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Full Pseudospectral Solutiom to the Euler Equations
of Motion for Airfoil Flow at Transonic Speeds

I. INTRODUCTION

Pseudospectral solutions to one-dimensional compressible flow problems
with discontinuities were first obtained by Gottlieb (reference 1) and
Taylor (reference 2). The

present author has dealt with many such problems (references 3 - 6 ) ranging

Such flows are governed by the Euler equations.

from the simple propagation of a normal shock wave to more complex, multiple
shock wave flows. Solutions to bursting diaphragm flows, where an expansion
fan, contact surface and shock front simultaneously exist and propagate,
were obtained in reference 6. In addition, the time-dependent flow which
arises from the collision of two normal shock waves (not necessarily equal
strengths) was also obtained. The present author's work has demonstrated
conclusively that artificial viscosity together with spectral filtering make
pseudospectral techniques well suited to the solution of such compressible

flow problems.

The first extension of pseudospectral techniques to two-dimensional,
inviscid flows took place in 1982 when the present author succeeded in
obtaining a numerical solution to the full Euler equations for supersonic
wedge flows, (reference 3). The present work further extends the range of
applicability of pseudospectral techniques to two-dimensional inviscid
flows. Two-dimensional transonic airfoil solutions to the full Euler
equations of motion have been obtained by full pseudospectral means (i.e.
spatial derivatives in all directions treated spectrally). Solutions
including embedded supersonic zones and discontinuities will be presented.
They represent the suberitical, supercritical, and supersonic flow regimes
encountered in the full transonic domain.

Manuscript approved August 1, 1985,
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II. Pseudospectral Methods

Pseudospectral solution techniques involve the use of series of
functions to represent the global properties of a flow field and its spatial
derivatives. In the present work Chebyshev polynomials are used. They are

reprensented by T (x) where !

T (x) = cos [n cos-l(x)] , (1a)
y or \
- T (@) = cos [no] : (1b) N
; " ?
i @ = cos (x) . (1¢)
" A function F(x,t) may be represented as

N .
F(x,t) = I A (t) T (x) ; (2)
n=0 n n

where the time dependence is contained in the spectral coefficients, An(t):

and the spatial dependence is in the Chebyshev polynominals.

The two-dimensional, time-dependent Euler equations of motion, cast in

conservation law form, are given by

30 . 9E . ¥
It + x + a—y = 0 ; (3a)
where
>
P Pu 2 .
3 = |pou E= |ptou (3b) '
p v puv :
e (e + plu -
> PV g
F = P uv -
p+pv? :
(e + p)v .
2 2 .
e = P + p(u+v) .
y-1 2 ' X
X
-
»
2 .

----------------------
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These equations are solved using Chebyshev series to obtain the spatial
derivatives and finite differences to obtain the temporal derivative. The
Adams—-Bashforth scheme was used in the present work for the evaluation of

the time derivatives.

The Chebyshev polynominals are applied at discrete values of x and vy, 2
called collocation points Xy, Yy The values are given by

I

Xj = cos | —ﬁi ] 0$ j < N (4a)
I

Y, = cos [ —ﬁi ] o0¢1€ N (4b)

where Ny and Ny are the total number of modes used to represent the

functions E(x,t) and %(y,t) given in equation (3b) The functions

E and F are represented pseudospectrally by

, x :
E (xj,tJ - A(t) T (xj) ; (5a) ;
n=0 .
N N
F (y,,t) =27 B ()T (y,). (5b)
i’ n n 1
n=0
The spatial derivatives are given by K
N -
> x
3 _ (1) .
— I A (t) T, (%)) 3 (6a) ;
3 n=0
N 3
*
y
.o Ty (6b)
Yy n=0 Yy
where
(1) 2 Nx
A ()= &= 1 PA_ (t) ; (7a)
n p=n+l
p+n=odd
(D 2 Ny
B (¢) = o L p B_ () : (7b)
n n p=n+l P
p+n=odd
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In these expressions
cC = 2 (7¢)

n = 1, n>0.

The A, 's and Bn‘s are determined using equations 5a and b. Inverse FFT
operations are used to obtain the An's and Bn's from the known values

of E and F at the current time step. Once the An(l) and Bn(l) values are
obtained from the recurrence relations 7a and b, direct FFT operations are
used to evaluate the sums in 6a and b to obtain the spatial derivatives at
the current time step. Finally, the solution is advanced in time using the

Adams-Bashforth algorithm:

> t > tAt
> tHt *t 3 3E 9E
u U e [ ] -t ae [ 5]
+% se [ o] -lpoe [51] . (8)

The low pass spectral filter developed by Gottlieb (reference 1) was
used to damp spectral oscillations. 1t is given by

4
K - Ko .
4[ﬁ]’ (9)
max o

e
where K is the spectral wavenumber and K;,, is the maximum wavenumber
corresponding to the total number of collocation points. The term K, is
given by % Kmax' In addition to this spectral filter, 2nd order artificial
viscosity was globally applied in both the x and y directions. Its form is
given by

D -—ux[U

n,1,3 U (10)

nﬁi’j+l- n,i,]

* Un.i. 1-1]

-w [ U 2 U

n,i+1,j n,1i,)

+ Un,i-l,j ] .

This term is applied to the right hand side of 3a. In equation

10, ux and uy are the magnitudes of the artificial viscosity coefficients.
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III. Results

The airfoil geometry used was a five percent half thickness ratio
biconvex shape. Free stream Mach numbers of 0.70, 0.84 and 1.05 were run.
The first yields subcritical flow over the airfoil surface. The second
yields an embedded supercritical flow zone at subsonic free stream and the
third also subcritical but at supersonic free stream conditions. For all
cases 128 points were used in the x-direction and 32 points in the y-
direction. Characteristic boundary conditions were used at subsonic inflow
and outflow boundaries. Flow variables were held fixed at supersonic inflow
boundaries and allowed to float at supersonic outflow boundaries. Surface
tangency was applied at the upper and lower (airfoil) computational
boundaries.

Several coordinate transformations were applied to generate an
appropriate distribution of points in the flow field. The final

computational coordinates are obtained by the following sequence:

(x,y)* En) > Eg)+» €F) (11)
where
1-C GEZ 2 2
1 £E° =& te
N LU SR
(1€7) El -& te (122)
-xmax<x‘xmax -El<€<+£2
_ £ -&; _
E = 2 —EE'_—E-I——] - 1 -1< E < +1 (i12b)
and
2
1 -C an g
= 3
i (1 - nzj) @ 0eys Tmax (132) %
n-n &) N
g = min 0¢g<g (13b) .
n__-n = max :
max min (§) g
:%
T = 2¢-1 - 1< TS+ ] (13c) 3
}
1

......................................................................................
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The transformation given by the first term of equation 12a is the same as
that used in reference 7. The second term of equation l2a is one developed
by the present author. The new transformation represented by both terms of
12a clusters points about the airfoil leading and trailing edges. The x-
coordinate in 12a is the collocation point coordinate (cosine clustered) and
ranges from -x,p . to +x; ... The £ coordinate is an intermediate coordinate
which is clustered about the leading and trailing edges and ranges from

- &1, to + £ (presently |E;] = |€2] ). Finally, £ is introduced to .btain

the required range of coordinate values for the pseudospectral computations,
namely -1 € £ < + 1 .

4

r

' The stretching function for y, equation 13a, takes y to n where,

0<y<sy and 0 € n <n . The § transformation is introduced to make the
max max

airfoil surface a constant coordinate line. The range of £ is 0€ g < cmax'

Again, 7 is introduced to insure the proper range of coordinates namely,
-1<.C—<+10

The subcritical case results are shown in figures 1 and 2 .
Comparisons with the finite difference potential flow solution of reference
7 are shown in figure 3. Grid resolution for the potential flow solution
was 90 X 21 (x,y). Two pseudospectral cases were run at this condition.
Grid resolution was 64 X 16 and 128 X 32 respectively. (Potential fiow data
exists only on the airfoil surface, so the figures do not show any
comparison off-surface.) The lower resolution run roughly approximates the
potential flow solution. The higher resolution run is however a imore
accurate solution of the Euler equations. The mild oscillations aft of the
airfoil trailing edge are not due to any instabilities. Rather they are
dependent upon the magnitude of the artificial dissipation and can be
eliminated simply by increasing the smoothing in the x-direction. Results
which are presented here were obtained at the minimum values of smoothing in
x and y. Pressure contours of the flow field are shown in figure 2. (For
all results herein, the iterations were stopped when the airfoil surface
flow was deemed converged. Therefore, full field convergence has not been
reached and accounts for the non-uniformity of pressure contours interior to

the field.) The contours are smooth, with no oscillatory behavior at all.
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Results for the supercritical case at subsonic free stream are shown in

figures 4 and 5 . Figure 5 shows comparison with a finite difference

potential flow solution. The surface pressure coefficient distribution
shows the presence of a shock wave at a value of X of about 0.20 for the
Euler pseudospectral run versus 0.25 for the finite difference potential
flow run. Of more importance is the fact that the sharpness of the shock is
the same for both solutions. The pseudospectral technique resolves the
shock extremely well. Pressure contours are shown in figure 6. The shock

wave is clearly evident.

A supersonic free stream case was also run to see how the
pseudospectral method would work (no comparison data is available at the
conditions chosen). Results are shown in figures 7 and 8. The surface Cp
distribution shows the presence of a shock wave very near the trailing edge
(x=0.5). The field pressure contours vividly confirm this. Again all

contours are smooth and without numerical oscillation.

IV. CONCLUSIONS

The present work has shown that full pseudospectral solutions to the
unsteady, two-dimensional Euler equations of motion are obtainable for
transonic airfoll flows. Subsonic and supersonic free stream conditons are
handled equally well. Embedded discontinuities are properly resolved both

as to sharpness and position.
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Fig. 1 — Surface pressure coefficient distribution for subcritical case
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Fig. 2 = Pressure contours for subcritical case
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