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Full Pseudospectral Solution to the Euler Equations
of Notion for Airfoil Flow at Transonic Speeds

I. Dfl'3.DUCTION

Pseudospectral solutions to one-dimensional compressible flow problems

with discontinuities were first obtained by Gottlieb (reference 1) and

"- Taylor (reference 2). Such flows are governed by the Euler equations. The

present author has dealt with many such problems (references 3 - 6 ) ranging

from the simple propagation of a normal shock wave to more complex, multiple

shock wave flows. Solutions to bursting diaphragm flows, where an expansion

*fan, contact surface and shock front simultaneously exist and propagate,

were obtained in reference 6. In addition, the time-dependent flow which

arises from the collision of two normal shock waves (not necessarily equal

strengths) was also obtained. The present author's work has demonstrated

conclusively that artificial viscosity together with spectral filtering make

pseudospectral techniques well suited to the solution of such compressible

flow problems.

The first extension of pseudospectral techniques to two-dimensional,

inviscid flows took place in 1982 when the present author succeeded in

obtaining a numerical solution to the full Euler equations for supersonic

wedge flows, (reference 3). The present work further extends the range of

.' applicability of pseudospectral techniques to two-dimensional inviscid

-. flows. Two-dimensional transonic airfoil solutions to the full Euler

equations of motion have been obtained by full pseudospectral means (i.e.

spatial derivatives in all directions treated spectrally). Solutions

including embedded supersonic zones and discontinuities will be presented.

They represent the subcritical, supercritical, and supersonic flow regimes

encountered in the full transonic domain.

Mnuseflpt approved Auut 1, 1985.
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II. Pseudospectral Methods

Pseudospectral solution techniques involve the use of series of

functions to represent the global properties of a flow field and its spatial

derivatives. In the present work Chebyshev polynomials are used. They are

reprensented by Tn(x) where

T(X) - cos [n cos- (x)] (la)

or

T (0) - cos [nO ; (ib)

n

0 - cos- (x) . (Ic)

A function F(x,t) may be represented as

N
F(x,t) - E A (t) T (x) ; (2)

n n

where the time dependence is contained in the spectral coefficients, An(t);

and the spatial dependence is in the Chebyshev polynominals.

The two-dimensional, time-dependent Euler equations of motion, cast in

conservation law form, are given by

+ + - 0 ;(3a)

where

rh

U = u E p+u 1 (3b)

e_] (ev+ pOuJ

rPV
P uv

p +Pv 2I
L(e + p)v

2 2• = ..- + P(u + v .
e Y-I 2 "

2.
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These equations are solved using Chebyshev series to obtain the spatial

derivatives and finite differences to obtain the temporal derivative. The

Adams-Bashforth scheme was used in the present work for the evaluation of

the time derivatives.

The Chebyshev polynominals are applied at discrete values of x and y,

called collocation points xj, yi. The values are given by

X cos [ n ] 0 < N (4a)
Nx
i .

Yi co 0 1 N (4b)

where Nx and Ny are the total number of modes used to represent the

functions I(x,t) and +(y,t) given in equation (3b) The functions

E and F are represented pseudospectrally by
N

E (xit) E A n(t) T n (xj (5a)
n=O

+ N
F (yi,t) nZy  Bn (t) Tn (y1) • (5b)

* The spatial derivatives are given by

+ ~N
3E -- E A (t) (  T (x (6a)
ax j n=O n n (6a)

+ Ny3F. y (1l)

F n-Z B(t) T ; (6b)ay i y-- n (y )
where n=0

(1) 2 N
n (t) A r (t); (7a)

n pn+l
p+n-odd

(1) 2
B (t) -- pB (t); (7b)

n p-n+1
p+n-odd
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* _In these expressions

C = 2; (7c)0

n 1, n>0

The An'S and Bn'S are determined using equations 5a and b. Inverse FFT

operations are used to obtain the An's and Bn's from the known values

of E and F at the current time step. Once the An(") and Bn(l) values are

obtained from the recurrence relations 7a and b, direct FFT operations are

used to evaluate the sums in 6a and b to obtain the spatial derivatives at

the current time step. Finally, the solution is advanced in time using the

Adams-Bashforth algorithm:

4.t- tt
t+ t . t 3 t E -t i 3 1 i

U U --a '2 A L

,2 '/2 [A ] - t ---. (8)

The low pass spectral filter developed by Gottlieb (reference 1) was

used to damp spectral oscillations. It is given by
i4

':.~~ .[ - Ko 4
K-Ko 1.(9)

K -K
max O

where K is the spectral wavenumber and Kmax is the maximum wavenumber

corresponding to the total number of collocation points. The term Ko is
5given by - Knax" In addition to this spectral filter, 2nd order artificial

viscosity was globally applied in both the x and y directions. Its form is

given by

D U -ii2U (-2U
n,i, j  x n,i,j+1 n,i,j (10)

• + U
.i nj, J-1

1 uy [u n,i+l,j 2 Uni,j

+ U n,il,j ] •

This term is applied to the right hand side of 3a. In equation

10, 1 and P are the magnitudes of the artificial viscosity coefficients.
x y
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III. Results

The airfoil geometry used was a five percent half thickness ratio

biconvex shape. Free stream Mach numbers of 0.70, 0.84 and 1.05 were run.

The first yields subcritical flow over the airfoil surface. The second

yields an embedded supercritical flow zone at subsonic free stream and the

third also subcritical but at supersonic free stream conditions. For all

cases 128 points were used in the x-direction and 32 points in the y-

direction. Characteristic boundary conditions were used at subsonic inflow

and outflow boundaries. Flow variables were held fixed at supersonic inflow

boundaries and allowed to float at supersonic outflow boundaries. Surface

tangency was applied at the upper and lower (airfoil) computational

boundaries.

Several coordinate transformations were applied to generate an

appropriate distribution of points in the flow field. The final

computational coordinates are obtained by the following sequence:

(x,y) n) + + (llcx:

where

1_Cla092 2

1-Ca E1-

x -A __)a C3- 2.g2te ]
-A (1 _ 2)a 2 -2te (12a)

-X max 1 2

" 2 [ 2-1 - 1 + 1 (12b)

and

2
1 - Ci a r

y An 4 a 0 y y (13a)
max

n - inmi 0 -C 4 -C m a x ( 13b )

max min

- 2 - I - 1 ( - + I (13c)

5
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The transformation given by the first term of equation 12a is the same as

that used in reference 7. The second term of equation 12a is one developed

by the present author. The new transformation represented by both terms of

12a clusters points about the airfoil leading and trailing edges. The x-

coordinate in 12a is the collocation point coordinate (cosine clustered) and

ranges from -xmax to +Xmax • The coordinate is an intermediate coordinate

which is clustered about the leading and trailing edges and ranges from

- , to + &2 (presently 1&11 - I1 ). Finally, is introduced to btain

the required range of coordinate values for the pseudospectral computations,

namely -1 4 F • + I

The stretching function for y, equation 13a, takes y to n where,

0 r y 4 Y max and 0 < n n x. The transformation is introduced to make the

airfoil surface a constant coordinate line. The range of C is 0 < C C max

Again, is introduced to insure the proper range of coordinates namely,

- 1•( + .

The subcritical case results are shown in figures I and 2

Comparisons with the finite difference potential flow solution of reference

7 are shown in figure 3. Grid resolution for the potential flow solution

was 90 X 21 (x,y). Two pseudospectral cases were run at this condition.

Grid resolution was 64 X 16 and 128 X 32 respectively. (Potential fiow data

exists only on the airfoil surface, so the figures do not show any

comparison off-surface.) The lower resolution run roughly approx.mates tkae

potential flow solution. The higher resolution run is however a more

accurate solution of the Euler equations. The mild oscillations aft of the

airfoil trailing edge are not due to any instabilities. Rather the) are

dependent upon the magnitude of the artificial dissipation and can be

eliminated simply by increasing the smoothing in the x-direction. Results

which are presented here were obtained at the minimum values of smoothing in

x and y. Pressure contours of the flow field are shown in figure 2. (For

all results herein, the iterations were stopped when the airfoil surface

flow was deemed converged. Therefore, full field convergence has not been

reached and accounts for the non-uniformity of pressure contours interior to

the field.) The contours are smooth, with no oscillatory behavior at all.
%.

S.1

.. ... . . . . . . ... .. .6

IJ o, J | 4 ._ j 
*

" ., " e .
a

.. o
° m B n g d

, e
'~' "•"."' 

° " " °
" •'. ... ...."-

"
'. ." ' °I" '.".°. ' ' * "°. "."". " " "*' °



Results for the supercritical case at subsonic free stream are shown in

figures 4 and 5 . Figure 5 shows comparison with a finite difference

potential flow solution. The surface pressure coefficient distribution

shows the presence of a shock wave at a value of X of about 0.20 for the

Euler pseudospectral run versus 0.25 for the finite difference potential

flow run. Of more importance is the fact that the sharpness of the shock is

the same for both solutions. The pseudospectral technique resolves the

shock extremely well. Pressure contours are shown in figure 6. The shock

wave is clearly evident.

A supersonic free stream case was also run to see how the

pseudospectral method would work (no comparison data is available at the

conditions chosen). Results are shown in figures 7 and 8. The surface Cp

distribution shows the presence of a shock wave very near the trailing edge

(x-0.5). The field pressure contours vividly confirm this. Again all

contours are smooth and without numerical oscillation.

IV. CONCLUSIONS

The present work has shown that full pseudospectral solutions to the

unsteady, two-dimensional Euler equations of motion are obtainable for

transonic airfoil flows. Subsonic and supersonic free stream conditons are

handled equally well. Embedded discontinuities are properly resolved both

as to sharpness and position.
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Fig. 5 -Pressure contours for supercritical case

Fig. 6 - Comparison of pseudospectral Euler solution
and potential flow solution
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Fig. 8 -Pressure contours for supersonic case
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