ o™
2e2 0 o |en| +] 0 vVCu 0| loy 3b)
2e3, 0 0 2e; 0 0 VCss o3

where C; are the elastic constants and C’,,- (i j=1,2,6) represent the reduced stiffnesses introduced by

Whitney and Pagano [5];

.

LI S




B sl i e

&4

o gp

5 R O P
s bt APON 92 ey

¥

[TNK Y g (] ! I ) o . N 20T n"
Ll s My y) .lg T, L) b it , K¢ R iy ! \t )
AN 15». ¥ 5'."}:.‘,}4‘. Ay 3‘.??‘4‘-':\,.53. i \#-‘Ly‘ 2 A,) N 4.5'...‘/""":',"- L OO f' TR ) J 'y N &L LAY RY, N o h ALRLS !ﬂn \ X

-6-
¢) Strain-Displacement Relations
e/ = % [u.-‘j" + 4] 5 @)
d) Interface Continuity Conditions
U - gD o) m g =D ¢ fm 2 N-1 ()

¢) Upper and Lower Surface Stress Conditions

oV =T+ on x,-—g- (6a)
oV =T~ on x;-—% : (6b)

The objective in developing a new laminated plate theory is twofold: first, to iniprove the assumed
variation of in-plane displacements through the thickness of the plate and second, to include the effect
of transverse shear deformation. In order to carry out this task, Reissner’s new mixed variational prin-
ciple [10] was applied to the N-layer composite plate whose middle surface occupies a domain D in the

X1, Xy-plane:

IJ [ J {Se,-}*’m}*’ + e + uff) = 20 (1ol + wff) — eff (---)1sr;§>} ax,I de, dry
AK)

L

-fbr [2,“_ ‘!‘)su,-(k)f,-(k) de] dx, a2+
Ak

T [ 8u® T, dx; as ™
4D,

+ fbf lSu,-‘” (Jr,,xz,%)T,-+ - 8u,™ (x, x7— %) T}‘] dx, dx,

where 3Dy denotes the boundary of D with outward normal », on which tractions ;', are specified and
A®) represents the xj-domain occupied by the kth-layer. Also e3; (...) implies the appropriate right-
hand side of (3b). Due to the nature of Reissner's mixed variational principle, Egs. (3a) are taken to

be the definitions of o5 used in connection with (7).
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'.x: 3. TRIAL DISPLACEMENT FIELD, TRANSVERSE AND NORMAL STRESSES
1 The high-order laminated plate theory which takes into account the effect of transverse shear
W
“f. ! strains, is obtained by including the Legendre polynomials of order n=1,2,3 with respect to the x;-
K |
;s’h' coordinate to a zig-zag in-plane displacement variation of amplitude S; (x,,x;) across the plate thickness.
The appropriate trial functions used in connection with Reissner’s mixed variational principle
Eq. (7) are taken to be:
A

- a) Trial Displacement Field

-J{J (k)(xl,xz,X:;) = (.X],Xz) + ( W, (xl-,Xz)P @)+ S (xlﬁz)(’ 1)* (k)h X(k)

1‘
" @

+ (-g-)’f,-(xl,xz)Pz(z) + (%)34’;(?‘1»"2)1’3(()

2x
where { = =3 and P, () are the Legendre Polynomials of order n. It is also understood that ¢; = 0.

rf“?’". 5} i

¥ h

i x{©) is a local x;-coordinate system with its origin at the center x{§’ of the kth-layer, ie.

b

,\B xf = x;-xf . 9)

, ]

,.":! Eq. (8) may be regarded as a superposition of a zig-zag function and the cubic variation as proposed by

gf. Lo, Christensen and Wu {7], with the exception that here Legendre polynomials are used instead of

gg single powers in x;;

!

! 3, b) Trial Transverse and Normal Stresses

; ‘r_{',‘)(xl,xz,x;) - ,:k) (Xl,xz)Fl(Z) + Ra(k) (X],Xz)Fz(Z) + J,(k) (Xl,)(z)F;;(Z)

Ay (102)
.,':_ + [Ték—]) (X|,X2) + T:k) (XI,XZ)]F‘(Z) + [T:k-l) (Xl,’Q) - Ték) (Xl,xz)]Fs(Z) \
N r;‘}'(x,,x;,x;) - Q;k) (Xl,JQ)F](Z) + R;U‘) (XI,XQ)F6(Z) + J;‘k) (X[,X;)F;(Z) + 13(") (Xlxz)F7(Z)

5 (10b)

: + [T;k-” (x1.x) + T;;(k) (XI,X2)]F4(Z) + [Tg(k-“ (xy,x9) = T:;(k) (Xl,xz)]Fg(Z)

@

where

'; ! 5 15 9 =30 _

3 ") - 2.2 _

2 Fi) 7y 2124 - ST , Fi(z) = WOy (42} - 2)

8

kY,

S , 3T AL RIS XY
W,
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F;3(2) " Ph)3 (2024 - 622 + 4) , Fa4(z) = 35z CIEARIET:
3 105 5 (11)
Fs(z) = 1023 - 37 Fe(z) = W (3625 — 1423 + r z)
Fia) = oy (126 = 005 4 32) |, Fe) = 12625 = 352%+ 2 2
(k)

- X3 1 1

and Z= -m y ™ 7 £z< 3
Also , Q% ,R® ,J®) = f (A, x{ |, x§2) 280 dx, (12a)

Ak)
1= [ 0 ® a, (12b)
Ak

In (10) T,/*-Y and T;*? are the values of 73 at the top and bottom surfaces of the kth layer respec-

tively. From (6)
TO=T* and TV =T~ . 13)

The degree of the polynomials F; (z), i=1—8, appearing in (10a,b) is consistent with the order of trun-

cation in the assumed expansions (8) for the displacement u,*).
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4. LAMINATED PLATE EQUATIONS
¥ Substituting (8) and (10) into (7), using Gauss’ Theorem and the orthogonality property of the
| j:; Legendre polynomials one obtains:
D
R a) Equilibrium Equations:
o Nuat Tt = T4 FY= 0 (142

) h + - M
e Moin=Nai+ 3 (T + T+ FY=0 (14b)
Zoia— Ky — (T =DV T+ FZ=0 (14¢)
-*:

ﬂ::'\. h? '

N Loio— 3My + vy (Tr*—T7)+ FF=0 (14d)
b Pgag— 5Ly + = 4 N+ 2 (r+ +T;)+Fl =0 (14¢)
. where
:: YaBo M"B’ ZGB’ Laﬁ' P"p] = g
.\.::: F;‘N’ EM’ EZ, I."L’ EP = -1 A(“

L (k) A A (k)

. I, 3 PI(C) (- 1)k —— (k) , ()2 P, @), (—)JP_';(C)] (k) dx; (15a,b)
R h’ 2 2 Si

un
2 Wi My Ky L= E [ LA P <2 dypf sy s aso
.\ ' i i A(k) 2 (k)h 2 2 3i 3o

3 b) Constitutive Equations:
-j ® For Transverse Stresses
180

.

g J) *)

g *) _ a nh (-1 W)a 2y 0 Fw [ 1k

= { o3 + 55 [T + T ] s hn CO U+ ¥+ S, 1)
] (16a)
4, _2
; —or Hh AW+ 3+ L > (3 n 2 - Ten+ 2 © (5 n~ 1.

i

N "‘\ .-..{ S N \.\“’ . “.
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Ot Rens

e For Normal Stresses

w0 _ 8J§k) +n(k)h
03 (n®p)2

(TH-D + T ) = Th n® CcH |v;+ S5 1)"

. - 3 -
+ _zsﬁ n© | T+ h o+ Lo (3n(k)2 ‘11 )E + hT 5 n 603 % n® |3
1pmw 32 9 a® (TED — 70 )= AL p2 p003 o0
P S 0I5 a0 I3 3 350 1 " 330 &3
11,2 03 _ 1)k Wi 4 31 s, w2_ 1z
+ Jos0 77" v+ (k,hS+3hno B+ 2 (Sn 3¢

_14gR pp
(n®n)? 12

3n3

(T(Is D 4 T(k) )= — = 40 n(k)l [E_’_ Shn k)¢]

15 1% ,,(mh

R — (Tf-D = 7 ) = T s g

2n*)2p3 2688

1 oo _ 2% ey _ oy TR w3 qw 2
-E Ra 4 (T Ta ) 120 n Ca \I,Ja + 3€a + S3a (‘_ l)k n(k)h
(16b)
+ 3h 0 (€3, + 5b, )]
*) 1470 n® h G- 4 T 3r w3 ;0
) (
D U 15 WP YA 1/ S 3R | 1| L e
¢ |12 “e 3 ®R) T T k0 ¢ (12
51{}k+l) 3 R;kﬁ-l)
T 3 (r&+Dp)2 T 7 gDy (16d)
n = ) A% pkeD pk+D
~ 126 c o +8 C(k) * =wn CU+D - CU+D T

h + 3n ’lo(k) §3]

(17a)

(17b)

(17¢)

(17d)
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-1 QJ(“ Q3(k+l) 15 R;‘“ R;Hl) 5 Jl(k) J3(k+l)
+ + = - +
12 | c® 7 ¢ 20 | n®cH T gk EED 302 | n®2CH T phnIchEy
(k) (k+1) (17)
- 170 I3 _ I _ h n%) Ts(k_l) +10 n® + pk+D T 4 pk+1) k4 1)
11h3 n(k)3 C3(§) n(k+l)3 C3(§+” 18 Cj(f) C;‘_‘lf) C:’(§+I) C3(§+”

where in (16a,b,c) and (17a,b,c,d) k ranges from 1 to N while in (16d) and (17e) k ranges from 1 to

(N—1). Also, no summation on « is implied in (16) and

Ctl(k) = aal Cég) + 8a2 Cﬁ)

U Uiy
¥ \ 2%
S' - Sm
% €11
¢ 11

By solving (16) and (17), %), R®) J® 1) and T,*) are obtained in terms of U;, ¥,, S, ¢, and
¢, and their derivatives. As a result, the quantities N3;, M3;, Ky;, L3 of Eq. (15¢) can be determined
as functions of these displacement variables. Such expressions will automatically include the appropri-

ate shear correction factors by virtue of the Reissner mixed variational principle.

The equilibrium equations (14) are supplemented with the following suitable boundary conditions:

specify U,
. specify ¥,
specify  §;
specify ¢,
specify ¢,

s nK = xE/h (18)
Ui
‘Pz.z Cy k)
S| |, (19
€22
2.2

or

or

or

or

or

‘Vai Va
Ma,' Va
Zai Va

Lai Va

Pﬁal’p .

The remaining constitutive equations for Nyg, Mag, Z,g, Log

, (20a)
. (20b)

' (20c)
; (20d)
(20e)

and P,g are obtained by substituting




- -12-

(3a), (4), (8) and (10b) into (15a) to yield:

'

[‘Vu ] [‘V\l’] 0 [A’Vg ] [N¢] U .Vv 0; &)

] M) ) )| (4w h™
Tz 2| s [+ 5 cwf v

symmetric L) L, |n%e hyt
[Py)

X

n

‘N
]

r~

G

o

h where N= [N}y Np Np1T, U= [U); Uy, Uy 2+ Uy, )T with analogous expressions for M, ¥, ..., P,
" ¢ - IN,1...., IP,] are 3 x 3 matrices, [C]%) is a 15 x § matrix an V¥, ..., V¥ are 1 x 4 vectors, which

33 are given in the Appendix.
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‘ “: 4 } v f"-}'...‘- -'v_' " -l'_. . 4_'.-..,'-_\-:“ e '. . T A R R B R P Y ; . -“.- '1} AR S \'S.--':’\I-"'\ ‘:‘i\..-.;'\.‘ .:«\n._’.‘.'ﬂ.




P
NN

.

-13 -

S. CYLINDRICAL BENDING OF LAMINATED PLATES

In order to test the accuracy of the present theory, cylindrical bending of composite plates under
sinusoidal loading is considered. The plate is simply supported at the ends x; = 0 and / and is infinitely
long in the x,-direction. The prescribed boundary conditions on the top and bottom surfaces of the

plate are:

wX]

Ty =0, T =g sin on x;-% (22a)

Tr =T5 =0 on x3=—% : (22b)
The boundary conditions for the simply supported ends are, from (20):

Uym¥ym S;m§;=0 at x; =0,/ (23a)

Ny=M;=Zy=Ly=P;=0 at x; =0,/ . (23b)

Using surface boundary conditions (22), the equilibrium equations (14) for cylindrical bending reduce

to:
Nipg=0 (242)
‘ Nis, + g sin -"Tx‘ -0 (24b)
My = Nyy= 0 (24¢)
Myg— N+ % g sin "Txl =0 (24d)
Zin=Ky=0 (24e)

213'|—K33—q sinzf—'-o (24f)




St )
n:‘

b1
ag -14-
b -
%

. 2

e Lii- M+ 2 gsin T =0 (24h)
3 i -
0y Pyy= 5Ly =4 Ny=0 (24i)
15

D

> From the boundary condition Ny; = 0 at x, = 0,/, Eq. (24a) implies that

an 0 . (25)

‘\

: Next Egs. (15a,c) are expressed in terms of the displacement variables U, ..., £;. To this end, the

) constitutive equations (16) and (17), for the cylindrical bending analysis, can be rewritten in the fol-
}'J lowing vector form:
)

o 01— 77 B+ hl\ )Ty = ' (262)
i .
;:. "',’ 81"‘ h[Bll.Tl-éz (26b)
o
Tl

1 71+.5

L -z ht U= (26¢)
-

Xy 1 5
? [TQ,]Q,+7 [TRllRI-i— (70,17i=h(C,\ 1T, (26d)
2
Bl 5 and

;
: 0, - h‘, T+ hl4, 1T =k, 27a)
o
s . L g,— L 7,- 2 niBIT, Q7b)
: R R 1143= K3

o 7155

< B-—F bt S 1T =k (27¢)
QT
9 1 75 1 - 5
g TR b HBIT=x (27d)
o f.
o
bo- 5 35
i‘: (1Q;10; + — (TR;1R; — [TQ;]J; 24 hJ (TR, ]13" h(CT (27e)
= 8J - 32

;.'$ where J, = W i=13 and L= '5_(15 LI . (28)
e

-t

«’

:'{
' .i"‘ Ny "J\ g Y .‘: .,' WY -Z‘J{,'- ";" '.: oo "J-]"-:;.-:n-, BN
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) The matrices [4,], ..., [C;] and vectors Ay, ..., x4 are given in the Appendix. The vector equations
AN
2.
) (26a,b,c) and (27a,b,c,d) have N-components, while the vector equations (26d) and (27e) have
h (N=1) components. Matrices [4,], ..., [C;] depend on the volume fractions n*) and elastic con-
'a stants C&’ . € and C{§’, while the vectors A, -.., K4 cONtain the displacement variables U, ..., £;.
U Eqs. (26) are easily solved by substituting Q,, % R, and le- .?, in terms of T from (26a,b,c) into
s
)
:J (26d). This yields a new equation involving T; only, which can thus be solved for 7;. Then by back
- substitution expressions for @, _Il: R, and % J; in terms of A1, A; and A ; are obtained. Proceeding in
: a similar manner with (27a,b,c,d) Q, -,ll- R;, 7'1; J; and % I, in terms of «,, k3, 3 and « are deter-
' mined. These expressions are:
e 7 4
. 0] (—3-[1] - o - (3[1]- 240D | [a [[AR,]] 99
e - + 52 29a
Lol | Ein-2uon - G- e My T 12URI
_'.,] 3 3
h1*
e
e 1 Ry = 180110 - 205) + (U1 - BR\ D, (29)
i
' and
2 Ol [ Q- 1) - G- 210 [«
2 } 3 : ]+ 2 [AR’]](&( Sk (30a)
- - + 3 K4 K a
) 13 Gu-2uod - Gui-augp| [ " 3 [PUR
. -3

AL
VR
—

y 1 75 50 _ (64 80
- - Ryl (T + S IBRD = (G U1+ 2 [BR,D 'Szl , Imusosll ey (0m
- 1 7|7, 64 80 _ (64 128 ol T 21 |161BQ;)| 43T .1

S H |G+ g BRD — (TN + SEEBR,D) [ ’

where {/] is the N x N identity matrix and

» uol URI [y

wo) 1| = || TV [trer TRY] =13 (31a)
\:j

:;‘ with
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with

[TV,] = (4TQ,1U4,] + (TR 1IB,] + [C,)! " (31b)

(TV] = @ITQs1U] - 33 (TRA1IB + [CyD)! (310)

(401, ..., [BR; ] are N x N matrices, while [TV;] are (N—1) x (N—1) matrices. By inserting (29)
and (30) into (15c) and (21) the appropriate constitutive relations for the cylindrical bending problem

in terms of the displacement variables U, ..., £; and their derivatives with respect to x; are obtained.

The form of the dependence on the displacement variables Uy, ..., £; of the constitutive equations

thus obtained and the nature of the applied load suggest the following expressions for the displace-

ments:
Ul h..UI U; hl‘j}
re \I[ ~
1 N X Vil (¥ x 2
Si|= ftS, cosw — an S| hS‘; sin 7 —~ 3
§1 §vh &1 |éyn
1] |éyn?

where the """ quantities are nondimensional by definition. It is easily proven that the boundary condi-

tions (23) are satisfied when (32) are substituted therein.

Finally, inserting (32) into the constitutive equations obtained in the manner described above and
these in turn into the equilibrium equations (24) and (25) yields a system of nine algebraic equations
with the nine nondimensional quantities {/ ls -y &3 @S unknowns. This system is conveniently written

in matrix form as

[BIU=F (33)
where U- [0]‘i’|§|21$1 03@35‘333]1. (34a)
F=104.034.0,-9.044.07 (34b)

and [B) is a 9 x 9 matrix.

v .!\‘ .-‘ \ h.‘ ’l‘. I-. ‘I.
“; . " ’ ‘_“.‘ l \'1 - '.\.\-, \
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6. NUMERICAL RESULTS

In order to assess the accuracy of the present theory the problem of the cylindrical bending of an
infinitely long strip under sinusoidal loading is examined. The exact elasticity solution has been given
by Pagano [1], where a three layer cross-ply laminate was considered, the 0° layers being at the outer

surfaces of the laminate. The elastic properties are:

C
for the 0° layers —1 o 25.062657 , Si _ 0335570
Er Er
(35a)
Ci Css )
i 1.071141 i 0.5;
and for the 90° layers Su _ 1.002506 , v _ 0271141
Er Er
Ci Css
E 1.071141 , i 0.2

where Er is a reference modulus.

We follow Pagano's [1] nondimensionalization and write the displacements and stresses in the

form
Er | uf® (0x;) E 3
200 S |Erpn OX) S | E0| 100R7 a6 (L
uy [ 7 ] h y U3 P G us (2 , 0) (36)
El(f) - -;— o (—é , X3)
Also Xym % , S= -;1'- 37

In the various curves the solid line represents the exact solution while the results of the present theory

are shown by a broken line. Also shown, for comparison purposes, are the results given by the first

order zig-zag model [11] and Lo, Christensen and Wu's high-order theory (LCW) (7], which are

CR I A
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represented by a dashed-dotted line and dotted solid line, respectively. Symmetric 3, 5 and 9-ply lam-

. inates and asymmetric 4 and 8-ply laminates were examined, to test the present theory.

iy

2 For a symmetric 3-ply laminate (0/90/0) with layers of equal thickness, Table 1 shows the values
)

. of the central deflection &; obtained from the different theories for a span-to-thickness ratio S of 4 and
¥

6. As observed the present high-order theory correctly predicts the central deflection #; to the first two

,’_J.f decimal digits, while the first order zig-zag model gives a better result than LCW. The variation of the
: in-plane displacement ?, across the plate thickness is compared in Fig. 2a for § = 4, where it is seen
‘ that the curves for the present theory and the exact solution are almost identical. This improvement is
‘_: also reflected in the variation of the in-plane stress o, across the plate thickness, as shown in Fig. 2b.
3', Very close agreement is found between Pagano’s exact solution and the present theory, which has
:’ improved upon Lo, Christensen and Wu's high-order theory, especially at and in the neighborhood of
4 the interfaces.

; The present theory was next tested for a symmetric 5-ply laminate (0/90/0/90/0) with layers of
il equal thickness. The central deflection %, for span-to-thickness ratio S of 4 and 6, is shown in
Table 1 where close agreement with the exact solution is observed. The variations across the plate
; . thickness of in-plane variables @ (¥ and 7{{ are compared in Figs. 3 and 4. The curves for the present
high-order theory and the exact solution are again almost identical. In particular, it is seen that the
» ;: present theory has considerably improved upon Lo, Christensen and Wu's model in the interior layers
’: of the plate. .

’7 To further assess the accuracy of the present high-order theory the more difficult case of a sym-
:? metric 9-layer cross-ply laminate (0/90/0/90/0/90/0/90/0) was considered. The 0° layers have equal
.:: thickness h/10 while the 90° layers have equal thickness 4/8. The results for the central deflection i,
E;, are given in Table 1 for § = 4 and 6 where again close agreement with the exact solution is observed.
Egé The variaiions across the plate thickness of the in-plane displacement @, and normal stress &, are
l::‘: shown in Figs. 5 and 6, for § = 4 and 6 respectively. There the discrepancies between the first order
: zig-zag theory and the exact solution are more pronounced than in the 3- and S-layer cases, as
)

-‘_--\_-‘ .: ot A

. LTI O SRR O P
PP 1T R PR SRS TSN



\," ------ Za koo L ta bop jics &2 THTW = W = 153 :‘I'T‘IT'T
s
¥ -19.-
\
Ij expected. However, the results of the present theory are still very good when compared to the exact
> solution.
. Finally, asymmetric 4 and 8 cross-ply laminates, with layers of equal thickness, were examined.
*» . . — N .
] The present theory predicts accurately the central deflection #;. These results are given in Table 2 for
Y
' span-to-thickness ratio S of 4 and 6. The variation across the plate thickness of the in-plane displace-
b ment # ¥’ and normal stress & {f’ are shown in Figs. 7, 8 and 9 for S = 4 and 6. From the curves for
: u®, it is seen that the first-order zig-zag theory deviates significantly from the exact solution at the
...
\ bottom layer of the plate. On the other hand, the discrepancies between LCW and the exact solution,
for both #{*) and 7§’ are more pronounced in the interior layers of the plate, while the present high-
order theory is still in very good agreement with the exact solution.
I
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. 7. CONCLUSION

A high-order laminated plate theory, which accurately predicts in-plane responses of symmetric
and asymmetric laminates, was developed with the help of Reissner’s new mixed variational principle
' [10). The improvement was achieved by including a zig-zag shaped C° function in the in-plane dis-

placement variations across the plate thickness, as proposed by Murakami [11], while the non-linear

”
4
W variation is accounted for by using Legendre Polynomials. The accuracy of the theory was examined
for the case of cylindrical bending of an infinitely long strip and compared with the exact elasticity solu-
tion given by Pagano {1]. The results for the central deflection and in-plane displacements and normal
" stresses for several symmetric and asymmetric cross-ply laminates indicate that the theory very accu-
d
: rately predicts these in-plane responses even for small span-to-thickness ratios. In all the cases con-
A sidered, the proposed theory gave better in-plane responses than the Lo, Christensen and Wu high-
’ order theory, especially in the interior layers of the plate. It was also observed that for symmetric lam-
;:‘ inates, the first order zig-zag model {11] predicts more accurately the central deflection than the Lo,
Christensen and Wu high-order theory.
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! APPENDIX
K
, e Matrices [N, ], ..., [P,] in Eq. (21):
K
o D, Dy O C, C/ ©
7 W=Dy D" o, NI=[crc” o},

0 0 DZ'" 0 0 Cl"'
2 Cs Cy 0 Cy Cy 0
: Wel=|cy G 0|, INJ=|Cy C" O
0 0 Cg” 0 0 Gy
X C, C; 0 C; Cy 0
)
o Myl =|Cy C" 0 ],IM]=|Cy G 0, (AD)
0 0 0 G 0 0 C”
+ c; ¢/ 0 Co Ci 0
ﬁ [Mf]- C7' C7" 0 , [M‘]- CG' C6" 0
‘ 0 0 C;” 0 0 C
b D; Dy 0 D, D/ 0
“‘ﬂ [251" DJ' D3" 0t, [Z¢]- Dl' Dl" 0 ,
4 0 0 Dy 0 0 D"
,"'V. Ds Ds' 0 FJ F;' 0
}:; [Lfl- Ds' DS" 0 , [Lél- EJ' FJ" 0
I 0 0 Dy 0 0 Fy
; i
: F, F{ 0©
o (P,)=|F; F& 0
'-': 0 0 F‘m
where
194
E C n k) k) D, k)
: _ G -Ecn(f) n®3/12 4 00200 ":'Cl(f)
' Cy Dk n% Y g D, (= )¢ n B n®22
»i; and
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c % n ) k)3 4 g 03 g0 on
ICSI - % C’vl({t) 1 | , Dg= % C'l({t ~ ¥ + _2 no(k)l k2

— pt0s 4 > n 02 g3 4 p GO4 G 16 4

(A4)
nB p®s g

Fl T + E no(k)J nk)3 4 no(k)S n&
=3 C(k)
F P 11 n(k)7 3

5
+ =2 02,005 4 2 p (04 003 4 p K06 (k)
448 16 4 ?

The ( )", ( )" and ( )™ quantities can be obtained from (A1,2,3,4) by replacing therein C 1‘“ by C&’

*

C) and CF respectively, where k ranges from 1 to V.

e Matrix [C]1%) and Vectors V¥, ..., V¥ in Eq. (21):

c )

c 0
gl(l:: - £ where ¢® = [CyCy; Cy/Cy OFF (AS)

- 0 ¢

¢
W= 11,0000 ; W= [n* 100 ; ¥ =1[0,D* —55.0,0]

" o (A6)
~ - [% (3n 002 — _‘1;) L 3n00 ’% 01, VP = .;_(5,,0(“3_ ﬁ__) 3 spo2_1y 15 w0 3

g 2 M g’ "2 M 7

e Matrices (4], ..., [C3] in Egs. (26) and (27):

0 0
U= L [n® a®] [B;]-Tlo- ~ntk12 k02
(.'Vx.V-Jl()) 0 (NxN=1) 0
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PR &) ) k+D Y
(N—lx.vl-216) Cés C% Cés C§§
0
0 0
1 —1 -1 3 -1 1
== = 7wl T ==
w[_Tg‘,]N 12 C§§> C§ +1) (Av[-{exl].w 7 ”(k)cg) n(k+l)C5(§+1)
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0
11 | S
' (.vlfgi],v- 12| cw cE
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—15 1 1 1 n® nk) pk+1) pk+D
(.v[_Tf,Ely)- 2 |a®c® pk+eDCfHD (N_E{l,_” 18 | c® cH + CET | CET
0 0

® Vectors Ay, ..., k4 in Egs. (26) and (27):
AM=h(Us +¥)a + Sy by + B2+ 38 )c + W6 d + gy ¢
Ny= h3 (W3, +36)f1+ hS3y g+ €3+ 56 )Py
A= ::,-9' R (€3, + 5601
Ki=hUp g+ hWy a3+ S3 b3+ hEs0+ hW o+ B8 d+ h'y ) &

Ky= W32+ hW  f3+ hS| g+ e o+ oy 0
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The kth component of the vectors ay, ..., 53 appearing in (A8) are given by

(A8)




—aat e fce Lo e i m

25
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2 2 4 6 2
afo) = ?n(k)cl(f) ,afe) - g,,mcg) b = §(_ DECE L efo) - g,,am,,(k)cg) i - ?na(k)n(k)cl(f)
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11 11 11
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A Table 1 Central Deflection #; for Symmetric Cross-Ply Laminates in Cylindrical Bending Under
)

" Sinusoidal Loading

'-

; S=4 S=6

::f Number of Layers NV 3 5 9 3 5 9
.:: Exact Solution (1] 2.887 | 3.044 | 3.324 || 1.635 | 1.721 | 1.929
2 Present Theory . 2.881 | 3.032 | 3313 | 1.634 | 1.716 | 1.921
:} First-Order Zig-Zag {10] | 2.907 | 3.018 | 3.231 || 1.636 | 1.702 | 1.875
o}

f] Lcw [7] 2.687 | 2.597 | 2.835 || 1.514 | 1.507 | 1.708
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1 Table 2 Central Deflection u; for Asymmetric Cross-Ply Laminates in Cylindrical

..

‘e Bending Under Sinusoidal Loading

\ Number of Layers ¥ 4 8 4 8

Exact Solution (1] 4.181 3.724 2.562 2.224
4 Present Theory 4.105 3.625 2.519 2.181
First-Order Zig-Zag [10] 3.316 3.225 2.107 1.934
e LCW (7] 3.587 3.189 2.242 1.979
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An Improved Laminated Composite Plate Theory

by

Hidenori Murakami!, A.M. ASCE and Alberto Toledano?

Abstract

Based upon Reissner’s new mixed variational principle (5) for displacements and some
stresses, a new high-order laminated plate theory was developed in order to improve the
approximation of in-plane variables of the shear deformable laminated composite plate theories.
To this end, a zig-zag shaped C° function and Legendre polynomials were introduced into the
assumed in-plane displacement distributions across the plate thickness. A comparison with the
exact solution obtained for symmetric 3- and 5-layer and asymmetric 4-layer cross-ply laminates
indicates that the present theory provides a tool with which one may efficiently study the
extraordinary skin action in laminated composite plates.

Introduction

Sandwich constructions and multilayered thick laminates exhibit under combined loads, a
very different mecharical response from homogeneous isotropic plates. One such effect is the
stressed skin action which may be caused by either the drastic change in material properties of
the laminae or by the slip at the interface of adjacent laminae. In order to facilitate a tool with
which one may study the former type of skin action laminated composite plate theories were
closely examined. In a series of papers, Pagano (3,4) derived exact elasticity solutions for
bidirectional composites for the problems of cylindrical bending and simply supported rectangu-
lar plates. Pagano showed the importance of incorporating transverse shear deformation effects
for the accurate estimation of plate lateral deflection. Further, he showed that the linear varia-
tion of in-plane displacements across the plate thickness adopted in the classical Kirchhoff
(CPT) and Reissner-Mindlin shear deformable (FSD) plate theories may not be appropriate to
simulate stressed skin action in composite laminates. In addition, Whitney and Pagano (7) and
Whitney (8) pointed out that the inaccuracies of CPT at low span-to-thickness ratios for deter-
mining in-plane stresses are not alleviated by the introduction of shear deformations.

The purpose of the present paper is to point out the differences in bending responses of
laminated composite plates when several displacement approximations are introduced, with
emphasis on the stressed skin action. A new high-order laminated plate theory, with a first-
order theory as limiting case is derived using Reissner’s (5) new mixed variational principie. It
is a variational principle for arbitrary displacements and transverse stresses only, in which the
original 3-dimensional stress-strain relations can be used. The unique features of the present
theory are the inclusion in the assumed in-plane displacement variations across the plate thick-
ness of: 1) a zig-zag shaped C%function; and, 2) Legendre polynomials. A comparison of the
present theory with Pagano’s (3) exact elasticity solution for symmetric 3- and S-layer and
asymmetric 4-layer cross-ply laminates, indicates that the in-plane responses are more accu-
rately estimated by the inclusion of the zig-zag shaped function and the Legendre polynomials
than by using smooth, C!-interpolation functions (CPT, FSD,1).

:-," 1 Assistant Professor, 2Research Assistant, University of California, San Diego. Department of Applied Mechanics and
b Engineering Sciences, La Jolla, California 92093.

K. 1. Murakami et al.
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Problem Statement
Consider an N-layer laminated composite plate of uniform thickness A, as shown in

N 5
:4 h/2 fl‘;‘ & S
\' - -= - So——~—
:3 o ) - /rV// - 1y
;\" #ﬁr‘—“‘_({g\) = g —1 0
§ \- L % 1 nd Va4 —_—
o . ' )
SR “_u—; SF )
- - - A X,
3 IO — e
N Uy i A= - 4
A /< ]
30
20 . *ll;
¥ ~ fxg'“ /
'-::,' oy L _ Z P - ]
y \*f.fl : hiz 5t 4
ot
B -2
* Fig. 1. Plate Geomeetry and In-Plane Trial Displacement Field
f Fig. 1. A Cartesian coordinate system is selected such that the middle surface of the plate
AN occupies a domain D in the x|, x,-plane, the xj-axis being perpendicular to this plane. The
e notation ( )®), k= 12,--- N is used to designate quantities associated with the k th-layer.
S The thickness of each layer is n*)4, such that the volume fractions n*) satisfy the relation
N
T n® =1, (1
! w{’ k=1
Unless otherwise specified, the usual Cartesian indicial notation is employed where latin and
£ greek indices range from 1 to 3 and 1 to 2, respectively. Repeated indices imply the summa-
= tion convention and ( ), is used to denote partial differentiation with respect to x;. _,
) With the help of the foregoing notation, the governing equations for the displacement
R~ vector &%) and stress tensor o {*) associated with the k th-layer are:
iRl
R ::; a) Equilibrium Equations
:: a.jgl:l) +f0=0 ; o = a )
% where f; are the body forces;
o) b) Constitutive Equations For Orthotropic Layers '
- ® [~ A ) *) W)
v, oy Cnyn Ca O en Ciy/Cs;
X on| =|Cn Cn 0 en| +|Cy/Cy| off (3a)
N -
) o2 0 0 C 2e); 0
(k) k) k) k) k)
L €3 C1yCy; Cof/Cy3 O] " | ey VCy 0 0 o
:.} 2823 - — 0 0 0 €3 + 0 I/C“ 0 g3y (3b)
1 2e;, 0 0 o |z, 0 0 VCs oy
j: where C; are the elastic constants and C',, (i j=1,2,6) represent the reduced stiffnesses intro-
i duced by Whitney and Pagano (7);
vy ‘
g
- 2 Murakami er al.
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% .
:3‘1
g -
t'@ ¢) Strain-Displacement Relations
;33 l
i , e =3 (u ® 4 uj(k)] . @
o d) Interface Continuity Conditions .
R 4 ®) =y ®+D G 2 g (D L a2 N-] )
: e) Upper and Lower Surface Stress Conditions
m o) =T+ on x,-% (6a)
% oM =T on x,--g : (6b)
)
e The purpose of the following analysis is to develop a laminated plate theory that will
A improve the assumed variation of in-plane displacements through the plate thickness and that
will also account for transverse shear strains. To this end, Reissner’s mixed variational princi-
24 ple (5) for displacements and some stresses was applied to the N -layer composite plate:
b
AJds ®) o (k) * k) _ 90 (k) . (k) ) — ) (&)
%‘::‘. fbf E ‘!'“ Se,j +[U ;+U 2e3(,, (')ISTL +[U3(‘IS -835 ("‘)]81‘3 ér, dxlhzq
i-"'v A '
- IE [ s s dx:] dido+ [ |2 [ suT, dx,] ds M
< ';.,: 4 DT PLL
:’C‘ + fb’. lsl‘am (thz,%)rf - 5‘#(”)&1,"2—%) 7}'] dx dx;
%
AD where 3Dr denotes the boundary of D with outward normal », on which tractions T~ are
e specified and 4*? represents the x;-domain occupied by the k th-layer Also ej; (...) implies:
i >, the appropriate right-hand side of Eq. 3b. Due to the nature of Reissner’s mixed variational
_ E: principle, Egs. 3a are taken to be the definitions of o %’ used in connection with Eq. 7.
e Trial Displacement Field, Transverse and Normal Stresses .
“;i',:: The present laminated plate theory which accounts for transverse shear strains, is a high-
Hd order theory obtained by superposing a zig-zag in-plane displacement variation of amplitude
'.‘;'-: S; (x1,x5) across the plate thickness to the Legendre polynomials of order n = 1, 2, 3 in the
) variable x; (see Fig. 1). A first-order theory (2) can be recovered from the following equations
= by disregarding the underlined terms and numbered equations.
The suitable trial functions to be used in Reissner’s mixed variational principle Eq. 7 are.
chosen as:
a) Trial Displacement Field:
1
® (-'i)p.(c)
Uy (xy x2.%3) U ¥, S & &
uylxy xax3)] = |Uz ¥2 §; & ¢y |~ ("’h xf! 8)
uy(x) x3,x3) Us ¥; 36, 0
(3)2 Py0)
|
& Py
3 Murakami et al.
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2x
where{ = T’ and P, ({) are the Legendre Polynomials of order n. It is also understood that

Ui, ¥, S, & and ¢, are functions of x, and x, only. x{% is a local x;-coordinate system with
its origin at the center x{§’ of the k th-layer, i.e. i

xF =xy-xff )]
b) Trial Transverse and Normal Stresses: i
T;:“‘XlerrxJ)- Ql(k)(xhxz)l"[(Z)""R,‘“(lexz)[(8”+8,~2)F2(z)+8'13[76(z)]+Ji(k)(xhx2)1,-3(z) i
+ I (X )8,3F7 () + [TV (x,x0) + T% (x1,x))1F o (2)

+ [T%D 6 0) — T Gy, x)) 6y, + 8,)F5() + 83 Fy(2)) (10),
where §;; is the Kronecker delta and :
0 105 0 -752 0 452
(k)
nOh Fi(z) o 0 o 26 o ¥
(n®h)? Fy(z)/30 0 0 -4 0 1 0]][s
(n®h)? Fy(z)/105 0 =20 0 6 0 -v4 |4
Fo) ;o I 0 -15¥2 0 ¥6| |
po =il n on 0wl
k) 332 = ~
aomrFaos {0 o 0 2 Y2 A,
(n("’h)‘F7(2)/315 36 0 -14 0 54 0 1
F(@) -112 0 40 0 -3 0
126 0 -35 0 158 0O
_ x 1 1
2= 2o i B XA ]
Also , Q® ,R® ,J®) = f (1, x§0) | x§02) £ {6 gy, (12a)
AW
B = [ xf ) ax, . (12b)
A%

In Eq. 10 7;*-V and T, are the values Lt 73 at the top and bottom surfaces of the k th-layer
respectively. From Egs. 6

TO=T" and T =T . 13)

In Eq. 11, for the functions F;(z), i = 1, 4, 5§ two rows of coefficients appear: the upper
one corresponds to the high-order theory while the lower one corresponds to the first-order
. tl;;?ry which, in addition to disregarding the underlined terms in Eq. 8, is obtained by setting
i =0. ‘
For each of the theories considered, the degree of the polynomials F;(z), i= 1, ..., 8
ap(g)earing in Eq. 11 is consistent with the order of approximation used for the displacements
U in Eq. 8-

Laminated Plate Equations

_ Substituting Eqgs. 8 and 10 into Eq. 7, using Gauss’ Theorem and the orthogonality pro-
perty of the Legendre polynomials one obtains:

a) Equilibrium Equations
Nyoa+ TH=T +F'=0 (14a)

Murakami et al.
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=¥ 43
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A
/

M...-.-Nu+% (T*+ T+ FM=0 (14b)

Zyin— Ky~ (T"’ CEDVNT)+FF=0 (14¢c)
Lyja— 3M,,+——(1'* )+ Ft=0 (14d)
~ L+ E v+ B @t T+ R =0 (14¢)

where
Nag, Maﬁ! Zaﬁ, Laﬂ’ﬁ _ N
E’Nv EM’ l'-iz’ -Ii[.-‘ i = kgl AWK
k)

7)‘3 ( )2P2(§) ( )3P3(§)] [f(“] éC; (lSab)

i, P @), D*

(Nji ,Msl sKJI 9ZJI 'Lji) - z f l P (;) ( l)k (k)h

D~ (k)h x§ (% y P2(§)I T dx; (15¢)

b) Constitutive Equations
@ For Transverse Stresses

§J®

Q,fk) - W + a, n®p [Ték_l) + T}k) l =b h n C’;") [U;,+W,,+S,(— 1)*

72_;. +h n W, + 3%,) + -— ® (30002 —)53, 38 (5 ngon2 - )4:,.' (16a)

1ow_1%% a-ny _ 7w __ ®)3 &)
5 R} m (1} T® ) 20 " C!

Vip+ o+ 83, ¥ ""h

+ 38 1 G0+ 56)] (16b)

14J;k) n®p (

2
0~ G t g T AT ) = T Gt ) (89

1 SJO  3R®
rac I“2 Q* + 3onT = TAwh

1
+ Fw [“2 Q;+*Y

5 J(k+l) 3 R(k+l)

3 ( (:+l) 2 (: 1 (16d)
nk+Dp) 7 nk+Dp

by n -1 ,,(k) plk+D) %) pk+D

l c(u Tak V+b; C'(k) é(un , 2 C:kﬂ) Iy

® For Normal Stresses (High-Order Theory Only) |

gJ .
Q' - i b (rfe-v 4 10 )-— n® ) |Wy+ 8, DX (k, =+ 3h n,,mg,l

a®n)? *
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+ 20w
5 n

U+h ,,o(k) v+ _ (3,,°(k)2 %)E =15 n,“‘” - % ""(k)l¢] (1_7_3_)

«
1pp_ 3210 n ”h (T - T}k))- 0 K a3 P g,

h S0z T
D § S ST

_ )k —2 ") g w2_ 1,3
1050 ¥+ 1) (k)h§+3hn £+ 32 (5, )¢| (17b)

14 {0 ®p - 343 -
04 - (,,(k);,)z + 37 M0+ TR == S 0 B4 Shae] (170)

1 _ 150° (m" k-0 _ 0y o = 1A% s
5 R — (T§ T )= g """ 9 (17d)
1 QJ(I‘) Q (k+1) 15 }k) R;k-# 1)
l C}f) + C§§+l) + 5, n(k)cg) n(k+l)c§§+l)
5 J}k) JJ(k+l)
+ 3h2 n(")ZCﬂ) n"‘*"’ZC}f*’"
- 70 o _ [{e+) h % 7 4 10[-2%
1143 n(")’Cﬂ" n“"""’Cﬁ‘"’" C}f) C}f)

n(k+l) ) n(" +1)
C§§+l) -'?‘ C(§+l)
where in Egs. 16a,b,c and 17a,b,c,d k ranges from 1 to N while in Egs. 16d and 17e, k ranges
from 1 to (N—1). Also, no summation on « is implied in Eq. 16 and

CO =8,CH +8,,CH  n®O=xP/h . (18)

Also, U = C{§’ Uy, + C§’ U, with analogous expressions for ¥, §, & and ¢. The
coefficients a|, b,, a, bz and b; appearing in Eq. 16 are given in Table 1. ‘

T;Iu-l) I (IL"')

Table 1  Coefficients a,, by, a3, b, and b3 Appearing in Egs. 16

a b a; b, by

- 1 2 1| _L [ s
High-Order Theory 30 5 12 126 63
5 1 1 2

First-Order Theory - —115 3 0 -3 5

¢) Boundary Conditions -

specify U, or N, v, , (19a)
specify ¥, or M, v, , (l9b)?
specify S, of Z, va . (19c)!
specify & ot Ly v (19d)
specify ¢, or Pg, v . (19¢)

6 Murakami et al.
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It shouid be pointed out that for the first-order theory the subscript i in Eqgs. 14b.¢ and
l9b,c wull assume the values 1 and 2 only

The quantities Ny, M3, K3, Z5 and Ly, obtained by inserting Q®, R®, J &), [{k)
and T;®’ from Egs. 16 and 17 into Eqs. 10 and 15c will automatically include the appropriate
shear correction factors by virtue of Reissner’s mixed variational principle (5). The remammg
constitutive equations for N,g, M,g, Z,s, Lag and P,g are obtained by substituting Egs. 3a, 4
8 and 10b into Eq. 15a.

Cylindrical Bending of Laminated Plates

As an illustration of the present theory, cylindrical bending under sinusoidal loading of an
infinitely long strip in the x,-direction is considered. The plate is simply supported at the ends
x; = 0 and /. The prescribed boundary conditions on the top and bottom surfaces of the plate

are
T =0, Tf =g sin 2+ onx;-% (20a)
Tr = T5 =0 on xy=~ =2 . (20b)
The boundary conditions for the simply supported ends are, from Egs. 19:
Uy=¥;=S;=§3=0 at x; =0,/ (21a)
Ny=My=Z=Ly=Py=0 atx;=0,/. (21b)

Numerical Results

In order to assess the accuracy of the present theory, the cylindrical bending problem
under sinusoidal loading of an infinitely long strip is considered. The exact elasticity solution
was given by Pagano (3) where a 3-layer cross-ply laminate with the outer layers oriented at 0°
was examined. The material properties are for the 0° layers :

Cu Cu Cn Css |

ET = 25.062657 , Er = (.335570 , Er = 1.071141 , E 0S ; (22a)i

and for 90° layers )
Cu Ci Cy Css

Er = 1.002506 , ET = (.271141 , Er = 1.071141, E; 0.2 (22b)1

where Er is a reference modulus. Adopting Pagano’s (3) nondimensionalization, the displace-'
ments and stresses are calculated in the form:

Er ]« © E |
g [ ’]"'—(""l,a,‘ [ ’] 100K , go (—;.0) 23)
—w 1
7= Lo b xp
Also f,-fhi ,s-% 24)

The present high-order theory and the corresponding first-order theory are compared with
Pagano’s exact solution (3), Lo, Christensen and Wu’s high-order model (LCW) (1) and
Reissner-Mindlin first-order shear deformable theory (FSD). For each of these theories
thickness variations of in-plane displacement &*’ and normal stress &}’ of various symmetric
and asymmetric laminates with span-to-thickness ratio S of 4 are shown in Figs. 2, 3 and 4.

For symmetric 3- and S-layer cross-ply laminates, with layers of equal thickness, the
results of the present high-order theory are in excellent agreement with Pagano’s exact solu-
tion, as can be observed from Figs. 2 and 3. In particular, it has considerably improved upon

7 Murakami et al.

L{,& A’z‘\ o, h‘t '5 ".‘.Q N A 1‘ %,.u '



Lo, Christensen and Wu's high-order model at the interfaces and in the interior layers of the

plate. Also the present first-order zig-zag theory gives reasonably good results even for the
more difficult case of the symmetric 5-layer cross-ply laminate.

.
i
)
\
2
L3
‘g

W o
—~—— Ref [7]
f -~ ist-Qrder
? Zig Zog
—-——=FS0
Fig. 2a. Thickness Variation of In-Plahei Fig. 2b. Thickness Variation of Normal
Displacement for N = 3 and S = 4 Stresses for N = 3 and S = 4
r
Fig. 3a. ']'hjc-kness Variation of In-Plane’ Fig. 3b. Thickness Variation of Normal!
Displacement for N = Sand § = 4 Stress for N = 5and § = 4,
wsmas |
il v T T 3'1
— et 7]
————15!-Order
’ Zig Zog
——~FsD
Fig. 4a. Thickness Variation of In-Plane! Fig. 4b. Thickness Variation of Normal:
displacement for N = 4and § = 4 Stress for N = 4and S = ¢
8 Murakami et al.



For an asymmetric 4-layer cross-ply laminate, with layers of equal thickness, the present
first-order theory deviates considerably from the exact solution at the bottom layer of the plate,
while the present high-order model still gives very good results as shown m Flg 4. On the
other hand, the discrepancies between LCW and the exact solution for both #*’ and G’ are
more pronounced in the interior layers of the plate.

In all the cases considered FSD gave poor results when compared with the exact solution.

Finally, the improvement of the present theory can also be seen in the results for the cen-
tral deflection @3 of the plate as shown in Table 2. It is worth noting that the present first-
order, zig-zag theory gives closer values to the exact solution than LCW for symmetric lam-
inates.

Table 2 Central Deflection @; of Symmetric and Asymmetric Cross-Ply Laminates for ‘.
S=4 \

Number of Layers N 3 4 5

Exact Solution (3) 2.887 4.181 3.044
Present (High-Order) 2.881 4.105 3.032
Present (First-Order) 2907 3.316 3.018
LCW (1) 2687 3.587 2.597
FSD 2.262 3.088 2412

Conclusion

A new high-order laminated plate theory, which accurately predicts in-plane responses of
symmetric and asymmetric laminates, has been developed using Reissner’s mixed variational
principle (5). The improvement was accomplished by introducing into the in-plane displace-
ment variations across the plate thickness, a zig-zag shaped C? function and the Legendre poly-
nomials of order n = 1, 2, 3, as detailed in (6). The theory was tested by examining the prob-
lem of cylindrical bending of an infinitely long strip, whose exact solution had been given by
Pagano (3). The comparison of the central deflection and in-plane displacements and normal _
stresses for symmetric 3- and S-layer and asymmetric 4-layer cross-ply laminates with available
first-order (FSD) and high-order (LCW) theories has shown that the present theory very accu-
rately predicts the in-plane response even for small span-to-thickness ratios. Thus, the theory
provides a tool with which one may efficiently study the extraordinary skin action in laminated
composite plates.
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